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Abstract

This study considered the equal mean discrimination problem by evaluating the

performance of Bartlett and Please method, Bayesian Posterior Probability Ap-

proach, the Quadratic Discriminant Function (QDF) and the Absolute Euclidean

Distance Classifier method (AEDC) under equal and unequal prior probabilities

and non normality contamination. Stocks (1933) twin data recorded in London

on 832 children based on ten selected measurements was used because it satis-

fies the assumptions of the equal mean populations. Four discriminant functions

were derived and their error rate estimates determined using the Cross Valida-

tion (CV) and Balanced Error Rate (BER) methods. Results from equal prior

probability showed the Bayesian Posterior Probability classifier performing bet-

ter than the three other classifiers, thus it provides maximum separation with

a recorded mean error rate of 0.149. Under the unequal prior probability situa-

tion, Bartlett and Please method outperformed both the QDF and the Bayesian

posterior probability classifiers under the sampling ratios, 1:2, 1:3 and 1:4. For

non-normality, all four classification methods recorded higher mean error rates

indicating abysmal performance of the methods. However, Bartlett and Please

method was found to be very sensitive to outliers. We recommend the Bayesian

approach and the AEDC methods for classifying observations with equal prior

probabilities, Bartlett and Please method under unequal prior probabilities and

QDF for non-normal contamination with equal prior probabilities.
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Chapter 1

Introduction

The problem of equal mean classification has posed a challenge to researchers for

a long time and several attempts have been made at deriving parsimonious rules

that address this hurdle. This study considered the equal mean discrimination

problem by comparing the performance of Bartlett and Please method, Bayesian

rule classification method, the Quadratic Discriminant function (QDF) and the

Absolute Euclidean Distance classifier method (AEDC) under equal and unequal

prior probabilities and non normality contamination. This chapter takes a look

at the background of the study, the problem statement, research questions and

objectives, research methodology, justification of the study as well as the organi-

sation of the study.

1.1 Background of the study

Discriminant analysis is a multivariate approach for identifying the features that

separate known groups or populations. In other words, discrimination is a mul-

tivariate technique concerned with separating distinct sets of observations and it

is exploratory in nature. (Johnson and Wichern, 2007).

The problem of discrimination was first initiated by Fisher (1936) in his paper

titled “the use of multiple measurements in taxonomic problems”in which equal

covariance matrices was assumed with or without normality assumption. Fisher’s

approach to classification with two populations was based on arriving at a linear

classification function that gave maximum separation between groups without

assuming normality.

Several investigations mainly with respect to multidimensional normal popula-
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tions with common and unequal covariance matrices have been carried out by

other authors. The equal mean discrimination problem has been one of the as-

pects of discriminant analysis that is still going through several investigations

to uncover the best classification rule for the provision of better classification

into one of the known groups. For the equal mean discrimination case, the op-

timal discriminant rule derived has to be based on the differences between the

group-covariance matrices with some adopting uniform nature and some non-

uniformity assumed. (McLachlan, 2004). Bartlett and Please (1963) were the

first researchers to address this specific problem of zero-mean uniform discrimi-

nation. Following the work of Bartlett and Please, Bayesian analysis of the pre-

dictive zero mean discrimination was researched into by (Desu and Geisser,1968)

for various assumptions involving the uniform covariance structure. They further

discovered that whenever a linear predictive discriminant function was obtained,

their associated errors of misclassification were also obtained as well. Some of the

researchers who adopted the Bayesian approach in deriving their classification

rules in the case of equal mean vectors include Geisser and Desu (l968), Desu and

Geisser (1973), and Lee (1975).

McLachlan (2004) was in agreement of the fact that, the Bayesian approach

to discriminant analysis is based on the concept of predictive densities of feature

observational vector, where classification is based on the observations which give

a higher estimate of the posterior probabilities. Similarly, the Bayesian approach

based on the minimum estimates of the Expected Cost of Misclassification (ECM)

was derived by Johnson and Wichern (2007) and the classification rule derived

depended on the observation that gives the highest posterior probability. Lachen-

bruch (1975) and Ganeslingam et al. (2006) introduced outliers/noise into their

working data to check the performance of the deduced functions. Some worked

better after the contamination; some distorted the data causing poor performance

whilst in some situations the functions were not perturbed after the introduction
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of the outliers. According to Sharma (1996), to classify a given observation, first

the classification function for each group are used to compute the classification

scores and the observation is assigned to the group that has the highest classi-

fication score. The posterior probability of an observation belonging to a given

group can also be computed. The observation is assigned to the group with the

highest posterior probability. In evaluating the classification functions, one of the

ways of judging the performance of several classification procedures is to calcu-

late their error rates or misclassification probabilities. Some of the error rates

are the Optimal Error Rates (OER), the Apparent Error Rate (APER), the Bal-

anced Error Rate (BER) and the Leaving-One-Out method (LOO). (Johnson and

Wichern, 2007). The performance of the various discriminant functions depend

mainly on the error estimates using some of the error rate estimators such as

OEA, APER, LOO or cross-validation etc. The function or the classification rule

with the minimum estimates of the rates or mean rates as a result of the above

listed estimators gives the best function for classification. This confirms what

Johnson and Wichern (2007) stated generally that a good classification proce-

dure should always result in few misclassifications. That is the probabilities of

misclassification should be small or minimum. The discrimination procedure still

remains a problem, since there is still more room for researchers to come up with

classification rules that will give maximum separation among the groups. In the

equal mean case, the researcher looks at the problem of discriminating between

two known groups on assumption that, the mean vectors are assumed to be equal.

What therefore happens and which parameters can be use to provide maximum

separation in the case of the above listed assumptions?

1.2 Statement of the Problem

The problem of discrimination/discriminant analysis has always been based on de-

veloping a reliable discriminant function whether standardised or unstandardised
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and classifying the observations into their respective known populations/groups.

The problem of statistical discrimination involving two multivariate normal dis-

tributions with equal means and with equal (or unequal) covariance matrices has

been considered by many researchers. Several works have focused on discrimi-

nating between two groups with equal and unequal covariance matrices, with an

assumption of equal mean difference between the two groups. Some researchers

including Okamoto (1961), Bartlett and Please (1963), have focused on addressing

the problem of discrimination with common mean vectors among the populations.

Desu and Geisser (1973) also in furtherance to the work of the above mentioned

researchers tailored their work based on the situation where several methods in-

cluding the Bayesian approach, the classical approach and other methods were

used to analyse stocks twin data in case of the equal means or zero mean vector

without specific assumption about the distributions. They further addressed the

problem with reference of assuming normal distribution with a common mean

vector with differing covariance matrices from the classical viewpoint approach.

Lanchenbruch (1975) also came out with a technique of tackling the problem of

discrimination by taking the absolute values of the observations of the discrimi-

nating variables and solved the problem using what he termed as Absolute linear

Discriminant analysis. Ganeslingam et al. (2006) also researched into equal mean

case by comparing the QDF and that of an absolute Euclidean distance classi-

fier (AEDC) with an application to a three dimensional twin data. However all

these researchers were able to show that, even though the mean vectors were

equal across the groups, other distributional properties were able to successfully

discriminate or classify each observation into their specified groups. Notwith-

standing the work of these researchers,the effect of unequal prior probabilities

for the known groups/populations on the separation of observations based on

the discriminant functions and their classification rules are yet to be investigated

extensively to compare their performance with functions developed under equal

groups prior probabilities.
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Also limited application of the AEDC has been highlighted by some researchers

like Ganeslingam et al. (2006). But their study was only applied to a three

dimensional data structure. This study will apply the AEDC on the ten dimen-

sional structure of Stocks twin data and compare its classification rule with other

classification rules based on their estimated error rates.

Several studies in discrimination have overlooked at the situation where the Ma-

halanobis distance is used as a classifier in case of unequal covariance matrices

as well as equal mean vector situation. Another problem also shows how in some

cases, discriminant functions are affected by outliers whilst others do not. Not

much extensive work/ studies have been conducted in the equal mean case when

the data are always contaminated with outliers. However more work has to be

done to come out with the best discriminating function or equation which will

further help in solving the problem of discrimination with equal mean assumption.

1.3 Objectives of the study

The main objective of the study is to compare the performance of the discriminant

functions based on unequal group sizes and contaminated data.

1.3.1 Specific objectives

1. To obtain discriminant functions for the equal mean case based on the

Bartlett and Please approach, the Bayesian approach, the QDF and that of

the AEDC approach.

2. To derive discriminant functions as well as their classification rules under

unequal prior probabilities and under non-normality(contaminated data).
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3. To compare the performance of all the four discriminant classification rules

by using the various estimated error rates.

1.4 Methodology

This study which is aimed at comparing and applying methods of discriminant

functions with contaminated data and with unequal population size was ap-

proached with several methods. In the case of equal mean, the Bartlett and Please

(1963) approach, the Bayesian approach, the Quadratic discriminant function ap-

proach and that of the AEDC were employed. In other words, four discriminant

functions were evaluated based on the above listed methods. Secondly, the sizes

of the two groups were taken differently at several times in multiples of five,

and the four discriminating methods were derived from the unequal population

sizes situation. Lastly, two estimators of error rates were used to estimate the

mean error rates of the four discriminant functions. The error estimators include

the cross-validation (CV) method and the (BER). Stocks (1933) twin data on

recorded measurements as well as age and sex on 832 children in Elementary

Schools in London was used.

As used by Bartlett and Please (1963), 30 pairs of female twins with ten se-

lected measured characteristics were taken from the Stocks twin data (1933),

with 15 pairs belonging to both the Monozygotic and Dizygotic twin groups.

The first four discriminant functions were obtained from the 30 pairs of twin

data. This was obtained after 10 replications through simple random sampling

technique without replacement. In the second case, the sample sizes were taken

differently by multiples of five and four discriminant functions were obtained. In

the third case, the equal population/group size data was contaminated and in
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this case also the four functions were obtained. The discriminating functions in

each of the three cases were compared to ensure their performance based the error

estimates.

1.4.1 Data

The analyses was based on the Percy Stocks (1933) twin data on recorded mea-

surements as well as the age and sex of 832 children in the Elementary and

central schools of London during the period 1925 to 1927. He recorded fourteen

(14) measurements on each of the children.

1.4.2 Analytical software used

The researcher used R-console version 2.15.1 to write the numerous functions

for the development of the discriminant functions. The MINITAB version 14

statistical software was used to generate the scatter plots as well as other plots

in this study.

1.5 Justification of Work

This study will contribute immensely to knowledge since equal mean discrimina-

tion is one of the interesting aspects of discriminant analysis. The application

of the AEDC method for a larger dimensional data set will also give an insight

to researchers on the reliability of the criterion when applied to large data set.

The study will serve as literature for future researchers since there are always

limited literatures when it comes to discriminating with equal mean vectors. The

study would therefore provide the needed statistical evidence to justify the best

classification rule based on the derived discriminant functions.
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1.6 Limitations of the study

This study would have been much more encompassing if the various methods were

applied in cases where the population/groups are more than two. This was due

to data availability constraint. The study also encountered the problem of limited

literature where few literatures obtained were directly linked to the problem of

equal mean discrimination, hence making it difficult to do much more extensive

work on the research topic.

1.7 Organisation of the study

This thesis is organised in five chapters. Chapter one is the introductory chapter

to the entire study. It takes a look at the general background of discriminant

analysis and classification and narrowed down to the equal mean discrimination

situation. The problem statement, research questions and objectives, research

methodology, justification of the study are presented in this chapter. Chapter

two reviews related literature (from articles and books) based on the thesis ob-

jectives and preferred models to be used in achieving these objectives. Expected

outcome of the study and other comparative results of similar studies are also

discussed in this chapter. Chapter three describe the theory of history model to

be used, formulations and methods of solution. Chapter four is dedicated to data

collection, analysis and results. Chapter five concludes the entire study by stating

specific recommendations to stakeholders based on the major findings made in

the study.
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Chapter 2

Literature Review

This chapter discusses the literature available on discrimination in case of equal

mean population vectors. It also looks at summary of abstracts on various liter-

atures with regard to the model being used and the general working title. The

Chapter comprises both empirical and theoretical literature.

2.1 Theoretical Literature

This part of the literature considers the theories and definitions of the various

terms and concept in discriminant analysis in general as well as a review of related

studies. Discriminant analysis is a multivariate approach for identifying the fea-

tures that separate known groups or populations. In other words, discrimination

is a multivariate technique concerned with separating distinct sets of observations

and it’s exploratory in nature. Classification on the other hand, allocates new

objects and observations to previously observed group based on the allocatory

rule deduced from discriminant functions which provides maximum separation.

Classification is a term that is normally seen as less exploratory since it leads to

well-defined rule which are normally used for assigning new observations into one

of the several known groups. Classification rule is based on features that separate

the groups and sometimes the two terms (discrimination and classification) over-

lap. Classification involves more problem structure than that of discrimination.

The terminology was first introduced by R. A Fisher in his study of first modern

treatment of separative problems. (Johnson and Wichern, 2007). Discriminant

analysis is based on the three objectives;

1. By identifying the variables that discriminate best between the two or more

groups.
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2. The identified variables are then used to develop an equation or a function

that is used for computing new index that will represent the difference

between the two or more known groups parsimoniously.

3. A classificatory rule is developed by the usage of the identified variables

and the computed index to classify future observations into one of the two

or more known groups. (Sharma (1996).

According to Johnson and Wichern (2007), Fishers approach to classification with

two populations is based on arriving at a linear classification statistics using an

entirely different argument. Fisher’s idea was based on transforming multivariate

observations ’x’ to univariate ’y’ observations such that ’y’ being derived from

either population one or population two were truly separated as much as possible.

He continued by taking the linear combinations of ’x’ to create ’y’s because they

can be handed easily since they have simple enough functions. Fisher assumes

equal variance covariance matrices since a pooled estimate of a common covari-

ance matrix is used, but did not assume the distribution of the populations to

be necessarily normal. He further stated emphatically that, classification rules

become more complicated when the population covariance matrices are unequal

which leads to quadratic discriminant function classification rule and becomes

awkward in more than two populations. Generally, a good classification proce-

dure should always result in few misclassifications. That is the probabilities of

misclassification should be small. Some of the additional features that an optimal

classification rule possesses include; one population having a greater likelihood of

occurrence than the other group, because one of the two populations has a greater

likelihood of occurrence. Johnson and Wichern further derived several methods

of classification. These includes; classification with two multivariate normal pop-

ulation, classification with normal populations with equal covariance matrices,

the estimated minimum expected cost of misclassification rule for two normal

populations, classification of normal populations when the covariance matrices

are unequal (quadratic classification rule).
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In evaluating the classification functions, one of the ways of judging the per-

formance of several classification procedures is to calculate their error rates or

misclassification probabilities. Some of the error rates includes the optimal error

rates (OER), the apparent error rate (APER), the balanced error rate (BER) and

the leaving-one-out method (LOO). (Johnson and Wichern, 2007).

2.2 Equal mean discrimination

Applications of discriminant analysis in which the group means are assumed to

have the same mean vectors have been researched by various academicians. In

the case for multivariate normal group conditional distributions, the optimal dis-

criminant rule has to be based on the differences between the group-covariance

matrices with some adopting uniform nature and some non-uniform depending

on the nature of their research. (McLachlan, 2004). Most research conducted

into this problem focuses mostly on two groups or populations. This section out-

lines the various studies conducted which involves the problem of discriminating

among two populations when the means of the two populations are equal. The

section presents the various articles and papers in line with equal mean discrim-

ination conducted by several researchers.

Okamoto (1961) first studied the problem of discrimination with common mean

vector with different covariance structure of two multidimensional normal popu-

lations. In his paper of developing the theory for discrimination, a biometrical

application was used. As at 1961, Okamota assumed that, the reason why the

problem of equal mean vector for discrimination has not been tackled before

might have been as a result of the complex nature of the theory and the scant-

iness of its application to the equal mean vectors. The two populations with a

known common mean as well as the covariance matrices were specified. Further

assumptions were made in the case where the populations were not completely
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specified. Also information provided by the random sample for the unknown pa-

rameters were taken from each population. The theories and methods were then

applied to a twin data where estimates of Eigen vectors for minimax discrimina-

tion function method and that of the Bayesian discrimination function case were

obtained. Examples of this application includes the following; image processing,

process control with same but different variation patterns and fluid dynamics.

Bartlett and Please (1963) widely investigated the problem of discrimination

when the common mean vector is a zero vector. They investigated this problem

for the case when the variance covariance matrices for the two groups are known

to have uniform structures, with an assumption of equal and unequal correlation

coefficients ( ρ). A discriminant function based on equal correlation coefficient

as well as uniform covariance matrix was obtained for classificatory purposes.

