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ABSTRACT 

Traditional methods of estimation and testing, such as the Ordinary Least Squares 

(OLS) method, are efficient if the normality assumption of the error distribution and 

other assumptions about a liner model are not violated. Adaptive tests are found to 

be efficient and increases the power irrespective of the condition of the observed 

data. In particular, stock market data comes along with some skewness, tail weights, 

outliers and unknown distributions that violates some underlying assumptions for 

which the estimates from OLS is efficient. The degree to which a security is affected 

by a systematic risk as compared to the effect on the market as a whole is measured 

by the security’s beta. Beta estimates of a security on the stock market are obtained 

from the OLS estimates of the parameters of a linear model. In practice, however, the 

error distribution of the market model is not known and conclusions made solely 

using traditional methods may lead to invalid conclusions. Consequently, fund 

managers, actuaries and investment risk managers may mislead their clients based 

on financial decisions made based on these beta measures. This study sought to 

extend robust adaptive methods that considered tail weight, skewness and selector 

statistics, in estimating security beta with some specified lags. Further comparisons 

were made between the adaptive procedure and the OLS method. In line with these 

objectives, monthly data of three companies listed on the Ghana Stock Exchange 

(GSE), from January 2000 to June 2014, were used. Market models were formulated 

with some specific lags and estimation of model were done for both traditional and 

adaptive methods. The study showed that rank-based methods (Wilcoxon and 

Adaptive) were more robust in estimation when the distribution of the error term of 

the dataset was non-normal and also in the presence of outlying observations,whiles 

the LS method was very non-robust. Results indicated that 5% outlier-contamination 

was enough to cause some instability in the estimates. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background of study 

Least Squares estimation of beta, as simple and applicable as it is with its extensive 

use in the world of business finance and actuarial science, often fails in practice 

raising the question of if there were a better method of estimating beta. One 

important limitation of the OLS model is the assumption linear regression model 

makes of the distribution of the error term. Statisticians have in a long time noted 

the loss in efficiency of OLS method when errors have nonnormal distribution. An 

increasing number of studies in economics has noted the difficulty in assuming errors 

have a normal distribution. While the theory has worked and served well for years, 

statisticians are increasingly concerned about the use of OLS when its assumptions 

are not met ie. when the probability of outlier observations in the data is much. Huber 

(1973) comments, that one gross outlier can damage the LS estimate. In theory, when 

the assumptions do not hold the standard least squares estimation for the regression 

coefficient will be biased and/or non-efficient. Such evidence provides a clear 

motivation for exploring the use of a more robust method for beta estimation. In this 

study a rank-based adaptive method is compared to the OLS method using monthly 

returns data for some stocks on the Ghana Stock Exchange(GSE) 

1.2 Types of Risk 

In portfolio management, risk is one important factor to be considered. The 

probability that observed returns could be less than expected returns creates risk in 

holding securities. Risk is classified into systematic and unsystematic risk. 
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1.2.1 Unsystematic Risk 

Unsystematic risk is specific to an industry or firm and can be reduced and even 

eliminated by sufficient diversification of ones portfolio over a larger number of 

securities. Such factors as labour strikes, the capability of management, investment 

strategies etc.,contribute to unsystematic risk. 

1.2.2 Systematic Risk 

Systematic risk is associated with economic, sociological, political and other macro-

level factors. Systematic risk affects the whole market and cannot be eliminated by 

mere diversification of ones portfolio. 

Beta a proxy of systematic risk, measures the extent to which systematic risk affects 

a security as compared to the market. 

The beta of a stock measures the volatility of the stock return an investor is exposed 

to in relation to the entire market. Beta measures the responsiveness of a stocks price 

to changes in the overall stock market. A stock market has a beta of 1.00 and the 

stocks beta is measured on the extent to which it deviates from the market. A stock 

is less volatile than the market when it has a beta less than 1.00, its price thus 

fluctuates less frequently as compared to the market and vice versa. Beta is used in 

the CAPM model to estimate an assets expected return. The Capital Asset Pricing 

Model (CAPM) developed in the early 1960s by William Sharpe, Jack Treynor, John 

Lintner and Jan Mossin was received with great enthusiasm by the finance world. 

1.3 Capital Asset Pricing Model (CAPM) 

CAPM is a model for measuring risk-return trade-off for all assets, including efficient 

and inefficient portfolios. It is a model that calculates the expected return of an asset 

based on its beta and the expected market returns. 

 E(Ri) = Rf + [E(Rm) − Rf]Bim (1.1) 
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Where 

Rf: the risk free interest rate (the interest rate an investor would expect to receive 

from a risk free investment) 

Bim: beta of the security 

Rm: is the return of the market index 

Ri: is the return of security i 

The measure of a securities Beta informs fund managers as to what securities to 

include in their portfolio to minimize the overall risk and maximize the return of the 

portfolio. According to Eugene Fama, beta as the sole variable explaining returns on 

stocks is dead however the fact that the average returns of stocks might not be in 

accordance with their beta’s as predicted by the capital asset pricing model(CAPM) 

does not negate the usefulness of beta as a measure of a stock’s risk exposure. Thus 

the usefulness of beta cannot be overlooked. It is very important that investors not 

only have a good understanding of their risk tolerance, but also know which 

investment match their risk preference. Using beta as a measure of risk (volatility), 

securities that meet these investors criteria for risk can better be chosen. Many 

brokerage firms calculate and publish the betas of securities they trade. Analysts, 

brokers and planners have used beta for decades to help them determine the risk 

level of an investment. 

In estimating beta, econometric studies has massively employed the standard linear 

model. In that framework economists estimate the slope parameters, otherwise 

known as beta, using the ordinary least squares(OLS) technique. When errors have 

monotonically declining likelihood functions in the sum of squared errors, the OLS 

method is equivalent to the maximum likelihood(ML) method and this has increased 

its popularity. These estimators are efficient unbiased estimators that have the least 

possible asymptotic variance in a family of unbiased estimators. 

The goal of OLS is to closely fit a function or model with a given dataset. It does so by 

minimizing the sum of squared errors from the data. The OLS method is the best 



 

4 

statistical method in estimating parameters of a linear model under some 

assumptions, Martin and Simin (2003), justifying the frequency in its use. The OLS 

method makes and uses some assumptions in estimating the parameters of the 

model as stated by Martin and Simin (2003); 

• The error /residual term is normally distributed 

• The variance of the residual is constant or homoscedasticity 

• The mean of the error is 0 

The method of OLS estimation is simplistic and has much easier computations and 

implementation. The estimated parameters are easy to understand and interpret. 

OLS estimation of beta, as simple and applicable as it is with its extensive use in the 

world of business, finance and actuarial science, often fails in practice raising the 

question of if there were a better method of estimating beta. 

One important limitation of the OLS model is the assumption of the distribution of 

the error terms. Statisticians are in the know that OLS loses efficiency when errors 

have non normal distributions and it has become increasingly difficult as pointed by 

economic studies to assume errors have a normal distribution. While the theory has 

served us well for many years, there is a growing concern about its use when 

underlying assumptions are violated (e.g., when the possibility of outliers is great). 

Huber (1973) comments, "Just a single grossly outlying observation may spoil the 

least squares estimate" . 

Such evidence provides a clear motivation for exploring the use of a more robust 

estimation of beta, in this case an adaptive rank-based estimation method. We 

compare the adaptive rank-based estimation method with the OLS, using the 

measures of asymptotic relative efficiency and robustness to determine which model 

is most efficient in the presence of outlying observations. 

This is the purpose of this work. 
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1.4 Statement of the Problem 

Modeling the relationship between variables, in this case market returns and a 

specific security return by the method of least squares as is frequently done is very 

important, simple and easy to implement and interpret. However, more often than 

not, the well-known least squares regression procedure is only optimal under certain 

assumptions of the error term. 

The error term is assumed to be normally distributed with homoscedastic variance. 

The assumptions of the OLS are strong Fox (2005), and there are many ways they 

could go wrong. The typical cases include, 

• The distribution of the error terms can be skewed, heavy-tailed or non-normal 

• Errors not being independent as in time series data 

• Conditional variance of the error can be heteroskedastic 

• The presence of outliers in the dataset 

• Infrequent trading of the security as compared to the overall market, thin trading 

of the security 

More often than not when the assumptions as stated are not met, the LS estimation 

of beta will be biased and/or inefficient, Hampel, Ronchetti, Rousseeuw and Stahel 

(1986). Several other methods of estimation have been proposed, Draper and Smith 

(1988), among these methods is the Adaptive method by O’Gorman (2012). 

1.5 Objectives of the Study 

The objectives or aims of this study are: 

• To implement the use of a more robust adaptive estimation method not easily 

affected by outliers and non-normal data. 
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• Investigating and comparing beta estimation models for one which is more 

efficient. 

• Showcase some methods of reporting adjusted Beta such as the Dimsons and 

Scholes-Williams method. 

1.6 Methodology 

In this study we report some summary results of a study undertaken to compare the 

properties of two alternatives to standard least squares method for simple and 

multiple linear regression analysis; the rank based adaptive and the Wilcoxon fits. R-

codes are written to select appropriate score functions (which will inform about the 

distribution of the errors of the dataset) to be used in the rank based adaptive fit. In 

our study, we use data on stock returns from the Ghana Stock Exchange which 

contain outliers and some other skewed data such as uniform, exponential among 

others and compare the performance of all three regression methods. The sigma or 

tau’s of the estimation methods and their asymptotic relative efficiencies are 

compared. 

1.7 Justification of the Study 

Adaptive methods of estimation have many advantages as compared to the 

traditional estimation methods. Adaptive methods are often times more efficient 

than the traditional methods when applied in estimating linear models with skewed 

or long-tailed error distributions. Adaptive methods are constructed carefully in order 

to maintain their significance level at or close to α, the probability of rejecting the 

null hypothesis when indeed the null hypothesis is true. Statistical properties of the 

adaptive methods are often superior to the traditional methods hence they are often 

recommended for use. 

Properties of the adaptive method includes, but not limited to, the following: 

• The effect of outliers on the estimate is automatically decreased. 
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• There is observed to be little power loss to the adaptive methods when used in 

estimating linear models with normal error distributions. 

• For long-tailed or skewed error distributions, adaptive methods are more efficient 

compared to traditional methods 

• As already stated, adaptive methods maintain actual significance levels at or near 

the nominal level of significance, α. 

1.7.1 Thesis Organization 

The organization of the thesis is as follows. It has five chapters, Chapter 1 presents 

the introduction of the study which consists of the background of the study, 

methodology, thesis justification and organization. Chapter 2, the literature review, 

discusses works done by other researchers on robust estimates of beta. Chapter 3 is 

the formulation of the methods used. Chapter 4 presents the data collection, analysis 

and formulation of the model. Chapter 5 sums up the results, summary, conclusions 

and recommendations of the study. 

CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

In financial economics, asset return betas needs to be estimated. Beta of the capital 

asset pricing model (CAPM), irrespective of academics debate on its relevance, is 

without doubt the best method used widely as a expected return and security’s risk 

measure. Survey of industry users has recorded massive use of CAPM beta’s. 

According to Graham and Harvey (2001), 73.5% of respondents use CAPM in 

estimating cost of equity capital. Block (1999) showed that over 30% analysts 

(respondents) in a financial analyst survey, viewed CAPM as an estimating model 
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which is very important. 50% of managers with an idea of the CAPM techniques used 

it as according to Gitman and Mercurio (1982). By 1997, according to Bruner, Eades, 

Harris and Higgins (1998), CAPM as a model for estimating cost of equity had become 

dominant and many practitioners use values from publications of commercial 

providers 

2.2 Traditional Methods of Estimation 

Ordinary Least Squares method is simple and it enjoys wide usage by both 

practitioners and academic researchers. However, factors constructed from 

macroeconomic data especially have large measurement error and even when 

measured accurately, a factor can still differ from the actual underlying factor. 

Example, the stock market index return is probably measured most accurately but it 

can be an imperfect proxy for the true market return and thus said to contain large 

measurement error, Meng, Gang and Bai (2007) critique. 

Traditional statistical presents a unified methodology in solving problems ranging 

from location models to complex experimental designs, using the least squares 

method. First the problem is presented as a model, then the Euclidean distance 

between the responses and the conjectured model is minimized in a method known 

as the least squares method. Least squares method provides diagnostic techniques 

to check the models adequacy, explore the fits quality and detect outliers and other 

influential cases. In addition it provides inferential procedures such as confidence 

procedures, hypotheses tests amongs others. As Hettmansperger and McKean (2008) 

mentioned, the Least Squares is affected easily by outliers. One outlier can adversely 

affect the least squares model, inference procedures and associated diagnostics. 

Traditional procedures enjoy high efficiency when models are normally distributed 

and less efficient when errors have long tails. 
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2.3 Drawbacks of the Least Squares method 

Mohebbi, Nourijelyani and Zeraati (2007) in a simulation study confirms the claims 

made above by Hettmansperger and Mckean saying, modeling data by the linear least 

squares method is very important and crucial. Frequently, however, the well-known 

least squares regression procedure is only optimal under certain distributional 

assumptions of errors. In practice, this assumption may not hold because of 

possibility of skewness or presence of outliers in a data. In theory, when the 

assumption of normality does not meet, the standard least squares method of 

estimation will be biased and/or non-efficient. 

