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ABSTRACT  

The Kyoto Protocol of the United Nations Framework Convention on Climate Change 

(UNFCCC) was developed as an attempt to confront and begin to reverse the rising CO2 

concentrations. But in order to set emission reduction targets in AFOLU (Agriculture, 

Forestry and Other Land Uses) sector, land use scenarios must be developed. The present 

study addressed this issue in exploring the possible future temporal and spatial impacts on 

CO2 and N2O emissions from vegetation degradation in the Dassari Basin in the NorthWest 

of Benin. To achieve this objective, the current vegetation carbon and nitrogen stocks were 

estimated using the highest Tier level recommended by Intergovernmental Panel on Climate 

Change (IPCC) and scenarios were developed based on the current trend of land use and 

socio-economic status of the site. The land use cover changes showed a deforestation rate 

of 1.48 %. The estimated mean carbon stock values and attached standard errors varied from 

1.52 ± 0.14 (for the cropland) to 97.83 ± 27.55 (for the plantations) Mg C ha-1. The estimated 

nitrogen stock varied from 0.0077± 0.0067 (for the cropland) to 0.321±0.088 (for the 

plantations) Mg ha-1 of N. A total of 175,347.75 ± 21,042.48 (CI) and 875.53 ± 101.45 (CI) 

Mg was found for carbon and nitrogen stocks respectively in 2013 at 95 % (CI). The 

business as usual scenario or the baseline (LUS1) will contribute to the emissions of 26.70 

Gg CO2 eq. and to a net removal of 21.70 Gg of CO2 per year over the period 2013-2025. 

The impact of the policy based food security scenario (LUS2) will contribute to decrease 

the total emission by up to 29.25 % and will increase the net removal by up to 42.94 % 

whereas policy based adaptation and mitigation strategy to climate change scenario (LUS3) 

and food security based mitigation strategy to climate change scenario (LUS4) will 

respectively contribute to reduce the total emission by up to 13.14 % and 36.47 %. Despite 

these findings the basin will still be a sink by 2025, but it is time to act and react to strengthen 
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the resilience of vulnerable communities and contribute to the removal of CO2 through local 

project development or project based carbon fund.  

RESUME  

Le Protocol de Kyoto de la Convention des Nations Unies sur les Changements  

Climatiques a été ratifié en vue d’essayer d’inverser la concentration de dioxyde de carbone 

(CO2) dans l’atmosphère. Mais dans la perspective de cibler la réduction des émissions dans 

le secteur AFOLU (Agriculture, Foresterie et autres Formes d’ Utilisation des Terres et 

Changement d’Affectation des Terres) les scenarios d’utilisation des terres doivent être 

développé. La présente étude soulève ces préoccupations en explorant de possibles impacts 

spatio-temporelles des émissions de dioxyde de carbone et d’oxyde nitreux provenant de la 

dégradation de la végétation sur le bassin versant de Dassari au Nord-Ouest du Benin. Pour 

atteindre cet objectif, les stocks de carbone et azote de végétation ont été estimés sur la base 

du niveau Tier le plus élevé recommandé par le  

GIEC (Groupe Intergouvernemental des Experts sur l’Evolution du Climat) et les scenarios 

sont développés en se basant sur la tendance actuelle d’utilisation des terres et les conditions 

socio-économiques du site. Le taux de déforestation évolue à un rythme de  

1.48 % par an. Les moyennes de stock de carbone de végétation et l’erreur standard associée 

varient de 1.52 ± 0.14 (pour les champs et jachères) à 97.83 ± 27.55 (pour les plantations) 

Mg C.ha-1. Dans le même sens les estimations pour l’azote de végétation donnent 0.0077± 

0.0067 (pour les champs et jachères) à 0.321±0.088 (pour les plantations) Mg ha-1 d’N. Les 

estimations des stocks de carbone et d’azote en 2013 sont respectivement de 175347,75 ± 

21042,48 (IC) et 875,53 ± 101,45 (IC) Mg à 95 % d’intervalle de confiance (IC). Le scenario 

de base ou pratique actuelle (LUS1) contribuerait aux émissions de 26,70 Gg d’Eq.CO2 

(dioxyde de carbone équivalent) et une absorption nette de 21,70 Gg de CO2 d’ici à l’horizon 

2025. Le scenario, politique fondée sur la sécurité alimentaire (LUS2) contribuerait à une 

réduction de 29,25 % des émissions de CO2 et une augmentation d’absorption nette de 42,94 

% de CO2 tandis que la tendance actuelle appuyée par la politique d’atténuation et 

d’adaptation aux changements climatiques (LUS3) et le scenario sécurité alimentaire 

(LUS4) appuyé par les politiques d’atténuation aux changements climatiques 

contribueraient respectivement à une réduction des émissions de CO2 respectivement de 

13,14 % et 36,47 d’ici à l’horizon 2025. Au vu des résultats obtenus le bassin demeurerait 

un puit de carbone d’ici à l’horizon 2025. Toutefois, il est temps d’agir en vue de contribuer 
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à éradiquer la pauvreté en renforçant les capacités d’adaptation des communautés 

vulnérables aux effets néfastes des changements climatiques et de contribuer à la 

séquestration du carbone à travers les projets basés sur le fond carbone.   
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CHAPTER I: CLIMATE CHANGE AND LAND USE LAND COVER 

CHANGES (LULCC)  

  

1.1 Background  

Motivated by the rapid increase in atmospheric carbon dioxide (CO2) due to human activities 

since the Industrial Revolution, several international scientific research programmes have 

analysed the role of individual components of the Earth system in the global carbon cycle 

(Falkowski et al., 2000). Land-use change is central to environmental management through its 

influence on biodiversity, trace gas emissions, carbon cycling and livelihoods (Lambin et al., 

2000). Land-use and land-cover changes (LULCC) has effects on carbon dioxide as well as on 

other trace gases and on both inorganic and biogenic aerosols including dust between 

vegetation, soils, and the atmosphere (Pielke et al., 2011; Senay, 2008; Pielke et al., 1998; 

Pielke, 2005; McAlpine et al., 2010; Dirmeyer et al., 2010; Mahmood et al., 2010).  

Agricultural expansion and intensification was found as the major drivers of global LULCC 

(Pielke  et al., 2011). Many scientists stressed that LULCC, emerged as a central issue in the 

broader debate of global change; and that change, has its origins in the concerns for 

humaninduced impacts on the environment and their implications for climate change (Schneider 

and Pontius, 2001; Lambin and Geist, 2002), through decrease in vegetation carbon and 

nitrogen stocks. LULCC has also had a substantial biogeochemical effect on global climate 

through emission of CO2 and other greenhouse gases (GHGs), such as CH4 and N2O (Denman, 

2007).  The main greenhouse gas emission /sources removals and process in managed 

ecosystems are NOx, CO2, N2O, CH4, CO, NMVOC (IPCC, 2006), (Figure 1.1). The key 

greenhouse gases of concern for this study are CO2 and N2O. According to the 

Intergovernmental Panel on Climate Change (IPCC, 2006), the use of carbon stocks changes to 

estimate CO2 emissions and removals, is based on the fact that changes in ecosystem carbon 

stocks are predominately  
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(but not exclusively) through CO2 exchange between the land surface and the atmosphere  

(i.e. other C transfer processes such as leaching are assumed to be negligible).  

 

Figure 1. 1 The main greenhouse gas emission /sources removals and process in managed 

ecosystems (IPCC, 2006)  

The carbon sequestered or stored in the forest trees are mostly referred to as the biomass of the 

tree or forest (Kuyah et al., 2012). IPCC (2006) identified five carbon pools of the terrestrial 

ecosystem involving biomass, namely the aboveground biomass, below-ground biomass, litter, 

woody debris and soil organic matter. Among all the carbon pools, the aboveground biomass 

constitutes the major portion of the carbon pool (Hairiah et al., 2010; Kuyah et al., 2012). 

Estimating the amount of forest biomass is very crucial for monitoring and estimating the 

amount of carbon that is lost or emitted during forest or vegetation degradation, and it also gives 

an idea of the forest’s potential to sequester and store carbon in  

the forest ecosystem (Hairiah et al., 2010; GOFC-GOLD, 2013; Kuyah et al., 2012).  

Estimations of forest carbon stocks are based upon the estimation of forest biomass. Forest’s 

carbon stocks are generally not measured directly. However, many authors assume the carbon 

content of tree parts to be around 50% of the dry mass. Thus, cutting down trees in the forest or 
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in any land use system means the release of carbon to the atmosphere (Hairiah et al., 2010; 

IPCC, 2013). Carbon stored in the aboveground living biomass of trees is typically the largest 

pool and the most directly impacted by deforestation and degradation (Hairiah et al., 2010).   

  

1.2 Problem statement  

In North-West Benin, particularly in Dassari Basin, the demand for land is very crucial for 

agricultural purpose. The increase of rural population has increased the pressure on the land. 

Many vegetated areas are converted into agricultural land because of the agricultural practices 

or the land utilization systems. The current land use practices have resulted in a decrease in 

vegetation carbon and nitrogen stocks, with the related release of carbon dioxide and nitrous 

oxide into the atmosphere. Forest lands are cleared and burnt (Picture 1a) to establish cropland. 

The background of this picture shows so far the cleared areas with many burned trees meaning 

in the short terms the decrease of the vegetation carbon and nitrogen stocks. New yams field 

are established in the area of recent burned trees (Picture 1b). The two pictures allow asserting 

that the process of farming has its impact on the vegetation carbon and nitrogen stocks. Once 

the tree has been burned or cut, after the forest has been cleared for farming purpose, the amount 

of carbon and nitrogen held by the burned or cut tree are assumed to be released into the 

atmosphere in the form of CO2, N2O and other gases (Figure 1.1) that are not included in the 

present research study. Infact, biomass burning includes the combustion of living and dead 

material in forests, savanna, agricultural wastes and the burning of firewood (Levine, 1994). 

Under the ideal conditions of complete combustion the burning of biomass material produces 

carbon dioxide (CO2) and water vapour  

(H2O), according to the reaction (Levine, 1994).   

CH20 + 02 -> CO2 + H20                                                                    (1.1)  

Where CH2O represents the average composition of biomass material.  
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Since complete combustion is not achieved under any conditions of biomass burning, other 

carbon species, including carbon monoxide (CO), methane (CH4) non-methane hydrocarbons 

(NMHCs), and particulate carbon, result through the incomplete combustion of biomass 

material. In addition, nitrogen and sulfur species are produced from the combustion of nitrogen 

and sulfur in the biomass material. In addition about 90% of the released carbon is in the form 

of C02 (Levine, 1994).  

Hence the present study could not deal with the uncertainty link to biomass burning under 

incomplete condition and in addition there is lack information on emission ratio of biomass 

burning in Africa and particularly in Sudan Savannah environment. We therefore focused on 

completed emission related to carbon dioxide. Thus, the study focused on carbon dioxide and 

nitrous oxide which are the main emitted greenhouse gases from biomass burning.   

    

b  

Picture 1. 1 Burned trees explaining impacts of agricultural practices on the vegetation 

carbon and nitrogen stocks  

The research was not to determine how many years the release process will be completed but 

to underline that once the tree has been burned or cut or the forest land has been cleared for 

farming, the carbon dioxide uptake stops, and carbon dioxide and nitrous oxide emissions took 

place IPCC (2006). Reducing emissions from deforestation and forest degradation (REDD+) 
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policy is based on a core idea: reward individuals, communities, projects and countries that 

reduce greenhouse gas (GHG) emissions from forests (Angelsen, 2008). For this reason, policy 

decisions on land use and management should be based on a proper balance between the 

ecosystem products and services in sustaining human livelihoods and protecting the 

environment (Le, 2005). Land-use changes simulation models can inform policy-setting and 

decision-making processes on the use and management of land resources (Le, 2005). The 

LUDAS (the Land Use Dynamic Simulator) model is useful to unravel the dynamics of land 

use and project near future land-use trajectories in order to target management decisions (Le, 

2005).   

The Land Use Dynamic Simulator (LUDAS) model has been recognized (Villamor, 2012; Le, 

2005) to be well suited to express the co-evolution of the human and basin systems based on 

socio-economic, environmental and land use information. Multi-Agent System models like 

LUDAS allow capturing the complex nature of both spatial interactions and explicit human 

decision-making on land use, presenting LULCC patterns and associated population dynamics 

as self-organizing processes emerging from local interactions (Verburg et al., 2004;  

Parker et al., 2002; Berger and schreimakers, 2006; Deadman and Hare, 2004, Villamor,  

2012). The first implementation of LUDAS by Le (2005) in Vietnam was called VNLUDAS. 

The MAS-LULCC model developed in this study is named BEN-LUDAS (Benin-  

Land Use Cover Dynamic Simulator). This is the first implementation of the model in the Benin 

Republic where the socio-economic and environmental context have changed and changes 

made in the model components and procedures to fit the Benin context. In fitting the model in 

the Benin context it could be transferred to other West African countries such as Ghana, Nigeria 

and Togo since the socio-economic situation of these countries are similar.  However, LUDAS 

does not help to determine vegetation carbon and nitrogen stocks. The present study aimed at 

using BEN-LUDAS for simulating scenarios based on LULCC and socio-economic data and at 
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using field data from forest inventories and allometric models to quantify the vegetation carbon 

and nitrogen stocks by each type of land use land cover (LULC). The developed allometric 

equations were integrated into BEN-LUDAS as carbon and nitrogen yield sub-models for the 

prediction based on each land use change scenario. The study contributes to determine towards 

the action of the impacts of these land use scenarios for prediction climate in terms of emissions 

or removal of carbon dioxide and emissions of nitrous oxide. In addition, there are knowledge 

gaps in biomass allometric equations in the Sudan Savannah environment and the level of 

emission factors for carbon accounting is unknown. For example Mbow (2013) published 

allometric equations in the forest ecosystems of Senegal. Sawadogo (2010) published allometric 

equations for selected tree species in the Sudan Savannah of West Africa. Unfortunately, both 

equations cannot be applied to estimate the biomass in other land use categories (cropland, 

grassland and settlement) of the Sudan Savannah environment. This study contribute towards 

filling these knowledges gaps by providing allometric models in each land use category to 

estimate the vegetation carbon and nitrogen stocks and at using land use change model (BEN-

LUDAS) to monitor and to predict future emissions of carbon dioxide and nitrous oxide for the 

period 2013-2025.   

According to the international agreement under United Nation Framework Convention on 

Climate change (UNFCCC), countries have an obligation to report their emissions and carbon 

stocks to assist in the global bookkeeping of emissions and the drivers of climate change. 

Developing countries that want to participate in other mechanisms of the convention will need 

to provide such data, as part of global transparency (GOFC-GOLD, 2013). According to IPCC 

(2006), the use of C stock changes to estimate CO2 emissions and removals is based on the fact 

that changes in ecosystem C stocks are predominately (but not exclusively) through CO2 

exchange between the land surface and the atmosphere. Hence, increases in total C stocks over 

time are equated with a net removal of CO2 from the atmosphere and decreases in total C stocks 
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(less transfers to other pools such as harvested wood products) are equated with net emission of 

CO2 (IPCC, 2006).  

This study supports the initiatives of REDD+ and Monitoring, Reporting and Verifying (MRV) 

(Kyoto Protocol, 1997; IPCC, 2006; Angelsen, 2008; Angelsen et al., 2009; Henry et al., 2011a; 

Angelsen et al., 2012, GOFC-GOLD, 2013; Hewson et al., 2014). The results address the key 

message for scientists and decision makers about the ways lands have been used and how each 

land use decision or land use strategy (scenario) can contribute to the removal or emission of 

carbon dioxide and nitrous oxide into the atmosphere.   

  

1.3 Hypothesis of the study   

h1: The aboveground C and N stocks (stand tree carbon and nitrogen stocks) vary by land use 

cover type in Dassari Basin;  h2: The different groups of farmers are driven by socio-economic 

and environmental factors in land use decision and few farmers adopt mitigation strategies 

(plantation/agroforestry systems) to reduce emission of carbon dioxide and nitrous oxide due to 

farming activity; h3: The current use of land contributes to the high quantity of carbon dioxide 

and nitrous oxide emissions into the atmosphere, whereas REDD+ policy based will help to 

reduce emission of these gases from the basin to the atmosphere.  

  

1.4 Objectives of the research  

The main objective of this study was to assess the impacts of land-use changes scenarios on  

CO2 and N2O emissions from the Dassari Basin for the period (2013-2025).  

The specific objectives were to:   

SO1: Quantify the vegetation carbon and nitrogen stocks at the basin level based on remote 

sensing, forest inventory data and allometric models;   

SO2: Determine land use decision drivers and mitigation strategies at the farm level;  



 

8  

  

SO3: Assess the land use scenarios impacts on CO2 and N2O emissions (2013-2025) at the basin 

level.  

Based on the specific objectives, the following research questions were:  

Rq 1: What is currently the amount of vegetation carbon and nitrogen stocks (aboveground 

biomass of living trees e.g, C and N stocks of living trees) at the basin level?  

Rq 2: What are the drivers of environmental degradation and mitigation measures adopted at 

the farm level in the Dassari Basin?  

Rq 3: What will happen up to 2025 in the vegetation carbon and nitrogen stocks and in the CO2 

and N2O emissions if the current land transformation rate continues i.e. nothing changes in the 

way of land utilization? Or the policy is:  

- Food security based?  

- Businesses as usual supported by REDD+?  

- Food security and REDD+ based?  

  

1.5 Thesis outline  

The study is presented in seven chapters.   

 Chapter One contains the introduction, problem statement related to climate change and 

LULCC issues. The hypothesis, objectives and research questions of this research are 

outlined.  

