

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY KUMASI

SCHOOL OF GRADUATE STUDIES

DEPARTMENT OF TELECOMMUNICATIONS ENGINEERING

COLLEGE OF ENGINEERING

DESIGN OF A NETWORK TRAFFIC PREDICTION MODEL

USING THE KALMAN FILTER

BY

ODURO-AFRIYIE JOEL

MARCH, 2014

DESIGN OF A NETWORK TRAFFIC PREDICTION MODEL

USING THE KALMAN FILTER

 By

ODURO-AFRIYIE JOEL

A Thesis submitted to the

 DEPARTMENT OF TELECOMMUNICATIONS ENGINEERING,

Kwame Nkrumah University of Science and Technology,

in partial fulfilment of the requirement for the degree of

MASTER OF SCIENCE

COLLEGE OF ENGINEERING

March, 2014

3

DECLARATION

I hereby declare that, except for specific references which have been duly acknowledged, this

work is the result of my own field research and it has not been submitted either in part or

whole for any other degree elsewhere.

Signature……………………………… Date..

ODURO-AFRIYIE Joel

(Candidate)

Signature………………………………... Date..

Dr David ANIPA

(Supervisor)

Signature……………………………….. Date ………………………….

Dr P.Y. OKYERE

(Head, Department of Electrical / Electronic Engineering)

4

ABSTRACT

Network traffic prediction is of immense interest to industry since it supports decision

making in management and control, and eventually user satisfaction. In this project, a

Kalman filter-based model was developed for predicting network traffic. The focus was on

telecommunication, transportation and computer networks. Traffic volume per unit time, or

traffic flow rate, observed in a particular time interval, was utilized to predict the traffic flow

rate for the next time interval by recursively computing relevant parameters of incoming

traffic data. Relevant parameters include the process and measurement noise covariances,

the Kalman filter gain and the a-priori and a-posteriori state and covariance estimates. The

model makes use of the Kalman filter to carry out the prediction, and was tested using traffic

sets with low, average and high autocorrelation. By means of a LabVIEW VI (simulation tool)

different parameters were varied and their effects on the prediction model observed.

LabVIEW was employed for its superior simulation features, with an integrated MATLAB

block for optimization. Working with a 20% error tolerance, prediction accuracies

approached 90%, and this process yielded an improved short-term traffic flow rate

prediction model. The model carried out prediction for a single time-step ahead but, with

refinements or modifications, it may be employed for multi-step prediction, converting it to a

long-term predictor.

5

ACKNOWLEDGEMENTS

I would like to appreciate my supervisor, Dr. David K. Anipa, for his great patience,

encouragement, direction and insight throughout this project. His forward thinking and

dedicated mentoring have been an invaluable source of inspiration in this project.

Much appreciation goes to Dr. James Gadze, whose very professional guidance and

assistance were priceless during certain periods when my supervisor Dr. Anipa could not be

available.

My thanks also go to Peter D. Joseph, whose very lucid materials on the Kalman filter were a

great help in my research into Kalman filter theory. His ready response to my inquiries were

also very much appreciated.

I am deeply grateful to Joel Hesch of the University of Minnesota, who was incredibly

welcoming and forthcoming with help on Kalman filter theory when approached.

To Greg Welch and Gary Bishop of the University of North Carolina, who did not hesitate to

provide direction when contacted, I am very thankful.

I am indebted to Tom Lane of The Mathworks®, whose code examples and patient

responses to my mails were priceless components in developing the MATLAB aspect of this

project.

My sincere gratitude goes also to James Baffoe of Millicom Ghana for his never-ending

readiness to provide mathematical and statistical insight whenever I needed it.

I owe a depth of gratitude to my colleague Strignner Bedu-Addo, who gave me my first

LabVIEW tutorial and thus opened up to me the immense potential of the software.

6

To all my Telecom Engineering course mates, I am eternally grateful for the constantly

willing input and contributions to problems pertaining to this project.

To all friends (including Naa Norkor Nartey and Miriam Ohene-Okantah) who showed

interest in the project, and who gave valuable opinions and input, I wish to extend my

deepest gratitude.

Finally, and most importantly, my utmost appreciation goes to God Almighty, without

whose enablement and constant strengthening this project would never have taken off in

the first place. I owe every success and achievement in this project to Him.

7

TABLE OF CONTENTS

ABSTRACT .. i

ACKNOWLEDGEMENTS .. ii

TABLE OF CONTENTS ... iv

1. INTRODUCTION .. 1

1.1 Background and Motivation ... 1

1.2 Problem Statement ... 2

1.3 General Objectives .. 2

1.4 Thesis Organization ... 3

2. OVERVIEW OF KALMAN FILTERS .. 5

2.1 Introduction .. 5

2.1.1 Kalman Filter Theory and Algorithm ... 5

2.1.2 Kalman Filter Equations .. 7

2.1.3 Derivation of the Kalman Gain .. 8

2.1.4 A Step – by – Step Walkthrough of the Kalman Filter ... 13

2.2 Related Work (Use of Kalman filters in network traffic prediction) 15

2.2.1 Short-Term Traffic Volume Forecasting Using Kalman Filter with Discrete Wavelet
Decomposition ... 15

2.2.2 Short-term traffic safety forecasting using Gaussian mixture model and Kalman filter
 ...
 16

2.2.3 Kalman filter approach to traffic modeling and prediction .. 16

2.2.4 Tracking and predicting a network traffic process.. 17

2.2.5 Real-time freeway traffic state estimation based on extended Kalman filter: a general
approach ... 17

2.2.6 An Extended Kalman Filter Application for Traffic State Estimation Using CTM with
Implicit Mode Switching and Dynamic Parameters .. 20

2.2.7 Dynamic prediction of traffic volume through Kalman filtering theory 20

2.2.8 DynaMIT: a simulation-based system for traffic prediction .. 21

3. METHODOLOGY .. 22

3.1 Model Development ... 22

3.2 Model Implementation ... 25

3.2.1 Java program implementation .. 26

3.2.2 LabVIEW implementation ... 29

3.3 Testing ... 35

8

4. RESULTS AND ANALYSIS ... 42

4.1 Experimental data results ... 43

4.2 Network data results ... 51

5. SUMMARY .. 54

5.1 Goal Attainment .. 54

5.2 Project Challenges ... 54

5.3 Future research ... 55

5.4 Conclusion ... 56

6. REFERENCES .. 57

7. APPENDICES .. 60

APPENDIX 1: JAVA CODE ... 60

APPENDIX 2: MATLAB CODES ... 70

APPENDIX 3: LABVIEW MODEL ... 71

APPENDIX 4: DATA SETS .. 73

4.1: Experimental Data ... 73

4.2: Network Traffic Data .. 74

APPENDIX 5: TABLES OF RESULTS ... 75

5.1: Exprerimental Data Results .. 75

5.2: Network Traffic Data Results ... 76

9

 INTRODUCTION

1.1 Background and Motivation

The practice of predicting network traffic is gaining more and more popularity as the

importance becomes more and more apparent. Communications networks are becoming

much more efficient as they employ traffic prediction concepts. Transportation network

planners are receiving a boost in congestion management as a result of traffic prediction

applications. For example, http://trafficpredict.com provides traffic prediction services for

road users in the city of Los Angeles in the United States.

The network and traffic efficiencies reaped from such applications tend spill over into other

areas of national economy. Productivity increases as a result of savings in time and cost, as

well as general satisfaction of citizens.

It is no surprise therefore that many methods have been developed over the years for the

purpose of data forecasting. These include multiple regression analysis, nonlinear

regression, trend analysis, decomposition analysis, moving average analysis, weighted

moving averages, adaptive filtering, exponential smoothing, the Hodrick-Prescott filter[1]

and the Kalman filter, to name a few. Each of these methods possesses its merits and

demerits, and some methods are more suited to particular applications such as traffic flow

rate forecasting.

However, considering that developing countries generally experience more economic

struggles, it is developing countries that stand to gain the most from such technologies. As

already discussed in the previous section, the ripple effects of better traffic management on

economies could go a long way to ease their economic burdens.

http://trafficpredict.com/

10

This makes it rather expedient that such a technology be developed that would be

affordable and useful to a developing country such as Ghana.

1.2 Problem Statement

Most of the currently existing traffic forecasting systems are quite complicated and

therefore rather costly. They are typically funded by thousands of dollars of government

sponsorship. However, many developing countries are not yet at a position where huge

government investments are made in such technologies.

In order for developing countries like Ghana to enjoy the benefits of traffic prediction

applications, such as are outlined in the previous section, such applications will have to be

quite affordable without sacrificing the efficiency of the system. Granted that more

investment may be required to develop more accurate and efficient systems, a reasonable

amount of efficiency can be achieved at a reasonable cost.

This project is therefore focused on developing a cost-effective but reasonably efficient

traffic prediction system. Owing to cost considerations, the project considers short-term

forecasting, with the potential for modification and application to long-term forecasting

through further research.

1.3 General Objectives

The above-stated goal will be achieved as follows:

a) Develop a traffic flow rate forecasting model based on the Kalman Filter:

i. Describe the traffic flow as a system of equations

- This step will produce a linear combination representing the traffic flow

11

ii. Model the system of equations as a Kalman filter

- This step will produce a form of the equation in (i) above to which the Kalman

filter can be applied.

b) Implement short-term traffic flow rate forecasting using the model developed

i. Use the Kalman filter model to estimate/predict the traffic flow rate for time

t+1, using n previous traffic values up to time t:

- This will produce an equation for predicting the traffic flow rate for the next

time step.

- By means of this equation, the traffic flow rate estimate for the next time

step will be obtained.

ii. Apply this process recursively to achieve real-time short-term traffic

prediction

1.4 Thesis Organization

This thesis is organized as follows:

Chapter 1 presents a general overview of the project, covering the motivation for the

project, and general objective, amongst others.

This is followed by a treatment of the Kalman filter in Chapter 2. The general Kalman filter

theory is presented, along with the filter equations. This chapter attempts to induce an

intuitive grasp of the operation of the Kalman filter. It also presents various examples of

previous projects that have made use of the Kalman filter for traffic forecasting.

12

Chapter 3 deals with the methodology employed to achieve the stated goals and objectives.

It presents an analysis of the problem, and the models and software code that were

employed in order to implement the desired traffic flow rate prediction. It also details the

testing scenarios and processes.

A description of the results obtained from the testing phase is presented in Chapter 4. The

data used, results obtained, and analysis and deductions are all described in this chapter.

This is followed by Chapter 5 where a summary of the work done is presented. Possible

areas for future research are also suggested, and the conclusions that were arrived at are

given.

Chapter 6 lists the references used in this project, and Chapter 7 is a list of Appendices.

13

2. OVERVIEW OF KALMAN FILTERS

2.1 Introduction

Most practical engineering problems require the estimation of parameters associated with

physical phenomenon based on inaccurate measurements. Many algorithms exist today for

parameter estimation, but the Kalman filter stands out as one of the best of such tools and

is employed in many engineering processes that can be described by a linear system. In

mathematical terms, the Kalman filter (KF) estimates the states of a linear system. The KF

not only works in practice but is theoretically attractive as it is able to minimize the variance

of the estimated error. It can be described as an optimal linear estimator.

In this chapter, the salient features of the KF that relate to this project are presented.

2.1.1 Kalman Filter Theory and Algorithm

The Kalman filter was named after Rudolf Emil Kalman, who first introduced the filter in

1960. The filter has been employed in a myriad of applications including process control

systems, vehicle tracking, marine navigation, geology, demographic estimation and stock

price prediction. The filter estimates the instantaneous state of a linear dynamic system

perturbed by Gaussian white noise by using measurements that are linearly related to the

system state but that are corrupted by Gaussian white noise.

The filter recursively minimizes the mean square estimation error without directly observing

the system state or knowing the nature of the modeled system. Since the time of its

introduction, the Kalman filter has been the subject of extensive research and application,

particularly in the area of autonomous or assisted navigation. This is likely due in large part

to advances in digital computing that made the use of the filter practically, but also to the

relative simplicity and robust nature of the filter itself. Rarely do the conditions necessary

14

for optimality actually exist, and yet the filter apparently works well for many applications in

spite of this situation. Kalman described his filter using state space techniques, which

enables the filter to be used as a smoother, a filter or a predictor. The predicting ability of

the filter is what this project seeks to make use of.

The Kalman filter addresses the problem of attempting to estimate the state of a discrete-

time controlled process. The state is represented by two variables:

• 𝑥𝑥�𝑘𝑘/𝑘𝑘 , the estimate of the state at time k given observations up to and including time

𝑘𝑘;

• 𝑃𝑃𝑘𝑘/𝑘𝑘 , the error covariance matrix (a measure of the accuracy of the state estimate).

Discrete-time linear systems are often represented in a state-variable format given

by a state equation:

𝑥𝑥𝑘𝑘 = 𝑎𝑎𝑥𝑥𝑘𝑘−1 + 𝑏𝑏𝑢𝑢𝑘𝑘 + 𝑤𝑤𝑘𝑘 − − − − (2.10)

and a measurement equation:

𝑧𝑧𝑘𝑘 = ℎ𝑥𝑥𝑘𝑘 + 𝑣𝑣𝑘𝑘 − − − − − −− (2.11)

where the state 𝑥𝑥𝑘𝑘 is a scalar, a and b are constants and the input 𝑢𝑢𝑘𝑘 is a scalar; k

represents the time variable. The noise 𝑤𝑤𝑘𝑘 is a white noise source with zero mean and

covariance 𝑄𝑄 that is uncorrelated with the input. Likewise, the noise 𝑣𝑣𝑘𝑘 is a white noise

source with zero mean and covariance 𝑅𝑅 that is uncorrelated with the input. The input 𝑢𝑢𝑘𝑘

usually defaults to zero, so it is sometimes omitted. The two equations above (equations 1

and 2) form the basis of the Kalman filter algorithm.

15

2.1.2 Kalman Filter Equations

The Kalman filter is essentially a set of mathematical equations that implement a predictor-

corrector type estimator that is optimal in the sense that it minimizes the estimated error

covariance when some presumed conditions are met.

The filter has two distinct stages: the time update (Predictor) and the measurement update

(Corrector) stages.

The Time Update (Predictor) Equations

At this stage of the Kalman filter algorithm, the state of the process 𝑥𝑥𝑘𝑘 under investigation is

projected or predicted. This initial estimate is called the a priori estimate 𝑥𝑥�𝑘𝑘−.

 The a priori estimate 𝑥𝑥�𝑘𝑘− is then used to predict an estimate for the output 𝑧̂𝑧𝑘𝑘 . The

difference between the estimated output and the actual output, called the residual or

innovation, is then computed using equation 2.12 (with the help of equation 2.11):

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢𝑢𝑢 = 𝑧𝑧𝑘𝑘 − 𝑧̂𝑧𝑘𝑘 = 𝑧𝑧𝑘𝑘 − ℎ𝑥𝑥�𝑘𝑘− −−−−− (2.12)

The residual is then used to refine the initial estimate for the state 𝑥𝑥𝑘𝑘 to obtain a new

estimate called the a posteriori estimate, 𝑥𝑥�𝑘𝑘

𝑥𝑥�𝑘𝑘 = 𝑥𝑥�𝑘𝑘− + 𝐾𝐾(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) = 𝑥𝑥�𝑘𝑘− + 𝐾𝐾(𝑧𝑧𝑘𝑘 − ℎ𝑥𝑥�𝑘𝑘−) −−−−− (2.13)

Where 𝐾𝐾 is the Kalman gain. The measurement update (corrector) equations are then used

to correct the estimates of the time update stage.

16

The Measurement Update (Corrector) Equations

At this stage of the algorithm, the Kalman gain 𝐾𝐾 is first computed. The computed gain is

then used to update the a posterior estimate via the output 𝑧𝑧𝑘𝑘 . The error covariance is

finally updated.

2.1.3 Derivation of the Kalman Gain

To begin, the two errors of the estimate, the a priori error 𝑒𝑒𝑘𝑘−and the a posteriori error 𝑒𝑒𝑘𝑘 ,

are defined. The a priori and a posteriori errors are defined as the difference between the

actual value of 𝑥𝑥𝑘𝑘 and the a priori and a posteriori estimates respectively.

�
𝑒𝑒𝑘𝑘− = 𝑥𝑥𝑘𝑘 − 𝑥𝑥�𝑘𝑘−
𝑒𝑒𝑘𝑘 = 𝑥𝑥𝑘𝑘 − 𝑥𝑥�𝑘𝑘

� − − − −− (2.14)

The a priori and the a posteriori errors, are each associated with mean squared errors or

variances represented in the equation 2.15 below.

�
𝑝𝑝𝑘𝑘− = 𝐸𝐸{(𝑒𝑒𝑘𝑘−)2}
𝑝𝑝𝑘𝑘 = 𝐸𝐸{(𝑒𝑒𝑘𝑘)2} � − − − − − (2.15)

To start off, equation 2.13 is substituted into equation 2.14, and the resultant equation is

finally substituted into equation 2.12, yielding equation 2.16.

𝑝𝑝𝑘𝑘 = 𝐸𝐸{(𝑥𝑥𝑘𝑘 − 𝑥𝑥�𝑘𝑘)2}𝑝𝑝𝑘𝑘 = 𝐸𝐸{(𝑥𝑥𝑘𝑘 − 𝑥𝑥�𝑘𝑘− + 𝐾𝐾(𝑧𝑧𝑘𝑘 − ℎ𝑥𝑥�𝑘𝑘−))2} −−−−− (2.16)

In order to find the value of 𝐾𝐾, the expression obtained in equation 2.16 is differentiated

with respect to 𝐾𝐾, and the derivative is set to zero:

𝜕𝜕𝑝𝑝𝑘𝑘
𝜕𝜕𝜕𝜕

= 0 =
𝜕𝜕𝜕𝜕 ��𝑥𝑥𝑘𝑘 − 𝑥𝑥�𝑘𝑘− + 𝐾𝐾(𝑧𝑧𝑘𝑘 − ℎ𝑥𝑥�𝑘𝑘−)�2�

𝜕𝜕𝜕𝜕

 = 2𝐸𝐸��𝑥𝑥𝑘𝑘 − 𝑥𝑥�𝑘𝑘− + 𝐾𝐾(𝑧𝑧𝑘𝑘 − ℎ𝑥𝑥�𝑘𝑘−)�(𝑧𝑧𝑘𝑘 − ℎ𝑥𝑥�𝑘𝑘−)�

 = 2𝐸𝐸�𝑥𝑥𝑘𝑘𝑧𝑧𝑘𝑘 − 𝑥𝑥�𝑘𝑘−𝑧𝑧𝑘𝑘 + 𝐾𝐾𝑧𝑧𝑘𝑘2 − 𝐾𝐾ℎ𝑥𝑥�𝑘𝑘−𝑧𝑧𝑘𝑘 − ℎ𝑥𝑥𝑘𝑘𝑥𝑥�𝑘𝑘− + (𝑥𝑥�𝑘𝑘−)2 − 𝐾𝐾ℎ𝑧𝑧𝑘𝑘𝑥𝑥�𝑘𝑘− + 𝐾𝐾ℎ2(𝑥𝑥�𝑘𝑘−)2� − −(2.17)

17

Working through the expression for K yields equation 2.18:

𝐾𝐾 =
𝐸𝐸{𝑥𝑥𝑘𝑘𝑧𝑧𝑘𝑘 − 𝑥𝑥�𝑘𝑘−𝑧𝑧𝑘𝑘 − ℎ𝑥𝑥𝑘𝑘𝑥𝑥�𝑘𝑘− + ℎ(𝑥𝑥�𝑘𝑘−)2}

𝐸𝐸{𝑧𝑧𝑘𝑘2 − 2ℎ𝑥𝑥�𝑘𝑘−𝑧𝑧𝑘𝑘 + ℎ2(𝑥𝑥�𝑘𝑘−)2} −−−−− (2.18)

To overcome the cumbersome nature of this expression, the numerator and the

denominator are treated separately.

