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ABSTRACT 

The objective of this project is to apply the predator –prey model to come out with a 

model for the propagation of HIV, taking into consideration the population of newly 

infected males and newly infected females at a given time. This particular model is 

conjectured because it has been observed that there is an almost sinusoidal rising and 

falling of the time series trajectories of newly infected male and female cases of the Ghana 

data. 

With some few assumptions made the model is formulated and the analysis shows that it 

conforms to the predator – prey model. Even though parameters in respect of newly 

infected males and females were not directly available for the simulation, with some 

assumptions, the parameters of the model are estimated and the simulation of the model 

for various scenarios using MATLAB is done. These simulations give the typical almost 

sinusoidal trajectories for both the populations of the newly infected males and newly 

infected females. This appears to confirm that the propagation of HIV follows the predator 

– prey model. It also shows that the rate of infections of HIV keeps rising and falling with 

time. The curves also show that more females are infected at any given time than males.  

Some recommendations regarding the eradication of HIV or the curtailment of the spread 

of HIV are offered.  
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CHAPTER 1 

INTRODUCTION  

1.1 BACKGROUND OF THE STUDY 

Mathematics has been a useful tool in epidemiology; Sir Ronald Ross founded the field of 

mathematical epidemiology. He came out with a Mathematical model for malaria in 1911. 

His mathematical work has been used widely not only in the study of malaria but also in 

the study of other diseases. ( Macdonald, 1957) 

 

HIV/AIDS is a disease which scientist have been trying to find a lasting solution to some 

of the attempts includes; education on the need to abstain from unprotected sex, being, 

faithful to ones’ partner, the use of condoms and delay in early sex. Antiretroviral drugs 

are also used for those who have been infected, to prolong their lives but not to cure the 

disease. Although all these attempts are good, the disease is still spreading. Some 

mathematicians have also come out with useful models on the spread of HIV/AIDS, but 

there is still need to come out with a model which will help explain, predict and stop or 

further curtail the spread of the disease. These leads to the idea of applying the predator 

prey model to the propagation of HIV. 

 

The population will be classified into a class of newly infected males (predators) and a 

class of newly infected females (prey).  

The model which takes the form of the predator- prey model will be thoroughly analyzed. 

The stability of the critical points will be analyzed and the trajectories found 
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1.2 STATEMENT OF THE PROBLEM 

HIV/AIDS epidemic has become one of the most critical challenges facing public health in 

Ghana and the world at large, particularly, the sub- Saharan African countries. African 

with just over 10% of world’s population carries well above 75% of the burden of this 

epidemic UNAIDS, 2004. Prevalence and incidence rates in East Africa and South Africa 

include some of the highest in the world with prevalence rate exceeding 35% in Botswana 

and Swaziland but in West African sub – region, prevalence rates have remained lower 

with no country having a rate above 10% and most having a rate between 1% and 5. 

 

Currently, the HIV/AIDS statistics show that Ghana has prevalence rate of 3-4% and that 

500000 persons are infected. This number is expected to rise and as  a result, scientist and 

researchers have been working hard to find a lasting solution to curb the propagation of 

HIV/AIDS in the country. 

(Nasidi et al, 2004)  

 

In an effort to combat the propagation of the disease, there is the need for a continuous 

quantitative monitoring of the disease to make sure it is brought under controls and this 

can be effectively done within the field of mathematical epidemiology. Although most 

mathematical models have been proposed, the virus still continuous to spread. Other 

control efforts includes education on abstinence, being faithful to ones’ partner, the use of 

condoms etc. the main problem is the group that should be targeted during educational 

programs. Hence a predator-pray model of HIV propagation could help identify such a 

group. 
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1.3 OBJECTIVES OF THE STUDY 

A mathematical model for the propagation of HIV in a heterosexual community will is 

proposed .The model  can be applied to any heterosexual community, the community will 

be put into two classes; newly infected males and newly infected females. The model will 

be applied to determine whether it is the males or the females who transmit the disease 

more. 

 

The model will also be applied to advise health personnel as well as the Ghana AIDS 

commission and all those concerned in bringing the spread of HIV under control as to 

which group of the society that educational campaigns should be targeted most. 

 

1.4 METHODOLOGY  

The methods employed in this project includes; 

i. A review of differential equations as applied to epidemiology was done 

ii. The possible transmission of HIV /Aids in a community was looked at. 

iii. A predator-prey model for the transmission of HIV / AIDS was formulated 

as a system of differential equations and the equilibrium  points determined 

iv.  The stability of the equilibrium points was also determined. 

v. Simulation using MATLAB was also done. 

 

1.5  JUSTIFICATION OF THE STUDY 

Focusing on the epidemiology of HIV/AIDS in Ghana, several people including NGO’s 

have tried to find solution to the problem or curtail the spread of the virus and for that 

matter the disease AIDS. 
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The Ghana AIDS Commission is currently reviewing the National Strategic Framework II, 

covering 2006 – 2010 with stakeholders and bilateral and multilateral partners. The first 

national strategic plan focused on live themes, prevention of new infections, care and 

support for people living with HIV/AIDS, creation of an enabling environment for the 

national response, decentralization of implementation of HIV/AIDS activities through 

international arrangements, research and monitoring.  

A consequence of these features is that the analysis of data is usually most effective when 

it is based on a model that describes aspects of the infection process (Becker et al, 1991). 

 

Solomon, Gakielon and Murray (2001) also stated that the understanding of the magnitude 

and trajectory of HIV/AIDS epidemic, as well as the uncertainty around the parameters is 

critically important both for planning and evaluating control strategies and for preparing 

for vaccine efficacy trials. Mathematical models can become very useful tools in this area. 

Apart from that modeling exercise are aimed at making use of the available data (no 

matter how little) to provide information about the trend inherent in the course of the 

epidemic. (Solomon et al, 2001) 

 

1.6 THESIS STRUCTURE. 

This thesis consists of five chapters. Chapter One covered the background of the study, 

statement of the problem, the objectives of the study, the methodology applied in the 

study, the justification of the study and the structure of the thesis/. 

Chapter Two covered a review of related literature on the stability of equilibrium points as 

well as Mathematical and Statistical models of HIV/AIDS transmission.                          

Chapter Three took us through some of the various methods of modeling HIV 

transmissions including the predator prey model on which this thesis is based. 
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In chapter Four a predator- prey model of HIV propagation was formulated. The 

equilibrium points were determined and the stability analysis of the points was done. The 

parameters of the differential equations were also determined and Simulations of the 

model equations using MATLAB was done for the phase portrait as well as for the 

trajectories. 

In chapter Five, the final chapter, the conclusion was made and this was followed by 

recommendations.   
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CHAPTER 2 

REVIEW OF RELATED LITERATURE 

2.0 INTRODUCTION 

In this chapter related literature to the topic were reviewed. This includes statistical 

modeling of HIV/AIDS epidemic in the Northern central zone of Nigeria, the global 

overview of the epidemic, HIV/AIDS in sub Saharan Africa, HIV/AIDS prevalence in 

Ghana and some models of HIV propagation.  

 

2.1 GLOBAL OVERVIEW ON THE EPIDEMIC. 

‘AIDS is far more than a medical problem. AIDS is far more than a national problem, 

AIDS is far more than over’ (Kofi Annan,+ 2009). The rate at  which new HIV infections 

are growing and the pace at which HIV infection progresses to AIDs, have to slow down 

in certain populations in some parts of the world. 

This is happening at the same time as people adopt safer behavior and prevention and care 

services expanding. Partially richer countries owe the change to the availability of 

antiretroviral therapies. 

 

There is abundant evidence globally that well-designed prevention programs and other 

successful public health measures can reduce and stabilize the epidemic. In societies 

where services and programs were already well equipped before the epidemic of 

HIV/AIDS, the creation of new initiatives and the re-orientation of others, led to a gradual 

decline in the incidence of HIV. We can observe a similar trend in certain sections of the 

population even in resource –oriented settings at least partly because of rigorous 

prevention efforts. 
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Nevertheless, the dynamics of the epidemic differ strongly between countries due to 

biological, epidemiological and socio –cultural factors, with continuing low prevalence in 

some of the northern and western countries, stabilizing epidemics in others and staggering 

increases in many countries in the south. 

 

Like many developing countries which are experiencing exponential growth of HIV/AIDS 

cases. At the same time global spending on HIV/AIDS care, research and prevention 

reflects this disparity- developing countries receive only about 12% of such resources 

despite having 95% of the cases. In addition, the resources allocated to combat the 

epidemic are grossly inadequate – AIDS is spreading three times faster than the funding to 

control it.( UNAIDS, 2009). 

 

2.2 HIV/AIDS IN SUB SAHARAN AFRICA. 

Like the industrialized world, Africa is struggling with an epidemic that is now entering its 

third decade. However, while a few African countries have succeeded in stabilizing or 

reversing HIV infection rates, the epidemic is out of control especially in the Southern part 

of the continent. Socio economic factors like poverty, illiteracy, gender inequality, 

increased mobility of population and rapid industrialization involving the movement of 

workers from villages to cities, are still contributing to the spread of HIV/AIDS. 

 

Today when there are over 20 million Africans infected, the situation is almost 

catastrophic. The fact that there were over two million deaths due to AIDs during 1998 

including nearly half a million deaths occurring among children and four million new 

infections in 1997 prove that the epidemic is an unprecedented crisis for the continent. 
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In the most severely affected countries, a quarter of the adult population is infected. Hard-

won gains in life expectancy and child survival are being wiped out.  The AIDS related 

suffering of individuals, families and societies is enormous. Education and health systems 

are staggering under the burden as they lose trained professionals and incur higher cost 

because of the epidemic. 

 

In Africa, sex between men and women is the primary means of HIV transmission 

although in almost every country there are also at least a few cases resulting from sex 

between  men. Transmission of intravenous drugs is growing rapidly in southern Africa 

and this method of transmission is probably going to be relevant in other African countries 

as well. Transmission through blood transmission are still occurring where screening of 

blood used for transfusion is not efficient. 

 

Approximately two thirds of people infected are living in sub- Saharan Africa and half of 

them are women. The trend is that in Sub –Saharan countries, more women than men are 

infected and worldwide, women are infected at a faster rate than men are. In some 

countries 20 – 45 % of pregnant women are HIV positive and one million children are 

living with HIV, while another twelve million have lost their mother or parents. Life 

expectancy is dropping to levels not seen since 1960; hard –won gains in child survival are 

being reversed.( UNAID, 2009). 

 

2.3 STATISTICAL MODELING OF HIV/AIDS EPIDEMIC IN THE NORTH 

CENTRAL ZONE OF NIGERIA 

Here the UNAIDs estimation and projection package(EPP) to HIV/AIDS epidemic in the 

north central zone of Nigeria was applied to propose a statistical model for the course of 
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the epidemic and to generally investigate the level of trend inherent in the epidemic over 

the years. HIV/AIDS surveillance data was used to model the situation for the rural and 

urban sentinel sites in the zone. Using EPP as a point of reference, a statistical model was 

proposed for the course of HIV/AIDS epidemic in the zone. The result shows that the 

UNAIDS package is a great Aid to the HIV/AIDS modeling in Nigeria. 