 Chapter Two focuses on the BEN-LUDAS model overview. The context of using the 

present model is explained. The architecture of the model is summarised and the details of 

components are described by Le (2005) who developed VN-LUDAS for Vietnam. The 

chapter lays out a conceptual framework of MAS-LULCC, which is the basis for the 

application of MAS (Multi-Agent System).  
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 Chapter Three is dedicated to the first specific objective. This chapter used many approaches 

to quantify the vegetation carbon and nitrogen stocks at the basin level. These approaches 

are based on remote sensing, forest inventory data and allometric equations. Satellite remote 

sensing forms the basis for characterization of land use pattern and to determine the size of 

each land use / cover of the total basin. Wood stock, the carbon and nitrogen concentration 

of the main species of the basin were estimated. The biomass expansion factor useful for 

the Sudan Savannah environment was established. Finally estimates of the biomass, carbon 

and nitrogen stock for each LULCC were done and mapped.  

 Chapter Four deals with the second specific objective. In this chapter, land use decision 

drivers were found out. The level of mitigation strategy at the farmer’s field scale was 

determined and estimates of their willingness to adopt agroforestry and plantation for the 

future were assessed. The results from the socio-economic data were used as inputs for the 

BEN-LUDAS model.   

 Chapter Five explains the ecological dynamics of heterogeneous basin agents in the Dassari 

Basin. The basin variables such as environmental conditions of the basin were used as inputs 

for the BEN-LUDAS model.   

 Chapter Six deals with the third specific objective. In this chapter land use scenarios were 

developed based on specific assumptions. The impacts of each scenario were assessed. The 

assessment was expressed in terms of removal and emission of carbon dioxide and nitrous 

oxide and their impacts on the livelihood of rural communities.   

 Chapter Seven presents the key conclusions related to the short and long terms of the impact 

of the scenarios on carbon dioxide and nitrous oxide emission or carbon sequestration. 

Recommendations were also made for future land use decisions by farmer’s household and 

for authorities at the local, regional and national levels.   
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CHAPTER II: LAND-USE CHANGE MODELS  

  

2.1 Introduction   

Land use changes give rise to series of processes that lead to systematic effects on both 

local/regional and global climate (Pielke et al., 2011). On a local/regional scale, changes in the 

radiative properties (albedo), turbulent heat exchanges, water availability, biochemical and 

trace gases cycles result from the conversion from an ecosystem (e.g. forest) into another that 

has different functions (e.g. crop or pasture). On a global scale, historical conversion into 

agriculture affects Net Primary Productivity (NPP), and therefore the storage reservoirs of 

carbon. Agriculture has therefore altered the global carbon cycle (Bondeau et al., 2007), which 

in turn modifies the atmospheric CO2 concentration and thereby, potentially, the global climate.   

Evidence for a significant effect of LULCC on climate at local scales is therefore convincing 

(IPCC, 2007; Smith et al., 2014). Where LULCC has been intensive, the regional impact is 

likely to be at least as important as greenhouse gases and aerosols. The impacts of change on 

human vulnerability are evident when climate change is realized locally and regionally. LULCC 

is a significant regional scale driver of climate making it sufficient to require its incorporation 

into past, present and future climate model simulations. Agarwal et al. (2000) have presented a 

review and assessment of land-use change models (Fitz et al., 1996; Voinov et al., 1999; 

Veldkamp, 1996; Veldkamp and Fresco, 1996a; Hardie and Parks, 1997; Mertens and Lambin, 

1997; Chomitz and Gray, 1996; Gilruth et al., 1995; Wood et al., 1997; Landis 1995; Landis 

and Zhang, 1998; Berry et al., 1996; Wear and Bolstad, 1998; Swallow et al., 1997). These 

models of land-use change were compared in terms of scale and complexity, and how well they 

incorporate space, time, and human decision making. Some of the models captured spatial, 

temporal and human decision making characteristics. Conversion of Land Use and Its Effects 

(CLUE) Model, (Veldkamp and Fresco, 1996b) for example applies several human drivers, 
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incorporates collective decision-making levels, from local to national, considers the temporal 

range of decision making explicitly, in determining the time period for updating changes in 

land-use types as well as minimum economic age and rotation length of  various land-use 

classes.  

Unfortunately, few of the models attempted to incorporate on sight social processes in 

modelling land-use change, which is the main important aspect of this case study. The coupled 

human-environment system in modelling land use/cover changes was of concern for the present 

study. The lack of progress is largely due to the traditional separation of ecological and social 

sciences (Rosa and Dietz, 1998).   

A promising approach to modelling the complex LUCC processes is the multi-agent systems 

for simulating LULCC (MAS-LUCC) (Le, 2005). The MAS has been recognized as a useful 

tool for building a sound theoretical framework to deal with the complexity of LULCC (van der 

Veen and Otter, 2001; Bousquet and Page, 2004) and to more efficiently support environmental 

decision-making processes (Ligtenberg et al., 2004; Barreteau et al., 2001). Thus, many 

scientists have attempted to obtain simulation models that describe autonomous individual 

organisms individual based models (IBM) or agents agent-based models (ABM) (Grimm et al., 

2006). ABMs were based on the standard protocol for describing such simulation models, which 

can make them easy to understand and to avoid duplication. ODD (Overview, Design concepts, 

and Details) was a first step for establishing a more detailed common format of the description 

of IBMs and ABMs (Grimm et al., 2006) and has been used for the present case study within 

the BEN-LUDAS model.   

The aim of this chapter is to explore the existing land use/cover change and MAS-LULCC 

models for the implementation of BEN-LUDAS (Benin - Land Use DynAmics Simulator) in 

the study area. The specific focus will be on:  
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- The adoption of the MAS modelling framework of BEN-LUDAS that reflects the 

organization of the coupled human-environment system of Dassari Basin in an 

understandable manner and  

- The decision-making models for human agents and ecological system for basin  

(environmental) agents.  

  

2.2 Land-Use Change Models  

Land use change models are significant when attempting to understand the dynamics of the 

environment and how change affects the welfare of the socio-ecological system. LULCC is a 

widespread, accelerating, and very significant process to humans. LULCC change is both driven 

by human actions, and, in many cases, it also drives changes that impact humans (Agarwal et 

al., 2000). Modelling these changes is critical for formulating effective environmental policies 

and management strategies.   

Humans had transformed significant portions of the Earth’s land surface. 10–15 % of the Earth’s 

surface is dominated by agricultural crop or urban-industrial areas, whereas 6–8 % is by pasture 

(Vitousek et al., 1997). These changes in land use have important implications for future 

changes in the Earth’s climate and, in return, great implications for subsequent landuse change 

(Agarwal et al., 2000). Existing land use/cover change models have been reviewed by Agarwal 

et al. (2000) (See section 2.1) who gives overall setting for these models.   

Existing land use/cover changes models were analysed based on the model scale (time step and 

duration, resolution and extent, agent and domain), model complexity (temporal complexity, 

spatial complexity, human decision-making complexity) and came to the conclusion that agent-

based models are useful to explain changes in land use cover.   
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2.3 Concept of Multi-Agent System (MAS) model  

For the last decade, the challenge has been to develop a new approach focusing more on the 

interaction between ecological and social components, and taking into account the 

heterogeneity of these components (Bousquet and Page, 2004). In addition, researchers in the 

field of ecosystem management can use multi-agent systems (households and patch agents in 

the present case study) to go beyond the role of the individual and to study more deeply and 

more effectively the different forms of organization (spatial, networks, hierarchies) and 

interactions among different organizational levels (Bousquet and Page, 2004). Therefore  

MAS-LULCC becomes a useful tool for problems integrating social and spatial aspects. ABM 

represents autonomous entities, each with dynamic behaviour and heterogeneous 

characteristics. Agents interact with each other and their environment, resulting in emergent 

outcomes at the macroscale that can be used to quantitatively analyse complex systems 

(Heckbert and Baynes, 2010).   

More information on MAS-LULCC could be found in Le (2005), Bousquet and Page, (2004),  

Damaceanu (2012), Grimm et al. (2010), Heckbert et al. (2010), Parker et al. (2002), Railsback 

et al. (2006) and Matthews et al. (2007). Since BEN-LUDAS is conceived in the setting of 

agent-based models its selection for understanding the human environmental system is required.   

  

2.4 The BEN-LUDAS model as a Conceptual MAS-LULCC Model  

The LUDAS framework (Le et al., 2008) has been used for the BEN-LUDAS conceptual MAS-

LUCC. Le et al. (2010) described the LUDAS model using the ODD (Overview, Design 

concept, and Details) protocol, (Grimm et al., 2010). The BEN-LUDAS is applied in the West 

African context and mainly represents the real world of socio-ecological pattern of the study 

site. The BEN-LUDAS used the same ODD protocol and focuses on the dynamics of 

environment based on agricultural activity procedure as the main component of interaction 
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between social and ecological system while VN-LUDAS (Le, 2005) and LB-LUDAS 

(Villamor, 2012), dealt with logging activity respectively in Vietnam and Indonesia. In addition 

a procedure was developed based on mitigation strategy to climate change and the related 

probability of adoption that were not considered in the previous LUDAS.   

  

2.4.1 Purpose  

The LUDAS model was primarily designed to support land-use decisions in the forest margins 

with the following three aims to:   

 explore the magnitude of possible socio-ecological changes over space and time as 

driven by different land-use policy interventions,   

 identify the most affected components of the system (what), locations (where) and 

periods (when) with respect to specific policy intervention, and   

 highlight sound policy interventions that likely enhance environmental and 

socioeconomic benefits efficiently.   

For the BEN-LUDAS model development these aims were assumed, but possible impacts of 

policy intervention on future CO2 and N2O emissions from vegetation degradation due to 

agricultural activity was highlighted. In addition BEN-LUDAS aimed to assess the impacts of 

the adoption of mitigation strategy to climate change (adoption of agroforestry system and 

plantation) and socio-economic impacts on the livelihood of households.   

With regards to the mentioned assumptions, the structure of BEN-LUDAS is presented in Figure 

2.1. In LUDAS, organizations that influenced the ecosystem management in the study area are 

treated externally. In this way, different scenarios and management settings were pre-defined, 

and the course of future system development was compared to assess ex-ante impacts of policy 

interventions.   
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Figure 2. 1 Conceptual framework of BEN-LUDAS model  

  

2.4.2 Entities, Variables and Scales   

The BEN-LUDAS Model has human community and environmental systems which consist  

of household and basin entities (agents), respectively. The variables of basin entities are grid 

layers of elevation, slope, wetness, upslope, land use and soil that are in units of pixels. The 

variables of the household entities are listed in Table 2.1. There is one institutional 

spatialvariable, owner, which relates each pixel of the part of basin a household owns to the 

household. The model also contains institutional policy variable. The two types of variables in 

terms of temporal dynamism in the model are as follows:  
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a. Static variables in the model are owner, elevation, slope, soil suitability, wetness, upslope, 

household Id, x-coordinate of household house, y-coordinate of household house, household 

head, educational level, etc. (Table 2.1). For any given head of household these variables are 

considered fairly constant in the model, within the long term period under consideration i.e. till 

the household head takes hold, dies and a new head of household is born.   

  

Table 2. 1 Entities and Variables in BEN-LUDAS Model  

Entity  

Household  

Variables  

Static  Dynamic  

Household Id, x-coordinate of 

household house, y-coordinate of 

household house, household head, 

Educational level, Upland Area 

crop owned by household,  

Agroforestry area owned by 

household, plantation area owned 

by household, household livelihood 

typology, Fraction of labour for 

farming or time-labour.  

Household size, Age of household 

head, Household head Leader 

position, Labour availability: 

Dependency ratio (persons not in 

labour force/persons in labour 

force), Household income, Percapita 

household income, Access to 

fertilizer subsidy.   

Basin  Owner, Elevation, Slope, Wetness 

Upslope, Soil, Spatial policy, Strict 

restriction  

Land use, farming (burned), number 

of years after a farming event (Pt)  

  

  

b. The dynamic variables are further divided into two groups:  

• Dynamic variables driven by natural processes are beyond human control: the age of the 

household agents and natural forest growth of forested pixels,  

• Dynamic variables induced by household decisions or policy interventions are land use 

type and protection code of land pixel.  

One time step represents one year. One grid cell or pixel represents 30 m x 30 m (900 m2) and 

the model basin covers 192.57 km2 (either a total of 213971 pixels).  
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2.4.3 Overview Process and Scheduling  

In the BEN-LUDAS model, neighbourhood interactions are taken into account in land use 

decisions and land cover transition (see section 5.3.4). Therefore, changes in basin or in 

community status which gives a feedback to households are pixel-based processes.   

  

2.4.4 Design Concepts  

The interface of LUDAS, MAS-HES (Multi Agent System-Human Environment System) 

model presents simple and essential information (Le, 2005) relating to interaction between 

human beings and the environment. The BEN-LUDAS uses the same structure like the original 

one. The coding programmes are simple to build and understand. The design concepts reveal 

sensing of owner variable as an ownership entity that can influence the use of the land. 

Interaction among agents causes emergent landscape/community phenomena that lead to 

landscape and population dynamics (Le, 2005). To observe its internal dynamics as well as its 

system-level behaviour, the expected outputs of the model needed are, land use cover change 

area, carbon and nitrogen stocks per land use/cover (LUC) type, biomass stocks per LUC type, 

annual gross income based on cultivated, annual gross income based on carbon credits, 

financial return based on carbon credits, Lorenz and Gini information’s, size of the income 

group and households size or population dynamics over the years. These findings have been 

presented in graphics, maps, files output and data on the households.   

The main goal was to explore the use of BEN-LUDAS, MAS-HES model to simulate spatial 

scenarios based on modelling multi-actor decision-making within a spatial planning process. 

The model consists of agents representing households involved in rural area activities (farming, 

subsidized agriculture, etc.). The multi-actor based decision-making is modelled by generating 

beliefs and preferences of actors about the location of spatial objects and the relation between 
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them. This allows each agent to pursue these beliefs and preferences with their own desires and 

with that of other agents.   

  

2.4.5 Initialization  

The details of BEN-LUDAS consist of three elements namely: initialization, input data and 

parameters as well as sub-models, and follows the ODD protocol (Grimm et al., 2006). The 

initial number of columns and rows for the basin grid were 601 and 715, respectively, whereas 

the maximum patch x coordinate (max-pxcor) and maximum patch y coordinate (max-pycor) 

were 300 and 357, respectively.  

  

2.4.6 Input Data and Parameters  

Inputs for simulations in BEN-LUDAS entail two types: data and parameters. The input data 

for initial model variables were elevation, slope, wetness, upslope, soil types and land use maps 

as well as household data. The inputs for model parameters were as follows:  

- The strict restricted area, which constrains farmers’ decision to farm within the area 

limited by the soil type (no suitable area for farming activity).   

- the policy thresholds, which constrains farmers to farm within the area under  

legislation.  

- the deforestation rate, which drive the overall speed of forest degradation due to farming 

activity,  

- the vision of farmers in farming activity, which determine the location of farming 

activity based on the position of nearest forest patch,  

- the productivity, which determines the crop yield of the study site and the related  market 

price, which define the price of various crops in the market.  



 

19  

  

- the financial return allowed to define the rate of the budget to be allocated to the farmers 

if the carbon fund project exists. Mitigation-agroforestry and mitigation plantation with 

the related probability were applied in the scenarios based mitigation strategy,  

- The population growth rate (Table 4.1) and maximum age determined the dynamics  

of the population.  

  

2.4.7 Sub-Models  

Regarding the context of the study area (West African Sudan Savannah zone) the BENLUDAS 

model used 6 additional sub-models and calculation routines to 13 key sub-models and 

calculation routines of VN-LUDAS (Le, 2005) (Table 2.2).  

Table 2. 2 Main sub-models/ procedures of BEN-LUDAS coded in NetLogo 4.1.3 (modified 

from Le et al., 2010).   

N  Sub-models/ Calculation 

routines  

Functions  Entity 

involved  

1  Initialization  Import GIS data and sampled household data, 

generate remaining population, create household 

pixels, generate household coefficients, and 

calculate initial carbon and nitrogen stocks  

Household  
Pixel  

2  REDD+ adoption  Calculate the willingness to adopt the REDD+ 

policy of the household (agroforestry and 

plantation) i.e probability of adoption is applied  

Household  

3  Time-Labour-allocation  Set the time-labour list of the household annually    Household  

4  Financial-return  Calculate the annual economic return of carbon 

credit to the farmers  
Household  

  

5  Update-household-state  Update the changes in household profiles annually   Household  

6  Agent-Categorizer  Categorize households into similar groups   Household  

7  Generate-household 

coefficients  

Generate behaviour coefficients of household, 

allow variants within the group but stabilize 

behaviour structure of the group  

Household  

  

8  Natural-Transition  Perform natural succession among vegetation 

types based on accumulated vegetation growth and 

ecological edge effects  

Pixel  

9  Allometric-model  Calculate biomass stocks for each land use/cover 

using allometric equations  

Pixel  

10  Calculate-carbon-stocks   Calculate carbon stocks for each LUC type   Pixel  

11  Calculate-nitrogen stocks  Calculate vegetation nitrogen stocks for each LUC 

type   

Pixel  

12  Life-cycle  Create a young new household controlled by an 

empirical function of population growth  
Household  
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13  Plot-Graphs  Draw different graphs of system performance 

indicators  
Household  
Pixel  

  

The sub-models are:  

1) REDD+ adoption, 2) Calculate biomass-stocks, 3) Calculate-carbon-stocks, 4) Calculate 

nitrogen-stocks and 5) Financial-return 6) life-cycle which are briefly described. For detailed 

descriptions (e.g. model parameters, dimension and reference values) and justification of 

specific sub-models (see Chapters 3 and 5).  

Model calibration and validation details are outlined in Section 6.4.1.   