The discriminant function was obtained for the case of the multivariate normal

populations with the same variance covariance matrix by using the likelihood

ratio with the omission of the additive constant. However the best boundary for

equal risk of misclassification was derived to serve as a cut-off point for assigning

observations into one of the two known groups. The above discriminating meth-

ods was applied to the Stocks twin data for both males and females, where the

estimates of the covariance matrices were obtained as a well as their respective

values. Assuming common correlation coefficient between the variates, their es-

timates for males and females were obtained and a linear discriminant function

was obtained for each of the sexes. The discriminant functions obtained, was

able to misclassify four (4) observations from Monozygotic group and seven (7)

from the Dizygotic for the males and among the females, no observation from the

Monozygotic group was misclassified, but 2 individual were misclassified from

the Dizygotic population. They concluded that, discrimination is much better

for female liked sex twins with low values/estimate of the correlation coefficient

(ρ ).
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Geisser and Desu (1968) in their study of ”Predictive zero-mean uniform discrim-

ination” developed a predictive Bayesian approach to the problem of assigning an

individual to one of the two multivariate normal populations, on an assumption of

a null mean vector for both populations and a uniform covariance structure as de-

rived and used by Bartlett and Please (1963). They obtained a Bayesian analysis

of the problem of zero-mean vector for the populations, and also presented linear

predictive discriminant functions and their associated errors of misclassification.

These approaches were applied to the Stocks twin data on physical measure-

ments/characteristics of female twins and obtained linear discriminant functions

as well as their corresponding results under the Bayesian approach with their

predictive densities. Two classification rules were obtained under an assump-

tion that the correlation coefficients for the two groups are unequal ( ρ1 6= ρ2).

Both rules classified the data in a similar manner, with no apparent difference

in the discriminatory power with two individuals being misclassified from the

Monozygotic group and only one from the Dizygotic group. The data was further

analysed with an assumption of equal correlation coefficient for the two groups

(ρ1 = ρ2 ) as used by Bartlett and Please (1963). A linear discriminant function

was obtained under this assumption, but no results for the Bayesian approach

were obtained, hence comparison about the discriminatory power not possible.

However, two observations/individuals from the Monozygotic group were misclas-

sified under this rule.

Desu and Geisser (1973) studied the problem of common mean discrimination

by focusing on the case where the difference of the means of the two groups are

the zero vector. Geisser and Desu based their discrimination on several methods

in order to compare the performance of each of them after their application. They

employed the following methods in their analysis; the use of classical approach,

semi Bayesian and complete Bayesian approach, Discrimination with equal and
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unequal covariance matrices. They observed that, both the classical approach by

Bartlett and Please method and the Semi-Bayesian approach gives the same rule

and both rules were able to misclassify only one of the additional five observations

in the Monozygotic group which was not part of the ten (10) which were used for

developing the discriminant function. Similarly the same classification rule also

further misclassified only one of the five observations which were not included in

developing the discriminant function in the Dizygotic group under the assumption

that, the estimated correlation coefficients for the two groups are unequal. Also,

Bartlett and Please (1963) rule for the case when the common mean vector is

zero vector and with uniform covariance matrices was used by Geisser and Desu.

Complete Bayesian approach used by Desu and Geisser (1973) for equal mean dis-

crimination under the general covariance matrix, recorded correct classification

of all the twenty observations from both groups which were used in obtaining

the discriminant function. However the remaining ten which were excluded in

developing the function, misclassified three observations from the Monozygotic

group whilst none where misclassified in the Dizygotic group. They concluded

from their study that, the pattern of misclassification shows that, discriminating

with uniform covariance structure is more appropriate for the stocks twin data

than the arbitrary covariance matrix, although both structures misclassified the

same number of individuals.

Lachenbruch (1975) went through some long process to derive a simple model

for discriminating among equal mean data for two populations and the problem

of assigning observations to one of the two populations by an investigation into

the covariance matrices of populations. His new method of taking the absolute

values of deviation from the mean aided in avoiding writing long programs for

calculating a quadratic function and to protect against long term contamination

existence in the data. He observed that the absolute linear discriminant function

(ALDF) was almost as good as the quadratic discriminant function (QDF) when
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the two groups are closer. Lachenbruch applied the methods outlined above to

the well-known stocks data with ten measured variables. In his research, he devel-

oped a criterion for variable selection where the variable with the minimum error

was considered to give the best classification. By this criterion, the following vari-

able including their height, head circumference and interpupillary distance were

the variables to give better classification, but does better when combined with

other variables. Three discriminant functions were used based on the variables,

including the one with the full set of the ten variables. The apparent error rate

(APER) was used to assess the performance of the functions as well as the cross

validation method. The APER gave worse bias for the QDF than that of the lin-

ear functions based on the large number of estimators. The LOOM on the other

hand provided a less biased estimate of the error rates. A six variable function

was preferable to the full ten variable discriminant function obtained. The case of

ALDF saw the three variable rule performing as well as the six variable QDF rule

performs. In ensuring performance, the ALDF performed slightly poorer than

that of the QDF for the six-variable case and a bit better for the three-variable

case. Lachenbruch further contaminated the data and realized that, there ex-

ist sequential biases of the APER for QDF. An increase in the mean error rate

using the LOOM when compared with the uncontaminated data was observed.

The increased mean error rates after the contamination for the ALDF was quiet

lower than that of the QDF for the three-variable and the six-variable case but

slightly higher in the 10-variable case. In concluding, Lachenbruch (1975) found

out that, his derived absolute linear discriminant rule performed slightly worse

than the quadratic discriminant rule as used earlier by Bartlett and Please (1963)

and Desu and Geisser (1973). His absolute linear rule performed reasonably well,

after the data was contaminated by the introduction of outliers into the two

groups/populations. On the other hand, the quadratic discriminant rule per-

formed poorly after the contamination.
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Marco et al. (1987a) in their paper titled “asymptotic expansion and estima-

tion of expected error rate for equal mean discrimination with uniform covari-

ance structure”, studied the asymptotic expected error rate for the equal-mean

uniform-covariance discrimination problem. They approximated the uncondi-

tional expected error rate of the sample discriminant function up to the second

order term. The asymptotic expansion for the unconditional expected error rate

was then compared with the Monte Carlo simulation evaluated at several combi-

nations of the parameters to ensure accuracy of the approximation of the error

rate. In furtherance to their work, a deduction of an evaluation of the accuracy of

the expansion was made, and was done by comparing the values of the expansion

and the Monte Carlo estimates of the expected error rates. Their results showed

that, the first order asymptotic expansion for the expected error rate gives an ex-

cellent agreement with the Monte Carlo estimates. Furthermore, the researchers

realized that, the expected error rates for the two estimators performed poorly

when and n=15. The discrepancy arose when with a moderately small sample size

and the results yielded estimates of rho (ρ ) exceeding one (1). This also affected

the classification algorithm to perform quiet poorly, and thereby increased the

probability of misclassification disproportionally. However, the asymptotic ex-

pansion of the error rate for the equal mean, uniform-covariance-matrix yielded

reasonably accurate approximations with the problem of estimating when . The

derived estimators for the error rate and that of the variance were applied to the

classical example of the well-known Stocks data, and they concluded that the

equal-mean classification algorithm applied to the Stocks data appears to yield

excellent results.

McFarland and Richards (2001) continued the work of Marco et al. (1987), and

they came out with an idea that, there is the need for an investigation of the ex-

act distributions of the plug-in discriminant functions for the equal mean vectors

with uniform covariance matrix. They therefore developed four normal quadratic
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discriminant functions, Monte Carlo simulations of the exact distribution func-

tion from the new stochastic representation and the two methods were observed

to be more efficient than a direct Monte Carlo simulation of the discriminant

statistics itself. A stochastic representation for the exact distribution of the four

discriminant functions was derived after providing preliminaries relating to the

multivariate gamma functions and Bassel functions of the matrix argument. The

stochastic representation was then applied to the discriminant functions to study

the corresponding probability of misclassification. McFarland and Richard then

further applied the results obtained to the Stocks twin data and Rencher’s data on

football players head size to estimate their respective misclassification probabili-

ties. Two of the four discriminant functions were derived from minimum distance

for equal mean case. The minimum distance discriminant functions provided the

highest estimate of the probability of misclassifying an observation which belongs

to the Monozygotic population. However the application of the methods to the

Rencher’s data estimated the probability of misclassifying observation to Monozy-

gotic and that of the Dizygotic population to be relatively closed as expected.

Hosseini and Armacost (1992) presented a study on two group discriminant

problem with equal group mean vectors with several methods and mathemat-

ical formulations. The researcher specifically focused on the performance of a

broad mathematical technique with respect to the equal mean vector discrimi-

nant problem. The study employed the Monte Carlo simulation experiment as

well as two linear programming (LP) formulations and four non LP models. For

comparative purposes, both Fishers linear discriminant function (FLDF) and that

of Quadratic Discriminant function (QDF) were used. The shapes of the popula-

tion distributions and the variance covariance matrices as well as the availability

of the unusual noise in the data were the factors manipulated. Misclassification

ratios were used to judge the performance of the various models under various

factor levels. The first section of the methodology was based on the descrip-
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tion of the discriminant analysis model and the description of the Monte Carlo

simulation experiment. The presentation of the analysis was done in the second

section and it was expectant that, both the QDF and that of the FLDF will show

a poor performance under equal population mean vectors as compared to that

of the LP methods. Applying the methods to some practical data, yielded the

following outcomes. Almost majority of the methods performed better in the case

of multivariate non-normal distributions than compared to that of the one gen-

erated from a multivariate normal distribution. All the various discriminatory

methods performed better generally when the covariance matrices for the two

populations were assumed to be unequal. Also, less favorable performance was

observed for FLDF, QDF with presence of outliers than when there is absence

of outliers/noise. Hosseini further discovered that, the property of equality of

variance-covariance matrices had a higher significant effect on misclassification

rates than the other properties. In concluding, the involvement of outliers in the

data did not influence the performance of the methods significantly.

Young et al. (1988) looked at the robustness of the equal mean discrimination

rule with uniform covariance matrix using a serially correlated training data.

Young and friends focused their study on investigating the effect of the serially

correlated data on an estimated expected error rate with the involvement of the

equal mean classifier with an assumption of a uniform covariance structure. After

their application to the serially correlated data, it was realized that, the expected

error rates was quite minimal thereby reducing the number of misclassifications

of observations into one of the two groups using the equal mean classifier.

Lee (1975) also did some studies on the problem of discrimination involving the

equal mean case, where his study was titled ”a note on equal mean discrimina-

tion”. The main method employed for developing the discriminating function

and for classification in the equal mean case was based on the Bayesian approach
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to ensure minimizing the loss incurred in misclassifying an observational vector

from one of the two populations.

Schwemer and Mickey (1980) conducted a study on a note on the linear discrimi-

nant function when group means are equal. They therefore derived the expected

error rates of the linear discriminant rule obtained and their application to the

data was made using two groups with the same means vectors but proportional

covariance matrices.

The Journal of Statistics and Management Studies published a paper in 2006

titled, ”comparison of quadratic discriminant function with discriminant function

based on the absolute deviation from the mean” by Ganeslingam et al. (2006).

The problem of statistical discrimination involving two multivariate normal dis-

tributions with equal means and different covariance matrices was considered.

They therefore employed the method of Absolute Euclidean Distance Classifier

(AEDC) which is derived from the absolute values of the components of the

observation vectors used in Euclidean Distance Classifier (EDC). Hence it was

expectant that, it might do well with the situation of high dimensional setting.

Their main objective for their study was to compare the performance of the

AEDC and QDF in case of equal population mean vectors with unequal covari-

ance matrices. They discovered the AEDC and that of the QDF as an alternative

to that of the Fishers linear discriminant function (FLDF) in situations where

the population means among the groups are the same and with an assumption of

unequal covariance matrices. AEDC forms a discriminant function basically on

the absolute deviation, where the information about the covariance matrices is

always ignored. The objective was to compare the two functions using the error

rates obtained from the leaving-one-out (LOO) method and that of the appar-

ent error rate (AER). Theoretical derivation of the distributional function of the

vector of absolute values in the trivate normal populations was given. Allocation
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rule was derived using the absolute deviations. The methods were then carried

on 89 pairs of male twins with 49 being Monozygotic and 40 being Dizygotic

with six variables for each pair of twins from anthropology study conducted in

Germany and reported by Flurry (1997). Three variables were used after taking

the difference between the first and the second twin and hence making the study

focused on a three dimensional problem. The following result was realized after

the application of the AEDC and QDF to the twin data. The AEDC outper-

formed the QDF in 89 of the 99 cases after a Monte Carlo simulation study was

carried out for the bivariate case. The AEDC outperformed the QDF in the case

of the contaminated data with obviously higher estimates of variance than that of

the uncontaminated case. The overall actual error rate of the QDF was found to

be higher than that of the AEDC by 3.5 percent. The cross validation estimates

gave lower overall error rates in comparison to the estimates of the actual error

rates. Further, they discovered that, the QDF are very useful in cases where

the covariance matrices are nonsingular and this causes its inferior performance

to that of the AEDC in higher dimensions. They concluded that, the AEDC is

highly useful for the case of equal mean discriminating problem for two popula-

tions with different covariance matrices.

Earlier, the study conducted by Raudy’s and Pikelis (1980) as cited in Ganeslin-

gan et al. (2006) aimed at the comparison of the performance of the EDC and

that of the LDF when p is relatively large and they concluded that the sample

EDC outperformed the sample LDF when classifying individuals from two spher-

ical and non-spherical normal populations and covariance structure.

Marco et al. (1987b) as cited in the work of Ganeslingan (2006) investigated

discrimination problem under situations in which the EDC becomes a Bayes clas-

sifier in terms of the error rates. They suggested that the sample EDC performs

better than the sample LDF in many practical situations, since the EDC involves
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only fewer estimated parameters.

2.3 Bayesian discrimination and Classification

Many researchers in the already reviewed papers in the above section have used

the Bayesian method one way or the other in solving the equal mean discrimina-

tion problem. Geisser (l964), Geisser and Desu (1968), Desu and Geisser (1973),

and Lee (1975) are some of the researchers who investigated the problem of equal

mean vector discrimination using Bayesian approach where some was based on

the predictive densities whilst others on their posterior probabilities. This section

focuses not only on application of Bayesian method in equal mean discrimination,

but rather on studies conducted generally on discriminant analysis with appli-

cation of Bayesian approach as well as Mahalanobis distance for classification

purposes.

The concept of the Bayesian approach to discriminant analysis is based on the

concept of predictive densities of feature observational vector. The predictive

density of observational vector x within a particular group was derived, including

the likelihood function and some weighting function. The posterior probability

was obtained based on the likelihood as well as the group’s prior probabilities.

Classifying an observation into one of the known groups depends on the one with

the highest posterior probability value. (McLachlan, 2004).

Similarly, Johnson and Wichern, 2007 derived the Bayesian approach to classify-

ing an observation to one of the known groups as based on the minimum ECM rule

with equal misclassification cost with respect to their density/likelihood functions

as well as the group’s prior probabilities. The posterior probability was given as

the ratio of the product of the density functions and the groups prior probability

over the total probability involving the prior and the density functions of obser-
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vations. The classification rule was identical to the observation that maximizes

the posterior probability.

Rigby (1997) undertook a study aimed at solving the problem of discrimination

using the Bayesian discrimination between two multivariate normal populations

with equal covariance matrices. Rigby developed an estimate for the Bayesian

and classical estimates of the probability that a new observation belongs to one

of the two multivariate normal populations with an assumption of equal variance

covariance matrices. The researcher compared the Bayesian and the classical

approach of the probability P that an observation came from population given

that, it is in that same population. Upon realization, the Bayesian estimates

PB is easy to calculate and their estimates are superior to the classical estimate

Pc which sometimes provides extreme estimates of P in a transformed space.

Contours of the estimates of PB and Pc were obtained and he highlighted the

case in which the Bayesian and the Classical estimates and their respective al-

location rule differs. As a result, the Posterior distribution of P and its interval

were found. The methods after its application resulted in the following outcomes.

There were differing outcomes based on the estimates of Bayesian and that of the

classical method when they are in a state of dimensionally reduced transformed

space. The Bayesian and the classical estimated allocation rule differs hugely

when their respective constants in turn differs greatly from the prior probability

that an observation belongs to the first population. It was highly recommended

that the Bayesian estimates leads to the provision of less extreme and a more

reliable estimates of P .

Lavine and West (1992) discussed the Bayesian analysis of the traditional normal-

mixture model for classification and discrimination. They adopted the applica-

tion of an iterative re-sampling approach to Monte Carlo inference. They there-

fore performed the discrimination and classification with several normal-mixture
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components having different variance covariance matrices. The exact posterior

classification probabilities for the observed data and that of the classification of

future observations as well as the discriminant functions based on the posterior

probabilities were computed. The largest among the three posterior probabilities

was identified and corresponded to components 2 and 1 respectively.

2.4 Non-Normality

Several studies have been conducted on the effects of non-normality on classifica-

tion rules based on the some well known methods such as the Quadratic Discrimi-

nant Function (QDF) and the Linear Discriminant Function (LDF). Lachenbruch

et al. (1973) considered the robustness of LDF. They considered three specific

distributions and the case of independent variables. These distributions were

considered to be non-normal and were generated from the normal distributions

using the Johnson system of transformations (i.e log normal, inverse hyperbolic

sine normal and logit normal distribution). They observed considerable decline

in performance of the LDF (the log normal distribution used had extremely large

skewness and kurtosis). They conducted Monte Carlo experiments to investigate

the robustness when parameters are estimated. Based on their results, Fisher’s

LDF was greatly affected by non-normality in the population. It was also noted

that, if the error rates with LDF were greatly different in the two populations

when cut-off point is zero, then presence of non-normality is indicated. They

concluded that, the use of Fisher’s LDF under non-normality contamination sit-

uations could be badly misleading and recommended that the data be transformed

to approximate normality prior to the use of the LDF.