From the basic assumption that the measurement noise v is uncorrelated to either the input

or the a priori estimate of 𝑥𝑥, it follows that

𝐸𝐸{(𝑥𝑥𝑘𝑘 − 𝑥𝑥�𝑘𝑘−)𝑣𝑣𝑘𝑘} = 𝐸𝐸{𝑒𝑒𝑘𝑘−𝑣𝑣𝑘𝑘} = 0 −−−−− (2.19)

This simplifies the expression for the numerator to:

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐸𝐸{ℎ𝑥𝑥𝑘𝑘2 − 2ℎ𝑥𝑥𝑘𝑘𝑥𝑥�𝑘𝑘− + ℎ(𝑥𝑥�𝑘𝑘−)2}

 = ℎ𝐸𝐸{(𝑥𝑥𝑘𝑘 − 𝑥𝑥�𝑘𝑘−)2} = 𝐸𝐸{(𝑒𝑒𝑘𝑘−)2}

 = ℎ𝑝𝑝𝑘𝑘− −−−−− (2.20)

Using the orthogonal condition for the denominator of the expression in equation 2.18, the

denominator evaluates to equation 2.21 below:

𝑑𝑑𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐸𝐸{ℎ2𝑥𝑥𝑘𝑘2 − 2ℎ2𝑥𝑥�𝑘𝑘−𝑥𝑥𝑘𝑘 + ℎ2(𝑥𝑥�𝑘𝑘−)2 + 𝑣𝑣𝑘𝑘2}

 = ℎ2𝐸𝐸{𝑥𝑥𝑘𝑘2 − 2𝑥𝑥�𝑘𝑘−𝑥𝑥𝑘𝑘 + (𝑥𝑥�𝑘𝑘−)2} + 𝐸𝐸{𝑣𝑣𝑘𝑘2}

 = ℎ2𝑝𝑝𝑘𝑘− + 𝑅𝑅 − − − −− (2.21)

Substituting the new expressions of the numerator and the denominator into equation 2.18

yields the simplified equation for the Kalman gain:

𝐾𝐾 =
ℎ𝑝𝑝𝑘𝑘−

ℎ2𝑝𝑝𝑘𝑘− + 𝑅𝑅
− − − −− (2.22)

18

Similar techniques used for the derivation of the Kalman gain can be employed to derive the

covariance errors of the estimation.

Detailed Flowchart for the Kalman Filter Algorithm

In this section, a detailed flowchart of the Kalman filter algorithm is presented. This can

easily be translated into a computer program using any relevant programming language.

Start

Declaration of Variables

Initialization of key parameters

a,b,u,h, z,R and Q

𝐾𝐾(1) =
𝑃𝑃_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(1)

𝑃𝑃_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(1) + 𝑅𝑅

𝑥𝑥_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_0 = 0
𝑥𝑥_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(1) = 𝑥𝑥_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_0

𝑃𝑃_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_0 = 1
𝑃𝑃_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(1) = 𝑃𝑃_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_0

A

19

𝑥𝑥_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(1) = 𝑥𝑥_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(1) + 𝐾𝐾(1) ∗ (𝑧𝑧(1) − 𝑥𝑥_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(1))

𝑃𝑃_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(1) = 𝑃𝑃_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(1) ∗ �1 − ℎ ∗ 𝐾𝐾(1)�

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(1) = 𝑧𝑧(1) − 𝑥𝑥_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(1)

𝑘𝑘 = 2 ;

𝑥𝑥_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑘𝑘) = 𝑥𝑥_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑘𝑘 − 1)

𝑃𝑃_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑘𝑘) = 𝑃𝑃_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑘𝑘 − 1) + 𝑄𝑄

C

𝐾𝐾(𝑘𝑘) =
𝑃𝑃_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑘𝑘)

𝑃𝑃_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑘𝑘) + 𝑅𝑅

A

𝑥𝑥_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑘𝑘) = 𝑥𝑥_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑘𝑘) + 𝐾𝐾(𝑘𝑘) ∗ (𝑧𝑧(𝑘𝑘) − 𝑥𝑥_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑘𝑘))

𝑃𝑃_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑘𝑘) = 𝑃𝑃_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑘𝑘) ∗ �1 − ℎ ∗ 𝐾𝐾(𝑘𝑘)�

B

20

Fig. 2.1: Kalman Filter Flowchart

B

NO

YES 𝑘𝑘 < 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

Plot the appropriate Graphs

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑘𝑘) = 𝑧𝑧(𝑘𝑘) − 𝑥𝑥_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑘𝑘)

Stop

Display AppropriateStatistics

C 𝑘𝑘 = 𝑘𝑘 + 1 ;

21

2.1.4 A Step – by – Step Walkthrough of the Kalman Filter

In this section a step-by-step approach in explaining the Kalman filter theory is presented.

Step 1 – Building a Model

At this stage, it is important to first of all determine that Kalman filtering conditions fit the

problem under investigation.

Equations 2.10 and 2.11 are reproduced here for convenience, to serve as a guide:

𝑥𝑥𝑘𝑘 = 𝐴𝐴𝑥𝑥𝑘𝑘−1 + 𝐵𝐵𝑢𝑢𝑘𝑘 + 𝑤𝑤𝑘𝑘−1 -------------- (2.10)

𝑧𝑧𝑘𝑘 = 𝐻𝐻𝑥𝑥𝑘𝑘 + 𝑣𝑣𝑘𝑘 -------------- (2.11)

From equation 2.10, each 𝑥𝑥𝑘𝑘 (our signal values) may be evaluated by using a linear

stochastic equation as shown above. Any 𝑥𝑥𝑘𝑘 is a linear combination of its previous value

plus a control signal 𝑢𝑢𝑘𝑘 and a process noise 𝑤𝑤𝑘𝑘 . According to equation 2.11, any

measurement value (whose accuracy is uncertain) is a linear combination of the signal value

and the measurement noise 𝑣𝑣𝑘𝑘 . The process noise and the measurement noise are

statistically independent. The entities A, B and H are in general form matrices. For the sake

of this discussion, they will be assumed to be numerical constants.

Step 2 – Starting the Process

Once the model built at step 1 fits into the Kalman filter equations, the next step is to

determine the necessary parameters and initial values. At this stage, the time update

(predictor) and the measurement update (corrector) equations come in useful. Both

equations are applied at each 𝑘𝑘𝑡𝑡ℎ state of the process.

22

1. Project the state ahead

2. Project the error covariance ahead

𝒙𝒙�𝒌𝒌 = 𝑨𝑨𝒙𝒙�𝒌𝒌−𝟏𝟏 +𝑩𝑩𝒖𝒖𝒌𝒌

𝑷𝑷𝒌𝒌− = 𝑨𝑨𝑷𝑷𝒌𝒌−𝟏𝟏𝑨𝑨𝑻𝑻 + 𝑸𝑸

1. Compute the Kalman Gain

2. Update the estimate via 𝑧𝑧𝑘𝑘

3. Update the error covariance

𝑲𝑲𝒌𝒌 = 𝑷𝑷𝒌𝒌−𝑯𝑯𝑻𝑻(𝑯𝑯𝑷𝑷𝒌𝒌−𝑯𝑯𝑻𝑻 + 𝑹𝑹)−𝟏𝟏

𝒙𝒙�𝒌𝒌 = 𝒙𝒙�𝒌𝒌− + 𝑲𝑲𝒌𝒌(𝒛𝒛𝒌𝒌 − 𝑯𝑯𝒙𝒙�𝒌𝒌−)

𝑷𝑷𝒌𝒌 = (𝑰𝑰 − 𝑲𝑲𝒌𝒌𝑯𝑯)𝑷𝑷𝒌𝒌−

Initial estimates at k = 0 The outputs at k will be the
input for k+1

Time Update (prediction)

Measurement Update (correction)

Time Update (prediction) Measurement Update (correction)

𝒙𝒙�𝒌𝒌 = 𝑨𝑨𝒙𝒙�𝒌𝒌−𝟏𝟏 + 𝑩𝑩𝒖𝒖𝒌𝒌

𝑷𝑷𝒌𝒌− = 𝑨𝑨𝑷𝑷𝒌𝒌−𝟏𝟏𝑨𝑨𝑻𝑻 + 𝑸𝑸

𝐾𝐾𝑘𝑘 = 𝑃𝑃𝑘𝑘−𝐻𝐻𝑇𝑇(𝐻𝐻𝑃𝑃𝑘𝑘−𝐻𝐻𝑇𝑇 + 𝑅𝑅)−1

𝑥𝑥�𝑘𝑘 = 𝑥𝑥�𝑘𝑘− + 𝐾𝐾𝑘𝑘(𝑧𝑧𝑘𝑘 − 𝐻𝐻𝑥𝑥�𝑘𝑘−)

𝑃𝑃𝑘𝑘 = (𝐼𝐼 − 𝐾𝐾𝑘𝑘𝐻𝐻)𝑃𝑃𝑘𝑘−

Table 2.1: Kalman Filter Stages

Based on the assumption that 𝐴𝐴, 𝐵𝐵 and 𝐻𝐻 are numerical constants and, for this discussion,

setting each of their values to 1, 𝑄𝑄 and 𝑅𝑅 may be determined. 𝑄𝑄and 𝑅𝑅 are variances of the

process and measurement errors respectively. 𝑅𝑅 is rather easy to find because, in general,

the noise in the environment is known. But finding 𝑄𝑄 is not so obvious. To start the process

effectively, the initial estimates of 𝑥𝑥0 and 𝑃𝑃0 have to be assumed.

Step 3 – Iteration

When all the relevant information is gathered and the process has started, iteration through

the estimates can begin. It is important to note here that the previous estimates will be the

input for the current state. The whole iteration process is illustrated below:

Fig 2.2: Kalman Filter iterative process

23

Here 𝑥𝑥�𝑘𝑘− is the a priori estimate, which stands for the rough estimate before the correction.

Also 𝑃𝑃𝑘𝑘− is the a priori error covariance. These a priori values will be used in the

measurement update equations. In the measurement update equations,𝑥𝑥�𝑘𝑘 , which is the

estimate of 𝑥𝑥 at time 𝑘𝑘, is computed. Also, 𝑃𝑃𝑘𝑘 , which is necessary for estimates at next the 𝑘𝑘

step, is calculated. The Kalman gain 𝐾𝐾𝑘𝑘 is also evaluated at this stage. The values evaluated

at the measurement update stage are also called a posteriori values.

2.2 Related Work (Use of Kalman filters in network traffic prediction)

The Kalman filter has been used in many previous research efforts for traffic prediction.

Below, a few example applications are highlighted.

2.2.1 Short-Term Traffic Volume Forecasting Using Kalman Filter with Discrete

Wavelet Decomposition

Yuanchang Xie, Yunlong Zhang and Zhirui Ye applied the Kalman filter in traffic flow rate

forecasting, in their paper “Short-Term Traffic Volume Forecasting Using Kalman Filter with

Discrete Wavelet Decomposition” [2].

In their work, they investigated the application of a Kalman filter with discrete wavelet

analysis in short-term traffic flow rate forecasting. Short-term traffic flow rate data are

often corrupted by local noises, which may significantly affect the prediction accuracy of

short-term traffic flow rates. Therefore, they used discrete wavelet decomposition analysis

to divide the original data into several approximate and detailed data such that the Kalman

filter model could then be applied to the de-noised data to improve the prediction accuracy.

This method, though accurate, demands a lot of processing power, and is expensive.

24

2.2.2 Short-term traffic safety forecasting using Gaussian mixture model and Kalman

filter [11]

In this work by Sheng Jin, Dian-hai Wang, Cheng Xu and Dong-fang Ma, a prediction

model is developed that combines a Gaussian mixture model (GMM) and a Kalman filter

for online forecasting of traffic safety on expressways. Raw time-to-collision (TTC)

samples are divided into two categories: those representing vehicles in risky situations

and those in safe situations. Then, the GMM is used to model a bimodal distribution of

the TTC samples, and the maximum likelihood (ML) estimation parameters of the TTC

distribution are obtained using the expectation-maximization (EM) algorithm. They

propose a new traffic safety indicator, which they call the proportion of exposure to

traffic conflicts (PETTC), for assessing the risk and predicting the safety of expressway

traffic. A Kalman filter is applied to forecast the short-term safety indicator, PETTC, and

solves the online safety prediction problem. A dataset collected from four different

expressway locations is used for performance estimation. [11]

This is an accurate method. However, it is expensive, and has an associated time and

data cost for training the model.

2.2.3 Kalman filter approach to traffic modeling and prediction

Gregory J. Grindey, S. M. Amin, Ervin Y. Rodin and Asdrubal Garcia-Ortiz carried out this

work with the aim of developing and integrating prediction, control and optimization

modules for use in highway traffic management. This they accomplished through the use

of the Semantic Control paradigm, implementing a hybrid prediction/routing/control

system, to model both macro-level and micro level. Their paper addressed the design

http://link.springer.com/search?facet-author=%22Sheng+Jin%22
http://link.springer.com/search?facet-author=%22Dian-hai+Wang%22
http://link.springer.com/search?facet-author=%22Cheng+Xu%22
http://link.springer.com/search?facet-author=%22Dong-fang+Ma%22

25

and operation of a Kalman filter that processes traffic sensor data in order to model and

predict highway traffic flow rate. This data was given in the form of hourly traffic flow,

and a cubic spline method was used to fit the data to allow observations at various time

intervals. The filter was augmented via the Method of Sage and Husa [20] to identify the

parameters of the system noise on-line, and to determine the dynamics of the traffic

process iteratively to aid in the prediction of the future traffic. [12]

Though accurate, this is an expensive method.

2.2.4 Tracking and predicting a network traffic process

Joe Whittaker, Simon Garsidea and Karel Lindveld presented a forecast system in 1997

that applied a Kalman filter on a motorway network around Rotterdam in the

Netherlands to tackle the problem of real-time modelling and prediction of motorway

traffic. They proposed conditional independence relationships and ideas of Bayesian

forecasting [21] leading to the employment of dynamic state-space models, with optimal

state estimation coming from the Kalman filter. They implemented and derived models

in a state-space framework based on classical differential equations, which incorporated

representations of the network topology. [13]

This method yielded reasonably accurate and real-time prediction, but at high cost.

2.2.5 Real-time freeway traffic state estimation based on extended Kalman filter: a

general approach

This study, carried out by Yibing Wang and Markos Papageorgiou, developed a general

approach to the real-time estimation of the complete traffic state in freeway stretches

based on the extended Kalman filter. First, they presented a general stochastic

http://www.sciencedirect.com/science/article/pii/S0191261504000438

26

macroscopic traffic flow model of freeway stretches, while proposing some simple

formulae to model real-time traffic measurements. Second, the macroscopic traffic flow

model along with the measurement model was organized in a compact state-space

form, based on which a traffic state estimator was designed by use of the extended-

Kalman-filtering method. While constructing the traffic state estimator, special attention

was paid to the handling of the boundary conditions and unknown parameters of the

macroscopic traffic flow model. [15]

This is another accurate but expensive approach.

2.2.6 An Extended Kalman Filter Application for Traffic State Estimation Using CTM

with Implicit Mode Switching and Dynamic Parameters

Chris M.J. Tampère and L. H. Immers produced this work with two main objectives [14]:

a) to show how the cell transmission model (CTM) [22] can be included in the general

extended Kalman filtering(EKF) framework of Wang & Papageorgiou [15]; the key

issue here is to linearize the non-linear CTM model around its current state, which is

done implicitly by introducing an appropriate formulation of CTM;

b) to show the capability of the combined CTM-EKF model to capture (rapid) changes of

important modelling parameters like the capacity.

Using both real and simulated data, they illustrated the applicability of the model in a

case study on a motorway.

This method can rapidly adapt to changes, but again it comes with an unattractive cost.

27

2.2.7 DynaMIT: a simulation-based system for traffic prediction

DynaMIT (Dynamic Network Assignment for the Management of Information to

Travelers) is a real time dynamic traffic assignment system that was developed at the

Massachusetts Institute of Technology (MIT) to provide traffic predictions and travel

guidance.

DynaMIT generates prediction-based guidance with respect to departure time, pre-trip

path and mode choice decisions and en-route path choice decisions. It supports both

prescriptive and descriptive information. In order to guarantee the credibility of the

information system, the guidance provided by DynaMIT is consistent, meaning that it

corresponds to traffic conditions that most likely will be experienced by drivers. Hence,

DynaMIT provides user-optimal guidance, which implies that users cannot find a path

that they would prefer compared to the one they chose based on the provided

information.

DynaMIT features a dynamic OD (origin-destination) estimation process based on a

Kalman filtering algorithm and on an auto-regressive process (Ashok and Ben-Akiva,

1993) [19]. The auto-regressive process, captures the dynamic evolution in time of the

state variables of the Kalman filter. It is calibrated off-line and constitutes an input to the

real-time system. [18]

This is another accurate method, but the associated cost is prohibitive.

28

3. METHODOLOGY

The focus of this project was to develop a suitable Kalman filter model to carry out traffic

flow rate prediction. The test data was taken from a telecommunications network, but the

concepts and techniques apply to any network, including transportation networks. The

following section seeks to outline in detail the process of developing a reasonable model to

predict traffic flow rates.

3.1 Model Development

The analysis in this section is carried out first over a single network link, and then extended

to cover multiple network links. The Kalman model for a single link is treated as a scalar

model, after which extension to multiple links is treated by means of matrices.

Single Link Analysis

As already stated in the introduction of this report, this project dealt with short term traffic

flow rate forecasting. This is important because it allowed for certain assumptions: [2]

(a) For short term forecasting, the state variable transitions may be regarded as a

smooth process.

(b) A linear relationship may be assumed between traffic flow rates for the current time

step and traffic flow rates for previous time steps.

From (b) it may be inferred that the traffic flow rate at any particular time step is a linear

combination of the traffic flow rates at previous time steps. Put another way, the previous

traffic flow rates, each multiplied by a corresponding coefficient, may be summed up to give

the traffic flow rate for the current time step.

29

Thus, if trafk represents the traffic flow rate at time step k, and ck represents the

corresponding coefficient that multiplies trafk, then from (b) it may be inferred that

trafk = trafk-1ck-1 + trafk-2ck-2 + ... + trafk-nck-n + vk (3.10)

where vk is the noise contribution at time step k and n represents the number of previous

traffic flow rates taken into consideration.

The right-hand-side of (3.10) may be expressed in matrix form by defining

TRAFk = [trafk-1, trafk-2, trafk-2,…, trafk-n] and (3.11a)

Ck = [ck-1, ck-2, ck-3,…, ck-n]T (3.11b)

then (3.10) may be written as

trafk = TRAFkCk + vk (3.12)

Comparing (3.11) to (2.11), it is observed that a suitable way to model the system is to set

trafk = 𝑧𝑧𝑘𝑘 , the measured output volume

TRAFk = h, the output gain matrix, and

Ck = 𝑥𝑥𝑘𝑘 , the system state

With the system thus modelled, the output equation of the filter (equation (2.11)) may be

written as

𝑡𝑡𝑡𝑡𝑎𝑎�𝑓𝑓𝑘𝑘 = 𝑇𝑇𝑇𝑇𝑇𝑇𝐹𝐹𝑘𝑘𝐶̂𝐶𝑘𝑘− (3.13)

where

𝑡𝑡𝑡𝑡𝑎𝑎�𝑓𝑓𝑘𝑘 represents the estimated output traffic flow rate, and

30

𝐶̂𝐶𝑘𝑘−represents the a priori state estimate.

After obtaining the estimated output traffic flow rate 𝑡𝑡𝑡𝑡𝑎𝑎�𝑓𝑓𝑘𝑘 , the measured output traffic

flow rate trafk is received. trafk is used to update the output gain matrix TRAFk to obtain

TRAFk+1, i.e.TRAFk+1 = [trafk, trafk-1, trafk-2,…, trafk-n+1].

Equation (3.12) may then be used to achieve the filter’s aim of predicting the output traffic

flow rate for the next time step:

𝑡𝑡𝑡𝑡𝑎𝑎�𝑓𝑓𝑘𝑘+1 = 𝑇𝑇𝑇𝑇𝑇𝑇𝐹𝐹𝑘𝑘+1𝐶̂𝐶𝑘𝑘 (3.14)

where 𝐶̂𝐶𝑘𝑘 is the a posterior state estimate obtained according to equation (2.13).

Extension to multiple links

In order to extend the analysis of the previous section to cover multiple links, the network is

treated as a matrix. The various parameters take on dimensions according to the number of

links on the network and the number of previous traffic flow rates being considered.