 

The epidemic rate was estimated to be 0.91 in 1997, 0.7% in 2000, and projected to be  

0.63 in 2010. Also an estimated 378,870 people were expected to die due to the epidemic 

in the year 2010. The prevalence peaked later than the incidence which peaked around 

1997, but this was expected to rise slowly after 2007. The mortality rate was relatively low 

among site inside major towns than those outside major towns, but the situation was 

generally still rising.   (Akpa et al, 2008) 

 

2.4 HIV/AIDS PREVALENCE IN GHANA. 

The HIV/AIDS epidemic in Ghana seems to be progressing slowly. The government of 

Ghana estimated the number of adults and children living with HIV as of 2004 at 404,000.  

The joint United Nations program of HIV/ AIDS (UNAIDS) estimated the HIV 

prevalence in adults to be 3.1 % at the end of 2003, with an estimated 350,000 people 

living with HIV/ AIDS. Ghana’s 2003 Demographic and health survey reported 

prevalence at 2.2% among the 9,000 people who agreed to be. 

 

Ghana’s system of HIV surveillance for women attending antenatal clinics has functioned 

well since its establishment in 1994. Sentinel surveys of 21 antenatal clinics in 2002 

reported a range from 3.2 % to 9.1% in prevalence among pregnant women. In 2002, the 
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median HIV prevalence at four of these sites in Accra was 4.1%; elsewhere in Ghana, 

prevalence in antenatal clinics ranged from 3.2% to 3.4 ( Addo, 2009) 

 

HIV prevalence is highest in the Eastern Region of Ghana and Lowest in the Northern 

Regions of the country. Prevalence is generally higher in urban areas, in mining and 

border tows, and along main transportation routes. HIV -1 accounts for 92% of HIV cases 

in Ghana; another 7.4% of reported HIV cases are dual infections with HIV -1 and HIV -2. 

Only 0.55 of HIV cases were exclusively HIV- 2. Heterosexual intercourse is the mode of 

transmission for about 80% of HIV cases, with mother –to-child transmission accounting 

for another 15%. According to the  2003 Demographic and health Survey, HIV prevalence 

is very low  among most younger age groups, as relatively few are infected during their 

youth ( with the exceptions of infants  through their mothers). The infection peaks late, 

compared to other countries, at 35 – 39 years for women and 40 – 45 years for men. The 

infection levels are highest in middle income and middle educational groups, with the poor 

and unemployed less affected. 

 

Though evidence is still being gathered for program decisions, some populations thought 

to be at risk include sex workers, transport workers, prisoners, sexual partners of people 

living with HIV/ AIDS, and men who have sex with men and their female sexual partners. 

HIV prevalence uniformed services is not fully established. 

 

Approximately 9,600 children under age 15 are living with HIV/AIDs, and at the end of 

2003, nearly 170,000 children under age 17 had lost one or both parents to AIDs. At that 

time only a few thousand of these children had received assistance such as food aid, health 

care, protection services, or educational or psychosocial support. 
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Ghana’s goal is to prevent new HIV infections as well as to mitigate the socioeconomic 

and psychological effects of HIV/AIDS on individuals, communities and the nation. The 

first national strategic plan focused on five themes; prevention of new infections; care and 

support for people living with HIV/ AIDS; creation of an enabling environment for a 

national response, decentralization of implementation of HIV/ Aids activities through 

institutional arrangements, research and monitoring and evaluation of programs. The 

second national strategic plan, currently in progress, focuses on; policy advocacy, and 

enabling environment; coordination and management of the decentralized response; 

mitigating the economic, socio-cultural and legal impacts, prevention and behavior change 

communication; treatment, care and support; research and surveillance; and monitoring 

and evaluation. 

 

Multilateral and bilateral partners, nongovernmental organizations (NGOs), and civil 

society organizations actively participate in the national response, with more than 2,500 

community –based organizations and NGOs reportedly implementing HIV/AIDS activities 

in Ghana. Substantial funding for HIV/AIDS activities is received from the United States, 

the United Kingdom, the Netherlands, Denmark, Japan, Canada and the United Nations 

Agencies. Activities include the five –country, World –Bank –led HIV? AIDS. Abidjan -

Lagos Transport Corridor project, the World Bank –funded Treatment Acceleration 

Program for public –private partnership in HIV/AIDS management, the World health 

Organization (WHO)  initiative; the United Fund to Fight AIDS, Tuberculosis and Malaria 

(GFATM) 

 

Following the Declaration of Commitment of the United Nations General Assembly, 

Special Session on HIV/AIDs in 2001, the Government earmarked 15% of its health 
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budget for HIV/AIDs activities, and all ministries were asked to create an HIV/AIDs 

budget line. Available funding to support Ghana’s response to the HIV/Aids epidemic 

includes about $6.7million from GFATM; about $12 million from multilateral partners, 

including the World Bank; and about $8 million from bilateral donors. Based on the level 

of funding already committed by the national government and its donors, WHO estimates 

a $ 5 to $12.8 million funding gap for HIV/AIDs activities in Ghana for the period 2004 – 

2005. (WHO, 2009) 

 

2.5. APPLICATION OF PREDATOR-PEY MODEL FOR THE PROPAGATION 

OF HIV/AIDS. 

In a research paper presented by B D.Aggarwala 2001. At university of Calgary, He came 

out with two models on the spread of HIV. 

 

In first part, he discussed a ratio dependent predator – pray model and applied it to the 

spread of HIV/AIDS in a society. For this model, he divided the population into two 

classes; the HIV positive individuals and the HIV negative individuals. The model was 

then applied to the data available for the Canadian society obtained from Health Canada 

and statistics Canada, it was predicted that the number of HIV positive as individuals 

would go up for the next five years. The results were compared with actual numbers and 

the comparison was satisfactory. 

 

In the second part, a considerably more detailed density dependent model for the 

propagation of HIV/AIDS was developed. This model divides the society into three 

classes; HIV negative individuals, HIV positive individuals who have not developed AIDS 

disease and those who have developed AIDS. This model was also applied to the data 
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available from Health Canada. It was also established that the model was physically 

relevant by showing that in the model the number of both HIV positive and HIV negative 

people stay positive and finite for all t > 0 

In this paper, Aggarwala considered only HIV positive, HIV negative and AIDS patients. 

It is therefore reasonable to consider the predator – prey model in relation to the groups of 

males and females infected people.( Aggarwala, 2001) 

 

2.6 HIV MODEL BY RICK QUAX  

In a thesis presented to the academic faculty college of competing, Georgia institute of 

technology, Rick Quax, 2008 et al simulated two complex models for HIV epidemic and 

found a remarkable qualitative fit to reported data for AIDS incidence and prevalence. He 

remarked that the most important result is that the mere dynamics of HIV epidemic is 

sufficient to produce rather complex trends in the incidence and prevalence statistics. 

 

He also highlighted some previous work (based on traditional mathematical models) that 

attempted to explain distinctive trends in the reported data, e.g. by the introduction of 

particularly effective treatments that were considered unsupported. As a corollary he also 

substantiated the much debated paradox that the availability of Highly Active Anti-

Retroviral Treatment likely causes and increased HIV incidence. That is, the introduction 

of treatment could be counter effective and found indeed that it likely results in higher 

stabilized HIV incidence.( Quax, 2008) 

 

2.7  A STUDY ON MEN WHO HAVE SEX WITH MEN 

In a study involving men who have sex with their fellow men (gays) and heterosexuals, it 

was realized that elucidating virus-host interactions responsible for HIV-1 transmission is 
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important for advancing HIV-1 prevention stages. To this end, Single Genome 

Amplification (S G A) and sequencing of HIV-1 within the context of a model of random 

virus evolution has made it possible for the first time an unambiguous identification of 

transmitted / founder viruses and a precise estimation of their members. Hence, this 

approach was applied to HIV-1 env analysis in a cohort of acutely infected men who have 

sex with men (MSM) and found that a high proportion (10 of 28; 36%) had been 

productively infected by more than one virus. In subject with multivariate transmission, 

the minimum number of transmitted virus ranges from 2 to 10 with viral recombination 

leading to rapid and extensive genetic shuffling among virus lineages. A combine analysis 

of this results together with recently published findings based on identical S G A methods 

in largely heterosexual (HSX) cohort revealed a significantly higher frequency of 

multivariate transmission in men having sex with men than in heterosexuals (19 of 50 

subjects 38%) versus 34 of 175 subjects (19%); Fisher’s exact        P = 0.008.  

 

To further evaluate the SGA strategy for identifying transmitted / founder viruses, 

Analysis of 239 overlapping 5 and 3 half genome or env – only sequences from plasma 

viral RNA (v RNA) and blood mononuclear cell DNA in an MSM subject who had a 

particularly well documented virus explosive history 3 – 6 days before symptom onset and 

14 – 17 days before peak plasma viremia (47, 600 000 v RNA molecules / m) was done. 

All 239 sequences coalesced to a single transmitted / founder virus genome in a time 

frame consistent with the clinical history and a molecular done of this genome encoded 

replication competent virus in accord with model prediction. High multiplicity of HIV-1 

infection in MSM compared with HSX is consistent with the demonstrably higher 

epidemiological risk of virus acquisition in MSM and could indicate a greater challenge 

for HIV-1 vaccines than previously recognized. 
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( Li H et al 2010 )  

 

2.8 EVOLUTIONARY DYNAMICS OF HIV INFECTION   

Luca Sguanci et al also came out with a model on the evolutionary dynamics of HIV 

infection. That is, within-patient evolutionary process during HIV infection. It was 

realized that during the HIV infection, several mutants of the virus a rise, which are able to 

use di- erent chemokine receptors, in particular the CCR5 and CXCR4 co receptors 

(termed R5 and X4 phenotypes respectively). Phylogenetic inference of chemokine 

receptors suggest that virus mutational pathways away generate R5 variants able to 

interact with a wide range of chemokine receptors di erent from CXC. Using the 

chemokine tree topology as a conceptual framework for HIV viral speciation,a model of 

viral phenotypic mutation from R5 to X4 strains which reflect HIV late infection 

dynamics. The model also investigated the action of Tumor Necrosis Factor in AIDS 

progression and made suggestions on better design of Highly Active Anti-retroviral 

treatment therapy. 

(Luca et al, 2006). 

 

2.9 A CELLULA AUTOMATION MODEL OF VIRAL PROPAGATION  

In a paper, strain MC et’ al introduced a cellular automation model of viral propagation 

based on the known biophysical properties of HIV. In particular, they include the 

competition between viral ability and Brownian motion. The model predicted three 

testable effects not present in previous descriptions; First, they found a profound 

dependence of viral infectivity on cell concentration, vision instability decreases 

infectivity more than 100 fold typical experimental conditions resulting in misleading 

estimate of the number of infections particles. Second, it was found that in large parameter 
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regime infections extinguishes itself due to insufficient target cell replenishment. Finally, 

it was also found that propagation is limited by viral stability at low cell density and by 

Geometry at high cell density.  The geometry – limited region can be modulated by drown 

regulation of CD4. These different properties are analyzed quantitatively and compared 

with previous experimental results. 

(Strain et al, 2002). 

