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CHAPTER 1
Introduction
1.1 Application of Mathematics to Biological

Systems.

The application of Mathematigs #0 Biolggical Bysternsghas had a significant ef-
fect on Biology and this has fostered a ﬂEW*ﬂE\-'Eh)"DInm‘tL of Mathematics. The
application of Mathematics to Biology may seem surprising because of the differ-
ent natures of Mathematics and Biology. Mathematics is precise and rigorous in
nature. Mathematical facts are immutable and suecessful Mathematical theories
have lifetimes of bundreds.or tliousands of years. Bui-most Biological facts evolve
rapidly. Upon all these differences, their interaction have produced spectacular
results.

The application of Mathematics to Biology can be divided into two cate-
gories. Application of existing Mathematieal i;e::lmiqmrs 1o Biﬂugjcal problems
and when the existing M&thﬁmal,;ml Methods.are inadeguate and new Mathe-
matical techniques are developed within the eanvectional frameworks.

The interaction of Mathemalics and Biology in not new, Robert Brown. a
Botanist discovered what is now called Brownian motion while watching pollen

grains in water. oday, the Mathematical description of such motion is central

|



CHAPTER 1| Inivoduction
to probability theory.

The following are a few Mathematical methods that have been applied to
Biology

1. Statistics

2. Stochastic Processes

3. Dynamical Systems Theory

4. Nonlinear Partial Differential Equation

B 5 A

5. Topology

6. Geometry

1.1.1 Statistics

Statistics is the mest widelynsed and oldest Mathematical lechnique on Biology.
During the early stages of il’s application, it'was basicilly nsed to determine the
chances of an event happening. But down the line it was developed from chances

to calculus of probabilities and also from Least Squares 1o Regression Analysis.

The quantitative study of Bi:&}ghﬂl inheritance and evolution is another
aspect of application of Statistics to Biology” “With all these applications of
Statistes to Biology, a new trend of Mathématics has evolved, which is called
Biometry.

Biemetry is the application of Statistics to biological, medical, agricultural

e



CHAPTER 1 Introduction
and pharmaceutical sciences. The subject is concerned with the designs of exper-
iments and surveys, the organisation and analysis of data and the interpretation
of the results. Individuals with a training in biometry play a central role in in-
dustry and public sector research organisation and are involved in, for example,
the design and analysis of clinical trials, the assessment of links between envi-
ronmental exposures and diseases, field trials of new crop varieties, modeling in

population and medical genetics, to mention but a few.

1.1.2 Stochastic proces
INT

A Stochsstic process is a pmcé‘ﬁ*?n which 1t8 ouffome is non-deterministic. It

1JST
states are determined both by the progess of predictable actions and by a ran-
dom element. Stochastic processes are complex systems in which the experts in
this field acknowledge that the waﬂh’ﬁmn both known and unknown
causes. The clagsical example of thisis in medicine.

A doctor can adminiézgr the same treatment, 10 mu]:tjp’le patients suffering
from the same symptoms; however the pﬂ,uaqtammt all react to the treatment
the same way. This rmkmmmm.m

Pressure in agas is.a %nrhaﬁiﬁmﬁﬁh was modeléd by Norbert Wiener.
Even though each nmlécyk_.h-ﬁpving in & dawtniﬁlm path, the motion of
a collection of them is computationathy-and practically unpredictable. A large
enough set of molecules will exhibit stochastic characteristic, such as filling the

container, exerting equal pressure and diffusing along concentration gradients.



CHAPTER 1| Introduction
In biological systems, introducing stochastic 'noise’ has been found to help
improve the signal strength of the internal feedback loops for balance and other
vestibular communication. [i has been found to help diabetic and stroke patients

with balance control.

1.1.3 Dynamical Systems Theory

Dynamical systems theory is an area of applied mathematics used to describe
the behaviour of complex systems, usually by employing differential equations
or difference equations. Wherl diffafentinll equiations dre employed, the theory
is called continuons dynamical systems and When difference equations are em-
ployed, the theory is called discrete dynamical systems. This theory deals with
the solutions to partial differential equations thatiarise in biology.

The main aim of dynamical systems theory is to describe the fixed points, or
steady states. These arevalues of the variable which will not change over time.
Some of these fixed poinis are-attractive, meaning that if.thf: sysiem starts out
in & state, it will converge towards the fixed point. There is also periodic points
which are values of the variable of thesystemthatmpmt themseves after several
time steps. Periodic points can ?;ﬂ.?g..bﬂ attractive. Dynamical systems theory
may exhibit random, cempletelyrunpredictables behaviour that is called 'chaos'.

Dynamical systems theory has been-used (o model athletic performance.

From a dynamical systems perspective, the human movement system is a highly

e i _._,_,...--'—'"'-_.d_



CHAPTER 1 Introduction

intricate network of co-dependent sub-systems (eg. respiratory, circulatory, ner-

vous) that are composed of a large number of interacting components (eg blood

cells, oxygen molecules, muscle tissue, metabolic enzymes, connective tissue and

bone). In dynamical systems theory, movement patterns emerge through generic

processes of self-organization found in physical and biological systems.
Dynamical system theory has recently emerged in the field of cognitive devel-

opment. It is believed that cognitive development is best represented by physical

theories rather than theories based on syntax and artificial insemination (Al). It

is believed that differential equitingaref

e IE ui}& rmte tool for modeling
inter p prgsem, an agent’s cognitive

I nt

human behavior. Thes equatio s o

trajectory through state space. In other Words, scientist argue that psychology
- A k|

should be the description (via d!;fmm ‘equations) of the cognitions and be-

haviors of an agent under environmental and inte

1.1.4 Topology

Topology is the branch of Mathemnatics ah.n.t. studies the properties of a space
that are preserved under mmmg, twisting and deformations of ob-
jects. Topology was, develop from. Geometry. It is mnt;ﬁfﬂ@&.ﬁhmt shape and

gtructure of an object &n&ithﬁ metric pmpertiga—ggd}i.aﬂ the distance between

F&.’*"'A-r \‘{

points. Unlike Geometry, Topology is-eoncerned about the properties of a space

that assembles that particular space.
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Some properties of Topology

1. Connecledness

b

. Orientability

3. Compactness

4. Continuous

o

. Convergence

Deformations under Topology s called iioinevmotghisms.Hmnemlmrphiams are
functions that stretches a space without tearing it apart or sticking distinct parts
together. Under Topology there is also'Topelogical Space and it is define as

Let X be any set and let T be a family of subsets of X. Then T is a topology on

X il the ollowing axioms are setisfied

1. Both the empty set and X are elements of T
2. Any union of arbitratymany elements of T is.an@lement of T
3. Any interseetion.of finitely many elements«of ' is-dn-element of T

If T is & topology on X, then X together with T is ealled a topological space

A function from one topological space to another is called continuous if the
i

inverse image of any-open set is open, then the functions maps the real numbers



CHAPTER 1 Introduction

to real numbers, This definition of continuous is equivalent to the definition of
continuous in calculus. If a continuous function is one-to-one and onto and if the
inverse of the function is also continuous, then the function is called homeomor-
phism and the domain of the function is said to be homeomorphic to the range.
[Two spaces are homeomorphic if they have identical topological properties]. A
topological property is a property of spaces that is invariant under homeomor-
phisms. To prove that two spaces are not homeomorphisms, it is sufficient to
find a topological property which is not shared by them.

\Gebb | CT

INTE NV DI |

1. The cube and the sphere are homeomeorphic
2. Goﬁ'ee cup and doughnut nm.:-hamemph‘lc
3. Circle is not homeomorphie to abughhﬁi
Application.of Topelogy as a Mathematical tool on Biology

Topology deals with the sets of numbers &uqi-the shape of items. Because of the
nature of topology one can apply topology on Biology. The type of topology that
has been used on Bin]ngy is the thmdimemnai topology: i.E_Eé-theorerns under
this type of tnpnlng;f‘di%a}g;,wi;h;tu_pulugiml invariant of etrves and ribbons in
three-space. One can use thesé‘theéifﬁm ‘tnéiuﬂ!. structures of closed circular
DNA. It can also be applied on supercoiling in closed DNA, topoisomerases, nu-
cleosome winding, the free energy accompany with supercoiling and the binding

between proteins and DNA.
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Another application of topology on biology is the use of random knots in
topology to study solutions of micromolecules. Tangle calculus is used to study
the mechanism of enzyme in the human body and also in DNA.

The study of enzyme in food processing industries and the breweries is done
by applying tangle calculus. Embedding invariant graph in topology is used
to study topoisomers. Topoisomers or topological isomers are molecules with
the same chemical formula and stereochemical bond connectivities but different
topologies.