For example, for a network of m links, an m by 1 output matrix may be defined to hold the

output values for each of the m links. Likewise, an m by m measurement noise covariance

matrix may be defined to hold the measurement noise covariance values for each of the m

links. Also, for a filter that takes n previous traffic flow rates into consideration, an m by n

output gain matrix may be defined to represent m output gain matrices each of length n to

cater for the desired n previous traffic flow rates.

NOTATION:

To distinguish the parameters under the matrix Kalman system from their scalar

counterparts, the following notational convention was employed:

31

- All matrix parameters have the same symbols as the scalar counterparts, but the

matrix parameters are represented in bold face.

- All gain and covariance parameters for the matrix system are capitalized.

Table 3.1 summarizes the convention used to identify the parameters in the matrix Kalman

filter system for this project, along with their respective dimensions. ‘m’ represents the

number of links being considered in the network, and ‘n’ represents the number of previous

traffic flow rates of interest.

Table 3.11: Matrix Kalman filter variables and dimensions

Variable Scalar Matrix Matrix size

state xk xk n by 1

input uk uk n by m

output zk zk m by 1

state gain a A n by n

input gain b B n by m

output gain h Hk m by n

process noise wk wk n by 1
process noise

covariance Q Q n by n

measurement noise vk vk m by 1
measurement noise

covariance R R m by m

a priori covariance pk
- 𝐏𝐏k

− n by n
a posteriori
covariance pk 𝐏𝐏k n by n

Kalman Filter
Gain kk Kk n by m

With the above notation, the Kalman filter equations may be rewritten for the matrix

system thus:

1Adapted from http://www.swarthmore.edu/NatSci/echeeve1/Ref/Kalman/MatrixKalman.html

32

Matrix Kalman filter equations:

Predictor Stage

A priori state estimate:

𝒙𝒙�𝒌𝒌− = 𝑨𝑨𝒙𝒙�𝒌𝒌−𝟏𝟏− + 𝑩𝑩𝒖𝒖𝒌𝒌 − −− − −−− (𝟑𝟑.𝟏𝟏𝟏𝟏)

A priori covariance:

𝑷𝑷𝒌𝒌− = 𝑨𝑨𝑷𝑷𝒌𝒌−𝟏𝟏𝑨𝑨𝑻𝑻 + 𝑸𝑸− −−−−−− (𝟑𝟑.𝟏𝟏𝟏𝟏)

Corrector Stage

Kalman filter gain:

𝑲𝑲𝒌𝒌 = 𝑷𝑷𝒌𝒌−𝑯𝑯𝑻𝑻(𝑯𝑯𝑷𝑷𝒌𝒌−𝑯𝑯𝑻𝑻 + 𝑹𝑹)−𝟏𝟏 − − − − − −− (𝟑𝟑.𝟏𝟏𝟏𝟏)

A posteriori state estimate:

𝒙𝒙�𝒌𝒌 = 𝒙𝒙�𝒌𝒌− + 𝑲𝑲𝒌𝒌(𝒛𝒛𝒌𝒌 − 𝑯𝑯𝒙𝒙�𝒌𝒌−) −−−−−−− (𝟑𝟑.𝟏𝟏𝟏𝟏)

A posteriori covariance:

𝑷𝑷𝒌𝒌 = (𝑰𝑰 − 𝑲𝑲𝒌𝒌𝑯𝑯)𝑷𝑷𝒌𝒌−(𝑰𝑰 − 𝑲𝑲𝒌𝒌𝑯𝑯)𝑻𝑻 + 𝑲𝑲𝑲𝑲𝑲𝑲𝑻𝑻 − − (𝟑𝟑.𝟏𝟏𝟏𝟏)

where

𝒙𝒙� = Estimated state.

A= State transition matrix (i.e., transition between states).

u = Control variables matrix.

B = Control matrix (i.e., mapping control to state variables).

33

P = State variance matrix (i.e., error of estimation).

Q = Process variance matrix (i.e., error due to process).

z = Measurement variable matrix.

H= Measurement matrix (i.e., mapping measurements onto state).

K= Kalman gain.

R= Measurement variance matrix (i.e., error from measurements).

I = Unit matrix

3.2 Model Implementation

Implementation of the model developed in section 3.1 was carried out by software in two

forms:

i. Implementation with a Java program

ii. Implementation with LabVIEW

Apart from the fact that the Java programming language is well-known for its network-

friendliness, the primary purpose of implementing the model in Java was to verify the

correctness of the approach described for this filter implementation. The reason for carrying

out the implementation in LabVIEW after the implementation in Java was basically to take

advantage of the graphical user interface afforded by LabVIEW, where parameters can be

varied in real time and the effects directly observed.

34

3.2.1 Java program implementation

The java program implementation was carried out simply by following the Kalman filter

algorithm outlined in equations (3.15) to (3.19). The system was first initialized with the

number m of links and the number n of previous traffic flow rates desired. Relevant

parameters were initialized to their respective values, and the first set of data was fed to the

system for the filter to begin operation.

The basic algorithm is outlined below:

a) Initialize the filter with m, the number of links on the network to be considered, and

n, the number of previous traffic flow rates to be ‘remembered’ by the filter.

b) Initialize the filter’s matrices to the right dimensions with m and n according to Table

3.1.

c) Initialize the matrices to their respective initial values.

d) Let k = 1, and carry out the Kalman filter algorithm (equations (3.15) to (3.19)):

i) Compute the a priori state estimate and covariance 𝒙𝒙�𝒌𝒌− and 𝑷𝑷𝒌𝒌− respectively,

where 𝑥𝑥�𝑘𝑘− represents 𝐶̂𝐶𝑘𝑘− (equations (3.13) and (3.11b)).

ii) Compute the Kalman gain 𝑲𝑲𝒌𝒌 (equation (3.17)), where H represents TRAFk

(equation (3.11a)).

iii) Obtain the measured traffic flow rate trafk for time step k, and use it to

compute the a posteriori state estimate (equation (3.18)) and covariance

(equation (3.19)), 𝒙𝒙�𝒌𝒌 and𝑷𝑷𝒌𝒌 respectively, where 𝑥𝑥�𝑘𝑘represents 𝐶̂𝐶𝑘𝑘(equations

(3.13) and (3.11b)).

iv) Update TRAFk with trafk to obtain TRAFk+1 (equation (3.11a)).

35

v) Compute the predicted traffic flow rate 𝑡𝑡𝑡𝑡𝑎𝑎�𝑓𝑓𝑘𝑘+1 for the next time step k+1

according to equation (3.14), reproduced here for convenience:

𝑡𝑡𝑡𝑡𝑎𝑎�𝑓𝑓𝑘𝑘+1 = 𝑇𝑇𝑇𝑇𝑇𝑇𝐹𝐹𝑘𝑘+1𝐶̂𝐶𝑘𝑘

vi) Update the a priori state estimate and covariance to take on, respectively,

the values of the a posteriori state estimate and covariance, i.e. let 𝒙𝒙�𝒌𝒌− ← 𝒙𝒙�𝒌𝒌

and 𝑷𝑷𝒌𝒌− ← 𝑷𝑷𝒌𝒌.

vii) Let k = k+1, and go to i).

VARIABLE INITIALIZATION

Variable initialization has to do with assigning values to the parameters for time step zero

(0), before the filter can carry out its first iteration. The various variables were initialized as

follows:

State and input variables:

- The input variable matrix u was set to zero because the system takes in no input.

- The a priori state estimate 𝒙𝒙�𝒌𝒌−, representing 𝐶̂𝐶𝑘𝑘−, was initialized to an n by 1 matrix of

arbitrarily small values. In this project the value was set to 1/n. [2]

Gain variables:

- The state gain or state transition matrix A was set to be an n by n identity matrix

because, from (a) of section 3.1, the state transition may be regarded as a smooth

process for short term forecasting.

- The input gain matrix B was set to zero because, as already stated, the system takes

no input.

36

- The output gain H, representing TRAFk, was initially set to an m by n matrix of very

small values, a value of 0.009 in the case of this project. This is the value used by the

system as default traffic flow rate measurements before actual values are obtained.

Covariance variables:

- The measurement noise covariance matrix R was set to an m by m matrix with all

entries initialized to0.015, a value obtained after averaging a collection of network

traffic measuring equipment errors obtained from the internet.

- The a priori covariance 𝑷𝑷𝒌𝒌− is customarily set to a matrix with very small values [2].

For this project a value of 0.009*In was used, where In is the n by n identity matrix.

- The process noise covariance Q may be obtained from the following log likelihood

function [2]:

– ln�𝐿𝐿(𝑄𝑄)� = �{ln(𝑋𝑋𝑘𝑘) + 𝑌𝑌𝑘𝑘𝑇𝑇𝑋𝑋𝑘𝑘−1𝑌𝑌𝑘𝑘}
𝑛𝑛

𝑘𝑘=1

+ 𝐶𝐶 −−−−− (3.20)

where

𝑋𝑋𝑘𝑘 = 𝐻𝐻𝑃𝑃𝑘𝑘−𝐻𝐻𝑇𝑇 + 𝑅𝑅 (measurement prediction covariance)

𝑌𝑌𝑘𝑘 = 𝑧𝑧𝑘𝑘 − 𝐻𝐻𝑥𝑥�𝑘𝑘− (measurement residual)

𝑃𝑃𝑘𝑘− = 𝐴𝐴𝑃𝑃𝑘𝑘−1𝐴𝐴𝑇𝑇 + 𝑄𝑄 (a priori covariance)

n = number of previous traffic flow rates ‘remembered’ by the system

C = constant

37

For a likelihood function, the aim is usually to maximize the function to obtain the most

likely value. However, since the negative log is taken to facilitate computation, Q is obtained

by minimizing rather than maximizing the function.

The MATLAB programming language is best suited for solving an optimization problem of

the sort presented by the likelihood equation for Q. However, owing to the complexities

involved in running MATLAB from within the Java environment, this equation was not

implemented in Java. Thus, the matrix Q was initialized with arbitrary values.

Equation (3.20) was, however, evaluated in the LabVIEW implementation. As already stated,

the Java implementation was carried out basically to verify the integrity of the chosen

Kalman Filter model.

3.2.2 LabVIEW implementation

After verifying the model using the Java program, the model was implemented with

LabVIEW. As already stated, the choice of LabVIEW for model implementation was to

capitalize on the graphical and interactive nature of LabVIEW, where parameters can be

varied, and changes observed, in real time.

The LabVIEW implementation was modelled after the same algorithm outlined under the

Java program implementation.

38

VARIABLE INITIALIZATION

Variable initialization is simplified with the help of the in-built LabVIEW functions.

State, input and gain variables:

- Because the input variable matrix u was set to zero, (explained above), the LabVIEW

implementation does not include this variable.

- The other variables were initialized to the values indicated in the ‘Java Program

Implementation’ section. Here the LabVIEW ‘Initialize Array’ block was used. The

parameters passed into this block were:

o The value (‘element’ in Fig. 3 below) to initialize the matrix

o The matrix dimensions

Fig 3.1: LabVIEW array initialization block

Covariance variables:

- The measurement noise covariance matrix R and the a priori covariance 𝑷𝑷𝒌𝒌−were

similarly initialized as for the state and gain variables.

- As shown in equation (3.20), reproduced here for convenience, the process noise

covariance Q may be obtained by minimizing the following log likelihood function

[2]:

39

– ln�𝐿𝐿(𝑄𝑄)� = �{ln(𝑋𝑋𝑘𝑘) + 𝑌𝑌𝑘𝑘𝑇𝑇𝑋𝑋𝑘𝑘−1𝑌𝑌𝑘𝑘}
𝑛𝑛

𝑘𝑘=1

+ 𝐶𝐶 −−−−− (3.20)

where

𝑋𝑋𝑘𝑘 = 𝐻𝐻𝑃𝑃𝑘𝑘−𝐻𝐻𝑇𝑇 + 𝑅𝑅 (measurement prediction covariance)

𝑌𝑌𝑘𝑘 = 𝑧𝑧𝑘𝑘 − 𝐻𝐻𝑥𝑥�𝑘𝑘− (measurement residual)

𝑃𝑃𝑘𝑘− = 𝐴𝐴𝑃𝑃𝑘𝑘−1𝐴𝐴𝑇𝑇 + 𝑄𝑄 (a priori covariance)

n = number of previous traffic flow rates ‘remembered’ by the system

C = constant

Note:

Likelihood functions generally attempt to find the value which gives the highest

likelihood of the variable in question. This is usually achieved by maximizing the

likelihood function. However, for a negative likelihood function, the aim is to

minimize the function in order to find the most likely value of the variable in

question. Since equation (3.20) is a negative likelihood function, the most likely value

of Q is obtained by minimizing equation (3.20).

To evaluate this equation, it was necessary to employ the powerful optimization tools

provided by the MATLAB programming language.

LabVIEW makes it possible to run MATLAB code directly from within the LabVIEW

environment by means of the MATLAB script node. The MATALB script node accepts input

from LabVIEW, runs whatever MATLAB code is typed in the node, and returns output to

LabVIEW.

40

Fig 3.2: LabVIEW MATLAB script node

The MATLAB code below models equation (3.20):

Code Listing 3.0: MATLAB representation of equation (3.20)

 Pk = 0;

nlogL = 0;

for k=1:n

Pk_ = A*Pk*A' + Q;

Yk = zk - H*xk_;

Xk = H*Pk_*H' + R;

nlogL = nlogL + log(Xk) + Yk'*inv(Xk)*Yk;

end

The constant C in equation (3.20) is taken to be zero.

The objective of equation (3.20) is to find the matrix Q which minimizes the log likelihood.

That is, with respect to the MATLAB code above, we must find the Q which gives the

smallest value of nlogL.

41

The MATLAB optimization toolbox presents a collection of functions which are well-suited to

solving such a problem. The ‘fminsearch’ function proves to be suitable for this particular

problem.

In order to use the ‘fminsearch’ function in MATLAB, it was necessary to rewrite code listing

3.0 as a MATLAB function that could be passed as a parameter to ‘fminsearch’. The resulting

function is shown below:

Code Listing 3.1: MATLAB function for equation (3.20)[9]

functionnlogL = qlogL(n,x,z,A,P,H,R,Q)

Pk = 0;

nlogL = 0;

for k=1:n

Pk_ = A*Pk*A' + Q;

Yk = zk - H*xk_;

Xk = H*Pk_*H' + R;

nlogL = nlogL + log(Xk) + Yk'*inv(Xk)*Yk;

end

end

In code listing 3.1, the function qlogL takes the matrices n, x, z, A, P, H, R and Q as

parameters, and returns nlogL, the log likelihood of Q, as an output. However, MATLAB’s

fminsearch function returns a scalar, and the output nlogL from code listing 3.1 above

happens to be a matrix.

42

Before employing fminsearch, it was necessary to compute a scalar measure of the output

matrix nlogL that could mimic the magnitude of the matrix. The matrix determinant serves

this purpose well enough, and so a line was added at the end of function qlogL to compute

the determinant of nlogL, and code listing 3.1 was modified as follows to return the

determinant instead as the output:

Code Listing 3.2: Modified MATLAB function for equation (3.20)

functionnlogL = qlogL(n,x,z,A,P,H,R,Q)

Pk = 0;

mlogL = 0;

for k=1:n

Pk_ = A*Pk*A' + Q;

Yk = zk - H*xk_;

Xk = H*Pk_*H' + R;

mlogL = mlogL + log(Xk) + Yk'*inv(Xk)*Yk;

end

nlogL = det(mlogL);

end

The function qlogL can now be passed as a parameter to ‘fminsearch’ in MATLAB, which

attempts to find the matrix Q for which the function qlogL returns the smallest value for

nlogL.

43

MATLAB’s ‘fminsearch’ function accepts a variety of parameters in different ways,

depending on the task to be performed. For the purpose of the task defined above, the

following variant of ‘fminsearch’ was employed:

Code Listing 3.3: MATLAB’s fminsearch application to equation (3.20)

Qmin = fminsearch(@(Q) qlogL(n,x,z,A,P,H,R,Q), Q0);

In code listing 3.3, ‘fminsearch’ accepts qlogL as the function over which to carry out

minimization. The @Q handle specifies which of the variables in qlogL is to be minimized,

and Q0 provides the initial Q with which ‘fminsearch’ begins to search for the minimum Q.

3.3 Testing

For testing purposes, a section of the filter model was designed to measure percentage rms

(root mean square) error and filter efficiency.

Percentage Root Mean Square (RMS) Error

The percentage rms error was calculated as follows:

First, the percentage error was calculated:

% 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
 −−−− (3.21)

44

Then the root mean square value of this error was computed. With LabVIEW, this is very

much simplified with the aid of the RMS virtual instrument (vi) found in the LabVIEW

statistics toolbox.

Fig 3.3: LabVIEW RMS block

The output of equation (3.21) was fed into this RMS block to compute the rms value. This

rms value was then multiplied by 100 to convert it to percentage value.

Filter efficiency measurement

Efficiency was measured by the following approach:

- An acceptable rms percentage error value, say rms_acceptable, is entered into the filter

by means of an input box provided on the front panel of the LabVIEW model.

rms_acceptable represents the amount of prediction error that the user is prepared to

accept when using the filter.

- On each iteration of the filter, the percentage rms error, say rms_current, is calculated

- rms_current is compared with rms_acceptable.

o If rms_current is less than or equal to rms_acceptable, then the filter has

produced a satisfactory result, and the current prediction is counted as a

successful prediction.

o Otherwise, the current prediction is counted as a failure.

45

- Over progressive filter iterations, the filter efficiency is cumulatively calculated as the

ratio of the number of successful predictions to the total number of predictions.

Thus, for this filter, the efficiency was measured based on the acceptable percentage rms

error entered.

While the filter is run, the mean square error between the predictions and the actual

values is monitored. The final efficiency is the efficiency measured when the mean square

error (mse) stabilizes in value.

Test Data

To achieve good network traffic prediction, different filter parameters must be increased or

decreased respectively for traffic with different characteristics.

In order to investigate relationships between these filter parameters and filter efficiency for

different traffic characteristics, the filter was first run on three sets of experimental data

possessing different characteristics. The actual experimental data used are provided in

Appendix 4.1. Table 3.2 shows the characteristics of the experimental data used:

46

Table 3.2: Characteristics for Experimental Data Sets

Data Set Autocorrelation (Rxx) Standard deviation (𝝈𝝈)

1 0.0112551 0.28

2 1 0.71

3 4.1209 1.14

The effect of varying different filter parameters was observed for each of the experimental

data sets.

From these first sets of tests, a general sense is gained of how different filter parameters

affect filter efficiency on different types of traffic data. With this knowledge, suitable filter

parameter values can be chosen for different types of network traffic data, in order to

maximize the filter efficiency.

Thus, a second set of tests was run on three sets of actual network traffic data possessing

different characteristics. Parameters were chosen according to knowledge gained from the

first set of tests with experimental data, in order to maximize the prediction efficiency. The

actual experimental data used are provided in Appendix 4.2. Table 3.3 shows the

characteristics of the network data used:

Table 3.3: Characteristics for Network Data Sets

Data Set Autocorrelation (Rxx) Standard deviation (𝝈𝝈)

1 14175.3 55.81

2 125713 100.74

3 450832 97.08

47

Filter Initialization

Before the filter could begin its iterative prediction process, it was necessary to initialize a

number of variables:

o n (history length, i.e. the number of previous traffic measurements for the filter

to ‘remember’)

o H (output gain)

o R (measurement noise covariance value)

o Q (process noise covariance)

o P (a priori covariance)

Optionally, the time delay (in milliseconds) between successive filter iterations may be set.

This delay is necessary to make the changes in the actual and predicted traffic values

observable. The default delay is 500 ms.

Parameter variation

The LabVIEW model developed provides options in the front panel for various filter

parameters to be varied. These parameters include (descriptions as above):

o n

o R

o Initial Q value Q0

o Initial P value P0

Of interest is the filter efficiency at different values of the above-listed variables.

48

To investigate the effects of history length on the filter performance, the filter was run with

different values of n:

o n = 2 (small value)

o n = 5 (normal value)

o n = 10 (large value)

For each of the above values of n, the filter efficiency was evaluated for small and large

values of P0, Q0 and R respectively. It was of interest to observe the independent effect of

varying any one of the variables P0, Q0or R. Hence, while each of these parameters was

varied, the others were held constant.