Lachenbruch et al. (1977) investigated the effects of non-normality on the QDF.

They assumed that the data were transformable to normality. After the transfor-

mation, the variables were found to be independent with proportional covariance
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matrices. They generated random samples from non-normal distributions in or-

der to study the effect of non-normality on QDF. The samples were transformed

into components by using Johnson’s system of transformation. Their results indi-

cated that the actual error rates were considerably larger than the optimal rates

in the case of zero mean difference. Also, non-normal samples generally under

the QDF did not do substantially worse than when applied to normal samples.

2.5 Error Rates

An assessment of error rate estimators was studied by Krzanowski and Hand

(1997) paying special attention to the leave-one-out method. The leave-one-

out rule seeks to overcome the drawback of re-substitution by process of cross-

validation. The estimator was investigated in simulation study, both in absolute

terms and in comparison with a popular bootstrap estimator. From their results,

Bayes procedure was found to give unreliable estimates of leave-out-two which

performed better than the leave-one-out method. They found that results of the

leave-one-out method was even worse than expected. By extension of the leave-

one-out method, the leave-out-two was looked at, by considering their variances.

As a result, they observed a slight variance reduction relative to the leave-one-out

method.

2.6 Other related studies on discrimination

This section will present summaries of articles on discrimination in general. Some

of the reviewed paper as presented below.

Noh et al. (2010) studied fluid dynamics model for low rank discriminant analy-

sis. They considered the problem by reducing the dimension of the labelled data

for classification. The data was considered as an interacting fluid in the high

dimensional space, derived from the Bhattacharyya coefficient, which has shown
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to be closely related to the Bayes classification error. The main aim of their study

was to find low dimensional subspaces, where classification is better as compared

to other subspaces with its classification error being minimized. The projected

distributions were found to be the Gaussian/normal with means and covariance

matrices with known parameters of the dimensions of the original space and that

of the projected space. A model was obtained for dimensionality reduction. The

methods were evaluated at several datasets. Fishers Discriminant analyses (FDA)

and Fukunaga’s equal mean analysis were used to project the data onto the sub-

spaces found. The Bayes classification was performed on the subspaces with an

assumption of a normal/Gaussian distribution. The results showed that, the fluid

analysis slightly outperformed the FDA and the Fukunaga’s equal mean analysis.

Sajobi et al. (2010) aimed at investigating the effects of the repeated measures

mean and its covariance structure of bias and mean square error in the dis-

criminant function coefficients for procedures of discriminant analysis based on

parsimonious covariance structures and the mean. First and foremost, the Dis-

criminant functions coefficients (DFCs) in DA procedures were estimated for re-

peated measures data involving two populations/groups. The misspecification of

the repeated measures means and the covariance structure resulted in an increase

in the in the bias and errors of DFCs of the investigated procedures. The average

bias and the root mean square error caused by the misspecified repeated mea-

sures was found to be greater than the bias and the error variation caused by the

misspecification of repeated measure covariance structure for all the investigated

procedures. Negligible biases were observed from the DA based on the parsimo-

nious repeated measure mean and covariance structure. After sampling the data

from the population with non-constant mean configuration, it was realized that,

the DA had the smallest bias. They therefore suggested a DA procedure based

on unstructured mean vectors and covariance matrices should be recommended.
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Rausch and Kelley (2009) investigated the comparison of linear and mixture

models for Discriminant analysis under non-normality assumption. Various meth-

ods of discriminant analysis derived were compared through the employment of

Monte Carlo simulation method to ensure accuracy among the methods under

non-normality assumption. The following DA methods were obtained; linear dis-

criminant analysis based on the raw scores and on rank scores, logistic regression

and a mixture of discriminant analysis. The highest rate of classification accuracy

was produced by the linear discriminant analysis based on the ranks of the scores.

However they failed to produce a practical important advantage over the other

competing methods. The method with relatively small number of components

found in each group attained the highest rate of classification accuracy and this

was very useful to conditions with skewed independent variables having small

values of kurtosis.
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Chapter 3

Methodology

3.1 Discrimination and Classification

The concept of Discrimination and Classification are concerned with separating

objects from different populations into different groups and with allocating new

observations to one of these groups. Discriminant analysis is rather exploratory

in nature and used as a separative procedure which is normally employed on a

one time basis. Classification procedures on the other hand are less exploratory

in the sense that, they lead to well-defined rules, which can be used for assigning

new objects. The goals thus are; (1)To describe (graphically or algebraically)

the difference between objects from several known populations. We construct

”discriminants” that have numerical values which separate the different collec-

tions as much as possible; (2) To assign objects into several labelled classes. We

derive a ”classification” rule that can be used to assign (new) objects to one of

the labelled classes. Discriminant analysis is used in situations where the clusters

are known a priori. The aim of discriminant analysis is to classify an observa-

tion, or several observations, into these known groups. The first goal corresponds

to the term discrimination, in which the terminology was introduced by R.A.

Fisher in the first modern treatment of separative problems. A More descriptive

term for the first goal, however is ’separation’ and the second goal referred to

as classification or allocation. A function that separates objects may sometimes

serve as an allocator, and conversely, a rule that allocates objects may suggest a

discriminatory procedure. However, both terms, discrimination and classification

frequently overlap and the distinction between separation and allocation becomes

blurred.
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A good classification procedure should result in few misclassifications. In other

words, the chances, or probabilities, of misclassification should be small. Also

there are additional features that an optimal classification rule should possess.(John

son and Wichern, 2007). Ḧardel and Simar (2007) used the example in credit scor-

ing. Where in credit scoring, a bank knows from past experience that there are

good customers (who repay their loan without any problems) and bad customers

(who showed difficulties in repaying their loan). When a new customer asks for a

loan, the bank has to decide whether or not to give the loan. The past record of

the bank provides two data sets: multivariate observations Xi on the two cate-

gories of customers (including for example age, salary, marital status,the amount

of the loan, etc.). The new customer is a new observation X with the same

variables. The discrimination rule has to classify the customer into one of the

two existing groups and the discriminant analysis should evaluate the risk of a

possible ”bad decision”.

3.2 Discrimination and Classification of Two Pop-

ulations

This section focusses on separating objects from two classes and assigning new

objects to one of these two classes. The classes will be labelled π1 and π2. Each

object consists of measurements for p random variables, X1, ..., Xp such that the

observed values differ to some extend from one class to the other. The distribu-

tions associated with both populations will be described by their density functions

f1 and f2 respectively. Now consider an observed value x = (x, ..., x)τ . Then f1(x)

is the density in x if x belongs to π1. And f2(x) is the density in x if x belongs

to population π2. The object x must be assigned to either population π1 or π2.

Denote Ω, the sample space (collection of all possible outcomes of X) and par-
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tition the sample space as Ω=R1 U R2 where R1 is the subspace of outcomes

which we classify as belonging to population π1 and R2= Ω-R1 the subspace of

outcomes classified as belonging to π2. It follows therefore that the (conditional)

probability of classifying an object as belonging to π2 when it really comes from

π1 equals

P (2|1) = P (X ∈ R2|X ∈ π1) =

∫
R2

f1(x)dx (3.1)

and the (conditional) probability of assigning an object to π1 when it actually

comes from π2 is given as;

P (1|2) = P (X ∈ R1|X ∈ π2) =

∫
R1

f2(x)dx. (3.2)

The conditional probabilities can also be obtained for P (1|1) and P (2|2).

Prior class probabilities are obtained when we want to obtain the probability of

correctly and incorrectly classifying an observation/objects. We denote the fol-

lowing;

p1 = (X ∈ π1)=the prior probability of π1 and p2 = (X ∈ π2) being the prior

probability of π2 in which p1 + p2=1.

Following the above, the overall probabilities of correctly and incorrectly classi-

fying an object can be estimated and some of them are given below;

P(Object is correctly classified as πi)= P (X ∈ Ri|X ∈ πi)P (X ∈ πi) = P (i|i)pi

where i = 1, 2.

P(Object is misclassified as πi)= P (X ∈ Ri|X ∈ πj)P (X ∈ πj) = P (i|j)pj, where

i 6= j.

3.2.1 Cost of Misclassification

In considering the cost of misclassification, denote c(i|j)= The cost of classifying

an object from πj as πi.

A classification rule is obtained by minimizing the Expected Cost of Misclassifi-
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cation (ECM). It is therefore derived by;

ECM := c(2|1)P (2|1)p1 + c(1|2)P (1|2)p2 (3.3)

To minimize the expected cost of misclassifications, the regions R1 and R2 are

used and they are given by the following;

R1 =

{
x ∈ Ω;

f1(x)

f2(x)
≥
(
c(1|2)

c(2|1)

)(
p2

p1

)}
and

R2 =

{
x ∈ Ω;

f1(x)

f2(x)
<

(
c(1|2)

c(2|1)

)(
p2

p1

)}
Note that the two regions depends on the following ratios and they are often

much easier to determine than the exact values of the components.

f1(x)

f2(x)
= Density ratio

(
c(1|2)

c(2|1)

)
= Cost ratio

(
p2

p1

)
= Prior probability ratio

Generally we assign x0 to π1 if

f1(x0)

f2(x0)
≥
(
c(1|2)

c(2|1)

)(
p2

p1

)
(3.4)

From the above equation, the following special cases for classification can be

deduced;

1. Equal (or unknown) prior probabilities: Compare density ratio with cost

ratio;

R1:
f1(x)

f2(x)
≥ c(1|2)

c(2|1)
and R2:

f1(x)

f2(x)
<
c(1|2)

c(2|1)
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2. Equal (or undetermined) misclassification cost: Compare density ratio with

prior probability ratio:

R1:
f1(x)

f2(x)
≥ p2

p1

and R2:
f1(x)

f2(x)
<
p2

p1

3. Equal prior probabilities and equal misclassification cost or
p2

p1

=

(
c(1|2)

c(2|1)

)

R1:
f1(x)

f2(x)
≥ 1 and R2:

f1(x)

f2(x)
< 1

3.3 Classification with Two Multivariate Nor-

mal Populations

Classification procedures based on normal populations predominate in statistical

practice because of their simplicity and reasonably high efficiency across a wide

variety of population models.

We now assume that f1 and f2 are multivariate normal densities with respectively

mean vectors µ1 and µ2 and the covariance matrices Σ1 and Σ2.

3.3.1 Classification when Σ1=Σ2 = Σ

The density of population πi (i = 1, 2) is now given by;

fi(x) =
1

(2π)p/2det(Σ)1/2
exp−1

2
(x− µi)τΣ−1(x− µi) (3.5)

If the populations π1 and π2 both have multivariate normal densities with equal

covariance matrices,then the classification rule corresponding to minimizing ECM

becomes: classify x0 as π1 if

(µ1 − µ2)τΣ−1x0 −
1

2
(µ1 − µ2)τΣ−1(µ1 + µ2) ≥

[
ln

(
c(1|2)

c(2|1)

)(
p2

p1

)]
(3.6)

31



and classify x0 as π2 otherwise.

In practice, the population parameters µ1 and µ2 and Σ are unknown and have

to be estimated from the data. Suppose we have n1 objects belonging to π1 (de-

noted as x
(1)
1 , . . . , x

(1)
n1 ) and n2 objects from π2 (denoted as x

(2)
1 , . . . , x

(2)
n2 )

with n1 + n2 = n the total sample size. The sample mean vectors and covariance

matrices of both groups are estimated using their sample estimators.

Since both populations have the same covariance matrix Σ we combine the two

sample covariance matrices S1 and S2 to obtain a more precise estimate of Σ.

Replacing µ1 , µ2 and Σ with x̄1, x̄2 and Spooled in equation (3.6), then the sample

classification rule is obtained as ; classify x0 as π1 if

(x̄1 − x̄2)τS−1
pooledx0 −

1

2
(x̄1 − x̄2)τS−1

pooled(x̄1 + x̄2) ≥
[
ln

(
c(1|2)

c(2|1)

)(
p2

p1

)]
(3.7)

and classify x0 as π2 otherwise.

Below gives the special case of equation (3.7) where the prior probabilities and

the misclassification cost are equal:

[
ln

(
c(1|2)

c(2|1)

)(
p2

p1

)]
= ln(1) = 0 (3.8)

such that we assign x0 to π1 if

(x̄1 − x̄2)τS−1
pooledx0 ≥

1

2
(x̄1 − x̄2)τS−1

pooled(x̄1 + x̄2) (3.9)

Denote a = S−1
pooled(x̄1 − x̄2) ∈ <p and the above equation can be rewritten as;

aτx0 ≥
1

2
(aτ x̄1 + aτ x̄2)(Johnson and Wichern,2007).

3.3.2 Classification when Σ1 6= Σ2

The density function of the two populations π1 and π2 is given by;

32



fi(x) =
1

(2π)p/2det(Σ)1/2
exp−1

2
(x− µi)τΣ−1(x− µi)

If both populations π1 and π2 have multivariate normal densities with mean

vectors and covariance matrices µ1 , Σ1 and µ2 , Σ2 respectively, then the classi-

fication rule corresponding to minimizing ECM becomes:

classify x0 as π1 if

−1

2
xτ0(Σ−1

1 − Σ−1
2 )x0 + (µτ1Σ−1

1 − µτ2Σ−1
2 )x0 − k ≥

[
ln

(
c(1|2)

c(2|1)

)(
p2

p1

)]
(3.10)

where the constant k is given by k =
1

2
ln

(
det(Σ1)

det(Σ2)

)
+

1

2
(µτ1Σ−1

1 µ1 − µτ2Σ−1
2 µ2)

and classify x0 to π2 otherwise.

The classification regions are defined by quadratic functions of x. When Σ1 =

Σ2, the quadratic term −1

2
xτ (Σ−1

1 − Σ−1
2 )x, disappears, and the regions defined

earlier on, reduces. (Johnson and Wichern, 2007).

3.3.3 Quadratic Classification Rule(Normal Populations

with Unequal Covariance matrices)

Allocate x0 to π1 if

−1

2
xτ0(S−1

1 − S−1
2 )x0 + (x̄τ1S

−1
1 − x̄2S

−1
2 )x0 − k ≥

[
ln

(
c(1|2)

c(2|1)

)(
p2

p1

)]
(3.11)

The awkward nature of the Quadratic discriminant function occurs in more than

two dimensions and can lead to some strange results.

3.4 Classification with Several Populations

This section considers the more general situation of separating objects from g

(g ≥ 2) classes and assigning new objects to one of these g classes. For i = 1, ..., g

denote
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1. fi the density associated with population πi

2. pi the prior probability of πi

3. Ri the subspace of outcomes assigned to πi

4. c(j|i) the cost of misclassifying an object to πj when it is from πi.

5. P (j|i) the conditional probability of assigning an object of πi to πj.

The (conditional) expected cost of misclassifying an object of population π1 is

given by;

ECM(1) = P (2|1)c(2|1) + ...+ P (g|1)c(g|1) =
2∑
i=1

P (i|1)c(i|1) (3.12)

The expected cost of misclassifying objects of population π2, ..., πg. Hence the

overall ECM becomes ;

ECM =

g∑
j=1

pjECM(j) =

g∑
j=1

g∑
(i=1)(i 6=j)

P (i|j)c(i|j) (3.13)

The classification rule that minimizes the ECM assigns each object x to the

population πi for which
g∑

(j=1)(j 6=i)

pjfj(x)c(i|j)

is smallest. If the minimum is not unique then x can be assigned to any of the

populations for which the minimum is attained.

In some special cases, we assign x to population πi for which
∑g

(j=1)(j 6=i) pjfj(x)

is the smallest or equivalently for which pifi(x) is the largest when all the mis-

classification costs are equal (or unknown).We therefore obtain;

classify x as πi if

pifi(x) > pjfj(x),∀j 6=i (3.14)
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3.5 Classification with Normal Populations

The density function of population πi(i = 1, ..., g) is given as;

fi(x) =
1

(2π)p/2det(Σi)1/2
exp−1

2
(x− µi)τΣi

−1(x− µi)

If all misclassification costs are equal (or unknown) we assign x to the popu-

lation πi if the (quadratic) score di(x) = maxgj=1di(x) where the scores are given

by the equation below;

dj(x) = −1

2
ln(det(Σj))−

1

2
(x− µj)τΣ−1

j (x− µj) + ln(pj), j = 1, ..., g (3.15)

In practice, the parameters µj and Σj are unknown and will be replaced by the

sample means x̄j and covariance Sj which yields the sample classification rule;

classify x as πi if the (quadratic) score d̂i(x) = maxgj=1d̂i(x) where the scores are

given by;

dj(x) = −1

2
ln(det(Sj))−

1

2
(x− x̄j)

τS−1
j (x− x̄j) + ln(pj), j = 1, ..., g (3.16)

3.5.1 Estimated Minimum TPM Rule for Equal-Covariance

Normal Populations

On assumption that, the covariance matrices are equal;Σj = Σ for j = 1, ..., g,

then the quadratic scores dj becomes

dj(x) = −1

2
ln(det(Σ))− 1

2
xτΣ−1x+ µτjΣ

−1x− 1

2
µτjΣ

−1µj + ln(pj).