Examples of molecules for which™t fere Q;KFTS EDWE include DNA ;, which

can form knots and catenanes. PNA ‘pui&uiﬁ'f carrbe iiterchmrgﬂi by enzymes

called topoisomerases.

1.2 Aims and Objectives
1. To derive the model

2. To compare Bentil's'experimental data with Murtay and other scientists

who started patterns fermation.
3. To use a programing language eall Matlab to implement the model.

4. To use the solution of the model o forécast some experimental data which

may be useful.
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1.3 Methodology

1. In 1986, Murray and other scientist came out with some experimental data

for patterns formation using nonlinear least sguare.

Below was the result

Table 1.1: Murray’s experimental data

2. In 1990, Bentil also came out with a new experimental data for patterns for-

mation using optimisation techigue called logieal parameter search method.

mode | T 7 16 A D o 8

2 230 | 1.0Q 40155 f0.12 (0:084r 0.001 | 57.52
4 102 | 0.022 }olooH HIE 200 | 0.260 | 177.8
6 L.OL | 1.00 | 0.004 0.12 | 0.001 | 0.001 | 100.0
8 1.65 | 1.00 /'0.001 | 0.12°].0.001 | 0.001 | 400.0

Below was the tesuli

Table 1.2: Bentil's experimental data

A —
modes| = /i a A D ) S

P 1.50 |0:80-' 0:0204F:0.05F0-003 | 0.004 | 40.00

4 1.00 | 0.70 | 0.005 | 0.11 | 0.001 | 0.002 | 100.0

|6 165|120 0.002|0.10 | 0.003 | 0.004 | 380.0

s E —1715 | 1.20 | 0.001 | 0:10 | 0.002 0003 | 4200
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3. We used a program written in Matlab to come out with some other exper-

imental data.

Below was the result

ot 4 LU EAS ISR




CHAPTER 2

Background and Literature Review

2.1 Belousov-Zhabotinskii

The Belousov-Zhabotinskii reaction is the earliest well-understood example of
a chemical system that is an oscillation and pattern formation. The Belousov-
Zhabotinskii reaction is mtuallﬁi—“-@ system of several chemical reactions, which
was discovered in 1951 by the Soviet Biophysicist Boris Belousov. But he could
not publish his work, because the chemists that time were skeptical about his
reaction. They were holding the belief that the chemical oscillator would violate
the second lawef.thermodynamics:

The second law.of thermodynamics is an #preﬂm of the universal law of
increasing entropy, stating that the entropy of an isolated system which is not
in equilibrium will tend to increase over time, approaching a maximum value at
equilibrium.

They believed that all chemical eoneentration in A reaction must move directly
towards equilibrium. They eompared his reaction to a damped pendulum, which
passes through its equilibrium position ;illring each oscillation and eventually
comes Lo rest. A chemical system that did this would indeed violate the second

law n_f_ﬁmodyna:jn,i:;,.,}&assmg through the equilibrium point and then moving

11



CHAPTER 2 Background and Literature Review
away from it would require an increase in Gibbs free energy, which must always
decrease.

However, the Belousov-Zhabotinskii reaction (like all other chemical oscilla-
tors) does not reach its equilibrium point until after the oscillations are finished.
Because of all these misconceptions, Belousov was unable to get his work pub-
lished.

A decade later, another Soviest scientist named Anatol Zhabotinskii repro-
duced Belousov's experiment and successfully persuaded more chemists to accept
the idea of chemical oscillators. |

Belousov’s original experiment studied only temporal oscillations in a well-
stirred solution, however much maore ingéresting is the formation of spatial pat-
terns in an unstirred solution. Inithese cases, if the reaction begins at a given
point, the concentrations of inter-mediates will propacate in the adjacent regions.
This is known as a trigger-wave, Periodically the reaction will reinitiate at the
nucleation point resultingin suecessive bonds (ina one-dimensional test tube re-
action) or concentric rings (in a two-dimensional petri dish reaction). When
certain reactants are combined, an“induetion”period of inactivity is followed by
sudden oscillation neoleur from red.to.blue. In spatially non-hemogeneous sys-
tems (such as a simple petri dish), the red and blue escillations propagate as a
spiral wave fronts. This will go on for sometife and eventually, the reaction will
stop oscillating and approaches an equilibrium state. The colour changes are

caused by alternating oxidation-reactions in which cerium changes it’s oxidation

e r——

o

12



CHAPTER 2 Background and Literature Review
state from Ce(iii} producing a magenta solution to Ce(iv) producing a blue so-
lution or vice versa. Because of this, we call the Belousov-Zhabotinskii reaction
an “oscillating reacton”, this simply means a reaction in which there is a regular
periodic change in the concentration of one or more reactants.

Systems of chemical oscillators are of great importance in Biological sys-
tems. For example, the senatorial noge, the heart's pacemaker, causes trigger
waves which though electrical in nature, propagate in much the same way as the
Belousov-Zhabotinskii reaction trigger waves. The generation of eyclicadeno-
sine monophosphate in nggrﬂgﬂ@g ﬂ%’t&jl‘%ﬁuil@hﬁgﬁm slime mold colonies
creates spiral patterns nearly i;r:ler'it{mi To those :ﬁ:thé Belousov-Zhabotinskii
reaction. RNA has been found to Helﬁrgphqatp with fronts of increase RNA
mentr;tion moving outward via diffusion.

In 1972, three researches at the University of Oregon, Field, Koros and Noyes
published a complete mechanism describing the Belotisov-Zhabotiriskii reaction,

known as the Field, Koros and*Noyes(I"KN}-mechanism,

Table 2-1:'1.1?!!&9&'-&1 HI.BBE - y

Species Céneentration

_ s

Malonic acid | 0.2M

Sodinm bromate .;[-].EM

Sulfuric acid | 0.3M

— Ferroin | 0.005M

13



CHAPTER 2 Background and Literature Rewmew

Table 22: Abbreviated FKN mechanism governing the BZ reaction

Rea.c‘l;;nu

Hate constant

(R1)
(R2)
(R3]
(R4
(R5)

(R6)

Br~+ HOBr + H" — Br, + H,0
HbrOy + Br~— + H- — 2HOBr
BrOg + Br~ 4+ 2HY — HBrO, + HOBr
2H Br(O; — BrO; + HOBr

BrOy | HBrOg+ H" — 2Br0Os + H0

BrO, + Celiii) + H' o Hilr(h § Ce(ie)

Kgy = 8 x 10°M 25~
K #a = 106M 2571
Kps=2M35!
Kra=2x10°M1'57?
Kus = 10M %!

Hm, — 6 x 108M 25!

E—— = _ =

=

Table 2.3: Abbreviated FKN mechanism governing the BZ reaction

Reaction Rate consta
(c1) CH,(@OOH), S (HO):C = CHCOOH see 14
(C2) (HO):('=CHOOOH + Bry — BrOH(COOH )y + H + Br- see 14
(C3) see 14

2Ce(iv) + C Hy(COOH )3+ BrCH(COOH)3 — fBr~ -+ otherproducts

2.1.1 Mechanism of the Belousov-Zhabotinskii reaction

The FKN mechaniam for. the Belousov-Fhabotinskii teaction pan be described in

three concurrent. processes

e Process 1: This process consists of three steps which reduce bromate to

__bromine —

Pt

11



CHAPTER 2 Background and Literature Review
e Process 2. In this process, there is an introduction of hypobromous acid

acting as a reducing agent for bromate

e Process 3: The products from processes 1 and 2 react

PROCESS ONE

In this process, we have the reaction of bromate |BrOj| to bromine by the reduc-
ing agent bromine Br. This process consists of the first three steps of the FKN
Mechanism. The product of these three processes is bromomalonic BrtMA. As a
result the concentration of hmn’,’gi{jje 'bﬂﬂﬂlg ui ncfﬁnﬁsag; réclucing agent eventually

falls below some critical level. Br—
PROCESS TWO

It is at this stage that process twﬂbag'his to dominate process one. The hypobro-
mons acid HBr0; begine 4o.compete with the bramide to reducethe bromate.
As a result, the concentration of hypobromous acid H Bﬂ'lg increases and Ce(iv)
is produced.

Reaction (R5) and (R6) constitute & two-step sutocatalytic sequence.