  

  

2.5 Conclusions  

The evolution of ABM platforms over the past ten or more years has been fascinating. The goal 

of developing this model is to explore alternative scenarios to improve livelihoods of rural 

communities at the local scale and mitigate climate change. The model specification, module-

by-module and object-by-object, clearly shows an explicit and fully parameterized architecture, 

which accounts for the evolution of the coupled human-environment systems. The proposed 

agent-based architecture (BEN-LUDAS) allows integrating diverse personal, environmental 

and policy-related factors into upland farmers’ decision-making about land use and the 

subsequent accumulated outcomes in terms of spatially explicit patterns of the natural basin and 

population. The model is useful in explaining the dynamics of human and environment system 

and to perceive the changes of both over time and how these changes affect the livelihood and 

the future impacts on CO2 and N2O emissions from vegetation degradation.   
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CHAPTER III: ASSESSMENT OF CURRENT VEGETATION CARBON AND 

NITROGEN STOCKS OF THE WEST AFRICAN SUDAN SAVANNAH BASIN   

  

3.1  Introduction  

The sources and sinks of carbon from LULCC are significant elements in the global carbon 

budget (Houghton et al., 2012). Current challenges of forest management are related to 

verifiable, reliable, accurate and cost-effective methods to adequately document forest 

resources dynamics (GOFC-GOLD, 2013).   

The accuracy of carbon stock by each land use cover type depends on the availability of reliable 

allometric models to infer oven-dry aboveground biomass of trees from tree census data (Chave 

et al., 2015). However, large uncertainties in emission estimates arise from inadequate data on 

the carbon stock of forests and the regional rates of deforestation (Baccini et al., 2012; 

Houghton et al., 2012). These uncertainties in turn compromise the estimation of terrestrial 

carbon emissions (DeFries et al., 2002; Houghton 2005; Grassi et al., 2008; Pelletier et al., 

2011) and the required knowledge on biomass or carbon stocks. Infact, uncertainty related to 

the estimation of carbon stock is the related standard error.   

A number of comprehensive allometric models for biomass estimation have previously been 

developed for the major tree species in Europe, America and Asia (Ter-Mikaelian and 

Korzukim, 1997; Jose et al., 1998, Moura-Costa and Stuart, 1999; Nelson et al., 1999; Clark 

and Clark, 2000, Eamus et al., 2000; Grierson et al., 2000; Keith et al., 2000; Keller et al., 2001; 

Fleurant et al., 2004; Jenkins et al., 2004; Chave et al., 2005; Zianis and Mencuccini, 2005; 

Domke et al., 2012; Chave et al., 2015). In Sub-Saharan Africa most of the estimation of the 

total carbon stocks in Africa, and especially West-African countries focused on the use of 

allometric models together with forest inventory data (Chave et al., 2005; Akindele and Lemay, 

2006; Dossa et al., 2008; Mbaekwe and Mackenzie, 2008; Djomo et al., 2010;  
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Djuikouo et al., 2010; Sawadogo et al., 2010; Henry et al., 2011b; Rasmussen et al., 2011; 

Shirima et al., 2011; Bakayoko et al., 2012; Kuyah et al., 2012; Mbow et al., 2013; Ngomanda 

et al., 2014). The majority of studies have so far focused on forest ecosystems, specific tree 

species or plantations for the estimation of aboveground biomass and carbon stocks (Daolan et 

al., 2004; Akindele and Lemay, 2006; Li and Xiao, 2007; Basuki et al., 2009; Fonton et al., 

2009; Djomo et al., 2010; Djuikouo et al., 2010; José 2010; Henry et al.,  

2011b; Návar-Chaidez 2011; Rasmussen et al., 2011; García et al., 2012; Guendehou et al.,  

2012; Aholoukpe et al., 2013; Hunter et al., 2013; Ngomanda et al., 2014; Chave et al., 2015; 

Montagnoli et al., 2015). Very few studies have focused on the estimation of aboveground 

biomass in the agricultural landscape (Kuyah et al., 2012).  

Attempts to estimate aboveground biomass at the basin level requires typically remote sensing 

derived land use/land cover information as well as allometric models from each land use/cover 

category (LUCa). The data for allometric models for estimating biomass in woody vegetation 

comes either from destructive or from non-destructive methods. Destructive methods are based 

on the harvest of the living trees together with measurements of DBH (diameter at breast height) 

or girth, stem and total height as well as the dry mass of stem, foliage and branches. The 

collected variables are then used as input for estimating tree volume and biomass for selected 

trees species (Chave et al., 2005; Litton and Kauffman, 2008; Basuki et al., 2009; José 2010; 

Mbow et al., 2013). The application of destructive methods is labour intensive and time 

consuming Djomo et al. (2010). This method is therefore restricted to small trees at small scales 

(Ketterings et al., 2001; Li and Xiao, 2007). Additionally, harvesting trees requires in general 

special authorization which is often not easy to acquire, especially when the study region 

involves protected areas.   

Recent assessments have switched to the use of non-destructive methods (Montes et al.,  

2000; Lehtonen et al., 2004; Flombaum and Sala, 2007; Nogueira et al., 2007; Tackenberg  
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2007; Chen et al., 2008; Henry et al., 2010; Guendehou et al., 2012). The tools and approaches 

used thereby varied considerably between regions. A biomass expansion factor and wood stock 

were the key parameter/variable used by allometric models based on nondestructive methods 

for the assessment of total biomass of living trees. Wood stock is the third variable that 

contributes to reduce uncertainty in estimating tree biomass using allometric model. The 

importance of wood stock for estimating forest biomass and greenhouse-gas emissions from 

LULCC change has been stressed by Nogueira et al. (2007). A variety of different approaches 

has been applied. Montes et al. (2000), for instance, estimated the biomass of Thuriferous 

juniper woodland in Morocco based on component volumes estimated from two orthogonal-

view photographs and the stock of each component. This approach is not well suited to estimate 

biomass in natural environments (Thuriferous juniper woodland), especially when the 

environment is subject to degradation by human use and wood supply to the local populations 

is at stake. Lehtonen et al. (2004) developed expansion factors conditional on stand age and 

dominant tree species to estimate total biomass of pine trees in Norway. Flombaum and Sala 

(2007) presented an approach for the calibration of a fast non-destructive method to estimate 

aboveground plant biomass by double-sampling vegetation cover and aboveground biomass in 

the Patagonian steppe. They fitted linear regression models to describe the relationship between 

vegetation cover and biomass for the dominant species and life forms. Tackenberg (2007) 

presented a nondestructive method based on scaled digital images analysis of the plants 

silhouettes, addressing not only aboveground fresh biomass and oven-dried biomass, but also 

vertical biomass distribution as well as dry matter content and growth rates. The method used 

by Tackenberg (2007) is time and cost effective compared with the destructive method, 

especially if development or growth rates are to be measured repeatedly.   

Two problems hinder the transfer of the currently used non-destructive methods in the 

WestAfrican context: first, biomass expansion factors are not available for most relevant local 
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tree species and the devices used are costly and very complex to use. In the southern part of the 

Republic of Benin, Guendehou et al. (2012) assessed stem biomass based on stem volume for 

selected tropical tree species using an increment borer as the device of stem wood sample 

extraction and wood stock of selected species. Unfortunately, the obtained biomass expansion 

factor (BEF) could not be applied in the context of the current study since the study was 

undertaken under the tropical forest conditions in that are different from the conditions in the 

study region which is in Sudan Savannah zone. The work by Guendehou (2012) needed 

therefore to be expanded to reflect conditions and tree species in different land use systems to 

allow a more precise estimation of the relevance of African trees for carbon stocks.   

In order to reduce the uncertainty in estimates of carbon emissions resulting from deforestation 

and forest degradation, more complete and higher quality information on the spatial distribution 

of carbon stocks is needed. The estimation of the total carbon stocks at the basin level is the 

most complex and requires the most fineness methods for many reasons. Firstly, at the basin or 

catchment scale the vegetation pattern is changed from one land use/cover to another and the 

tree species distribution varied gradually in size and species composition. Secondly, there is a 

need for reliable methods that are applicable to target species in the region of interest (Henry et 

al., 2010). The accurate estimation of the vegetation carbon and nitrogen stocks is based on Tier 

three approach recommended by IPCC (2006). Remote sensing data is needed for mapping 

carbon distributed along the basin using the obtained forest inventory data, developed allometric 

equations and the carbon and nitrogen content of the main species of the region to considerably 

reduce uncertainty.   

The aim of this chapter is to quantify the vegetation carbon and nitrogen stocks at the basin 

level using current land use/cover (2013-2014), ground truth data, allometric equations and 

carbon and nitrogen fraction of the main species of the site, which belongs to the Sudan  

Savannah environment.  
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3.2  Methodology  

Schematic presented in the methodology is given in Figure 3.1. The main steps were:  

 Acquisition of data from four sources (MODIS NDVI, field work, high resolution 

images and Landsat 8 images),  

 First Field work to conduct forest inventory for analysis based on Importance Value  

Index (IVI) for the selection of the main species of the basin,   

 

Figure 3. 1 Flowchart showing main steps of the aboveground biomass, carbon and 

nitrogen stocks assessment  

  

 Images classification, accuracy assessment and reclassification,  

 Second field work and surveys of the individual main tree species,  

 Non-destructive method assessment,   

 Chemical analysis for the estimation of C and N of the wood samples,  
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 Development of allometric models based on three predictors (DBH, height and wood 

density),  

 Biomass, carbon and nitrogen content assessment at the tree level and plots level based 

on allometric models and C and N content previously estimated,  

 Mapping the aboveground biomass, carbon and nitrogen stocks at the basin level using 

ArcGIS 10.1.  

  

  

3.2.1 Data Collection   

a. Land Use/Cover Classification  

Data Sources for Images Classification  

The Landsat data product used for this study was derived from the Landsat Data Continuity 

Mission (LDCM), (http://glovis.usgs.gov). The Level 1 Terrain (L1T) data products (data type) 

used consist of Level 1 Radiometric (L1R) data products with systematic geometric corrections. 

The data were also terrain corrected for relief displacement. Two scenes of  

Landsat 8 were used for land use/cover classification. The acquisition dates were 13 October 

2013 and 29 October 2013 both with path-row 193-53 with 30 m spatial resolution. Many 

reasons explain the choice of this moment. Firstly, from June to September clouds are the main 

constraints for a good quality of images acquisition because this period falls in the rainy season. 

During October the maximum photosynthetic activity can be reached for any land use/cover. In 

addition, crops are easily discriminated from other land use/cover such as vegetation and the 

cloud cover percentage is quasi-null. From November to January, fire patterns disturbed the 

quality of the images and crops are harvested by farmers and this can lead to the soil surface 

response (bare soil) in the acquired images. The characteristics of the four used bands in each 

scene are presented in Table 3.1.   
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Table 3. 1 Landsat 8 bands identification for land use/cover classification  

Band Reference 

Number  

Band Description   Band Centre 

(nm)  

Band 2  Blue (Operational Land Imager (OLI))  482  

Band 3  Green (OLI)   562  

Band 4  Red (OLI)   655  

Band 5  Near-Infrared (NIR) (OLI)   865  

  

  

State of the art for land use/cover classification  

The land use/cover classification was first based on the observed classes in the study area. The 

approaches to identify these land use/cover (LULC) classes were based on field campaign and 

contact with resource persons from CENAGREF (“Centre National de Gestion des Réserves de 

Faune”, National Centre of Fauna Reserve Management) institution. The results of 

investigations from CENAGREF enabled Dassari Basin to be classified into three strata. The 

first stratum is the local community site where farming activity are carried out without any 

restriction. The second stratum is a narrow band of 3 to 4 km qualified as controlled land use 

zone (Zone d’Occupation Contrôlée) according to CENAGREF. In this stratum farming activity 

can be carried out when it is allocated. The third zone is a protected area or national Park, where 

farming activity is not allowed.  

The classification scheme adopted was fitted to the regional classification described in the West 

African region. This regional concept for LULC classification was based on Aubreville (1956) 

classification, which was reviewed and underlined in Table 3.2.   

Eleven LULC classes were used, seven of which reflected the dominant land use classes in the 

case study region. These are riparian forest and woodland, savanna woodland, shrub savanna, 

cropland and fallow, settlements, agroforestry and plantation. Agroforestry and tree plantation 

were separated from cropland since an increase of agroforestry and plantation could be a 

mitigation strategy to climate change.  
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Table 3. 2 Description of LULC types identified in Dassari Basin  

N  Land-use/cover 

(LULC) types  

Description  Data sources   

1  Riparian forest 

and woodland  
Forest along the river bank and woodland in the 

mountainous zone. Both are area of land covered with 

mature trees and other plants growing close together 

with (cover trees > 70 %).  

Landsat 8  

2  Savanna  
woodland  

  

Area covered by few grass with big and small trees.   Landsat 8   

3  Shrub savanna  Area covered by grassland and small trees (trees with 

DBH < 20 cm and 5 m in height) but sometimes with 

scattered big trees   

Landsat 8  

4  
Grass savanna   

  

  

Area covered by 80 % of grass and very scattered trees  
Landsat 8  

5  Cropland and 

Fallow  

Area covered by crops (maize, sorghum, millet, bean, 

yam, cotton, rice, etc.). Fallow are areas of abandoned 
farms within 2 to 5 years old.  
  

Landsat 8   

6  Bare land  Bare area,   
Landsat 8  

  

7  Settlements  Areas that have been populated with permanent 

residents or covered with scanty grass and exposed 

rock, and bare lands. According to IPCC (2006), the 

land-use category settlements includes soils, herbaceous 

perennial vegetation, such as turf grass and garden 

plants, trees in rural settlements, homestead gardens 

and urban areas.  

Landsat 8 + Rapid 

Eye (0.5 to 2m 

resolution)   

8  Agroforestry    

Agroforestry is non timber trees-based system (cashew) 

or fruit based system. Cashew plantations were 

extracted by digitizing  Rapid Eye images in ArcGIS  
10.1   

  

Rapid Eye + 

Ground truthing  
data  

  

9  Plantation  A plantation is timber trees-based system (Eucalyptus, 

teak, mango, etc.). Plantations were extracted by 

digitizing Rapid Eye images in ArcGIS 10.1  

Rapid Eye + 

Ground truthing 

data  

10  Stream and rivers    

Areas covered with water such as small reservoirs and 

rivers  

  

Landsat 8 + 
ASTER (30m 

resolution)  
  

11  Road  Bitumen and main laterite roads  Rapid Eye +  
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Each land use/cover type has been classified within IPCC (2006) land use categories as shown 

in Table 3.3.   

AFOLU consists of Agriculture, Forestry and Other Land Use (IPCC, 2006). Land use 

categories (LUCa) are forest land, cropland, grassland, wetland, settlements and other land.  

For this study wetland is not taken into account as land use type in Dassari Basin for two main 

reasons.  

The first reason was that, according to IPCC (2006) wetlands include any land that is covered 

or saturated by water for all or part of the year, and that does not fall into the forest land (FL), 

cropland (CL), or grassland (GL) categories. Emissions from unmanaged wetlands are not 

estimated. The second reason was based on the fact that the study focused on the change in the 

vegetation pattern that could affects carbon and nitrogen stocks or carbon dioxide and nitrous 

oxide emission through stand trees degradation.  

  

Table 3. 3. AFOLU sector and land use/cover classes of Dassari Basin  

 Land use/cover categories (IPCC, 2006)   

Forest land  Grassland   Cropland  Wetland  Settlements  Others land  

Riparian forest and 

woodland,  

Savanna woodland,  

Shrub savanna  

Grass  

savannah   

  

Crop, 

Fallow  

       

 -  

Settlements 

(hamlet, 

tarred road, 

homestead 

gardens)  

Bare ( bare 

area laterite 

road), water 

(small 

Reservoir, 

rivers).  

  

  

b. Forest inventory approach  

Establishment of gridded vegetation index map using MODIS data  

Clusters of land use based on time series were derived using Normalized Difference Vegetation 

Index (NDVI) of Moderate-resolution Imaging Spectro-radiometer (MODIS).  
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MODIS data was used with 500 m resolution and 0 % cloud cover from August 2013 to 

November 2013 (https://lpdaac.usgs.gov/products/modis_products_table) (Table 3.4). NDVI 

(Eq. 3.1), mean NDVI (Eq. 3.2) and the sample variance (Eq. 3.3) were calculated per pixel 

across time. The mean NDVI was used as input in the k-mean cluster analysis. The numbers of 

retained clusters were based on the number of LUCa.   

  

  

Table 3. 4 Downloaded 500 m Resolution MODIS Images   

N°  Julian day  Acquisition date  

1  225  13-8-2013  

2  241  29-8-2013  

3  257  14-9-2013  

4  273  30-9-2013  

5  289  16-10-2013  

6  305  1-11-2013  

  

These clusters were then used for a stratified random sample creation in ArcGIS 10.1. The 

centroids of the selected pixels were used to establish plots at which ground training area 

information was derived for the classification (Figures 3.2). The gridded vegetation index map 

was edited for the installation of plots for forest inventory within each land cover and land use 

system. For any given pixel, model builder component of ERDAS imagine 10 software was 

used to calculate the mean NDVI and its variance based on Equations 3.1, 3. 2 and 3.3, by using 

these six time series dataset based on the built models (equations) in this software. The formulae 

of these equations are:  

  

   

   

The unbiased sample variance was expressed as:  
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Where,  

NDVI = Normalized Difference Vegetation Index  

NIR =   Near-Infrared band of MODIS Red 

=   Red band of MODIS   

i      =    pixel position (i.e. pixel i) in the scene 

N    =    number of scenes or elements x     =    

longitude coordinate of pixel i y     =    latitude 

coordinate of pixel i s2    =   variance of pixel i  

MeanNDVI (i) = Mean NDVI of pixel i  
Min = Minimum value of Mean NDVI of all pixels  

Max = Maximum value of Mean NDVI of all pixels  

  

NDVI was rescaled from range [-1; 1] to [0; 255] using logarithmic function (Eq. 3.4) in  

ERDAS Imagine 10 to avoid negative values in data manipulation and visualization (Figure  

3.2).  

  

Cluster analysis of the vegetation index and plots installation  

The Lloyd (1982) and MacQueen (1967) algorithms were used for k-mean cluster in R software 

to fit with the number of LUCa (forest land, cropland, savannah grassland, settlement and other 

land use). Secondly, a number of candidate pixels that had large homogenous patches on the 

initial MODIS cluster image were selected randomly based on the previous estimated variance 

of pixels. Finally, if the patch (pixel) shown on the map (Fig. 3.2) was indeed relatively 

homogeneous and large enough when visited on the ground, a field measurement plot was 

selected for forest inventory in the mid-point of this MODIS pixel at  

30 m x 30 m scale for forest land, grassland and cropland, and 100 m x 100 m for settlement. 