Thus, there is no comparison between efficiency values obtained when varying P0 and

those obtained when varying Q0 or R. Useful information is obtained when comparing

efficiencies for different values of the same variable, other variables remaining constant.

With this in mind, the following table format was developed to record and observe the filter

efficiency, using the experimental data sets:

Table 3.4: Table format for filter efficiency testing using experimental data sets

 P0 = small P0 = large Q0 = small Q0 = large R = small R = large

n = small

n = medium

n = large

This table structure, populated with the respective efficiency values, gives a lucid

representation of how the filter performance varies with varying P0, Q0, R, or n.

49

After compiling filter efficiencies for the different data types, trends can be observed

relating filter efficiency to different values of P0, Q0, R and n. From the trend information

observed, a good idea is obtained of how to vary these parameters, for any particular type

of network traffic data, in order to maximize the prediction efficiency.

Table 3.5 shows the table format for recording the observed filter efficiencies when the

filter was run for the actual network traffic data, after varying the filter parameters to

maximize prediction efficiency:

Table 3.5: Table format for filter testing using actual network data sets

Network
Traffic Data Rxx 𝜎𝜎 n P0 Q0 R

Filter
Efficiency (%)

Data 1

Data 2

Data 3

50

4. RESULTS AND ANALYSIS

In order to understand the results obtained from the tests, it would be useful to understand

the different filter parameters and their implications for the filter.

i) The history length (n) represents the number of previous data values. The filter

attempts to utilize any trend information present in the data history in order to

predict the next value. For random data, different values of n should have little

or no effect on filter efficiency, because the data history contains no meaningful

trend information.

ii) The a-priori covariance (P) is a measure of the prediction error, and takes the

process noise covariance (Q) into consideration. The filter usually arrives very

quickly at a stable value for P, regardless of the initial value P0. As such, the value

P0 generally should have little or no effect on the filter efficiency.

iii) The process noise covariance (Q) represents the noise introduced into the

prediction process as a result of imperfections in the prediction model

developed. Thus, for example, a low value for Q implies a good model and causes

the filter to place more confidence in the a-priori prediction than in the actual

measured value. Q0 is the initial estimate for Q.

iv) The measurement noise covariance (R) represents the noise introduced into the

prediction process as a result of errors in measurement of the actual values.

Thus, for example, higher values of R imply unreliable measurements and cause

the filter to place less weight on the actual data measurements and more weight

on the a-priori predictions.

51

With this understanding of the various filter parameters, the observations from the test

results can be better interpreted.

4.1 Experimental data results

Tables 6.1, 6.2 and 6.3 in Appendix 5 show the results of running the filter on data sets 1, 2

and 3.

For the different types of experimental data, a number of general observations emerged

relating to the different filter parameters:

a) Weak autocorrelation (data set 1):

i. In general, different values of n had little effect on the filter efficiency, except

for very large values of n where higher efficiencies were observed under

certain conditions.

ii. Efficiency remained relatively unchanged for different values of P0.

iii. Except for small values of n, efficiency increased for larger values of Q0. For

small values of n, efficiency decreased slightly with increasing Q0.

iv. Efficiency generally increased for smaller values of R.

Figs 4.1 (a), (b) and (c) show a graphical representation of the above highlights:

Fig 4.1(a): Effect of n and P0 on filter efficiency for data set 1 (weak autocorrelation)

0
2
4
6
8

10

n = 2 n = 5 n = 10

Fi
lte

r E
ffi

ci
en

cy

History Length, n

Sum of P0 = 2.5

Sum of P0 = 70

52

Fig 4.1(b): Effect of n and Q0 on filter efficiency for data set 1 (weak autocorrelation)

Fig 4.1(c): Effect of n and R on filter efficiency for data set 1 (weak autocorrelation)

b) Moderate autocorrelation (data set 2):

i. Except for very low values of n, efficiency was relatively unaffected by

different values of n. For very low values of n, efficiency was reduced.

ii. Efficiency remained relatively unchanged for different values of P0.

iii. Efficiency remained relatively unaffected for different values of Q0, except for

moderate values of n, where a larger Q0 resulted in higher efficiency.

iv. Efficiency remained relatively unaffected for different values of R, except for

small values of n, where a larger R resulted in higher efficiency.

Figs 4.2 (a), (b) and (c) show a graphical representation of the above highlights:

0

2

4

6

8

10

n = 2 n = 5 n = 10

Fi
lte

r E
ffi

ci
en

cy

History Length, n

Sum of Q0 = 0.001

Sum of Q0 = 0.1

0
2
4
6
8

10
12

n = 2 n = 5 n = 10

Fi
lte

r E
ffi

ci
en

cy

History Length, n

Sum of R = 0.006

Sum of R = 0.2

53

Fig 4.2(a): Effect of n and P0 on filter efficiency for data set 2 (moderate autocorrelation)

Fig 4.2(b): Effect of n and Q0 on filter efficiency for data set 2 (moderate autocorrelation)

Fig 4.2(c): Effect of n and R on filter efficiency for data set 2 (moderate autocorrelation)

0
5

10
15
20
25
30
35
40

n = 2 n = 5 n = 10

Fi
lte

r E
ffi

ci
en

cy
 (%

)

History Length, n

Sum of P0 = 2.5

Sum of P0 = 70

0
5

10
15
20
25
30
35
40

n = 2 n = 5 n = 10

Fi
lte

r E
ffi

ci
en

cy
 (%

)

History Length, n

Sum of Q0 = 0.001

Sum of Q0 = 0.1

0
5

10
15
20
25
30
35
40

n = 2 n = 5 n = 10

Fi
lte

r E
ffi

ci
en

cy
 (%

)

History Length, n

Sum of R = 0.006

Sum of R = 0.2

54

c) Strong autocorrelation (data set 3):

i. In general, the larger the value of n, the higher the efficiency.

ii. Efficiency remained relatively unaffected for different values of P0, except for

small values of n, where a smaller P0 resulted in slightly higher efficiency.

iii. Efficiency remained relatively unaffected for different values of Q0, except for

moderate values of n, where a larger Q0 resulted in slightly higher efficiency.

iv. Efficiency remained relatively unaffected for different values of R, except for

moderate values of n, where a smaller R resulted in slightly higher efficiency.

Figs 4.3 (a), (b) and (c) show a graphical representation of the above highlights:

Fig 4.3(a): Effect of n and P0 on filter efficiency for data set 3 (strong autocorrelation)

0
5

10
15
20
25
30
35
40
45
50

n = 2 n = 5 n = 10

Fi
lte

r E
ffi

ci
en

cy
 (%

)

History Length, n

Sum of P0 = 2.5

Sum of P0 = 70

55

Fig 4.3(b): Effect of n and Q0 on filter efficiency for data set 3 (strong autocorrelation)

Fig 4.3(c): Effect of n and R on filter efficiency for data set 3 (strong autocorrelation)

Analysis of experimental data results

Effect of history length n:

Previous data values can give information about trends inherent in the data. For data with

weak autocorrelation (simulating random data), previous data values hold little or no trend

information. The stronger the autocorrelation, the more trend information is available from

previous data values. Thus, the filter was able to achieve better prediction accuracy with a

0

10

20

30

40

50

n = 2 n = 5 n = 10

Fi
lte

r E
ffi

ci
en

cy
 (%

)

History Length, n

Sum of Q0 = 0.001

Sum of Q0 = 0.1

0

10

20

30

40

50

n = 2 n = 5 n = 10

Fi
lte

r E
ffi

ci
en

cy
 (%

)

History Length, n

Sum of R = 0.006

Sum of R = 0.2

56

larger value for n with a data set that has stronger autocorrelation. This was confirmed by

the results described above.

Effect of P0:

As already discussed above, the filter quickly attained a self-stabilizing value for P regardless

of the initial value P0. Therefore different values of P0 should have no effect on the filter

efficiency. This was readily verified from the general trend in the results above.

Effect of Q0:

For data set 1 (weak autocorrelation), larger values of Q0 generally produced higher

efficiencies. This was due to the fact that previous data values for this data set contained no

meaningful trend information. Hence, whatever ‘trend’ the filter extracted from previous

data was actually a false trend. Larger Q values informed the filter to place less weight on

the prediction process and more weight on the actual measurement values. This offset the

effects of false trends extracted from the previous data values.

The exception was with small values of n, where efficiency increased slightly with smaller

Q0. This is because the ‘no trend’ information extracted by the filter from smaller values of n

actually turned out to be accurate. In this case, a smaller Q informed the filter to place more

weight on the prediction process.

For data sets 2 and 3 with better autocorrelations, different values of Q0generally had little

effect on the filter efficiency. This is because whether the filter placed more or less weight

on the prediction process or not, the actual measurements were correlated enough to

provide useful trend information for the filter.

57

Effect of R:

R, representing the measurement noise covariance, informs the filter about how much

weight to place on the actual measurement values. Smaller values of R imply more reliable

measurements, and vice-versa.

For data set 1, which simulated random data, little weight could be placed on the actual

prediction process itself. Therefore, better efficiencies were obtained by placing more

weight on the actual measurements. This is why smaller values of R resulted in higher

efficiencies for data set 1.

For data sets 2 and 3, with good autocorrelation, R generally had little effect on filter

efficiency. This is because the trend information obtained from the previous data values was

good enough to overshadow the weight (or lack of weight) placed on the actual

measurement values.

However, for small values of n on data set 2 (moderate autocorrelation), a larger R

produced higher efficiency. This may be attributed to the fact that data sets with good

autocorrelation are usually stationary. This means that small values of n may contain more

trend information than actual single data measurements. Thus, higher efficiencies can be

obtained by placing less weight on the actual measurements, which is achieved by setting R

to a larger value.

Data set 3 (strong autocorrelation) may also be treated as a stationary process. Thus, a

collection of data values from such a set holds good trend information. For a data set with

greater autocorrelation, small or large collections of data values hold good trend

information. However, for a moderately-sized collection of data values, the trend displayed

58

amongst the individual measurements may be a more accurate description than that

displayed by the measurements taken as a group. In this case better prediction efficiency

would be achieved by placing more weight on the actual measurement values. This is

achieved by setting R to a smaller value. The slightly higher efficiency recorded for a smaller

R value when n is of moderate size for such a data set could be an occurrence of this

phenomenon.

Guidelines for network traffic data prediction:

Having obtained the above information regarding the relationships between different filter

parameters and filter efficiency, a reasonable set of guidelines may be drawn up for

achieving better prediction efficiency with network traffic data. As previously stated,

network traffic data is known to exhibit strong autocorrelation [10]. Therefore the

parameter values that produced higher efficiencies for the experimental data sets with good

autocorrelation serve as a good guide to choosing parameter values when testing with

actual network traffic data.

Based on the above results, the following criteria may be set up. For network traffic data

(very strong autocorrelation), better prediction efficiency can be achieved with:

a) Larger values of n (not too large, as trend information may be distorted if n is too

large)

b) For moderate values of n:

i) Larger values of Q0.

ii) Smaller values of R. For network traffic data, R is usually fixed because it is a

representation of errors in measurement arising from imperfections in the

59

instruments used to measure the traffic (measurement error is usually fixed

for a particular measuring instrument). It is therefore important in this case

to choose traffic data measured with instruments with less error, i.e. more

accurate instruments.

(The value of P0 has been shown to have little or no effect on the filter efficiency).

With this set of guidelines, a clearer idea was obtained on how to vary the filter parameters

to achieve good filter efficiency when running the filter with actual network traffic data.

4.2 Network data results

The filter was finally tested with actual network traffic data. Using the guidelines just listed

above, the filter parameters were varied and adjusted to achieve the maximum efficiency

attainable for the different types of network traffic data used.

Table 6.4 of Appendix 5 (reproduced here for convenience) shows the results obtained from

this process:

Table 6.4: Table of filter efficiencies for network traffic data

Network
Traffic Data Rxx 𝜎𝜎 n P0 Q0 R

Filter
Efficiency (%)

Data 1 14175.3 55.81 10 2.5 0.25 0.0006 85

Data 2 125713 100.74 15 2.5 0.025 0.015 86

Data 3 450832 97.08 13 2.5 0.0185553 0.015 88

The efficiencies shown in Table 6.4 were obtained after varying n, Q0 and R according to the

guidelines above. It is worth noting the following:

60

i) The values shown for Q0 and R are not unique values for which the maximum

efficiencies are obtained.

ii) The final value for n in Table 6.4 is the smallest value of n for which the

maximum efficiency, quoted in the table, is achieved.

Fig 4.4 is a graph of the efficiencies obtained for the different data sets after setting n, Q0

and R as shown in Table 6.4:

Fig 4.4: Filter efficiencies for the different network data samples

Analysis of network data results

The filter parameters that produced the maximum efficiencies quoted in the Table 6.4 were

of such characteristics as to agree with the criteria obtained from the tests with the

experimental data.

History length n:

For these very highly autocorrelated data sets, it was found that larger values of n produced

higher efficiencies.

85
86

88

83
84
85
86
87
88
89

Data 1 Data 2 Data 3

Fi
lte

r E
ffi

ci
en

cy
 (%

)

Data Set

Filter Efficiency

Total

61

For example, for data 1, higher efficiencies were obtained as n was increased up to n = 10.

Above n = 10, the efficiency did not show any notable improvement. For data 2 and data 3,

efficiency kept increasing up to values of n = 15 and n = 13 respectively.

This disparity in minimum n for which maximum efficiency is reached can be explained by

the different standard deviation values of the three different data sets. For data 1, with the

smallest standard deviation of 55.81, the filter reached maximum efficiency at a smaller n

value of 10. The highest n value of 15 was required for data 2, the data set with the highest

standard deviation of 100.74. Thus, it becomes obvious that data with a smaller standard

deviation and a bigger autocorrelation lends itself to better prediction efficiency with this

filter.

Q0 and R:

Because higher values of n were used for these particular data sets, the values of Q0 and R

did not exert much influence on the efficiency. This is because according to the results

obtained with the experimental data sets, Q0 and R have a notable effect when moderate

values of n are used. Hence, for these particular data sets, the values shown in the table for

Q0 and R were not the only values for which the maximum efficiencies are obtained. In

other words, the Q0 and R values shown in this table are not unique values for maximum

efficiency in this particular test.

P0:

The P0 values were the same in the table because the results were the same no matter value

P0 was set to. This is consistent with the fact that the filter always reaches an optimum value

for P (a-priori covariance) no matter what the initial value P0 is.

62

5. SUMMARY

5.1 Goal Attainment

In this project, a Kalman filter model was successfully developed to predict network traffic.

Traffic behaviour was successfully captured in the model, and the filter was able to predict

network traffic to an appreciable degree of accuracy, approaching 90%.

Admittedly the model is not perfect. Much more work is needed to fine-tune the behaviour

of the model, enabling it to carry out its predictions with a much higher degree of accuracy,

with a smaller error tolerance.

The filter was able to handle data of varying characteristics, but it is best-suited for data that

exhibits strong autocorrelation and low variance.

It is worth noting that this filter performs best in applications of short-term traffic

forecasting.

5.2 Project Challenges

The network traffic data used in the tests consisted of traffic measurements taken at hourly

intervals, as most network traffic measurements are taken at least hourly. This filter,

however, was designed for short-term traffic prediction. The difficulty in obtaining traffic

measurements for shorter time intervals was a major challenge in the testing of this model.

Secondly, the matrices involved in the filter’s computations for history length n included

some of dimension n by n. For large n values, computations can become highly memory-

consuming and slow. These computational difficulties associated with dealing with large

63

values of n precluded the investigation of the behaviour of the filter for much larger values

of n.

Nevertheless, it can be expected that for data with very strong autocorrelation, efficiency

will continue to increase for slightly larger values of n. For data without very strong

correlation, however, it can be extrapolated that the filter efficiency would begin to

decrease at comparatively larger values of n. This is because with larger collections of

previous data values, the trend information begins to blur out, causing the filter to build a

misleading picture of the nature of the data.

5.3 Future research

The first point of interest for future research concerning this project would be to improve

upon the prediction efficiency. Many forecasting techniques exist today that, used in

conjunction with a Kalman filter, could remarkably improve the prediction efficiency of the

filter. It would be worth devoting time and effort into such research.

With very good prediction efficiency, the adaptation of the filter to perform multi-step

prediction becomes a viable and appealing prospect. If the prediction for time-step k+1 is

always reasonably close to the true value, then it may be taken as the true value. This

pseudo-true value may be used to predict the next value (i.e. for time-step k+2), even

before the actual value for time-step k+1 becomes available. With the right analysis and

implementation, m-step prediction becomes possible (where m is an integer).

5.4 Conclusion

The Kalman filter is a very powerful estimation and prediction tool. With the right

adaptation, this filter model provides a simple, convenient and inexpensive resource for

64

prediction and estimation for applications in computer, telecommunications and

transportation networks, to name just a few. Such applications can go a long way in

providing affordable and simple technology to help in alleviating traffic congestion. Many

other applications for Kalman filters, such as tracking and smoothing, can be adapted to

solve, in a very cost-effective manner, many problems faced by developing countries such as

Ghana.

Considering the simplicity and cost-effectiveness of Kalman filter adaptations and

applications, it is technologically and economically worth investing more into Kalman filter

research and applications.

65

6. REFERENCES

[1] “Statistical Forecasting Methods.” Internet: http://www.statisticalforecasting.com/

[2] Yuanchang Xie, Yunlong Zhang & Zhirui Ye (2007) “Short-Term Traffic Volume

Forecasting Using Kalman Filter with Discrete Wavelet Decomposition.” Computer-Aided

Civil and Infrastructure Engineering. [Online]

[3] Declan Delaney and Tomas Ward. “A Java Tool for Exploring State Estimation using the

Kalman Filter” in ISSC 2004, Belfast, June 30 - July 2, pp. 2.

[4] “Kalman Filter.” Internet: http://en.wikipedia.org/wiki/Kalman_filter

[5] P. D. Joseph. “Kalman_1Lessons_0_to_4_rev 11_05” Personal e-mails

[6] “Traffic flow.” Internet: http://en.wikipedia.org/wiki/Traffic_flow

[7] “Types of Traffic Flow.” Internet:

http://www.webs1.uidaho.edu/niatt_labmanual/Chapters/trafficflowtheory/theoryandconc

epts/TypesOfTrafficFlow.htm

[8] “Traffic Flow Theory.” Internet:

http://www.webs1.uidaho.edu/niatt_labmanual/Chapters/trafficflowtheory/professionalpr

actice/TrafficFlowParameters.htm

[9] Tom Lane, TheMathworks, Inc., Personal e-mails

[10] “autocorrelation of network traffic” Internet:

http://www.soi.wide.ad.jp/class/20070044/slides/16/index_21.html

http://www.statisticalforecasting.com/
http://en.wikipedia.org/wiki/Kalman_filter
http://en.wikipedia.org/wiki/Traffic_flow
http://www.webs1.uidaho.edu/niatt_labmanual/Chapters/trafficflowtheory/theoryandconcepts/TypesOfTrafficFlow.htm
http://www.webs1.uidaho.edu/niatt_labmanual/Chapters/trafficflowtheory/theoryandconcepts/TypesOfTrafficFlow.htm
http://www.webs1.uidaho.edu/niatt_labmanual/Chapters/trafficflowtheory/professionalpractice/TrafficFlowParameters.htm
http://www.webs1.uidaho.edu/niatt_labmanual/Chapters/trafficflowtheory/professionalpractice/TrafficFlowParameters.htm

66

[11] “Short-term traffic safety forecasting using Gaussian mixture model and Kalman filter”

Internet: http://link.springer.com/article/10.1631%2Fjzus.A1200218

[12] “Kalman filter approach to traffic modelling and prediction” Internet:

http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=932091

[13] “Tracking and predicting a network traffic process” Internet:

http://www.sciencedirect.com/science/article/pii/S0169207096007005

[14] “An Extended Kalman Filter Application for Traffic State Estimation Using

CTM with Implicit Mode Switching and Dynamic Parameters” Internet:

https://www.mech.kuleuven.be/cib/verkeer/dwn/pub/P2007B.pdf

[15] “Real-time freeway traffic state estimation based on extended Kalman filter: a general

approach” Internet: http://www.sciencedirect.com/science/article/pii/S0191261504000438
[16] “Dynamic prediction of traffic volume through Kalman filtering theory” Internet:

http://econpapers.repec.org/article/eeetransb/v_3a18_3ay_3a1984_3ai_3a1_3ap_3a1-

11.htm

[17] “Theory and Application of Advanced Traffic Forecast Methods” Internet:

http://duepublico.uni-duisburg-essen.de/servlets/DerivateServlet/Derivate-

5656/Chrobokdiss.pdf

[18] Moshe Ben-Akiva, Michel Bierlaire, Haris Koutsopoulos and Rabi Mishalani U.