This process causes the solution to change suddenly from red to blue (in the

presence of a ferroin mdmatm}
PROCESS THREE

As process one and two cycle back and forth depending on whether Br~ is above

or-below Br—. The preducts ffom process one which is bromomalonic BrMA and

15
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process two which is Cerium-4(Ce(IV)) react. The process causes the solution
to change from blue to red(in the presence of a ferroin indicator). As a result, it
moves back to process one and the whole cycle repeats itsell again. The change
in colour from red to blue and blue to red is term as oscillation and this is why
the Belousov-Zhabotinskii reaction is called the chemical oscillator. As the whole
process cycle back and forth, patterns are formed

Two-dimensional spatial patterns can be form as a result of the reactions. When
the reaction nucleates at a point, diffusion brings bromide from the surrounding
region into the nucleation point! ;ﬁ:NIi at e resetling mechanism at the
nucleation point, while simultaneously allowing process(2) to dominate in the
surrounding region,oxidizing the metal don catalyst and perpetuating the fromt
of bromide concentration. In this mn;mr,_ ;: m wave will progress outward

o P
At

from the nucleation point. If t € Cor

nditions are such that oscillations will con-
tinue, ammu}mﬂu&mﬁ%nmmmwm end result
will be many concentric rifigs & target patterny-1f :ﬁ:_g;uiﬁ-'l;-mm point does
not continue to utrillnte!;’u ﬂﬁﬂl‘: ﬂmiwﬂ!ﬁﬂm until 1t s annihilated

at the edge of the container, 10—
N T . -_".-;._7 : : J ';_::L—
Field and Noyes (1972) discoverad experimentally that the wave front velocity is
w.-?... - : b-#'l.f
given by S . A N~
¥ S o S

V = 0.04em*sec™'m ™ ([H ]| BrOg|)}

The-curvature of theWave dependence on the velocity. For very small target
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patterns, the curvature is relatively high and this slows the reaction's progress
because diffusion from a point is less than diffusion from a line. The dependence

is given by the eikonal equation

V*=V 4+ DK

where D is the diffusion constant
K is the curvature (positive for a contracting circle and negative for an expanding
circle) Vd O | P~ m—p—

[ |

V is the propagation velocity for the reabtion.at aesds cirvature,

2.1.2 Mathematical Analysis

¥ = {ol(bromade)

sacid)

Z=|Ce( IV {Ceritrm/— 4)
A = |BrOy|(bromate)
B = [Qrgl(Organic _species)
' ={HORr|
The table below shows th‘ﬂregdnqﬁm}&tfange.,?I_"Hé-:!:)"regunar.ur is derived from
the FKN Mechanism and it is as follows:
(O1) is equivalent to reaction (R3) of the FKIN Mechanism

) is ivale o ion of the FKN Mechanism
. (02) is aqmvnlf____nt to react (R2)
17
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CHAPTER 2 Background and Literature Review
(O3) is the autocatalytic sequence of the FKN Mechanism and is
given by (R5)+2(R6)
(O4) is equivalent to reaction (R4) of the FKN Mechanism

(O5) is the organic species species in process three

Table 2.4: The Oregonator Scheme -

Reaction Rate

(O1) | A+Y =X +P | Ky= Kp|H*2AY
(02) | X +¥#20 | §Kp=groattt| XY
(03) | A+ X 3 2% 4 29 [N i [ HH)AX
(04) |  2X — A+ P 4 K:= KpX?

(05) b+ 2 vst Ko=.B4

The law of mass action is used to convert the Oregonator to 3 x 3 system of

nonlinear ordinary differential eqmations. The law of mass action siates that the

rate of a reaction is proportional to the praduet of the reactant concentrations.

The rate of reaction for X = [H Br,|(hypobromous acid) is derive as

follows, From(O1) Reaction

X ‘

Using the constant rate of praportionof K3 and élse hypobromous acid produces

dX
— = K AY 2.2
fi [} 3 (23)

18



CHAPTER 2 Background and Literalure Review

From(0O2) Reaction

dXx i

Using the constant rate of proportion of K, and also hypobromous acid is being

absorbed or used, we have

dX
— = =2K. XY 2.4
dt 2 [ ]'

From(O3) Reaction

% x AX (2.5)

Using the constant rate of prupﬁ_rﬁur;’ of K-land also hypobromous acid is being

absorbed or used, we have

iX 5
e =K AX (2.6)
dx {
& x 24X (2.7)

Using the constant rate of proportion of K< and also hypobromous acid is being
produced, we have

dax hy

_5{ =2KsAX (2.8)

From(04) Reaction

i—{ x2X* (2.9)

Using the constant rdte of propostion of Ky andealso lirpobromous acid is being

absorbed or used, we have

dx
= —2K.X* (2.10)

19



CHAPTER 2 Bockground and Literature Review

From({0O5) Reaction

We have no rate of reaction for the hypobromous acid because neither hypo-
bromous acid is being produced or used in this particular chemical equation.

Putting equations (2.1) to (2.10) together we have

dX
> s K3AY — KXY + KgAX — 2K, X* {2.11)

The rate of reaction for ¥ = [Br~|(bromide) is derive as follows

From({@1)}Reaction

¥
—— o AY 2.12
at (212)

Using the constant rate of proportion of K5 and also hypobromous acid is being

absorbed or used, we have

dy
_H__FE - —_K;_qﬂi' . {2. 13]
i
M v (2.14)

Using the constant rale of proportion of £ and alse hypobromous acid is being

absorbed or used, we have

e 4
o s (215)
From(03)Reaction

We have no rate of reaction for the bromide because neither bromide is being

produced or used in this particular chemical equations.

—— == _'_,_,_.--""---_
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From(0O4)Reaction

We have no rate of reaction for the bromide because neither bromide is being

produced or used in this particular chemical equation.

From(O5)Reaction

% x /B2 (2.16)

Using the constant rate of proportion of K, and also bromide is being produced,

we have.
LW N

1547 (2.17)

Putting equations (2.12) to (2.17) togethes we have

% — KAV — KXY + %f KoBZ (2.18)
L

The rate of reaction for Z = [ﬂc{iu}'I{Geﬂum-d} is derive as follows

No reaction for Certwme-4-in‘equation (O1),(02) and (04_}

_me (O3)Reaction

':f o 24X (2.19)

Using the constant rafesf preportion of K and also-€eriuni-4is being produced,

we have

N

oK AX (2.20)

=3
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From(0O5)Reaction

dZ :
i BZ (2.21)

Using the constant rate of proportion of K and also Cerium-1 is being absorbed

or used, we have

dz
— = ~K\BZ (2.22)

Putting equations (2.20) and (2.22) together we have

dz

o = 2KGAX — K\BZ (2.23)

Putting equations (2.11), (2.18} el (2.88) ‘ogether we lave a 3 x 3 system of

nonlinear ordinary differential equations.

dX

= = KsAY SKoXY + KeAX — 2K, X’ (2.24)

dY ; : il 4
=AY — KXY R KB (2.25)
& 2K AX Ko7 (2.26)

Putting the system (2.24) to (2.26) in dimensional form and using the change of

variables [Tyson||6]

Let
Y Y Z s
— — . . S 227
9 Xu‘T ¥ Ya 2= NG Ty ( )
Where
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From equation(2.27)

X=zXo, Y=yYo. Z=24y, t=71s

_ KA
X=2 2K, (2.28)
__KsA
Y=y K, (2.29)
(KsA)?
X KB (2.30)
t= I-B (2.31)
Differentiating equations (2. HKINU ST sides of the equation
(2.32)
Differentiating equation (2.31) wit
(2.33)
(2-34)
Combining equations (2.32)
(2.35)
Putting equatiors (2:28), (2.29)'anid-(2135) into equation’ (224), we have
KsBKsAdz  KyAyK3 _ KK o
EK\‘ dr - K, dﬂ‘" )
Doing a little algebra we have
o KU:B lﬁt 2K1H4
= ke TR PR (3Y)
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Let

Kya? KaKs
dd.-' 2
e e (2.38)
dﬂ: [}
e =qu-ay+t z{l — 1) ; (2.39)

Differentiating equation (2.29) with respect to t on both sides of the equation

dY  K;Ady
i 2 il & 2.40
dt Ko di ( )
Combining equations (2.34) and (@ 40%\wé have |
dY  K,KzBAdy @ik1)

dt Ka\ dr

Putting equations (2.38), (2.29), (2180) and (241} into equation (2.25) we have

KQHE.BA d?,i E'gﬁy}f,r,ﬂ. Kgﬁyﬁgﬂﬁsﬂ I:IH5A:]2 "
e = B 242
K dr K; Mk 3 g 042
Doing a little algebra.we have
2K, B dy _H K4
o A 2.43
L T (2.44)

Where

§ = kel =g g - ks

ahpAd T Haky

Differentiating equation (2.30) with respect to t on both sides of the equation

U KAV

= 2.4
at K K,Bdt 245)
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Combining equations (2.34) and (2.45) we have

Putting equations (2.28), (2.30) and (2.46) into equation (2.26) we have

{KEA)EE _ 2KsAzKsA KoBZ(KsA)*

K,

dr

Doing a little algebra, we have

Putting equations (2.39), (2.44)/and (2.38) together jve have

dr

A

dZ _ (KsA) dz

dt Ky dr

2K, K.KqoB

= qy — 3§ +w(l — x)

1y

8~ S

i
i

Equations (2.49), (2:50) and (2.51) becames

respectively

dz

dr

(ay ~ v+ (1 - )

= 5{—-4'11—:@'4-!?)
E—:|"—z
dr =

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)
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Table 2.5: Initial Concentrations

Species | Initial concentration

hypobromous acid | 0.3M

bromide | 0.05M

cerfupt-48| 00M

The maximum time considered was 40 seconds.