The size of plots was 30 m x 30 m for forest land, grassland and cropland, 100 m x 100 m for 

settlements and 10 m x 20 m for agroforestry and plantation. The total plots of 250 (Figure  

3.2 and Table 3.5) cover a total area of 27.26 ha.  
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Figure 3. 2 Gridded vegetation index map with plots location data  

  

Community analysis was carried out during six months (from April to September of 2014). In 

every land use/cover system, plots were installed randomly proportionally to their size (Table  

3.5) using the gridded vegetation index map (Fig. 3.2).   
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Table 3. 5 Land use/cover (LUC) classes and number of installed plots.   

LUCa/ LULCC  Area (ha)  Percentage (%) 

in the basin  

Area sampled 

(ha)  

Number of  

installed plots  

Forestland  

RFW  

  

320.4  1.66  0.81  9  

SW  5447.79  28.29  2.43  27  

SS  4241.88  22.03  5.04  56  

Grassland GL    

96.48  0.5  3.06  34  

Cropland CPF    

8031.15  41.7  7.2  80  

Settlement SL    

486.72  2.53  8  8  

Other land use 

AGF  

  

20.7  0.11  0.26  13  

PLT  16.74  0.09  0.46  23  

Note: RFW: Riparian forest and woodland; SW: Savanna Woodland; SS: Shrub Savanna; GL: Grassland;  
CPF: Cropland and Fallow; SL: Settlement; AGF: Agroforestry; PLT:  Plantation  
NB: Agroforestry and plantation were seen as mitigation strategies to climate change, they were therefore 

discriminated from cropland.   

  

  

c. Tree community analysis  

Total number of tree species identifies during plots survey was 84. Three variables namely 

diameter at breast height (dbh), stem and total height were measured on all trees with dbh greater 

than or equal to 5 cm.   

  

Similarity index analysis  

Similarity indices estimation was a basis for determining the LULC types that might be 

combined for further importance value index and specific allometric model establishment. 

According to Anne et al. (2005), the classic Jaccard index depend on the number of species 

shared by two assemblages and the number of species unique. In the case of this study Jaccard 

index (Table 3.6) has been used to determine the level of similarity of the main  

LULC types at basin scale.  



 

34  

  

Access 2010 software was used to establish the database. Once the tabulation has been carried 

out, query language was used to count species according to their distribution in different land 

use/cover type.  

  

Table 3. 6 Jaccard index (%) for diverse LULC types   

 
  Riparian  Savanna  Shrub  Grass  Cropland  Settlement  

forest and  woodland   savanna  savanna  and fallow 

woodland  

Riparian forest  

and woodland  

  

Savanna  

woodland  

  

Shrub savanna  

  

Grass savanna  

  

Cropland and 

fallow  

  

Settlement  

  61.7  46.2  

53.8  

17  

17.6  

16  

45.9  

51.6  

48.4  

  

20.9  

8.6  

6.3  

4.8  

  

13  

15.4  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

    

  

The Jaccard coefficient measures similarity between finite sample sets, and is defined as the size of the 

intersection divided by the size of the union of the sample sets (Eq. 3.5):  

  

Where  
A and B represent two communities  
Jclas    = Jaccard index,   
A = Common species from 2 LULC types,  
B = Species from LULC type 1,  
C = Species from LULC type 2  

  

The results show that the level of similarity was high between LULC types of forest land: 61.7 

% between riparian forest and woodland; 53.8 % between savanna woodland and shrub savanna 

(Table 3.6). The level of similarity was high with forest land and cropland and fallow. This was 

https://en.wikipedia.org/wiki/Intersection_%28set_theory%29
https://en.wikipedia.org/wiki/Intersection_%28set_theory%29
https://en.wikipedia.org/wiki/Union_%28set_theory%29
https://en.wikipedia.org/wiki/Union_%28set_theory%29
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based on the fact that the forest land (riparian forest and woodland, savanna woodland and shrub 

savanna) was converted to cropland and fallow for farming activities.  

The importance value index (IVI) was used to determine the main species that can contribute to 

the vegetation carbon and nitrogen stocks in each LULC type of the basin.  

  

Importance Value Index (IVI) analysis   

Importance value index was used for the first time by Curtis (1956) to determine the overall 

importance of each species in the trees community structure. The IVI is calculated in summing 

up the percentage values of the relative frequency, relative density and relative dominance of 

the species (Table 3.7). Density (D), frequency (F), Dominance (Dom), relative density (RD 

%), relative frequency (RF %), relative dominance (RDom %)) and Importance Value Index 

(IVI) were calculated for each species in each LUCa based on IPCC (2006) classification (Table 

3.3) from the count data in Access 2010 (Table 3.6). The various parameters were obtained as:   

Density (D):  

  

Frequency (F):   

  

Dominance (Dom):   

  

Relative density (RD %):   

  

Relative frequency (RF %):   

  

Relative dominance (RDom %):   
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Importance Value Index (IVI):   

𝐼𝑉𝐼(𝐴𝑖) = ∑(𝑅𝐷 + 𝑅𝐹 + 𝑅𝐷𝑜𝑚)                                                        (3.12)  

Where,  
IVI (Ai) = Importance Value Index of species Ai with i varied from 1 to N (here N equal to 81)  
RD = relative density of each specie expressed in percentage (%)  
RF = relative frequency of each specie expressed in percentage (%)  
RDom = relative dominance of each specie expressed in percentage (%)  
Total density for all species = sum of density from each species   
Total frequency values for all Species = Sum of frequency from each species Total 

Dominance for all species = Sum of dominance from each species  

  

The retained species for performed measurements on individual trees were presented in each 

LUCa and had high IVI (Table 3.7). These main species of the basin belonged to these LUCa 

and respectively represented 80.5 %, 82.75 %, 79.55 % and 76.8 %, for forestland, grassland, 

cropland and settlement. From these retained main trees species; analysis was performed to 

define the validity domain of size class distribution for each LUCa.  

  

Table 3. 7 IVI of main species in each LUCa  

Species name   IVI index   

Forestland  Grassland  Cropland and 

fallow  

Settlement  

Terminalia genus  42.57  125.85  19.23  -  

Acacia genus  33.18  24.39  21.01  -  

Combretum genus  31.13  -  5.99  -  

Pterocarpus erinaceus  25.55  -  6.02  -  

Anogeisus leiocarpus  24.09  -  -  -  

Mitragyna inermis  18.22  -  -  -  

Lannea genus  16.06  -  44.97  28.25  

Ficus genus  8.79  32.28  28.84  42.08  

Crosopteryx febrifuga  8.01  -  -  -  

Entada Africana  7.32  22.27  -  -  

Parkia biglobosa  -  42.14  65.50  -  

Vitelaria paradoxa  -  -  21.28  -  

Azadirachta indica  -  -  15.92  96.63  

  

Defining validity domain of size class distributions for different land use categories  
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The validity domain of size class distribution is a basis for defining the validity domain of 

further established allometric equations. Table 3.8 shows the proportion of surveyed trees by 

two ranges of DBH size classes.  

The DBH of the main species ranged between two size class distributions. The two size class’s 

distributions on DBH are 5 to 45 cm and 45 excluded to 100 cm. The results provided from the 

250 plots data revealed the size class distribution of these main species according to the DBH 

range in Table 3.8. The species belonged to the first class in each LUCa represented 98.6 %, 

87.5 %, 99.3 % and 91.9 % respectively for forestland, grassland, cropland and fallow, and 

settlement. From the tabulation of plots data, the DBH of the second class (45 excluded to 100 

cm) the trees have their DBH scattered for all LUCa. Most tree species have their DBH within 

the first class for each LUCa and these classes were retained for further developed allometric 

equations in each LUCa.   

  

Table 3. 8 Range of DBH (cm) of trees species and their proportion in each LUCa  

  Range of DBH (cm) and their proportion in (%)  

 
First range  Second range Forestland  5-45 

(98.6)   45-100 (1.4)  

Grassland  5-45 (87.5)  45-100 (12.5)  

Cropland and fallow 5-65 (99.3) 65-100 (0.8) Settlement 5-55 (91.9) 55-100 (8.1)  

 
Note: ( ) represents the proportion in percent of trees species within DBH range.   

  

  

Special considerations for stem diameter, stem and tree height measurements  

Stem diameter (or girth), total tree height and wood stock are three main variables accounted 

for aboveground biomass assessment at the basin level. To avoid unbiased measurements, tree 

shape and stem height were taken into account. Statistical analysis was done for all species 

(Table 3.9) to define the number of diameters to be measured along the stem (Figure 3.3). The 

result of stem height analysis of these retained species according to IVI index, helped to estimate 
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the number of this diameter stem measurements based on the proportion of tree species in two 

ranges of stem height (Table 3.9).   

  

  

Table 3. 9 Proportion in percent of trees species stem height within two ranges of height  

  

 
 Species  Proportion in (%) of trees species stem height    

Terminalia genus  

Trees stem height = < 2.3 m  Trees stem height > 2.3 m  

95.85   4.15    

Acacia genus  91.57   8.43    

Combretum genus  91.5   8.5    

Pterocarpus erinaceus  74.86   25.14    

Anogeisus leiocarpus  72.29   27.71    

Mitragyna inermis  87.79   12.21    

Lannea genus  94.81   7.02    

Ficus genus  88.63        11.37    

Crosopteryx febrifuga  93.13   6.87    

Entada Africana  98.01   1.99    

Parkia biglobosa  93.1   6.9    

Vitelaria paradoxa  97.05   2.95    

Azadirachta indica  79.2   20.8    

  

Most trees species (from 72 % to 98%) have stem height less or equal to 2.3 m (Table 3.9).  

The conclusion was that most stem trees height was less or equal to 2.3 m in this West African 

Sudan Savannah zone. 4 to 20 % of trees species have their stem height higher or equal to 2.3 

m. Based on these considerations, three measurements (G1, G2 and G_crown), (Figure 3.3), of 

stem diameter were considered for the performed measurements on individual tree species. The 

first measurement was done at 1.3 m, the second at 2.3 m, the third at the crown base (Figure 

3.3). This approach helped to avoid unbiased stem volume and stem biomass estimation.   

  

Size classes distribution of selected species   

The results from Table 3.7 and 3.8 led to the establishment of diameter of each tree species 

within the basin. Once the number of each tree species has been distributed along its size class 
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distribution with 5 cm interval, proportion rate was applied and the number of trees was 

estimated for survey detailed measurements on individual trees (Table 3.10).   

  

Table 3. 10 The number of sampled trees within divers LUCa  

Species  N  Range of DBH 

(cm)  

Range of stem 

height (m)  

Range of total 

tree height (m)  

Terminalia genus  24  5.0 – 50.1  1.1 – 8.5  1.5 – 12.5  

Acacia genus  18  5.0 – 39.2  1.2 – 6.0  1.7 – 12.4  

Combretum genus  11  5.0 – 36.1  1.2 – 6.3  2.0 – 9.0  

Pterocarpus erinaceus  16  5.2 – 96.5  1.3 – 7.0  2.1 – 15.0  

Anogeisus leiocarpus  16  5.0 – 82.0  1.2 – 7.0  2.0 – 14.0  

Mitragyna inermis  14  5.0 – 65.0  1.3 – 6.0  2.0 – 12.0  

Lannea genus  23  5.4 – 68.9  1.1 – 5.5  1.3 – 12.8   

Ficus genus  15  5.0 – 75.3  1.3 – 4.8  2.0 – 8.8  

Crosopteryx febrifuga  08  5.5 – 40.4  1.3 – 4.3  2.0 – 10.8  

Entada Africana  07  5.0 – 25.6  1.2 – 4.0  1.8 – 7.5  

Parkia biglobosa  17  5.5 – 104  1.3 – 6.2  2.0 – 14.0  

Vitelaria paradoxa  08  5.3 – 54.3  1.1 – 4.5  2.0 – 12.5  

Azadirachta indica  19  5.3 – 80.0  1.3 – 4.8  2.5 – 10.6  

Note: The range of DBH at 1.3 m aboveground for each species in the entire basin was expressed in cm. 

The range of stem and total height of each species in the entire basin were expressed in metres. N= 

Number of selected trees in different size classes by species. In addition trees were surveyed in 

agroforestry system and plantation.  

  

d. A non-destructive method for estimating aboveground biomass  

Tree variables measurements  

The criterion for selecting trees from each species was that stem height should lower or equal 

to 2.3 m. Many conditions were considered when choosing sample trees in the field. The sample 

tree should be supposed none deformed. The selected sample trees should be straight and 

without nodules. Figure 3.3 shows the various variables collected within a sample tree in this 

basin. A total of 270 trees were non-destructively sampled be considering all the main tree 

species (Table 3.10). In the previous of this non-destructive survey the destructive approach 

was applied to the 13 tree species, belonging to 7 species. Advantage was taken of rural 

electrification project along the road from Dassari to Tigniga (Figure 4.1). Trees along this road 

were to be logged to give way to electrification extension. Negotiations were done with the 
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project officers for the release of 13 individual from these seven selected species namely 

Terminalia macroptera, Ficus sp, Acacia seyal, Entanda Africana, Combretum glutinosum, 

Crosopteryx febrifuga and Anogeisus leiocarpus for destructive and nondestructive 

measurements. Only tree species commenced for logging and fall within the species of interest 

(Table 3.10) were destructively measured. These were used for the establishment of Biomass 

Expansion Factor (BEF) function as well as for assessment of the uncertainties. For the non-

destructive method, the following were carried out on individual  

trees.   

 i.  Measurement of stem girth at 1.3 m, 2.3 m and crown base, and stem height (Picture  

3.1); ii.  Extraction of stem wood sample of the tree at 1.3 m above ground 

using the increment borer (Picture 3.2); iii.  Oven-drying the wood sample obtained 

with the increment borer and estimation of the wood density of the surveyed tree; iv. 

 Estimation of stem-dry mass of the tree species using Eqs. 3.16 to 3.19.  

The destructive approach consisted of the following steps:  

i. Logging of the tree species by rural electrification project officers, ii. Weighting of fresh 

mass of stem, branches and foliage using weighing score; iii. Oven-drying of fresh wood 

samples selected from stem, branches and foliage at 75ºC for 2 to 3 days to constant weight; 

iv. Estimation of dry mass of stem, branches and foliage of the tree using Eq. 3.20,  

v. Calculation of BEF based on dry mass of stem, branches and foliage using Eq. 3.21, vi. 

Modelling BEF as a function of stem dry mass, vii. Comparison of the non-destructive method 

to the destructive method based on predictive total biomass by BEF function.  
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G1 = stem Girth at breast height (at 1.3 m),  

G2 = stem Girth of tree at 2.3 m height,   

G_crown = stem Girth of tree at crown base,   

NB: The below ground biomass is not 

considered in this study.    

  

Figure 3. 3 Tree design showing 

detailed measurement of diameters and heights on individual sample tree  

  

Collecting wood samples in the field  

Samples of wood were extracted from the tree using an increment borer. The wood samples 

were extracted at 1.3 m above the ground.   

The inner diameter of the bit of this device was 0.5 cm, indicating the diameter of the core 

sample extracted to be 0.5 cm.  

Once the wood was extracted, its length L was measured and expressed in centimetres. An 

example of wood sample is presented in Picture 3.3.  
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Picture 3.1 Techniques of trees  Picture 3. 2 Techniques of extraction of measurement in the 

field. (CHABI, 2014)  wood sample using increment borer.  

(CHABI, 2014)  

  

  

1= Increment borer  

2= Wood sample  

Picture. CHABI, October 2014  

  

Picture 3. 3 Fresh wood sample obtained from increment borer  

  

Estimation of basic wood density  

The extracted core wood from each selected tree species was oven-dried at 75º C for 48 to 72 

hours depending on water content of the wood sample constant weight. The oven dry density 

(ρ) in terms of dry mass per fresh volume was estimated for each wood sample as in (Eq.3.16).   
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Where: ρ = wood density 

in g.cm-3  

dMSi = Dry mass of wood sample i expressed (g) 

d = diameter of the core wood (0.5 cm) Li = 

length of the sample i expressed (cm)  

  

Estimation of stem volume and stem biomass  

The stem volume of measured trees was measured by section according to Figure 3.3. The 

truncated cone function was used to estimate stem volume (Eq. 3.17):   

   
Where:  
Shi = height (m) of section i of the tree stem,   
C1i = the greater girth of the section i of the tree stem,  
C2i = the smaller girth of the section i of tree stem,  
Vstemi = Volume (cm3) of section i of the tree stem,    

  

Stem mass were estimated based on wood density and stem volume values of the sections of 

the tree stem (Eq. 3.18). Total mass of the tree stem is calculated as the sum of all sections  

(Eq. 3.19):  

𝐵𝑠𝑡𝑒𝑚𝑖 = (𝜌 𝑥 𝑉𝑠𝑡𝑒𝑚𝑖)/1000                                                             (3.18)  

  

Where:  
Vstemi = Volume (cm3) of section i of stem,    
Bstemi = Biomass (Kg) of section i of stem,   

TBstem = Total mass of tree stem (Kg) n = 

Number of the stem section of the tree   

  

In the next step, dry mass of stem, branches and foliage (total biomass) were derived by the 

destructive approach for the same trees:  

                  (3.20)  

Where:  
Btot = Total mass of a tree (sum of dry mass of stem, branches and foliage) (Kg)  
fM = Fresh mass of stem, branches or foliage (Kg), fmS = Fresh 

mass of sample of stem branches or foliage (g). dmS = Dry mass 

of wood sample of stem branches or foliage(g), j = index of the 
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different components (stem, branches and foliages) m= number of 

components of the various 3 organs   

  

For the following step, the Biomass Expansion Factor (BEF) per tree for the 13 individual trees 

was calculated using Eq. 3.21.  