 

2.10 MODELING AND CONTROL OF HIV POPAGATION 

In a study on the modeling and control of HIV/AIDS propagation, a case study of the 

Ashanti Region of Ghana, F. T. Oduro and P. Aboagye Sarfo (2007) came out with a 

model on the population, age and gender structure dynamic of the reported cases of 

HIV/AIDS in the Ashanti Region of Ghana for the period 1982 – 2001 with a view of 

assessing the level and impact of the pandemic as well as the effectiveness of existing 

control measures. They used  statistical method of system identification based on vector 

autoregressive time series analysis. This led in most cases to deterministic discrete – time 

linear autonomous models. The population dynamics of reported. HIV/AIDS cases for 

females and males were found to be of second order, unstable growing linearly in the 

mean but with a sinusoidal oscillation of period 4.2 years. Three age groups with common 

dynamical characteristics were identified; the 0 – 19, 20 – 49 and the 50+ years age 

groups. Each of these age groups however had first order dynamics, which were stable 

reaching equilibrium levels in a few decades. Further analysis involving the computation 

of the controllability matrix revealed that condom utilization as a method of controlling 

HIV/AIDS has no significant impact in the control of the number of reported case (Oduro 

et al, 2007).    
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CHAPTER 3  

METHODOLOGY   

3.1 INTRODUCTION 

In this chapter, certain key concepts and methods of analyzing differential equations that 

are central to this project have been presented. Related models such as epidemics, 

competition and the predator, prey have been also discussed 

3.1.1  DEFINITION (CRITICAL POINT) 

A critical point or equilibrium position of a system of differential equations is the set of 

points for which X
1
(t)=0 

3.1.2 DEFINITION (STABLEPOINT)   

Suppose  x ЄW is an equilibrium of the differential equation X
1
= f(x), where f:W   E is 

a C
1 

map from an open set W of the vector space E into E. then   x  is a stable equilibrium 

if for every neighborhood U of  x  in W there is a neighborhood  U1 of  x  in U such that 

every solution x(t) with x(0) in U1 is defined and in U for all   t > 0( Morris, 1974) 

 

 

FIGURE 3.1: A STABLE POINT 

3.1.3 STABILITY    

Definition 2 

If U1 can be chosen such that in addition to the properties described in definition 1,   

   lim x(t) =  x ,  then x is asymptotically stable. See figure 3.2 below 

 

 

 

U    . x  U1 

  t     ∞ 
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FIGURE 3.2:  ASYMTOTIC STABILITY  

3.1.4  DEFINITION 3 

An equilibrium  x   that is not stable is called unstable. This means there is a neibourhood  

U  of   x  such that  for every neighbourhood  U1 of   x  in U , there is at least one solution 

x(t) starting at x(o) € U1 which does not lie entirely in U. See figure 3.3 below. 

           

                

            U                              

       

 FIGURE 3.3 : USTABLE POINT 

 

3.1.5 INSTABILITY 

A sink is asymptotically stable and therefore stable. An example of an equilibrium that is 

stable but not asymptotically stable is the origin in R
2
 for a linear equation x

1
= 

Ax………….2 where A has pure imaginary eigenvA stalues. The orbits are all ellipses.  

See fi:gure 3.4 Below.                     

               

                 

                                                                                                                                                   

FIGURE 3.4 : A STABLE BUT NOT ASYMTOTICALLY STABLE  

 

 

U 

    . 

     X 

 

 

          . X 

U1 
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3.1.6  THEOREM: 

The trivial solution of (1) is asymptotically stable if and only if all the eigenvalues of A 

have negative real parts.( Morris et al, 1974) 

3.1.7 THEOREM: 

If the eigenvalues of A with zero real parts are simple and all other eigenvalues have 

negative real parts then the trivial solution of (2) is stable. (Morris et al, 1974) 

 

3. 2 LINEARIZATION AND STABILITY 

From the definitions, stability properties depend on the behavior of the system near the 

equilibrium point, Hence in conducting an analysis of stability, it is convenient to replace 

the full nonlinear description by a simpler description that approximates the system near 

the equilibrium point, often a linear approximation is enough to clarify the stability 

properties, this idea of checking stability by examinations of a linearised version of the 

system is referred to as Liapunov’s First Method. This is usually the first step in the 

analysis of any equilibrium point. The linearization of the non linear system is based on 

linearization of the non linear function F in its description. An nth – order system is 

defined by n functions, each of which depends on the n variables. In this case each 

function is approximated by the relations f1 ( x 1 + y1, x 2 + y2 , ……. , x n + yn)= f1( x 1, x 2 

….. x n) +  

ә/әx1 f1 ( x 1 , x 2….. x n) y+ ә∕әx2 f1 ( x 1, x 2 …… x n) y2 + …..+ 

ә∕әxn f i; ( x 1 , x 2 …… x n) yn ……….. 

The linear approximation for the vectors f(x) is made up of the n separate approximations 

for each component function. The complete result is expressed compactly in vector 

notation as  f( x + y) = F( x ) + F(y) 
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In this expression F is n x n matrix  

 

 

 

 

 

This is called the Jacobian matrix. 

To determine the stability properties of a linear system, we determine the location of the 

eigenvalues of the system matrix and the stability properties of the linear version of a 

nonlinear system can be determined that way. 

 

The importance of this technique is that except for the boundary situation, the eigenvalues 

of the linearised system completely exposes the stability properties of an equilibrium point 

of a system. This is because, for small deviations from the equilibrium point, the 

performance of the equilibrium is approximately governed by the linear terms. These 

terms dominate and that determine the stability provided that the linear terms do not 

vanished.( Waltman,199) 

 

∂f1  ,  ∂f1 , ………………..∂f1 

∂x1, ∂x2,………………...∂xn 

∂f2 , ∂f2, ………………∂f2 

∂x1 , ∂x2,…………….. ∂xn 

 ……………………………………………. 

……………………………………………… 

∂fn , ∂fn, ……………….∂fn 

∂x1, ∂x2, ……………….∂xn 
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3.3 THE PHASE PLANE 

Consider the linear system with constant coefficients 

X
1
= ax + by 

Y
1
 = cx  + dy   ……………………………………  4  

They can be solved explicitly by linear system; this can be regarded as the first 

approximation of the nonlinear system 

X
1
 =f(x, y) 

Y
1 

= g( x, y)……………………(5) 

Where f(x, y) and g(x, y) satisfy f(0,0) =g(0,0)=0 and have continuous partial derivatives, 

which at the origin are labeled as  

 
dx

df 0,0
 =  a, 

 
dy

df 0,0
  = b, 

 
dx

dg 0,0
  =  c, 

 
dx

df 0,0
 = d 

 

It can be observed that every exact knowledge of the behaviour of solution of (4) can often 

give qualitative knowledge of the behaviour of solutions of (5) near the origin. To avoid 

complications, we will assume that ad - bc   0 (that is the jacobian of the RHS of (5) is 

not zero). the assumption that f and g have continuous derivatives implies that if a set of 

initial conditions x(to) =         y(to) =      is added to the system (5) then the exultance of 

a unique solution is guaranteed. 

(Morris et al, 1974) 

3.3.1 THEOREM: 

Let f(x ,y), g(x, y) be continuously differentiable. Then there is a solution of the initial 

value problem  

X
1 =

f(x, y)
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Y
1 

= f(x, y) 

X(to) =  

Y(to) =   

 

Valid on the interval I= (to –y, t0 + y) if this is denoted by x( t,    ) ,  y(t,    ) are 

continuous function for   and  .the solution above is defined for all t Є R In the case of 

(4) but for (5), it is necessary to make additional assumptions on f and g to guarantee that a 

solution exist for all t € R. 

 

Points along the solution of (5) can be viewed as a triple in R
3
 (x(t), y(t), t) , a path traced 

out in three dimensions consisting of a time coordinate t and a two dimensional space 

coordinate (x ,y). the absence of the independent variable t in the RHS of (5) makes 

another interpretation useful. Solutions may be regarded in the plane as a parametric curve 

given by (x(t), y(t) with t as the parameter. This curve is simply the projection of the triple 

(t, x(t) ,y(t) in three dimensional space onto the plane of the space variables. The curve 

(x(t), y(t) is called a trajectory or an orbit and the plane is called the PHASE PLANE. 

 

We shall explore the bases of the highly geometric approach with a view toward the 

appreciation that will follow later on. To see how the phase plane is  a useful concept, let 

us note first an elementary property of the solution (5)  

Morris et al, 1974 
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3.3.2 LEMMA 

If  ( 1(t) ,  2(t)) is a solution of (5), so is Ų1(t - τ), Ų2(t - τ ) for any real numbers τ 

Proof  

Define φ1(t) =  φ (t- τ ) and  φ2 (t - τ) then 

φ
1

1
 (t) = 

1

1
 (t -  τ) =f( 1 t - τ),  2 (t- τ)= f(φ1(t),  φ2(t) ). 

φ2 (t) = 2 (t-τ) = g( 1(t-τ),  2 (t-τ)=g(  φ1(t),  φ2(t)  and therefore φ1(t), φ2(t) solves (5). 

Note that ( 1(t),  2(t) ) t Є R  and Ψ1 (t – τ ) , Ψ2 ( t –τ ), t € R 

Describe the same set of points in the plane and hence the same trajectory.  

Now, if the solution is viewed as points in R
3
as (t, x(t), y(t) ) representing time and two 

spaces coordinates, there is a unique solution through each points. 

 

If we project these solutions onto the phase plane by using only (x(t), y(t)) as coordinates, 

might not a tangle of curves result? The fact that this is not the case, when t does not 

appear explicitly in f and g is stated in the theorem below. (William et al, 1992) 

3.3.3  Theorem 

Let f and g be continuously differentiable. Through each point (x0, y0) of the plane, there is 

a unique trajectory 

X
1
 =f(x , y) 

Y
1
 =g(x , y) 

(Morris, 1974) 
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Proof: suppose, to the contrary, there are two different trajectories ( 1(t) ,  2 (t), passing 

through (x0, y0) that is  (to) = xo = 1(t1),  2 (to) =yo = 2(t1), where necessarily to  t1 

[By the uniqueness of the solutions of initial value theorem] 

By the above lemma, the functions x1(t) =  1 (t-t1+ to) and  

X2(t) =  2(t-to =to) form a solution of (4) yet x1(t1)=  1(to)=xo= (t1) and x2(t1)= 

2(to)=yo= (t1) for all t. Hence  1(t),  2(t) and  1((t),  2(t) are the same trajectories (uses 

different parameterization) 

On the other hand, consider that if f(xo, yo)   0 in (5), then the initial value problem 

),(

),(

yxf

yxg

dx

dy
   ……………(6) 

Y(xo) = yo has a unique solution since 
)(

)(1

1 t

t

x

y

dx

dy
  =

)(),((

)(),((

tytxf

tytxg
 

We now use the plane technique to analyze the system in (4). This system is in the form x
1
 

= AX that makes computation of the eigenvalues and the eigenvectors and the conversion 

to polar coordinates easy. The analysis of this simply system provides guidelines as to 

what sorts of behaviour are possible in the following cases 

3.3.4  CASE 1 (Real distinct eigenvalues with the same sign) 

Let the eigenvalues of A be real distinct and of the same sign: take as a representative A = 





0

0
 the system in (4) is then x

1
 = λx 

            Y
1
 = y 

This can be solve to obtain x (t) =x0e
λt

 

y (t) =y0e
 t 
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(a) 
if λ and  are negative, 0)(

lim



tx

t
and 0)(

lim



ty

t
since the coverage is 

monotone, the origin is an asymptotically stable critical point  

(b) if  λ and   are positive, then 


)(
lim

tx
t

 and 


)(
lim

ty
t

 

Since the limiting behaviour is the same no matter how close, the initial conditions are to 

the origin, this is sufficient to show that the origin is unstable for a nonlinear system, we 

are interested only in the behavior near the critical point and such detail global behaviour 

will not generally be known, so the following  idea is useful. The instability of the origin 

follows from the fact that the trajectory tends to the origin as time runs backward. For 

further explanation consider the system  

        x
1
 = f(x,y) 

      y
1
 = g(x, y) 

if a change of variable τ = -t is made, the system becomes ),( yxf
dx




 

),( yxg
dy

  the signs of all derivatives are reversed but 
),(

),(

yxf

yxg

dy

dx
  

So the differential equation of the trajectories is the same for both systems. The curve is 

the same but the parameterization is reversed. This is what is meant by ‘time running’ 

backward. 