“DynaMIT: a simulation-based system for traffic prediction” in paper presented at the

DACCORD Short Term Forecasting Workshop February, 1998 Delft, The Netherlands

http://link.springer.com/article/10.1631%2Fjzus.A1200218
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=932091
http://www.sciencedirect.com/science/article/pii/S0169207096007005
https://www.mech.kuleuven.be/cib/verkeer/dwn/pub/P2007B.pdf
http://www.sciencedirect.com/science/article/pii/S0191261504000438
http://econpapers.repec.org/article/eeetransb/v_3a18_3ay_3a1984_3ai_3a1_3ap_3a1-11.htm
http://econpapers.repec.org/article/eeetransb/v_3a18_3ay_3a1984_3ai_3a1_3ap_3a1-11.htm
http://duepublico.uni-duisburg-essen.de/servlets/DerivateServlet/Derivate-5656/Chrobokdiss.pdf
http://duepublico.uni-duisburg-essen.de/servlets/DerivateServlet/Derivate-5656/Chrobokdiss.pdf

67

[19] Ashok, K. and M. Ben-Akiva (1993). “Dynamic O-D Matrix Estimation and Prediction for

Real Time Traffic Management Systems”. In: Transportation and Traffic Theory (Daganzo,

C.F., (Ed.)). Elsevier Science Publishing Company Inc.

[20] Sage, A.P. and Husa, G.W. (1969) “Adaptive filtering with unknown prior statistics”. In:

Proceedings of the Joint Automatic Control Conference, pp. 760-769

[21] “The Bayesian Approach to Forecasting” Internet:

http://www.oracle.com/us/products/applications/057028.pdf

[22] “Cell Transmission Model” Internet:

http://en.wikipedia.org/wiki/Cell_Transmission_Model

http://www.oracle.com/us/products/applications/057028.pdf
http://en.wikipedia.org/wiki/Cell_Transmission_Model

68

7. APPENDICES

APPENDIX 1: JAVA CODE

package Kalman;

import java.io.*;

importjava.util.*;

public class KalmanFilter

{

// VARIABLE DECLARATION

 private static intm,n = 0; //m = number of links, n = number of measurements

 staticinttotalIterations = 0;

// private static String errorMsg = "";

 private static booleanprintHorizontal = false;

 private static BufferedWriter file;

 private static BufferedReaderinputData;

 private static StringTokenizerst;

 static Matrix predictedVol; //matrix holding predicted traffic flow rate per iteration (m by 1)

 private static float predictedTraffic[][]; //matrix holding predicted traffic flow rates for all iterations (n by m)

 private static float inputTraffic[][]; //(n by m)

 static Matrix priorState; //a priori state estimate (n by 1)

 static Matrix priorCov; //a priori covariance (n by n)

 static Matrix postState; //a posteriori state estimate (n by 1)

 static Matrix postCov; //a posteriori covariance (n by n)

 static Matrix z; //actual traffic flow rate (m by 1)

 static Matrix I; //unit matrix (n by n)

 static Matrix A; //state gain (n by n)

 static Matrix K; //Kalman gain (n by m)

 static Matrix R; //measurement noise covariance (m by m)

 static Matrix Q; //process noise covariance (n by n)

 static Matrix H; //output gain (m by n)

69

 statichistoryQueuetrafficHistory; //queue holding last n measurements (m by n)

 statichistoryQueuestateHistory; //queue holding last n states (n by 1)

// static float[][] testMatrix = {{2,3},{4,5}};

// static Matrix test;

 //constructor

 publicKalmanFilter(String dataFile, inthistoryLength) throws Exception

 {

 float[][] testData = getArray(dataFile);

 KalmanFilterkf = new KalmanFilter(testData, testData.length, historyLength);

 }

 //constructor

 publicKalmanFilter(float[][] trafficData, intnumOfIterations, inthistoryLength) throws Exception

 {

 inputTraffic = trafficData;

 // test = new Matrix(testMatrix);

 // System.out.println("test determinant = "+test.determinant());

 // System.out.println("test inverse = ");

 // test.inverse().printMatrix();

 // VARIABLE INITIALISATION

 //initialize matrices and other variables

 m = trafficData[0].length; //number of links

 n = historyLength; //number of measurements

 totalIterations = numOfIterations;

 predictedTraffic = new float[numOfIterations][m];

 priorState = new Matrix(n,1,1.0f/n);

 priorCov = new Matrix(n,0.009f);

 postState = new Matrix(n,1,0);

 postCov = new Matrix(n,n,0);

 z = new Matrix(m,1,0);

 I = new Matrix(n,1);

 A = new Matrix(n,1);

70

 K = new Matrix(n,m,0);

 R = new Matrix(m,m,0.015f);

 Q = new Matrix(n,n,0.0f);

 H = new Matrix(m,n,3.0f);

 trafficHistory = new historyQueue(m,n,3.0f);

 stateHistory = new historyQueue(n,1,3.0f);

 // H = trafficHistory.update(trafficData);

 predictedVol = new Matrix(m,1,0);

 kalmanFilter(trafficData,numOfIterations);

 }

 public static float[][] getArray(String fileName) throws IOException

 {

 inputData = new BufferedReader(new FileReader(new File(fileName)));

 String line = inputData.readLine();

 totalIterations++;

 st = new StringTokenizer(line);

 m = st.countTokens();

 line = inputData.readLine();

 while(line!=null)

 {

 totalIterations++;

 line = inputData.readLine();

 }

 float[][] theArray = new float[totalIterations][m];

 inputData.close();

 populateArrayFromFile(theArray,fileName);

 returntheArray;

 }

 public static void populateArrayFromFile(float[][] array, String file) throws IOException

 {

 inputData = new BufferedReader(new FileReader(new File(file)));

71

 String nextLine = "";

 for(int i = 0; i<array.length; i++)

 {

 nextLine = inputData.readLine();

 st = new StringTokenizer(nextLine);

 for(int j = 0; j<array[0].length; j++)

 {

 array[i][j] = Float.parseFloat(st.nextToken());

 }

 }

 }

 public static void kalmanFilter(float[][] traf, int iterations) throws Exception

 {

 if(iterations==0)

 return;

 else

 {

 try

 {

 kalmanFilter(traf,iterations-1);

 System.out.println("Iteration "+iterations+" of "+totalIterations+" in progress...");

 // H.printMatrix();

 z.set1DArray(traf[iterations-1]);

 //KALMAN FILTER EQUATIONS

 //Predictor stage

 priorState = A.times(priorState); //a priori state estimate

 priorCov = ((A.times(priorCov)).times(A.trans())).plus(Q); //a priori cov

 //Corrector stage

 K =
(priorCov.times(H.trans())).times((((H.times(priorCov)).times(H.trans())).plus(R)).inverse()); //Kalman filter gain

 postState = priorState.plus(K.times(z.minus(H.times(priorState)))); //a posteriori
state estimate

72

 postCov =
(((I.minus(K.times(H))).times(priorCov)).times((I.minus(K.times(H))).trans())).plus((K.times(R)).times(K.trans())); //a
posteriori covariance

 //predicted output traffic flow rate

 H = trafficHistory.update(traf);

 predictedVol = H.times(postState);

 predictedTraffic[iterations-1] = predictedVol.get1DArray();

 //update a priori state and covariance

 priorState.setMatrix(postState);

 priorCov.setMatrix(postCov);

 System.out.println("Iteration "+iterations+" completed.\n");

 return;

 }

 catch(Exception e)

 {

 System.out.println(e);

 // errorMsg = e.toString();

 // System.exit(1);

 }

 }

 }

 public void print(float[][] matrix) throws IOException

 {

 intnumOfLinks = matrix[0].length;

 file = new BufferedWriter(new FileWriter(new File("Kalman Test Results for test data.txt")));

 if(printHorizontal)

 {

 System.out.println("\t\t\tPredicted Traffic Data\n");

 file.write("\t\t\tPredicted Traffic Data");

 file.newLine();

 file.newLine();

 // System.out.print("Link");

73

 for(int i = 1; i<=numOfLinks; i++)

 {

 System.out.print("\tLink "+i+"\t\t");

 file.write("\tLink "+i+"\t\t");

 }

 System.out.println("\n");

 file.newLine();

 file.newLine();

 for(int i = 1; i<=numOfLinks; i++)

 {

 System.out.print("\tPredicted\tActual");

 file.write("\tPredicted\tActual");

 }

 System.out.println("\n");

 file.newLine();

 file.newLine();

 for(int i = 0; i<matrix.length; i++)

 {

 System.out.print(i+1);

 file.write((i+1)+"");

 for(int j = 0; j<numOfLinks; j++)

 {

 System.out.print("\t"+matrix[i][j]+"\t"+inputTraffic[i][j]);

 file.write("\t"+matrix[i][j]+"\t"+inputTraffic[i][j]);

 }

 System.out.println();

 file.newLine();

 }

 System.out.println("\n\n");

 }

 else

74

 {

 System.out.println("\t\t\tPredicted Traffic Data\n");

 file.write("\t\t\tPredicted Traffic Data");

 file.newLine();

 file.newLine();

 for(int i = 0; i<numOfLinks; i++)

 {

 System.out.println("Link "+(i+1)+"\t");

 file.write("Link "+(i+1)+"\t");

 file.newLine();

 System.out.println("\tPredicted\tActual");

 file.write("\tPredicted\tActual");

 file.newLine();

 for(int j = 0; j<matrix.length; j++)

 {

 System.out.println(j+1+"\t"+matrix[j][i]+"\t"+inputTraffic[j][i]);

 file.write(j+1+"\t"+matrix[j][i]+"\t"+inputTraffic[j][i]);

 file.newLine();

 }

 System.out.println();

 file.newLine();

 }

 System.out.println("\n\n");

 }

 file.close();

 }

 //main method

 public static void main(String[] args) throws Exception

 {

// /*

 printHorizontal = true;

75

 float[][] testData = {// link 1 link 2 link 3

 {3.0f, 9.5f, 2.2f}, //row 1

 {5.1f, 8.9f, 3.1f}, //row 2

 {4.8f, 9.3f, 5.2f}, //row 3

 {6.4f, 10.1f, 9.0f}, //row 4

 {8.2f, 11.5f, 6.8f}, //row 5

 {6.3f, 11.1f, 6.1f}, //row 6

 {5.5f, 12.3f, 5.5f}, //row 7

 {4.8f, 11.3f, 5.5f}, //row 8

 {5.6f, 10.4f, 3.8f}, //row 9

 {6.3f, 8.9f, 5.1f}, //row 10

 {9.2f, 10.1f, 6.8f}, //row 11

 {8.5f, 12.3f, 5.2f}, //row 12

 {6.8f, 10.3f, 5.5f}, //row 13

 {5.6f, 9.4f, 4.8f}, //row 14

 {6.3f, 8.9f, 3.1f} //row 15

 }; //10 by 3

// */

 /*

 printHorizontal = true;

 float[][] testData = {// link 1

 {116.8f}, //row 1

 {120.1f}, //row 2

 {123.2f}, //row 3

 {130.2f}, //row 4

 {131.4f}, //row 5

 {125.6f}, //row 6

 {124.5f}, //row 7

 {134.3f}, //row 8

 {135.2f}, //row 9

 {151.8f}, //row 10

76

 {146.4f}, //row 11

 {139.0f}, //row 12

 {127.8f}, //row 13

 {147.0f}, //row 14

 {165.9f}, //row 15

 {165.5f} //row 16

 }; //10 by 1

 */

 /*

 printHorizontal = false;

 float[][] testData = {// link 1 link 2 link 3 link 4 link 5

 {0.2f, 1.1f, 2.8f, 22.07f, 19.12f}, //row 1

 {2.4f, 2.3f, 8.7f, 19.88f, 14.02f}, //row 2

 {4.6f, 0.3f, 9.4f, 18.27f, 25.09f}, //row 3

 {6.5f, 8.8f, 5.3f, 16.09f, 2.89f}, //row 4

 {5.3f, 7.7f, 1.9f, 14.35f, 22.12f}, //row 5

 {3.2f, 0.4f, 2.1f, 3.03f, 11.04f}, //row 6

 {2.9f, 5.9f, 0.5f, 20.09f, 9.03f}, //row 7

 {9.6f, 9.7f, 0.8f, 8.02f, 15.01f}, //row 8

 {6.8f, 4.2f, 3.0f, 19.81f, 7.08f}, //row 9

 {0.8f, 6.9f, 2.4f, 19.57f, 22.11f}, //row 10

 {5.0f, 3.2f, 7.2f, 52.50f, 22.15f}, //row 11

 {4.1f, 6.1f, 3.7f, 20.00f, 13.40f}, //row 12

 {2.5f, 1.5f, 3.1f, 20.64f, 18.39f}, //row 13

 {2.0f, 2.2f, 3.9f, 22.28f, 7.07f} //row 14

 }; //14 by 5

 */

 System.out.println("\n\t\t\tKalman Filter Test\n\n");

 KalmanFilterkalmanTest = new KalmanFilter(testData,testData.length,5);

 // KalmanFilterkalmanTest = new KalmanFilter("test data 2.txt",10);

 kalmanTest.print(predictedTraffic);

77

 // System.out.println(predictedTraffic);

 }

}

//HISTORY QUEUE

package Kalman;

public class historyQueue

{

 inti,j = 0;

 intcopyMarker,nextDataIndex,queueSize,currentSize,queueWidth; //queue markers

 Matrix history; //queue to 'remember' previous n traffic data

 publichistoryQueue(int row, int col, float value)

 {

 copyMarker = 0;

 nextDataIndex = 0;

 currentSize = 0;

 queueSize = col;

 queueWidth = row;

 history = new Matrix(row,col,value);

 }

 public Matrix update(float[][] data)

 {

 if(nextDataIndex == data.length-1)

 return history;

 //this loop to prevent array index of -1

 //copies each column of 'history' to the one directly after it

 if(currentSize!=0)

 for(copyMarker = (currentSize==queueSize)? currentSize - 2:currentSize - 1; copyMarker>=0;
copyMarker--)

 for(i = 0; i<queueWidth; i++)

 history.setValue(i,copyMarker+1,history.value(i,copyMarker));

 //this loop copies next column of data array into

78

 //first column of 'history'

 for(i = 0; i<queueWidth; i++)

 history.setValue(i,0,data[nextDataIndex][i]);

 if(currentSize<queueSize)

 currentSize++;

 nextDataIndex++;

 return history;

 }

}

APPENDIX 2: MATLAB CODES

2.1: LabVIEW MATLAB Script Node Code

if i == 0 % This ‘if’ block necessary because on first code iteration, P and H are 2-D, so cat(3,P,p) function call would fail

P = p;

H = h;

else

P = cat(3,P,p);

H = cat(3,H,h);

end

if i == N-1

cd ('path'); % ‘path’ should be the full path to the directory where qlogL is located

Q = fminsearch(@(Q) qlogL(N,x,z,A,P,H,R,Q), Q);

end

2.2: qlogL Code

functionnlogL = qlogL(n,x,z,A,P,H,R,Q)

mlogL = 0;

for k=1:n

P(:,:,n) = A*P(:,:,n)*A' + Q;

79

Y = z(:,n) - H(:,:,n)*x(:,n);

X = H(:,:,n)*P(:,:,n)*H(:,:,n)' + R;

mlogL = mlogL + log(X) + Y'*inv(X)*Y;

end

nlogL = det(mlogL);

end

APPENDIX 3: LABVIEW MODEL

a) Front panel

Fig. 6.1: LabVIEW front panel diagram

80

b) Block diagram

Fig. 6.2a: LabVIEW block diagram (top half)

Fig. 6.2b: LabVIEW block diagram (bottom half)

81

APPENDIX 4: DATA SETS

4.1: Experimental Data

Data Set 1 (Rxx = 0.0112551,𝜎𝜎 = 0.28)

0.10609 0.16852 0.23700 0.18022 0.18094 0.65983 0.65235 0.21594 0.11515 0.00067 0.00387
 0.25202 0.65011 0.53646 0.08462 0.05640 0.26630 0.03641 0.26030 0.03995 0.33612 0.11672
 0.69775 0.07569 0.36149 0.42341 0.26721 0.00363 0.08333 0.22480 0.13728 0.12698 0.18770
 0.34741 0.54947 0.57423 0.57493 0.28188 0.58438 0.50236 0.60766 1.04784 0.68857 0.11450
 0.22005 0.36533 0.00151 0.03740 0.22438 0.16196 0.12862 0.08448 0.17945 0.37502 0.95727
 0.86188 0.39464 0.53794 0.13054 0.39138 1.23825 0.66286

Data Set 2 (Rxx = 1,𝜎𝜎 = 0.71)

1.00 0.6 1.86 0.94 1.00 0.75 0.81 0.72 0.81 1.25 2.03 2.86
 1.64 0.47 0.14 6.67 3.36 2.53 3.06 4.28 6.31 8.56 10.44 10.06
 12.17 12.97 14.64 18.61 17.06 20.36 17.81 16.75 23.83 24.69 32.25 30.06
 30.69 32.64 35.19 36.53 35.14 39.53 49.36 47.36 50.58 0.14 0.31 0.14
 0.11 0.08 0.78 1.28 1.53 0.14 0.53 0.81 0.58 1.61 0.72 0.03
 0.22 0.44 0.17 0.39 0.39 1.14 1.08 1.36 1.44 1.72 1.03 1.06
 1.03 0.56 0.47 0.50 0.39 0.28 0.28 0.81 0.42 1.25 0.89 1.08
 0.39 0.06 0.28 0.06 0.78 0.25 2.06 1.25 0.92 1.44 1.92 2.08
 2.17 2.50 3.17 3.22 2.97 4.06 1.72 2.25 2.03 3.61 2.61 1.47
 0.14 0.00 0.00 0.00 0.03 0.06 0.22 0.14 0.33 0.58 0.28 0.39
 0.39 0.14 0.31 1.00 0.78 1.17 0.25 0.50 1.00 0.86 0.17 0.17
 0.61 1.19 0.11 0.06 0.25 1.03 1.17 1.28 2.31 2.25 1.69 1.58
 1.22 2.67 2.03 1.69 1.97 2.56 2.53 2.22 2.67 0.58 0.22 3.19
 0.83 2.00 2.97 4.14 5.94 9.17 14.08 16.25 20.11 22.50 22.11 18.83
 18.56 17.11 17.42 20.19 24.44 34.17 43.33 41.28 29.00 17.83 6.69 0.33
 0.06 0.06 0.22 0.28 0.92 2.14 2.14 2.42 2.69 2.69 2.28 2.00
 2.64 3.28 2.97 2.86 3.00 4.53 4.64 3.92 3.39 1.86 0.69

Data Set 3 (Rxx = 4.1209,𝜎𝜎 = 1.14)