  

Where:  

Btot = Total mass of a tree (sum of dry mass of stem, branches and foliage) (Kg),  
Bstem = Stem dry mass (kg)  
BEF = Biomass Expansion Factor  

  

Equations 3.16 to 3.19 were applied to the non-destructive method concerning 270 tree species 

whereas Equations 3.16 to 3.21 were applied to the 13 trees species using both the destructive 

and non-destructive approaches for comparison.   

Once the BEF has been modelled based on the 13 trees, the total mass of the 270 individual 

trees were estimated then using the BEF model.   

  

Modelling BEF as a function of stem dry mass  

The calculation of the 13 destructively sampled trees was correlated to stem dry mass and the 

linear regression model was applied. Stem dry biomass was log-transformed to provide a more 

even spread of the data.  

BEF = 𝛽0 + 𝛽1ln (𝐵𝑠𝑡𝑒𝑚) + 𝜀                                                                  (3.22)  

Where β0 and β1 are model parameters   

   

Chemical analysis for the estimation of carbon and nitrogen content of wood samples  The 

samples from Eucalyptus trees (7 samples) were added to the samples obtained from the main 

species (245 samples) of the natural vegetation, cashew (25 samples). Total number of wood 

samples was 277 obtained from 18 tree species (Picture 3.4-3.5). Initial assignment for the 

chemical analysis was the grinding of 277 wood samples obtained from 18 tree species. The 
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samples were first re-dried (because it was dry when estimating wood density) to avoid any 

water content. The weighing process followed the grinding.   

  

Picture 3. 4 

Example of 

grinding sample in 

the small bottle  

  
Picture 3. 5 Total number of ground wood samples in the small bottles  

  

  
Picture 3. 6 Euro EA 3000  

Chemical analysis was done at the Institute of Crop Science and Resource Conservation, within 

the laboratory of the Department of Plant Nutrition in Germany (Bonn) using the EA3000 model 

CHNS-O Elemental Analyser (http://www.eurovector.it/) (Picture 3.6-3.8).   

  

3.2.2 Data analysis  

a. Random forest (RF) algorithm for image classification  

The images classification in R software was based on the following steps:  

1. Importing co-registered images into R;  

2. Spectral Bands and Indices;  

  

  

    

Picture 3.  7   The analytical circuit   Picture 3.  8   Output presented  
in   the screen of the computer   
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3. Preparing Data for Random Forest;  

4. Running Random Forest;  

5. Recursive Partitioning and Regression Trees (Rpart).  

The variables used for random forest (RF) were bands 2, 3, 4, 5 (Table 3.1), NDVI (Normalized 

Difference Vegetation Index) of Landsat 8 satellite images.   

  

b. Accuracy assessment of the supervised classification  

According to Gómez and Montero (2011), any supervised classification is not complete until an 

assessment of its accuracy has been performed. The classification accuracy is a measure of the 

degree to which the derived image classification agrees with reality or conforms to the  

‘truth’ (Campbell, 1996; Janssen and Van der, 1994; Maling, 1989; Smits et al., 1999). 

Generally an error matrix known as confusion matrix is used to compare information based 

expert judgement and the classifier. Let A1, . . . Ak be the set of crisp classes under consideration, 

the error matrix N is defined as a frequency matrix, where each element (nij) represents the 

number of pixels that the expert classified as pixel in land use type i but the classifier did in 

land use type j, (Gómez and Montero, 2011; Foody, 2002). In the case of this study two types 

of accuracy indices (overall accuracy and Kappa index) were used. The following formula 

characterized each type of indices:  

Given the error matrix N = nij, the overall accuracy is defined as:  

   

Where |T| is the number of pixels being tested.   

Given the error matrix N = (nij) the Kappa statistic is defined as:  

𝐾 = (𝑂𝑐 − 𝑝𝑒)/(1 − 𝑝𝑒)                                                             (3.24)  
Where pe represents the percentage of items that have been classified correctly by chance, that is:  
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By applying these equations for the confusion matrix of the classification results, overall 

accuracy and Kappa index were 0.75 and 0.69 respectively.  

The performance evaluation of kappa stress that it does not quantifies the level of agreement 

between two datasets. It represents the level of agreement of two dataset corrected by chance.  

  

c. Method for the establishment of biomass allometric equations at the basin level  

The sample size consisted of 270 individual trees that have been non-destructively surveyed 

(Table 3.12). For each tree of that sample, the BEF was applied to calculate the aboveground 

biomass (AGB). The AGB was then used as the response which we tried to predict with 

generalized linear models (GLM) (McCullagh and Nelder, 1989) using predictors easily 

measured in the field. The models were fitted using (1) just on DBH, (2) DBH and H, (3) and 

a combination of the three predictors. Based on the properties of the residuals we decided 

on a Gamma GLM with a log link. For each level of complexity we started with a model that 

contained the interactions between all involved predictors as well as the main effects 

(conditional on the interactions). The model structure was simplified on the small sample size 

corrected Aikaike Information Criteria (AICc) (Sugiura 1978, Burnham and Anderson, 2004). 

Quadratic effects were not considered since their inclusion led to unrealistic model behaviour 

for higher response values that were interpreted as overfitting of the model.  Models were fitted 

for each land use category (LUCa) – i.e. data were sub-set by LUCa before fitting. Effects of 

species on the model fit as well as on the structure of the residuals were tested but effects were 

small. We used the following LUCa to fit the models: forest land  

(the combination of riparian forest, savanna woodland and shrub savanna), savanna grassland  

(grassland), settlement, cropland (cropland and fallow). The sample size differed by LUCa: 

agroforestry: 25, forest: 181, cropland: 178, settlements: 63, grassland: 90. We did not fit 

models for the land use category plantation but applied published equations. Aboveground 
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biomass from plots plantations of Tectona grandis and Eucalyptus grandis were obtained using 

published allometric equations from Guendehou et al. (2012) and Montagu et al. (2005) 

respectively whereas the generic equation (Table 3.15) was applied to estimate aboveground 

biomass of Azadirachta indica and Gmelina arborea.  

We further compared model predictions with the observed aboveground biomass at the tree 

level based on the average deviation (Cairns et al., 2003, Chave et al., 2005, Basuki et al., 

2009). The average deviation is calculated as follows:  

  

Where δ is the average absolute deviation in percent, Yi = the observed dry weight, Ý the predicted dry weight, n = 

number of observations.  

  

d. Method for the estimation of aboveground biomass, carbon and nitrogen stocks Biomass 

stock map was generated using the best specific equation for each LUCa especially equation 

type III which involved the three predictors. Biomass stock of each plot was estimated in two 

steps when Phoenix reclinata and Borassus flabellifer were seen in the plot data. These species 

were retrieved from each plot data and their biomass estimated using equation from Schoroth 

et al. (2002) developed for the estimation of aboveground biomass of coconut. In the second 

step we applied specific equations for the concerned plots and we summed up together the two 

results to obtain the total biomass of the plot.   

The estimation of carbon and nitrogen was first based on the results of biomass data at the tree 

level. The mean carbon and nitrogen content were applied to each species of the plots.  

The results of chemical analysis for carbon and nitrogen content were the input (Table 3.18).  

The mean biomass, carbon and nitrogen stock maps were edited in ArcGIS 10.1. The total 

aboveground biomass, carbon and nitrogen stocks of each LUC class were estimated as the 
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product of the mean biomass stock (Mg.ha-1) or mean carbon stock (Mg C ha-1) or mean nitrogen 

stock (Mg.ha-1 of N) value per hectare and the size (expressed in hectare) of the LUC type.   

  

 3.3  Results and discussions  

3.3.1 Land use/cover types of Dassari Basin in 2013  

The land use cover map of the study area spread as a baseline for estimating vegetation carbon 

and nitrogen stocks at the basin level (Figure 3.4). Three main land use/cover types i.e cropland 

and fallow, savanna woodland and shrub savanna characterized the Dassari Basin.  These land 

use/cover types respectively represented 41.70 %, 28.29 %, and 22.03 % of the  

total area.   

  

Table 3.11. Area (ha) and proportion (%) of each LUC type in Dassari Basin  

N  LUC types  Area (ha)  Proportion in %  

1  Riparian forest and woodland  320.4  1.66  

2  Savanna woodland  5447.79  28.29  

3  Shrub savanna  4241.88  22.03  

4  Grass savanna   96.48  0.50  

5  Cropland and Fallow  8031.15  41.70  

6  Bare land  107.91  0.56  

7  Settlements  486.72  2.53  

8  Agroforestry  20.7  0.11  

9  Plantation  16.74  0.09  

10  Stream and rivers  348.57  1.81  

11  Roads  139.05  0.72  

   TOTAL  19257.39  100.00  

  

The high proportion of cropland and fallow proved that the vegetation degradation due to 

farming activity was very crucial in the Dassari Basin and this could lead to the loss of high 

proportion of vegetation carbon and nitrogen stocks, thus more emission of CO2 and N2O. 

Agroforestry system and plantation respectively covered only 0.11 % and 0.09 % of the total 

area of the basin. These low proportions configure the assertion that mitigation strategies to 
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climate change based on the adoption of agroforestry systems and plantations were little known 

by farmers of these villages.   

At some instances in the text we refer to forest land that incorporates the LUCa (Land use 

category) riparian forest and woodland, savanna woodland and shrub savanna. Agroforestry and 

plantation were separated from cropland since an increase of agroforestry and plantation could 

be a mitigation strategy to climate change.   
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Figure 3. 4 Land Use/Cover types of Dassari Basin in 2013  
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3.3.2 Basic wood density of the main species  

Estimated basic wood density of the main species in the study area is presented in Table 3.12. 

The species Anogeisus leiocarpus, Combretum glutinosum, Terminalia macroptera, Vitelaria 

paradoxa, Pterocarpus erinaceus, Azadirachta indica, Acacia seyal, and Crosopteryx febrifuga 

were characterized by a high mean wood density. The low mean density observed for Lannea 

microcrapa and Ficus sp was in line with the high water content of the species which is lost 

during the drying process. The threshold for this low was 0.500 g.cm-3.   

  

Table 3. 12 The Basic wood density (g.cm-3) of the main tree species  

  

  N  Basic wood  DBH (cm)  -3 

Trees species  density  

 
  min  max   min  max   

Terminalia macroptera  19  0.740  0.893  0.821 (0.010)  9.3  40.7  0.7681* ;  0.8702*  

Acacia seyal  16  0.669  0.909  0.751 (0.015)  7.6  34.4  -  

Combretum glutinosum  11  0.827  0.962  0.877 (0.013)  7.9  31.9  0.9002*  

Pterocarpus erinaceus  21  0.671  0.973  0.826 (0.015)  6.9  44.7  0.7401*  

Anogeisus leiocarpus  16  0.813  0.977  0.889 (0.012)  6.9  32.4  -  

Mitragyna inermis  18  0.579  0.687  0.631 (0.008)  7.0  34.5  -  

Lannea microcrapa   22  0.472  0.648  0.546 (0.011)  7.0  50.6  -  

Lannea acida  06  0.504  0.676  0.573 (0.027)  10.8  35.9  -  

Ficus sp  21  0.440  0.607  0.528 (0.010)  8.6  52.7  -  

Crosopteryx febrifuga  18  0.518  0.778  0.704 (0.016)  5.6  30.5  -  

Entada africana  15  0.556  0.688  0.631 (0.010)  8.4  27.6  -  

Parkia biglobosa  23  0.566  0.689  0.630 (0.006)  8.6  62.4  0.5253*  

Vitelaria paradoxa  23  0.608  0.950  0.838 (0.016)  8.0  53.8  -  

Azadirachta indica  16  0.619  0.886  0.763 (0.018)  8.8  50.5  0.6604* ; 0.6205*  

Anacardium occidentale  25  0.512  0.625  0.569 (0.006)  9.2  57.9  0.4313*; 0.5005*  

Note: N=Number of trees selected. The stem wood samples of selected trees were extracted at 1.3 m of the ground. 

DBH range = Range of diameter at breast height of sampled species. Figures in bracket represent the standard 

error.   
References of previous studies:  
1* Sallenave, P. 1955, 1964  

The present study   Previous studies   

Mean (SE)   𝜌    ( g.cm )   
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2* von Maydell, HJ, 1983   
3* Carsan et al., 2012  
4* Oey, et al., 1951  
5* Little and Wadesworth, 1964  

  

Standard error of the measurements were very low for all species and confirmed thereby the 

accuracy of the measurements as well as the relative low importance of confounding factors 

which influence density variation per species as described by Chave et al. (2006).  

Measurements on basic wood density were in line with results from previous studies (Oey, 

1951; Sallenave 1955, 1964; Little and Wadesworth, 1964; Von, 1983; Carsan et al., 2012).   

  

3.3.3 Biomass Expansion Factor (BEF)   

The biomass expansion factor increased significantly with the log of stem dry mass (Table 3.13 

and Figure 3.5). The BEF as a function of stem dry mass varied between 1.46 and 1.88, with a 

mean of 1.67 ± 0.08 (95 % confidence interval). The BEF of Terminalia macroptera, which is 

the main species of the study site ranged from 1.55 to 1.88, with a mean value of  

1.73. The model explained 69 % of the variance in the data.   

  

Table 3. 13 Coefficients for the BEF – stem dry biomass relationship fitted   

  Coefficient  Standard error  p-value  

Intercept  1.24155   0.09253  3.66 x 10-8  

ln(stem dry biomass)  0.14701  0.02968  0.000434  

Note: 13 trees belonging to 7 species were available for the comparison of destructive method to the nondestructive 

assessment for BEF modelling  
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Figure 3. 5 Estimated relationships between stem dry biomass and biomass expansion 

factor   

Note: The model used 13 trees that were available for the analysis by the destructive approach. The dashed 

lines represent the 95% confidence band.  

  

Total mass obtained by the destructive sampling (observed values from 13 trees) and the total 

biomasses estimated by the non-destructive method (predicted values from these trees using the 

estimated BEF – stem dry mass relationship) were very similar (Figure 3.6, Pearson correlation 

coefficient of 0.99).  

Given the small sample size (13 individual trees from seven species) and the limited range of 

DBH (less than 25 cm) care should be taken not to extrapolate results. However, the sampled 

trees represent the common size distribution of trees in the human influenced ecosystems of the 

study region. Therefore, the results can be assumed to provide a good estimate for biomass 

expansion factor assessments in the region.  
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Figure 3. 6 Comparison between total biomass derived by the destructive and the 

nondestructive method  

Note: The grey line represents the 1:1 line to aid interpretation.  

  

  

Segura et al. (2005) used a similar approach based on an estimated biomass expansion factor 

function for the per-humid premontane transitional forest zone in Costa Rica. In contrast to our 

findings, BEF decreased with stem biomass. While the Costa Rican study underestimated total 

biomass of trees on average by 17.31 %, the study results overestimate total biomass slightly 

by 1.82 % when applying the Segura (2005) equation to the data. Levy et al. (2004) estimated 

biomass expansion of coniferous species in Great Britain. Levy’s BEF was a function of tree 

height of stand tree. Levy’s BEF overestimated the total biomass of our sampled tree species 

on average by 4.46 %. Magalhães and Seifert (2015) used BEF as a function of DBH when 

estimating aboveground biomass of Androstachys johnsonii in Mozambique. The BEF of 
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Magalhães and Seifert (2015) underestimates the total biomass on average by 62.54 % of the 

samples tree species.   

The BEF can also be estimated based on dbh of the 13 trees assessed by the destructive approach 

(Figure 3.7).  

  

Figure 3. 7 Estimated relationships between DBH and biomass expansion factor   

Note: The model used 13 trees that were available for the analysis by the destructive approach. The dashed 

lines represent the 95% confidence band.  

The model based on dbh was slightly superior to the model based on stem dry biomass if 

compared by means of the small sample size corrected AIC (AICc) or a likelihood ratio test and 

explained 75% of the variance in the BEF (Table 3.14).  

  

Table 3. 14 Coefficients for the BEF – DBH relationship fitted   

  Coefficient  Standard error  p-value  

Intercept  1.25801  0.07697  4.61 x 10-9  

DBH  0.0314  0.00543  0.000122  

Note: The analysis was based on the 13 destructively sampled trees and non-destructive assessment  
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If this model was used to predict total biomass, the values derived by the destructive approach 

were overestimated on average by 2.27 % - a bit higher compared to the model based on stem 

dry mass. We therefore stuck to the estimation based on stem dry biomass.  

  

3.3.4 Allometric model at the basin level  

All models indicated a high goodness of fit expressed by the explained deviance as well as by 

the pseudo-R2 by Nagelkerke (1991). While the AICc clearly favoured the more complex 

models (Table 3.15), even the models using only dbh as a predictor provided a high goodness 

of fit. While analyses of the effect of land use categories as an additional predictor on all sample 

points indicated significant differences between the coefficients across land use categories the 

effect of size is relatively low. A notable exception is the land use class of agroforestry, which 

was clearly distinct from the other models. Effect of plots indicate, however, that even the small 

differences between coefficients across the land use categories led to important changes in 

prediction. Within a model class, coefficients always had the same sign and of the same order 

of magnitude. For models of type II, the inclusion of the interaction between dbh and total 

height always was selected based on the lower AICc. For the other categories wood density was 

included in the models in addition to the other two main effects and the interaction between dbh 

and total height. For forest land and grassland, the interaction between dbh and wood density 

was also selected based on AICc.  

The basic wood density (ρ) was not a good predictor for the estimation of AGB in  

agroforestry system (cashew plantation). In cashew plantations, big trees i.e cashew trees over 

45 years old tend to lose their wood ignition followed by the observed decrease of wood density 

for bigger cashew trees. In the available 25 cashew trees, wood density was high for cashew 

trees with an age of 10 to 20 years.    