Initiatively if backward time must repel’ 

Hence the critical point is unstable if either xo=0 or yo= 0, the corresponding component 

remains zero for all t since )(

0

01

0

011 tantan
)(

)(
tan)( 




 



























 e

x

y

tex

ey

tx

ty
t

t t
 

∂τ 

∂τ 
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Then  ift
t

andift
t 2

)(
lim

0)(
lim 







>λ except for solution 

corresponding to x0=0, y0=0 respectively. Limits for t  are reversed. The distinction 

between λ and  are arbitrary. It merely determines how the axes are labeled. 

 

 

 

                                                                                 

  

                                                               

                  FIGURE 3.5 : AN UNSTABLE POINT 

                                                                   0 < < λ (case 1)       

 

 

 

                                                          

               FIGURE 3.6 : A STABLE NOTE 

                                                              0 < < λ (case 1) 

 

Solution along the axes correspond to x0 =0 or y0i this case 

The origin is said to be the node. 

3.3.5  CASE II (Real eigenvalues with opposite signs let the eigenvalues be real with 

opposite signs. 

Also, assuming without lost of generality that λ<0< then the solution are 

y 

x 

 

x 

 

 

y 
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X(t) =x0e 
λt
 ,y(t) =y0e

 t
 and r(t) = (x

2
0 e

2λt
 + y0e

2 t
)

1/2
 

 > if y0 0  then r(t) satisfies 


)(
0

lim
tr

t
 further again if y0 =0 













 

t

t

ex

ey
t






0

01tan)(  

satisfies  








 


 2
)(

lim
t

t
  if y0=0, then 0)(

lim



tr

t
 and the trajectory approaches the origin 

with  (t)=0 for all t. in this case the origin is said to be a saddle point 

The equation 
x

y

x

y

x

y









1

1

 can be solved to yield cyx 






this give the hyperbolic- 

looking curve.  

                                                                                          

 

                                    FIGURE 3.7 A SADDLE  <0<  

 

3.3.6  CASE III (complex conjugate eigenvalues) let the eigenvalues be complex 

conjugate with nonzero real parts 

Consider A= 0, 






 
 




A  so that the eigenvalues are i  where without 

loss of generality, we take   the system is 
yx

yx

y
x












1

1
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Hence polar coordinates are especially useful. The transformation to polar coordinates 

functions yield   
11

,rr this system may be solve to obtain r(t)=roe
t

,

 )(,)(
0

ttastt    so that the solution wind around the origin arbitrary 

many times. The polar radius tends to zero as t  . if   is negative and in this case the 

critical point is asymptotically stable, the polar radius tends monotonically to 

iftaszerotoandtas   is positive. Hence, n this case the 

critical point is unstable. 

The shape of the curve can be easily obtained in polar coordinates since 
  




 arr r
1

1

it 

follows that  



0

0

log 

























r

r
 this curve is a logarithmic spiral so that trajectory in 

the phase plane is logarithmic spiral. This type of critical point is called a spiral or focus 

point or vortex plane 

 

 

FIGURE 3.8: A STABLE SPIRAL SINK (  > 0 >α) 

3.3.7  CASE IV (EIGENVALUES PURELY IMAGINARY) 

Let the eigenvalues be purely imaginary. This is the same as the previous case except that 

 =0  

The corresponding representative of the class is A= 






 

0

0




 

x 
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The equation for the polar functions are as follows r1 = 0 Ѳ1 = - β and may be solved to 

obtain r = r0, Ѳ = -βt + Ѳ0 the trajectories are circles of radius r0 about the critical point. 

This type of critical point is said to be a center. Since the trajectories in the phase plane are 

closed curves, the corresponding solutions are periodic since trajectories circles that begin 

near the origin remain there, the center is stable, but not asymptotically stable, 

 

 

 

 

 

FIGURE 3.9: A CENTER  >0 

3.3.8 CASE V. (EQUAL EIGENVALUES) 

Suppose the eigenvalues are coincident since the eigenvalues are equal, they are 

necessarily real. Here, there are two possible representative elements(depending on 

whether there are one or two linearly independent eigenvectors corresponding to the 

repeated eigenvalues)  

First consider 

A =  




0

0
          The system (  ) then becomes x

1 =
 λ x 

                                                                           Y
1

= λ y 

And the equations are ‘uncoupled’ that is not related. A solution is  

x(t) =XO  e
λt

,  y(t) = yo e
λt

  

 thus r(t) = (x
2
(t) + y

2
(t))

1/2
 and λ =0 asymptotic stability and if λ >0, 

t

lim
   r(t) = +   

y 

x 
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the polar angle is  (t)= tan 
-1

(y0e
λt

 / x0e
λt

)  =  tan
-
1(y0/x0) =  0 and the direction is constant, 

that is, the trajectories are half way approaching or leaving the origin. 

The solutions are depicted for λ< 0. 

 

                                                                                                                                                                                                     

 

                                                                                                                                                   

FIGURE 3.10 : A DEGENERATED NOTE           

This critical point is referred to as a degenerate node 

(Morris et al, 197) 

3.4 LIAPUNOV FUNCTION 

Earlier stability and the various types of stability including asymptotic stability of an 

equilibrium x of a dynamic system  x
1
 = f(x)  …………………. (1)  where 

F : W            R
n
 is a c1 map on an open set W⊂R

n
.  if  x  is a sink, stability can be 

detected by examining the eigenvalues of the part   Df(x).   other than that however, we 

have to find all solutions to  (1) which may be difficult if not impossible. 

The Russian mathematician and engineer A.M Liapunov, in his 1892 doctoral thesis, 

found a very useful criterion for stability. It is a generalization of the idea that for a sink 

there is a norm on R
n
 such that    x(t) - x      decreases for solutions  x(t) near x.  he showed 

that certain other functions could be used instead of the norm to guarantee stability. 

Let V : U          R be a differentiable function defined in a neighborhood U⊂ W of   x.  we 

denote  by  V : U          R the function defined by V (X)  = DV(x) (f (x)).  Here the right –

hand side is simply the operator DV (x) applied to the vector f(x). Then if фt(x) is the 
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solution to   (1) passing through x when t =0,  V(x)  = d/dt   V (фtx)   by the chain rule. 

Consequently, if   V(x) is negative, then V decreases along the solution of  (1) through x. 

We can now state Liapunov’s stability theorem. 

Let   x Є W be an equilibrium for  

(1). Let  V : U          R be continuous function defined on a neighborhood  U ⊂W of x, 

differentiable on U  - x, such that  

a)   V(x)   = 0 and V(x)  > 0 if x   ≠   x; 

b)  V  <  0 in u –  x. then x is stable  

furthermore, if also 

c)  V < 0 in u –x , then x is asymptotically stable. 

 A function  v satisfying (a) and (b) is called a Liapunov function for x.  if (c) 

also holds , we call v a strict Liapunov function. The only equilibrium is the 

origin x = y = o  ( waltman, 1995). 

 

3.4.1 Theorem  

2: Let x € w be equilibrium of the dynamical system (1) and let  V: U       R be a 

Liapunov function for x, u a neighborhood of x. Let P ⊂U be a neighborhood of X which 

is closed in W. Suppose that P is positively invariant, and that there is no entire orbit in  

P        x on which V is constant. Then X is a asymptotically stable and PC B(X). 

(Morri et al, 1974) 

Proof of Theorem 2: 

Imagine a trajectory X (t), 0≤t<∞ in the positive invariant set P. Suppose x (t) does not 

tend to x as t       ∞. Then there must be a point a ≠ X in P and a sequence tn           ∞ such 

that  

Lim X (tn) = a 
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N        ∞ 

If = V(a), then  is the greatest lower bound of  {V(x(t))]  t ≥ 0} ; this follows from 

continuity of V and the fact that V decreases along trajectories. Let  be the set of all such 

points a in w: 

L = { aЄw   There exist tn             ∞ with X (tn)      a}, where X(t) is the trajectory postulated 

above. Since every point of  is a limit of points in P, and P is closed in w, it follows that 

. Moreover, if , then the entire orbit of a is in ; that is t(a) is defined and in  

for all t R. 

For t(a) is defined for all t in the interval [-tn , 0]; since X(tn)        a and we may assume 

t1< t2 < …… , it follows from Fundamental Theory that t(a) is defined for all t  n, 0], 

n=1,2, …… since -tn            -∞, t(a) is defined for all t ≤ 0. To see that s(a) , for any 

particular S , note that if X(tn)        a, then X(tn+S)         s  (a). 

We reach a contradiction, for v (a)  for all a L; hence v is constant on an entire orbit in P. 

this is impossible, hence = x for all trajectories in P. this proves that x is 

asymptotically stable and so that P  B (π). 

Thus the proof for theorem 2. 

(Morris et al, 1974) 

 

3.5 PERIODIC SOLUTION AND LIMIT CYCLES 

The existence of closed orbit, or periodic solutions often play an important role in physical 

problems because they represent phenomena that occurs repeatedly. In many situations 

periodic solutions represent a final state toward which neighboring solutions tend as the 

transients due to the initial condition die out. 
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A special case of periodic solution is a constant solution x=x
o
 which corresponds to a 

critical point of an autonomous system. Such a solution is clearly periodic with any period 

in this section when we speak of periodic solution; we mean a non constant periodic 

solution. 

Remember that the solutions of the linear autonomous system x
1
=Ax are periodic. If and 

only if the eigenvalues of A are purely imaginary. Then every solution of the linear system 

above is periodic, while if the eigenvalues are not purely imaginary, then there are no (non 

constant) periodic solutions Example, discuss the solution of the system 



















)(

)(
22

22

1

1

yxyx

yxxxy

y

x
………………………..10 

It can be seen clearly that (0,0) is the only critical point of the system and also that the 

system is almost linear in the neighborhood of the origin if the system is liberalized by 

using the Jacobian matrix, we have 11.........
11

11
1





















y

x
 

This has eigenvalues 1±i. therefore the origin is an unstable spiral point both for the linear 

system (11) and for the non linear system (10). Thus any solution that starts near the origin 

in the phase plan will spiral away from the origin. Since there are no other critical points, 

we might think solution of equation (10) correspond to trajectories that spiral out to 

infinity. However, it can be shown that this is incorrect because far away from the origin 

the trajectories are directed outward. It is convenient to introduce polar coordinate r and  

where x =r cos , y= r sin  and r≥0 if we multiply the first equation by x and second 

equation by y and add, we then obtain
12........)()( 2

2222

yxyx
dt

dy
y

dy

dx
x 

 

Since r
2
= x

2
+y

2
 and 

dt

dy
y

dt

dx
x

dt

rdr
  it follows that   13..............1

22

rr
dt

dr
r   
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Then the critical point for r≥0 are the origin and the point r=1, which correspond to the 

unit circle in the phase plane from equation (12) it follows that     if r<1 and   

if r > 1 

Thus the trajectories are directed outward, inside the circle. Whilst outside the unit circle 

they are directed inward. Clearly, the circle r=1is a limiting trajectory for the system. To 

determine an equation for , we multiply the first equation by y and the second by x and 

subtracting to obtain. y - x
2
+y

2
………..14 

By using x= rcos  and y=-rsin  the left side of equation (14) is –r
2

 equation if reduces 

to ………..15 

The system of equations 14 and (15) for and r is equivalent to original system (10). One 

solution of the system (14) and (15) is r=1, = -t+t0…………………..16 

Where to is an arbitrary constant. As t increases, a point satisfying equation (16) moves 

clockwise around the unit circle. Thus the autonomous system (10) has a periodic solution. 