F= -} and it is the st

chiometric factor
e

The oscillatory nature of the diagrams below shows s system of this sort oscillates,
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A 1 T | gl s ...._..I..ﬂ

Figure 2.1: The dimensionless time-state for hypobromous acid
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o b |

1) 4.
20} \ i
L ", L 2 Ty, S _I

i 10 5 20 25 0 .'15 40
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CHAPTER 3
Reaction Diffusion Mechanisms

3.1 Random Walk and Derivation of the Diffu-
sion Equation

Badies such as cells, bacteria, citniigals, animalg etc psually move around in a
random way. The various particles are composed 0f individual thinner particles.
These thinner particles move irregulag@bout and their movement result in the
overall regular movement of the body. The gross repular movement of the body
is termed as diffusion. There 8 also interactions between ithe body and its en-
vironment which in turn will affect the movement. of the body. So actually, the
gross movement is not-simple-diffusion. To get the macroscopic behaviour from
& knowledge of the individual micrescopic behaviour is too hard. So we derived a
continuum model equation for the global behaviourin terms of a particle density
or concentration. The modeling starts by tonsidering randam walk which deals
with probability, a one-dimensional motion case will'be considered first and then
a generalisation to a higher dimeénsion:

Suppose a particle moves randomly back and forward along a line in a fixed
steps Az that are taken in a fixed time At If the motion is unbiased then it has
eqil;l_;;fﬁb:;hiliLy tm to the right or left. After time N AL, the particle

29



CHAPTER 3 Reaction Diffusion Mechanisms
can be anywhere from — NAx to NAz. If the starting point of the particle is
taken to be the origin, the spatial distribution is clearly not going to be uniform
if we release a group of particle about x = 0. Since the probability of a particle
reaching z = NAz after N steps is very small compared with that for x nearer
# = 0 we want the probability p(m,n) that particle reaches a point m space steps
to the right (that is = mAxz) after n time steps (that is after a time ¢ — nAt).
Let us suppose that to reach méz it has moved a step to the right and b to
the left. Thenm=a—banda+b=mn
From these we have ¢ = "3%anthb = a4 — @
The number of possible paths that a particle can reach this point z = mAxg

is

nfh & nl F
abl = Ay Ca
where C7 is & binowmial coefficient. The'tetal mimber of possible nesteps path is

2", The probabiliy p(m:n} of the parficle reaching the pent @ = mdxz is

: : 1 !
p[m,ﬂ-j — Fm {3‘1:]

where a = =% Wealso consider the Stirl‘mg‘s:i@brmu'ln when n becomes large
! ~ (2rn)in"en {3.2)
as n — oo Putting equation(3.2) into equation(3.1) we have
p(m,n) = [-2—]%&:1??[_—111?] m=ln>l (3.3)
. ™ 2n

———— = _'_._'_,..--'—'___-_'_ =
which is the normal or Gaussian probability distribution
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Now we consider m&Az = z and nAf = ¢
where x and t are space and time variables respectively.
If we let m — oo, n — ox.
Then Az — 0 and At — 0 which means x and t are finite. It is not
appropriate to have p{mn) as the quantity of interest since the probability must
tend to zero. The relevant dependent variable is more appropriate if we divides

p{m,n) by 2Az Let

I\ 4 1N :
N ¥ N 3.4)
: 2 1 —m’
; ) = [l epp s . (g
p(m,n) I'j'T?'il exp| 'sz' m>3>1n>1 {(3.5)

Putting equation(3.4) into equation(3.3) we have

w(z, = 3%1 N I:-:%Jj

where D is the diffusion coefficient or diffusivity of the particles. It has dimensions
(length)?/(time). It is a mensure of how efficiently the particles disperse from
a high to a low density. Forsexample in: blood. haemoplobin molecules have a
diffusion coefficient of the ordenof 10~ cri*sec™" while that for oxygen in blood
iz of the order of 10™%em>gec's

We now relate the result above-lo-the-claSsical approach to diffusion. We
look at the Fickian diffusion which states that the flux, J of material, which can
be cells,-amount of chemical, number of animals is proportional to the gradient

e -FH_'___..--—-'__-_'_'_ :
of the concentration of the material.
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Jx Ve
J = -DVe
In one dimension, we have
1=-Dg (3.6)

where c(x,1) is the concentration of the species and D is the diffusion coefficient.
The minus sign simply indicates that diffusion transports matter from a high to

a low concentration.

We also consider the HMFMMUS Thmh says that the rate

of change of the amount of material in a region is equal to the rate of flow across
the boundary plus any that s rmtiﬂ within the boundary. If the region is
- |

To < T < 7y and no material lsd_lnhl,
2 [ ¢fx, M J,ga-u ﬂ-e-.f (x1,1)

f “‘i ‘}ﬁ ‘*Jtﬂp;‘j J{h l} ' (3.7)
We take z; = zo + Az and n.lmuaeluit s Az — 0 and differentiate
equation(3.7) with respeck s We-haye—

— & (38)
it i S
We now put equation(3.6) mié pqui’ M‘ of 'Ei‘*“" -
% =g % (3.9)
where D is the diffusiof coefficient
12
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3.2 Reaction Diffusion Equation

Let S be an arbitrary surface enclosing a volume V. The general conservation
equation says that the rate of change of the amount of material in V is equal to

the rate of flow of material across S into V plus the material created in V.

Thus

% f-.« e(z,0).dV = — j; 1.dS + fv f.dv (3.10)

where J is the flux of material and f represents the source and is a function of

(¢, z,t). Applying the divergence theorem to the surface integral, we have
v Gelz, V= - [, ‘?."Jcn?‘i J fav
JylZe(z,t) BV =4]1dV = 0
Differentiating with respect to ¥, we have

e W
Gy VI (3.11)

Putting equation (3.6) inte.equation(3.11) we have

K+ PDVE) (3.12)

where D is a function of 2 and cdndf isa function of (¢, x,1).
For example the source term f in an ecological context could represent the birth-

death process.

_— s
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With logistic population growth f = rn(1 — £), where r is the linear repro-
duction rate, n is the population density and k is the carrying capacity of the

environment. The resulting equation will be

%"‘ = rn(1 — %} +DV?n (3.13)

where D is constant
The equation above is known as the Fisher Equation.

We further generalise equation (3.13) to the situation in which there are

several interactions among species or chemicals,

b

N ¢ Svyvay 3.14
iR AL (3.14)
where now D) is a matrix of the diffusivities and Vu is a tensor so V.(0Vu) is a

Veclor,

Equation (3.14) is the reaction diffusion system
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CHAPTER 4
A pproximation Model

4.1 Derivation of the Approximation Model

Morphogenesis is part of developmental biclogy which controls cell growth and
cellular differentiation. It is concerned with the shapes of tissues, organs and
entire organisms and the positions of the various specialized cell types, Cell
growth and differentiation can fdke pladd in cell culfurd or inside the tumor cell
masses without the normal morphogenesis that is seen in an intact organism.
The study of morphogenesis involves an attempl to understand the processes that
control the organized spatial distzibution of cells that arises during the embryonic
development ©f an.organism,and that give nse to the characterigtic forms of
tissues, organs atel overall body anatomy. In the human embryo, the change
from a cluster of neacly identical cells at the blastila stage to a post-gastrulation
embryo with structured tissues and organs is controlled by the genetic and can
also be used ta deseribe the development of wnicellular lifé forms that do not
have an embryonicstage in. their life eycle or to refer-to.the evolution of a body
structure within a taxonomic groups

Morphogenetic responses may be induced in organisms by hormones or by

environmental chemicals ranging from substances produced by other organisms

-

s _,_,..-r""'_'_-_-_'_
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CHAPTER { Approzimation Model
to toxic chemicals or radionuclides released as pollutants. Development of spatial
pattern and formation is one of the central issues in embryology. The formation of
structure in embryology is known as morphogenesis, Pattern generation models
are generally grouped together as morphogenetic models. These models provide
the embryologist with possible scenarios as to how pattern is laid down and how
the embryonic form might be created. Although, genes play a erucial role in the
control of pattern formation, genetics say nothing about the actual mechanism
involved or how the vast range of pattern and form that we see evolve from a

homogeneous mass of dividing gells.
There are two views of pattern generation
1. Chemical pre-pattern approach
2. Mechanochemical approach

The mechanochemical approach of modeling pattern formation, will be consid-
ered. Also the role that-mechanical forces play i the process of morphogenetic
pattern formation wil be looked into. The two approaches are basically different.