  



 

 

  

Table 3. 15 Parameters and expressions of the allometric models generated using dbh (cm), height H (m) and ρ (g.cm-3)   
Models  LUCa  

                  
Coefficients  

Intercept  
  
β0  

DBH  
  
β1  

H  
  
β2  

DBH:H  
  
β3  

ρ   
  
β4  

 DBH:ρ  
  
β5  

AIC  Expl. 

Dev.  
Nagelkerke  

  I                   

 Forest land   
2.391980***  
(0.082228)  

  
0.111911***  
(0.003528)  

      
 

  1921.3  
  
0.82  

  
0.89  

  Grassland  2.219779***  
(0.092797)  

0.114745***  
(0.004002)  

         895.75  0.90  0.94  

  Cropland  2.751514***  
(0.072229)  

0.091492***  
(0.002608)  

         1981.3  0.84  0.91  

  Settlements  2.454958***  
(0.091445)  

0.091898***  
(0.003292)  

         636.64  0.91  0.95  

  Agroforestry  2.563685***  
(0.137175)     

0.077676***  
(0.004729)  

         241.67  0.92  0.95  

II              𝒍𝒏 (𝑨𝑮𝑩) =                 𝜷𝟎      +                          𝜷𝟏(𝑫𝑩𝑯)        +          𝜷𝟐(𝑯)            +           𝜷𝟑(𝑫𝑩𝑯𝒙𝑯)          

  Forest land  -0.051323  
(0.178402)  

0.160755***  
(0.009200)  

0.456829***  
(0.029571)  

-0.011051***  
(0.001321)  

     1745.9  0.93  0.96  

  Grassland  -0.115578  
(0.227236)  

0.177817***  
(0.010732)  

0.439903***  
(0.040451)  

-0.012521***  
(0.001474)  

     821.11  0.96  0.98  

  Cropland  0.0871685  
(0.1495242)  

0.1549490***  
(0.0062096)  

0.4660558***  
(0.0251691)  

-0.0113066***  
(0.0007811)  

     1818.4  0.94  0.97  

  Settlements  0.570740*  
(0.257908)  

0.153706***  
(0.011535)  

0.329399***  
(0.043811)  

-0.010279***  
(0.001639)  

     607.38  0.95  0.97  

  Agroforestry  0.361587  
(0.444254)  

0.136600***  
(0.015331)  

0.403086***  
(0.085069)  

-0.010145***  
(0.002141)  

     226.77  0.96  0.98  

III             𝒍𝒏 (𝑨𝑮𝑩) =               𝜷𝟎    +                             𝜷𝟏(𝑫𝑩𝑯)       +           𝜷𝟐(𝑯)        +               𝜷𝟑(𝑫𝑩𝑯𝒙𝑯)     +        𝜷𝟒(𝛒)       +                     𝜷𝟓(𝑫𝑩𝑯𝒙𝛒)        

  Generic  -0.7654108***  
(0.1091666)  

0.1573235***  
(0.0042834)  

0.4238142***  
(0.0155108)  

-0.0108973***  
(0.0005404)  

1.3500342***  
(0.1004703)  

  2300.2      

  Agroforestry  Model reduced to the type II model         

  Forest land  -0.529352*  
(0.218806)  

0.153447***  
(0.009621)  

0.421777***  
(0.022671)  

-0.011862***  
(0.001007)  

0.838169**  
(0.285044)  

0.024398*  
(0.011265)  

1645.1  0.96  0.98  



 

 

  Grassland  -0.406853  
(0.276970)  

0.146300***  
(0.013038)  

0.418648***  
(0.028276)  

-0.011198***  
(0.001026)  

0.729644*  
(0.366277)  

0.027054°  
(0.015229)  

757.26  0.98  0.99  

  Cropland  -0.7272044***  
(0.1278645)  

0.1501417***  
(0.0045440)  

0.4212572 ***  
(0.0185620)  

-0.0103647***  
(0.0005729)  

1.4462214***  
(0.1095952)  

  1709.1  0.97  0.98  

 Settlements -0.031603 0.150500*** 0.341267*** -0.010006*** 0.938432***  597.9 0.96 0.98 (0.284948) (0.010299) (0.039210) (0.001463) (0.260039)  
  

      

Note: The coefficients are provided at the link scale. The log-link was used for fitting the gamma glm. The ‘:’ operator represents the interaction between both involved 

variables. Standard error is provided in parenthesis. The sample size differed by land use category: agroforestry: 25, forest: 181, cropland: 178, settlements: 63, grassland: 

90. AGB = Aboveground biomass based on dry weight (kg/tree). The statistical analyses are significant at 95% confidence interval. ***p < 0.001; **p < 0.01; *p < 0.05; and 

non-significant, °p > 0.05.  
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3.3.5 Comparing the equations to previously published equations  

We could only compare our allometric models for forest lands with previous published 

allometric equations due to lack of allometric equations for cropland, grassland and 

settlements. We therefore compared only the models for forest land and the generic model with 

results from Brown et al. (1997), Chave et al. (2005), Chave et al. (2015) and Jose (2010). 

Equations developed by these authors were chosen in the global dry forest region for 

comparison. The results were in line with all mentioned equations in terms of mean deviation 

of the observed aboveground biomass at the stand tree level (Table 3.16).   

  

Table 3. 16 The average deviation of various models compared to the models type of the 

present study in each LUCa  

LUCa  

Forest land  

   Previous studies  Present study   

Brown et 

al.  

(1997)  

Chave et 

al.  

(2005)  

Jose 

(2010)  
Chave et  Models type al.  

 

(2015)  I           II           III     

    Average deviation δ (%)    

25.02  9.04  26.41  14.87  21.67  8.64  4.77  

Grassland  34.23  6.54  35.73  12.69  11.88  5.00  2.34  

Cropland  29.30  10.21  30.77  14.74  24.50  10.06  5.26  

Agroforestry  -  -  -  -  8.00  3.75  -  

Settlements  60.93  9.70  62.77  15.46  12.40  7.30  6.35  

Generic  -  9.00  -  14.19  -  -  5.34  

   

Note: Model type I is function of dbh, model II is function of dbh and height and the model type III is function of 

dbh, height and wood stock.  

  

The model type I, which was only based on dbh revealed an average deviation of 21.67 % for 

forest land whereas equations based on dbh for Brown et al. (1997) and Jose (2010) showed 

respectively 25.02 and 26.41 % of the average deviation from the observed above ground 

biomass. The same analysis was done with the model type II and III in comparison with the 

previous studies when dbh was not the only predictor. Model type III revealed an average 

deviation of 4.77 % for forest land whereas Chave et al. (2005) and Chave et al. (2015) 
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respectively presented 9.04 and 14.78 %. This confirmed the good performance of the model 

that could be used to estimate aboveground biomass at the stand tree level in the Sudan 

Savannah ecosystems in West Africa.  

  

3.3.6 Aboveground biomass stock at the basin level  

The mean biomass stock and attached standard error varied from 3.28 ± 0.31 to 204.92 ± 57.69 

Mg.ha-1 at 95 % confidence interval with the low (Mg.ha-1) biomass stock within the cropland 

and the highest (Mg.ha-1) biomass stock in plantation emphasizing the importance of mitigation 

strategy in the climate change debate. The large uncertainty of plantations can be explained by 

the differences in age structure as explained already. Since the land use data classification used 

could not separate between young and old cashew tree plantations we unfortunately have to 

deal with this high uncertainty. The biomass stock map was generated from the best equations 

obtained for each LUCa. The map in Figure 3.8 shows the LUC types and the biomass stock at 

the basin level. Information on uncertainty for biomass stock can be found in Table 3.17.   
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Figure 3. 8 The land use/cover classes and biomass stock at the basin level  

Note: The mean biomass stock was expressed in Mg.ha-1. The total biomass stock in each LUC is 

presented in Table 3.17  

  

  

  

  



 

 

  

Table 3. 17 Aboveground mean biomass stock (Mg.ha-1) and total biomass stock (Mg) with the sample plot data and attached 

uncertainty  

  Descriptive statistic   

LUC / LUCa  Range of Biomass  

 
min  

stock (Mg.ha-1)  

 
max  

Mean biomass stock in  
Mg.ha-1 and 

(S.E.)  

Percentage error 

(% error)  
Total biomass stocks 

(Mg)   

Forest land    340534.70 ±36445.4  

Riparian forest and woodland  76.29  120.22  94.58   (4.98)  (10.33)  32271.87±334.74  

Savanna Woodland  27.22  69.84   45.29    (2.51)  (10.89)   248050.22±27019.98  

Shrub Savanna  6.47  25.14  14.05   (0.72)  (10.11)  60212.61±6090.67  

 Grassland    349.66±68.81  

Savanna grassland   0.06  9.20  3.62    (0.36)   (19.68)  349.66±68.81  

 Cropland    26409.82±5024.04  

Cropland and Fallow  0.07  9.32  3.28    (0.31)  (19.02)  26409.82±5024.04  

  Settlements    2375.84±988.13  

Settlements  0.86  9.60  4.86   (1.03)  (41.59)  2375.84±988.13  

 Agroforestry    1132.73±584.46  

Cashew plantation  10.74  211.19  46.06   (14.40)  (61.28)  1132.73±584.46  

 Plantation    3138.20±1777.35  

Eucalyptus grandis  7.69  695.20  204.92  (57.69)  (55.17)  2819.78±1556.44  

Tectona grandis  32.41  232.75  162.00    (64.88)  (78.50)  145.80±114.46  

Azadirachta indica   64.45  240.53  179.62  (57.61)  (62.86)  129.33±81.30  

Gmelina arborea  10.39  34.39  25.17    (7.46)  (58.09)  43.29±25.14  



 

 

Note: The minimum (min) and maximum (max), the mean biomass stock and its stand error (SE), the confidence interval (CI) at 95 % with its percent error 
and the total biomass at each LUC type / LUCa were illustrated. The age of plantations and agroforestry system varied from 5 to 45 years old which explained 
the large percentage error obtained from their plots data. The area of each LUC was provided in Table 3.11 
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3.3.7 Carbon and nitrogen contents of dry matter of the main wood tree species  

The results of the carbon and nitrogen content of the stem wood samples of the main species 

of the basin in this Sudan Savannah environment are presented in Table 3.18. The species 

which had the high mean carbon fraction of dry matter and related standard error were 

Terminalia macroptera (49.43±0.24), Pterocarpus erinaceus (49.43±0.27), and Crosopteryx 

febrifuga (49.17±0.21). The species that exhibited the least carbon fraction was Combretum 

glutinosum (41.73 %) and the highest value was obtained with Acacia seyal (53.07 %). The 

estimated mean with attached standard error varied from 44.28±0.209 to 49.43±0.27. The 

overall mean or the mean of mean of the stem wood samples was 47.01±0.28 %. The obtained 

mean value is comparable to the IPCC (2006) default value of 47 %, when dealing with the 

Tier 1 approach.   

Vitellaria 

paradoxa 

Terminalia 

macroptera 

Terminalia 

avicennioides 

Pterocarpus 

erinaceus 

Parkia 

biglobosa 

Mitragyna 

inermis 

Lannea 

microcarpa 

Lannea 

acida 

Ficus 

sp. 

Entanda 

africana 

Crossopteryx febrifuga 

Combretum glutinosum 

Azadirachta indica 
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Anogeissus leiocarpa 

Acacia seyal 
Acacia gourmaensis 

  

Figure 3. 9 Boxplot showing the distribution of carbon content by tree species  However, 

our results revealed that some species have their carbon higher than 47 % and some carbon 

content lower than 47 % (Table 3.18 and Figure 3.9) and confirmed the relevance of using 

higher Tier for carbon accounting. This default IPCC (2006) values might over or under 

estimate the carbon stocks of the ecosystem or any land use category (LUCa).  

The main question to be asked was which default value to use 0.47 or 0.5 when using Tier 1 

for carbon accounting? The use of local data (Tier 3) in this study resulted in greater accuracy 

level (see Table 3.19 for uncertainty) in estimating carbon stock. In addition the greater number 

of samples size (277) for the estimation of carbon content helped to discover the uncertainty 

level of each default value applied for the mean biomass stock in each LUC type. The 

application of the default carbon content value of 0.5 to convert the mean biomass stock into 

the mean carbon stock for each LUC type, overestimated the mean carbon stock for all LUC 

types. The use of the default value of 0.5 resulted in overestimation of the mean biomass stock 

to the mean carbon stock by 5.52 % (for riparian forest and woodland), 6.54 % (for savanna 

woodland), 6.41 % (for shrub savanna), 8.21 % (for grassland), 7.6 % (for cropland and fallow), 

5.53 % (for settlements), 7.65 % (for agroforestry system) and 4.72 % (for plantation). The 

application of the coefficient 0.47 to convert the mean biomass stock to the mean carbon stock 

slightly overestimated biomass stock by 0.15 % (for savanna woodland), 0.54 % (for shrub 

savanna), 1.72 % (for grassland), 1.14 % (for cropland and fallow), and 1.19 % (for 
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agroforestry) and underestimated by 0.81 % (for riparian forest and woodland), 0.80 % (for 

settlements) and 1.55 % (for plantation).   

It can be concluded that the coefficient 0.47 despite it could not reach the higher level of 

accuracy in estimating carbon stock like the present case study can be used in the absence of 

the information about the carbon content of the in situ data from the main species of the region. 

Despite the fact that tree species varied considerably from one region to another for the 

previous studies the obtained carbon content ranged in the same order with other authors  

(Guendehou et al., 2012; Hughes et al., 1999; Andreae and Merlet., 2001; Lasco and Pulhin,  

2003; Feldpausch et al., 2004; McGroddy et al., 2004).   

The nitrogen content of the main species varied from 0.08 % to 0.58 %. The mean fraction of 

nitrogen in dry matter varied from 0.128±0.012 (SE) to 0.357±0.016 % (SE). The mean of 

mean fraction of dry matter nitrogen content was estimated to be 0.229±0.016 %. The species 

with high nitrogen content are Acacia seyal, Acacia gourmensis, Ficus sp, Entanda africana 

and Lannea microcarpa. The impact of human disturbance on these tree species could 

contribute to the high level of N2O emissions into the atmosphere explaining the high Global 

Warming Potential of this gas which is 298 times that of CO2.   

The C/N ratio ranged from 80.71 (minimum) to 570.05 (maximum). The mean C/N ratio for 

these species and related standard error ranged from 135.97±6.75 to 386.52±28.28. The C/N 

ratio was high for all tree species and confirmed thereby their terrestrial origin. C/N ratios in 

the range 4-10:1 are usually from marine sources, whereas higher ratios are likely to come from 

a terrestrial source (Gray and Biddlestone, 1973). Therefore, the C/N ratio serves as a tool for 

understanding the sources of sedimentary organic matter, which can lead to information about 

the ecology, climate and ocean circulation at different times in the Earth’s history (Ishiwatari 

and Uzaki, 1987).   
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Table 3. 18 Carbon (C) and nitrogen (N) content of dry matter of stem wood of the main species of the basin   

  

                                             n      Carbon (C) contents (% dm)  Nitrogen (N) contents (% dm)  DBH (cm)                 C/N ratio  

Trees species  

Terminalia macroptera  

  min  max  Mean  (SE)  min  max  Mean  (SE)  min  Max    min   max  Mean  (SE)  

19  46.267  51.241  49.474 (0.266)  0.108  0.303  0.192 (0.013)  9.3  40.7  160.50  428.39  281.81 (18.33)  

Terminalia avicennioides  03  47.971  49.759  48.70 (0.53)  0.155  0.181  0.168 (0.007)  16.6  24  265.03  312.16  289.96  (13.67)  

Acacia seyal  14  43.928  53.071  46. 50 (0.684)  0.13  0.583  0.290 (0.037)  7.6  34.4  80.71  357.6  194.24 (21.72)  

Acacia gourmaensis  02  47.55  48.09  47.824 (0.269)  0.297  0.349  0.323 (0.025)  13.4  19  160.11  137.80  148.95 (11.15)  

Combretum glutinosum  11  41.737  45.959  44.72 (0.438)  0.14  0.358  0.241 (0.020)  8  32  125.94  320.95  201.36 (19.15)  

Pterocarpus erinaceus  21  46.779  51.645  49.438 (0.278)  0.164  0.427  0.242 (0.014)  6.9  44.7  110.09  295.09  216.28 (10.63)  

Anogeisus leiocarpus  16  44.037  46.003  44.917 (0.167)  0.08  0.273  0.128 (0.012)  6.9  32.4  161.30  570.05  386.52 (28.28)  

Mitragyna inermis  18  44.978  47.74  46.724 (0.174)  0.177  0.354  0.243 (0.011)  7  34.5  129.46  262.19  199.40  (9.23)  

Lannea microcrapa   20  42.091  45.938  44.282 (0.209)  0.148  0.405  0.273 (0.015)  7  50.3  110.95  306.08  173.47  (11.14)  

Lannea acida  6  43.408  45.164  44.526 (0.248)  0.14  0.386  0.265 (0.035)  10.8  36  115.60  320.80  186.92 (30.61)  

Ficus sp  21  43.931  46.38  45.153 (0.139)  0.16  0.427  0.294 (0.015)  8.6  52.7  105.3  286.90  163.14 (9.83)  

Crosopteryx febrifuga  18  47.662  52.229  49.172 (0.217)  0.118  0.306  0.182 (0.014)  5.6  30.6  161.14  417.54  295.68 (20.50)  

Entada africana  15  45.852  48.377  47.098 (0.191)  0.242  0.475  0.357 (0.016)  8.4  27.6  100.09  196.18  135.97 (6.75)  

Parkia biglobosa  23  44.02  47.636  46.516 (0.214)  0.127  0.396  0.201 (0.013)  8.6  62.4  119.40  358.43  247.85 (12.35)  

Vitelaria paradoxa  22  45.972  50.032  47.942 (0.228)  0.13  0.337  0.228 (0.010)  8  60  136.41  367.23  220.11 (11.37)  

Azadirachta indica  16  47.253  52.999  49.005 (0.413)  0.104  0.302  0.177 (0.014)  8.8  50.5  162.43  474.64  302.38 (22.53)  

Anacardium occidentale  25  44.928  47.693  46.446 (0.138)  0.103  0.32  0.161 (0.011)  9.2  57.9  146   441.34  375.79  (17.58)  

Eucalyptus grandis  7  47.018  49.031  47.744 (0.350)  0.125  0.191  0.157 (0.011)  5.7  29.2  247.25  376.14  310.57 (21.94)  



 

 

Note: % dm = percentage of C and N in dry matter. n = Number of trees selected. The stem wood samples of selected trees were extracted at 1.3 m of the 

ground. DBH range = Range of diameter at breast height of sampled tree species. Figures in bracket represent the standard error (SE) of the mean    
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3.3. 8 Carbon and nitrogen stock at the basin level in 2013  

The results of this study found respectively a total of 175347.75 ± 21042.48 (CI) and 875.53 ± 

101.45 (CI) Mg of carbon and nitrogen stocks in 2013 at 95 % confidence interval. The mean 

carbon stock in Mg C.ha-1 and its standard error were 44.81±2.38 (riparian forest and 

woodland), 21.35±1.16 (savanna woodland), 6.57±0.35 (shrub savanna), 1.67±0.15 (savanna 

grassland), 1.52±0.14 (cropland and fallow), 2.30±0.48 (settlement), 21.39±6.68 (agroforestry 

system) and 97.83±27.55 (plantation). The carbon stock was higher in settlements than in 

cropland and savanna grasslands and confirms our observation in the field which tested that 

people aimed at planting trees within settlements. This human action confirmed the importance 

of the mitigation strategy to climate change in line with the implementation of Kyoto protocol. 