2.03 3.17 3.08 3.94 2.92 2.19 2.22 2.67 2.56 2.17 2.86 2.72
 3.22 5.14 6.11 3.72 2.17 2.17 1.22 1.17 1.86 2.64 1.33 1.53
 1.86 2.56 3.69 2.36 4.28 2.11 2.25 3.56 3.36 2.89 1.47 1.97
 2.81 3.50 3.17 3.67 2.58 2.44 1.94 2.22 2.69 2.22 2.69 4.69
 6.44 5.81 2.78 1.72 1.89 2.97 2.75 3.00 2.31 2.69 1.81 2.36
 2.94 1.75 2.25 2.53 4.11 4.11 3.50 2.97 1.17 1.92 1.39 2.47
 3.22 2.06 1.69 1.83 3.72 2.28 2.89 1.47 3.22 4.92 3.31 3.08
 1.11 1.25 2.08 2.64 2.33 2.83 1.92 3.86 2.97 2.75 1.64 2.69
 2.58 2.92 2.03 2.69 3.44 3.44 3.72 3.39 3.94 4.22 5.19 3.31
 3.86 4.06 4.81 5.72 6.75 3.86 2.22 2.14 2.14 2.42 2.69 2.69
 2.28 2.00 2.64 3.28 2.97 2.86 3.00 4.53 4.64 3.92 3.39 1.86
 1.03 1.17 1.28 2.31 2.25 1.69 1.58 1.22 2.67 2.03 1.69 1.97
 2.56 2.53 2.22 2.67 0.58 0.22 3.19 0.83 2.00 2.97 2.06 1.25
 0.92 1.44 1.92 2.08 2.17 2.50 3.17 3.22 2.97 4.06 1.72 2.25
 2.03 3.61 2.61 1.47 2.03 2.86 1.64 0.47 0.14 6.67 3.36 2.53
 3.06 3.47 4.08 2.64 2.11 3.53 3.78 4.81 4.14 1.14 1.69 1.75
 1.86 1.69 1.75 1.58 1.53 1.36 1.36 2.17 2.67 4.06 4.28 2.92
 2.22

82

4.2: Network Traffic Data

Data 1 (Rxx = 14175.3,𝜎𝜎 = 55.81)

119.06 111.06 108.83 105.17 91.17 107.03 122.39 143.25 155.94 158.97 165.36
 165.92 127.33 174.08 166.92 151.17 144.17 124.00 147.86 156.94 171.50 177.00
 182.31 185.42 185.83 173.17 211.03 189.86 186.31 183.64 190.67 183.64 186.17
 215.44 220.47 263.56 322.25 342.94 306.97 223.78 217.53 210.31 215.22 244.56
 226.58 242.97 265.22 272.06 299.33 313.03 304.58 213.47 162.28 154.47 152.81
 139.97 154.17 151.56 160.53 158.67 176.00 212.75 236.78 225.50 138.67 127.86
 119.83 115.44 138.47 116.17 117.03 135.56 144.31 184.22 230.19 220.50 126.50
 123.06 123.97 117.22 114.00 132.72 114.86 115.19 119.69 119.86 110.53 102.94
 103.56 98.47 196.28 190.86 189.97 186.58 206.44 183.42 187.22 203.64 214.67
 259.75 287.03 282.72 231.36 131.89 122.11 118.19 113.53 150.14 121.83 125.39
 137.69 130.78 147.39 157.89 138.22 102.50 192.31 182.33 172.69 162.75 214.61
 177.22 182.50 205.47 225.31 246.83 305.03 324.00 278.94 146.36 148.06 140.14
 148.81 142.36 145.28 165.50 176.69 183.22 202.19 234.11 231.33 180.50

Data 2 (Rxx = 125713,𝜎𝜎 = 100.74)

354.56 320.47 307.17 289.64 304.86 281.31 329.69 364.00 397.25 478.00 569.53
 501.14 346.78 275.94 263.56 267.03 254.11 206.92 244.11 241.14 279.58 306.58
 393.42 498.61 535.08 448.58 295.31 288.28 283.81 262.89 250.44 269.17 304.11
 335.03 331.50 397.28 444.97 396.92 258.86 252.61 234.17 231.69 235.97 243.86
 239.81 262.92 280.56 290.72 316.78 325.53 308.11 238.11 301.31 292.06 289.39
 267.72 252.67 258.03 274.69 313.67 355.75 432.06 548.22 561.22 428.42 380.03
 371.00 364.06 351.78 338.50 357.00 381.61 432.03 460.92 533.39 649.50 691.47
 613.97 387.75 371.39 361.31 354.53 334.56 367.94 374.78 434.25 445.78 521.81
 647.53 689.67 603.53 223.78 217.53 210.31 215.22 244.56 226.58 242.97 265.22
 272.06 299.33 313.03 304.58 213.47 392.25 403.92 396.86 369.92 357.72 354.36
 394.03 379.36 412.36 474.00 495.14 446.89 345.22 328.06 327.11 320.83 333.86
 316.75 332.14 364.97 366.47 425.75 498.81 470.06 362.67 280.31 256.11 237.83
 223.31 219.97 236.94 276.53 287.00 340.39 427.39 420.72 345.64 329.36 310.33
 298.72 285.03 274.00 283.86 328.00 372.86 398.72 297.92 264.78 252.83 246.00
 263.33 236.28 239.97 278.72 301.83 346.69 413.00 399.75 315.67

Data 3 (Rxx = 450832,𝜎𝜎 = 97.08)

671.44 647.06 627.64 639.94 704.00 632.44 656.14 681.56 673.33 721.14 808.61
 808.03 679.44 640.14 595.17 552.67 520.56 590.58 522.61 555.08 629.36 673.94
 786.19 574.72 789.47 807.42 652.97 742.17 708.11 659.08 609.44 580.75 645.17
 715.44 776.22 651.42 570.31 408.81 911.39 828.14 798.81 783.75 760.56 683.92
 641.83 612.50 775.25 664.06 690.69 776.28 606.08 571.44 540.86 528.92 531.61
 489.89 526.94 567.72 601.58 699.14 806.89 705.64 623.33 657.19 548.83 854.50
 791.14 722.06 678.44 664.94 770.69 706.50 682.94 640.67 619.00 613.69 745.94
 747.39 767.97 679.14 642.61 899.75 864.78 803.31 749.36 727.83 766.92 650.42
 616.03 614.28 588.14 541.25 617.00 657.08 762.69 788.56

83

APPENDIX 5: TABLES OF RESULTS

Acceptable rms error for all data sets was set at 20%.

5.1: Exprerimental Data Results

Table 6.1: Table of filter efficiencies for data set 1 (Rxx = 0.0112551, σ = 0.28)

Table of filter
efficiencies

P0 = 2.5 P0 = 70 Q0 = 0.001 Q0 = 0.1 R = 0.006 R = 0.2

n = 2 4 5 6 4 6 4

n = 5 4 3 3 6 4 1

n = 10 8 7 3 8 11 3

Table 6.2: Table of filter efficiencies for data set 2 (Rxx = 1, σ = 0.71)

Table of filter
efficiencies

P0 = 2.5 P0 = 70 Q0 = 0.001 Q0 = 0.1 R = 0.006 R = 0.2

n = 2 21 21 22 22 16 21

n = 5 36 36 33 37 36 36

n = 10 35 34 34 33 34 34

Table 6.3: Table of filter efficiencies for data set 3 (Rxx = 4.1209, σ = 1.14)

Table of filter
efficiencies

P0 = 2.5 P0 = 70 Q0 = 0.001 Q0 = 0.1 R = 0.006 R = 0.2

n = 2 20 18 21 19 21 20

n = 5 39 38 37 39 39 37

n = 10 43 42 43 43 43 43

84

5.2: Network Traffic Data Results

Table 6.4: Table of filter efficiencies for network traffic data

Network
Traffic Data Rxx 𝜎𝜎 n P0 Q0 R

Filter
Efficiency (%)

Data 1 14175.3 55.81 10 2.5 0.151853 0.015 85

Data 2 125713 100.74 15 2.5 0.025 0.006 86

Data 3 450832 97.08 13 2.5 0.0185553 0.25 88

	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	INTRODUCTION
	Background and Motivation
	Problem Statement
	General Objectives
	Thesis Organization

	OVERVIEW OF KALMAN FILTERS
	Introduction
	Kalman Filter Theory and Algorithm
	Kalman Filter Equations

	The Kalman filter is essentially a set of mathematical equations that implement a predictor-corrector type estimator that is optimal in the sense that it minimizes the estimated error covariance when some presumed conditions are met.
	The Time Update (Predictor) Equations
	The Measurement Update (Corrector) Equations
	Derivation of the Kalman Gain
	Detailed Flowchart for the Kalman Filter Algorithm
	A Step – by – Step Walkthrough of the Kalman Filter
	Step 1 – Building a Model
	Step 2 – Starting the Process
	Step 3 – Iteration

	Related Work (Use of Kalman filters in network traffic prediction)
	Short-Term Traffic Volume Forecasting Using Kalman Filter with Discrete Wavelet Decomposition

	This method, though accurate, demands a lot of processing power, and is expensive.
	Short-term traffic safety forecasting using Gaussian mixture model and Kalman filter [11]
	In this work by Sheng Jin, Dian-hai Wang, Cheng Xu and Dong-fang Ma, a prediction model is developed that combines a Gaussian mixture model (GMM) and a Kalman filter for online forecasting of traffic safety on expressways. Raw time-to-collision (TTC) ...
	This is an accurate method. However, it is expensive, and has an associated time and data cost for training the model.
	Kalman filter approach to traffic modeling and prediction
	Gregory J. Grindey, S. M. Amin, Ervin Y. Rodin and Asdrubal Garcia-Ortiz carried out this work with the aim of developing and integrating prediction, control and optimization modules for use in highway traffic management. This they accomplished throug...
	Though accurate, this is an expensive method.
	Tracking and predicting a network traffic process
	Joe Whittaker, Simon Garsidea and Karel Lindveld presented a forecast system in 1997 that applied a Kalman filter on a motorway network around Rotterdam in the Netherlands to tackle the problem of real-time modelling and prediction of motorway traffic...
	This method yielded reasonably accurate and real-time prediction, but at high cost.
	Real-time freeway traffic state estimation based on extended Kalman filter: a general approach
	An Extended Kalman Filter Application for Traffic State Estimation Using CTM with Implicit Mode Switching and Dynamic Parameters
	Chris M.J. Tampère and L. H. Immers produced this work with two main objectives [14]:
	to show how the cell transmission model (CTM) [22] can be included in the general extended Kalman filtering(EKF) framework of Wang & Papageorgiou [15]; the key issue here is to linearize the non-linear CTM model around its current state, which is done...
	to show the capability of the combined CTM-EKF model to capture (rapid) changes of important modelling parameters like the capacity.
	Using both real and simulated data, they illustrated the applicability of the model in a case study on a motorway.
	This method can rapidly adapt to changes, but again it comes with an unattractive cost.
	DynaMIT: a simulation-based system for traffic prediction
	DynaMIT (Dynamic Network Assignment for the Management of Information to Travelers) is a real time dynamic traffic assignment system that was developed at the Massachusetts Institute of Technology (MIT) to provide traffic predictions and travel guidance.
	DynaMIT generates prediction-based guidance with respect to departure time, pre-trip path and mode choice decisions and en-route path choice decisions. It supports both prescriptive and descriptive information. In order to guarantee the credibility of...
	DynaMIT features a dynamic OD (origin-destination) estimation process based on a Kalman filtering algorithm and on an auto-regressive process (Ashok and Ben-Akiva, 1993) [19]. The auto-regressive process, captures the dynamic evolution in time of the ...
	This is another accurate method, but the associated cost is prohibitive.

	METHODOLOGY
	The focus of this project was to develop a suitable Kalman filter model to carry out traffic flow rate prediction. The test data was taken from a telecommunications network, but the concepts and techniques apply to any network, including transportatio...
	Model Development

	The analysis in this section is carried out first over a single network link, and then extended to cover multiple network links. The Kalman model for a single link is treated as a scalar model, after which extension to multiple links is treated by mea...
	Single Link Analysis

	As already stated in the introduction of this report, this project dealt with short term traffic flow rate forecasting. This is important because it allowed for certain assumptions: [2]
	For short term forecasting, the state variable transitions may be regarded as a smooth process.
	A linear relationship may be assumed between traffic flow rates for the current time step and traffic flow rates for previous time steps.
	From (b) it may be inferred that the traffic flow rate at any particular time step is a linear combination of the traffic flow rates at previous time steps. Put another way, the previous traffic flow rates, each multiplied by a corresponding coefficie...
	Thus, if trafk represents the traffic flow rate at time step k, and ck represents the corresponding coefficient that multiplies trafk, then from (b) it may be inferred that
	trafk = trafk-1ck-1 + trafk-2ck-2 + ... + trafk-nck-n + vk (3.10)
	where vk is the noise contribution at time step k and n represents the number of previous traffic flow rates taken into consideration.
	The right-hand-side of (3.10) may be expressed in matrix form by defining
	TRAFk = [trafk-1, trafk-2, trafk-2,…, trafk-n] and (3.11a)
	Ck = [ck-1, ck-2, ck-3,…, ck-n]T (3.11b)
	then (3.10) may be written as
	trafk = TRAFkCk + vk (3.12)
	Comparing (3.11) to (2.11), it is observed that a suitable way to model the system is to set
	trafk = ,𝑧-𝑘., the measured output volume
	TRAFk = h, the output gain matrix, and
	Ck = ,𝑥-𝑘., the system state
	With the system thus modelled, the output equation of the filter (equation (2.11)) may be written as
	𝑡𝑟,𝑎.,𝑓-𝑘.= 𝑇𝑅𝐴,𝐹-𝑘.,,𝐶.-𝑘-−. (3.13)
	where
	𝑡𝑟,𝑎.,𝑓-𝑘. represents the estimated output traffic flow rate, and
	,,𝐶.-𝑘-−.represents the a priori state estimate.
	After obtaining the estimated output traffic flow rate 𝑡𝑟,𝑎.,𝑓-𝑘., the measured output traffic flow rate trafk is received. trafk is used to update the output gain matrix TRAFk to obtain TRAFk+1, i.e.TRAFk+1 = [trafk, trafk-1, trafk-2,…, trafk-n+1].
	Equation (3.12) may then be used to achieve the filter’s aim of predicting the output traffic flow rate for the next time step:
	𝑡𝑟,𝑎.,𝑓-𝑘+1.= 𝑇𝑅𝐴,𝐹-𝑘+1.,,𝐶.-𝑘. (3.14)
	where ,,𝐶.-𝑘. is the a posterior state estimate obtained according to equation (2.13).
	Extension to multiple links

	In order to extend the analysis of the previous section to cover multiple links, the network is treated as a matrix. The various parameters take on dimensions according to the number of links on the network and the number of previous traffic flow rate...
	For example, for a network of m links, an m by 1 output matrix may be defined to hold the output values for each of the m links. Likewise, an m by m measurement noise covariance matrix may be defined to hold the measurement noise covariance values for...
	NOTATION:
	To distinguish the parameters under the matrix Kalman system from their scalar counterparts, the following notational convention was employed:
	All matrix parameters have the same symbols as the scalar counterparts, but the matrix parameters are represented in bold face.
	All gain and covariance parameters for the matrix system are capitalized.
	Table 3.1 summarizes the convention used to identify the parameters in the matrix Kalman filter system for this project, along with their respective dimensions. ‘m’ represents the number of links being considered in the network, and ‘n’ represents the...
	Table 3.10F : Matrix Kalman filter variables and dimensions
	With the above notation, the Kalman filter equations may be rewritten for the matrix system thus:
	where
	R= Measurement variance matrix (i.e., error from measurements).
	I = Unit matrix
	Model Implementation

	Implementation of the model developed in section 3.1 was carried out by software in two forms:
	Implementation with a Java program
	Implementation with LabVIEW
	Apart from the fact that the Java programming language is well-known for its network-friendliness, the primary purpose of implementing the model in Java was to verify the correctness of the approach described for this filter implementation. The reason...
	Java program implementation

	The java program implementation was carried out simply by following the Kalman filter algorithm outlined in equations (3.15) to (3.19). The system was first initialized with the number m of links and the number n of previous traffic flow rates desired...
	The basic algorithm is outlined below:
	Initialize the filter with m, the number of links on the network to be considered, and n, the number of previous traffic flow rates to be ‘remembered’ by the filter.
	Initialize the filter’s matrices to the right dimensions with m and n according to Table 3.1.
	Initialize the matrices to their respective initial values.
	Let k = 1, and carry out the Kalman filter algorithm (equations (3.15) to (3.19)):
	Compute the a priori state estimate and covariance ,,𝒙.-𝒌-−. and ,𝑷-𝒌-−. respectively, where ,,𝑥.-𝑘-−. represents ,,𝐶.-𝑘-−. (equations (3.13) and (3.11b)).
	Compute the Kalman gain ,𝑲-𝒌. (equation (3.17)), where H represents TRAFk (equation (3.11a)).
	Obtain the measured traffic flow rate trafk for time step k, and use it to compute the a posteriori state estimate (equation (3.18)) and covariance (equation (3.19)), ,,𝒙.-𝒌. and,𝑷-𝒌. respectively, where ,,𝑥.-𝑘.represents ,,𝐶.-𝑘.(equations (3....
	Update TRAFk with trafk to obtain TRAFk+1 (equation (3.11a)).
	Compute the predicted traffic flow rate 𝑡𝑟,𝑎.,𝑓-𝑘+1. for the next time step k+1 according to equation (3.14), reproduced here for convenience:
	𝑡𝑟,𝑎.,𝑓-𝑘+1.= 𝑇𝑅𝐴,𝐹-𝑘+1.,,𝐶.-𝑘.
	Update the a priori state estimate and covariance to take on, respectively, the values of the a posteriori state estimate and covariance, i.e. let ,,𝒙.-𝒌-−.←,,𝒙.-𝒌. and ,𝑷-𝒌-−.←,𝑷-𝒌..
	Let k = k+1, and go to i).
	VARIABLE INITIALIZATION
	Variable initialization has to do with assigning values to the parameters for time step zero (0), before the filter can carry out its first iteration. The various variables were initialized as follows:
	State and input variables:
	The input variable matrix u was set to zero because the system takes in no input.
	The a priori state estimate ,,𝒙.-𝒌-−., representing ,,𝐶.-𝑘-−., was initialized to an n by 1 matrix of arbitrarily small values. In this project the value was set to 1/n. [2]
	Gain variables:
	The state gain or state transition matrix A was set to be an n by n identity matrix because, from (a) of section 3.1, the state transition may be regarded as a smooth process for short term forecasting.
	The input gain matrix B was set to zero because, as already stated, the system takes no input.
	The output gain H, representing TRAFk, was initially set to an m by n matrix of very small values, a value of 0.009 in the case of this project. This is the value used by the system as default traffic flow rate measurements before actual values are ob...
	Covariance variables:
	The measurement noise covariance matrix R was set to an m by m matrix with all entries initialized to0.015, a value obtained after averaging a collection of network traffic measuring equipment errors obtained from the internet.
	The a priori covariance ,𝑷-𝒌-−. is customarily set to a matrix with very small values [2]. For this project a value of 0.009*In was used, where In is the n by n identity matrix.
	The process noise covariance Q may be obtained from the following log likelihood function [2]:
	–ln,𝐿,𝑄..=,𝑘=1-𝑛-,ln,,𝑋-𝑘..+,𝑌-𝑘-𝑇.,𝑋-𝑘-−1.,𝑌-𝑘...+𝐶 −−−−− (3.20)
	where
	,𝑋-𝑘.=𝐻,𝑃-𝑘-−.,𝐻-𝑇.+𝑅 (measurement prediction covariance)
	,𝑌-𝑘.=,𝑧-𝑘.−𝐻,,𝑥.-𝑘-−. (measurement residual)
	,𝑃-𝑘-−.=𝐴,𝑃-𝑘−1.,𝐴-𝑇.+𝑄 (a priori covariance)
	n = number of previous traffic flow rates ‘remembered’ by the system
	C = constant
	For a likelihood function, the aim is usually to maximize the function to obtain the most likely value. However, since the negative log is taken to facilitate computation, Q is obtained by minimizing rather than maximizing the function.
	The MATLAB programming language is best suited for solving an optimization problem of the sort presented by the likelihood equation for Q. However, owing to the complexities involved in running MATLAB from within the Java environment, this equation wa...
	Equation (3.20) was, however, evaluated in the LabVIEW implementation. As already stated, the Java implementation was carried out basically to verify the integrity of the chosen Kalman Filter model.
	LabVIEW implementation