In the chemical pre-pattern approach, pattern formiation and morphogenesis
take place one affer the other, First, the chemical concentration pattern is laid
down, the cells interpret this prespattern and differentiate dccordingly. So in this
approach, morphogenesis is essentiallv-a-slave process which is determined once
the chemical pattern has been established. Mechanical shaping of form which
nceurs during embryogenesis is not addressed in the chemical theory of morpho-

— ,.--"'"'_'_-_-_._ - 3 3 ;
genesis. The elusiveness of these chemical morphogens is proving a considerable
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CHAPTER § Approzimation Model
drawback in the acceptance of such a theory of morphogenesis. There is however,
on doubt that chemical plays a crucial role in development.

In the mechanochemical approach, pattern formation and morphogenesis go
on simultaneously as a single process. Here, the chemical patterning and the
form-shaping movements of the cells and the embryological tissue interact con-
Linuosly to produce the observed spatial pattern. Another important aspect of
this approach is that the models associated with it are formulated in terms of
measurable quantities such as cell densities, forces, tissue deformation, chemical
gradient etc. This [ocuses atteniion op shaé m@’pﬁnger?‘ﬁc process itselfl and in
principle is more amenable to experimental investigation. The principal use of
any theory is its predictions and even thougheach theory might be able to create
similar patterns, they are mainly distinguished by the different experiments they
suggest.

The advantage of the simultanieons development s its ability lorself-correction.
Embryonic development-is usually-a very stable process With the embryo capable
of adjusting to many outside disturbances. The process whereby a pre-pattern
exists and then morphogenesis takes place is effectively an open loop system.
These are potentially unstable processes which make it _diﬁ_ﬁﬂf for the embryo

to make the necessary u&jmtmnt to such disturhances as-development proceeds.
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The model has three field variables
L. nz,t) —density of megsenchymal cells at position x at time t
2. plz,t} —density of extracellular matrix(ECM) at position x at time t

3. u(zr,t) =displacement at time t of & material point of the ECM initially at

X

The model consists of motile cells immigrating through an elastic medium. The
elastic medium is known as extracellular matrix (ECM). As the motile cells move
through the elastic medium, the matile gells exerbforce on the elastic medium.
This traction forces of the motile cell deforms the extracellular medium. As the
elastic medium deforms, it induces anvisotropy which affects the movement of the

motile cells. The Mathematical medel for these movement and traction forces

consists of the following equations,
1. The cell density
2. The mechanical balance of forces between the cell traction and the matrix.
3. The balance law governing the matrix material

We starts the model with the cell density equation

4.2 The Cell Density Equation

Let n{x.4}) be cell density function at time t per unit volume al position z. This

— _'_'_'_,..--'—'_-_-.‘_'_
cell density equation is modeled by making use of the conservation law.
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Conservation law states that a particular mesurable property of an isolated
physical system does not change as the system evolves.
Using the conservation law we equate the rate of change of the cell density at
T to the various terms which affects the cell movement through the extracellular

matrix. The Mathematical form of this is

2§

=-V.J+ M (4.1)

where J is the flux of cells per unit area and M is the mitotic rate. Mitosis is

the division of cells. IV \IlIl | ST
1N N\

4.2.1 Random Dispersal

As the motile moves through the mlmlgmﬁnx it exhibit a random move-

ment or diffuse and it is termed mdnmdﬁpw The random dispersal term

has two components.

1. Local or short randem metion

2. Nonlocal or long range random motion

—
- = F

The logal-or short range randerti motion

If the mesenchymal cels simply move ordiffisé in a homogeneous isotropic matrix

then according to Fick's Law the flux is given as

o . ———J=-DVn
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Where D is the diffusion coefficient of the mesenchymal cells in the medium. 1f D
is A constant then this term in the conservation equation has the usual Laplacian
form: D¥*n. The Laplacian operator is the difference between the value of the

density function n(z,{) at position z and its local average.

The Non-local or long range random motion

Mesenchymal cells are quite densely packed. The mesenchymal cells possess long
filopodia which extend beyond their nearest neighbours. Which means they can
sense and respond to condition Feybud bheir infrediate neighbourhood. A cell
which can sample their environment will réSpond noti only to the local value
of the concentration gradient but alsoto the average value, that is ng, in that
neighbourhood. As the cell responds to the non-local in their neighbourhoed, a
time will come that the non-local will hﬁem influence in their behavior. If
this happens then we musi.augrment-this situation by adding an additional term
which is called harmonic diffusion. D:V(¥%mn)

There are several ways of modeling Jlong range interactions. Cohen and Mur-
ray in 1980 modeled a population system by using & Landau-Ginzberg approach
in which spatial'gradient contribiites totheinteraction eneraﬁhnrmnniu diffu-
sion was added to the equationf4:1). The fiux expression appropriate for diffusing
objects which responds to local Average-and non-local average of the concentra-

tion gradient is given by

=5 ”"'F_T—_ —D\Vin+ DaV(Vin) (4.2)
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where Dy is the harmonic diffusion coefficient for the local or short range effect
in the random dispersal.

D; is the biharmonic diffusion coefficient for the non-local or the long range
effect in the random dispersal. The dimension for D, is [(length)]?/[time] and
it is a mesure of the short range effect in the random dispersal. The dimension
for Dy is [(length)]®/|time| and it is a measure of the long range effect in the

random dispersal.

4.2.2 Haptotaxis

As the cell moves through the extracellular matrix it exerts force on the path it
moves, while exerting force on the surfounding area of the extracellular matrix.

This force exerted by the cell deforms the extracellular locally and non locally.

Loeal Haptotaxis

At the local front as the extracellular matrix deforms it generate gradients in
the matrix density p(x, (). These density gradients are sites for cell altachment.
The cells migrate within‘anadhesive gradient will tend $o move up the gradient.
(Gustafson and Walpert, 1965, 1967).-This-direetionality comes about because of
the nature of cell motion. Eachside n.f a cell fopms adbesions to the substratum
and engages in a tug-of-war. Thenet'displacement occurs in the direction of the
side with the strongest pull and the firmest attachments to the substratum. The
simplmﬁ__gmdel for haptotactic transport, assume that the cell flux is proportional

to 1% matrix gradim density cells whose traction are deforming the



CHAPTER 4 Approzimation Model

matrix. The cell traction coefficient T is the compressive stress exerled per cell

on & unit mass of matrix.

J = anVp (4.3)

where « is the harmonie diffusion coefficient for the traction on the extracel-

lular matrix locally.

Non-local Haptotaxis

For the non-local traction, as the cell mgves through the extracellular matrix it
exerts force on the medium and'it deforind the extihcdlular matrix locally and
non-locally. That is, it also exerts force gm the surronndings of the extracellular
matrix. The deformation of the extracellular matrix generate gradient externally
in the matrix density. The gradient that-are produced serves as a site for cell

attachment.

7o m'n-*?”‘p {4-‘”

where @ is the harmonic diffusion eoefficient for the graction on the extracel-

lular matrix locally and where & is the biliarmonic diffusion eeefficient for the
non-local traction on therextracellular matrix.