The first two terms from the above equation are the same for all dj(x) so they

can be left out, which yields the (linear) scores
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dj(x) = µτjΣ
−1x− 1

2
µτjΣ

−1µj + ln(pj) (3.17)

Based on the above equation, its sampled classification rule is obtained by clas-

sifying x as πi if the linear (score) is di(x) = maxgj=1di(x) where the scores are

given by their sample estimates as;

d̂j(x) = x̄τjS
−1
pooledx−

1

2
x̄τjS

−1
pooledx̄j + ln(pj), j = 1, ..., g (3.18)

That is from above equation, we allocate x to πi if d̂j(x) is maximum. In the case

of equal covariance matrices, the scores dj(x) can also be reduced to:

dj(x) = −1

2
(x− µj)τΣ−1(x− µj) + ln(pj) = −1

2
d2

Σ(x, µj) + ln(pj) (3.19)

where d2
Σ(x, µj) = (x− µj)τΣ(x− µj).

dj(x) can be estimated by

d̂j(x) = −1

2
dSpooled

(x, µj) + ln(pj)

If the prior probabilities are all equal (or unknown) we thus assign an object x

to the closest population.

3.5.2 Estimated Minimum Total probability of Misclas-

sification(TPM) Rule for Normal Populations with

Unequal covariances

Allocate x to πi if the quadratic score d̂i(x) = largest of d̂1(x),d̂2(x),. . . ,d̂1(g)

where d̂i(x) is given in equation (3.15).
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3.6 Minimum ECM Classification Rule with Equal

Misclassification Costs

This section presents the classification rules based on the minimum ECM, as well

as the equal costs of misclassification.

Allocate x0 to πk if

pkfk(x) > pifi(x),∀i 6=k or ln pkfk(x) > ln pifi(x),∀i 6=k

The classification rule in the above equation is identical to the one that max-

imises the ”posterior” probability P (πk|x)=P (x comes from πk given that x was

observed) where

P (πk|x) =
pkfk(x)∑g
i=1 pifi(x)

=
(prior) ∗ (likelihood)∑
[(prior) ∗ (likelihood)]

(3.20)

for k = 1, 2, ..., g

Generally, the minimum ECM rules have the following three components; prior

probabilities pi, misclassification costs c(i|j), and density functions fi,fj. Always

the above listed components are specified or estimated before the classification

rules are implemented.

3.7 Evaluating Classification Rules

To judge the performance of a sample classification procedure, we want to cal-

culate its misclassification probability or error rate. A measure of performance

that can be calculated for any classification procedure is the apparent error rate

(APER) which is defined as the fraction of observations in the sample that are

misclassified by the classification procedure. Let n1M and n2M be the number of
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objects misclassified as π1 and π2 respectively,then,

APER =
n1M + n2M

n1 + n2

(3.21)

The APER is intuitively appealing and easy to calculate. Unfortunately, it tends

to underestimate the actual error rate (AER) when classifying new objects. This

underestimation occurs because we used the sample to ”build” the classification

rule. To obtain a reliable estimate of the AER we ideally consider an independent

”test sample” of new objects from which we know the true class label. This means

that we split the original sample in a training sample and test sample.

3.7.1 Cross Validation Procedure

An alternative to the APER is the (leave-one-out) cross-validation or jackknife

procedure or the Holdout method which works as follows:

1. Leave one object out of the sample and construct a classification rule based

on the remaining n− 1 objects in the sample.

2. Classify the left-out observation using the classification rule obtained in

step 1 above.

3. Repeat the two previous steps for each of the objects in the sample.

4. Let nCM1M and nCV2M be the number of left-out observations misclassified in

groups 1 and 2 respectively.

A good estimate of the actual error rate is given by:

AÊR =
nCM1M + nCV2M

n1 + n2

(3.22)
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3.7.2 The Balanced Error Rate Procedure (BER)

The Balanced Error Rate (BER) statistic is the average of the misclassification

rates on samples drawn from positive and negative classes (denoted by C+ and

C− respectively) as shown in the table below.

Table 3.1: Confusion Matrix for two class pattern recognition
Prediction

True Pop. C− C+

C− a b
C+ c d

Where a, b, c and d are entries in the confusion matrix. The Balance Error Rate

can be given mathematically as

BER =
1

2

[
b

a+ b
+

c

c+ d

]
(3.23)

3.8 Equal mean Discrimination

There are some applications of discriminant analysis in practice in which the

groups may be assumed to have the same mean vectors. In this case for mul-

tivariate normal group conditional distributions, the optimal discriminant rule

ro(x; θU) has to be based on the differences between the group-covariance. ma-

trices.

3.8.1 Comparing Two Mean Vectors (Hotelling T 2)

This section considers the case where p variables are measured on each sampling

unit in two samples.We wish to test H0 : µ1 = µ2 vs H1 : µ1 6= µ2.

A random sample from two populations are obtained. The random sample from

the first population, correspond to x11, x12, ..., x1n1 from Np(µ1,Σ1) and a second

random sample x21, x22, ..., x2n2 from Np(µ2,Σ2). We assume that the two samples

are independent and that Σ1 = Σ2 = Σ with Σ unknown. The assumption is
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neccessary for the T 2-test statistics to have a T 2-distribution. The sample mean

vectors are estimated as x̄1 =
∑n1

i=1 x1i/n1 and x̄2 =
∑n2

i=1 x2i/n2. Let W1 and

W2 be the sum of squares and cross product matrices for the two samples.

W1 =

n1∑
i=1

(x1i − x̄1)(x1i − x̄1)′ = (n1 − 1)S1

and

W2 =

n2∑
i=1

(x2i − x̄2)(x2i − x̄2)′ = (n2 − 1)S2.

(n1 − 1)S1 is an unbiased estimator of (n1 − 1)Σ1 and (n2 − 1)S2 is an unbiased

estimator of (n2−1)Σ2. Then the two covariance matrices are pooled together to

obtain an unbiased estimator of the common population covariance matrix, Σ.

Spl =
W1 + W2

n1 + n2 − 2

Thus E(Spl)=Σ. By substitution and generalisation, we obtain the Hotelling T 2

as;

T 2 =
n1n2

n1 + n2

(x̄1 − x̄2)′S−1
pl (x̄1 − x̄2) (3.24)

Where it is distributed as T 2
p,n1+n2−2 when H0 : µ1 = µ2 is true. Therefore reject

Ho if T 2 ≥ T 2
α,p,n1+n2−2. The T 2 test statistics can be transformed to F -test

statistics and its given below:

n1 + n2 − p− 1

(n1 + n2 − 2)p
T 2 = Fp, n1 + n2 − p− 1 (3.25)

where the dimension p of the the T 2 statistics becomes the first degree of freedom

parameter for the F statistics. Rencher (2002).
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3.8.2 Bartlett and Please approach to Equal mean dis-

crimination

This section considers applications of discriminant analysis in which the pop-

ulation mean vectors are assumed to be equal. For multivariate normal group

conditional distributions, the optimal discriminant rule has to be based on the in-

dividual group-covariance matrices. Bartlett and Please (1963) considered tack-

ling the problem of equal mean discrimination with two populations using the

well-known twins data of Stocks (1933) in order to study the usefulness of the

quadratic discriminant rule in discriminating between Monozygotic and Dizygotic

twins. They adopted the general uniform covariance structure and its given be-

low;

Σi = σ2
i



1 ρ ρ · · · ρ

ρ 1 ρ · · · ρ

...
...

...
...

ρ ρ ρ · · · 1


=



σ2
i σ2

i ρ σ2
i ρ · · · σ2

i ρ

σ2
i ρ σ2

i σ2
i ρ · · · σ2

i ρ

...
...

...
...

σ2
i ρ σ2

i ρ σ2
i ρ · · · σ2

i


Σi = σ2

i {(1− ρi)Ip + ρi1p1
′
p} (3.26)

Where 1 is a column vector of 1’s and ρ is the population correlation coefficient

between any two variables. This pattern of equal covariances and equal variances

in Σ is variously referred to as uniformity, compound symmetry, or the intraclass

correlation model.

We obtain the sample covariance matrix S. Estimates of σ2 and σ2ρ are given by;

s2 =
1

p

∑p
j=1 sjj and s2r =

1

p(p− 1)

∑
j 6=k sjk respectively, where sjj and sjk are

from S. An average of the variances on the diagonal of S is given as s2, and s2r

is an average of the off-diagonal covariances in S. Here an estimate of ρ can be

obtained as r =
s2r

s2
. The estimate of Σ is given below using s2 and s2r.
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Si =



s2 s2r s2r · · · s2r

s2r s2 s2r · · · s2r

...
...

...
...

s2r s2r s2r · · · s2


=s2{(1− ri)Ip + ri1p1

′
p}

Bartlett and Please standardised the first covariance matrix corresponding to the

Monozygotic twins as;

Σ1 = (1− ρ1)I + ρ11p1
′
p (3.27)

They further assumed that, Σ2 cannot be simultaneously standardized to unit

variances and was given by;

Σ2 = σ2(1− ρ2)I + ρ21p1
′
p (3.28)

That is in generality, they assumed that σ2
1=1, with ρ1 = ρ2 = ρ where σ2 is

obtained as the ratio of the sum of squares of the Dizygotic twins π2 to that of

the Monozygotic twins π1.

Desu and Geisser (1973) made further assumption on the fact that the two popu-

lation correlation coefficient are not the same that is, ρ1 6= ρ2. With reference to

the two uniform covariance matrices above, the inverses of Σ1 and Σ2 are given

below. Let 1p1
′
p = E, where E is the matrix with entries equal to unity.

Σ−1
1 =

I

(1− ρ1)
− ρ1

(1− ρ1)

E

(1 + (p− 1)ρ1)
(3.29)

and

Σ−1
2 =

1

σ2

[
I

(1− ρ2)
− ρ2

(1− ρ2)

E

(1 + (p− 1)ρ2)

]
(3.30)

Therefore using the log likelihood or the likelihood ratio
f1(x)

f2(x)
which is one of the

most efficient criterion for classification, by ignoring the additive constants gives

the optimal discriminant function below in the situation where the difference

between the mean vectors of the two populations is zero.

42



xΣ−1
1 x− x′Σ−1

2 x

=

[
1

1− ρ1

− 1

σ2(1− ρ2)

]
Z1−

[
ρ1

1− ρ1

1

1 + (p− 1)ρ1

− ρ2

σ2(1− ρ2)

1

1 + (p− 1)ρ2

]
Z2

(3.31)

where p = the number of independent variables/measurements, Z1 = tr(zz′) and

Z2 = tr(Ezz′) , with z being the observational vector belonging to either π1 or

π2.

It was observed that, the ideal discriminant function involves only Z1 and Z2 so

that these two quantities are plotted and gives a resulting straight line boundary.

After making further assumptions that, ρ1 = ρ2 = ρ,the discriminant function

given by equation (3.30) becomes

Z1 −
ρ

1 + (p− 1)ρ
Z2 (3.32)

Such that the coefficient of Z2 is estimated numerically. They further developed

an equation for determining the best boundary to give equal risks of misclassifi-

cation for both groups/populations that may be written as

p(1− ρ) log σ2

1− σ−2
− 2c (3.33)

where c = log

(
q2

q1

)
, q1 and q2 being the prior probabilities of populations π1 and

π2 respectively.

The classification rule then becomes, assign z to π1 if and only if

Z1 −
ρ

1 + (p− 1)ρ
Z2 <

p(1− ρ) log σ2

1− σ−2
− 2c (3.34)

Otherwise assign z to π2.

If we let equation (3.30)= U , then we assign z to π1 if and only if U > c.
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3.9 Distance and Classification

There are two Mahalanobis-type distance indices that are of importance in dis-

criminant analysis. One is an index of distance between two points where each

point represents a vector of means on the p variables. Having two centroids, µ1

and µ2 in their respective populations,the distance between the two centroids

within their respective populations becomes

M12=
[
(µ1 − µ2)′Σ−1(µ1 − µ2)

]1/2
(3.35)

In this case, the covariance matrix, Σ for the two populations are assumed to

be equal. Another type of Mahalanobis distance is appropriate when one point

represents a vector of p observations on an analysis unit and the other point

represents a centroid for a population. Consider i populations of interest; the

distance between xz the observation vector for unit z and µi, the centroid for

population i may be given by;

Mzi=
[
(xz − µi)′Σ−1

i (xz − µi)
]1/2

(3.36)

where Σi is the covariance matrix for Population i. The Mahalanobis distance

derived above is of much importance in discriminant analysis, since the main

goal in classification is to classify a unit into that population to which the unit is

nearest. That is the classification rule here is to classify unit z into population i

if Mzi is smaller than Mzi′ , for i′ 6= i and i, i′ = 1, 2, ..., i. That is, the equal mean

vectors for the two populations can be much more applicable to the second type

of the Mahalanobis distance derived in equation (3.31) above. For the univariate

case, Mzi can be derived as;

Mzi=

[
(xz − µi)′

1

σ2
i

(xz − µi)
]1/2

=

[
(xz − µi)2

σ2
i

]1/2

(3.37)
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3.10 Bayesian Classification

This section presents the Bayesian classification rule for classifying observations

into their respective groups. It consist basically of prior and posterior probabili-

ties.

3.10.1 Prior Probability

Let πj denote the proportion of units in the total observations/units in Population

j. That is the probability that a unit u will be randomly selected from the universe

and it will be from population j is πj. We denote πj as the prior probability of

membership in population j. The word prior means that, this is a probability

of population membership before xu is known. It is reasonable that these prior

probabilities be taken into consideration when arriving at values of P (j|xu). The

product of the prior and the posterior probabilities, πj.P (xu|j) denotes the joint

probability that a randomly selected unit belongs to Population j and at the

same time has a score vector close to xu.

3.10.2 Posterior Probability

Considering the probability of unit u belonging to Group j, given that the unit

has a particular observation vector,xu. This probability, denoted by P (j|xu),

is called the posterior probability of membership in Population j. The word

”posterior” means that, it is a probability of population membership conditioned

on knowing xu. Therefore, a unit is assigned to the population for which P (j|x),

that is the posterior probability of membership, is greatest. Given the probability

that a unit belongs to Population j (given an observed score vector) is equal to

the ratio of the probability of its score vector in Population j to the sum of the

probabilities associated with its score vector in all J groups. That is

P (j|Xu) =
P (xu|j)∑j
j′=1 P (xu|j′)

(3.38)
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Therefore assign unit u to population j if

P (j|xu) > P (j′|xu), forj′ 6= j (3.39)

The product of the prior and the posterior probabilities are therefore use to

arrive at values of P (j|Xu) by employing the Bayes theorem rule developed by

Rev.T Bayes. Incorporating prior probabilities, the posterior probability of unit

u belonging to Population j given a score vector is given by;

P (j|xu) =
πj.P (xu|j)∑J
j′=1 πj.P (xu|j′)

(3.40)

The Bayesian probability rule is stated as below; Assign unit u to population j if

P (j|xu) > P (j′|xu)

for j 6= j′, where P (j|xu) is defined in equation (3.39) above. Also because P (xu|j)

values are proportional to f(xu|j) values, we consider j values of πj.f(xu|j).

Hence the posterior probability becomes;

P (j|Xu) =
πj.f(xu|j)∑j
j′=1 πj.f(xu|j′)

(3.41)

By using the above Bayesian probabilities, the total number of misclassification

errors is minimized. Huberty and Olejnik (2006).

3.11 Discrimination using absolute values: The

Absolute Euclidean Distance Classifier (AEDC)

The Euclidean distance classifier cannot be used when the centroids for the two

populations are equal, µ1 = µ2. AEDC are used when the absolute values of the

components of the observations are used in Euclidean Distance Classifier (EDC).
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It is expected that, this approach does well in a high dimensional data set. AEDC

is mostly used and applicable in situations when the Σ1 6= Σ2 and µ1 = µ2. AEDC

and QDF are always used as an alternative to LDF.