Many other periodic solutions. Many other periodic solutions can be obtained by solving 

(14) by separation of variables. Hence in this example, the circle r= 1 does not only 

correspond to periodic solution of the system (a) but also, other unenclosed trajectories 

spiral toward it as . Generally, a closed trajectory in a phase plane such that other 

unenclosed trajectories spiral toward it, either from the inside or the outside as  , is 

called a limit cycle. 

In other wards, periodic orbits that are omega limit or alpha limit set of other orbits are 

called limit cycles for the system (10).  

If all trajectories that start near a closed trajectory (both inside and outside) spiral toward 

closed trajectory as , then the limit cycle is stable since the limiting trajectory is 
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itself a periodic orbit rather than an equilibrium point. This type of stability is referred to 

as orbital stability. Closed orbits corresponds to periodic solutions and in this example, 

each of the periodic solution is a limit cycle. 

The following theorem gives the conditions guarantee existence of a closed trajectory 

(Periodic Solution).( William et al, 1992). 

 

3.6 POINCARE-BENDIXSON THEOREM: 

Let the functions F and G have continuous first partial derivatives in a domain D of the xy 

plane. Let D, be a bound sub domain in D and Let R be the region that consist of D, plus 

its boundary (all points of R are in D). Suppose that R contains no  critical point of the 

system x
1
=f(x, y)            y

1
= g(x, y) 

If there exits a constant such that x= (t), y= (t) is a solution of the system that exist and 

stays in R for all t≥t0, then either x= (t), y= (t) is a periodic solution (closed trajectory) or 

x= (t), y= (t) spiral towards a closed trajectory as . In either case, the system has a 

periodic solution in R. 

3.6.1 THEOREM 

Let the function f and g have continuous first partial derivatives in the main D of the xy-

plane. A closed trajectory of the system x1=f(x, y)  y
1
= g(x, y) must necessarily enclosed 

at least one critical (equilibrium) point. The critical point cannot be a saddle point if it 

enclosed one critical point Note that if R does contain a closed trajectory, and then 

necessarily from the latter theorem, this trajectory must enclose a critical point. 

However, the critical point cannot be in R. thus R cannot be simply connected it must have 

a hole. 

The pointcare-Bendixson theorem does not hold for a system of 3 dimensions or more.  
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(Waltman, 1995). 

3.6.2  THEOREM (NON-EXISTENCE OF CLOSED ORBIT (BENDIXSON-

DULAC CRITERION) 

Supposed there exits a continuously differentiable function B(x, y) defined on a simply 

connected domain D. Suppose that, the function  does not change sign in G, 

then there are no periodic solutions x
1
=f(x, y) and y

1
= g(x,y) in D. for instance, consider 

the system x
1
=y  y

1
=-x-(1+x

2
)y. The origin is a stable spiral using =1,

 it follows that   

Hence in conclusion there are no periodic orbits. 

Example consider x
1
=y

1
  y

1
=-x-y+x

2
+y

2
 chose (x, y) =,e

-2x
 then  

and d[ - x – y + x
2
 + y

2
 ) e 

-2x
 +2y   thus  

Hence from the above theorem, there is no periodic solution in the plan. The bendixson-

Dulac criterion introduce here is not flexible, that is it cannot be applied in more general 

cases, it is restricted to 2-dimensional cases. Hence there is the need to introduce a more 

general version of this result. (Morris et al, 1974) 

3.6.3  THEOREM 

Let f:  be a Lipschitz continuous vector field and let r(t) be a closed piecewise 

smooth curve which is the boundary of an orientable smooth surface  

S⊂R3
.Suppose that g: R

3
→R

3
 is defined and smooth in a neighborhood of S, and that it 

satisfies gγr(t)fγ(t)] ≤0 (≥0)…………17 for all t and( curl g). n≥0(≤0) on S and (curlg). 

n>0 (<0)  for some point on S. where n is a unit normal to S, then r(t) is not the finite 

union of solution trajectories of x
1
= f(x)…………………19 
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Which are traversed in the positive sense relative to the direction of n.  

Proof 

We first note that y (t) is an orbit of solution of (19) if and only if, it is an orbit of the 

system x
1
=-f(x), which is transverse in the opposite direction. Thus, the two sets of an 

inequality in (17) and (18) are equivalent to the first set. By stroke’s theorem and by 

0< . Now f(r (t)) is piecewise smooth with r
1
 (t) = 

f(r(t), except for finite number of points. Then from (a)
 
. These contradictions (20) and the 

theorem are proved.( William et al, 1992). 

 

3.7  COMPETING SPECIES (THE STRUGGLE FOR EXISTENCE) 

Here, we consider a two-species ecosystem in which both species compete for the same 

limited food supply. We start by considering what happens if only one of the species is 

present, in this case we assume the logistic model ax-bx
2
 if y=0 where x and y are the 

species populations. Similarly  = cy-dy
2
 if x=0. 

Assuming the growth rate is reduced by a factor proportional to the other species 

population. Thus the governing equations for this competing species are x(a-bx-

my)……………………21                        y(c-dy-nx)…………………....22 

Where a, b, c, d, m and n are positive constants. this system of couple differential 

equations does not have an analytical solution, so we first find the critical points where 

 this gives the three points (0,0), (0, c/d), (a/b,0); and also the solution of 

bx+my =a nx+dy+c which provided bd-mn≠0 is given by  )………23 

This critical point could be located in any of the four quadrants of the phase plane 

depending on the values of the parameters. 
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We will continue the analysis in the case of the two competing species which are virtually 

identical; that is we take a=c, b=d it is also assumed that one of the two species is more 

suitable for competition; for example we take n>m which means that x is stronger. The 

equations are now 

x(a-bx-my)………………………24                                                                          

  y(a-by-nx)……………………..25 

And we have critical points (0,0), (0,a/b), (a/b, 0), [b(m-b)/(mn-b
2
), a(n-b)/(mn-b

2
) 

The fourth critical point is in the positive xy quadrant of the phase plane. The critical 

points are illustrated in the figure below. We also note that  

(i)   

                                                                 

 

 

 

                  

 

 

 

FIGURE3. 11: COMPETING SPECIES 

 

(ii)  =   on x=0 and bx+my=a. the directions of the trajectories are sketched on 

the figure above fig (19).We also note that for x>0    dx > 0 if a > bx + my 

         dt  < 0 if a < bx + my 
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m 

   

Population                    

 

Population   x                  
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and so we can put arrows on the trajectories as shown. We can also use the analysis of the 

critical points to obtain sketches of the trajectories near the critical points, and so we are 

able to obtain a complete sketch of the trajectories as shown in the figure below. Fig (20) 

 >0 

 

 

 

 

      

 

 

FIGURE 3.12: TRAJECTORIES OF THE MODEL OF COMPETING SPECIES 

 

The equilibrium point is unstable, so that coexistence is not possible on the other hand 

both equilibrium points A and B in which one of the species is extinct are stable. So we 

conclude that in time one or other of the population will become extinct. This is an 

example of the principle of competitive exclusion only one of the species can in the long 

run survive; and although one species, x, is stronger, the trajectories in Fig 20 show that it 

is still possible for it to be extinct. 

(Burgles et al, 1981) 
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3.8 PREDATOR-PREY MODEL 

This is the situation where two species live together and one feeds on the other. 

Mathematically, we define the prey and predator populations as x and y respectively. Now 

the governing differential equations for two species interaction can be written as 

),(

),(

yxg

yxf

dt

dy

dt
dx




 

For this example, it is assumed that in the absence of predators, the prey will grow 

unlimited according to dx/dt = ,x   whilst in the absence of prey, the predators will die out 

according to dy/dt = - ry 

The interaction term is model by xy, positive for the predator, negative for the prey, 

resulting in the model
39..........................

38............................

xyry

xyx

dy

dy

dt
dx








 

There are a number of ways one can go about solving these equations. For example 

we can write   
 
  40.............../

xy

yxr

dt
dx

dt

dy

dx

dy








  

Which is a first order variable separable differential equation; which can be solved to give   

dxdy
x

xr
y

y




   

That is kxxryy   lnln  

Where k is constant of integration. The solution can be  rewritten as  

1k
e

x

xy

y







 

Where K
1
 is a constant. This equation defines the x-y solution trajectories but it is not 

clear what they look like as y(or x) cannot  be express as a function of x or y so we use the 
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phase plane techniques we first note that there are two critical points (0,0) and 

42..................















 

Near the point (0,0), we can approximate (38) and (39) by  











dc

ba
letryx

dt

dy

dt
dx ,  be the jacobian matrix then a= , b=0, c=0 d=-r 

0
2

 rrr    where r is the eigenvalue 

  2/12

2
1

2
1 4 rr     that is the case r2<0<r1 which gives a saddle point at (0,0) For     

points near  

Where u and v are small in (38) and (39) 

We obtain 

45........))(( v
dt

du
isthatvu

r
uu

dt

d















































 

That is 

Neglecting the ‘uv’ term. Similarly (39) gives   

)46..(....................u
v

dt

dv













 

Using the same jacobian 0,/,/,0  dcba   

The eigenvalue 2

1

2 )(0  irr   

That is imaginary values hence we have a center 

The trajectories are sketched as shown below 
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FIGURE 3.13a : PHASE PORTRAIT 

 

 

 

 

 

 

 

 

FIGURE 3. 13: PHASE PORTRAIT 

 

 

 

 

 

 

 

 

FIGURE 3.14: TRAJECTORIES FOR PREDATOR-PREY MODEL 
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The first property of the trajectories to notice is that they are closed (fig 23aand 23b) so 

that the solutions are periodic with time and predict that neither predator nor pray ever 

become extinct. 

Also, each trajectory can be divided into four distinct regions (see fig 23b) in this region, 

the number of predators decrease because of lack of prey, whereas the prey population can 

increase due to lack of predators in region 11, the population of prey has increased so 

much that the predator population can also increase. 

In region 1 the predator population can also increase. 

In region 111 the predator population has increased so much that the prey population is in 

decline. 

In the forth region, due to lack of prey, both predator and prey are in decline. 

From fig 24, the average value of the prey and predator over a whole cycle is evaluated as 

follows 

            42..........)(
1

,)(
1

0

 

T

o

T

dtty
T

ydttX
T

x  

             Where T is the period of the cycle, now from equation (38) 

            y
dt

dx

x
 

1
 

             And integrating from t=o to t=T 

dtydx
dt

dx

X

TT

)(
1

00

    

 i.e   dttyTdx
X

TT

)(
1

00

    

dttyTxTxN

T

)()]0(/)([
0

   

But x(T)= x(0), since it is a complete cycle; so that we obtain  



44 

dttyT

T

)(0
0

   

 Hence from (46) 47.............



y  

And similarly using 48.............



x  

 

So the average value of the predator and prey are in fact their equilibrium values. 