The analysis of the carbon stock in each LUC revealed that the carbon stock in riparian forest 

and woodland was higher than that obtained in the agroforestry system based cashew 

plantation. In fact despite the fraction of dry matter of stem wood of cashew plantation 

(Anacardium occidentale) which ranged from 44.928 to 47.693 % with a mean fraction of dry 

matter and its standard error of 46.446 ± 0.138 % its stock is lower than the riparian forest and 

woodland explaining the tree spacing within the cashew plantation which was an example of 

mixing crops and trees. The tree stock per hectare in cashew plantation was estimated at 300 

trees whereas it was 1397 trees per hectare in riparian forest and woodland. The amount of 

carbon lost when a patch of riparian forest and woodland was cleared for farming activity 

cannot unfortunately be completely compensated during the growth period of cashew 

plantation even if it has reached the climax. We evaluated this loss to be 23.42 Mg C.ha-1. 

Despite the loss, it is important to adopt agroforestry after riparian forest has been cleared to 

the detriment of cropland because in the absence of cropland the carbon stock lost is equal to a 

carbon stock of 44.81±2.38 Mg C.ha-1.   

  

Figure 3.10 shows the spatial distribution of carbon and nitrogen stock at the basin level.   



 

 

  

  

Figure 3. 10 Carbon and nitrogen stock at the basin level in 2013  

  

The analysis of the same results from Table 3.20 showed the mean nitrogen stock and related 

standard error ranged from 0.007±0.0067 (cropland) to 0.321±0.088 (plantation) Mg.ha-1 of N.   
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Table 3. 19 Mean Carbon stock (Mg C.ha-1) and total carbon stocks (Mg) with the sample plot data and attached uncertainty  

  

LUC / LUCa  

 Descriptive statistic   

Range of carbon stock (Mg C.ha-1)  

 
 min  max  

Mean carbon stock  

(Mg C.ha-1)  (S.E.)  

Percentage error  

(%  error)  

Total carbon stocks  

(Mg)  

 Forest land    159841.01±17094.11  

Riparian forest and woodland  35.46  57.27  44.81   (2.38)  (10.42)  15291.86±1593.81  

Savanna Woodland  12.50  31.90   21.25   (1.16)  (10.77)   116401.70±12539.08  

Shrub Savanna  2.76  12.22  6.57   (0.35)  (10.52)  28147.43±2961.21  

  Grassland    161.55±29.86  

Savanna grassland   0.03  2.98  1.67   (0.15)  (18.48)  161.55±29.86  

  Cropland    12272.24±2326.92  

Cropland and Fallow  0.03  4.33  1.52  (0.14)  (18.96)  12272.24±2326.92  

   Settlements    1125.66±466.99  

Settlements  0.41  4.57  2.30  (0.48)  (41.48)  1125.66±466.99  

    Agroforestry    442.91±271.41  

Cashew plantation  4.99  98.08  21.39     (6.68)  (61.28)  442.91±271.41  

  Plantation    1504.36±853.17  

Eucalyptus grandis  3.67  331.91  97.83  (27.55)  (55.19)  1346.27±743.14  

Tectona grandis  16.52  108.70  82.62   (33.09)  (78.50)  74.36±58.37  

Azadirachta indica   31.58  117.87  88.02   (28.23)   (62.86)  63.37±39.84  

Gmelina arborea  4.88  16.16  11.82    (3.50)  (58.06)  20.34±11.81  



 

 

Note: The minimum (min) and maximum (max), the mean carbon stock or emission factor and its stand error (S.E.), the confidence interval at 95 % with its 

percent error and the total carbon stocks at each LUC type / LUCa or activity data were illustrated. The age of plantations and agroforestry system varied 

from 5 to 45 years which explained the large percentage error obtained from their plots data. The area of each LUC was provided in the Table 3.11  
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Table 3. 20 Mean Nitrogen stock (Mg N.ha-1) and total nitrogen stocks (Mg) with the sample plot data and attached uncertainty  

 
  Forest land    740.37±85.05  

Riparian forest and woodland  0.170  0.285  0.212  (0.014)  (13.23)  72.41±9.58  

Savanna Woodland  0.045  0.160   0.096    (0.005)  (11.67)   530.79±61.97  

Shrub Savanna  0.008  0.064  0.032   (0.001)  (9.81)  137.16±13.46  

  Grassland    0.825±0.12  

Savanna grassland   0.0001  0.0178  0.0085  (0.0068)  (15.73)  0.825±0.12  

  Cropland    62.57±10.57  

Cropland and Fallow  0.00018  0.0252  0.0077  (0.0067)  (16.90)  62.57±10.57  

   Settlements    5.20±2.03  

Settlements  0.0017  0.0201  0.0106  (0.0021)  (38.99)  5.20±2.03  

  Agroforestry    1.53±0.90  

Cashew plantation  0.017  0.340  0.0741  (0.022)  (58.63)  1.53±0.90  

  Plantation    5.01±2.79  

  

LUC / LUCa   

Descriptive statistic   

Range of nitrogen  stock   ( Mg .ha - 1   of  N )   Mean nitrogen  stock   

( Mg . ha - 1   of N )   S ( . E . )   

Percentage error   

( %  error )   

Total nitrogen stocks   

( Mg )   min   max   



 

 

Eucalyptus grandis  0.012  1.091  0.321  (0.088)  (54.06)  4.42±2.39  

Tectona grandis  0.058  0.418  0.291  (0.115)  (77.61)  0.26±0.20  

Azadirachta indica   0.114  0.425  0.317  (0.101)  (62.64)  0.23±0.14  

Gmelina arborea  0.024  0.079  0.058  (0.017)  (58.05)  0.10±0.05  

 
Note: The minimum (min) and maximum (max), the mean nitrogen stock or emission factor and its stand error (S.E.), the confidence interval at 95 % with its 

percent error and the total nitrogen stocks at each LUC type / LUCa or activity data were illustrated. The age of plantations and agroforestry system varied 

from 5 to 45 years which explained the large percentage error obtained from their plots data. The area of each LUC was provided in the Table 3.11  
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 3.4  Conclusions  

The results from this study help to close the existing knowledge gap with respect to biomass, 

carbon and nitrogen stocks in the Sudan Savannah environment. The fitted generalized linear 

model equations fitted on local data can be useful for future scientific works in the Sudan 

Savannah environment generally populated by the determined main species in the present 

study. The estimation of above ground biomass, carbon and nitrogen stock in each land use 

cover category are of great importance for carbon balance calculations in the Sudan Savannah 

in West Africa. The work also provides a database in wood density of the main species of the 

Sudan Savannah zone, the related biomass expansion factor, the biomass, carbon and nitrogen 

stock in each land use cover class that would be an indispensable information tool for carbon 

accounting programme related to the implementation of the Kyoto Protocol and  

REDD+ initiatives in the Sudan Savannah environment.    

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  



 

77  

  

CHAPTER IV: DRIVERS OF LAND USE CHANGE AND MITIGATION 

STRATEGIES   

4.1  Introduction  

Rural households pursue a wide range of livelihood strategies in developing countries (Fang 

Haiyang, 2012). Some households diversify their livelihood strategies while others rely on one 

or more activities. The sustainable livelihood assets (SLA) framework first established by the 

Department for International Development (DFID) of the United Kingdom has been adopted 

by many domestic organizations and scholars since 2000. The concept of sustainable 

livelihoods is increasingly important in research about local and regional development, poverty 

alleviation, rural agriculture development and resource management. However, the level and 

degree of reliance on livelihood capital differ across households (Bebbington, 1999) and the 

impact on the environment is perceived differently. According to Fang and Haiyang (2012) 

livelihood stability would force the related policy to act co-ordinately while eradicating poverty 

and promoting resource sustainability. Factors that contribute to the economic reliance of 

households on a particular economic activity in general and on livelihood capital in particular 

may vary depending upon the type of resource endowment, household demographic and 

economic characteristics, as well as exogenous factors such as markets, prices, policies and 

technologies (Brown et al., 2006). In this regard, understanding factors that determine 

variations in choice in relation to household activity and, particularly, understanding the 

reliance of these choices on livelihood capital is essential for both conservation and 

development-targeted policies (Jonathan, 2000).  

The security and quality of the livelihood of farmers is of paramount concern in rural areas of 

Benin and especially in the Dassari Basin. Land use scenarios development and impact 

assessment on the future emissions of carbon dioxide and nitrous oxide cannot be well 
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understood without any particular attention on the livelihood of farmer’s communities of 

Dassari Basin who mostly depend on land resources.  

This chapter characterizes household’s agents based on factors that influence a household’s 

decision making and identifies the level of the mitigation strategy to climate change. In 

addition, the findings of the characterization were linked to the BEN-LUDAS model and used 

to parametrize the model.   

  

4.2  Geographic location and boundary of the study area  

Dassari Basin is situated in the North-West of Benin (Figure 4.1) and covers an area of 192.57 

km2. The site is located between latitudes 10°44’08’’ and 10° 55’ 42’’ North and longitudes 1° 

01’ 32’’ and 1°11’30’’ East.   
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Figure 4. 1 Geographic location of Dassari Basin in North-West of Benin (Field work, 2014)  
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1992 - 2002   2002 - 2013   

4.3  Socio-economic setting of the study site  

Benin Republic has 77 municipalities (administrative units). The West Atacora is part of  

North–West Benin with four municipalities, namely Materi, Tanguieta, Boukoumbe and 

Cobly. The Dassari site (Figure 4.1) got the name from Dassari village, which is one 

subcommune of Materi commune. This Dassari sub-commune comprises of more than 10 

villages and hamlets. The villages that belong to the catchment were taken into account for the 

socio-economic field investigation. Pattern of the population size of these four communes is 

presented in Table 4.1. Analysis of the population revealed an increment in population since 

the first assessment of the population in 1979 and the last one in 2013. According to INSAE 

(2013) the population growth rate of Materi commune was 1.69 per year, increase to 3.65 % 

and then decrease to 2.54 % during the periods 1972-1992, 1992-2002 and 2002-2013 per year 

respectively. This situation can be explained by migration as underlined by Sow et al. (2014).    

  

Table 4. 1 Population of West Atacora commune in Benin   Municipality Population of 

West Atacora  Population growth rate (%)  

 1979  1992  2002  2013  1979-1992  

Materi  46274  58516  83721  111003  1.69  3.65  2.54  

Tanguieta  27242  40430  54719  73731  2.86  3.07  2.69  

Boukoumbe  47049  58196  60568  83147  1.53  0.4  2.86  

Cobly  26796  38382  46660  68955  2.6  1.97  3.53  

 
Source: INSAE (2003; 2013)  

  

The analysis of the population growth of these communes from 1979 to 2013 shows an 

exponential increase (Figure 4.2). This population growth can have a negative impact on the 

socio-ecological system of the Dassari Basin such as the pressure on forest land, decrease of 

soil fertility and an increase of poverty.   
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Figure 4. 2 Population trends of West Atacora from 1979 to 2013 Table 4. 2 Projection of the 

population to 2,025  

Municipality  Population 

in 2013  

Population 

growth rate  ( Tx 

in %) 2002-2013  

Population 

trend 

equations  

Projection in  

2025 based 

on equations  

Projection 

based on Tx 

for 2025  

Materi  111,003  2.54  33,598e0.2983x  149,301  149,987  

Tanguieta  73,731  2.69  20,173e0.329x  104,517  101,388  

Boukoumbe  83,147  2.86  39,362e0.1748x  94,330  116,629  

Cobly  68,955  3.53  19,992e0.3031x  90,998  104,559  

X =1 time scale equal to 10 years  
Sources: INSAE (2013) provided raw data (Population in 2013 and population growth rate)  

  

The main activities in this area are agriculture and livestock. Farmer’s households represented 

98 % (RGPH, 2003) in the rural area, especially in the Dassari Basin. Regarding farming, 

women were involved in all the value chain of this activity, from ploughing to harvesting, i.e. 

women thus performed labour in all the processes of farming.    

  

4.4 Methodology  

The socio-economic data collection and analysis is illustrated through the flowchart (Figure  

4.3). The households’ agent’s characterization helped to determine the level of human impacts on 

the environment. The methodological approach is outlined as follows:  

 Systematic sampling (Sample size estimation, sample selection),   

  

Pop(Materi) = 33598e 0.2983 x 
  

R² = 0.9943   

Pop (Tanguieta) = 20173e x 0.329 
  

R² = 0.995   

Pop (Boukoumbe) = 39362e x 0.1748 
  

R² = 0.9226   

pop (Cobly) = 19992e x 0.3031 
  

R² = 0.9856   
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 Questionnaire administration,  

 Socioeconomic data collection and analysis,  

 PCA for the determination of the main factors affecting households agents,  

 Data analysis based hierarchical cluster following by K-mean cluster for the determination 

of the number of households group evolving in the farming in the basin using PCA scores,  

 Analysis based binary logistic model to estimate factors affecting adoption of agroforestry 

and plantation by households.  

  
Figure 4. 3 Flowchart showing the approach used for socio-economic data collection                     

and analysis  

  

4.4.1 Households sampling techniques  

This section is focused on the sampling design. The households sampling techniques was first 

based on the analysis of the population trend of Materi (Figure 4.2) commune on which Dassari 

(the pilot site) is one of the sub-communes. According to INSAE (2013) the proportion of the 

farmer’s households represented 98 % of the total households of the commune with a mean of 

7.4 persons per household. Based on this consideration this proportion was used to determine 
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the required number of households to be chosen for investigation or questionnaire 

administration.    

The following formula (Eq. 4.1) (United Nations, 2005) was used for the estimation of households 

sample size:   

  
Where:   
Nh is the parameter to be calculated and is the sample size in terms of number of households to be 

selected; z1-α/2 is the statistic that defines the level of confidence desired; here at 5% type I error (p<0.05) it 

is 1.96 p is the proportion of the total population accounted for by the target population (p=0.98); d is 

absolute error or precision (has to be decided by the researcher). 0.02 (2%) was chosen for d.   

  

Finally a total of 188 households were estimated based on the Eq 4.1. The entire questionnaire 

was administrated to 187 households. The list of farmers was obtained from the local institution 

for agricultural development. This list accounted for 510 farmers. The sampling interval was 

determined based on Eq 4.2.  

   

Where,  
k = Sampling interval,  
N = The total number of the farmers obtained from the list, (510 farmers) n 

= The sample size (188)   

  

The estimation of k was equal to 2.71 or 3. The starting point was determined by choosing a 

random number between 1 and 3. The random obtained was 2. Thus the first selected number 

in this list was 2, the second 5 and so on till the full selection of the 187 farmers or head of 

households. These 187 households were selected in 10 villages within 24 villages and hamlets 

of the basin. The plots of households were surveyed and georeferenced using GPS (Global 

Position System). A GIS database of upland crops, agroforestry systems and plantations was 

constructed and mapped (Figure 4.4).  
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Figure 4. 4 Locations of surveyed holding plots in the study area  
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4.4.2 Methods for categorizing household agents   

a. Concept of sustainable livelihoods framework    

According to DFID (Department for International Development) (2000) livelihood strategies 

comprise the range and combination of activities and choices that people make/undertake in 

order to achieve their livelihood goals. It should be understood as a dynamic process in which 

people combine activities to meet their various needs at different times. In the past most efforts 

have been geared towards application of the sustainable livelihood framework in diverse 

geographical and sectoral settings (Ellis et al., 2003; Ellis and Biggs, 2000; Hussein,  

2002; Bebbington, 1999; Baumann, 2000; Beall and Kanji, 1999; Turton, 2000; Hobley and 

Shields, 2000).   

The livelihood framework includes five core asset categories: human, social, financial, natural 

and physical capital (DFID, 2000; Campbell et al., 2001). Odero (2002) proposed an extension 

to the sustainable livelihoods framework by introducing a sixth asset, information capital which 

was not assessed in the present study.   

Within these assets, human capital is perhaps the most important factor (Chivaura and 

Mararike, 1998; Odero 2002) for the fact that people are both object and subject of 

development. A feedback loop to the household’s organization in the Dassari Basin confirms 

this assertion. A new household generates the value of two persons for labour availability 

(household head and wife) at the time of marriage and this number is increasing as soon as the 

household head gets children or an additional wife. Thus, the livelihood approach states that 

the type of activity undertaken and the amount of income earned by a household is a function 

of the assets at its disposal (Barrett et al., 2005; Brown et al., 2006; Fang and Haiyang, 2012).   