The Euclidean distance classifier (EDC) will allocate an observational vector X

to population 1(π1) if

{
x− 1

2
(µ1 + µ2)

}T
.(µ1 − µ2) > 0 (3.42)

Otherwise to population 2(π2)

For the case of equal mean, that is taking the absolute values of the observational

vectors, then Y = |X|, for instance using a three dimensional vector, allocate a

three dimensional observational vector to π1 if

y1(µ1
1−µ2

1)−1

2
((µ1

1)2−(µ2
1)2)+y2(µ1

2−µ2
2)−1

2
((µ1

2)2−(µ2
2)2)+y3(µ1

3−µ2
3)−1

2
((µ1

3)2−(µ2
3)2) > 0

(3.43)

Where µ
(k)
i is the mean of the ith component of Y in the kth population, for

instance given that i = 1, 2, 3 and k = 1, 2. Therefore the AEDC is given as:

y1

(√
2

π
σ

(1)
11 −

√
2

π
σ

(2)
11

)
−1

2

(
2

π
(σ

(1)
11 − σ

(2)
11 )

)
+y2

(√
2

π
σ

(1)
22 −

√
2

π
(σ

(2)
22

)
−1

2

(
2

π
(σ

(1)
22 − σ

(2)
22 )

)
+ y3

(√
2

π
σ

(1)
33 −

√
2

π
(σ

(2)
33

)
− 1

2

(
2

π
σ

(1)
33 − σ2

(33))

)
> 0

Otherwise to population 2. It can be also written as, allocate X to π1 if

[
y1

(√
σ

(1)
11 −

√
σ

(2)
11

)
+ y2

(√
σ

(1)
22 −

√
σ

(2)
22

)
+ y3

(√
σ

(1)
33 −

√
σ

(2)
33

)]
≥

1

2

√
2

π

[
(σ

(1)
11 − σ

(2)
11 + σ

(1)
22 − σ

(2)
22 + σ

(1)
33 − σ2

33)
]

In general , we allocate observation vector X to π1 if

p∑
i=1

[
yi

(√
σ

(1)
ii −

√
σ

(2)
ii

)
− 1

2

√
2

π
(σ

(1)
ii − σ

(2)
ii )

]
> 0. (3.44)
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Chapter 4

Results and Discussion

This section presents the results of our data analyses and detailed discussion.

The Chapter comprises, preliminary analysis and detailed analyses based on the

objectives of the study.

4.1 Preliminary Analysis

Hotelling T 2 was used to test whether there exist differences between the mean

vectors of the Monozygotic and the Dizygotic twin groups. The significance of

the mean difference was tested in order to ensure that, the assumption of the

equal mean vectors for the groups are not violated. The hypothesis of testing the

equality of the mean vectors was stated as:

.

H0 :



µ1,1

µ1,2

µ1,3

...

µ1,10


=



µ2,1

µ2,2

µ2,3

...

µ2,10


Against H1 :



µ1,1

µ1,2

µ1,3

...

µ1,10


6=



µ2,1

µ2,2

µ2,3

...

µ2,10


The mean vectors for the two groups (i.e the Monozygotic twins and that of

the Dizygotic twins) were computed from the twin data and they are summarised

below: Let the mean vectors for Monozygotic twins be denoted as µM and that

of the Dizygotic twin group be denoted as µD. Therefore the estimates of µM

and µD are
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µM =



.

Ht 0.0617

Wt −0.0197

HL −0.239

HB 0.035

HC −0.205

ID −0.134

BPS 0.078

PI 0.352

SGR −0.259

SGL −0.106



and µD =



.

Ht 0.636

Wt −0.503

HL −0.253

HB 0.247

HC −0.205

ID −0.217

BPS −0.616

PI −0.356

SGR −0.030

SGL −0.233


respectively. The two variance covariance matrices were pooled together to as-

sume equal covariance matrix between the two twin groups. Hence the computed

pooled variance covariance matrix, Σ is given below:

Σ =



Ht Wt HL HB HC ID BPS PI SGR SGL.

Ht 0.98 0.69 0.70 0.34 0.63 0.17 0.11 0.01 0.20 0.13

Wt 0.69 1.36

HL 0.70 0.76 1.26

HB 0.34 0.36 0.36 0.88

HC 0.63 0.94 1.11 0.52 1.27

ID 0.17 0.26 0.27 0.20 0.34 0.21

BPS 0.11 −0.08 0.09 0.38 0.31 0.22 1.40

PI 0.01 −0.13 −0.25 0.05 −0.12 −0.02 0.52 0.87

SGR 0.20 0.18 0.27 0.14 0.26 0.05 0.21 0.04 0.99

SGL 0.13 0.32 0.12 0.21 0.28 0.11 0.28 −0.02 0.07 0.49


and the inverse of the pooled variance covariance matrix given by:
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Σ−1 =



Ht Wt HL HB HC ID BPS PI SGR SGL.

Ht 2.41

Wt −1.13 2.65

HL −1.95 1.35 6.05

HB −0.47 0.27 0.66 1.78

HC 1.58 −2.56 −5.86 −1.02 8.27

ID −0.09 −0.79 0.37 −0.64 −1.95 10.51

BPS −0.18 1.05 0.42 −0.10 −0.87 −1.61 1.81

PI −0.39 −0.25 0.85 0.02 −0.35 0.93 −0.97 1.92

SGR −0.05 −0.07 −0.23 −0.05 0.02 0.38 −0.21 0.01 1.11

SGL −0.01 −0.84 0.94 −0.19 −0.65 0.39 −0.89 0.68 −0.01 3.26


The table below summarises the output of the estimate of the Hotelling T 2,

the P − value and the F − test statistics.

Table 4.1: Parameter estimation of test statistics
(HotellingT 2) F − test P − value α
15.692 1.064 0.358 0.05

From Table 4.1 above, the Hotelling T 2 statistics was found to be 15.692, F−test

statistics to be 1.064, 0.358 being P − value, and the level of significance (α) to

be 0.05. By rule, the null hypothesis of no difference of the two mean vectors

are rejected if P − value < α. From Table 4.1, P − value=0.356 > α = 0.05.

Since the P-value is greater than the level of significance, we fail to reject the

null hypothesis and conclude that, there exist no difference between the two

mean vectors. Meaning there exist no significant mean difference between the

Monozygotic twins and that of the Dizygotic twins constituting the two separate

populations. Hence, discrimination will be solely based on the groups variance

covariance matrices.
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4.2 Case 1: Classification with Equal Prior Prob-

abilities

This study focussed on classifying the twin pair observations into their respective

groups based on the classification functions derived using the following four classi-

fication methods; The Bartlett and Please Method (BPM), the Bayesian Classifier

based on posterior probabilities, the Quadratic Discriminant Function approach

(QDF) and the Absolute Euclidean Distance Classifier approach (AEDC).

4.2.1 Bartlett and Please Classification Method for n1 =

n2

This case deals with discriminating between both the Monozygotic twins and

Dizygotic twins when equal prior probabilities are assumed for the groups. Bartlett

and Please applied their method of discrimination with equal prior probabilities

and they came out with a discriminant function and their corresponding classi-

fication rule. The discriminant function as well as the classification rule for this

method was obtained from the likelihood ratios of the two normal density func-

tions for both the Monozygotic twin group and that of the Dizygotic twin group.

The method also employed the use of Uniform Covariance matrices for both

groups with an assumption of equal population correlation coefficient ρ1 = ρ2

as well as the inequality of the correlation coefficient assumption ρ1 6= ρ2. In

other to come out with the boundary for the cost of misclassification and other

functions, the common variance was one of the parameters used often and the

estimate of the common variance (σ2) was obtained from the ratio of the sum of

squares of Dizygotic group to that of the Monozygotic group. Other estimates

for ρ1, ρ2, ρ, Σ1 and Σ2 were obtained from their sample estimates from the sam-

pled data. Fifteen pairs of twins were selected for each group with ten measured

characteristics. The difference between the observations of each twin pair were
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taken to represent an observation. The discriminant functions deduced was based

on only the first ten observations from each group. The observational vectors, z

were reconstructed using tr(zz′) = Z1 and tr(Ezz′) = Z2. Values of Z1 and Z2

for each of the twin groups were obtained and in all 30 estimates were made, with

E being a 10 ∗ 10 matrix with entries of 1’s. The values obtained were plotted

and a scatter diagram was obtained. Ten (10) samples taken from each of the two

groups were used for obtaining the discriminant functions, the classification rules

as well as the cut-off point(the boundary of misclassification). The Figure below

shows the scatter plot of the various observational vectors in the two populations

transformed into scalar values.

Figure 4.1: scatter plot of observations from both Mono. and Dizy. groups with
equal priors

Table 4.2: Table of estimates of parameters for n1 = n2

Sample Ratios σ2 ρ1 ρ2 ρ cut-off
n1 : n2 4.0296 0.0478 0.2194 0.1336 15.60
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From Figure 4.1 and Table 4.2 above, it is observed that, the cut-off point for

classification for assumed equal correlation coefficient was obtained as 15.6 and

the estimate of the overall common variance, σ2 recorded as 4.0296. Estimates of

ρ1 and ρ2 corresponding to Monozygotic and Dizygotic twin groups were obtained

as 0.0478 and 0.2194 respectively and that of the common ρ as 0.1336. It can be

seen that all the observations in the Dizygotic group are widely varied, and that

of the Monozygotic twins found to be less varied or closely located to each other.

As evident from the plot, only one observation(individual) was misclassified from

the Monozygotic twin group and two (2) observations being misclassified from

the Dizygotic twin group. However, none of the remaining five observations from

each of the two twin groups which were not included in deriving the function

were misclassified, indicating a very good and reliable function which possibly

provides maximum separation between the two groups. From the plot above, the

linear discriminant function, assuming ρ1 = ρ2 = ρ = 0.1336 was obtained as;

Z1 − 0.0606Z2 (4.1)

The discriminant scores after substituting all the fifteen individual twin obser-

vations into equation 4.1 are summarised in Table 4.1 below. Let DM be the

discriminant scores for classifying observations into the Monozygotic twin group.

Table 4.3: Discriminant scores for classifying observations as Monozygotic twins
DM 1.53 5.03 1.58 2.83 5.05 1.60 2.42 2.91 22.81

2.70 3.98 2.47 1.59 2.51 1.45

And the discriminant scores, DD for classifying observations into the Dizygotic

twin group are described in Table 4.3 below.

Table 4.4: Discriminant scores for classifying observations as Dizygotic twins
DD 15.87 28.77 16.65 50.77 60.40 14.37 64.12 38.61 15.59

15.58 133.63 45.58 81.79 43.92 18.21

The classification rule for this particular method was to assign x1 to π1 if the
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discriminant scores Di obtained from equation 4.1, is Di < 15.60 otherwise to π2.

From Table 4.3, it was observed that the score 22.81 exceeded the cut-off point

15.6, indicating a misclassified observation into Dizygotic group. The scores for

the Dizygotic group from Table 4.4 also recorded three (i.e 14.37, 15.59, 15.58

are all less than 15.60) misclassified observations.

The table below gives the confusion matrix of the misclassified observations.

Table 4.5: Confusion Matrix for Bartlett and Please method with common ρ

Classified as
True Pop. π1 π2 Total

π1 14.0 1.0 15.0
π2 3.0 12.0 15.0
Total 17.0 13.0 30.0

Where π1 and π2 represents a group of Monozygotic twins and a group of Dizy-

gotic twins respectively. The probability of correct classification from the table

was found to be 0.867.

Assuming ρ1 6= ρ2

Bartlett and Please (1963) and Desu and Geisser (1973) derived another discrim-

inant function from the likelihood ratio of the two density functions with unequal

population correlation coefficient common among the individual groups. With

reference to equation (3.26) and by substitution, the discriminant function below

was obtained.

0.732Z1 − 0.011Z2 (4.2)

Based on the above linear function, the following discriminant scores were ob-

tained for each group.

Table 4.6: Discriminant scores for classifying observations as Monozygotic twins
DM 1.16 3.73 1.20 2.21 4.35 1.17 1.78 2.20 18.11

1.98 2.93 2.12 1.21 1.84 1.09

The Discriminant scores for observations (individuals) in the Dizygotic twin

groups are summarised in Table 4.7.
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Table 4.7: Discriminant scores for classifying observations as Dizygotic twins
DD 12.19 21.24 13.05 41.37 45.65 10.53 47.87 29.64 11.49

11.89 104.67 37.77 66.14 35.20 14.32

From the two tables above (Table 4.6 and 4.7), only one observation was misclas-

sified from the Monozygotic twin group according to the computed discriminant

scores with six (6) observations being misclassified from the Dizygotic twin group.

Comparatively, the discriminant function derived when the two correlation coef-

ficients are assumed to be equal provides maximum separation based on the total

number of misclassified observations in each case.

In relation to existing literature, the results shows an agreement with the research

work of Bartlett and Please (1963), where one and two observations were misclas-

sified from both the Monozygotic and the Dizygotic twin groups. Its also shows

a relation with the research based work of Desu and Geisser (1968, 1973) where

in their study one of the five observations not used for obtaining the discriminant

functions was misclassified from the Dizygotic group.

4.2.2 The Bayesian Posterior Probability Approach for

n1 = n2

This particular method focusses on classifying an observation with the greatest

posterior probability value. It involves the computation of likelihoods based on

the density functions for two twin groups. In the application of the Bayesian

Classifier based on the posterior probabilities, we assumed equal prior probabili-

ties as well as normality.

This section considers classification of observations from both the Monozygotic

twins and that of the Dizygotic twins using the Bayes rule method for classifica-

tion when the prior probabilities were assumed to be equal. i.e (0.5 + 0.5 = 1).

Table 4.8 summarises the values for the likelihoods for each group as well as

their corresponding posterior probabilities. Let f(x|j) and f(x|j′) be the like-
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lihood functions for the Monozygotic and Dizygotic group respectively. Denote

the density functions of Monozygotic and Dizygotic groups as f1(x) and f2(x)

respectively. Also let xM and xD be the observations selected from the Monozy-

gotic and the Dizygotic twin groups.

The table below presents the summary of the posterior probabilities of an obser-

vational vector belonging to either Monozygotic group or the Dizygotic group.

Their corresponding likelihoods are presented in Appendix A.

Table 4.8: Posterior probabilities for equal group prior probability
P (j|xM) P (j′|xM) P (j|xD) P (j′|xD)
7.070e-01 2.930e-01 6.69e-01 3.31e-01
8.190e-01 1.810e-01 3.41e-01 6.59e-01
5.580e-01 4.420e-01 1.48e-01 8.52e-01
4.890e-01 5.110e-01 5.68e-02 9.43e-01
6.780e-01 3.220e-01 6.43e-01 3.57e-01
4.440e-01 5.560e-01 6.03e-01 3.97e-01
7.510e-01 2.490e-01 1.00e-01 9.00e-01
8.450e-01 1.550e-01 2.49e-01 7.51e-01
9.510e-01 4.890e-02 2.79e-01 7.21e-01
8.880e-01 1.120e-01 4.15e-01 5.85e-01
6.130e-01 3.870e-01 1.31e-03 9.99e-01
6.790e-01 3.210e-01 9.96e-02 9.00e-01
7.840e-01 2.160e-01 6.29e-03 9.94e-01
5.780e-01 4.220e-01 5.25e-01 4.75e-01
4.980e-01 5.020e-01 2.02e-01 7.98e-01

The Bayes rule of posterior probabilities stipulates that, the posterior proba-

bility of an observational vector from the Monozygotic group belonging to the

Monozygotic group P (j|xM) should be greater than the posterior probability of

an observational vector from Monozygotic group belonging to the Dizygotic group

P (j′|xM). That is an observation xM is more likely to belong to the Monozygotic

population (j) than that of the Dizygotic population j′. Table 4.8 above, shows

that, only three (3) observations were found to be misclassified from the Monozy-

gotic group since their posterior probability values were all found to be less than

their corresponding posterior probabilities of an observation xM belonging to pop-

ulation j′. (i.e observations 4, 6 and 15 from the table).
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On the other hand, it was observed that, four (4) values of posterior probabilities

of xD belonging to the Dizygotic group (j′) were found to be less than those

belonging to the Monozygotic group (j). This indicates four misclassified twin

observations from the Dizygotic twin group. The four misclassified observation

corresponds to the posterior probability values of observations 1, 5, 6 and 14 in

Table 4.8. The Bayesian classification procedure presented in this study shows a

true reflection with the research based study of Johnson and Wichern (2007).

The table below summarises the total number of true classification of observations

as well as misclassified observations. From Table 4.9, the probability of correct

classification was 0.767 percent.

Table 4.9: Confusion Matrix for Bayes rule approach for equal population prior
probabilities

Classified as
True Pop. π1 π2 Total
π1 12.0 3.0 15.0
π2 4.0 11.0 15.0
Total 16.0 14.0 30.0

4.2.3 Quadratic Discriminant Function Approach for n1 =

n2

This section applies the Quadratic Discriminant function (QDF) approach for

classifying observations into either population π1 or π2 for equal prior probabil-

ities and misclassification costs. Mahalanobis Distances for each group was also

used to classify the twin pair observations. As already explained in Chapter three,

the QDF is normally used in the case of equal mean discrimination, when the

assumptions of unequal covariance matrices as well as normality are satisfied.