(Burgles et al, 1981) 

 

3.9 A RATIO DEPENDENT MODEL FOR HIV / AIDS 

 Ratio dependent Predator-Prey systems arise mainly in ecology. Similar systems, 

however, may arise (guerrilla) war situations as well. The main feature of such systems is 

that the response of the predator to the presence of the prey (and vice-versa) depends upon 

the ratio of the number of prey to the number of the predators. This is in contrast to the 

situation where such response is dependent on the density of the prey. The ratio dependent 

model is realistic when the predator has to seek for the prey because then the probability 

of finding a prey depends upon this ratio. This is also true in guerrilla warfare where again 

the predator (a regular army) has to search for the prey (the guerrillas) before they can 

engage them in battle. In the case of infection, let x(t) and y(t) denote the number of HIV 

negative and HIV positive individuals respectively at any time t in the society.  

Now if an HIV negative individual x has sexual contact with other people, then in any one 

encounter, his chances of having with an HIV positive individual y are proportional to 

y/(x+y) so that the spread of infection is ratio dependent as well. Such dependent systems 

may be modeled by differential equations of the type [1] 
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               x'(t) = αx(1-x)-xy/(x+y), ........(1.1a) 

and          y'(t) = -ay+kxy/(x+y),            (1.1b) 

for some non-negative parameters a,  α,  and k. The parameter k is often called the 

conversion factor. The quantities x (t) and y (t) denote the number (or density per unit area 

in the x-y plane) of the prey and the predators respectively at any time t.  In this system the 

prey (or the HIV negative individuals) x(t), left to themselves, grow according to the 

logistic equation x'(t) = αx(β-x) where the growth factor of the prey and b, the carrying 

capacity of the environment,  has been non-dimensionalised to one in equations (1.1).  In 

the presence of the predator (or the HIV positive individuals), the prey die (or the HIV 

negative people become infected) according to the second term -xy/(x+y) = -y/(1+y/x), so 

that the probability of any one predator finding a prey is equal to k1/(1) for some positive 

constant k1 which has been non-dimensionalised to one in our equations. If x = 0, this 

probability is zero which reasonable. Also, this probability increases with x and if x is 

infinitely large, this probability assumes its maximum value of which is again reasonable. 

Also, left to themselves, i.e. if x = 0, the predators die according to the equation y'(t) = -ay 

because have no food or, in the case of the army, they have nothing to do and are 

withdrawn. In a similar manner, people with AIDS die with the disease.  The system of 

equations (1.1) has been analysed by Kuang and Beretta . A similar system of equations 

has been proposed by Thompson for the spread of HIV/AIDS disease.    

 

In this section, we look at the system of equations (1.1) in the (x,y) plane. Since the term 

xy/(x+y) is not defined at (x,y) = (0,0), system  cannot  be  linearised  around  this  point  

and  we  do  not  know  the  eigenvalues  of  these  equations  at  this  point.  The  main 

question we want to ask is, under what conditions on the parameters a, k, and a  do the 

solutions of the system (1.1) approach  point  (0,0)?  In  the  case  of  HIV/AIDS  
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application, the point (0,0) represents the annihilation of the society and our question 

clearly a pertinent question to ask. We write the system (1.1) as x'(t) = F(x,y), y'(t) = 

G(x,y) and arbitrarily put F(0,0) = G(0,0) = 0. Notice also that if, as we show later, 

(x(t),y(t)) stays in the first  quadrant for all  t ≥ 0, then  the limits  of F(x,y) and G(x,y) as 

(x,y)Æ(0,0) are both  zero, so F(x,y) and G(x,y) are continuous  in  x  ≥  0,  y  ≥  0. Now 

the point P1(0,0) is an equilibrium point of this system. The other equilibrium points  are 

P2(1,0) and P3(x1,y1) where x1  =   (kα-k+a)/(kα) and  y1  =  (k-a)x1/a. The eigenvalues at  

these  'other' equilibrium points, P2(1,0) and P3(x1,y1), are (-α,k-a) and the two rootsλ of 

λ
2
+Bλ+C = 0 where B = (a+α-1) −a

2
 (k – 1) and C  =  a(k-a)(kα-k+a)/k

2
, respectively.( 

Aggarwala, 2001) 

 

3.10 A DENSITY DEPENDENT MODEL FOR HIV/AIDS DEVELOPMENT 

In this section, a considerably more detailed (than in the previous section), but density 

dependent, model for propagation of HIV/AIDS in Canada (or in any other community) is 

developed. This time the society is divided into three groups, those who are HIV negative, 

those who are HIV positive but have not developed AIDS, and those who have AIDS.   It 

was assumed that  without this disease,  the  present population  of Canada, which is  at 31  

million  today, will grow to 50 million at logistic rate, according to the law, x'(t) = A1 x-A2 

x2, with A1  = .05. This gives a growth rate of .6% when the population is 30 million. 

consider this to be a reasonable hypothesis. The parameters for the propagation of AIDS 

are as follows (all population figures are millions. The word 'healthy' in this section means 

HIV negative); 

x(t) = Number of healthy people in Canada at any time t, 

y(t) = Number of people who are HIV positive but do not have AIDS at any time t,  

z(t) = Number of people with AIDS at any time t,  
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A1  = Rate of birth of healthy babies near x=0, 

A1/A2 = Maximum number of healthy people that the country can support,  

A3  =  Rate  at  which healthy people become infected with HIV by contacting other 

people who are HIV positive (whether having AIDS or not) 

A5 = Rate at which infected (i.e. HIV positive) people develop AIDS disease 

A6 = Rate at which infected people die before developing AIDS.  

A7 = Rate at which infected babies are born, 

k   = Rate at which sick people (having AIDS) die. 

We assume the values of these parameters as follows: 

A2 = A1/50, which says that without the disease, the population of Canada will grow to a 

maximum of 50 million people, A1 = .05, which gives the rate of increase of healthy 

population at .6% when the population is 30 million. 

A5  = .09 which says that 90% of the infected people develop the disease within 10 years, 

so that 10% of them (i.e. 9% of the research paper #811 (2001).nb 15 y's) develop the 

disease every year, A6  =.005 which says that 10% of the people with HIV never develop 

the disease and that their life expectancy, from the time contact the immune deficiency, is 

20 years.  

A7  = .001 which says that if one of the partners is infected, then some of the babies born 

are infected at birth. The number of babies born every year in the general population being  

A7(y(t)+z(t)),k  = .5 which says that a person who has developed AIDS has a life 

expectancy of 2 years so that 50% of them die every year. 

We believe the values of these parameters to be reasonable. While these values may 

change with time as technology advances, investigate  in  this  section  the  effect  of  a  

very  critical  parameter  which  can  be  controlled  without  any  further  advancement 

technology. This  is  the  spread  of  disease  through  sexual  contact  and/or  sharing of  
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drug needles. The parameter controlling variable in our model is A3. We show that if A3 is 

less than a certain critical value A3 cr, then the disease will eventually be wiped 

out, while if A3  is greater than this critical value (but less than another critical number 

Acr2, which number we calculate), then number of HIV positive people in the Canadian 

society will reach a certain equilibrium value which value we calculate, and if  larger still, 

then the society will eventually be almost wiped out, but then grow again. 

The Model: If x, y, and z are the number of healthy people, the people infected with HIV 

but not having AIDS, and people with 

AIDS respectively at any time t, our model is  

x'(t) = A1x-A2x
2
-A3x(y+z),                                        (2.1a)  

y'(t) = A3x(y+z)-(A5+A6)y +A7(y+z),                         (2.1b)  

z'(t) = A5y-kz.                                                          (2.1c) 

We write u = y+z and treat x, u, and z as the independent variables. Now our equations are  

x'(t)=A1x-A2x2-A3xu,                                               (2.2a) 

u'(t)=A3xu-(A6-A7)u+(A6-k)z,                                   (2.2b) 

z'(t)=A5u-(A5+k)z.                                                    (2.2c). 

Alternatively, we may put v = x+y, w = x+y+z and use x,v, and w as the independent 

variables. Our equations now become 

x'(t) = A1x-(A2-A3)x
2
-A3xw,                                          (2.3a) 

v'(t) = (A1+A5+A6-A7)x-A2x
2
-(A5+A6)v+A7w,                 (2.3b) 

w'(t) = (A1+A6-A7)x-A2x
2
+(k-A6)v-(k-A7)w.                   (2.3c) 

 

We  shall  work  with  equations  (2.1)  or  equations    (2.2)  or  equations  (2.3)  as  

appropriate.  We notice  that  in  the  values  we  have assumed for the constants A's and k, 

all of them are non-negative. We shall assume this property of these parameters in this 
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section. Data on AIDS also suggest that usually A7  is quite small (there have been very 

few HIV positive babies born in Canada during last few years and this number is 

decreasing) and that k is quite large. We shall assume that A7  < A6  < k .  

The equilibrium points: The equilibrium points of equations (2.2) are seen to be P1 (0, 0, 

0), P2 (A1 ê A2, 0, 0 

P3 (x0, u0,z0) where 

x0   =  ((A6 − A7) k + A5 (−A7 + k)) ê (A3 (A5 + k)),                (2.4a) 

u0   =  (A1 − A2 x0) /A3 ,                                                        (2.4b) 

and z0 = A5 u0 / (A5 + k).                                                       (2.4c) 

These three  points  correspond to  the  society  being  annihilated,  the  disease being  

annihilated,  and the  disease  becoming  endemic respectively. 

Positivity of the solution: Using equations (2.1), we shall show that if x(0), y(0), and z(0) 

are positive, then x(t), y(t) and are non-negative for all t≥0. Notice that if x(t) = 0, then 

x'(t) = 0, which shows that if the moving point (x(t),y(t),z(t)) hits the plane x = 0, it cannot 

move away from it. Since x(0)>0, this gives x(t)≥0 for all t≥0. Equation (2.1c) gives 

 

Now  at  y =  0,  equation (2.1b)  gives y'(t) =  (A3x(t)+A7)z(t). Since  y(0)>0, there is  a 

first  time t  =  t1  say, when y(t1) =  0. 

implies that  y(t)≥0  in  0£t£t1.  Since  z(0)>0,  this  in  turn  implies  from  equation  (2.5)  

that  z(t1)>0.  Also x(t1)≥0. This gives y'(t1)>0 so that the moving particle must bounce 

back into the first octant. Repeating the argument, we get y(t)≥0 for all t≥0, then from 

equation(2.5), z(t)≥0 for all t≥0. This proves the positivity of the solution. 
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However, notice that if in equations (2.2), x and u are both small (near the origin), then the 

first term on the right hand side becomes small of second order and u'(t) may become 

negative in a computer solution. This may make u(t) negative (due to a finite step 

numerical calculations). This difficulty is somewhat overcome by using equations (2.3) in 

a numerical solution.  

Boundedness  of  the  solution:  Equations  (2.2)  give  (x(t)+u(t))'  =  A1 x − A2 x
2
 – (A6 

− A7) u – (k − A6) z.  Since A7 < A6  < k, z(t)≥0, and A1  > 0,  this gives (x+u)' < 0 if 

(x+u) > N1, where N1  is  some finite number. To see this, we draw 

parabola A1x - A2x
2
-(A6 − A7)u = 0 in the x-u plane.  The constant N1 is any number 

which places the line x+u = N1  outside to the  right of) this parabola (see Fig.10). Since u  

= y+z and x,y, and z are all non-negative, this proves that  the solution of equations is 

bounded in t   ≥ 0.   