Putting equations(4.3) and (4.4} together, we-have

] J = anVp + aa nV3p (4.5)
== — VT (4.6)
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4.2.3 Convection

As the cell migrate through the extracellular matrix, it exerts foree on the

medium and the medium also exerts equal and opposite force on the cell. As

this goes on the cell moves passively on the extracellular matrix and we have

convection. Convection is the product of the cell density(n) and the local matrix

veloeity (5)

S

J=ﬂ[§

)

Putting equations (4.2), (4.6%arkl (4i7) togethel, we have

v ' i

J = =1y Vn + D,V (V38) +anVip + o V2g| + n.(a*]
-

J = —D,Vn+ D,V £anVp+ anV (V)| + m_;r.—‘}

But

o — Vil + M

Therefore putting equation (4.9) into equation (4.2). we have

: 4 hi
% = V(=D Vir+Da¥% + alnVp + dN(PEe)+ (5) + M
dn 2 4 v o Ju
= = V=iV —oViivgFaut(yigl = V() + M

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)
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4.2.4 Mitosis

Mitosis is the division of cells and because of this we represent this term by the
logistic growth model. Where the growih rate is r and the maximum density
is N, Folkman and Mascona (1978) showed that the mitotic rate dependence
on the cell shape. Therefore in our modele the mitotic rate will depend on the

displacement u. So the growth of the cells is formulated as

M = rn(N —n) (4.12)
where r is the growth rate and!N, is ihﬁ.ﬂﬂm gapacity or the maximum density.
Putting equation (4.12) into equation (41.41)

QOur model for the cell equation becomes

~?;t—n = Dy Vin— 194~ aV[nVe-+anV (Vv e)] - "F‘n{%_} + 71N —n) (4.13)

We assume that the mAximum. density to be ] that sV — |

Then we have

%? = D1Vn — Da¥h=aVnVp + o nV(Vp)]— ?ﬂ{.% Y+ rn(l—mn) (4.14)
%’tﬁ — D\ Vin+ DV r‘.‘:?l?t?p-l—ﬂiﬂ?[??p}] ‘ ‘C’n{%ﬁij -rn(l1—n) =0 (4.15)
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4.3 Cell-Matrix Interaction

The extracellular matrix in which the cells migrate is compose of complex fi-
brous. The fibrous of the extracellular matrix changes as the cell moves through
it, We are only interested in the mechanical interaction between the cells and
the extracellular matrix. We first assume that the extracellular matrix will be
modeled to first order and also because of the fluid nature of the extracellular
matrix and the traction, we also assume isotropic viscoelastic continuum. The
time scale for the embryonic motions is very long hours and the spatial scale is
very small that is millimeters.[So we ecnsider verinlow Reynolds number (Pur-
cell, 1977, Odell, et al, 1981). We assume the traction produced by the cells are
in equilibrium with the restoring forges exerted by the extracellular matrix.
The equilibrium equaiion is given by the composite material|cells+madtrix].
We also modify_the expression for the aiscoelastic stress tensor (Landau and

Lifshitz, 1970)

& 80, i E s
i = [#-157 +#3§EH+ [1 +y[E+ 1-2v

o1)| (4.16)

where # = V.u isthe dilation of the matrix material,
fty is the shearviseosity;
jt= is the bulk viscosity,
E is the Young's modulus,
vis tl_ae Poisson ratio,

-

Tds-the unit tenses——
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We madify the above constitutive relation to account for the following

1. The fibrous nature of the extracellular matrix
2. The effects of the external forees on the system

3. The cell traction to the elastic properties

4.3.1 Stress Alignment

The extracellular matrix is isotropic in the absence of cell tractions, so in the
presence of cell traction the ektsbhcellulgr ‘matri€ chn no longer be modeled by
a 2-parameter isotropic constitutive relatior Tike the Hooke's law. For example,
when a fibrous material is strained thie fibers tend to align in the directions
of the principal stresses and the effective elastic modulus in the direction of
strain increases. Since an initially isotropic material when strained is no longer
isotropic and go equation(d.16) eannot be use in the modeling.” However, we
shall for mathematical simplicit¥, eschew. a mote complex constitutive relation
for the extracellular matrix and proceed with the following approximation. The
prineiple macroscopic effectof fiber alignment is testrengihen the material in the
direction of the strain, Thus we ean incorperate some aspect® of fiber alignment
by making the elastie.moduligan increasing futiction of the dilation @. This is,
of course an approximation to & constitutive relation that has a separate elastic
constants in each principle direction (cf, Christiansen, 1979). We emphasize Lhat
this may be, but one representative effect of matrix nonlinearities which influence
cell behavior. Nevgm ghall proceed with the 2-parmeter description
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of the extracellular matrix and model the elastic behavior of the extracellular
matrix. The effect of fiber alignment in the extracellular matrix is to stiffen the
material as it is strained. Therefore the stress-strain behavior can be modeled.
The effective elastic modulus (the slope of the curve) increases as the material
is stretched (¢ > 0), until the yield point is reached where upon the curve levels
off and falls as the fibers commence to tear. The extracellular matrix is very
weak in compression,however eventually the composite material [cells+matrix] is
in compressible and so the curve must drop off to —oc as ¢ — —1. All this goes

on at the local front and we haye

E(9)

TR v 0I) (4.17)

where

£+
=

—ale T

Then at the nonlocalfront the fibrous materials are charatérized by nonlocal
elastic interactions. Thisis becatse the fibers can transmit stress between
matrix nodes which are'quite far apart. Thus the stress'at a point is a function
of the strain averaged over a region-on the.order of an internedal fiber length.
By an argument identical {0 that which led to the hil'giz_mﬂnic diffusion term we

can alter the local law 1o inclide nonlocal effects.
c—ct BV (418)

e o= T+ VBT (4.19)
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Putting equations (4.18) and (4.19) into equation (4.17), we have

% [e + BV + v oI + v 3. V361 (4.20)
%[Hﬁlvﬂe + v (01 + 3 V20)1) (4.21)

where

¢

H;If’ﬂv and ,Hlaiﬂ,ﬁg-c:ﬂ

However, since the distance bétween the nbdes of the éxtracellular matrix is
much less than a typical cell diameter the nonlocal effects of fiber elasticity are

probably small. So we assume that gy=0aund 3 =0

Then we have

%ﬂ% (e 01) (4.22)

where

4.3.2 Cell Tractions

The contribution of the cell tractions to the stress tensor can be modeled by

assuming that the force generated per cell per unit mass of matrix is a

saturating function ﬁﬂ-cﬁl—&_e-n_sity
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T{ﬂ} -I-J.l'l

where 7, A are both positive, so that the contribution of cell tractions to the

stress tensor is

Owll = |[————

3wl )

where 7[dyne — cm/gm]| is characteristic of the cell types. Typical experimental
values for 7 are in the range = 10~ 3dyne/um of cell edge a-sizeable force
(Harris et al 1981). If the I"t]upgjl;iiﬂ. w?gh;v.ﬂ'llr'i; r&é@iilslL E'I,L%ai-‘h to the extracellular
matrix extend beyond nearest neighbours th:-:en it is reasonable to include a

nonlocal effect.

T .
Teell = lﬁ‘ﬁﬂﬁﬂq“"ﬁ?z"” (4.24)
where v > 0 measures the-magnitude of the long rafige cell interattions

Equation (4.25) applies to the situation where eells inifract with one another
via filopodia which may extend further than nearest neighbours, this is typical
in chondrogenic coridensations. In other situation, where the gélls are more
loosely packed, ile nonloeal effect is primarily hetteet, cells and the

extracellular matrix. So we.ignore the intéraction beiween cells and consider

the interaction of cells and the extracellular matrix.

——In(p+8V0)] (4.25)

o ﬂ-E!u 1 +A a2
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where § > 0 measures the magnitude of the long range interactions between the

cells and the extracellular matrix.

Putting equation(4.16), (4.22) and (4.26) together, we have the farce been

exerted by the cells a3 they move through the medium is

‘F{[m = 4 g I]+[ +1 HI}]+[1+A sIn(p+BVp)l  (4.26)

4.3.3 Body Forces

The cell and the matrix material is genegally attached elastically to an external
substratum, usually an epithelial layer. As this goes on there is a body force
that is produced. The body force is proportional to the displacement of the

matrix matetial from its unstrained position.
Facua
F'=sup (4.27)

where s is the elastio constant characterisingthe substratumta which the

extracellular matrix isatlached.

Using the Newton third law of motion that states that action and reaction are

equal and oppaosite,

-

We have o ———=aa

1]
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v([ﬁl% + #2%‘?11 =+ [éﬁ{s + 25000+ [Fhalnle + 8V7ip) ] = sup

‘V([m =} p:atllﬂ et 91}]+|1+m1]n{p+ﬁ'i""phf sup =0
(4.28)
4.4 Matrix Density Equation
“The conservation equation for the matrix material p(z.1) is
o . 1 (
S VAW HES (g ey (4.29)

where 5 is the secretion rate of matrix material by the cells. Secretion and
degradation of matrix material is thought to play an important role in

mesenchymal cell organisation.

J is the flux of the matrix matérial per unit avea. Asg the cells move through the
medium, the cells will'exert force on the medium which will deform the medium,
but the medium will react to this force by also exerting equal and opposite
force on the cell. As this Zoes ou the energy that comes oul is the convection
energy. Convection energy is the tansfer ofiheat energy throiigh a gas or liquid
by movement of currents. The mmrm_-u:uu on the. matrix material is simply the
product of the matrix density (7} and-the-local matrix velocity (%) As the
exchange of forces goes on, the matrix material will move from one point to
another and actually you can find the velocity as the distance move with

respect to time.
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u
T :
ol e ) (4.30)

Pulting equation (4.31) into (4.30), we have

dp Bir,
a1 = VA7) S p) (4.31)

As this goes on, the matix material will secret a liquid substance and this liquid
sunstance at a time will affect the movement of the matrix material itsell, The
rate of secretion of liquid substance in plants is higher than that in animals.
The model we are looking at is considering the medium as the one in animal.