In multiple regression, the OLS method gives the best parameter estimates when its 

underlying assumptions are met. However, when these assumptions are not met 

sample estimates and inferences could be misleading. Outliers often violates the 

linear models assumption of normality of residuals. These outlying observations can 

adversely affect estimates when they are unnoticed whether they are in the direction 

of response or explanatory variables, adds Alma (2011) 

To throw more light on what outliers are, we proceed with a discourse by Martin and 

Simin (2003). When market return is due to the market returns mean, outliers add no 

effects on the OLS fit thus has no effect on the OLS beta. If an outlier presents as a 

rather unusually large fall in both the market and equity returns, then this outlier is 

in line with OLS fit and does not affect the beta estimate. These sort of outliers 

improves precision in the beta estimation (ie. the outliers highly decreases the OLS 

beta’s standard error and is termed a good outlier). If an outlier presents as a large 

outlying market return not an outlying asset return it equally exerts considerable 

influence. Neither equity returns nor market returns presents as an outlier but the 

pair can clearly be separated from the bulk of the data and present as a two-

dimensional outlying observation. Market return outliers, are outlying observations 

in the one dimensional explanatory or independent variable dimension, they could 
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cause bias by exerting leverage on the OLS linear fit. Such outlying observations in 

statistics and econometrics are referred to as leverage points. 

In summary Abdi and Salkind (2007) adds; Despite its popularity and versatility, Least 

Squares method has its problems. Probably, the most important drawback of the 

Least Squares is its high sensitivity to outliers (i.e. extreme observations). This is a 

consequence of using squares because squaring exaggerates the magnitude of 

differences (e.g. the difference between 20 and 10 is equal to 10 but the difference 

between 202 and 102 is equal to 300) and therefore gives a much stronger importance 

to extreme observations. 

2.4 Ways of dealing with the shortfalls in Least 

Squares in practice. 

To have an idea of how commercial providers of beta treat outliers, current standards 

being practiced by nine such providers is studied in a survey conducted by Martin and 

Simin (2003). The survey reviewed websites, published works on beta estimation 

methods and telephone interviews with employees with some knowledge of 

processes used in estimating beta. Providers of beta estimates including Barra and 

Ibbotson Associates, go to any extent to reduce effects of outliers. All of these 

commercial providers with the exception of Barra use the single factor model in 

reporting beta values. Ibbotson Associates deals with outliers when computing OLS 

betas by discarding beta estimates greater than the absolute of five. This shows that 

Ibbotson Associates are aware outliers can distort greatly the OLS beta. This practice 

by Ibbotson does not guard against distortions of estimates by outliers that are less 

extreme but a single outlier can shoot the beta estimates from 1.0 to 3.0. The only 

provider in the survey who uses statistical methods in dealing with outliers was Barra. 

In its various approaches in estimating Betas and other risk models, Barra employed 

a unit dimensional winsorization procedure (which treated outliers by replacing them 
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with certain specific values) though not on returns of equity but on each exposed 

factor individually, Connor and Herbert (1999). From this work it was noted that 

commercial beta providers deal with outlying observations using the one-

dimensional statistical method treatment. The treatment is termed one dimensional 

because outliers are separately treated in equity and market returns, then the OLS 

beta computation. The treatment often involves winsorizing or rejecting outlying 

observations. Completely removing observations seen to be outliers is termed 

rejecting, winsorizing involves altering outlying points by bringing them into specified 

values. The classical three-sigma edit rule is the best known rejection method but its 

said to be inferior to alternative rejection rules, Hampel et al. (1986). One common 

practice of dealing with outliers by winsorization is where resistant estimates of 

standard deviation and mean are employed to deal with outliers. Values which are 

more than 5.2 times the median absolute deviation about the median (MADM) 

distant from the sample median are reduced to a distance which is 5.2 times the 

MADM from the median. 

This practice is employed by Barra to reduce the impact of outliers in its model. 

Clearly non of these one-dimensional treatments of outliers can be enough for all 

forms of two dimensional outliers. 

According to Fox (2005), a systematic rule called the bulging rule was suggested by 

Mosteller and Tukey. This is used in choosing from a collection of powers and roots 

appropriate linearizing transformations where we replace a variable x with a power 

xp. For p = 2, replace the variable with its square, x2 ; for p = −1, replace with the 

inverse, x−1 = 1/x; for p = 1/2, replace with the square-root, 0.5 √ 0 

x = x; etc. For p = 0, x =1 thus an exception is made, the log transform, log x, is used. 

Such transformations are applicable for positive x values. Square-root and log 

transforms are undefined for negative x values. In a dataset with both negative and 
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positive x-values x2 transformations will affect the order of x. To solve this problem a 

constant quantity c is added to all the x values before applying the power transforms, 

x −→ (x + c)p. Negative powers like the inverse transforms, x−1, reverse the x-values 

order, but if the original order is to be preserved , then −x is used in the place of x for 

negative p values. Using power transforms could aid in linearizing nonlinear simple 

and monotone relationship. A simple relationship is smoothly curved and its 

curvatures direction does not change. A monotone relationship has y strictly 

increasing or decreasing along with x. 

Relationships that are not linear, simple nor monotone are estimated using other 

forms of parametric regression since they cannot be linearized by power 

transformation. Linear least-squares regression can be used in fitting quadratic 

equations. Nonlinear least squares are employed in fitting a broader family of 

parametric models. All these methods of beating the estimates of the OLS into shape 

for efficient results have their limitations. For the method of trimming 

obviously,informative and influential parts of a dataset could be unnecessarily 

discarded and the transformation methods change the data entirely. 

2.5 Alternative methods of the Standard Least Squares 

Martin and Simin (2003) advised that practitioners needed to compute more resistant 

betas not easily influenced by outliers instead of relying solely on OLS betas. They 

further stated that a manner more effective and uniform in dealing with outliers was 

a straight-line fitting method more resistant and twodimensional, and this method 

was a weighted least squares(WLS) with weights that were data-dependent. Several 

alternative methods of the standard Least Squares(LS) regression have been 

proposed, Draper and Smith (1988). Among these, three methods are in widespread 

application in many branches of applied science. 

According to Mohebbi et al. (2007), these methods are robust M-estimation, Least 

Absolute Deviation (LAD) method and nonparametric (rank based) methods. In 1973, 
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Huber introduced M-estimation for regression. The M in M-estimation stands for 

"maximum likelihood type". M-estimators are a broad class of estimators which are 

obtained as the minima of sums of functions of the data. Least-squares estimators 

are M-estimators. Robust M-estimation is an alternative to the parametric estimation 

when the errors have a distribution that is not necessarily normal but close to normal. 

The class of M-estimator models contains all models that are derived to be maximum 

likelihood models. The most common general method of robust regression is M-

estimation, introduced by Huber (1973) that is nearly as efficient as the Ordinary 

Least Squares. The M-estimate as an objective minimizes the ρ of the errors instead 

of minimizing the sum of squares of the errors. This formula is resistant to outlying 

observations in the dependent variable, but turned out to be less robust to outlying 

observations in the independent variable (leverage points). This method has no 

power over the least squares when outlying observations are present in the 

independent variable. 

In the 1980’s, several alternatives to M-estimation were proposed as attempts to 

overcome the lack of resistance. Least trimmed squares (LTS) is a viable alternative 

and is the preferred choice of Rousseeuw and Leroy (2003) and Ryan (2008). In this 

method the largest squared residuals are excluded from the summation, which allows 

those outlier data points to be excluded completely. LTS method can achieve high 

efficiency in estimation, if the exact quantity of outliers are trimmed, the LTS method 

is equivalent to the OLS method computationally. However, when lesser number of 

outliers than is contained in the data are trimmed, the LTS can be inefficient. 

Conversely, when more trimming is done than there are outliers, some good data 

points could be eliminated. LTS in terms of breakdown is a high breakdown method 

with 50% breakdown. Compared to the LTS method, the Theil–Sen estimator is a low 

breakdown method but more efficient and popular. 
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The S-estimation method was next proposed. The S-estimation method estimates a 

line, a plane or hyperplane by minimizing a robust estimate of the scale (where the S 

in the name of the method is obtained) of the errors. The S-estimator though 

inefficient is very resistant to outlying and leverage points. 

The MM-estimation method attempts to combine the high resistance of the S-

estimation method and the efficiency of the M-estimator. The method does this by 

finding a very resistant and robust S-estimate that minimizes an M-estimate of the 

scale of the residuals. The scale estimated is held constant whiles locating a close-by 

M-estimate of the parameters. 

One other method is the Least Absolute Deviation method(LAD).One optimal 

property of the LAD estimates of the regression coefficients is by their definition, that 

they are the estimates that give the smallest sum of absolute residuals. In addition, if 

we assume that the population of errors has a double exponential/Laplace 

distribution, then the LAD estimate is the maximum likelihood estimate, Birks and 

Dodge (1993). The strength of LAD estimation is in its robustness with respect to the 

distribution of response variable. 

In this study by Alma (2011), four robust regression methods S-estimator, Huber M-

estimator, MM-estimator and the Least Trimmed Squares (LTS) estimator, were 

compared to the OLS method. The MM-estimation performed best on the whole with 

a comprehensive presence of outliers. It however had trouble with high leverage 

outlying points with data size ranging from small to moderate. Its weakness was 

highlighted in the study. The S-estimator had a reasonable efficiency, it bounded the 

influence of the high outlying points. S-estimator could increase efficiency with 10% 

breakdown. The Huber M estimation was also efficient in the presence of outliers. 

Unit weights by Wainer and Thissen (1976) is another robust method. This method is 

used when multiple predictors are present in a single outcome. The method was 
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employed by Burgess (1928) in predicting parole success. In his study, 21 positive 

factors were scored as absent ("prior arrest" = 0) or present (e.g. "no prior arrest" = 

1), these were summed up to give a predictor score, that proved to be an efficient 

predictor of success on parole. 

In a simulation study by Mohebbi et al. (2007), some robust estimation methods 

mentioned above are implemented. Four methods of linear regression; the Least 

Squares(LS), Huber M, Least Absolute Deviation(LAD) and nonparametric, for two 

important classes of distribution, symmetric and skewed, were investigated. The 

same sets of simulated data were used and Mean Squared Error (MSE), Mean 

Absolute Deviation (MAD) and Biases of these methods were compared. The Least 

Absolute Deviation, Huber M and nonparametric regression were shown to be more 

appropriate alternative to the Least Squares in heavy tailed distributions while the 

nonparametric and Least Absolute Deviation regression were better choices for 

skewed data. 

The choice of symmetric distribution was so that their kurtosis was more than that of 

standard normal distribution (ie. heavy tailed distributions). This gave the 

opportunity to investigate regression methods with presence of outliers. Present 

results indicated that when outliers exist other alternatives of the LS are more 

appropriate. 

The general simulation results could be summarized as follows. In almost all 

symmetric distributions investigated, the MSE and MAD are close for the sample sizes 

larger than 100 and so none of the estimation methods were superior in such 

circumstances. However, this has not been true for the case of the studied skewed 

distributions where the LS method shown to be far inferior from the other methods 

of estimation. In general, the bias criterion as compared with the other criteria, 

shown to have more fluctuation and this fluctuation persist even for large sample 
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size. This instability of biases created some difficulty and confusion in finding the 

optimum estimation in some situation. 

Choosing a more efficient alternative to the LS method is closely related to the type 

of data and so it is advisable to use several alternative methods in data analysis, in 

cases of skewed distribution, the performance of LS was inferior as compared to 

other methods. Based on our simulated distribution in this research, the 

nonparametric and LAD methods were more suitable for the studied Gamma family. 

Mohebbi et al. concluded in this work that, in order to investigate for possibilities of 

more suitable methods further studies are needed. 

2.6 Rank-based Procedures 

Bilgic and Susmann (1999) added that, procedures based on ranks retain estimation 

and testing that are distribution-free. These processes are resistant to outlying 

observations when compared to traditional methods when random errors have non-

normal distribution. Robust score functions could as an alternative be 

accommodated with methods based on ranks to protect analyses from influential 

data points in response and factor spaces. The choice of the score functions can 

depend on prior knowledge of the distribution of the error term. The Wilcoxon score 

function is quite efficient for moderate to heavy-tailed error distributions. For 

example, rank-based methods using Wilcoxon scores can obtain up to 95% efficiency 

compared to the least squares procedure with normal data and are known to be more 

efficient than least squares for error distributions with heavy tails. The rank-based 

procedures are more appealing due to these properties. 
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In this article Bilgic and Susmann employ the use of three methods based on ranks: 

Joint Ranking (JR), Generalized Rank Estimate (GR) and Generalized Estimating 

Equation Ranking (GEER), in estimating fixed effects. 

The Joint ranking procedure in estimating nested random effects models makes use 

of asymptotic results of a study Kloke, McKean and Rashid (2009) did in computing 

standard errors and fixed effects. The asymptotic theory for the rank-based 

computing of fixed effects in the general mixed model was developed by Kloke et al. 

(2009) employing Bruner et al. (1998) general rank theory. Fixed effects in the JR 

method is estimated using dispersion function just as is done in independent linear 

models. The asymptotic distribution however has a different formula for the 

covariance matrix due to the model having correlated errors. 

The generalized rank-based mixed model fitting is a Newton-type approximation 

based iterative reweighted rank method. Asymptotic properties of linearized rank 

estimators was developed by Hettmansperger and McKean (2011) to be used in linear 

model in k-step Gauss-Newton approximation with no weights. This theory was 

extended by Bilgic (2012) and Bilgic et al. (2013) to the k-step GR procedure used in 

general mixed models. After initial fitting is carried out estimates become 

asymptotically equivalent to the independent scenario since residuals are no more 

dependent because of covariance weights. This algorithm can work perfectly well for 

all forms of variance-covariance error structure in the general mixed models. 