Ganeslingam et al. (2006) deduced the QDF for equal prior probabilities and

equal misclassification cost as;

ln

{
|Σ1|
|Σ2|

}
−
{

(x− µ1)τΣ−1
1 (x− µ1)

}
+
{

(x− µ2)τΣ−1
2 (x− µ2)

}
> 0
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Which can be rewritten as;{
(x− µ1)τΣ−1

1 (x− µ1)
}
−
{

(x− µ2)τΣ−1
2 (x− µ2)

}
< ln

{
|Σ1|
|Σ2|

}
For the equal prior probability case, i.e 0.5 for each twin group, 15 pairs of ob-

servations were sampled from each group. However the discriminant function

obtained in this case as shown above, was composed of as the difference between

the Mahalanobis distance for the two respective twin groups and their additive

constant. Therefore we assigned observation x1 to Monozygotic group π1 when;

{
(x− µ1)τΣ−1

1 (x− µ1)
}
−
{

(x− µ2)τΣ−1
2 (x− µ2)

}
< −0.1664 (4.3)

Based on the above equation the discriminant scores for both groups were ob-

tained. The table below presents the discriminant scores for the case of equal

prior probabilities and equal misclassification costs.

Table 4.10: Discriminant scores for equal prior probability case
DM < −0.166 DD > −0.166

1.599 -1.245
-2.851 1.483
-0.303 3.662
0.253 5.785
-1.321 -1.007
0.612 -0.672
-2.044 4.550
-3.230 2.378
-5.767 2.064
-3.968 0.853
-0.753 13.439
-1.336 4.570
-2.417 10.291
-0.460 -0.030
0.180 2.915

From Table 4.10, we observed four misclassified observations from both twin

groups based on the cut-off point (-0.166), representing approximately 73 percent

correct classification rate. Hence approximately 73 percent of the observations

from both the Monozygotic and the Dizygotic twin groups were correctly classi-
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fied.

4.2.4 The AEDC Classification Method for n1 = n2

This method was applied as already explained in Chapter three when the covari-

ance matrices for the two twin groups were assumed to be unequal with equal

mean vectors across the groups. This sections applies the AEDC methods for the

case of equal prior probabilities and misclassification costs.

The absolute linear discriminant function, derived in this case for a larger dimen-

sional data set (i.e a 10 by 10) matrix was derived by;
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We therefore allocated an observation vector X to π1 if

10∑
i=1

[
yi

(√
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ii −
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(2)
ii

)
− 1
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√
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(1)
ii − σ

(2)
ii )

]
> 0. (4.4)

where Y = |X|, i.e y1 = |x1|, y2 = |x2|, ..., y10 = |x10|.

Otherwise to π2.

After simplifications of the above equation, the new classification rule was ob-

tained as;

Assign |X| to π1 if

y1

(√
σ

(1)
11 −

√
σ

(2)
11

)
+ y2
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)
≥ −1.2368

Otherwise to π2.
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The derived function using the AEDC method was used to compute the discrim-

inant scores as shown below.

Table 4.11: Discriminant scores using AEDC method for n1 = n2

DM < −1.24 -1.65 -2.56 -1.25 -1.25 -3.25 -1.18 -1.72 -2.04 0.32 -2.15
-1.40 -1.16 -0.99 -1.30 -1.37

DD > −1.24 -1.07 -3.29 2.85 5.38 6.29 2.82 2.82 4.09 1.76 2.74
6.11 5.12 7.76 5.43 3.57

With reference to Table 4.11, four (4) observations from the Monozygotic group

were found to be misclassified and one (1) being misclassified from the Dizygotic

group based on their scores/their Euclidean distances. The correct classification

rate based on the outcome from the discriminant scores was discovered to be

approximately 83 percent.

4.2.5 Performance Evaluation of the Methods for n1 = n2

The performance of the Bartlett and Please method (BPM), the Bayesian Poste-

rior Probability approach, the QDF and the AEDC methods were evaluated based

on the Cross-Validation (CV) or Leaving-One-Out error rate (LOO) and the Bal-

ance Error Rate (BER). The Table below, provides the output that summarises

the error rates of the four methods for comparison.

Table 4.12: Error Rates estimates of the four methods for n1 = n2

Classification
Methods

Error Rates
Mean

CV BER
Bartlett and Please Method 0.233 0.133 0.183
The Bayesian Rule 0.066 0.233 0.149
The QDF Approach 0.333 0.233 0.283
The AEDC 0.166 0.166 0.166

From Table 4.12, we found out that, the margin of the mean error rates ranges

from approximately 15 percent to approximately 28 percent. From the applica-

tion of the four main methods based on equal prior probabilities, it was observed
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that two main error estimators namely cross validation (CV) and the Balanced

Error Rates (BER) were used in estimating the errors incurred based on the

misclassified observations. According to Johnson and Wichern, 2007, the best

performing function or method is judged by the one with the least estimate of

error rates or mean error rates. Comparatively, it was seen from Table 4.12 that,

the classification method with the least estimate of Cross validation error rate

was the Bayesian Classifier using posterior probabilities with the error rate of

0.067, followed by the AEDC method with CV error rate of 0.166, with the QDF

approach recording the highest CV error rate of 0.333. Their corresponding BER

also gave quiet similar results with the Bartlett and Please method recording the

least error rate of 0.133, with the highest by recorded by both the Bayesian rule

method and the QDF approach with BER of 0.233. Generally, inferences were

drawn based on the mean error rates recorded by each of the four methods. it

is clearly indicated from the various methods based on their mean error rates

that, the Bayesian Classifier on posterior probabilities performs better in classi-

fying the twin pair observations into their respective groups with a recorded least

mean error rate of 0.149. In other words, the Bayesian classifier provided bet-

ter maximum separation between the two groups as compared to the remaining

methods.

The mean error estimate of the AEDC method of 0.166 was quiet observed to

be closed to the BPM, performing much more better than two methods with the

exception of the BPM. Conclusively, The QDF approach obtained the highest

mean error rate of 0.283 indicating a poor performance in the aspect of classify-

ing the twin pair observations into their respective groups. In other words, the

Expected misclassification Error rate for QDF was observed to be higher than

the remaining three classification methods. This results shows partial conformity

with the research based study of Ganeslingam et al, where in their study they

compared the performance of the QDF and the AEDC method and concluded
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that, the AEDC method outperforms the QDF method.

4.3 Case 2: Classification with Unequal Prior

Probabilities

Several sample selection were used to derive the classification rules for classifying

the twin pair observations into their respective groups for the assumption of

unequal prior probabilities (p1 6= p2) and equal misclassification, c(1|2) = c(2|1).

The sample selection were taking in multiples of five (5). The varying degrees of

sample selections used in the groups ratio order of Monozygotic: Dizygotic were;

1 : 2 , 1 : 3 , 1 : 4 and the ratio order of Dizygotic: Monozygotic were 1 : 2 , 1 : 3

, 1 : 4. This section also employed the four methods earlier discussed in studying

the effect of unequal prior probabilities and equal misclassification cost on the

classification rules of each of the methods.

4.3.1 Bartlett and Please Classification Method for n1 6=

n2, (n1 : n2)

We started the varying sample selections by taking five (5) sample observations

from the Monozygotic group(n1 = 5) and Ten (10) from the Dizygotic group

(n2 = 10). The estimates for ρ1,ρ2, ρ and σ2 were obtained as 0.0967, 0.2194,

0.16 and 6.8933 respectively as shown in the Table below.

Table 4.13: Table of estimates of parameters for n1 6= n2

Sample Ratios σ2 ρ1 ρ2 ρ cut-off
n1 : n2 6.8933 0.0967 0.2194 0.16 14.96

The estimate of the common correlation coefficient ρ was used to obtain the

value of the boundary for misclassification/cut-off point. From the boundary of

misclassification formula given as

(1− ρ)p log σ2

1− σ−2
− 2c
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where c =
q2

q2

, q1 and q1 are the prior probabilities for Monozygotic and Dizygotic

twin groups respectively. That is q1 and q2 were estimated as 0.33 and 0.67

respectively. Hence c = 2. Therefore the boundary of misclassification was

derived as 14.96. The Figure below presents the scatter plots for the total 15

observations. (That is 5 from Monozygotic and 10 from Dizygotic). However from

the plot and other computations the linear discriminant function was obtained

for this particular case.

Z1 − 0.0655Z2 (4.5)

Figure 4.2: Scatter plot of observations from the sample selection, n1 = 5 : n2 =
10

From Figure 4.2 above, it was observed that, none of the five selected observations

from the Monozygotic group was misclassified with only one observation being

misclassified from the Dizygotic group. In obtaining a better and maximum

separation the discriminant scores are being summarised in Table 4.14.

where DM and DD are the discriminant scores for the Monozygotic group and
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Table 4.14: Discriminant scores for classifying observations as both twin groups
DM 1.53 5.01 1.57 2.81 4.95
DD 15.79 28.74 16.52 50.15 60.19 14.36 63.99 38.40 15.58 15.51

the Dizygotic group.

The discriminant scores in Table 4.14 above observed only one misclassified ob-

servation from the Dizygotic twin group. Comparatively, the unequal prior prob-

ability provides maximum separations than that of equal prior probability.

The confusion matrix after the classification of the observation using the derived

function are being summarised in Table 4.15 below. The table below gives the

confusion matrix of the misclassified observations.

Table 4.15: Confusion Matrix for Bartlett and Please method with common ρ
(5:10) samples

Classified as
True Pop. π1 π2 Total
π1 5.0 0.0 5.0
π2 1.0 9.0 10.0
Total 6.0 9.0 15.0

From the table, the proportion of correct classification was observed to be 93

percent.

Taking the sample ratios n1 = 1 : n2 = 3

Five (5) samples from the Monozygotic twins and 15 from the Dizygotic twin

groups were taken. The unequal prior probabilities from the Monozygotic and

the Dizygotic twin groups were computed to be 0.25 and 0.75 respectively. Based

on these and other estimates the cut-off points were also derived as shown in the

scatter plot below. The plot describes the distribution of the Z1 and Z2 values.

As observed from Figure 4.3, none of the twin pair observations from both twin

groups were misclassified, giving a 100 percent correct classification of the obser-

vations. Based on the plot, a linear discriminant function was derived as shown

below;

Z1 − 0.066Z2 (4.6)
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Figure 4.3: Scatter plot of observations from the sample ratio, 1 : 3

The linear function was used to compute the discriminant scores for the sam-

ple ratio, 1:3 as shown below. We also observed no misclassified observation from

the scores. This results indicates a high significant effect of the unequal prior

probabilities in this case on the classification rule. That is the classification rule

was shifted much more backwards as compared to the equal prior probability

case.

Table 4.16: Discriminant scores for classifying observations as both twin groups
for ratio 1:3
DM 1.53 5.01 1.57 2.81 4.94
DD 15.79 28.74 16.52 50.08 60.17 14.36 63.98 38.38 15.58 15.51

132.50 44.85 80.76 43.42 18.04

Taking the sample ratio, n1 = 1 : n2 = 4

Another sample ratio of 5 Monozygotic (n1 = 5) observations and 20 Dizygotic

(n2 = 20) observations were taking. Their corresponding prior probabilities were
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recorded as (p1 = 0.20) and (p2 = 0.80). The values of the transformed observa-

tional vectors into Z1 and Z2 were plotted and a linear discriminant function was

derived using the common population correlation coefficient (ρ) and the overall

variance (σ2). Below summarises the distribution of the observations in the form

of Z1 and Z2 as used by Bartlett and Please (1963).

Figure 4.4: Scatter plot of observations from the sample ratio, 1 : 4

The linear discriminant function and the classification rule was obtained in this

case as ; classify x1 to π1 if

Z1 − 0.0709Z2 ≤ 17.7 (4.7)

After substituting the observations (i.e the values of Z1 and Z2) into the lin-

ear equation above, the discriminant scores were also obtained as shown Table

4.17. From both the scores and the scatter plot, we observed five misclassified

observations from the Dizygotic twin group with no misclassification from the

Monozygotic group. The cut-off point in this case, was shifted forward, causing

more observations in the Dizygotic group to be misclassified, hence there exist a
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significant effect of unequal prior probabilities on the classification rule.

Taking the sample ratios in the order (n2 : n1),i.e (n2 = 1 : n1 = 2).

The sample size selection was alternated by keeping the first sample selected from

the Dizygotic group (n2 = 5) constant and then increasing the sample sizes of

the Monozygotic group (n1) in multiples of 5 to the 4th ratio.

Ten (10) observations of Monozygotic twins were sampled as well as five (5)

samples from the Dizygotic twins.

Figure 4.5 below shows the plot of the values of both twin groups after the

computation of their respective Z1 and Z2 values. From the scatter plot, it is

clearly indicated that, only one observation belonging to the Monozygotic twin

was misclassified after a little shift of the boundary of misclassification (cut-off)

based on the unequal prior probabilities. However the linear function below was

derived based on the scatter plot above and discriminant scores generated based

on this function also misclassified the same number of observation (i.e only one

observation from the Monozygotic group was misclassified).

Below gives the classification rule for classifying x1 to π1, otherwise to π2.

Z1 − 0.0702Z2 ≤ 15.90 (4.8)
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Figure 4.5: Scatter plot of observations from both Mono. and Dizy. groups for
n2 = 1 : n1 = 2

Taking sample ratio n2 = 1 : n1 = 3

Five (5) and fifteen (15) samples were taken respectively from both the Dizygotic

and the Monozygotic twin groups. The prior probability of the Monozygotic

group was 0.75 and that of the Dizygotic to be 0.25. The distribution of the

observations are summarised in the scatter plot below.

And the classification rule in this case was; classify x1 to π1 otherwise to π2 if

Z1 − 0.023Z2 ≤ 18.91 (4.9)

Evidence from Figure 4.6 and the discriminant scores in the Appendix sections

B shows two misclassified observations and one misclassified observation from

the Dizygotic and the Monozygotic groups respectively. Hence the rate of error

of misclassification based on these misclassified observations was obtained as 15

percent, indicating that, the above classification rule provided 75 percent correct

classification of their observations into their true populations.

68



Figure 4.6: Scatter plot of observations from both Mono. and Dizy. groups for
n2 = 1 : n1 = 3

Taking the sample ratio n2 = 1 : n1 = 4

Below gives the scatter plot of the separation of the twin observations into their

respective groups.

The linear function and classification rule obtained for providing maximum sep-

aration between the two twin groups in the case of unequal prior probability was

obtained as shown;

We classified the observations x1 to π1 when

Z1 − 0.0158Z2 ≤ 17.99 (4.10)

Two (2) observations from the Dizygotic twins were misclassified, whilst three (3)

from the Monozygotic group were misclassified based on the above classification

rule.
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Figure 4.7: Scatter plot of observations from both Mono. and Dizy. groups for
n2 = 1 : n1 = 4

Table 4.17: Summary table for discriminant scores for the three sampling ratios
in the order n1 : n2

n1 : n2 1: 2 1:3 1:4
DM<
14.96

DD ≥ 14.96 DM <12.90 DD ≥ 12.90 DM <17.7 DD ≥ 17.7

1.53 15.79 1.53 15.79 1.52 15.69
5.01 28.74 5.01 28.74 5.01 28.72
1.57 16.52 1.57 16.52 1.56 16.38
2.81 50.15 2.81 50.08 2.79 49.46
4.95 60.19 4.94 60.17 4.84 59.96

14.36 14.36 14.36
63.99 63.98 63.84
38.40 38.38 38.18
15.58 15.58 15.58
15.51 15.51 15.43

132.50 131.49
44.85 44.19
80.76 79.83
43.42 42.97
18.04 17.90

20.76
43.98
19.67
59.67
34.88
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Table 4.18: summary table for discriminant scores for the three sampling ratios
in the order, n2 : n1

1: 2 1:3 1:4

DM<
15.90

DD ≥ 15.90
DM <

18.91

DD ≥

18.91

DM <

17.99

DD ≥

17.99
1.52 15.70 1.58 16.53 1.59 16.66
5.01 28.72 5.09 28.97 5.10 29.01
1.56 16.40 1.63 17.63 1.64 17.83
2.79 49.55 2.99 55.59 3.02 56.51
4.85 59.99 5.81 62.03 5.96 62.34
1.60 1.60 1.61
2.42 2.42 2.42
2.88 2.99 3.02
22.39 24.42 24.74
2.70 2.70 2.771

4.00 4.00
2.82 2.89
1.65 1.66
2.51 2.51
1.48 1.49

1.57
3.98
6.87
2.31
4.89

4.3.2 The Bayesian Posterior Probability Approach for

n1 6= n2

The posterior probability approach for classification using Bayes rule was applied

when the prior probabilities were assumed to be unequal. The sample ratios in

the order of n1 : n2 and n2 : n1 were used as already spelt out in the above section.

Taking the sample ratio, n1 = 1 : n2 = 2

Ten twin pairs of observations were sampled from the Dizygotic twin group as well

as five (5) from the Monozygotic. The main idea of these varying samples from

each respective twin group was to find out the effect of unequal prior probabilities

on the classification of the observations into their respective groups based on their
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scores. Table 4.19 below summarises the Bayes rule of posterior probabilities.

By rule, an observation is classified into their respective groups based on the

maximum posterior probability value they assumes.