So we ignore the secretion rateQy setting § =10

%? = —v,q( ) (4.32)
‘;‘: +vp(—} 0 (4.33)

Putting equations (1.15%, (1.26) and\ (4:34) together.

We have our approximation model

%ti — DV — DoVt aV[n Vo + o nV(Vip)l+ v;;;{-%f} —rnfl—n) (4.34)

v{[ﬂlm +#2 ]-l-[ & - _ ﬂf}]-l- [1 +A j]ﬂ[.f'-l‘lifvﬂﬁ}nt —sup =10

(4.35)

= ';;‘4 vp(——} & (4.36)
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Dimensionaless Equations

In order to examine the importance of the various effects and to deal with

limiting conditions as one of the parameters tend to zeros. We

nondimensionalize the model equations with a general length scale L and time

il

We define the following dimensionless parameters:

* =/l D3 = DT/ LY

i* =t/ Dt = DY'/82

u* = ufL a* = apeT/L?
V=LY = rNT

LAY S (1)) [ET, i = 1,2
e rpoN (14 v}/
ot =g/ 4= 25p LA (14 v) [ E
n' = g\ " =F

e AhLE AR XN

o = a /L g =g/L?

where ps-i the initial matrix denstiy. With these definitions the dimensionless

s}rs-t._m becomes.
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4.5 The Approximation Model

a‘ﬂ- ¥
e D\Vin — D,V + aVinVp + o nV(V2p)] + ?n{%} —rn{l —n) (4.37)

vum% + ;:2%1'] +[5 "I“" —{s < _f’zvﬂi}] + Iﬁ]n{p + BV%)] - sup=10
(4.38)
2 vpy <0 (4.39)
where E is the Young’s modulus
1 and py are the shear and bulk viscosities respectively
v is the Poisson ratio, it measufesAh@ trahsyerse gffmprassion of the matrix when
il is stretched.
1 is the unit tensor
e=(Vu ~Ir. VuT)/2 is the linear strain tensor
# = V.u is the dilation
E measures the passive-elasiic modulus of the matrix
The function + is thetraction géncrated by the motile cells,
Dy, Dy are the diffusion coefficients
a,a are the haptotactic coefficients
r is a constant telated to the maximum mitotie rate
N is the maximum cell density
s is an elastic parameter characterising the extracellular matrix attachments to
the cells.

3 is the long range traction effect.
—— Ll
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4.6 Model Analysis

Steady State Analysis

The stationary states of the system are
Lan=0, u=0, p=0
2. n=l, u=0  p=1
Assumptions

Wesetr >0n=n—1p i"ﬁ_—ﬁ'l,,:a_%:"}]” @5: 1.y 2V.u

Putting the assumptions into the system, we have

%ﬁ? — hVn + DoV & oV fan Vigh ?%‘ +rn=10 (4.40)
e e Y | — I F ¥ T 7
_ a4 — - o - 5 o | I — = ﬂ
Vil gy iV el st = Ve e s TPV Al)-su
(4.41)
ap Lo
P Lo 4.42

To determine whet spatial patterns might-arise as a result ofthe cell movement

and extracellular marix deformation. We ﬁrﬁt..mnéig,lué-ﬂ:e model in one

dimension.
Bn - &n _ & p  Fu =
ﬁﬁ_ﬂlﬂm zﬂ_ﬁ+aﬁ+m&4+&m+m_ﬁ (4.43)
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P ﬂ'.s v Hu T 8n T 8 r &
+ 24 = - f e ou=
aar M ora 8z 1-202 ' 1+a8s T+ hdz T+ a e -0

(4.44)

Fu
at 24 55 =" (4.45)

4.6.1 Linear Analysis

_dn &Fp 3“',0 u
F rTe 5151:—2 -I—D:e@ i ag s o @ e gt g frn (4.46)

de Fu O ¥ & r m. v 8p. v o

) e e e T
| (4.47)
4 Nt (4.48)

The linear stability of the system is study by making n,p,u proportional to

explat + :';Tc:::}
n oc elotike) SR eI, o glmttike)
By T‘_r;gfﬂt-,i—ﬁrj o= @bﬁiﬂHh] = #@_ﬂ-ﬁ-ﬂ'r}

where ¥ is the constant of proportionality 'k is the wave vector and o is the

growth rate to obtain the dispersion relation:

We start the lineaxisatiofr-by first considering equfiliofi ‘_g;éé:?:r

on a*n 34?'.!.. 133;'} A  Fu
F:EEPDIHE }Dq {}E-lﬂ{ ai_i-l,xat-!-rn (4.49)

We differentiate n with respect to x and t in equation (4.47), holding p and u

cnn.im_it? e i
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¥ 5

= gipelottita) (a.51)

% = gk,ﬁe{mﬁz; %? I Fkﬂ-,jbe{ﬂ-iﬁ} B _kzw{aﬂiﬁﬂ

Therefore
% = —k'pelt+ika) (4.52)
RNUST
% = — Tkt pelatrike) _ pdyolattike)
Therefore
(4.53)
Because p and th respect to x
or t it will gives you zero
E, = oyelothiks ko) | pyjelottike)
F.= oy 3y [Redypetotsiehy ety - elottike)
Factorising yelot+#%e) um,
T R DR DR gt (4.54)

S : a7
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We differentiate p with respect to x and t in the same equalion and also

holding n and u constant.
= T,;-'E[gt-i-itﬂ

%E L kwetuﬂ-ikr}
£

g’_ﬁ - iﬂkﬂwﬁ{MEh} = _kﬂwﬂ[ﬂﬁhﬁ}

Therefore
3310 i & ikx -
E ag —kET{J‘{i[ i+ikx]) [4_05}
l'iE"'T e Nl Dbk
e L fly) ik
;ﬁ; ) _v_zk:i.,J.JE;q:-Hka:} b &-iwﬁ[nlikr]
Therefore
% = ke 7tED (4.56)

Because n and u aré hield constant, if you differentiate them with respect to x

or t it will gives you zera
F, — —akete 9 oo klgelet i)

Factoring e, glit; e have

F, = (—ak® + aa ket (4.57)

We differentiate u with respect to x and t in the same equation and hold p and

— e
n constant.
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1= elttite) (4.58)
%!! — gypelotiik)

8*u

finallint SR (ot +ikx]

Bopy = lope | (4.59)

Because p and n are held constant, if you differentiate them with respect to x

or t it will gives you zero

Py lio e (4.60)

The next equation from the model is,

. 325+ §3u+'_d5r V dzﬂ+ T ﬂ'ﬂ+ T dp 7 13
LA TR T T s W v S T s B ¥ e W ar*
(4.61)

We differentiate n with respect to x and 1 in equation {(4.48) and holding p and

u constant.

n — .'i.!f_[ﬂ'l-l-lklzl i
%:mwwﬂﬂ (4.62)

Because p and u are held constant, if you differentiate them with respect to x

or t irwill gives youzefo
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G, = irkyelt ) (4.63)

We differentiate p with respect to x and t in equation (4.48) and holding n and

1 constant.

p = ypelottika)
% = i},_-,‘.g,giaﬂih} (4.64)
E-_:E: = i?k.?! H}E[at--qkt} i _'I’;':Et-f"lf;[ﬂ-'-’kl]

Therefore %’} ek

&p _

ar_; —= '—Liks‘iﬁﬂﬁ"“hj [“1-65}

Because n and u are held constan, if you differentiate them with respect to x or

t it will give vou zero:
G,= Thikﬂf’e{mm] = ﬁ-’l’ mkﬂw{unﬁuﬂ

Factoring e!” =) out, we have

Cradliik — - < Gy @ik (4.66)

We differentiate u with respect to x and t in equation (4.48) and holding p and

n constant.

=
e

u = e

—

{ort-+iks)
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%E = 3k'§|}ﬂ{m Hikx

g:r-,“ =5 sz,{)e["*"'““"l — k‘zwlmﬁk,}
Therefore
g%;-'# = —kpelottike)

The next equation from the model is

@ Ry 3
& 4 Boh, 0 (4.67)

We differentinle n with respect to x and tin equation (4.66) and holding p and

u constant.