	After verifying the model using the Java program, the model was implemented with LabVIEW. As already stated, the choice of LabVIEW for model implementation was to capitalize on the graphical and interactive nature of LabVIEW, where parameters can be v...
	The LabVIEW implementation was modelled after the same algorithm outlined under the Java program implementation.
	VARIABLE INITIALIZATION
	Variable initialization is simplified with the help of the in-built LabVIEW functions.
	State, input and gain variables:
	Because the input variable matrix u was set to zero, (explained above), the LabVIEW implementation does not include this variable.
	The other variables were initialized to the values indicated in the ‘Java Program Implementation’ section. Here the LabVIEW ‘Initialize Array’ block was used. The parameters passed into this block were:
	The value (‘element’ in Fig. 3 below) to initialize the matrix
	The matrix dimensions
	/
	Fig 3.1: LabVIEW array initialization block
	Covariance variables:
	The measurement noise covariance matrix R and the a priori covariance ,𝑷-𝒌-−.were similarly initialized as for the state and gain variables.
	As shown in equation (3.20), reproduced here for convenience, the process noise covariance Q may be obtained by minimizing the following log likelihood function [2]:
	–ln,𝐿,𝑄..=,𝑘=1-𝑛-,ln,,𝑋-𝑘..+,𝑌-𝑘-𝑇.,𝑋-𝑘-−1.,𝑌-𝑘...+𝐶 −−−−− (3.20)
	where
	,𝑋-𝑘.=𝐻,𝑃-𝑘-−.,𝐻-𝑇.+𝑅 (measurement prediction covariance)
	,𝑌-𝑘.=,𝑧-𝑘.−𝐻,,𝑥.-𝑘-−. (measurement residual)
	,𝑃-𝑘-−.=𝐴,𝑃-𝑘−1.,𝐴-𝑇.+𝑄 (a priori covariance)
	n = number of previous traffic flow rates ‘remembered’ by the system
	C = constant
	Note:
	Likelihood functions generally attempt to find the value which gives the highest likelihood of the variable in question. This is usually achieved by maximizing the likelihood function. However, for a negative likelihood function, the aim is to minimiz...
	To evaluate this equation, it was necessary to employ the powerful optimization tools provided by the MATLAB programming language.
	LabVIEW makes it possible to run MATLAB code directly from within the LabVIEW environment by means of the MATLAB script node. The MATALB script node accepts input from LabVIEW, runs whatever MATLAB code is typed in the node, and returns output to LabV...
	/
	Fig 3.2: LabVIEW MATLAB script node
	The MATLAB code below models equation (3.20):
	Code Listing 3.0: MATLAB representation of equation (3.20)
	Pk = 0;
	nlogL = 0;
	for k=1:n
	Pk_ = A*Pk*A' + Q;
	Yk = zk - H*xk_;
	Xk = H*Pk_*H' + R;
	nlogL = nlogL + log(Xk) + Yk'*inv(Xk)*Yk;
	end
	The constant C in equation (3.20) is taken to be zero.
	The objective of equation (3.20) is to find the matrix Q which minimizes the log likelihood. That is, with respect to the MATLAB code above, we must find the Q which gives the smallest value of nlogL.
	The MATLAB optimization toolbox presents a collection of functions which are well-suited to solving such a problem. The ‘fminsearch’ function proves to be suitable for this particular problem.
	In order to use the ‘fminsearch’ function in MATLAB, it was necessary to rewrite code listing 3.0 as a MATLAB function that could be passed as a parameter to ‘fminsearch’. The resulting function is shown below:
	Code Listing 3.1: MATLAB function for equation (3.20)[9]
	functionnlogL = qlogL(n,x,z,A,P,H,R,Q)
	Pk = 0;
	nlogL = 0;
	for k=1:n
	Pk_ = A*Pk*A' + Q;
	Yk = zk - H*xk_;
	Xk = H*Pk_*H' + R;
	nlogL = nlogL + log(Xk) + Yk'*inv(Xk)*Yk;
	end
	end
	In code listing 3.1, the function qlogL takes the matrices n, x, z, A, P, H, R and Q as parameters, and returns nlogL, the log likelihood of Q, as an output. However, MATLAB’s fminsearch function returns a scalar, and the output nlogL from code listin...
	Before employing fminsearch, it was necessary to compute a scalar measure of the output matrix nlogL that could mimic the magnitude of the matrix. The matrix determinant serves this purpose well enough, and so a line was added at the end of function q...
	Code Listing 3.2: Modified MATLAB function for equation (3.20)
	functionnlogL = qlogL(n,x,z,A,P,H,R,Q)
	Pk = 0;
	mlogL = 0;
	for k=1:n
	Pk_ = A*Pk*A' + Q;
	Yk = zk - H*xk_;
	Xk = H*Pk_*H' + R;
	mlogL = mlogL + log(Xk) + Yk'*inv(Xk)*Yk;
	end
	nlogL = det(mlogL);
	end
	The function qlogL can now be passed as a parameter to ‘fminsearch’ in MATLAB, which attempts to find the matrix Q for which the function qlogL returns the smallest value for nlogL.
	MATLAB’s ‘fminsearch’ function accepts a variety of parameters in different ways, depending on the task to be performed. For the purpose of the task defined above, the following variant of ‘fminsearch’ was employed:
	Code Listing 3.3: MATLAB’s fminsearch application to equation (3.20)
	Qmin = fminsearch(@(Q) qlogL(n,x,z,A,P,H,R,Q), Q0);
	In code listing 3.3, ‘fminsearch’ accepts qlogL as the function over which to carry out minimization. The @Q handle specifies which of the variables in qlogL is to be minimized, and Q0 provides the initial Q with which ‘fminsearch’ begins to search fo...
	Testing

	For testing purposes, a section of the filter model was designed to measure percentage rms (root mean square) error and filter efficiency.
	Percentage Root Mean Square (RMS) Error

	The percentage rms error was calculated as follows:
	First, the percentage error was calculated:
	% 𝑒𝑟𝑟𝑜𝑟= ,𝑎𝑐𝑡𝑢𝑎𝑙 𝑡𝑟𝑎𝑓𝑓𝑖𝑐−𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑡𝑟𝑎𝑓𝑓𝑖𝑐-𝑎𝑐𝑡𝑢𝑎𝑙 𝑡𝑟𝑎𝑓𝑓𝑖𝑐. −−−− (3.21)
	Then the root mean square value of this error was computed. With LabVIEW, this is very much simplified with the aid of the RMS virtual instrument (vi) found in the LabVIEW statistics toolbox.
	/
	Fig 3.3: LabVIEW RMS block
	The output of equation (3.21) was fed into this RMS block to compute the rms value. This rms value was then multiplied by 100 to convert it to percentage value.
	Filter efficiency measurement

	Efficiency was measured by the following approach:
	An acceptable rms percentage error value, say rms_acceptable, is entered into the filter by means of an input box provided on the front panel of the LabVIEW model. rms_acceptable represents the amount of prediction error that the user is prepared to a...
	On each iteration of the filter, the percentage rms error, say rms_current, is calculated
	rms_current is compared with rms_acceptable.
	If rms_current is less than or equal to rms_acceptable, then the filter has produced a satisfactory result, and the current prediction is counted as a successful prediction.
	Otherwise, the current prediction is counted as a failure.
	Over progressive filter iterations, the filter efficiency is cumulatively calculated as the ratio of the number of successful predictions to the total number of predictions.
	Thus, for this filter, the efficiency was measured based on the acceptable percentage rms error entered.
	While the filter is run, the mean square error between the predictions and the actual values is monitored. The final efficiency is the efficiency measured when the mean square error (mse) stabilizes in value.
	Test Data

	To achieve good network traffic prediction, different filter parameters must be increased or decreased respectively for traffic with different characteristics.
	In order to investigate relationships between these filter parameters and filter efficiency for different traffic characteristics, the filter was first run on three sets of experimental data possessing different characteristics. The actual experimenta...
	Table 3.2: Characteristics for Experimental Data Sets
	The effect of varying different filter parameters was observed for each of the experimental data sets.
	From these first sets of tests, a general sense is gained of how different filter parameters affect filter efficiency on different types of traffic data. With this knowledge, suitable filter parameter values can be chosen for different types of networ...
	Thus, a second set of tests was run on three sets of actual network traffic data possessing different characteristics. Parameters were chosen according to knowledge gained from the first set of tests with experimental data, in order to maximize the pr...
	Table 3.3: Characteristics for Network Data Sets
	Filter Initialization

	Before the filter could begin its iterative prediction process, it was necessary to initialize a number of variables:
	n (history length, i.e. the number of previous traffic measurements for the filter to ‘remember’)
	H (output gain)
	R (measurement noise covariance value)
	Q (process noise covariance)
	P (a priori covariance)
	Optionally, the time delay (in milliseconds) between successive filter iterations may be set. This delay is necessary to make the changes in the actual and predicted traffic values observable. The default delay is 500 ms.
	Parameter variation

	The LabVIEW model developed provides options in the front panel for various filter parameters to be varied. These parameters include (descriptions as above):
	n
	R
	Initial Q value Q0
	Initial P value P0
	Of interest is the filter efficiency at different values of the above-listed variables.
	To investigate the effects of history length on the filter performance, the filter was run with different values of n:
	n = 2 (small value)
	n = 5 (normal value)
	n = 10 (large value)
	For each of the above values of n, the filter efficiency was evaluated for small and large values of P0, Q0 and R respectively. It was of interest to observe the independent effect of varying any one of the variables P0, Q0or R. Hence, while each of t...
	Thus, there is no comparison between efficiency values obtained when varying P0 and those obtained when varying Q0 or R. Useful information is obtained when comparing efficiencies for different values of the same variable, other variables remaining co...
	With this in mind, the following table format was developed to record and observe the filter efficiency, using the experimental data sets:
	Table 3.4: Table format for filter efficiency testing using experimental data sets
	This table structure, populated with the respective efficiency values, gives a lucid representation of how the filter performance varies with varying P0, Q0, R, or n.
	After compiling filter efficiencies for the different data types, trends can be observed relating filter efficiency to different values of P0, Q0, R and n. From the trend information observed, a good idea is obtained of how to vary these parameters, f...
	Table 3.5 shows the table format for recording the observed filter efficiencies when the filter was run for the actual network traffic data, after varying the filter parameters to maximize prediction efficiency:
	Table 3.5: Table format for filter testing using actual network data sets
	RESULTS AND ANALYSIS
	In order to understand the results obtained from the tests, it would be useful to understand the different filter parameters and their implications for the filter.
	The history length (n) represents the number of previous data values. The filter attempts to utilize any trend information present in the data history in order to predict the next value. For random data, different values of n should have little or no...
	The a-priori covariance (P) is a measure of the prediction error, and takes the process noise covariance (Q) into consideration. The filter usually arrives very quickly at a stable value for P, regardless of the initial value P0. As such, the value P0...
	The process noise covariance (Q) represents the noise introduced into the prediction process as a result of imperfections in the prediction model developed. Thus, for example, a low value for Q implies a good model and causes the filter to place more ...
	The measurement noise covariance (R) represents the noise introduced into the prediction process as a result of errors in measurement of the actual values. Thus, for example, higher values of R imply unreliable measurements and cause the filter to pla...
	With this understanding of the various filter parameters, the observations from the test results can be better interpreted.
	Experimental data results

	Tables 6.1, 6.2 and 6.3 in Appendix 5 show the results of running the filter on data sets 1, 2 and 3.
	For the different types of experimental data, a number of general observations emerged relating to the different filter parameters:
	Weak autocorrelation (data set 1):
	In general, different values of n had little effect on the filter efficiency, except for very large values of n where higher efficiencies were observed under certain conditions.
	Efficiency remained relatively unchanged for different values of P0.
	Except for small values of n, efficiency increased for larger values of Q0. For small values of n, efficiency decreased slightly with increasing Q0.
	Efficiency generally increased for smaller values of R.
	Figs 4.1 (a), (b) and (c) show a graphical representation of the above highlights:
	/
	Fig 4.1(a): Effect of n and P0 on filter efficiency for data set 1 (weak autocorrelation)
	/
	Fig 4.1(b): Effect of n and Q0 on filter efficiency for data set 1 (weak autocorrelation)
	/
	Fig 4.1(c): Effect of n and R on filter efficiency for data set 1 (weak autocorrelation)
	Moderate autocorrelation (data set 2):
	Except for very low values of n, efficiency was relatively unaffected by different values of n. For very low values of n, efficiency was reduced.
	Efficiency remained relatively unchanged for different values of P0.
	Efficiency remained relatively unaffected for different values of Q0, except for moderate values of n, where a larger Q0 resulted in higher efficiency.
	Efficiency remained relatively unaffected for different values of R, except for small values of n, where a larger R resulted in higher efficiency.
	Figs 4.2 (a), (b) and (c) show a graphical representation of the above highlights:
	/
	Fig 4.2(a): Effect of n and P0 on filter efficiency for data set 2 (moderate autocorrelation)
	/
	Fig 4.2(b): Effect of n and Q0 on filter efficiency for data set 2 (moderate autocorrelation)
	/
	Fig 4.2(c): Effect of n and R on filter efficiency for data set 2 (moderate autocorrelation)
	Strong autocorrelation (data set 3):
	In general, the larger the value of n, the higher the efficiency.
	Efficiency remained relatively unaffected for different values of P0, except for small values of n, where a smaller P0 resulted in slightly higher efficiency.
	Efficiency remained relatively unaffected for different values of Q0, except for moderate values of n, where a larger Q0 resulted in slightly higher efficiency.
	Efficiency remained relatively unaffected for different values of R, except for moderate values of n, where a smaller R resulted in slightly higher efficiency.
	Figs 4.3 (a), (b) and (c) show a graphical representation of the above highlights:
	/
	Fig 4.3(a): Effect of n and P0 on filter efficiency for data set 3 (strong autocorrelation)
	/
	Fig 4.3(b): Effect of n and Q0 on filter efficiency for data set 3 (strong autocorrelation)
	/
	Fig 4.3(c): Effect of n and R on filter efficiency for data set 3 (strong autocorrelation)
	Analysis of experimental data results

	Effect of history length n:
	Previous data values can give information about trends inherent in the data. For data with weak autocorrelation (simulating random data), previous data values hold little or no trend information. The stronger the autocorrelation, the more trend inform...
	Effect of P0:
	As already discussed above, the filter quickly attained a self-stabilizing value for P regardless of the initial value P0. Therefore different values of P0 should have no effect on the filter efficiency. This was readily verified from the general tren...
	Effect of Q0:
	For data set 1 (weak autocorrelation), larger values of Q0 generally produced higher efficiencies. This was due to the fact that previous data values for this data set contained no meaningful trend information. Hence, whatever ‘trend’ the filter extra...
	The exception was with small values of n, where efficiency increased slightly with smaller Q0. This is because the ‘no trend’ information extracted by the filter from smaller values of n actually turned out to be accurate. In this case, a smaller Q in...
	For data sets 2 and 3 with better autocorrelations, different values of Q0generally had little effect on the filter efficiency. This is because whether the filter placed more or less weight on the prediction process or not, the actual measurements wer...
	Effect of R:
	R, representing the measurement noise covariance, informs the filter about how much weight to place on the actual measurement values. Smaller values of R imply more reliable measurements, and vice-versa.
	For data set 1, which simulated random data, little weight could be placed on the actual prediction process itself. Therefore, better efficiencies were obtained by placing more weight on the actual measurements. This is why smaller values of R resulte...
	For data sets 2 and 3, with good autocorrelation, R generally had little effect on filter efficiency. This is because the trend information obtained from the previous data values was good enough to overshadow the weight (or lack of weight) placed on t...
	However, for small values of n on data set 2 (moderate autocorrelation), a larger R produced higher efficiency. This may be attributed to the fact that data sets with good autocorrelation are usually stationary. This means that small values of n may c...
	Data set 3 (strong autocorrelation) may also be treated as a stationary process. Thus, a collection of data values from such a set holds good trend information. For a data set with greater autocorrelation, small or large collections of data values hol...
	Guidelines for network traffic data prediction:
	Having obtained the above information regarding the relationships between different filter parameters and filter efficiency, a reasonable set of guidelines may be drawn up for achieving better prediction efficiency with network traffic data. As previo...
	Based on the above results, the following criteria may be set up. For network traffic data (very strong autocorrelation), better prediction efficiency can be achieved with:
	Larger values of n (not too large, as trend information may be distorted if n is too large)
	For moderate values of n:
	Larger values of Q0.
	Smaller values of R. For network traffic data, R is usually fixed because it is a representation of errors in measurement arising from imperfections in the instruments used to measure the traffic (measurement error is usually fixed for a particular me...
	(The value of P0 has been shown to have little or no effect on the filter efficiency).
	With this set of guidelines, a clearer idea was obtained on how to vary the filter parameters to achieve good filter efficiency when running the filter with actual network traffic data.
	Network data results

	The filter was finally tested with actual network traffic data. Using the guidelines just listed above, the filter parameters were varied and adjusted to achieve the maximum efficiency attainable for the different types of network traffic data used.
	Table 6.4 of Appendix 5 (reproduced here for convenience) shows the results obtained from this process:
	Table 6.4: Table of filter efficiencies for network traffic data
	The efficiencies shown in Table 6.4 were obtained after varying n, Q0 and R according to the guidelines above. It is worth noting the following:
	The values shown for Q0 and R are not unique values for which the maximum efficiencies are obtained.
	The final value for n in Table 6.4 is the smallest value of n for which the maximum efficiency, quoted in the table, is achieved.
	Fig 4.4 is a graph of the efficiencies obtained for the different data sets after setting n, Q0 and R as shown in Table 6.4:
	/
	Fig 4.4: Filter efficiencies for the different network data samples
	Analysis of network data results

	The filter parameters that produced the maximum efficiencies quoted in the Table 6.4 were of such characteristics as to agree with the criteria obtained from the tests with the experimental data.
	History length n:
	For these very highly autocorrelated data sets, it was found that larger values of n produced higher efficiencies.
	For example, for data 1, higher efficiencies were obtained as n was increased up to n = 10. Above n = 10, the efficiency did not show any notable improvement. For data 2 and data 3, efficiency kept increasing up to values of n = 15 and n = 13 respecti...
	This disparity in minimum n for which maximum efficiency is reached can be explained by the different standard deviation values of the three different data sets. For data 1, with the smallest standard deviation of 55.81, the filter reached maximum eff...
	Q0 and R:
	Because higher values of n were used for these particular data sets, the values of Q0 and R did not exert much influence on the efficiency. This is because according to the results obtained with the experimental data sets, Q0 and R have a notable effe...
	P0:
	The P0 values were the same in the table because the results were the same no matter value P0 was set to. This is consistent with the fact that the filter always reaches an optimum value for P (a-priori covariance) no matter what the initial value P0 is.
	SUMMARY
	Goal Attainment

	In this project, a Kalman filter model was successfully developed to predict network traffic. Traffic behaviour was successfully captured in the model, and the filter was able to predict network traffic to an appreciable degree of accuracy, approachin...
	Admittedly the model is not perfect. Much more work is needed to fine-tune the behaviour of the model, enabling it to carry out its predictions with a much higher degree of accuracy, with a smaller error tolerance.
	The filter was able to handle data of varying characteristics, but it is best-suited for data that exhibits strong autocorrelation and low variance.
	It is worth noting that this filter performs best in applications of short-term traffic forecasting.
	Project Challenges

	The network traffic data used in the tests consisted of traffic measurements taken at hourly intervals, as most network traffic measurements are taken at least hourly. This filter, however, was designed for short-term traffic prediction. The difficult...
	Secondly, the matrices involved in the filter’s computations for history length n included some of dimension n by n. For large n values, computations can become highly memory-consuming and slow. These computational difficulties associated with dealing...
	Nevertheless, it can be expected that for data with very strong autocorrelation, efficiency will continue to increase for slightly larger values of n. For data without very strong correlation, however, it can be extrapolated that the filter efficiency...
	Future research

	The first point of interest for future research concerning this project would be to improve upon the prediction efficiency. Many forecasting techniques exist today that, used in conjunction with a Kalman filter, could remarkably improve the prediction...
	With very good prediction efficiency, the adaptation of the filter to perform multi-step prediction becomes a viable and appealing prospect. If the prediction for time-step k+1 is always reasonably close to the true value, then it may be taken as the ...
	Conclusion