Table 4.19: Likelihoods and Posterior probabilities for unequal group prior prob-
ability for n1 = 1 : n2 = 2

P (j|xM) P (j′|xM) P (j′|xD) P (j|xD)
6.69E-01 3.31E-01 3.39E-01 6.61E-01
8.72E-01 1.28E-01 6.79E-01 3.21E-01
6.74E-01 3.26E-01 7.42E-01 2.58E-01
6.05E-01 3.95E-01 9.26E-01 7.40E-02
8.34E-01 1.66E-01 3.19E-01 6.81E-01

6.05E-01 3.95E-01
9.90E-01 9.95E-03
3.73E-01 6.27E-01
8.78E-01 1.22E-01
6.11E-01 3.89E-01

From the table posterior probabilities above, we observed that none of the five (5)

selected observations from the Monozygotic twin group was misclassified. Three

(3) out of the ten selected observations from the Dizygotic group were misclassi-

fied. In all, 80 percent of correct classification rate was realised in this case, with

the remaining 20 percent accounting for misclassification rate.

Taking the sample ratio n1 = 1 : n2 = 3

Bayes rule of posterior probability was applied when unequal sample size selec-

tions were taking from both groups. Five (5) observations were taken from the

Monozygotic twins as against fifteen (15) observations from the Dizygotic twins.

The table below presents the output of likelihoods and posterior probabilities

based on the groups prior probabilities. From Table 4.20, observations made in-

dicates that, none of the Monozygotic observations was misclassified. However six

(6) observations were misclassified and hence the error rate of misclassifications

becomes 30 percent.
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Table 4.20: Posterior Probabilities for the sample ratio n1 = 1 : n2 = 3

P (j|xM) P (j′|xM) P (j′|xD) P (j|xD)
5.76E-01 4.24E-01 9.08E-01 9.21E-02
9.10E-01 9.02E-02 7.26E-01 2.74E-01
7.36E-01 2.64E-01 6.80E-01 3.20E-01
6.23E-01 3.77E-01 9.86E-01 1.38E-02
7.90E-01 2.10E-01 2.70E-01 7.30E-01

4.81E-01 5.19E-01
9.11E-01 8.85E-02
6.96E-01 3.04E-01
5.52E-01 4.48E-01
1.60E-01 8.40E-01
2.52E-01 7.48E-01
8.81E-01 1.19E-01
7.31E-01 2.69E-01
3.87E-01 6.13E-01
2.94E-01 7.06E-01

Taking the sample ratio, n1 = 1 : n2 = 4

The sampling selection continued by keeping the 5 observations sampled from the

Monozygotic group constant and taking an increased sample of 20 from the Dizy-

gotic group. The likelihoods and the posterior probabilities for this particular

case were obtained and summarised in Table 4.21. However the classification rule

was obtained based on the observation with the highest posterior probabilities

and likelihoods. The table below presents the likelihoods and posterior probabil-

ities for the sample selection n1 = 1 : n2 = 4.
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Table 4.21: Posterior Probabilities for the sample selection n1 = 1 : n2 = 4
P (j|xM) P (j′|xM) P (j′|xD) P (j|xD)
6.86E-01 3.14E-01 9.18E-01 8.16E-02
9.17E-01 8.29E-02 6.73E-01 3.27E-01
7.65E-01 2.35E-01 6.47E-01 3.53E-01
6.44E-01 3.56E-01 9.85E-01 1.46E-02
8.57E-01 1.43E-01 2.54E-01 7.46E-01

3.26E-01 6.74E-01
8.75E-01 1.25E-01
7.93E-01 2.07E-01
5.09E-01 4.91E-01
1.13E-01 8.87E-01
2.08E-01 7.92E-01
9.13E-01 8.72E-02
7.27E-01 2.73E-01
3.29E-01 6.71E-01
2.68E-01 7.32E-01
2.73E-01 7.27E-01
2.78E-01 7.22E-01
1.00E+00 1.51E-04
9.68E-01 3.20E-02
7.42E-01 2.58E-01

From Table 4.21, the posterior probabilities used as a classification rule was hugely

affected by the unequal prior probabilities as the sample size of the Dizygotic

group increased to 20. As a result of this, we observed eight (8) misclassified

observations from the Dizygotic group. No observation was misclassified from

the Monozygotic twin group. Hence the classification rule affects the population

with the larger sample size.

Taking the sample ratios in the order of n2 = 1 : n1 = 2

We alternated the sample selections by keeping the first selected sample from

the Dizygotic group (i.e n2 = 5) constant and increasing the sample sizes of the

Monozygotic group in multiples of five (5).

We first considered the sample ratio, n2 = 1 : n1 = 2, that is sampling 5 twin

observations from the Dizygotic group and 10 twin observations from the Monozy-

gotic twin group. The classification rule for classifying observations into either of
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the two populations for this particular method is based on likelihoods obtained

from the respective density functions and their posterior probabilities.

Based on the evidences provided in Table 4.22, the posterior probability val-

ues detected two (2) misclassified observation out of the ten sampled, from the

Monozygotic group and one (1) out of five (5) sampled from the Dizygotic twin

group. The table below summarises the likelihoods and posterior probabilities of

5 observations from the Dizygotic group and 10 from the Monozygotic group.

Table 4.22: Likelihoods and Posterior probabilities for sample ratio, n2 = 1 :
n1 = 2

P (j|xM) P (j′|xM) P (j′|xD) P (j|xD)
7.07E-01 2.93E-01 3.39E-01 6.61E-01
8.19E-01 1.81E-01 6.79E-01 3.21E-01
5.58E-01 4.42E-01 7.42E-01 2.58E-01
4.89E-01 5.11E-01 9.26E-01 7.40E-02
6.78E-01 3.22E-01 3.19E-01 6.81E-01
4.44E-01 5.56E-01
7.51E-01 2.49E-01
8.45E-01 1.55E-01
9.51E-01 4.89E-02
8.88E-01 1.12E-01

Taking the sample selection n2 = 1 : n1 = 3

The sample selection made up of 5 and 15 observations from the Dizygotic and

Monozygotic populations were used to derive a classification rule under unequal

prior probabilities using posterior probabilities of the individual twin observa-

tions. The table below presents the outcome of the posterior probabilities and

likelihoods of the observations. From Table 4.23, one observation from the Dizy-

gotic group was found to be misclassified.
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Table 4.23: Likelihood and Posterior Probabilities for sample ratio, n2 = 1 : n1 =
3

P (j|xM) P (j′|xM) P (j′|xD) P (j|xD)
8.80E-01 1.20E-01 9.97E-01 3.16E-03
9.87E-01 1.30E-02 7.18E-01 2.82E-01
8.53E-01 1.47E-01 5.71E-01 4.29E-01
8.75E-01 1.25E-01 9.96E-01 3.53E-03
9.63E-01 3.72E-02 4.98E-02 9.50E-01
8.77E-01 1.23E-01
9.34E-01 6.57E-02
9.60E-01 3.99E-02
6.87E-01 3.13E-01
9.23E-01 7.71E-02
9.17E-01 8.28E-02
8.40E-01 1.60E-01
8.85E-01 1.15E-01
9.66E-01 3.35E-02
9.26E-01 7.37E-02

Sample ratio n2 = 1 : n1 = 4

Table 4.24 summarises the likelihoods and posterior probabilities for this partic-

ular sampling ratio. That is 5 and 20 twin observations were sampled from both

the Dizygotic and Monozygotic twin groups. From the table, one twin pair obser-

vation from each group was found to be misclassified. This results based on this

sampling ratio provides better maximum separation than the already explained

sampling ratios.
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Table 4.24: Likelihood and Posterior Probabilities for the sample ratio, n2 = 1 :
n1 = 4

P (j|xM) P (j′|xM) P (j′|xD) P (j|xD)
8.82E-01 1.18E-01 9.94E-01 6.48E-03
9.83E-01 1.65E-02 7.00E-01 3.00E-01
8.45E-01 1.55E-01 5.45E-01 4.55E-01
8.92E-01 1.08E-01 9.93E-01 7.08E-03
9.52E-01 4.83E-02 7.49E-02 9.25E-01
8.81E-01 1.19E-01
9.32E-01 6.80E-02
9.47E-01 5.27E-02
5.60E-01 4.40E-01
9.18E-01 8.16E-02
9.06E-01 9.36E-02
8.42E-01 1.58E-01
8.84E-01 1.16E-01
9.60E-01 4.05E-02
9.27E-01 7.33E-02
4.85E-02 9.51E-01
9.86E-01 1.38E-02
9.48E-01 5.19E-02
7.12E-01 2.88E-01
5.73E-01 4.27E-01

4.3.3 The QDF Approach for n1 6= n2

Based on the sample selections of 5 and 10 from both the Monozygotic and the

Dizygotic twin groups, 0.33 and 0.67 prior probabilities for Monozygotic and

Dizygotic group respectively were obtained. Based on these prior probabilities

the QDF in this case was obtained as shown below and the equation was used to

compute the discriminant scores in this case.

{
(x− µ1)τΣ−1

1 (x− µ1)
}
−
{

(x− µ2)τΣ−1
2 (x− µ2)

}
< ln

{
|Σ1|
|Σ2|

}
+

(
c(1|2)

c(2|1)

)(
P2

P1

)
(4.11)

Hence assuming equal misclassification cost and unequal prior probabilities i.e

0.33 for Monozygotic and 0.67 for Dizygotic group, the above equation can be

rewritten in this particular case as

{
(x− µ1)τΣ−1

1 (x− µ1)
}
−
{

(x− µ2)τΣ−1
2 (x− µ2)

}
< 1.658 (4.12)
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From the discriminant scores as shown in Table 4.25, we observed two (2) misclas-

sified observations from the Dizygotic group and no observation was misclassified

from the Monozygotic twin group. Hence the proportion for correct classification

was computed as approximately 87 percent.

Taking sample ratio, n1 = 1 : n2 = 3

The sampling ratio of 5 Monozygotic and 15 Dizygotic twin observations were

used to derive the quadratic discriminant function, based on their respective prior

probabilities and equal misclassification cost assumption. The classification rule

we derived was; classify an observation x1 as π1 if ;

{
(x− µ1)τΣ−1

1 (x− µ1)
}
−
{

(x− µ2)τΣ−1
2 (x− µ2)

}
< 1.204 (4.13)

The above function was used to calculate the discriminant scores of the twin

observations for the provision of maximum separation. Five and one observa-

tions were misclassified from the Dizygotic and Monozygotic groups respectively.

Hence the probability of correct classification was 0.70. (see Table 4.25 ).

Taking sample ratio, n1 = 1 : n2 = 4

The quadratic discriminant scores obtained based on the ratio of the determinants

of the covariance matrices and Mahalanobis distances was obtained as; classify

x1 to π1 otherwise to π2 if

{
(x− µ1)τΣ−1

1 (x− µ1)
}
−
{

(x− µ2)τΣ−1
2 (x− µ2)

}
< 1.585 (4.14)

The proportion of correct classification based on four misclassified observations

from the Dizygotic group was 0.84.

The table below summarises the discriminants scores using the QDF obtained

from the three sampling ratios explained above. With reference from Table 4.25,

the discriminant scores for the sample ratio 1 : 2 recorded two misclassified ob-
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servations from the Dizygotic group. One (1) and five (5) observations from both

the Monozygotic and Dizygotic twin groups were found to be misclassified from

their groups respectively for the sample ratio of 1 : 3. For the sample ratio of

1 : 4, we observed 3 and 6 twin pair observations being misclassified from the

Monozygotic and Dizygotic twin groups. This classification rules derived under

the QDF method, discriminate similarly to that of the Bayesian Classifier, in the

sense that, the number of misclassified observations increases, as the sample size

selection for the Dizygotic group increases.

Table 4.25: Discriminant scores for the three sample ratios
Sample Ratios 1 : 2 1 : 3 1 : 4

Disc. Scores DM <1.65 DD ≥ 1.65 DM <1.20 DD ≥ 1.20 DM <1.58
DD ≥
1.58

-0.786 -0.429 1.177 6.381 0.855 7.256
-4.780 3.026 -2.828 3.743 -2.392 3.85
-0.425 1.885 -0.257 3.301 0.054 3.622
-1.636 7.692 0.783 10.338 1.226 10.837
-1.744 0.026 -0.858 -0.194 -1.163 0.258

2.531 1.644 0.965
4.589 6.457 6.302
6.765 3.453 5.102
2.304 2.213 2.482
-2.845 -1.515 -1.701

-0.381 -0.261
5.808 7.11
3.789 4.371
0.868 0.991
0.035 0.402

3.456
4.756
3.112
1.876
4.476

Taking the sample ratio in the order, n2 : n1

As already explained in the previous sections, we alternated the sample sizes of

the two groups to assume unequal prior probabilities and study the behaviour of
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the resulting classification rules derived in each case based on effect unequal prior

probabilities.

The QDF obtained under the sample ratio n2 = 1 : n1 = 2 was;

{
(x− µ1)τΣ−1

1 (x− µ1)
}
−
{

(x− µ2)τΣ−1
2 (x− µ2)

}
< −2.422 (4.15)

From Table 4.26, the proportion of correct classification was recorded as 0.60.

For the sample ratio n2 = 1 : n1 = 3, the function was obtained as shown;

{
(x− µ1)τΣ−1

1 (x− µ1)
}
−
{

(x− µ2)τΣ−1
2 (x− µ2)

}
< −2.574 (4.16)

The proportion of correct classification for this sampling ratio with reference to

Table 4.26 was observed to be 0.40. And that of the ratio, n2 = 1 : n1 = 4 was

derived as;

{
(x− µ1)τΣ−1

1 (x− µ1)
}
−
{

(x− µ2)τΣ−1
2 (x− µ2)

}
< −2.605 (4.17)

The proportion of correct classification was 0.52, with the remaining representing

the misclassification rate. The discriminant scores obtained based on the three

QDF in this case are reported in Table 4.26.
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Table 4.26: Discriminant scores for the sample ratios, n2 = 1 : n1 = 2
Sample Ratios 1 : 2 1 : 3 1 : 4

Disc. Scores DM <-2.42 DD ≥ −2.42
DM <
-2.57

DD ≥
-2.57

DM <
-2.60

DD ≥
-2.60

-0.536 14.666 -1.078 14.666 -1.175 12.921
-5.851 4.948 -5.769 4.948 -5.316 4.552
-0.691 4.761 -0.621 4.761 -0.537 3.218
-0.726 15.191 -0.984 15.191 -1.364 12.742
-3.811 -3.115 -3.602 -3.115 -3.104 -2.173
-0.161 -1.033 -1.147
-2.596 -2.41 -2.379
-3.95 -3.467 -2.924
-0.524 1.327 2.374
-2.495 -2.064 -1.987

-1.914 -1.684
-0.402 -0.487
-1.18 -1.205
-3.829 -3.475
-2.163 -2.219

-2.111
-3456
-3.993
-4.980
-2.212

Four (4) and one (1) observations from Table 4.26 were misclassified from their re-

spective populations, i.e Monozygotic and Dizygotic twin groups respectively for

the sample ratio, 1:2. The number of correct classifications and misclassifications

for the other sample ratios are summarised in Table 4.26.

4.3.4 Evaluating the performance of the Classification Meth-

ods for n1 6= n2

The table below summarises the error rates of the classification methods and their

respective sample ratios under each of the three methods which where applicable

to deriving a classification rule under unequal prior probability situation.
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Table 4.27: Error rates for the classification method under unequal prior proba-
bility case.

Classification methods Error Rates Mean
CV BER

Bartlett and Please
n1 : n2

1 : 2 0.133 0.050 0.092
1 : 3 0.100 0.000 0.050
1 : 4 0.120 0.150 0.135
n2 : n1

1: 2 0.200 0.250 0.225
1: 3 0.200 0.200 0.200
1: 4 0.160 0.175 0.168
The Bayesian Rule
n1 : n2

1: 2 0.266 0.150 0.208
1: 3 0.300 0.333 0.316
1: 4 0.340 0.234 0.287
n2 : n1

1: 2 0.133 0.040 0.086
1: 3 0.350 0.433 0.391
1: 4 0.300 0.398 0.349
The QDF Approach
n1 : n2

1: 2 0.440 0.250 0.345
1: 3 0.250 0.167 0.209
1: 4 0.300 0.342 0.321
n2 : n1

1: 2 0.333 0.350 0.342
1: 3 0.150 0.300 0.225
1: 4 0.320 0.425 0.373

The table shows that generally unequal prior probabilities hugely influence the

classification rules of the three methods namely Bartlett and Please, QDF and

Bayesian Posterior Probability approach. The AEDC method was not included

in this particular case since their functions do not include the involvement and

computation of prior probabilities. From Table 4.27, it was observed that, the

error estimates increases appreciably as the size of one group increases relative

to another. Comparatively, all the three methods recorded almost similar error

estimates in both the sample selection ratios and their corresponding alternated

sampling ratio. Bartlett and Please classification method recorded the least mean
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error estimates as compared to the QDF and the Bayesian Classifier. The QDF

recorded the highest mean error rates. For unequal prior probability and equal

misclassification situation, Bartlett and Please method was observed to perform

much better than the other methods for the provision of maximum separation

between the two populations.