 

                     FIGURE 3.15: THE PARABOLA AND THE LINE x+u = N1 

 This diagram shows a triangle bounded by x=0, y=0 and a line x+y=N1 for a suitable 

number N1. All solutions of equations (2.1) are bounded by this triangle.  

Stability of equilibrium points: Since A1 > 0, the point P1 is always unstable. The point P2 

will be unstable   
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It can be easily shown  that   (A5+k)(A6 − A7 − A1 A3 ê A2)-A5(A6-k) = -(A3 

2/A2)(A5 + k)u0,  so  that  if u0≥0,  the  condition  (b) 

satisfied and the point P2  is  unstable.  Also  if  condition  (a) is  satisfied, then  so is  

condition  (b) and therefore u0≥0. To  see 

suppose  condition  (a)  is  satisfied  and  we  write  A6-A7-(A1A3/A2)  =  -b  for  some  b  ≥  

A5+k  >  0,  then  condition  (b)  requires (A5+k)(-b)-A5(A6-k)£0,  or  b(A5+k)≥kA5-A5A6,  

which  is  true  since    (A5 + k)
2 

 > kA5  for  non-negative  numbers  A5  and follows that 

P2 is unstable if and only if u0  ≥ 0. 

The  equilibrium  point  P3  is  not  reachable  by  the  moving  point  (x,u,z)  if  u0  < 0.  If  

u0  > 0,  we  must  determine  the  stability otherwise of the point  (x0, u0, z0) from the 

characteristic equation of equations (2.2) at this point. This equation turns out to 

a0 + a1 λ + a2 λ
2
 + λ

3
  = 0 where,  

a0  = A3 x0 (A1 − A2 x0) (k + A5) 

a1  = A2 x0 (k + A5 + A6 − A7) + A1 A3 x0 − 2 A2 A3 x02 

a2  = (A2 − A3) x0 + k + A5 + A6 − A7,          and where   

x0   =  ((A6 − A7) k + A5 (−A7 + k)) ê (A3 (A5 + k)). 

 

Under the assumption k > A6  > A7, the constant a1  is seen to be positive. The condition 

for stability of the equilibrium point now becomes a1 a2 − a0  > 0. For the values   of   

various  parameters given in the beginning, the equation a1 a2 − a0  = 0 two  roots,  namely  

A3  = A3 cr1  and  A3  =  A3 cr2  where  the  critical  number  A3 cr1  =  −.000125692  and  

A3 cr2  =  .0728806 approximately.  However  for A3  less  than  a certain  critical number 
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A3 cr,  we get  u0<0  and  the  point  (x0,u0,z0) is  not  reachable from the first octant and 

(A1/A2, 0, 0) is the proper (stable) equilibrium point. For values of the various parameters 

that we  assumed, we get A3 cr= .00159017 approximately. In A3 cr  < A3  <A3 cr2, the 

point (x0,u0,z0) is reachable and is the relevant (stable) equilibrium point. For A3>A3 cr2, 

the equilibrium point (x0, u0, z0) becomes unstable.  All the three equilibrium points are 

now unstable and computer experiments show that the solution approaches the origin in 

the beginning,  i.e. the society tends annihilate  itself.    However  the  origin  is  unstable  

(where  one  eigenvalue  is  positive  and  the  other  two  are    negative),  so  that solution 

runs away from the origin and comes back to it repeatedly. We show the path of (x,v,w) in 

one particular case. It appears that the solution runs into a  limit cycle. 

      

FIGURE 3.16 : THE SOLUTION TO EQUATION 2.3 
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  For A2 = A1/50 , A5 = .09, A6 = .005, A7 = .001, k = .5, A1 = .05 and A3 = .08  from t = 

9000 to t = 10,000 starting at (x0,v0,w0) = (2.63,2.95,3.00). 

Our model therefore gives two equilibrium values of the dynamic. In one case, the disease 

is eradicated, u0 = y0 + z0  = 0, and point (A1 ê A2,0,0) is  a stable  equilibrium point. In 

the other case, the disease persists, u0  > 0,  and the  point (x0, u0, z0 (possible) stable 

equilibrium point. In this scenario, the healthy (i.e. HIV negative) and HIV positive people 

will approach a stage stable coexistence so that public policies  can be  designed to cope 

with  the  situation. But this happens only for some (moderate) range of values of A3, 

namely A3 cr<A3<A3 cr2, where the values of these constants are given above.  If the 

sexual (and/or needlesharing) attitudes of the Canadian population become such that 

A3>A3 cr2, then, according to this model, the Canadian society eventually perish but will 

be replenished later because healthy babies keep getting born. At present time, A3 is 

approximately equal to .0023, the disease is endemic in Canada, and if we wish to 

eradicate the epidemic of AIDS from our society, this constant has come down 

considerably. In the case when u0 > 0, and the point (x0, u0, z0) is a stable equilibrium 

point, the moving point (x,y,z) approaches the point an oscillatory manner (two of the 

eigenvalues are complex conjugate). To explore the nature of these oscillations, we notice 

that large  values of  t  (and  near  this equilibrium  point), the  quantity  A5u-(A5 + k)z  is  

small  (because this quantity  is zero  at equilibrium point). In Canada at present time for 

example, while x' and y' are in hundreds of thousands and thousands respectively, 

z' is in hundreds and dropping and we may take z' to be small.  To explore such 

oscillations, we take  A5u-(A5 + k)z = e and ignore the small quantity e. Now the other two 

equations become  
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x'(t) = A1x-A2x
2
-A3xu,                                                       (2.4a) 

u'(t) = A3xu-(A6-A7)u+(A6-k)(A5u/(A5 + k)).                    (2.4b) 

We write x = x0 (1 + x¯), and u = u0 (1 + u). Our equations now become  

x'(t) = −A1 (x+ x
 2
)+A3 u0(x uxu+ x

2
),                                (2.5a)  

'(t) = A3 x0 x(1 + u).                                                          (2.5b) 

Near the equilibrium point, x and u are small and the linearised form of equations  (2.5) 

gives 

x
2
+(A2 x0)x'+(A3

2 
x0 u0)x = 0.                                            (2.6) 

which represents the motion of a (linear) damped pendulum as expected. 

(Aggarwala.2001) 

  

                                                     



55 

 CHAPTER 4 

FORMULATION OF PREDATOR-PREY MODEL OF HIV PROPAGATION 

 4.0 INTRODUCTION 

In this chapter, some behavioral and biological assumptions leading to the formulation of a 

predator -prey model of HIV propagation is made, analysis of the model is done especially 

in terms of the determination of the stability of the equilibrium points and the 

identification of types of trajectories. Parameter determination is also done and finally, 

simulation using matlab is done to see how the theoretical model works practically. 

 

4.1 MODEL ASSUMPTIONS 

In the formulation of the envisaged HIV model, the following assumptions are made. 

1. HIV virus is transmitted mainly through heterosexual intercourse. 

2. There exist assymetry of transmission in that transmission from males to females is 

much higher than from females to males. This is due to two reasons. One being 

behavioral based and the other being biologically. 

 Males tend to be more promiscuous than females in other words males 

tend to have more sexual partners than females. 

 Biologically in any sexual encounter between an infected male and an 

uninfected female, the probability of infecting an uninfected partner is 

higher than that between an infected female and an uninfected male. 

3. For the old infected cases of HIV the rate of infection is equal to the rate of 

removal. The number of old infected cases is constant. 
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4.2 MODEL FORMULATION 

Let x(t) be the number of newly infected males and  

 y(t) be the number of newly infected females. 

Y(t) be the number of old infected female 

X(t) be the number of old infected male 

Then Y(t) + y(t) = N(y)  is old and new HIV infected females cases at time t 

 X(t) + x(t) = N(x)  is old and new HIV infected males cases at time t 

LINEAR TERM 

In the absence of newly infected females, newly infected males tend to decrease 

exponentially. Thus  

bx
dt

dx
  this is because the old cases of infected females are not active enough to cause 

significant increase in the number of newly infected males. 

In the absence of newly infected males, newly infected females tend to increase 

exponentially. Thus  

ay
dt

dy
  this is because old cases of infected males are active enough in causing 

significant increase in newly infected females. 

NON LINEAR TERM: 

The non linear terms are  obtained through mass action law:  

In the absence of old cases of infected females, new cases of infected males tend to 

increase because new cases of infected females are active in causing new cases of infected 

males. Thus cxy
dt

dx
  
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In the absence of old cases of infected males, new cases of infected females tend to 

decrease. This is because new cases of infected males do not cause significant increase in 

newly infected cases of females. Thus 

dxy
dt

dy
  Where d is a constant. 

       

Combining the linear and non linear parts of the model we get :                                                                                                                                                                                                       

dxyay
dt

dy
   and 

cxybx
dt

dx
   

This is a typical Lotka- Volterra predator – prey model. 

On the other hand, x(t) +X(t) = Nx 

                                     X(t) = Nx – X(t) 

                                     Y(t) + Y(t) = Ny 

                                      Y(t) = Ny – Y(t) 

              

 .     Thus we obtained the model in terms 

of old cases of HIV infection     

 

4.3 ANALYSIS OF THE MODEL 

At the equilibrium point 

0
dt

dx
  and 0

dt

dy
 

0 cxybx   

     0 cybx    
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X=0 or y=0 

Also     ay-dxy=0                      y = 0  or    

Hence the critical points are (0,0)  and     

Using the Jacobean matrix  

                     

                                  

 

   

       The eigenvalue are  λ1   =  -b   and  λ2   =  a  

Hence the origin is a saddle point and therefore unstable. This point is also unstable 

because in the absence of new cases of males and females, the old cases of males are still 

aggressive enough to sustain increase in new cases of females.  

For the critical point        

                                        

                                                                                 

Hence the eigenvalues are λ 
2
 + ba  = 0             λ   =   ±  i     ab  

Thus the eigenvalues are imaginary; hence the critical point is a centre (stable) of the 

linear system. This stable point is obtained when new cases of males interact with new 

cases of females. Here both males and females are infected therefore there will be no 

increase in either sex but after some time then we begin to see increase or decrease in new 

cases                                                                                                                                                                                                                            

 

To find the trajectories to the system, we consider the critical point  
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and  x 
1
  =  0 ,   y 

1 
 = 0  and  draw  the two axes as shown below                

 

 

 

 

                

                                                                         

 

 

 FIGURE 4.1: A DIAGRAM, SHOWING THE TRAJECTORIES IN THE 

VARIOUS QUADRANTS. 

 

These divide the region x. > o, y > o into four quadrants as shown on the diagram  

The signs of x
1
 and y

1
 are constant as indicated in each quadrant. The positive x – axis and 

the positive y – axis are each trajectories as indicated in fig 4.1. Each solution curve (x(t),) 

y(t)) moves anticlockwise around z from one quadrant to the other. Consider for example a 

trajectory (x(t)), y (t) ) starting at a point.  x (0)   =  u  >  a/d  > 0  

             y(0)  =  v >  b/c  > 0 in quadrant  1   

There is a maximal interval say (o, α) = J such that ) x (t)), y (t) )   є  quadrant 1 for                                    

0   t , <  1    ( perhaps α =      ∞) put b- cv  = - r < 0, du – a = S > o as long as tЄ J, x(t) is 

decreasing and y (t) is increasing. Hence  

       

                                   

          

b/c 

(0 , 0) a/d 

I

  

I

V 

II 

II

I 
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                therefore    a/d    x(t)     ue 
–rt

 ………………………… 2 

                                    b/c     y (t)    ve 
st

  ………………………….3 

For o  t α. from the second inequality of (2) we see that α is finite. 