1 = thelotHEs)
heo
H, 20 (4.68)

We differentiate p with respeet to x-and t.in equation (4.66) and holding n and

u constant
p =2 J}kﬂ[nf-l 1Ex)

Bp o lettike)
ar — Ve

Because 1 an u are held constan, if you differentiate them with respect to x or t
e £ _F__,.-r'-_'_--_—_

it will give you zero.
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H, = aypel®t+ie) (4.69)

We differentiate u with respect to x and t in equation (4.66) and holdingp and

u constant
e w[ﬂ+ih}l

- 2

T ikz)
e kol

E.u

H, = ikape® el = (4.70)
The jacobian matrix

iTnltxkhl_.E"uTl'd.-ik::I (rTyik— TWHJM ko — okl —ayjelets ke

( [EFS A EE PR L REL WL AL e S Atttk fier o s Hiks) )
o ll#i"“ them) iRl ide]

We find the determinant of the jacabian matriz

(4 DA Dk el 5 (= k2% aa ) yeler 485 el +ike)
ipfhpelots i) (i AR el ed (i3 Bty sy ot hike) | = ()
i Il"#.‘“l;-ml'--- ikp) “ﬂ‘._“.lar-uhe}
Factoriging 1™ %) out, we have
(o+ D1 B Dgk ) (—ok* % dnik?) il
TSk 7, i = o geletiks) — g
o ik
Dividing through by el ™= e have
(e + D2+ Dokt +r) {—rxkz + an’ J:‘*} i
Tt i;.ﬁk (uh‘k 1-:&1'3“‘3} (—pak?a — ﬁki -8} = 0
e d_,--""_'_____— 3
] a tka
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(175 = iy 08 l—#’c-r!;&'-»‘

d ke

(o + Dy + Dk* 4 v)

(irkxk) (-woke - 2k — s

~(~ak® + aa'k")
0 ko
P COCo TRt
o o
(w+l.!;l’+ugt‘+r}|1h(:t-hk—n—'-l‘ q-up* kY~ S o) vike(itho)
(o + Dik® + DyK* + r][u’._K - iy uﬂ:' + ikl 00| 4+
(aK? - aa k') (- I B) 4 ' iy ke? = 0

i

- b
(o + D.F?Mﬁf}ﬂ;ﬁﬂ\t / b skt 4 5 kKo + aol -

uak?0® + 5 ot ) + Dok

N —
rl- o ik
I+ ‘x__:.-ﬂ ?
LS,

~ K0 4 5 0K'0? + ko™

Dypska® + Dy 2 k'o” + DiFs0 = Do + Dyl 0k + Dymk*s’ +

Dy k% + Dyktso — riixklo + rpigOkto + rppke® 4 rifghie 4 reo ~
5 ke + pizaaie - iyied = 0

Bl L)
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#ik:n'a'l' 1,|_.J,ﬂk‘ - Pﬂ —TLHPUI‘Q' l—:ik’ﬂ: +M’ + Dlﬂ&k‘ﬂ"i'
D2pik"0® + rpak®o® + Dyri Bk + Dars koo — Dyi5k% + 00 k%o +

DizBk'e + riffkte + D k'a + Dok'so — f5ak'o — Dy Ko +

DiKsa — rizk'e + ripklo +rso =0

pr=p and H= =1

1=

uka® + 50k'e® — 275K + K% + s0® + Dipk'o? + Dapak®o® + ruk?a® +

Dy ko + Dqokbo — DE%MMJS‘;EX Bkta + rr}sﬁk‘ﬂ' +

Dikto+ Dok'so — sakto — D15 K'at Dikso —ri5k o +rk%a+rs0 = 0

1+A A 1+A

r
- W Lh
pk20® -+ Doptko® + k| Ex@ Daptlod + WAL + vyt — 21550 + 30% +

Dyi5 8k + k%[ D2 — Dotz £ =]o + k'[r=3+ Dy + Das —
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4.6.2 Dispersion relation

pk?a® + (k) + c(k?) = 0
where
b(k?) = pDak® + K*[uDy + Br5] + B[+ pr — 2755

I+J|] t+s

e(K?) = ﬁ_—;,ﬁﬂgk“ +E[i55(8D + ae — Dy0 + Dy + K2|r + sD; — 2

The spatially heterogeneous solutions of the linear equations are characterised
by a dispersion relation o(k?) which exhibits a range of unstable modes when
Re{o) > 0 but it will exhibits a Iange of stable modesHe(a) < 0. The most
easential parameter in the dispersion relationeds the'cell traction 7

We assume that there is no long ranze gell interactions

Thatis Dy =0 and o =0 And also lettingH); = D
we have
Dispersion relation
pK?0® + bk o+ c(k*) =0

wherd B(E?), = k* (uD ¥ Loy kbt (1= 5 2 - 2iawr) +5

o(k?) = T2k W (DAL= D=a(T= ) HEF + 5D — 55) +rs
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4.6.3 Patterns Formation

To get the patterns that are form from this dispersion relation. We wrote a
matlab program and use the experimental data from Murray and Bentil

Relationship between the mode(m) and the wave number(k) is given as

k=mxm

o4 T '
Db i ...... e R L e
ong

gt : B __{', e 4

Dok . PR ! ..;t'....;.....,;‘;.';‘ - .,;..,.;:.,;-... ..;‘...'.. o 4
- f i
_§, (1] oy "m.___ -t

i@ b e
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L.08}
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o

Figure 4.1: 2nd Mode by Murray and Co
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Figure 4.3: 6th Mode by Murray and Co
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Bentil
0z : - : - -

N4

NS

Figure 4.6: 8th Mode by Bentil

Figure A.7: 5th Mode by Dontwi and Oppong
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"“‘“‘---‘1’:‘0P_r--1l R T L T

-------

Figure 4.9: 10th Mode by Dontwi and Oppong
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CHAPTER 5
Conclusion and Recommendation

5.1 Conclusion

From the experimental data, the data corresponding to this mode means the
graph should turn at that particular mode. We have been able to derive the
Aproximation Model and also $howad that, Fiﬁﬁtil\‘ﬁ‘iaxmprimﬁnta.l data were
giving us better results than Murray who.gtarted biological pattern formation.
We were able Lo come out with experimental data for the 5th, 9th and 10th
modes which was not considered in Bentil’s and Murray's experimental data.
Bentil and Murray only came out with experrmental data for the even modes
but we were ableto come-aut with experimental data for both' even and odd

modes.

5.2 Recomimendation

One can use mathematical methods and computex ﬂiﬁu]ﬁtiunﬂ o generate the
experimental data which may be usefuk-to experimentalists.
Using mathematical modeling one can predict what will happen in real life

situation: :
e = __'_._,_.--"'_'_-_-_'_

7l
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Appendix A
Matlab Programe
A.1 Belousov-Zhabotinskii reaction and phase

diagrams

—

. Belousov-Zhabotinskii rebciofiand ghast diagrames

ha

Using Matlabh Ode
3. T = 40: marimum lime

4. h=0.3:Imtial concenirolion of hypobromous acid

on

. k = 0.05 Tnatial concentrationof bromide

=]

. 1 = 0.004: Initiad concentration of cerum-4
7. 20=[h, k1]

iy N errpulten. . wluan i

w

. |t, 2] = Ode23(G funldT], 20)
10. vovrernene e graphical output............i

11. ﬂﬁtﬂg’m{.'.u.zf’:,ﬂ),z(:,S ))



12. plot(ta(: 1))
13, alabel('t’);ylabel(’z’)
4. ploi(ta(:3))
15. zlabel("t");ylabel('z’)
16. plot(t,a(:2))
17. alabel(’t);ylabel('s’)

18. plot(a(;,1).2(:,3)) K N U ST

19. grid off

21,

22, [p'] = zerosi,

27, y(1) = (&) * (g* (2(2) — 2(1) » 2(2) +2(1) * (1 = 2(1));

28, 9(2) = (ghs * (ca222) —2(1) # 2(2) + [ »2(3);

7B



29. y(3) = z(1) — z(3);




Appendix B
Matlab Programe
B.1 Pattern phase dmgramﬂ

1. function dispatterns

s KNUST

3. mew = 0.022

10. m=[0:01:10

1. k=ms+m
lz—rﬂik‘t



13. Md=k!*

14 k6 =k*

5 e i b

16. lambdal = 1 + lambda

. Lo (et o)l
18. b1 = (mew = D + lambda2) = k4

19. f1= (2:taw}ﬂmbdulK N U ST

20. b2 = (1 — f1+mew xr)

21. b3=b2xk2+s
22. b="5bl + b3

23. f2= D + lambda2

CLL TV !1:!: ﬂ

28. f5 = (f4 » taw)/lambdal

27. fd=r«beta— D —

=i -
_&dfs;rﬂ + {5’.“__________



30. 02 = f6%kd

31. f7 = (r «taw)/lambdal
32. fB=gwDtr—fT7

33, 3= f8+k2+4r%s

M. e=cl+e2+c3

35. b12 =107

e KNUST

37. fli= 9. %e

38. fi1=1512-f10




A7. ylabel(’sigma’)
4R, title(’Bentil’)
49. azis([0,10,-10,5])

50. end
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