Abebe, McKean, Kloke and Bilgic (2013) extended the method of general estimating 

equations (GEE) for mixed models in norms based on rank, and derived the 

asymptotic normality of the rank estimators. Abebe et al. (2013) proposed that Liang 

and Zenger’s general estimating equations expression be written in terms of the 

Euclidean norm. 
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Several papers discussed these derivations, the JR method by Kloke et al. (2009), the 

GR method by Bilgic et al.(2013) and the GEER method by Abebe et al. (2013). The 

rank-based estimators in these studies competed well with the traditional procedures 

including maximum likelihood (ML), restricted maximum likelihood (REML) and least 

squares. The rank-based methods outperformed the traditional methods when 

random errors had some contamination and exhibited robustness in the presence of 

outlying observations. Among these methods, the unweighted JR method performed 

poorly compared to the other methods in a Monte Carlo study carried out by Bilgic 

(2012). The GR and GEER methods are reported to be very similar in efficiency and 

empirical validity. The rank-based norm properties provided GR estimates and 

standard errors whiles the GEER was obtained from the rank-based norm and least 

squares properties combined. For a dataset with high correlation, the preferred 

methods will obviously be the GR or GEER method. 

The Wilcoxon signed-rank test is non-parametric and used in making comparisons 

between matched samples, two samples that are related or a single sample with 

repeated measurements to find out if the ranks of their population mean differ. The 

Wilcoxon signed-rank test could be used instead of t-test for matched pairs, paired 

Student’s t-test or t-test for dependent samples when the population is not normally 

distributed. 

The Wilcoxon signed-rank test and the Wilcoxon rank-sum test are different, though 

they all are nonparametric and have to do with ranks summation. Both tests are 

named after Frank Wilcoxon (1892–1965) who proposed both tests in a single paper 

Wilcoxon (1945). The Wilcoxon signed-rank test was made popular by Siegel (1956) 

in a book on non-parametric statistics which became very influential. 

Hotelling and Pabst (1936) as far back as 1936 recognized that data with small sample 

sizes could make use of their ranks instead to escape the assumption of normality. 

The Wilcoxon-Mann-Whitney (WMW) test came to being in the 1940’s. It was 
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developed by Wilcoxon (1945) and Mann and Whitney (1947) extended it. Its 

simplistic nature and robustness has earned it great popularity among scientists. It 

turns out other simple adaptive rank tests exist that outperforms the WMW test in 

discovering differences in distributions. Irrespective of size, large or moderate the 

nonparametric adaptive procedures exhibits more power than the parametric t-test. 

Marking major developments in that area, we begin with Hajek and Sidak (1967), who 

aided in making the WMW tests better by showing that the rank test depended on 

the distribution of the data. When the distribution of the data is logistic the most 

powerful test is the WMW test, the median test is most powerful as stated by Siegel 

and Castellan (1988), with the Laplace/double exponential distribution. Practically 

the distribution of datasets are unknown, thus making it impossible to use the so 

called most powerful rank test. Gastwirth (1965) exhibited rank tests improvement 

in detecting location differences when modified by re-weighting. Gastwirth (1965) 

shows that to improve the power of a test one must have a fair idea of some features 

of the underlying distribution of the dataset. 

In the mid 1950’s studies showed that the rank tests could improve efficiency by 

discarding some parts of the dataset. The main idea was to focus the test on aspects 

of the distribution where location differences were revealed. For example, The data 

close to the hypothesized common boundaries helps a great deal to detect a location 

shift between two uniform distributions. Gastwirth (1965) suggested a modification 

in the WMW test where data was included in only the top p and the bottom r 

proportion of the combined sample (0 < p, r < 1). The underlying distribution 

informed the optimal values of p and r . Gastwirth (1965) proved that, rank tests that 

were appropriately modified were asymptotically more efficient when compared to 

the WMW test. 
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2.7 Adaptive rank tests 

Gastwirth (1965) study created a path for rank-based adaptive tests. Hogg, Fisher and 

Randles (1975) in a paper proposed adaptive procedure simply and effectively used 

a dataset to choose an efficient rank test from amongs a set of alternative tests. The 

data in this procedure is used two times, first to select and then to perform the test 

nonetheless the procedure is termed as ”honest” in that the level of significance is 

preserved in performing the test. The strength of the HFR procedure lies in how easy 

it can be implemented and the great power it has compared to the WMW tests. The 

Hogg Fisher Randles (HFR) adaptive method has challenged a large quantity of 

literature.The HFR test was extended to location test(one-sample), Jones (1979) and 

k-sample trend tests, Buning (1999). With a more recent work by O’Gorman (1996), 

Xie and Priebe (2000), Xie and Priebe (2002), Kossler and Kumar (2008), Kossler 

(2010) and others. 

A study by Hao and Houser (2012) investigated the performance of the HFR test under 

different sample sizes as well as optimizing some parts of the HFR algorithm. The 

study confirmed that, adaptive procedures are substantially more powerful than 

WMW tests and t-tests and almost as powerful in other cases. The study also 

confirmed that adaptive procedures exhibit improved power relative to t-test with 

moderate size samples (say 20 ≤ n,m ≤ 40). 

On the subject of Rank Test, O’Gorman (2012) stated that,quite a number of adaptive 

tests are designed to make better the performance of estimation methods and 

significance tests. He called a significance test adaptive, if the test procedure is 

altered and improved after collection and examination of the data. As an example, in 

using a two-sample adaptive test, data is collected and selection statistics to 

determine the test procedure to be applied, are calculated. If the data seems to have 

a normal distribution, a Wilcoxon rank-sum test is used. If there are outliers contained 

in the data, then we use instead a median test. Adaptive methods have more 
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advantages compared to traditional tests. There is observed to be little power loss to 

the traditional tests when adaptive methods are used in estimating linear models 

with normal error distributions. For long-tailed or skewed error distributions, 

adaptive methods are more efficient compared to traditional methods and the effect 

of outliers is automatically decreased when adaptive methods are used. Adaptive 

methods are constructed carefully in order to maintain their significance level and if 

that is done properly the adaptive test will have a probability at or close to α, of 

rejecting the null hypothesis when indeed the null hypothesis is true. Statistical 

properties of the adaptive methods are often superior to the traditional methods 

hence they are often recommended for use. The Adaptive method is above all very 

straightforward and practical. 

Adaptive methods are said to be robust. There are two types of robustness, 

robustness for power and size. When a test has high power compared to other tests 

and the assumptions of the distributions are not met, it is said to be robust for power. 

On the other hand if a test maintains the actual level of significance close to the 

nominal level then it is robust for size. Often, traditional tests with errors not 

normally distributed are not robust for power but are robust for size. 

2.8 Hogg’s Adaptive procedure 

Hogg et al. (1975) proposed the maiden practical adaptive two-sample test. Before 

1975, the adaptive tests in use were not very practical but quite interesting. Tests to 

improve power was designed by Hajek (1962) by finding scores to produce rank test 

that were most powerful locally. To carry out Hajek’s test, an estimate of the 

derivative function’s first derivative and the density function was required . But the 

first derivative and the density function were difficult to estimate unless very large 
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samples were used . Hence, we do not see much of Hajek’s adaptive test used in 

practice. 

To avoid cumbersome estimations of densities and derivatives, an adaptive 

procedure which uses the measure of sample kurtosis to select one out of four 

estimators of the mean of a symmetric distribution, was proposed by Hogg (1967). In 

that study, symmetric distributions four in number having varying levels of kurtosis 

were considered. Selection statistics were used to choose a low variance estimator. 

One pitfall of this approach was that the sample kurtosis were highly variable, so it 

may fail on some occasions to select appropriate estimators for those symmetric 

distribution. With a sample size of 25 observations generated from the distributions 

in that research, the adaptive estimator had excellent performance irrespective of 

the limitation stated above. Hogg (1967) in urging for much more use of robust 

procedures stated that statisticians must take a wider view and not just choose a 

model before observing the sample items because the availability of excellent 

computing devices makes it easier for these adaptive robust procedures to be carried 

out. This estimator has seen various forms of modifications over the years with the 

most recent version designed by Hogg and Lenth (1984). 

Randles and Hogg (1973) further developed Hogg’s idea of modifying a statistical 

method using selection statistics, the methods included a one-sample and two-

sample adaptive tests. In their study, based on some estimated selection statistics, 

rank scores were chosen and a measure of tail weight not the sample kurtosis was 

used as a selection statistic. The tests employed by Randles and Hogg were adaptive 

but less powerful as compared to traditional tests. Two years after Randles and Hogg 

(1973) work, an improved adaptive two-sample test was published by Hogg et al. 

(1975). This test was rather very practical and proved to be a more effective adaptive 

two-sample test. Though it attracted attention, the test seems not to be used often. 
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One reason for its limited use is because, being a rank-based test, it is quite difficult 

to generalize this method to significance tests of regression coefficients in some 

complex models. In a number of publications after Hogg et al. (1975) paper, many 

researchers constructed tests using Hogg et al. (1975) selection statistics. Buning 

(1996) extended Hogg’s method of selecting rank scores using selection statistics, to 

a test of equality of medians. This test was adaptive in nature and used a one-way 

layout data. Buning and others made extensions of the adaptive method in Buning 

and Kossler (1998), Buning (1999), Buning and Thadewald (2000), Buning (2002). 

2.9 Hogg’s selection statistics 

Buning and Hogg’s tests employed the use of selector statistics to select rank scores 

for the tests. Their approach faced the problem of having selection statistics falling 

near or at the edge of a selection region. A slight altering of the data could cause the 

selection statistics to change which could end up in the choosing of rank scores 

entirely different from the previous one and this result is very undesirable due to the 

large change in p-value resulting from a small change in a single dataset. Ruberg 

(1986) in a bid to correct this condition, proposed the use of a two-sample adaptive 

test which is continuous with its one way layout proposed by O’Gorman (1997). 

Several other adaptive tests using different methods were proposed. They include 

tests proposed by Hall and Padmanabhan (1997) for the two-sample test, where 

bootstrap testing method was employed. The last 40 years has seen many studies in 

adaptive estimation. Yuh and Hogg (1988) as well as Hill and Padmanabhan (1991) 

have all proposed adaptive estimators. These estimators make use of selection 

statistics to select one of many regression estimators that are robust. 

In 2001, a test using adaptive weighing approach was proposed by O’Gorman (2001). 

In this method weights are assigned observations so as to use these weighted 
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observations to test regression coefficients in a linear model. O’Gorman (2002) 

proposed an improved version of this method. Various ways that this method is 

applied is described in a book written by O’Gorman (2004). In that write-up he 

showcased computing the p-value using a method of permutation. 

Other studies done by O’Gorman in this area include multivariate adaptive test 

O’Gorman (2006) and O’Gorman (2008) which was implemented in the analysis of 

repeated measure data O’Gorman (2008). Another of his work involved using the 

permutation of residuals which was proved to be equally effective as the permutation 

of independent variables. 

Recent publications has seen much work on adaptive one-sample tests a shift from 

the norm where works before 2000 were more focused on two-sample tests. Two 

adaptive test for the median was proposed by Lemmer (1993). The likes of Freidlin et 

al. (2003) suggested adaptive test for paired data. In these study p-values from a 

normality test were used as the selector statistics and not measures of skewness or 

tail weight. These tests were quite effective with sample sizes that were moderate. 

When the distributions symmetry is in doubt, Baklizi (2005) suggests the use of the 

work by Lemmer (1993) that is a continuously adaptive test for the median. Very 

recently, Miao and Gastwirth (2009) suggested a test where some score functions 

used by Freidlin, Miao and Gastwirth (2003) are employed with a measure of tail-

heaviness as selector statistics. 

Neuhauser, Buning and Hothorn (2004) proposed a different method of improving 

and making robust the two-sample tests. In their study, first four rank scores were 

used to produce linear rank statistics. The maximum of the statistics was used as the 

representative test statistic. This test statistic together with a permutation method 

were then used to estimate the p-value. This test maintains its significant level and it 

does not make use of selector statistics. It might not be classified in the category of 

adaptive test but it attains the same objectives as the adaptive methods. 
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In considering Hogg et al. (1975) adaptive two-sample tests, the HFR test, we 

observed that measure of asymmetry and tail weight are used. Though Hogg (1967) 

suggested the use of the sample kurtosis as a selector statistics, the measures of 

asymmetry and tail weight assists in choosing appropriate rank scores. To calculate 

this measure of asymmetry in the HFR test, the observations in both samples are 

combined, sorted and then the selector statistics computed. HFR measure of 

asymmetry though robust as compared to other estimators, the average of the lower 

and upper 5% could be very sensitive to outliers. The most appropriate scores are 

selected based on the two selector statistics. After classifying data, the selected rank 

test is applied. For symmetric heavy-tailed distributions, HFR selected the WMW test. 

For light-tailed symmetric models a modified rank test that scores the top an bottom 

25% of the data suggesting the extreme parts bear more information on location 

shifts than the central parts. For right-skewed the lower 50% of the dataset is scored, 

this according to Gastwirth (1965) is because lower ranks are informative about 

median differences since they begin near the median. Lastly, HFR selected median 

tests for heavy-tails since they are optimal asymptotically for Laplace distributions 

with heavy-tails. In a study by Hao and Houser (2012),the median test was dropped 

to optimize HFR’s algorithm because it was believed that they performed weakly. 

2.10 Power of Adaptive tests 

Hogg et al. (1975) in a simulation study show that their test maintains its level of 

significance and their adaptive tests exhibited more power as compared to the 

traditional methods both parametric and non-parametric. 

To demonstrate the HFR method maintains its significant level, Basu’s theorem is 

used. The test maintains a level of significance less than or equal to α, though the 

data is used in obtaining the scores because the tests are distribution-free. Selector 

statistics and test statistic are also independent. In addition, Hogg et al. (1975) proved 
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the actual level of significance was approximately α, using 15 observations per group 

in a simulation study. To demonstrate that adaptive tests are usually more powerful 

compared to the traditional methods for error distributions that are not normal 

O’Gorman (2012) makes a power comparison between the HFR test and the pooled 

t-test for many error distributions using 100,000 dataset for individual distributions 

and for each data set 15 observations were used. 