From (2) and (3) we see that for t є  a/d   x(t)    u 

                                                      b   y (t)  =  ve 
sα

 

Therefore (x(α), y (α.) ) is defined and in the boundary of the region since x (t) is 

decreasing    x (α) = a/d thus the trajectory enters quadrant II.  Similarly for other 

quadrants however, it is not clear whether trajectories spiral in toward z, spiral toward a 

limit cycle or spiral out towards infinity and the coordinate axes. We find a liapunov 

function H 

 

Thus   

We want   

                                                               

                                                    

                                                          

                                                          

   Hence                                                       

 

We obtain                                     
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Since x and y are independent variables this is possible if and only if  

                                        

                                             = constant 

                                   

Let the constant be equal to one (1) then,        ……………………..4 

 

Integrating we have     

                                    thus the function 

                                

                              Is constant on the solution curves of  ……………. ( 1)  

By considering the signs of     we see  that  the equilibrium  

   is an absolute 

                                           

 Minimum for H, it follows that H (specifically) H(t) is a Liapunov function. Therefore z 

is a stable equilibrium. We also note that H is not constant on any open set therefore there 

are no limit cycles  

Also in moving from quadrant I to II it is observed that new cases of females tend to 

increase whiles new cases of males tend to decrease until one gets into quadrant II where 

new cases of both males and females tend to decrease until one gets to quadrant III where 

new cases of females continue to decrease, whiles that of males tend to increase.  In 

quadrant IV, there is an increase in both new cases of males and that of females until one 

gets into quadrant I, and the cycle is repeated. From this it can be concluded that it is 

advisable to aim control programme at quadrant IV, where new cases in both males and 
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females are increasing and work towards quadrant II, where both cases of HIV is on the  

decrease. 

Theorem: Every trajectory of the volterra Lotka equations (1) is a close orbit (except the 

equilibrium z and the coordinate axes) . 

Proof: consider a point w = (u,v), u >. o  v > o; ω ≠ z then there is a doubly infinite 

sequence ……….<  t-1 <  , to < t1  <……… such that Ø tn (w) is one the line x =  a and 

                          Ø tn (ω)                 z    as     n                   ∞    or  

                            Ø tn (ω)                 z    as     n                  - ∞     

Since H is constant on the trajectory of w, this implies that H(W) = H (z) but this 

contradicts minimality of H(Z) Hence we have the following schematic phase portrait 

below. 

 

                                                            

                                                                                         

                      y 

 

 

 

 

 

            ( 0,0 ) 

FIGURE 4.2: PHASE PORAIT 0F THE MODEL 

 

x 
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Therefore, for any initial population (x(o), y(o)) with x (o) ≠ 0 and y (o) ≠ 0 other than z, 

the operations of newly infected males and newly infected females will oscillate 

cyclically. /no matter what the numbers of infected and susceptible are, neither species 

will die out nor will it grow indefinitely.                                                                                                                                                

 

population 

 

 

 

 

                                                      

                                                                                                                                                       

FIGURE 4.3: TRAJECTORIES OF THE MODEL 

 

 

On the other hand except for the state z, which is improbable the populations will not 

remain constant. 

From the graph of the populations of newly infected males and females against time, it is 

observed that both new cases of males and females begin to rise, but just before the 

intersection at P, new cases of males tend to decrease whilst new cases of females 

continue to increase. This can be related to the movement of quadrant IV to quadrant I in 

figure 1. New cases of females continue to increase until it attains its maximum and begins 

to decrease as that of males until new cases of males attain it maximum value first and 

begins to increase again until another equilibrium point is reached at Q. 

time 
y 

x 

 

Q 

R 
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After the point Q, new cases of males continue to increase whilst that of the females 

continue to decrease until it get to its  maximum point and also begins to increase as that 

of the males. This can also be compared to the movement from quadrant III to quadrant IV 

on figure 1 as explained earlier and the cycle is repeated. 

4.4  PARAMETER DETERMINATION 

At the stable point 

  as obtained earlier in chapter four. Also 

considering the linearised form of the model 

                                                                       

                      

 

At the point      

                

                                              

hence the eigenvalues are given by         
2
 + ab  =  0  

                                                           ab  =  - 
2
   

              That is constant in the form ab  = 
2
 where   is a constant , the  frequency of 

oscillation of some observed HIV/AIDS data of Ashanti region. ω = 1.45. 

                                    Therefore           ab   =  1.45
2
 

                                                ab   = 2.1 

                   now assuming        b =  0.9  
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                                             0.9a  =  2.1 

                                             a  = 2.1    =  2.3 

                                                    0.9 

  Also  assuming  at  the stationary point      (a /d ,  b /c) 

                                                                a / d  =  b/c  = 0.5  

2.3=  0.5 

  d   

                  

                                          d =  2.3   =  4.2 

                                                 0.5 

                      And                 0.9      =  0.5 

                                                c  

                                          c =   0.9   =  1.8 

                                                  0.5  

                     Hence, the model is   

                                         dy       =   2.3y  - 4.6xy 

                                          dt 

                                         dx     =  - 0.9 x  + 1.8xy 

                                         dt 

Assuming a = 1.1 , b = 1.9,  

Then  

d =  ,d =3.7 

also  

therefore the model is  

                                            

Also assuming a =1.1 , b = 1.9 ,  

                    Then  
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Therefore the model is also written as  

                                                        

Taking a = 1.9 , b = 1.1 ,  = 0.3,  = 0.7 

                                                         Then   = 0.3 , d =  =6.3 

                                                               = 0.7 , c =  = 1.6 

Therefore the model is written as  = -1.1x + 1.6xy 

                                                               = 1.9y – 6.3xy 

Also assuming a =0.9 , b = 2.3 ,    =   = 0.5  

                                                      Then  = 0.5 , d =  = 1.8 .   = 0.5 , c =  = 4.6. 

 Therefore the model is also written as   = -2.3x + 4.6xy ,  = 0.9y – 1.8xy 

  



67 

4.5 SIMULATION  

Phase portrait for higher initial male AIDS rate 

   

    

FIGURE 4.4: PHASE PORTRAIT OF THE MODELSHOWING DIFFERENT INITIAL 

VALUES                                                                                   
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% Matlab code for solving the Predator-Prey system 

% Coefficients for the equations 

a=2.3; %male AIDS growth rate 

b=4.6; %male rate decline coefficient 

c=1.8; %female AIDS growth coefficient 

d=0.9; %female decline rate 

% Variables used as input in the ODE-solver 

maleIni=0.9; 

femaleIni=0.5; 

% Solve ODE system 

[T,Y] = ode45(@male_female,[0 20],[maleIni femaleIni]); 

male_rate=Y(:,1); 

female_rate=Y(:,2); 

% plot for male rate and female rate over time 

figure(1) 

plot(T,male_rate,'r',T,female_rate,'--b') 

xlabel('Time t') 

ylabel('male rate/female rate') 

legend('employment rate','wage share') 

title('model Solution over time') 

%phase portriat plot 

figure(2) 

plot(male_rate,female_rate,'r') 

xlabel('male rate,x(t)') 

ylabel('female rate, y(t)') 

title('phase potrait for the model') 

%--- End of code --- 

 



69 

 

     FIGURE 4.5 : PHASE PORTRAIT FOR LOWER INITIAL MALE AIDS RATE 

 

 

FIGURE 4.6 : MODEL SOLUTION FOR LOWER INITIAL MALE AIDS RATE 

% Matlab code for solving the Predator-Prey system 

% Coefficients for the equations 

a=2.3; %male AIDS growth rate 

b=4.6; %male rate decline coefficient 
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c=1.8; %female AIDS growth coefficient 

d=0.9; %female decline rate 

% Variables used as input in the ODE-solver 

maleIni=0.5; 

femaleIni=0.9; 

% Solve ODE system 

[T,Y] = ode45(@male_female,[0 20],[maleIni femaleIni]); 

male_rate=Y(:,1); 

female_rate=Y(:,2); 

% plot for male rate and female rate over time 

figure(1) 

plot(T,male_rate,'r',T,female_rate,'--b') 

xlabel('Time t') 

ylabel('male rate/female rate') 

legend('employment rate','wage share') 

title('model Solution over time') 

%phase portriat plot 

figure(2) 

plot(male_rate,female_rate,'r') 

xlabel('male rate,x(t)') 

ylabel('female rate, y(t)') 

title('phase potrait for the model') 

%--- End of code --- 
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FIGURE 4.7 : PHASE PORTRAIT FOR HIGHER INITIAL MALE AIDS RATE 
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Model solution for higher initial male AIDS rate 

 

FIGURE 4.9: TRAJECT0RIES OF THE MODLE  
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FIGURE  4.10 : PHASE PORTAIT OF THE MODEL  
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FIGURE 4.11: TRAJECTORIES OF THE MODEL  
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FIGURE 4.12: TRAJECTORIES OF THE MODEL 

 

FIGURE 4.13: PHASE PORTRAIT OF THE MODEL 
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X’=-1.1X + 1.6XY 

Y’= 0.9Y – 6.3XY 

FIGURE 4.14: TRAJECTORIES OF THE MODEL 

 

FIGURE 4.15 : PHASE PORTRAIT OF THE MODEL 
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FIGURE 4.16: TRAJECTORIES OF THE MODEL 
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATION 

5.1 CONCLUSION  

This project reviews the predator –prey model in ecology. However, it is applied here as 

an epidemiological model for the propagation of HIV.  

 

The analysis of the model shows that it has two equilibrium points, these are :  ( 0, 0)  and     

( a/d ,  b/c). However, the point (0, 0) which shows that in the absence of both newly 

infected males and females is an unstable point. This is due to the fact that old cases of 

males are still aggressive enough to sustain increase in new cases of females. 

The point ( a/d , b/c ) is stable and this may be explained as having the same newly 

infected males interacting with the same newly infected females.  

 

The simulation shows the sinusoidal curve for the change in the population of newly 

infected males and females with time as in the predator –prey model. It also shows that the 

curve for females is higher than that of males which implies the rate at which females 

contract HIV is higher than that of males. These curves also show that although the new 

cases of HIV keeps on rising and falling, it never gets to zero ( that is total eradication of 

HIV cases).  

 

The graph of the phase portrait of the model ( that is  plotting the population of new cases 

of females against that of males), gives circular curves as always seen in the case of 

plotting  predator population against the prey population. The circles have a common 

center (0.5, 0.5) which is the stable point.   
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5.2. RECOMMENDATION    

5.2.1 EDUCATION  

Programmes of education on the transmission of HIV should be more targeted on the 

females especially the young ladies, this is because when females abstain from sex or stick 

to their partners only, the rate of infection of HIV in both males and females will be 

reduced. This is also because most of the young ladies are not married and are therefore 

prone to be lured into having sex with both married and unmarried men. 

 

5.2.2 FURTHER STUDIES  

It is worthy to explore further the application of the predator –prey model on the 

transmission of HIV. This will give a more comprehensive idea on how this model is 

applied on the transmission of HIV. If possible, data on new cases of HIV should be 

collected and simulation done to see how feasible this model is. 
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