	The Kalman filter is a very powerful estimation and prediction tool. With the right adaptation, this filter model provides a simple, convenient and inexpensive resource for prediction and estimation for applications in computer, telecommunications and...
	Considering the simplicity and cost-effectiveness of Kalman filter adaptations and applications, it is technologically and economically worth investing more into Kalman filter research and applications.
	REFERENCES
	[1] “Statistical Forecasting Methods.” Internet: http://www.statisticalforecasting.com/
	[2] Yuanchang Xie, Yunlong Zhang & Zhirui Ye (2007) “Short-Term Traffic Volume Forecasting Using Kalman Filter with Discrete Wavelet Decomposition.” Computer-Aided Civil and Infrastructure Engineering. [Online]
	[10] “autocorrelation of network traffic” Internet: http://www.soi.wide.ad.jp/class/20070044/slides/16/index_21.html
	[11] “Short-term traffic safety forecasting using Gaussian mixture model and Kalman filter” Internet: http://link.springer.com/article/10.1631%2Fjzus.A1200218
	[12] “Kalman filter approach to traffic modelling and prediction” Internet: http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=932091
	[13] “Tracking and predicting a network traffic process” Internet: http://www.sciencedirect.com/science/article/pii/S0169207096007005
	[14] “An Extended Kalman Filter Application for Traffic State Estimation Using
	CTM with Implicit Mode Switching and Dynamic Parameters” Internet: https://www.mech.kuleuven.be/cib/verkeer/dwn/pub/P2007B.pdf
	[15] “Real-time freeway traffic state estimation based on extended Kalman filter: a general approach” Internet: http://www.sciencedirect.com/science/article/pii/S0191261504000438
	[16] “Dynamic prediction of traffic volume through Kalman filtering theory” Internet: http://econpapers.repec.org/article/eeetransb/v_3a18_3ay_3a1984_3ai_3a1_3ap_3a1-11.htm
	[17] “Theory and Application of Advanced Traffic Forecast Methods” Internet: http://duepublico.uni-duisburg-essen.de/servlets/DerivateServlet/Derivate-5656/Chrobokdiss.pdf
	[18] Moshe Ben-Akiva, Michel Bierlaire, Haris Koutsopoulos and Rabi Mishalani U. “DynaMIT: a simulation-based system for traffic prediction” in paper presented at the DACCORD Short Term Forecasting Workshop February, 1998 Delft, The Netherlands
	[19] Ashok, K. and M. Ben-Akiva (1993). “Dynamic O-D Matrix Estimation and Prediction for Real Time Traffic Management Systems”. In: Transportation and Traffic Theory (Daganzo, C.F., (Ed.)). Elsevier Science Publishing Company Inc.
	[20] Sage, A.P. and Husa, G.W. (1969) “Adaptive filtering with unknown prior statistics”. In: Proceedings of the Joint Automatic Control Conference, pp. 760-769
	[21] “The Bayesian Approach to Forecasting” Internet: http://www.oracle.com/us/products/applications/057028.pdf
	[22] “Cell Transmission Model” Internet: http://en.wikipedia.org/wiki/Cell_Transmission_Model
	APPENDICES
	APPENDIX 1: JAVA CODE

	package Kalman;
	import java.io.*;
	importjava.util.*;
	public class KalmanFilter
	{
	// VARIABLE DECLARATION
	private static intm,n = 0; //m = number of links, n = number of measurements
	staticinttotalIterations = 0;
	// private static String errorMsg = "";
	private static booleanprintHorizontal = false;
	private static BufferedWriter file;
	private static BufferedReaderinputData;
	private static StringTokenizerst;
	static Matrix predictedVol; //matrix holding predicted traffic flow rate per iteration (m by 1)
	private static float predictedTraffic[][]; //matrix holding predicted traffic flow rates for all iterations (n by m)
	private static float inputTraffic[][]; //(n by m)
	static Matrix priorState; //a priori state estimate (n by 1)
	static Matrix priorCov; //a priori covariance (n by n)
	static Matrix postState; //a posteriori state estimate (n by 1)
	static Matrix postCov; //a posteriori covariance (n by n)
	static Matrix z; //actual traffic flow rate (m by 1)
	static Matrix I; //unit matrix (n by n)
	static Matrix A; //state gain (n by n)
	static Matrix K; //Kalman gain (n by m)
	static Matrix R; //measurement noise covariance (m by m)
	static Matrix Q; //process noise covariance (n by n)
	static Matrix H; //output gain (m by n)
	statichistoryQueuetrafficHistory; //queue holding last n measurements (m by n)
	statichistoryQueuestateHistory; //queue holding last n states (n by 1)
	// static float[][] testMatrix = {{2,3},{4,5}};
	// static Matrix test;
	//constructor
	publicKalmanFilter(String dataFile, inthistoryLength) throws Exception
	{
	float[][] testData = getArray(dataFile);
	KalmanFilterkf = new KalmanFilter(testData, testData.length, historyLength);
	}
	//constructor
	publicKalmanFilter(float[][] trafficData, intnumOfIterations, inthistoryLength) throws Exception
	{
	inputTraffic = trafficData;
	// test = new Matrix(testMatrix);
	// System.out.println("test determinant = "+test.determinant());
	// System.out.println("test inverse = ");
	// test.inverse().printMatrix();
	// VARIABLE INITIALISATION
	//initialize matrices and other variables
	m = trafficData[0].length; //number of links
	n = historyLength; //number of measurements
	totalIterations = numOfIterations;
	predictedTraffic = new float[numOfIterations][m];
	priorState = new Matrix(n,1,1.0f/n);
	priorCov = new Matrix(n,0.009f);
	postState = new Matrix(n,1,0);
	postCov = new Matrix(n,n,0);
	z = new Matrix(m,1,0);
	I = new Matrix(n,1);
	A = new Matrix(n,1);
	K = new Matrix(n,m,0);
	R = new Matrix(m,m,0.015f);
	Q = new Matrix(n,n,0.0f);
	H = new Matrix(m,n,3.0f);
	trafficHistory = new historyQueue(m,n,3.0f);
	stateHistory = new historyQueue(n,1,3.0f);
	// H = trafficHistory.update(trafficData);
	predictedVol = new Matrix(m,1,0);
	kalmanFilter(trafficData,numOfIterations);
	}
	public static float[][] getArray(String fileName) throws IOException
	{
	inputData = new BufferedReader(new FileReader(new File(fileName)));
	String line = inputData.readLine();
	totalIterations++;
	st = new StringTokenizer(line);
	m = st.countTokens();
	line = inputData.readLine();
	while(line!=null)
	{
	totalIterations++;
	line = inputData.readLine();
	}
	float[][] theArray = new float[totalIterations][m];
	inputData.close();
	populateArrayFromFile(theArray,fileName);
	returntheArray;
	}
	public static void populateArrayFromFile(float[][] array, String file) throws IOException
	{
	inputData = new BufferedReader(new FileReader(new File(file)));
	String nextLine = "";
	for(int i = 0; i<array.length; i++)
	{
	nextLine = inputData.readLine();
	st = new StringTokenizer(nextLine);
	for(int j = 0; j<array[0].length; j++)
	{
	array[i][j] = Float.parseFloat(st.nextToken());
	}
	}
	}
	public static void kalmanFilter(float[][] traf, int iterations) throws Exception
	{
	if(iterations==0)
	return;
	else
	{
	try
	{
	kalmanFilter(traf,iterations-1);
	System.out.println("Iteration "+iterations+" of "+totalIterations+" in progress...");
	// H.printMatrix();
	z.set1DArray(traf[iterations-1]);
	//KALMAN FILTER EQUATIONS
	//Predictor stage
	priorState = A.times(priorState); //a priori state estimate
	priorCov = ((A.times(priorCov)).times(A.trans())).plus(Q); //a priori cov
	//Corrector stage
	K = (priorCov.times(H.trans())).times((((H.times(priorCov)).times(H.trans())).plus(R)).inverse()); //Kalman filter gain
	postState = priorState.plus(K.times(z.minus(H.times(priorState)))); //a posteriori state estimate
	postCov = (((I.minus(K.times(H))).times(priorCov)).times((I.minus(K.times(H))).trans())).plus((K.times(R)).times(K.trans())); //a posteriori covariance
	//predicted output traffic flow rate
	H = trafficHistory.update(traf);
	predictedVol = H.times(postState);
	predictedTraffic[iterations-1] = predictedVol.get1DArray();
	//update a priori state and covariance
	priorState.setMatrix(postState);
	priorCov.setMatrix(postCov);
	System.out.println("Iteration "+iterations+" completed.\n");
	return;
	}
	catch(Exception e)
	{
	System.out.println(e);
	// errorMsg = e.toString();
	// System.exit(1);
	}
	}
	}
	public void print(float[][] matrix) throws IOException
	{
	intnumOfLinks = matrix[0].length;
	file = new BufferedWriter(new FileWriter(new File("Kalman Test Results for test data.txt")));
	if(printHorizontal)
	{
	System.out.println("\t\t\tPredicted Traffic Data\n");
	file.write("\t\t\tPredicted Traffic Data");
	file.newLine();
	file.newLine();
	// System.out.print("Link");
	for(int i = 1; i<=numOfLinks; i++)
	{
	System.out.print("\tLink "+i+"\t\t");
	file.write("\tLink "+i+"\t\t");
	}
	System.out.println("\n");
	file.newLine();
	file.newLine();
	for(int i = 1; i<=numOfLinks; i++)
	{
	System.out.print("\tPredicted\tActual");
	file.write("\tPredicted\tActual");
	}
	System.out.println("\n");
	file.newLine();
	file.newLine();
	for(int i = 0; i<matrix.length; i++)
	{
	System.out.print(i+1);
	file.write((i+1)+"");
	for(int j = 0; j<numOfLinks; j++)
	{
	System.out.print("\t"+matrix[i][j]+"\t"+inputTraffic[i][j]);
	file.write("\t"+matrix[i][j]+"\t"+inputTraffic[i][j]);
	}
	System.out.println();
	file.newLine();
	}
	System.out.println("\n\n");
	}
	else
	{
	System.out.println("\t\t\tPredicted Traffic Data\n");
	file.write("\t\t\tPredicted Traffic Data");
	file.newLine();
	file.newLine();
	for(int i = 0; i<numOfLinks; i++)
	{
	System.out.println("Link "+(i+1)+"\t");
	file.write("Link "+(i+1)+"\t");
	file.newLine();
	System.out.println("\tPredicted\tActual");
	file.write("\tPredicted\tActual");
	file.newLine();
	for(int j = 0; j<matrix.length; j++)
	{
	System.out.println(j+1+"\t"+matrix[j][i]+"\t"+inputTraffic[j][i]);
	file.write(j+1+"\t"+matrix[j][i]+"\t"+inputTraffic[j][i]);
	file.newLine();
	}
	System.out.println();
	file.newLine();
	}
	System.out.println("\n\n");
	}
	file.close();
	}
	//main method
	public static void main(String[] args) throws Exception
	{
	// /*
	printHorizontal = true;
	float[][] testData = {// link 1 link 2 link 3
	{3.0f, 9.5f, 2.2f}, //row 1
	{5.1f, 8.9f, 3.1f}, //row 2
	{4.8f, 9.3f, 5.2f}, //row 3
	{6.4f, 10.1f, 9.0f}, //row 4
	{8.2f, 11.5f, 6.8f}, //row 5
	{6.3f, 11.1f, 6.1f}, //row 6
	{5.5f, 12.3f, 5.5f}, //row 7
	{4.8f, 11.3f, 5.5f}, //row 8
	{5.6f, 10.4f, 3.8f}, //row 9
	{6.3f, 8.9f, 5.1f}, //row 10
	{9.2f, 10.1f, 6.8f}, //row 11
	{8.5f, 12.3f, 5.2f}, //row 12
	{6.8f, 10.3f, 5.5f}, //row 13
	{5.6f, 9.4f, 4.8f}, //row 14
	{6.3f, 8.9f, 3.1f} //row 15
	}; //10 by 3
	// */
	/*
	printHorizontal = true;
	float[][] testData = {// link 1
	{116.8f}, //row 1
	{120.1f}, //row 2
	{123.2f}, //row 3
	{130.2f}, //row 4
	{131.4f}, //row 5
	{125.6f}, //row 6
	{124.5f}, //row 7
	{134.3f}, //row 8
	{135.2f}, //row 9
	{151.8f}, //row 10
	{146.4f}, //row 11
	{139.0f}, //row 12
	{127.8f}, //row 13
	{147.0f}, //row 14
	{165.9f}, //row 15
	{165.5f} //row 16
	}; //10 by 1
	*/
	/*
	printHorizontal = false;
	float[][] testData = {// link 1 link 2 link 3 link 4 link 5
	{0.2f, 1.1f, 2.8f, 22.07f, 19.12f}, //row 1
	{2.4f, 2.3f, 8.7f, 19.88f, 14.02f}, //row 2
	{4.6f, 0.3f, 9.4f, 18.27f, 25.09f}, //row 3
	{6.5f, 8.8f, 5.3f, 16.09f, 2.89f}, //row 4
	{5.3f, 7.7f, 1.9f, 14.35f, 22.12f}, //row 5
	{3.2f, 0.4f, 2.1f, 3.03f, 11.04f}, //row 6
	{2.9f, 5.9f, 0.5f, 20.09f, 9.03f}, //row 7
	{9.6f, 9.7f, 0.8f, 8.02f, 15.01f}, //row 8
	{6.8f, 4.2f, 3.0f, 19.81f, 7.08f}, //row 9
	{0.8f, 6.9f, 2.4f, 19.57f, 22.11f}, //row 10
	{5.0f, 3.2f, 7.2f, 52.50f, 22.15f}, //row 11
	{4.1f, 6.1f, 3.7f, 20.00f, 13.40f}, //row 12
	{2.5f, 1.5f, 3.1f, 20.64f, 18.39f}, //row 13
	{2.0f, 2.2f, 3.9f, 22.28f, 7.07f} //row 14
	}; //14 by 5
	*/
	System.out.println("\n\t\t\tKalman Filter Test\n\n");
	KalmanFilterkalmanTest = new KalmanFilter(testData,testData.length,5);
	// KalmanFilterkalmanTest = new KalmanFilter("test data 2.txt",10);
	kalmanTest.print(predictedTraffic);
	// System.out.println(predictedTraffic);
	}
	}
	//HISTORY QUEUE
	package Kalman;
	public class historyQueue
	{
	inti,j = 0;
	intcopyMarker,nextDataIndex,queueSize,currentSize,queueWidth; //queue markers
	Matrix history; //queue to 'remember' previous n traffic data
	publichistoryQueue(int row, int col, float value)
	{
	copyMarker = 0;
	nextDataIndex = 0;
	currentSize = 0;
	queueSize = col;
	queueWidth = row;
	history = new Matrix(row,col,value);
	}
	public Matrix update(float[][] data)
	{
	if(nextDataIndex == data.length-1)
	return history;
	//this loop to prevent array index of -1
	//copies each column of 'history' to the one directly after it
	if(currentSize!=0)
	for(copyMarker = (currentSize==queueSize)? currentSize - 2:currentSize - 1; copyMarker>=0; copyMarker--)
	for(i = 0; i<queueWidth; i++)
	history.setValue(i,copyMarker+1,history.value(i,copyMarker));
	//this loop copies next column of data array into
	//first column of 'history'
	for(i = 0; i<queueWidth; i++)
	history.setValue(i,0,data[nextDataIndex][i]);
	if(currentSize<queueSize)
	currentSize++;
	nextDataIndex++;
	return history;
	}
	}
	APPENDIX 2: MATLAB CODES
	2.1: LabVIEW MATLAB Script Node Code

	if i == 0 % This ‘if’ block necessary because on first code iteration, P and H are 2-D, so cat(3,P,p) function call would fail
	P = p;
	H = h;
	else
	P = cat(3,P,p);
	H = cat(3,H,h);
	end
	if i == N-1
	cd ('path'); % ‘path’ should be the full path to the directory where qlogL is located
	Q = fminsearch(@(Q) qlogL(N,x,z,A,P,H,R,Q), Q);
	end
	2.2: qlogL Code

	functionnlogL = qlogL(n,x,z,A,P,H,R,Q)
	mlogL = 0;
	for k=1:n
	P(:,:,n) = A*P(:,:,n)*A' + Q;
	Y = z(:,n) - H(:,:,n)*x(:,n);
	X = H(:,:,n)*P(:,:,n)*H(:,:,n)' + R;
	mlogL = mlogL + log(X) + Y'*inv(X)*Y;
	end
	nlogL = det(mlogL);
	end
	APPENDIX 3: LABVIEW MODEL
	Front panel

	/
	Fig. 6.1: LabVIEW front panel diagram
	Block diagram

	/
	Fig. 6.2a: LabVIEW block diagram (top half)
	/
	Fig. 6.2b: LabVIEW block diagram (bottom half)
	APPENDIX 4: DATA SETS
	4.1: Experimental Data

	Data Set 1 (Rxx = 0.0112551,𝜎 = 0.28)
	0.10609 0.16852 0.23700 0.18022 0.18094 0.65983 0.65235 0.21594 0.11515 0.00067 0.00387 0.25202 0.65011 0.53646 0.08462 0.05640 0.26630 0.03641 0.26030 0.03995 0.33612 0.11672 0.69775 0.07569 0.36149 0.42341 0.26721 0.00363 0.08333 0.22480 0.13728 0.1...
	Data Set 2 (Rxx = 1,𝜎 = 0.71)
	1.00 0.6 1.86 0.94 1.00 0.75 0.81 0.72 0.81 1.25 2.03 2.86 1.64 0.47 0.14 6.67 3.36 2.53 3.06 4.28 6.31 8.56 10.44 10.06 12.17 12.97 14.64 18.61 17.06 20.36 17.81 16.75 23.83 24.69 32.25 30.06 30.69 32.64 35.19 36.53 35.14 39.53 49.36 47.36 50.58 0.14...
	Data Set 3 (Rxx = 4.1209,𝜎 = 1.14)
	2.03 3.17 3.08 3.94 2.92 2.19 2.22 2.67 2.56 2.17 2.86 2.72 3.22 5.14 6.11 3.72 2.17 2.17 1.22 1.17 1.86 2.64 1.33 1.53 1.86 2.56 3.69 2.36 4.28 2.11 2.25 3.56 3.36 2.89 1.47 1.97 2.81 3.50 3.17 3.67 2.58 2.44 1.94 2.22 2.69 2.22 2.69 4.69 6.44 5.81 2...
	4.2: Network Traffic Data

	Data 1 (Rxx = 14175.3,𝜎 = 55.81)
	119.06 111.06 108.83 105.17 91.17 107.03 122.39 143.25 155.94 158.97 165.36 165.92 127.33 174.08 166.92 151.17 144.17 124.00 147.86 156.94 171.50 177.00 182.31 185.42 185.83 173.17 211.03 189.86 186.31 183.64 190.67 183.64 186.17 215.44 220.47 263.56 ...
	Data 2 (Rxx = 125713,𝜎 = 100.74)
	354.56 320.47 307.17 289.64 304.86 281.31 329.69 364.00 397.25 478.00 569.53 501.14 346.78 275.94 263.56 267.03 254.11 206.92 244.11 241.14 279.58 306.58 393.42 498.61 535.08 448.58 295.31 288.28 283.81 262.89 250.44 269.17 304.11 335.03 331.50 397.28...
	Data 3 (Rxx = 450832,𝜎 = 97.08)
	671.44 647.06 627.64 639.94 704.00 632.44 656.14 681.56 673.33 721.14 808.61 808.03 679.44 640.14 595.17 552.67 520.56 590.58 522.61 555.08 629.36 673.94 786.19 574.72 789.47 807.42 652.97 742.17 708.11 659.08 609.44 580.75 645.17 715.44 776.22 651.42...
	APPENDIX 5: TABLES OF RESULTS

	Acceptable rms error for all data sets was set at 20%.
	5.1: Exprerimental Data Results

	Table 6.1: Table of filter efficiencies for data set 1 (Rxx = 0.0112551, σ = 0.28)
	Table 6.2: Table of filter efficiencies for data set 2 (Rxx = 1, σ = 0.71)
	Table 6.3: Table of filter efficiencies for data set 3 (Rxx = 4.1209, σ = 1.14)
	5.2: Network Traffic Data Results

	Table 6.4: Table of filter efficiencies for network traffic data