In this study by O’Gorman (2012), the tests power was in the rejection proportions 

obtained from the number of null hypothesis rejected. In conclusion on his study, the 

test obtained powers for both t-tests and HFR test with all error distribution. 

However, HFR test showed more power over the t-test for a greater number of the 

distributions. The HFR test however lost some power for the normal, uniform and 

bimodal error distributions. According to O’Gorman tests based on ranks, make most 

sense when the datasets can be ranked. That is the HFR adaptive test, Wilcoxon test 

amongs others. This data ranking proved to be a challenge of tests based on ranks 

irrespective of their significance and other benefits. As an example, if two groups 

need to be compared and a covariate introduced, it could be difficult to find an 

appropriate rank test. 

2.11 O’Gorman’s Adaptive test 

As a solution to these problems, a non-rank based adaptive test was proposed by 

O’Gorman (2001). This method makes use of a weighting adaptive scheme. In recent 

studies, many variants of the non-rank based method are suggested to allow for 

increase in a tests power and allow its usage in much more diverse models. The 

adaptive weighted test involves two simple steps. First, observations in the model are 

assigned weights to generate residuals which can be said to have a normal 

distribution. Secondly, a p-value is computed using a method of permutation. In 

theory, weighted least squares ensures errors have equal variability. Weights are 
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assigned observations to make their errors normally distributed. In the adaptive WLS 

method, extreme points are assigned smaller weights to decrease the effect of 

outliers. A p-value is computed using a method of permutation which in this case is 

lower than p-values obtained from unequal variance and pooled t tests. The 

simulation study showcased the fact that the t test losses power to the adaptive WLS 

test when distributions are non-normal. Both tests, adaptive WLS tests and HFR tests 

have similar power for distributions that are skewed. 

2.12 Current Rank-based Procedures 

In this research a modification of the HFR method is used where the selector statistics 

are just as in the HFR method but are more adaptive to the data and the functions of 

differences of averages of order statistics are used. The benchmarks proposed in the 

dissertation of Al-Shomrani (2003) is used. In his thesis, the cutoff values for the 

measures of skewness and tail weight depend on the sample size n. This method was 

effectively used by Okyere (2011) in a study on Robust Adaptive Scheme for Linear 

mixed models. An R package, Rfit, was developed by Kloke and Mckean (2012) for 

computing these robust procedures. The Rfit package enables easy estimation and 

inference of the rank-based method. It employs standard syntax for linear models 

enabling users abreast with traditional parametric methods much ease in running 

robust analyses. A library of score is included in the Rfit package. The package Rfit 

uses the Wilcoxon (linear) scores as default, nonetheless it is easy and direct for users 

to create score functions, and that is exactly what we seek to do in this study. Scores 

based on the symmetry and tail weight of our dataset which we call the bentscores 

are used. Simple R codes are written to order the dataset, measure the selector 

statistics and select an appropriate score, which is then specified in the Rfit to be used 

in estimation. 

CHAPTER 3 
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METHODOLOGY 

3.1 INTRODUCTION 

The market model index by Sharpe (1963), presents a linear relationship between the 

stock and market returns that can be used to decompose total risk into systematic 

and unsystematic risk. By nature the market model is more appropriate for the study 

of stock risk and easier than CAPM with no loss in its explanatory power though it has 

limitations. The market model estimates beta by: 

 Rit = αi + γiRmt + εit (3.1) 

Where 

Rit: is the realized return on asset i for the period t t: is 

the measurement interval and t = 1, 2, . . ., T. T: is the 

number of measurement intervals αi: is the intercept 

term for asset i 

γi: is the sensitivity measure of return on asset i to market Rmt: is 

the realized return on the market index for period t εit:is the 

residual term for asset i in period t 

In practice, regression analysis has the following assumptions: 

• The response variable (Rit) and the explanatory variable (Rmt) are linearly 

related so that 

 Ri|Rm = m(Rm) = αi + γiRm (3.2) 

• The conditional distribution of Ri, is a normal distribution. 

Ri ~N(αi + γiRm,σ2) 

• Observations are independently sampled and 
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are independent for it 6= it0 

We have different ways to model the conditional expectation function m(.). This work 

focuses on two of such models 

• Parametric 

• Non-parametric (Adaptive methods) 

3.2 PARAMETRIC 

3.2.1 Least Squares Methods 

Suppose a dataset is made up of n observations . Each observation has a 

response variable, Yi and a vector of p predictor variables Xi. The response variable is 

a linear function of the predictor variables in a linear regression model 

. 

  (3.3) 

Where γ - is a p × 1 vector of unknown 

parameters 

i - an unobserved random variable that captures the unexplained variations in 

Y not caused by the  

T - the matrix transpose 

XiT γ - the dot product between the vectors X and γ. 

This model is written in matrix form as 

  (3.4) 

Where 
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Y - (n×1) vectors of response variables 

1) vectors of errors 

X - an (n×p) matrix of explanatory variables γ - a 

(p×1)vector 

3.2.2 Estimating Ordinary Least Squares 

Given a linear regression model 

  (3.5) 

In solving for the unknown parameter α and γ using OLS the aim is to find the best 

fitted model by finding that which will yield the minimum residual sum of squares 

(SSR). A good fit yields minimum mean and variance. Thus with 

  (3.6) 

Our goal is to find α and γ values that minimize the SSR. Thus Proof 3.2.2 

 and  

For  

 

 

  (3.7) 

For  
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  (3.8) 

Solving equation (3.7) 

 

Dividing through by -2 

Pni=1[Yi − (α + γXi)] = 0 

Pn Yi − Pni=1 α − Pni=1 γXi = 0 i=1 

 

 

Solving equation(3.8) 

 

Dividing through by -2 
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In matrix form in finding the inverse 

of matrix M 

 

Modifying it 

 

   n (PXi) α

 Pyi 

    

   

    

PXi P(Xi)2 γ PXiYi 

−1 
    α n (PXi)

 Pyi 

     

    

    γ PXi P(Xi)2

 PXiYi 

 n (PXi) 

 let M=   

   

Xi P(Xi)2 

(3.9) 
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  (3.10) 

From 3.10 

 

  (3.11) 
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  (3.12) 

Further 

P(Xi − X¯)2 = P(Xi2 − 2XiX¯ + X¯2) 

= P(Xi)2 − 2PXiX¯ + PX¯2 

= P(Xi)2 − 2nX¯2 + nX¯2 

= P(Xi)2 − nX¯2 

P(Xi − X¯)(Yi − Y¯) = P(XiYi) − XY¯ i − XiY¯ + X¯Y¯ 

= P(XiYi) − P(XiY¯) − P(XY¯ i) + PXY¯ 

P(XiYi) − nXY¯ − nY X¯ + nXY¯ 

P(XiYi) − nXY¯ 

Therefore 3.12 becomes 

  (3.13) 

and 3.10  

α = Y¯ − γX¯ (3.14) 

In an instance where there is more than one independent variable or regressor, the 

matrix approach is simplest in estimation of the unknown parameters. We will 

suppose that the linear model is 

  (3.15) 

In matrix representation   
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  y1 1 

    

    

    

y2  
 

    

    

Y= y3  X= 1 

    

    

  ...  ... 

    

    

    

  yn 1 

x11 

x12 

x13 

... 

x1n 

x21 

x22 

x23 

... 

x2n 

··· 

··· 

··· ... 

··· 

 xk1

 γˆ0 

   

   

 

xk2

 γˆ1

 

   

 

xk3  γˆ = 

γˆ2  

   

   

...  ...  

   

   

   

   

xkn γˆk 

Where Y is an (n×1) vector of observations with X of order (n×p) and γ a (p×1) vector 

parameter where p is (k+1) . To understand how the matrix approach works we look 

at a replica of the problem. 

The matrix procedure for expressing a system of k simultaneous equations in k 

unknowns. If the equations are written in the orderly pattern Example 3.2.1 

a11v1 + a12v2 + ··· + a1kvk = g1 a21v1 + 

a22v2 + ··· + a2kvk = g2 

... 

ak1v1 + ak2v2 + ··· + akkvk = gk 

then the set of simultaneous linear equations can be expressed as the matrix 

equation, 

 AV = G (3.16) 
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where 

 g1 

  

  

  

g2  

A=V=G=   

 ...  

  

  

 gk 

Now let us solve this system of simultaneous equations. If they are uniquely solvable, 

it can be shown that (A−1) exists. Multiplying both sides of the matrix equation by 

(A−1) ,we have Solution 

 (A−1)AV = (A−1G) (3.17) 

But since A−1A = I,we have 

I(V ) = A−1G 

 V = A−1G (3.18) 

That is if we know A−1 ,we can find the solution to the set of simultaneous linear 

equation by obtaining the product A−1G. For I, an identity matrix with elements being 

1 as the diagonal entries and 0 elsewhere, any element multiplied by I results in that 

element thus I(V)=V. To implement this in our matrix representation of the OLS 

method, where 

Y = γXˆ 
 0 0 
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(X X)γˆ = X Y 
0 

(X X)−1(X0X)γˆ = (X0X)−1X0Y 

0 
where(X X)−1(X0X) = I 

0 
Iγˆ = (X X)−1X0Y 

(3.19) 

0 

γˆ = (X X)−1X0Y (3.20) 

This yields a (k+1)×1 vector of the γ elements. The matrix formulas for the SSE are 

 SSE = Y 0Y − γ0(X0Y ) (3.21) 

Example 3.2.2: Using the method of matrix differentiation 

Let β=(β1,· · ·,βk)0 be a k×1 vector and let f(β)=F(β1,· · ·,βk) be a real-valued function 

that depends on β. i.e. f(·) : Rk → R maps the vector β into a single number, f(β). Then 

the derivative of f(·) with respect to β is defined as 

  (3.22) 

This is a k×1 column vector with typical elements given by the partial derivative  

which is also known as the gradient. To illustrate the use of matrix 

differentiation consider the linear regression model in matrix notation, 

  (3.23) 

where Y is an (n×1) vector of observation, X is a (n× p) matrix of explanatory variables, 

β is a (p×1)vector of parameters to be estimated, and  is a (n×1) vector of error terms. 

One way to motivate the ordinary least squares (OLS) principle is to choose the 

estimator,βˆ
OLS of β, as the value that minimizes the sum of squared residuals, i.e. 
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 (3.24) Solution Looking at the function 

to be minimized, we find that 

 

= (Y 0 − βˆ0X0)(Y − Xβˆ) 

=Y 0Y − Y 0Xβˆ − βˆ0X0Y + βˆ0X0Xβˆ 

 

 = Y 0Y − 2Y 0Xβˆ + βXˆ 0Xβˆ (3.25) 

Where the last line uses the fact thatY 0Xβˆ andβˆ0X0Y are identical scalar variables. 

Taking the first derivative with respect to βˆ yields the (n×1) vector 

 ˆ (3.26) 

 δβˆ δβˆ 

Solving the k equations, , yields the OLS estimator 

 βˆOLS = (X0X)−1X0Y (3.27) 

Provided that X0X is non-singular. From the above it is observed that Least squares 

offers a method of model fitting that minimizes the Euclidean distance between the 

response variable and its mean given the explanatory variables. 

3.3 NORM 

A norm is a function that assigns a strictly positive length or size to each vector in a 

vector space other than the zero vector which has zero length assigned to it. As 

defined by Wikipedia, the free encyclopedia a norm is a nonnegative function 

k.k defined on Rn which follows the following properties 

• kyk ≥ 0 for all y 

• kyk = 0, iff (if and only if) y = 0 
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• kαyk = |α|kyk for all real z, Positive homogeneity 

• ky + zk ≤ kyk + kzk, Triangle inequality 

A consequence of the last two conditions is that a norm only assumes nonnegative 

values, and that it is convex. 

3.3.1 Lp - norm 

Popular norms include the so called lp-norms, where p=1, 2 or p=∞: 

  (3.28) 

with the convention that when p=∞,  

kxk∞= max1≤i≤n|xi| or max|xi| (3.29) 

i=1, 2, ..., n. 

Note that when p=1 we get the taxicab norm and p=2 is the Euclidean norm. For 0 < 

p < 1 the resulting function does not define a norm because the triangle inequality is 

violates . 

3.3.2 Derivative of the Lp - norm. 

Proof: The derivative of the Lp-norm is given by 

  (3.30) 

For p=2, 

 

or 

  (3.31) 
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3.3.3 Euclidean norm 

On an n-dimensional Euclidean space Rn, the intuitive notion of length of the vector 

x = (x1,x2,....,xn) is captured by the formula 

  (3.32) 

this gives the ordinary distance from the origin to the point x, a consequence of the 

Pythagorean theorem. The Euclidean norm is by far the most commonly used norm 

on Rn. The norm can also be expressed as the square root of the inner product of the 

vector and itself 

√  
 kxk = x∗x (3.33) 

Where x is represented as a column vector(x1;x2;...;xn) and x∗ denotes its conjugate 

transpose. This formula is valid for any product space, including Euclidean and 

complex spaces. For Euclidean spaces, the inner product is equivalent to the dot 

product. Hence, in this specific case the formula can also be written with the notation: 

√ 

 kxk = x.x (3.34) 

The Euclidean norm is also called the Euclidean length,L2 distance,L2 norm. 