4.4 Case 3: Classification under Non-normality

assumption

We introduced outliers into the working data, for the normality assumption to be

violated and applied the Bayes rule of posterior probability method, the AEDC,

the QDF approach and the Bartlett and Please method. The table below gives

the error estimates of the classification rules for the four methods under equal

and unequal prior probabilities. The main reason for contaminating the data was

to study the effect of the contaminated twin observations on the classification

rules. Outliers were introduced into the first five observations in each of the twin

groups, one at a time and a classification rule was obtained in each case. The

errors incurred in the classification of the twin pair observations are presented

in Table 4.28. Generally the performances of the all the classification methods

with equal and unequal prior probabilities deteriorated after the introduction of

outliers into the twin data. However the mean error estimates AEDC method

performed slightly better than the Bayesian Posterior Probability approach with

a mean error rate of 0.381 under equal prior probabilities and 0.375 and 0.249

for the unequal prior probabilities based on the predetermined choice of sampling

ratios. In other words, the AEDC method recorded the least error rate of 0.339

and hence provides maximum separation than the remaining methods under non

normality. It was also observed that, The Bartlett and Please approach performed

poorly under non normality assumption with an error estimates for both equal

and unequal prior probabilities ranging from 0.466 to 0.667. The QDF performed
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appreciably better for the equal prior probability case, but the performance of the

method under unequal prior probabilities was abysmal, that is with a recorded

mean error rate for the two sample ratios as 0.523 and 0.625 for the sample ratios

of 1:2 and 1:3 respectively. This results/findings shows some conformity with the

research/study by Lachenbruch (1975), where after contaminating the twin data,

he discovered that, the performance of the QDF was very poor, but the absolute

linear discriminant function performed reasonably well.

Table 4.28: Evaluation of the classification methods under Non- normality

Classification methods Error Rates Mean
CV BER

Bartlett and Please
n1 = n2 0.466 0.466 0.466
n1 : n2

1 : 2 0.800 0.850 0.825
1 : 3 0.756 0.757 0.762
1 : 4 0.699 0.861 0.780
n2 : n1

1: 3 0.600 0.733 0.667
1: 2 0.614 0.801 0.708
1: 4 0.703 0.788 0.746
The Bayesian Rule
n1 = n2 0.352 0.410 0.381
n1 : n2

1: 2 0.400 0.350 0.375
1: 3 0.423 0.422 0.423
1: 4 0.478 0.317 0.398
n2 : n1

1: 3 0.333 0.166 0.249
1: 2 0.301 0.123 0.212
1: 4 0.314 0.107 0.211
The QDF Approach
n1 = n2 0.300 0.300 0.300
n1 : n2

1: 2 0.446 0.600 0.523
1: 3 0.545 0.555 0.550
1: 4 0.500 0.689 0.595
n2 : n1

1: 3 0.750 0.500 0.625
1: 2 0.800 0.607 0.704
1: 4 0.713 0.578 0.646
The AEDC
n1 = n2 0.333 0.345 0.339
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Chapter 5

Summary of Results, Conclusion and

Recommendation

This Chapter outlines the summary results gathered in the entire analyses, con-

clusions drawn based on the study objectives and recommendations which will

aid in further studies.

5.1 Findings and Conclusions

This study was specifically aimed at evaluating the performance of four classi-

fication methods namely; Bartlett and Please method, The Bayesian Posterior

Probability approach, the QDF approach and the AEDC method.

The following objectives were set to be achieved based on the anlaysed data.

1. To obtain discriminant functions for the equal mean case based on the

Bartlett and Please approach, the Bayesian approach, the QDF and that of

the AEDC approach.

2. To derive discriminant functions as well as their classification rules under

unequal prior probabilities and under non-normality(contaminated data).

3. To compare the performance of all the four discriminant classification rules

by using the various estimated error rates.
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The data analysis comprised of both the preliminary analysis and detailed anal-

ysis.

The researcher used the preliminary anlaysis to test the statistical significance

between the two mean vectors of Monozygotic and Dizygotic twin groups using

Hotelling T 2. However from the test, we observed no significant difference be-

tween the mean vectors between the two groups. Hence the equal mean vectors

assumption based on the hypothesis tested was not violated.

The detailed data analyses was based on three case situation; classification with

equal prior probabilities, classification with unequal prior probabilities and clas-

sification with non-normality assumption.

1. The following results were obtained based on the case of classification with

equal prior probabilities and equal misclassification cost.

• The discriminant function derived using the Bartlett and Please clas-

sification method is shown below.

Z1 − 0.0606Z2

• Classification rule for the use of Bayesian posterior probability ap-

proach was derived as: Assign xM to j if P (j|xM) > P (j′|xM) and XD

to j′ if P (j′|xD) > P (j|xD).

• The Quadratic discriminant Function was derived as

{
(x− µ1)τΣ−1

1 (x− µ1)
}
−
{

(x− µ2)τΣ−1
2 (x− µ2)

}
< −0.1664

• The discriminant function as well as the classification rule for the

AEDC method was derived as: Assign |X| to π1 if
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(√
σ

(1)
11 −

√
σ

(2)
11

)
+ y2

(√
σ

(1)
22 −

√
σ

(2)
22

)
+ y3

(√
σ

(1)
33 −

√
σ

(2)
33

)
+ ...

+ y10

(√
σ

(1)
1010 −

√
σ

(2)
1010

)
≥ −1.2368

Otherwise to π2.

• The classification rule obtained with the application of Bartlett and

Please method was able to correctly classify approximately 87 percent

of the twin observations.

• The proportion of correct classification using the Bayesian Posterior

Probability approach was approximately 0.767.

• The QDF correctly classified 73 percent of the 30 twin observations

sampled.

• The AEDC classification rule misclassified four twin observations from

both groups representing approximately 0.867 proportion of correct

classification.

• The performance of the four methods were evaluated using their mean

error rate and the Bayesian classifier was observed to be performing

better than the three other methods with a recorded mean error rate

of 0.149.

• The mean error rate of the AEDC method of 0.166 was quiet observed

to be closed to the BPM.

• The QDF performed poorly with a mean error rate of 0.283.

• The Bayesian Classifier provided better maximum separation between

the two groups as compared to the AEDC, QDF and BPM.

2. The following observations were made under the case of classifying obser-

vations with unequal prior probabilities.
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• The Bartlett and Please discriminant function/classification rules de-

rived under the various sampling ratios are shown in the table below.

Table 5.1: Classification rules under the various sampling ratios

Sample
Ratios

Classification
Rules

Cut
-off

n1 : n2

1:2 Z1 − 0.0655Z2 ≤ 14.96 14.96
1:3 Z1 − 0.0660Z2 ≤ 12.90 12.90
1:4 Z1 − 0.0709Z2 ≤ 17.70 17.70
n2 : n1

1:2 Z1 − 0.0702Z2 ≤ 15.90 15.90
1:3 Z1 − 0.0230Z2 ≤ 18.91 18.91
1:4 Z1 − 0.0158Z2 ≤ 17.99 17.99

• The Quadratic Discriminant functions derived under the various sam-

pling ratios 1 : 2 ,1 : 3 and 1 : 4 were:

{
(x− µ1)τΣ−1

1 (x− µ1)
}
−
{

(x− µ2)τΣ−1
2 (x− µ2)

}
< 1.658

{
(x− µ1)τΣ−1

1 (x− µ1)
}
−
{

(x− µ2)τΣ−1
2 (x− µ2)

}
< 1.204

and

{
(x− µ1)τΣ−1

1 (x− µ1)
}
−
{

(x− µ2)τΣ−1
2 (x− µ2)

}
< 1.585

• The classification rule for the Bayesian Posterior Probability approach

was obtained under this case as follows: Assign xM to j if P (j|xM) >

P (j′|xM) and XD to j′ if P (j′|xD) > P (j|xD).

• The proportion of correct classification using BPM under the sample

ratio n1 = 1 : n2 = 2 was 0.93.

• The proportion of correct classification using BPM under the sample

ratio n1 = 1 : n2 = 3 was 1 or 100 percent.

• The proportion of correct classification using BPM under the sample

ratio n1 = 1 : n2 = 4 was 0.80.
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• The proportion of correct classification using the BPM under the sam-

ple ratio n2 = 1 : n1 = 2 was approximately 0.93.

• The proportion of correct classification using BPM under the sample

ratio n2 = 1 : n1 = 3 was 0.75

• The proportion of correct classification using BPM under the sample

ratio n2 = 1 : n1 = 4 was 0.80.

• The proportion of correct classification using Bayesian Posterior proba-

bility under the sample ratio n1 : n2 and n2 : n1 ranged from 0.65-0.95.

• The proportion of correct classification using QDF under the sample

ratio n1 : n2 and n2 : n1 ranged from 0.52-0.84.

• Bartlett and Please method (BPM) outperformed the QDF and the

Bayesian classifier approach. With the QDF performing poorly.

3. The following results were gathered when the data was contaminated to be

non-normal.

• Generally the performance of all the classification methods with equal

and unequal prior probabilities deteriorated after the introduction of

the outliers into the data.

• The mean error estimate of AEDC method performed slightly better

than the Bayesian Posterior Probability approach with mean error rate

of 0.381.

• The BPM was found to be very sensitive to outliers since it performed

poorly under non-normality.

• The QDF performed appreciably better under equal prior probability

case and its performance is abysmal under unequal prior probability

situation.
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5.2 Recommendation

Based on the findings from our study, the following recommendations are made for

equal mean discriminant analysis when the prior probabilities are equal, unequal

and with contaminated data.

• It is recommended that Equal mean discrimination for more than two popu-

lations be researched into in order to come out with a classification rule that

will discriminate effectively between more than two groups under unequal

prior probabilities and equal misclassification cost situation.

• One should consider using the QDF when the working data is contaminated

to be non-normal under equal prior probabilities.

• The Bayesian Posterior Probability approach as well as the AEDC clas-

sification methods should be employed in classifying equal mean vector

observations under equal prior probability situations.

• One should consider using Bartlett and Please method in classifying obser-

vation with zero mean difference populations under unequal prior probabil-

ities situation.

• One should also consider more sample selections in order to study the effect

of the classification rule under unequal prior probabilities when the sample

sizes are increased.

• For further research, one should consider the equal mean discrimination

problem when the prior probabilities are equal and the misclassification

cost are assumed to be unequal. Also other research studies should also go

into establishing the actual distribution of a given data under non-normality

and establish a classification rule when both the prior probabilities and the

misclassification costs are unequal.
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Appendix A

5.3 Table A1

Table 5.2: Likelihoods for equal group prior probability
f1(xM |j) f2(xM |j′) f2(xD|j′) f1(xD|j)
4.08e-05 1.690e-05 5.620e-06 1.140e-05
1.510e-05 3.338e-06 7.892e-07 4.085e-07
3.604e-05 2.850e-05 3.012e-05 5.243e-06
1.312e-05 1.370e-05 1.881e-07 1.133e-08
1.060e-05 5.041e-06 1.019e-08 1.833e-08
3.555e-05 4.444e-05 4.011e-06 6.101e-06
3.866e-05 1.279e-05 1.993e-09 2.227e-10
3.467e-05 6.344e-06 4.797e-07 1.587e-07
1.425e-09 7.334e-11 1.137e-05 4.404e-06
3.181e-05 4.024e-06 1.585e-05 1.124e-05
1.701e-05 1.074e-05 4.903e-12 6.430e-15
1.962e-05 9.258e-06 2.156e-06 2.384e-07
4.063e-05 1.116e-05 4.370e-08 2.766e-10
3.924e-05 2.867e-05 3.689e-08 4.071e-08
4.310e-05 4.340e-05 2.502e-05 6.330e-06

5.4 Table A2: Likelihoods for, n1 = 1 : n2 = 2

Table 5.3: Likelihoods for unequal group prior probability for n1 = 1 : n2 = 2
f1(xM |j) f2(xM |j′) f2(xD|j′) f1(xD|j)
1.29E-05 6.39E-06 4.77E-06 9.31E-06
6.42E-06 9.45E-07 5.35E-07 2.53E-07
1.52E-05 7.35E-06 2.84E-05 9.88E-06
5.49E-06 3.58E-06 2.07E-07 1.65E-08
6.26E-06 1.25E-06 1.76E-08 3.76E-08

4.09E-06 2.67E-06
9.47E-09 9.52E-11
3.52E-07 5.92E-07
2.73E-05 3.78E-06
2.26E-05 1.44E-05
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5.5 Table A3: Likelihoods for sample ratio, n1 =

1 : n2 = 3

Table 5.4: Likelihoods for the sample ratio n1 = 1 : n2 = 3
f1(xM |j) f2(xM |j′) f2(xD|j′) f(xD|j)
9.78E-06 7.19E-06 4.13E-11 4.19E-12
4.86E-06 4.82E-07 6.24E-06 2.35E-06
1.15E-05 4.13E-06 4.27E-06 2.01E-06
4.16E-06 2.51E-06 5.13E-09 7.18E-11
4.73E-06 1.26E-06 3.77E-06 1.02E-05

4.11E-07 4.43E-07
2.13E-06 2.07E-07
7.62E-09 3.33E-09
3.50E-06 2.84E-06
5.37E-09 2.82E-08
5.33E-07 1.58E-06
2.26E-07 3.04E-08
3.21E-06 1.18E-06
4.39E-06 6.97E-06
1.94E-05 4.66E-05

..
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5.6 Table A4:Likelihoods for sample ratio, n1 =

1 : n2 = 4

Table 5.5: Likelihoods for the sample selection n1 = 1 : n2 = 4
f(xM |j) f(xM |j′) f(xD|j′) f(xD|j)
7.82E-06 3.59E-06 5.03E-11 4.46E-12
3.89E-06 3.52E-07 5.17E-06 2.51E-06
9.20E-06 2.83E-06 3.91E-06 2.14E-06
3.33E-06 1.84E-06 5.17E-09 7.66E-11
3.79E-06 6.33E-07 3.69E-06 1.09E-05

2.29E-07 4.73E-07
1.54E-06 2.20E-07
1.36E-08 3.55E-09
3.13E-06 3.03E-06
3.84E-09 3.01E-08
4.43E-07 1.69E-06
3.40E-07 3.25E-08
3.35E-06 1.26E-06
3.65E-06 7.44E-06
1.82E-05 4.97E-05
4.22E-06 1.12E-05
6.18E-07 1.61E-06
4.14E-11 6.27E-15
3.34E-07 1.11E-08
6.68E-07 2.33E-07

..
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5.7 Table A5:Likelihoods for sample ratio, n2 =

1 : n1 = 2

Table 5.6: Likelihoods for sample ratio, n2 = 1 : n1 = 2
f1(xM |j) f2(xM |j′) f2(xD|j′) f1(xD|j)
4.08E-05 1.69E-05 4.77E-06 9.31E-06
1.51E-05 3.34E-06 5.35E-07 2.53E-07
3.60E-05 2.85E-05 2.84E-05 9.88E-06
1.31E-05 1.37E-05 2.07E-07 1.65E-08
1.06E-05 5.04E-06 1.76E-08 3.76E-08
3.56E-05 4.44E-05
3.87E-05 1.28E-05
3.47E-05 6.34E-06
1.43E-09 7.33E-11
3.18E-05 4.02E-06

5.8 Table A6:Likelihood for sample ratio, n2 =

1 : n1 = 3

Table 5.7: Likelihood for sample ratio, n2 = 1 : n1 = 3
f(xM |j) f(xM |j′) f(xD|j′) f(xD|j)
3.04E-05 4.15E-06 2.31E-09 7.32E-12
1.13E-05 1.49E-07 2.64E-06 1.04E-06
2.69E-05 4.63E-06 2.05E-06 1.54E-06
9.79E-06 1.40E-06 1.60E-08 5.68E-11
7.79E-06 3.01E-07 8.04E-08 1.53E-06
2.66E-05 3.72E-06
2.89E-05 2.03E-06
2.59E-05 1.08E-06
1.07E-09 4.87E-10
2.38E-05 1.99E-06
1.28E-05 1.15E-06
1.45E-05 2.75E-06
3.03E-05 3.92E-06
2.93E-05 1.02E-06
3.22E-05 2.56E-06
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5.9 Likelihood for the sample ratio, n2 = 1 : n1 =

4

Table 5.8: Likelihood for the sample ratio, n2 = 1 : n1 = 4
f(xM |j) f(xM |j′) f(xD|j′) f(xD|j)
3.32E-05 4.43E-06 1.82E-09 1.18E-11
9.38E-06 1.58E-07 2.11E-06 9.03E-07
2.69E-05 4.93E-06 1.64E-06 1.36E-06
1.23E-05 1.49E-06 1.30E-08 9.26E-11
6.32E-06 3.21E-07 6.47E-08 7.99E-07
2.93E-05 3.96E-06
2.96E-05 2.16E-06
2.05E-05 1.14E-06
6.60E-10 5.19E-10
2.38E-05 2.12E-06
1.19E-05 1.23E-06
1.57E-05 2.95E-06
3.19E-05 4.19E-06
2.56E-05 1.08E-06
3.45E-05 2.72E-06
5.18E-15 1.02E-13
1.09E-05 1.52E-07
4.31E-05 2.36E-06
7.38E-06 2.99E-06
1.60E-05 1.20E-05
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