3.3.4 Manhattan or Taxicab norm 

  (3.35) 

The taxicab norm also known as the L1 norm gets its name from the distance a taxi 

has to drive in a rectangular street grid to get from the origin to the point x. The 

distance derived from this norm is called the Manhattan distance or the L1 distance. 
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The L1 -norm is simply the sum of the absolute values of the columns. In contrast 

 is not a norm because it may yield negative results 

3.3.5 Dispersion Function 

The distance between two vectors x and y, is represented and expressed in norms as; 

 d(x,y) = kx − yk (3.36) 

Given a linear model, and a specific norm k · k, the estimate of γ is given as 

 γˆ = argminkY − γXk (3.37) 

That is a value that minimizes the distance between Y and γX. The minimum distance, 

known as the dispersion function, between Y and γX is D(γ). The dispersion function 

is expressed in terms of a norm is 

 D(γ) = kY − γXk (3.38) 

the dispersion function induced by the norm. D(γ) is differentiable. 

The gradient process is defined by the function 

 (3.39) S(γ) is a non increasing. At 

the points where D(γ) is non differentiable, the function is discontinuities. From the 

derivative function of an L2 - norm above, we have the gradient process, 

  (3.40) 

The value for which S(γ) is 0 is the minimizing value. 

That is γ is the solution to 

S(γˆ) = 0 
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3.3.6 Pseudo-norm 

An operation k.k is called a Pseudo-norm if it satisfies the following four conditions 

•  

• R, u  

•  

• kukϕ = 0, if and only if u1 = u2 = u3 = ... = un 

The rank-bases score is estimated using the following Pseudo-norm, 

 

3.4 RANK-BASED ANALYSIS 

Let Y be an n×1 vector of responses which follows a linear model given by 

 Y = 1γo + Xγ + ε (3.41) 

where 

1 is a vector of n ones X is an n × p 

design matrix α is an intercept 

parameter γ is a p × 1 vector of 

parameters ε is an n × 1 vector of 

errors 

Assume the ε are iid and it had pdf f(x) and an unknown cdf F(x). γˆLS is the estimator 

that minimizes the Euclidean distance between Y and X satisfying 

  (3.42) 

where  is an L2 norm. For rank-based estimates replace the L2 norm

 with another norm, the pseudo-norm 
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  (3.43) 

R(vi) represents the rank of vi for v1,...,vn and a(i) are scores generated as a[i] = 

, for a nondecreasing bounded square-integrable function ϕ(u),satisfying, 

without loss of generality, the standardizing conditions R ϕ(u)du = 0 and R ϕ2(u)du 

= 1. Then the rank-based estimator minimizes the k.kϕ distance between Y and the 

column space of X; ie., 

 γˆϕ = Argminky − Xγkϕ (3.44) 

√ 
The Wilcoxon score function ϕ[u] = 12[u − (1/2)], is used. The rank-based estimator 

of the intercept parameter is a location estimate based on the residuals. For the LS 

method, the arithmetic mean is used while for the rank-based estimates, generally, 

the median is used. i.e., 

 αˆ = mediYi − xT γˆϕ (3.45) 

The R package Rfit can compute rank-based analysis. Kloke and Mckean (2012) 

developed this package and it can be downloaded at CRAN. Note that closed form 

solutions exist for least squares, however, this is not the case for rank estimation. The 

R estimates are obtained by minimizing a convex optimization problem. It can be 

shown, see for example Hettmansperger and McKean (2011), that the solution to γˆϕ 

= Argminky −Xγkϕ is consistent with the asymptotically normal distribution given by 

  (3.46) 

where τϕ is the scale parameter which depends on the pdf f(t) and the score function 

ϕ(u). In Rfit, the Koul, Sievers, and McKean (1987) consistent estimator of τϕ is 

computed. 
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3.4.1 Robustness 

In this section, we briefly discuss the robustness properties of the rank-based 

estimators. Three of the main concepts in robustness are efficiency, influence, and 

breakdown. 

3.4.2 Influence Functions 

The finite sample version of the influence function of an estimator is its sensitivity 

curve. It measures the change in an estimator when an outlier is added to the sample. 

More formally, let the vector xn = (x1,x2,...,xn) denote a sample of size n. Let θˆ
n = 

θˆ
n(xn) denote an estimator. Suppose we add a value x to the sample to form the new 

sample xn+1 = (x1,x2,...,xn,x) of size n + 1. Then the sensitivity curve for the estimator is 

defined by 

  (3.47) 

The value S(x;θˆ) measures the rate of change of the estimator at the outlier x. While 

intuitive, a sensitivity curve depends on the sample items. Its theoretical analog is the 

influence function which measures rate of change of the functional of the estimator 

at the probability distribution, F(t), of the random errors of the location model. We 

say an estimator is robust if its influence function is bounded. Note that the sensitivity 

curve for the mean is unbounded; i.e., as the outlier becomes large the rate in change 

of the mean becomes large; i.e., the curve is unbounded. Influence functions 

describes the approximate and standardized effect of an additional observation in 

any point x on a statistic T, given a (large) sample with distribution F. The effect of 

one outlier on the estimator can be described by the influence function. 

Let T be a statistical functional defined on a space of distribution function, F be a 

distribution function in the domain of T. T is gateaux differentiable at F if for any 
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distribution function G, such that the distribution function (1 − s)F + sG, which is a 

contaminated distribution, lie in the domain of T. The Gateaux derivative of T at F in 

the direction G is defined by: 

  (3.48) 

An equivalent way of stating the definition is to define D = G - F and the above 

becomes 

  (3.49) 

From a statistical perspective, it represents the rate of change in a statistical 

functional upon a small amount of contamination by another by another distribution 

G 

As an example; 

Suppose F is a continuous CDF, and G is the distribution that places all of its mass at 

the point xo. The Gateaux derivative of T(F) = f(xo) is 

 

A useful condition is that if the functional is bounded, then the plug-in estimate will 

converge to the true value. Statisticians usually do not work with the general Gateaux 

derivative but a special case of it called the influence function, in which G places a 

point mass of 1 at x: 

 

 

0 δx(u) = 

 

1 

if u < x if 

u ≥ x 

The influence function is usually written as a function of x, and defined as 
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A closely related concept is that of the empirical influence function: 

  (3.51) 

If T(F) can be written in the form T(F) = α{T1(F),T2(F),....} then 

 where Lj(x) is the influence function of Tj(F). Next we 

derive the Influence function of γˆϕ, that is the estimate of gamma for a specified 

score function ϕ(u) Let H be the joint distribution function of X and Y. Let the px1 

vector T(H) denote the functional corresponding to βˆ
ϕ assume without loss of 

generality that the true γ = 0,α = 0and that E(x)=0. Hence the distribution function 

of Y is F(y) and Y, X are independent meaning H(x,y) = M(x)F(y). 

Recall that the R-estimate satisfies the equations 

  (3.52) 

Let denote the empirical distribution function of .Then we can rewrite the 

above equation as; 

  (3.53) 

Let G∗denote the distribution function of Y −X0T(H) then the functional T(H) satisfies 

Z 

ϕ(G∗(Y − x0T(H))xdH(x,y) = 0 (3.54) 

We can show that G∗(t) = su≤vT(H)+t dH(v,u) Let Hs = (1 − s)H + sW for 

an arbitrary distribution function W. Then the functional T(H) evaluated at Hs satisfies 

the equation. 

 Z 0 Z 0 

(1 − s) ϕ(G∗s(Y − x T(H))xdH(x,y) + s ϕ(G∗s(Y − x T(Hs))xdW(x,y) = 0 

(3.55) 

Where  is the distribution function of Y − x0T(Hs). We obtain  by implicit 



 

47 

differentiation. Then upon substituting Mxo,yo for W the influence function is given by 

 which we will denote by T. Implicit differentiation leads to 

 

Since s will be set to 0, γ1is irrelevant. 

First get the partial derivative of  with respect to s 

G∗s(Y − x0T(Hs)) = su≤y−T(Hs)0(x−v) dHs(v,u) = 

(1 − s)R F[y − T(Hs)0(x − v)]dM(v) + ssu≤y−T(Hs)0(x−v) dW(v,u) Thus: 

 

 Since s is set to 0, 

γ2 is irrelevant as well. Therefore using the independence between Y and X at 

H, we get 

 

  (3.56) 

Substituting Mxo,yoin for W we get 

0 = τ PT + xoϕ(F(yo)) 

Solving for T,the influence function of γˆϕ is given by 

  (3.57) 

Thus the proof of robustness of γˆϕ 
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3.4.3 Breakdown Point 

The idea of contaminating a distribution with a small amount of additional data has a 

long history in statistics and the investigation of robust estimators.The breakdown 

value is defined as how much contaminated data an estimator can tolerate before it 

becomes useless. Breakdown point measures the ability of a statistic to resist the 

outliers contained in the data set. 

Let Xn = (x1,x2,....,xn) represent a realization of a sample wherexi’s are n independent 

and identically distributed observations from the distribution Fx. 

Assume that m < n and replace x1,x2,...,xm with  let 

 represent the corruption of any 

m of the n observations with  being estimators or test statistics of θ . 

Now the maximum bias 

  (3.58) 

Where d (.,.) denotes some distance function (eg. The Euclidean distance). The finite 

sample breakdown point is now given by BP(Q,n) = 

 

And the asymptotic breakdown point is 

BP(Q) = limn−→∞BP(Q,n) (3.59) 

Often there exists an integer m such that x(m) ≤ θˆ ≤ x(n−m+1) and either θˆ, an estimated 

parameter, tends to −∞ as x(m) tends to −∞ or θˆ tends to +∞ as x(n−m+1) tends to +∞. 

If m∗ is the smallest such integer then , breakdown point, is . For breakdown 

points values close to 0.5 are desirable. 

3.4.4 Breakdown value of the L1 and L2 estimates 

The L1 estimate is the sample median. If the sample size is n = 2k; then when x(k) tends 

to −∞, the median also tends to −∞ hence the breakdown value of the sample 
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median is  which tends to 0.5. By a similar argument, when the sample size is n = 

2k+1, the breakdown value is  and it also tends to 0.5 as the sample size 

increases. Hence we say the sample median is a 50% breakdown estimate thus the 

sample median can tolerate almost half of the data being contaminated. The L2 

estimate is the sample mean. Notice for the sample mean that one point of 

contamination suffices to make the mean meaningless 

. The breakdown value is , hence the breakdown point 

of the mean is 0. 

3.4.5 Asymptotic Relative Efficiency 

For any two test statistics that are consistent, P and Q, of any hypothesis Ho, the 

asymptotic relative efficiency is the ratio of sample sizes needed to get identical 

power against the same alternative H1, taking the limit as the sample size n tends to 

infinity and as H1 tends to Ho, according to Hao and Houser (2012). This implies that 

the asymptotic relative efficiency(ARE) lies in the interval (0,1) when the tests are 

positive ie. ARE (P,Q) . 

When ARE (P,Q) (0,1) then the test statistic P is regarded less efficient than Q, the test 

P is however considered efficient as the test Q when the ARE (P,Q) = 1, lastly the test 

P is more efficient than the test Q when the ARE (P,Q) (1, +∞), Hao and Houser (2012). 

Alternatively, let TP and TQ be two linear rank statistics based on the score generating 

functions P and Q. Then the asymptotic relative efficiency (ARE) is given by 

  (3.60) 

where AE(TP /f) and AE(TQ/f) are the asymptotic efficacies of P and Q respectively, 

Kossler (2010) 

Definition: The asymptotic relative efficiency between two tests or estimates based 

on the score functions ϕ1(u) and ϕ2(u) or one score function relative to other score 

function is defined by; 
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  (3.61) 

where Cϕ1 and Cϕ2 are respectively the efficacies of the two estimates and τϕi, i = 1, 2 

are the scale parameters of the two score functions. 

3.4.6 Optimal Scores 

Rank-based analysis require the use of score functions ϕ(u). If there is an idea on the 

form of the errors underlying distribution, one can get optimal score function which 

minimizes the estimators variance. From  

and  we can rewrite 1/τϕ 

  (3.62) 

where ρ is a correlation coefficient and sqrtI(f) is Fisher Information. Therefore, 

minimizing τϕ is equivalent to maximizing the above identity. By the last equality, this 

is accomplished by making ρ = 1; i.e., by taking ϕ(u) to be ϕf(u). So 

 we can rewrite 1/τϕ is the score function which optimizes 

the rank-based analysis. Since γˆϕ is location and scale equivariant, only the form of 

f(x) is needed. Furthermore, since in this case τϕ = 1/pI(f), the rank based estimator 

γˆϕ is asymptotically fully efficient, i.e., γˆϕ has the same asymptotic distribution as 

the maximum likelihood estimator (mle). 
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3.4.7 Estimates of the scale parameter τϕ 

The estimators of τϕ that we discuss are based on the R-residuals formed after 

estimating γ. In particular, the estimators do not depend on the estimate of intercept 

parameter α. Suppose then we have fit a model based on a score function ϕ which is 

bounded, and is standardized so that R ϕ = 0 and R ϕ2 = 1 . Let γˆϕ denote the R-

estimate of γ and let eˆR = Y − Xγˆϕ denote the residuals based on the R-fit. 

3.5 ADAPTIVE PROCEDURES 

Adaptive methods of estimation and testing have several advantages over traditional 

methods, OLS. Adaptive methods make use of rank-based estimates for linear 

regression models. 

3.5.1 The Adaptive Procedure of Hogg Fisher and 

Randles(HFR) 

There is a pool of score functions ,ϕ, from which the most appropriate score is chosen 

to be implemented in estimating parameters. Hogg Fisher Randles (1975) propose a 

two step procedure for choosing an appropriate score function. In summary, the HFR 

adaptive procedure is: 

• Selection statistics Q1(Skewness) and Q2(tail weight) are computed. 

• These selector statistics Q1 and Q2 depending on the selection region they fall, 

informs the choice and use of the most appropriate rank scores. These 

selection regions are seen in fig 3.1 
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Figure 3.1: Selection criteria for the HFR procedure 

The selected scores are then used in estimating and testing. 

As an example to how the selection method works, a data set is obtained, the 

measure of asymmetry is obtained to be Q1 = 1.5, this is an indication that the dataset 

has a nearly symmetric distribution. The measure of tail weight is obtained next as Q2 

= 1.5. These two values are then located on the selection criteria in 3.1 to determine 

the distribution for the dataset and appropriate scores for that distribution, in this 

case a light tailed symmetric model. If we had Q1 = 1.5 and Q2 = 3.5 as selection 

statistics, meaning the dataset had a slightly skewed distribution, then we would have 

chosen the Wilcoxon scores as the appropriate. 

3.5.2 Significance Level of the HFR method 

Hogg et al. (1975) demonstrates that their two step procedure maintains its level of 

significance. With a simulation study, they proved that this method was more 

powerful than traditional methods.Hogg et al. (1975) designed this adaptive 

procedure to maintain its significance level. This fact is adequately proven with the 

Basu’s theorem. 
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3.5.3 Basu’s Theorem 

Theorem 3.5.1 Any boundedly complete sufficient statistic is independent of any 

ancillary statistic. Often used in statistics as a tool to prove independence of two 

statistics, by first demonstrating one is complete sufficient and the other is 

ancillary. 

Definition 3.5.3 Let F denote the class of distribution functions under consideration. 

Suppose that each of the r tests based on the statistics T1,....,Tr is distribution-free 

over the class F : ie  for each  

1,....,r.Ci is the critical region of Ti Let Q be some statistic that is independent of T1,....,Tr 

under Ho for each FF. Suppose we use Q to decide which test Ti to conduct. 

Specifically, let S denote the set of all values of Q with the following decomposition: 

S = D1 ∪ D2 ∪ .... ∪ Dr,Di ∩ Dj = φ for i 6= j 

So that  corresponds to the decision to use the test Ti.Then a test based on is 

distribution-free 

Proof.. That is, 

 

 = α (3.63) 

3.5.4 Estimating Selector Statistics, Cutoff points and Scores 

Hogg (1974) used a pair of selector statistics, Q1 and Q2, which are measures of 

skewness and tail weight respectively. The measure of skewness Q1 is 

 (3.64) Where U¯
.05, M¯

.5 and L¯
.05 

are the averages of the largest 5 percent of the ordered data, the middle 50% and the 

smallest 5% of the ordered data, respectively. The measure of tail weight Q2 is 
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  (3.65) 

It is important to note that these are functions of differences of averages of order 

statistics of the form 

A¯α1 − B¯α2 

Where α1 and α2 are some fraction to be trimmed from the combined ordered data. 

Let 

  (3.66) 

Where Z(t)’s are ordered combined sample t1 = [nα1], t2 = [nα2],[x] denotes the 

smallest integer greater than x,l = n−t1−t2 and redefine a measure of skewness  

and tail weight  by 

  (3.67) 

  (3.68) 

Suppose we want to adapt on residuals, then we need the ordered residuals from an 

initial fit. The measures of tail weight and skewness of the residuals are obtained by 

using  and  respectively. In this research, the benchmarks proposed in the 

dissertation of Al-Shomrani (2003) are used and the cutoff values for the measures 

of skewness and tail weight depend on the sample size n. This is a modified version 

of Hogg’s (1975). However it converges to Hogg’s (1975) as 

n −→ ∞ 

For  we have, 

lower cutoff=0.  
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  (3.69) 

And for , if sample size is less than 25, 

lower cutoff=2.  

  (3.70) 

however, if sample size is equal or greater than 25 then, 

lower cutoff=2.  

  (3.71) 

These cutoff points are used to select a rank test which is based on a rank score 

function corresponding to an unknown distribution. Different scores based on tail 



 

 

weight and/or skewness have been proposed in literature. Most of these scores are 

selected depending on tail weight and/or skewness. The rank tests that we consider 

in this thesis are of the form, 

  (3.72) 

where ϕ satisfies the following conditions; 

• ϕ nondecreasing function and square-integrable on (0,1) 

• ϕ is differentiable on (0,1) 

Since ϕ is square integrable,we assume without loss o generality that, 

 and  

Note that a test statistic is synonymous with score function. We use the two 

interchangeably. We may also write  and think of aϕ(1),....,aϕ(n) as 

scores. As discussed by Hettmansperger and Mckean(1998), for model 

 Z = Ci + ei (3.73) 

where ei has density f and distribution F, the optimal score,  these are 

optimal in the sense that the corresponding test statistics are asymptotically efficient. 

For example, Gastwirth (1965), Buning (1996) proposed rank test based on scores 

corresponding to some selected distributions. They showed that the scores below 

with the type of distribution in parenthesis have high power see Buning (2005) over 

their targeted area of distribution. 

(Short Tails) 
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  (3.74) 

Wilcoxon (Medium Tails) 

 a(t) = t (3.75) 

Hogg Fisher Randles Test(Right Skewed) 

  (3.76) 

Note that these scores are not standardizes. We make use of nine Winsorised scores. These 

could be classified into four generic scores. Thus 

1. 

 

  s3, u > s1 

ϕI(u) = 

 , otherwise 

2.  

3. 

 

  s2, u < s1 

ϕIII(u) = 

 , otherwise 
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4. 

 

 ,

 otherwise 

Where s1,s2,s3,s4 are parameters and ai(t) = ϕi(t/(n + 1)) . Table (3.1) shows distributions and 

scores with their corresponding parameters. 

Table 3.1: Winsorised Scores 

Skewness Tail Weight Score Function 

Left Light ϕLL = ϕII,with parameter(s1 = .1,s2 = −1,s3 = 2.0) 

Left Medium ϕLM = ϕIII,with parameter(s1 = .3,s2 = −1,s3 = 2.0) 

Left Heavy ϕLH = ϕIII,with parameter(s1 = .5,s2 = −1,s3 = 2.0) 

Symmetric Light ϕSL = ϕII,with parameter(s1 = .25,s2 = .75,s3 = −1,s4 = 1) 

Symmetric Medium Wilcoxon Scores,  

Symmetric Heavy ϕSH = ϕIV ,with parameter(s1 = .25,s2 = .75,s3 = −1,s4 = 1) 

Right Light ϕRL = ϕII,with parameter(s1 = .9,s2 = −2,s3 = 1) 

Right Medium ϕRM = ϕII,with parameter(s1 = .7,s2 = −2,s3 = 1) 

Right Heavy ϕRH = ϕI,with parameter(s1 = .5,s2 = −2ands3 = 1) 

Adapting on both samples and residuals can be done. In adapting on residuals, an initial 

fit is done then the residuals are used for the adaptation. 

3.5.5 The Nine winsorised scores 

Nine regions which depends on the selector statistics  are defined by, 

LH= SH=

 

RH= LM= 

SM=

 

RM=  

 

 s3, 

ϕIV (u) = s4, 

 

u < s1 u 

> s2 
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LL= SL=

 

RL=  

Where  are benchmarks from the ordered samples or residuals (Al-

Shomrani,2003). Each region identifies a type of score with their corresponding parameters 

for distributions with their classifications shown in Table 3.1. 

Figure (3.2) gives the graphical representation of the nine winsorised scores. 

 

Figure 3.2: Plots of the nine winsorised scores 

Figure ( 3.3) below is an example of the benchmarks of the nine scores based on a 

sample of size 50. 
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Figure 3.3: Plot of scores with n=50 

Let Dk and ϕk be a region and score selected respectively, with k = {1,2, ..., 9}. 

Then the adaptive test, (S,ϕ), is 

  (3.77) 

where 

n2 

 Tϕk(∆) = Xaϕk(R(yi − ∆)) (3.78) 
i=1 

is a test statistics based on the ranks and score, ϕk associated with region Dk and hence 

distribution-free. Under Ho, the mean of Tϕk(∆) is zero. Thus 

  (3.79) 

because the ranks of  are uniform on the integers 1, 2,..., n and . 
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Since EHo[Tϕk] = 0. From literature, AD(S,ϕ) is asymptotically distribution-free. This is 

because the selector statistic S is based on the order statistics only, the Tϕk-statistics 

is based on the ranks only, and asymptotic critical values are used. 

CHAPTER 4 

ANALYSIS 

4.1 Introduction 

In this study, the market model was used in estimating beta using the OLS and Rank 

based estimation (Wilcoxon and Adaptive) methods. This study was based on 

observed daily share prices on 37 Ghana Stock Exchange (GSE) listed companies from 

January 2000 to June 2014, making 173 months. 

In the model, historical stock returns was regressed on historical market returns using 

the GSE Composite Index as proxy for the market index. The sample size was reduced 

to 10, this is because only these 10 companies had consistent data. Thus in the 

presence of non-synchronous trading, beta estimation techniques such as Scholes-

Williams’ beta and Dimsons’ beta are employed. According to Dimson (1979), 

infrequently traded securities have a beta estimate which is biased downwards 

whiles frequently traded securities are upward biased. The regression was run on 

discrete monthly returns. 

4.2 Fitting the market model 

In estimating Beta of stocks and fitting models for predictions we investigate whether 

there is a need for multiple or simple linear regression and what number of lags and 

leads is accurate. 
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No Lags 

In the Scenario of no lags, a regression to estimate the market model involves only one 

explanatory variable, thus the returns on a given asset is regressed on the market returns. 

Figure 4.1, a boxplot of all ten stocks and the market index, shows little variations in the 

values of each individual factor in the plot and a rather obviously large proportion of 

outlying observations in individual stocks and this could be as a result of wrong data (asset 

price) entries. Since all the stocks contain outliers a random use of three stocks is 

representative enough of the behavior of all the stocks, thus the fits done in this study is 

done using stock returns of PZ, Fanmilk (FML) and Ghana Commercial Bank (GCB). 

 

Figure 4.1: Boxplot of 10 stocks on the GSE 
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The Least-Squares, Wilcoxon R-fit and Adaptive fits are carried out and the respective 

Beta’s, p-value and the Sigma/tau of these fits are recorded for all three stocks. The 

scores used for each adaptive fit is displayed as well. The results in Table 4.1, shows 

a positive and significant relation between stock returns and market returns for all 

three assets and all three fitting methods including the adaptive method, for which a 

score for symmetric heavy tailed data was selected for all stocks. The rank-based 

adaptive method gives the minimum tau’s for all three stocks giving the best fit and 

a better model for predicting expected Share returns. 

Table 4.1: Estimated parameters with the market model 

Stocks Fits γ p-value σ or τ Scores 

PZ LS 0.0975 0.1760 0.1118 - 

 Wil. 0.0294 0.0126 * 0.0182 wscores 

 Adp. 0.0294 0.0005519 

*** 

0.0130 SH 

FML LS 0.1650 0.02161* 0.1109 - 

 Wil. 0.1667 9.931e-11*** 0.0377 wscores 

 Adp 0.2 9.217e-14*** 0.0384 SH 

GCB LS 0.2244 0.00618** 0.1261 - 

 Wil. 3.3333e-

01 

5.032e-14*** 0.0632 wscores 

 Adp 5.0000e-

01 

<2e-16*** 0.0388 SH 

Lag one 

Multiple regression is employed in estimating the Beta of a stock with one lag and 

one lead term. From Table 4.2 the estimates of the coefficient parameters (γ) are 

significant for FML and GCB but that is not the case in the estimated coefficients for 

PZ. The adaptive fits uses scores for symmetric heavy-tailed data (SH). For all stocks 

the adaptive fit had the least standard error. 

Table 4.2: Estimated parameters with one lag market model 

Stocks Fit γ1 γ2 γ3 σ orτ Score 

PZ LS 

p-value 

0.0005 0.1203 0.0501 0.1128 - 

0.9959 0.2278 0.4976 
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Wil. p-

value 

0.008 0.0123 0.0228 0.01816 wscores 

0.6149 0.4419 0.0566. 

Adp 

p-value 

3.9839e-15 7.4791e-15 3.467e-15 0.0133 SH 

1 1 1 

FML LS 

p-value 

0.0486 0.1212 0.46070 0.0972 - 

0.5669 0.1584 1.45e-11 *** 

Wil. p-

value 

0.0686 0.1310 0.3102 0.0458 wscores 

0.0875 . 0.00139 ** < 2.2e-16 *** 

Adp 

p-value 

0.06401 0.1256 0.2588 0.0369 SH 

0.0481 * 0.000157 *** < 2.2e-16 *** 

GCB LS 

p-value 

0.1755 0.3792 0.0017 0.1233 - 

0.1050 0.0007 *** 0.983159 

Wil. p-

value 

0.1411 0.6017 0.0998 0.0594 wscores 

0.0072 ** < 2e-16 *** 0.01112 * 

Adp 

p-value 

0.1348 0.6325 0.2210 0.0459 SH 

0.00096 

*** 

< 2.2e-16 *** 7.895e-12 

*** 

Lag Two 

Stock beta is estimated using two lead and lag terms. These lead and lag terms of the 

market returns are regressed against the stock returns. The coefficients of these 

lagged terms are significant for GCB and in the two leads in FML but none whatsoever 

in PZ. For GCB two different scores are selected after initial fit with LS and Wilcoxon 

with the LS initial fit giving the best fit with the least standard error. 

Table 4.3: Estimated parameters with Lag two market model 

Fit γ1 γ2 γ3 γ4 γ5 σ or τ Score 

PZ        

LS 0.132 -0.034 0.115 0.032 0.037 0.113 - 

p-value 0.185 0.741 0.261 0.752 0.619   

Wil. 0.024 -0.014 0.030 -0.011 0.034 0.019 wscores 

p-value 0.165 0.433 0.084. 0.511 0.008**   

Adp 0.013 -0.002 0.019 -0.009 0.014 0.014 SH 

p-value 0.282 0.912 0.126 0.489 0.119   
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FML        

LS 0.016 0.055 0.051 0.757 -0.049 0.090 - 

p-value 0.838 0.500 0.531 < 2e-16*** 0.410   

Wil. 0.042 0.046 0.037 0.630 -0.046 0.052 wscores 

p-value 0.355 0.320 0.425 <2e-16*** 0.183   

Adp 0.047 0.047 0.026 0.581 -0.080 0.039 SH 

p-value 0.173 0.182 0.456 < 2.2e-16*** 0.002**   

GCB        

LS 0.018 0.180 0.335 0.159 -0.008 0.122 - 

p-value 0.870 0.102 0.0025** 0.145 0.923   

Wil. -0.025 0.157 0.482 0.350 -0.002 0.055 wscores 

p-value 0.598 0.002** < 2.2e-16*** 2.24e-11*** 0.967   

Adp 0.047 0.047 0.026 0.581 -0.080 0.039 SH 

p-value 0.173 0.182 0.456 < 2.2e-16*** 0.002**   

Adp 2 0.039 0.036 -0.027 0.710 -0.015 0.046 RH 

p-value 0.345 0.389 0.515 <2e-16*** 0.630   

Lag three 

In estimating beta with three lags and leads, GCB shows much significant coefficient 

parameters but not FML, thus for FML estimating up to lag two with an adaptive fit 

using score SH gives the best estimate of its beta value. 

FML 

γ1 

p-value 

0.0030 0.0397 0.0451 - 

0.9707 0.3424 0.1520 - 

γ2 

p-value 

0.0260 0.0398 0.0437 - 

0.7515 0.3522 0.1742 - 

p-value

 

0.0566 0.0503 0.0503 - 

0.4888 0.2381 0.1166 - 

p-value 

0.0448 0.0179 0.0124 - 

0.5869 0.6767 0.6993 - 
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γ5 

p-value 

0.7741 0.6803 0.6053 - 

< 2e-16*** < 2e-16*** < 2.2e-16*** - 

 -0.1178 -0.1304 -0.1335 - 

0.1509 0.00251** 4.604e-

05*** 

- 

 0.0134 -0.0072 -0.0094 - 

0.8242 0.8175 0.6883 - 

 0.0909 0.04727731 0.0355 - 

 - wscores SH - 

GCB 

 -0.0610 -0.0465 -0.0428 -0.0639 

0.5732 0.3400 0.2626 0.1833 

 0.03658 -0.0162 -0.0215 -0.0355 

0.7410 0.7443 0.5822 0.4687 

 0.1767 0.1578 0.1436 0.1397 

0.1100 0.0017** 0.00029*** 0.004647** 

p-value 

0.3266 0.4324 0.4754 0.4636 

0.0037** 4.520e-

15*** 

< 2.2e-16*** < 2.2e-16*** 

γ5 

p-value 

0.1649 0.3902 0.4128 0.3895 

0.1414 8.365e-

13*** 

< 2.2e-16*** 4.599e-

13*** 

γ6 

p-value 

-0.0586 -0.0450 -0.0402 0.0432 

0.1414 0.3640 0.3010 0.3753 

γ7 

p-value 

0.1125 0.0572 0.0534 0.0511 

0.1414 0.1173 0.0629. 0.1549 

σ or τ 0.1224 0.0550 0.0432 0.0542 
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Table 

4.4: 

Estimated parameters with Lag three market model 

Stocks Fit LS Wil Adp Adp1 

  

Scores - wscores SH RH 
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Lag four 

Table 4.5: Estimated parameters with Lag four market model 

Stocks Fit LS Wil Adp 

FML γ1 

p-value 

-0.1027 -0.1406 -0.1285 

0.2056 0.0015** 0.00037*** 

γ2 

p-value 

0.0290 0.05175 0.0565 

0.7258 0.2445 0.1154 

γ3 

p-value 

0.0303 0.0451 0.0544 

0.7128 0.3084 0.1288 

γ4 

p-value 

0.0545 0.0488 0.0430 

0.5120 0.2755 0.2325 

γ5 

p-value 

0.0554 0.0182 0.0038 

0.5067 0.6852 0.9169 

γ6 

p-value 

0.7803 0.7609 0.7005 

< 2e-16*** 2.2e-

16*** 

< 2.2e-16*** 

γ7 

p-value 

-0.1184 -0.1199 -0.1193 

0.1562 0.0080** 0.0011** 

γ8 

p-value 

0.0751 0.0425 0.0349 

0.3628 0.3379 0.3281 

γ9 

p-value 

-0.0690 -0.0661 -0.0625 

0.2545 0.0431* 0.0180* 

σ or τ 0.0911 0.0489 0.0394 

From Tables 4.5 and 4.6 below, its observed that the standard errors for the Wilcoxon and Adp 

2 are close with the Adp1 having the minimum value. 

Table 4.6: continuation of Table 4.5 

Stocks Fit LS Wil Adp Adp 2 

GCB γ1 

p-value 

-0.1359 -0.1036 -0.0922 -0.1232 

0.2098 0.0545. 0.0207* 0.0275* 

γ2 

p-value 

-0.0506 -0.0394 -0.0328 -0.0657 

0.6463 0.4713 0.4163 0.2467 

γ3 

p-value 

0.0304 -0.0035 -0.0179 -0.0127 

0.7820 0.9493 0.6562 0.8214 
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γ4 

p-value 

0.1811 0.1540 0.1399 0.1242 

0.1042 0.0057** 0.00072*** 0.0304* 

γ5 

p-value 

0.3263 0.4252 0.4934 0.4638 

0.0038** 1.307e-

12*** 

< 2.2e-16*** 1.246e-

13*** 

γ6 

p-value 

0.1580 0.4048 0.4420 0.4229 

0.1569 1.008e-

11*** 

< 2.2e-16*** 7.114e-

12*** 

γ7 

p-value 

-0.0817 -0.0756 -0.0747 -0.0266 

0.4627 0.1707 0.0675. 0.6406 

γ8 

p-value 

0.1684 0.0846 0.0774 0.0654 

0.1272 0.1231 0.0561. 0.2477 

γ9 

p-value 

0.1480 0.1231 0.0444 0.1549 

0.0682. 0.0024** 0.1338 0.00025*** 

σ or τ 0.1216 0.06025 0.0445 0.0624 

4.3 Asymptotic Relative Efficiency (ARE) 

The asymptotic relative efficiency between two tests or estimates based on the score 

functions ϕ1(u) and ϕ2(u) or one score function relative to other score function is 

defined by; 

  (4.1) 

where Cϕ1 and Cϕ2 are respectively the efficacies of the two estimates and τϕi, with 

i=1, 2, are the scale parameters of the two score functions. The efficiency of the LS, 

Wilcoxon and adaptive fits are compared for all five datasets up to lag four. 

Table 4.7: Asymptotic Relative Efficiency for no lag 

ARE PZ FML GCB 

ARE(Wil.,LS) 37.8743 8.6741 3.978859 

ARE(Adp,LS) 74.0575 8.338419 10.55278 

ARE(Adp,Wil.) 1.95535 0.9613057 2.652213 

Table 4.8: Asymptotic Relative Efficiency for lag one and two 

Lags ARE PZ FML GCB 

LAG 1 
ARE(Wil.,LS) 38.5940 4.5075 4.3027 

ARE( Adp,LS) 71.7643 6.9421 7.2118 
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ARE(Adp,Wil.) 1.8595 1.5401 1.6761 

LAG 2 ARE(Wil.,LS) 34.6175 3.0705 4.96367 

ARE( Adp,LS) 67.1154 5.3505 9.7518 

ARE(Adp,Wil.) 1.9388 1.7425 1.9646 

ARE(Adp2,LS) - - 6.8821 

ARE(Adp2,Wil.) - - 1.3865 

ARE(Adp2,Adp.) - - 0.7057 

Table 4.9: Asymptotic Relative Efficiency for lag three and four 

Lag ARE FML GCB 

LAG 3 ARE(Wil.,LS) 3.0705 4.9527 

ARE(Adp,LS) 5.3505 8.0413 

ARE(Adp.,Wil) 1.7425 5.1052 

ARE(Adp2,LS) - 1.6236 

ARE(Adp2,Wil.) - 1.0308 

ARE(Adp2,Adp.) - 0.6349 

LAG 4 ARE(Wil.,LS) 3.46544 4.0740 

ARE(Adp,LS) 5.3354 7.4659 

ARE(Adp.,Wil) 1.5396 3.7968 

ARE(Adp2,LS) - 1.8326 

ARE(Adp2,Wil.) - 0.9320 

ARE(Adp2,Adp.) - 0.5086 

4.4 Adjusted Beta 

The study on the impact of non-synchronous trading for the measurement of beta was 

originally done by Scholes-Williams (1977). Their estimator of beta is 

 βˆ
SW = (γj + γj+n + γj−n)/(1 + 2ρ) (4.2) 

where ±n represents the number of lag and lead terms and ρ is the correlation of the 

market. The beta estimator derived by Dimson is given by 

βˆDIM = γj + X γj+n + X γj−n (4.3) n=1N n=1N 
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These methods estimate βˆ which adjusts for non-synchronous trading, such as we have 

with stocks on the Ghana Stock Exchange (GSE). Dimson suggests that 

the coefficients γj−n and γj+n all be simultaneously estimated using multiple regression 

as opposed to independently estimated as suggested by ScholesWilliams. 

Table 4.10: Dimson and Scholes-Williams Beta estimates 

Stock Method Fits β β β β 

Lag 1 Lag 2 Lag 3 Lag 4 

PZ 

Dimson 

LS 0.1709 0.2824 - - 

Wil 0.0431 0.0629 - - 

Adp 0.0000046 0.0366 - - 

Scholes-Williams 

LS 0.2017 0.3332 - - 

Wil 0.0509 0.07419 - - 

Adp 5.429e-6 0.0432 - - 

FML 

Dimson 

LS 0.6306 0.8299 0.8001 0.7346 

Wil 0.5098 0.7096 0.6905 0.6406 

Adp 0.4484 0.6212 0.6139 0.5828 

Scholes-Williams 

LS 0.7442 0.9795 0.9442 0.8669 

Wil 0.6016 0.8375 0.8149 0.7560 

Adp 0.5292 0.7332 0.7245 0.6879 

GCB Dimson LS 0.5564 0.6837 0.6976 0.7441 

Wil 0.8425 0.9615 0.9299 0.9697 

Adp 0.9883 0.6212 0.9807 0.9794 

Adp2 - 0.7425 0.9878 1.0030 

Scholes-Williams LS 0.6567 0.8069 0.8233 0.8781 

Wil 0.9943 1.1347 1.0975 1.1444 

Adp 1.1663 0.7332 1.1575 1.1559 

Adp2 - 0.8763 1.1657 1.1837 

4.5 Some distributions and scores the Adaptive method selects 

This section demonstrates the effectiveness of the rank-based adaptive method in 

selecting the most appropriate scores for some specific distribution; the normal, 

lognormal, exponential, uniform, cauchy and gamma distributions. Random numbers 

from these distributions have their selector statistics and cutoffs as well as scores 
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estimated. For some distributions more than one score is selected and the score with 

the largest number of occurrence in a trial of 500 fits is selected as the appropriate 

score for that distribution. The scores selected as well as a description of the form of 

the error distributions, after an initial fit is done by the LS and wilcoxon method, are 

shown in Table 4.11. 

Table 4.11: Scores for various distributions 

Distribution Scores selected appropriate score Descriptive 

Normal SM (500) SM Symmetric, medium-tails 

lognormal RH (500) RH Right skewed, heavy-tails 

Exponential RH(100) RM(400) RM Right skewed, medium-tails 

Uniform SL (500) SL Symmetric, light-tails 

Cauchy LH(74) RH(90) SH(336) SH Symmetric, heavy-tails 

Gamma RH(111) RM(389) RM Right skewed, medium-tails 

 

In a trial adaptive fit, we assume initial fits have been carried out and the errors are 

from these distributions thus their scores are specified and used in the adaptive fits. 

The relative efficiency amongs the least-squares, wilcoxon and adaptive fits are 

compared. 

Table 4.12: ARE for various distributions 

Fits Normal Lognormal Exponential Cauchy Uniform Gamma 

ARE(LS,Wil) 1.1517 0.1774 0.712 0.4687 1.0347 0.3468 

ARE(LS.Adp) 1.1517 0.0942 0.5044 0.39036 0.7066 0.2724 

ARE(Wil,Adp) 1 0.5309 0.7085 0.8328 0.6829 0.7852 

The LS gains over 115% efficiency over the adaptive and wilcoxon estimators when 

the errors are normally distributed and enjoys a loss in efficiency when used for other 

data types other than the normal distribution, ranging from heavy-tailed to light-

tailed, symmetric to right skewed. The adaptive method, when errors are normally 

distributed, is as efficient as the wilcoxon . In general, the adaptive estimator has a 

substantial gain in efficiency over the LS and wilcoxon estimator for non-symmetric, 
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heavy-tailed error distributions with the wilcoxon method having greater efficiency 

than the LS method. 

4.6 The Contaminated Normal Distribution 

In this section, we consider the contaminated normally distributed random error 

terms generated at each point where the dataset is contaminated in the response 

variable with 5%, 10%, 15% and 20% contamination and its Beta values and selected 

scores recorded. 

Table 4.13: Contaminated Normal distribution 

Fits Normal 10% cont. 5% cont. 10% cont. 15% cont. 20% cont. 

LS 0.033 -0.318 -0.015 0.408 0.888 0.047 

Wil 0.067 -0.207 0.089 0.202 0.146 0.203 

Adp 0.067 -0.214 0.103 0.124 0.036 0.230 

Scores SM LH SH RH RH SH 

 

Its noted that 5% contamination causes the data to have heavy tails and causes the 

LS fit to lose almost 30% efficiency to the Wilcoxon and about 40% to the adaptive 

method and over 93% efficiency to the wilcoxon rank-based method when there is 

15% contamination. 

Table 4.14: Asymptotic Relative Efficiency 

Fits Normal 10% cont. 5% cont. 10% cont. 15% cont. 20% cont. 

ARE(LS,Wil) 1.078 0.418 0.708 0.231 0.067 0.304 

ARE(LS,Adp) 1.078 0.401 0.606 0.268 0.046 0.259 

ARE(Wil,Adp) 1 0.959 0.857 1.160 0.697 0.853 

4.6.1 Example on Contamination using Baseball Salaries Data 

This example considers salaries of 176 professional baseball players for the 1987 

season, a data in the Rfit package. The dataset initially has no outliers and some 

outliers are introduced to reflect the response of the least squares, wilcoxon and 

adaptive fits. 

Table 4.15: Contamination of Baseball Data 
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Fits No Contamination 5% cont. 10% cont. 15% cont. 20% cont. 

LS 0.8527 0.6626 0.0622 -0.1828 -0.0731 

Wil 0.9171 0.8853 0.8431 0.8735 0.9032 

Adp 0.9389 0.8734 0.8647 0.8968 0.9106 

Scores SH RH RH RH RH 

 

The LS fit shows much variation in its estimated values but the wilcoxon and adaptive 

fits exhibit much robustness with the introduction of the increasing percentages of 

outliers, 5 %, 10%, 15% and 20% outliers. 

Table 4.16: Asymptotic Relative Efficiency 

Fits No Contamination 5% cont. 10% cont. 15% cont. 20% cont. 

ARE(LS,Wil) 0.8065 0.073 0.0233 0.0197 0.0204 

ARE(LS,Adp) 0.9521 0.0845 0.0216 0.0118 0.00635 

ARE(Wil,Adp) 1.1806 1.1577 0.9292 0.5974 0.3107 

As expected the ARE of the LS method show some loss in efficiency when the LS 

method is used to estimate the parameters instead of the other methods. The LS sees 

up to 98.03% loss in efficiency when there is 15% contamination with outliers. When 

there is 5% contamination and no contamination at all the wilcoxon gains 115.77% 

and 118% efficiency respectively over the Adaptive method whiles the Adaptive 

method shows a greater efficiency in the other percentages of contamination. 

4.7 Robustness 

In this section, diagnostics based on both highly efficient and high breakdown robust 

fits are explored to confirm the adequacy of the model and check the quality of fit. 

These diagnostics are primarily concerned with the determination of robust 

estimators. 

For motivation, we consider a simple dataset with two predictors and n = 100 data points. The 

values of the x’s are drawn from the uniform distribution. The first set of responses is drawn 

from the model 
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 yi = 5x1i + 5x2i + ei (4.4) 

where e1,...,en were drawn independently from a N(0,1) distribution. In the second set 

of response the last 25 data points representing 25% of the data is replaced with 20 

to 44 standard deviation’s of the original dataset which we call “1st” dataset. This 

second set is labeled the “2nd” dataset. The LS, wilcoxon and adaptive fits of the two 

datasets are obtained, summarizing them in Table 4.17. 

Table 4.17: Estimates of fit for normal and contaminated data 

Dataset Fits Intercept x1 x2 τ or σ 

 

On the “1st” dataset all three fits agree estimating quite accurately the coefficient 

and intercept parameters close to their true values in the original model,with the LS 

having the least error. On the “2nd” dataset the LS is impaired greatly while the 

Wilcoxon and adaptive fits exhibited robustness. Two adaptive fits, adp and adp 2, 

are seen here because two different scores were selected for residuals from LS and 

wilcoxon initial fits respectively. The adaptive fit after wilcoxon initial fits has the least 

tau thus giving the best fit. 

CHAPTER 5 

CONCLUSION AND RECOMMENDATIONS 
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5.1 Introduction 

A parametric estimation method, like the Least-Squares method, is a method based 

on the assumptions that the random errors in the data have a particular type of 

distribution,in this case a normal distribution. The rank-based fitting, a non-

parametric method, is an alternative to the parametric estimation when the errors 

have a distribution that is not necessarily normal. Rank-based adaptive methods 

which specifies scores to be used in fitting are carried out in this study. In this research 

performance of three estimating methods are investigated and the fitting of lagged 

beta’s are carried out for some stocks on the Ghana Stock Exchange (GSE). Some 

methods of reporting adjusted beta values are showcased. The performance and 

robustness of the three methods are investigated in the presence of varying 

percentages of outliers. An investigation of the accuracy of selector statistics, in 

selecting best scores for different types of distribution for the adaptive fit, are carried 

out. 

5.2 Conclusion 

In this study, first its observed that the rank-based methods (Wilcoxon and Adaptive) 

are more robust(for power) in estimation when the distribution of the error term of 

the dataset is non-normal and also in the presence of outlying observations,whiles 

the LS method is less robust. Contamination with as little as 5 outlying observations 

is enough to cause some disturbance in the LS estimates. The standard error of the 

LS method, as expected, were the smallest with the rank-based fit close in estimation 

and losing just a little efficiency for errors with normal distribution. 

Secondly, the school of thought that debunks the need for lagged market returns in 

estimating stock returns is challenged by the study results which shows significant 

lagged coefficients for FML and GCB up to lag four. 

Thirdly the adaptive fit done after initial fit with the LS often shows relatively higher 

efficiency than an initial fit with the rank-based Wilcoxon method. In a large 
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proportion of time the adaptive method proved more efficient than the Wilcoxon fit 

with the Adaptive method (after LS initial fit) losing efficiency to the Wilcoxon fit on 

very few occasions. 

The adaptive procedure effectively selects appropriate scores for distributions. 

This study confirms that the least-Squares method as according to Mohebbi et al. 

(2007) is very important and crucial, however it is only optimal under certain 

distributional assumptions including the error being normally distributed. The 

adaptive fit is more robust in the presence of outliers and consistently gives the best 

fit with a minimum standard error . 

5.3 Recommendations 

When the researcher has no idea of the error distributions of the dataset (as is the 

case in practice), the adaptive fit gives an idea of what the error distribution looks 

like and an appropriate score selected in fitting the model. Indeed technology has 

made model fitting easy so why not go the extra mile to ensure an efficient and more 

accurate fit in the absence of knowledge of the error distribution of the data. The 

study also shows some stocks on the GSE are indeed thinly traded and require lagged 

beta estimates. Though adaptive fits with LS initial fit exhibits more efficiency than a 

Wilcoxon initial fit,both initial fits need to be carried out to give the optimum score 

for the adaptive fit. 

5.4 Further Studies 

In this study adaptive methods of estimation were carried out after initial fits had 

been carried out with both LS and Wilcoxon. Scores selected after initial fits with LS 

were more efficient. 

Further studies needs to be done to ascertain which of these initial fits should be 

carried out for more precision as to what exactly the procedure in an adaptive fit is. 

Complete diagnostics like the ANOVA for the rank-based adaptive method needs to 

be studied.  
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APPENDIX 

Appendix I - R-codes for computing cutoffs, 

selector statistics and selecting scores 

upmean = function(alp1,alp2,xs){ n = 

length(xs) ind1 = floor(alp1*n + 0.5) 

ind2 = floor(alp2*n + 0.5) if(ind2 > 

n){ind2 = n} if(ind1 > ind2){ind1 = 

ind2} 

s = sum(xs[ind1:ind2]) upmean = 

s/(ind2 - ind1 + 1) 

upmean 

} 

lomean = function(alp1,alp2,xs){ n = 

length(xs) ind1 = floor(alp1*n + .5) 

ind2 = floor(alp2*n + .5) if(ind1 < 

1){ind1 = 1} if(ind1 > ind2){ind2 = 

ind1} s = sum(xs[ind1:ind2]) 

lomean = s/(ind2 - ind1 + 1) 

lomean 

} 

mimean = function(alp,xs){ n = length(xs) ind1 = 

floor(((1.0-alp)/2.0)*n + 0.5) if(ind1 < 1){ind1 = 

1} 
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ind2 = n - ind1 

s = sum(xs[(ind1+1):ind2]) mimean = 

s/(ind2 - ind1) mimean 

} 

selstat = function(x,par=c(0.95,0.5,0.05,0.5,0.5)){ 

n = length(x) # 

resids are x 

clq1 = 0.36 + (0.68/n) cuq1 = 

2.73 - (3.72/n) if(n < 25){ clq2 

= 2.17 - (3.01/n) cuq2 = 2.63 - 

(3.94/n) 

} else { clq2 = 2.24 - (4.68/n) 

cuq2 = 2.95 - (9.37/n) 

} cus = c(clq1,cuq1,clq2,cuq2) iord 

= order(x) xs = x[iord] 

um1 = upmean(par[1],1.0,xs) lm1 

= lomean(0.0,par[3],xs) mm1 = 

mimean(par[2],xs) um2 = 

upmean(par[4],1.0,xs) lm2 = 

lomean(0.0,par[5],xs) 

ulmeans = c(um1,lm1,mm1,um2,lm2) 
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q1 = (um1 - mm1)/(mm1 - lm1) q2 = 

(um1 - lm1)/(um2 - lm2) 

qs = c(q1,q2) 

if(q1 <= clq1){ if(q2 <= clq2){score = ’LL’} if((q2 > clq2) && 

(q2 <= cuq2)){score = ’LM’} if(q2 > cuq2){score = ’LH’} 

} else if(q1 <= clq2){ if(q2 <= clq2){score = ’SL’} if((q2 > 

clq2) && (q2 <= cuq2)){score =’SM’} if(q2 > cuq2){score 

= ’SH’} 

} else { if(q2 <= clq2){score = ’RL’} if((q2 > clq2) && (q2 <= 

cuq2)){score = ’RM’} if(q2 > cuq2){score = ’RH’} 

} if (score=="SM"){ 

selscores=’bentscoressm’ } else 

if(score=="SH"){ 

selscores=’bentscoressh’ } else 

if(score=="SL"){ 

selscores=’bentscoressl’ } else 

if(score=="RL"){ 

selscores=’bentscoresrl’ } else 

if(score=="RM"){ 

selscores=’bentscoresrm’ } else 

if(score=="RH"){ 

selscores=’bentscoresrh’ } else 

if(score=="LL"){ 

selscores=’bentscoresll’ } else 

if(score=="LM"){ 

selscores=’bentscoreslm’ } else 
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if(score=="LH"){ 

selscores=’bentscoreslh’ 

} 

list(score=score,qs = qs,cus=cus,ulmeans=ulmeans,selscores=selscores) 

} 

Appendix II - R-codes for defining Scores 

bent.phi<-function(u,...) ifelse(u<.1,-20*u-.1,0) bent.Dphi<-

function(u,...) ifelse(u<0.1,-20,0) bentscoresll<-

new("scores",phi=bent.phi,Dphi=bent.Dphi) 

bent.phi<-function(u,...) ifelse(u<.3,-1,2+(3/0.7)*(u-1)) bent.Dphi<-

function(u,...) ifelse(u<0.3,0,3/0.7) bentscoreslm<-

new("scores",phi=bent.phi,Dphi=bent.Dphi) 

bent.phi<-function(u,...) ifelse(u<.5,-1,2+6*(u-1)) 

bent.Dphi<-function(u,...) ifelse(u<0.5,0,6) 

bentscoreslh<-new("scores",phi=bent.phi,Dphi=bent.Dphi) 

bent.phi<-function(u,...) ifelse(u>.7,1,1+(3/0.7)*(u-.7)) 

bent.Dphi<-function(u,...) ifelse(u>0.7,0,3/0.7) 

bentscoresrm<-

new("scores",phi=bent.phi,Dphi=bent.Dphi) 
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bent.phi<-function(u,...) ifelse(u>.5,1,1+6*(u-.5)) bent.Dphi<-

function(u,...) ifelse(u>0.5,0,6) bentscoresrh<-

new("scores",phi=bent.phi,Dphi=bent.Dphi) 

bent.phi<-function(u,param){ s1=param[1] s2=param[2] s3=param[3] 

s4=param[4] ifelse(u<s1,-s3/s1*(u-s1),ifelse(u>s2,-s4/(s2-1)*(u-1)+s4,0)) 

} bent.Dphi<-function(u,param){ s1=param[1] s2=param[2] 

s3=param[3] s4=param[4] ifelse(u<s1,-s3/s1,ifelse(u>s2,-

s4/(s2-1),0)) 

} bent.param<-c(0.25,0.75,-1,1) bentscoressl<-

new("scores",phi=bent.phi,Dphi=bent.Dphi,param=bent.param) 

bent.phi<-function(u) sqrt(12)*(u-0.5) 

bent.Dphi<-function(u) 

rep(sqrt(12),length(u)) bentscoressm<-

new("scores",phi=bent.phi,Dphi=bent.Dphi) 

bent.phi<-function(u,param){ s1=param[1] s2=param[2] s3=param[3] 

s4=param[4] ifelse(u<s1,s3,ifelse(u>s2,s4,s3+((s4-s3)/(s2-s1))*(u-s1))) 

} bent.Dphi<-function(u,param){ s1=param[1] s2=param[2] 

s3=param[3] s4=param[4] ifelse(u<s1,0,ifelse(u>s2,0,(s4-

s3)/(s2-s1))) 

} bent.param<-c(0.25,0.75,-1,1) bentscoressh<-

new("scores",phi=bent.phi,Dphi=bent.Dphi,param=bent.param) 