  

  

b. Statistical analyses for discovering grouping criteria and agent groups  
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Principle Component Analysis (PCA) for characterizing household’s agents  

Principal component analysis is a powerful tool for reducing a number of observed variables 

into a smaller number of artificial variables that account for most of the variance in the data set 

(Kim and Mueller, 1978; Cattell, 1966; Stevens, 1986). With a large number of variables, the 

dispersion matrix may be too large to study and interpret properly. There would be too many 

pairwise correlations between the variables to consider. Thus, graphical display of data may 

also not be of particular help with the obtained 19 variables. To interpret the data in a more 

meaningful form, it is therefore necessary to reduce the number of variables (19) to a few, 

interpretable linear combinations of the data assuming that the relation between variables is 

linear. The variable were centred and scaled prior to the PCA.  

The general form for the formula to compute scores on the first component extracted (created) in 

a principal component analysis was as followed:  

  

𝑃𝐶1 =  𝑏1𝑋1 + 𝑏2𝑋2 + ⋯ … … +. 𝑏𝑃𝑋𝑃                                                  (4.3)   

Where:  
PC1 = the subject’s score on principal component 1 (the first component extracted)  
 b1 …. bp = the regression coefficient (or weight) for observed variable p, as used in creating principal component 

1   
Xp = the subject’s score on observed variable, Xi. is i = 1, …., p.  

  

  

Each linear combination corresponded to a principal component.    

Four criteria were used to determine the number of meaningful components for interpretation: 

the eigenvalue-one criterion, the scree-test, the proportion of variance accounted for and the 

interpretability criterion. The eigenvalue-one criterion, also known as the Kaiser criterion 

(Kaiser, 1960) was used to retain and interpret any component with an eigenvalue greater than 

1.00. The first six retained component have their eigenvalue higher than 1.00.   
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With the scree-test (Cattell, 1966) approach the eigenvalue associated with each component 

was plotted and a “break” between the components with relatively large eigenvalues and those 

with small eigenvalues were observed. The components that appear before the break are 

assumed to be meaningful and are retained for rotation; those appearing after the break are 

assumed to be unimportant and are not retained. According to the proportion of variance 

accounted for; the cumulative percent of variance of components accounted for at least 70 % 

were retained. Once the components were selected based on the three outlined criteria, we now 

observed each component and found if:  

• Each of them used the minimum of three variables with meaningful loadings,   

• The variables that load on a given component shared the same conceptual meaning,  

• The variables that load on different components measured different constructs?  

• The rotated factor pattern demonstrated “simple structure”.  

  

K-Mean clustering analysis (KCA) using PCA  

The cluster analysis (Duda et al., 2000; Hastie et al., 2001; Jain and Dubes, 1998) attempts to 

pass through data quickly to gain first order knowledge by partitioning data points into disjoint 

groups such that data points belonging to same cluster are similar while data points belonging 

to different clusters are dissimilar. One of the most popular and efficient clustering methods is 

the K-means method (Chris and Xiaofeng, 2004; Hartigan and Wong, 1979; Lloyd, 1957; 

MacQueen, 1967; Jain and Dubes, 1998; Wallace, 1989) which uses prototypes (centroids) to 

represent clusters by optimizing the squared error function. They are determined by minimizing 

the sum of squared errors (Chris and Xiaofeng, 2004).  

The cluster analysis was run using the five factors identified in the PCA in the aim to avoid 

collinearity. Thus, hierarchical cluster was first run using the five factors of the PCA as input.  
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The results from hierarchical cluster were used to run k-mean cluster. The number of clusters 

determine in the hierarchical cluster is equal to k in k-mean cluster.    

When running k-mean cluster the k means the household’s agents groups.   

Equation 4.3 was used to determine household agent groups based on the PCA results:   

  

Where (x1, · · ·, xn) = X is the data matrix and mk = Pi∈Ck xi/nk is the centroid of cluster Ck and nk is the number 

of points in Ck.  

  

From the 28 variable collected within the households, some of them revealed that there are 

household which were only focused on food production, most of them used cotton production 

as financial option and in other ways some farmers applied agroforestry or plantation in their 

plots.   

  

4.4.3 Binary logistic regression model to estimate the likelihood of adoption of mitigation 

strategies  

  

The willingness to adopt mitigation strategy to climate change by households was estimated 

based on binary logistic regression model analysis. The model was constructed by an iterative 

maximum likelihood procedure using SPSS 17 package.   

  

Where i denotes the i-th observation in the sample, Pi is the predicted probability of adoption, which is coded with 

1 (willingness to adopt) or with 0 (not to adopt), ßï is the intercept term, and ß1, ß2, ..., ßk are the coefficients 

associated with each explanatory variable X1, X2, ...Xk.  
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4.5  Results and discussion  

4.5.1 Land use decision drivers, model of farmers decision making and mitigation strategies at 

the farmer’s field scale  

Conceptual model of farmers decision making and drivers of land use change  

The results from questionnaire administration were used to establish the farmers’ decision 

making. The main driving forces outlined from this survey revealed some drivers of land use 

in the basin. The broad categories of driving forces have been identified (Figure 4.5) using the 

combination of answers provided from farmers and experts from local agricultural 

development programmes. These driving forces allowed the determination of the demographic 

change which was a function of population growth explained by an increase of natality and an 

increase of the size of households. The demographic change was also explained by migration 

of young households who moved sometimes from the Materi commune to Nigeria 

(neighbouring country).   

  

Figure 4. 5 Flowchart showing drivers of land use and model of farmers’ decision making  
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4.5.2 Identification of typological agent groups  

a. PCA (Principal Component Analysis) for discovering household agents group The 

results of PCA for deriving the households typology showed five components with initial 

eigenvalues higher than 1.0 (Table 4.3). The five components which were used to determine 

the household agents group explained 75.083 % of the total variance of original variables.   The 

rotated Component Matrix (i.e. loadings or the regression coefficient b or weight for observed 

variable) using Varimax rotation method and Kaiser Normalization of first five principal 

components allowed a better understanding of what each component meant.  The first 

component is strongly related to holding cotton (b = 0.970), subsidy fertilizer  

(b=0.970) and income (b = 0.728).   

Table 4. 3 Total variance explained by extracted components, using Principal Component 

Analysis (PCA) as the extraction method  

Comp Initial Eigenvalues  Extraction Sums of  Rotation Sums of Squared  

onent  Squared Loadings  Loadings  
Total % of Cumulat Total % of Cumulat Total % of Cumulati Varian ive % Variance ive % Varian 

ve %  
 ce  ce  

 
1 5.457  34.106  34.106  5.457  34.106  34.106  3.103  19.393  19.393  

2 2.449  15.304  49.410  2.449  15.304  49.410  2.986  18.665  38.058  

3 1.747  10.920  60.330  1.747  10.920  60.330  2.904  18.150  56.208  

4 1.346  8.413  68.742  1.346  8.413  68.742  1.624  10.153  66.361  

5 1.014  6.340  75.083  1.014  6.340  75.083  1.395  8.722  75.083  

6 0.960  5.998  81.081                    

7 0.927  5.793  86.874                    

8 0.643  4.021  90.895                    

9 0.540  3.373  94.268                    

10 0.427  2.666  96.934                    

11 0.332  2.074  99.008                    

12 0.134  0.837  99.845                    

13 0.025  0.155  100                    

14 0.000  0.000  100                    

15 0.000  0.000  100                    

16 0.000  0.000  100                    
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This component had a contribution of 34.10 % for the total variance of the original dataset and 

confirms the importance of cotton production in the site. Infact, the results from interview revealed 

that cotton production was mostly used by the farmers of the basin. Infact, this crop contributed 

to the high pressure on the land and lead to the high deforestation rate. The component was named 

holding cotton.    

The second component (PC2) is most weighted by upland crop (b=0.927), income from upland 

crop (b=0.921) and total holding (b=0.745). We choose to call this component holding upland 

crop factor which has 15.3% of the total variance of the variables.   

  

Table 4. 4 Rotated Component Matrix (i.e., loadings) using Varimax rotation method and 

Kaiser Normalization of first five principal components  

   

 Variables  

Principal Components     

Holding 
cotton  
factor  

(34.1%)  

Holding up 
crop  
factor  

(15.3%)  

Labour 
factor  
(10.92%)  

Mitigation 

factor 

(8.41%)  

Education 

factor 

(6.34%)  

1  2  3  4  5  

Household age (Hage)  -0.172  0.070  0.430  0.253  -0.582  

Household size (Hsize)  0.131  0.184  0.819  -0.010  -0.031  

Household Education (Hedu)  0.126  0.019  -0.163  0.068  0.776  

Household sex (Hsex)  0.472  0.387  0.052  -0.011  0.196  

Household leader (Hlead)  -0.086  0.177  -0.325  -0.274  -0.419  

Household labour (Hlabour)  0.137  0.157  0.926  0.027  -0.104  

Household holding (Hhold)  0.540  0.745  0.207  0.271  0.018  

Household income (Hincome)  0.728  0.590  0.207  0.131  0.013  

Household subsidy (Hsub)  0.970  0.073  0.124  0.064  0.089  

Household hold cotton (Hcot)  0.970  0.073  0.124  0.064  0.089  

Household hold upcrop (Hupcrop)  0.072  0.927  0.193  0.136  -0.068  

Household hold agroforestry 

(Hagro)  

0.052  0.252  -0.038  0.705  -0.008  

Household hold plantation 

(Hplant)  

-0.048  0.171  0.147  0.768  0.315  

Household income from crop 

(Hincrop)  
0.116  0.921  0.149  0.115  -0.072  

Household income from 

livestocks (Hliv)  

0.137  0.157  0.926  0.027  -0.104  

Households income from other 

activities (Hoth)  

-0.214  0.053  0.023  -0.511  0.304  
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Notes: - Numbers in parenthesis are percentages of total variance of original variable set explained by the 

principal  components. - Bold numbers are the high loadings, indicating most important original variables 

representing the principal components.  

  

The component 3 (PC3) is weighted by labour (b=0.926), income from livestock (b =0.926) and 

household size (b=0.819). The component represented 10.92 % of the variance of all variables and 

was named labour factor.   

The principal component 4 (PC4) is linked to the variable holding plantation (b = 0.768) and 

holding agroforestry system (b=0.705). This component explained 8.41 % for the variance of 

the original dataset. The component is named mitigation strategies.  

The component 5 (PC5) is weighted by the variables education (b = 0.776) and age (b = 0.582) 

with a contribution of 6.34% to the variance of the original dataset. This component was called 

education factor.   

The statistics of the key categorical variables were used to determine the pattern of each household 

group using the most variables characterized by various factors. (Table 4.5).   

  

b. Livelihood typologies of household agents  

Three types of households were determined based on the results from hierarchical and kmean 

clustering procedures.   

Household type 1: Group of farmers with cotton production based  

The first group (I) of farmers was identified based on holding cotton factors and education. 

This group of farmers is characterized by the variables income, holding cotton, subsidy, 

education, age and leadership. The group (Table 4.5) was characterized by the mean holding 

cotton of 2.73 ha with 1 and 7 ha for minimum and maximum respectively. The mean holding 

cotton of this group is 1.16 and 3.69 times higher than the mean holding cotton of group II and 

group III respectively. In contrast, the labour availability of group I was 1.24 and 1.07 times 

lower than the labour availability of group II and group III respectively. We can conclude that 
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this group have the revenue for farming activity and doesn’t only rely on labour availability. 

This group of farmers used mechanization for ploughing their holdings. The group represented 

46 % of the whole population.   

  

Household type 2: Mitigation and multi crop production group of farmers  

The group II or the group of famers with multi crop production represented only 5.34 % the 

total number of the households. The farmers of this group have the ability to adopt mitigation 

strategies to climate change.   

  

Household type 3: Group of poor farmers  

This group is the most important in the basin. It represented 48.66% of the total number of the 

farmers. The mean upland crop is equal to 3.32 ha whereas the lower upland crop is less than 

1 ha. The households of this group had developed livelihood based food production rather than 

cotton production.   

  

Table 4. 5 Descriptive statistics for 5 key categorizing variables for each classified agent 

group   

 
Categorizing variable  Househ N  Mean  S.E.  min  max olds groups  

 
Labour availability (Hlabor)  I  86  4.89  0.30  2  18  

 II  10  6.1  0.86  4  12  

 III  91  5.25  0.28  2  14  

Holding cotton (Hcotton) in ha  I  86  2.73  0.14  1  7  

 II  10  2.35  0.31  1  4  

 III  91  0.74  0.08  0  3  

Holding upland crop (Hupcrop) in ha  I  86  3.48  0.19  0.75  10.5  

 II  10  5.47  1.09  1  12  

 III  91  3.32  0.22  0.65  11.5  

Holding agroforestry (Hagro) in ha  I  86  0.03  0.01  0  1  
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 II  10  1.17  0.24  0  2  

 III  91  0.02  0.1  0  1  

Holding plantation (Hplant) in ha  I  86  0.02  0.009  0  0.5  

 II  10  0.72  0.18  0  1.7  

 III  91  0.008  0.006  0  0.5  

Annual gross income in (1000 CFA)  I  86  507.821  27.321  101.250  1234.000  

 II  10  1062.688  169.593  392.500  2207.000  

 III  91  920.582  48.581  281.395  2382.000  

 
Note: N = The number of households, the mean of the variable, the related standard Error (S.E.), the minimum 

and the maximum in each agent group  

  

4.5.3 Mitigation strategy at the farm level  

The farmers of Dassari Basin still have little knowledge on the mitigation strategy to climate 

change. The analysis of the socio-economic and field investigation revealed that only 7.48 % 

of farmers adopted agroforestry system (cashew plantation) in combination with cropping 

system in their holding. The size of agroforestry system varied from 0.2 (minimum) to 9.9 

(maximum) ha with a mean of 1.57 ha.   

Plantation, mainly Eucalyptus plantations was planted by 8.55 % of farmers. The mean size of 

plantation was 2.26 ha. In contrast to the adoption of agroforestry, Eucalyptus plantation was 

planted between 1988 and 1992 as a result of a project which involved farmers. Thus, the age 

of Eucalyptus ranged from 20 to 25 years. The Eucalyptus plantation represented 97.89 % of 

the total area of plantations of the basin. The remaining plantations were mango trees (about 

35 years), teak or Tectona grandis (about 18 years) and Gmelina arborea (about 5 years). Due 

to the high proportion of Eucalyptus plantations, future analysis focused on its carbon 

sequestration for developed scenarios. Thus the carbon and nitrogen content, and the carbon 

stock of this plantation were estimated to assess the impact of mitigation based plantation to 

climate change at the basin level.   
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The investigation to test the level of the adoption of mitigation strategies to climate change 

(Table 4.6) showed that 17.6% of farmers have no intention to adopt neither agroforestry nor 

plantation in their farm land whereas 66.4% would rather adopt agroforestry than plantation.  

In the same order 15.5 % would like to adopt plantation than agroforestry system.  Table 

4. 6 Statistics on the adoption of mitigation strategies  

   Adoption of plantation (%)  

No  Yes  

Adoption of agroforestry (%)  No  17.6  15.5  

 Yes  66.4  0.5  

  

  

Table 4. 7 Estimated parameters of factors affecting agroforestry adoption  

   

Variables  

  

Annotation  

Coefficient  Standard 

error  

Wald  

statistic  

Significance 

.  

Constant  β0  1.56  0.66  5.52  0.02  

Age  X1i  -0.01  0.01  0.80  0.37  

Size  X2i  0.02  0.05  0.20  0.66  

Education  X3i  -0.61  0.38  2.61  0.11  

Sex  X4i  -0.04  0.45  0.01  0.92  

Labour  X5i  0.03  0.09  0.12  0.73  

Total Holding  X6i  1.39  1.05  1.76  0.19  

Holding cotton  X7i  -1.35  1.06  1.64  0.20  

Holding cropland  X8i  -1.50  1.06  1.99  0.16  

Holding agroforestry  X9i  -2.66  1.42  3.53  0.06  

Chi -square (df = 8) = 8.360  
(-2) Log likelihood = 221.724  

Accuracy of prediction overall (%) = 72.2  
Nagelkerke R2 = 0.12  

  

The positively significant coefficient of total holding indicates its positive influence on 

agroforestry adoption which was as presumed. The coefficient of holding agroforestry was 

negatively significant, which implies that the older the farmers, the less the probability of 

adopting agroforestry. The level of the adoption of agroforestry is also functional linked to the 

land tenure or total holding (Table 4.7) and the previous status of holding agroforestry.  

Farmers who have high value holding tend to devote a piece of their land to agroforestry.   
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Table 4. 8 Estimated parameters of factors affecting plantation adoption  

Variables  Annotation  Coefficient  Standard 

error  

Wald  

statistic  

Significance  

Constant  β0  -1.28  0.84  2.35  0.13  

Age  X1i  -0.01  0.02  0.44  0.51  

Size  X2i  0.03  0.07  0.21  0.65  

Education  X3i  0.78  0.48  2.61  0.11  

Sex  X4i  -0.36  0.57  0.40  0.53  

Labour  X5i  -0.01  0.11  0.01  0.90  

Total holding  X6i  0.04  0.71  0.00  0.96  

Holding cotton  X7i  -0.24  0.74  0.10  0.75  

Holding cropland  X8i  -0.08  0.73  0.01  0.91  

Holding plantation  X9i  -0.66  1.95  0.11  0.74  

Chi -square (df = 8) = 7.83  
(-2) Log likelihood = 159.146  

Accuracy of prediction overall (%) = 84  
Nagelkerke R2 = 0.05  

  

  

In the same order, subsistence oriented small farmers are highly risk averse to adopt plantation 

(Table 4.8) due to limited holding. The model was able to explain 12 percent relationship 

between the variables and the adoption probability and 72 percent of the sample cases correctly 

(Table 4.7) in adopting agroforestry system. Educated farmers tend to adopt plantation than 

non-educated farmers (Table 4.8).   

In general, farmers were more willing to adopt agroforestry than plantation because it was 

possible to combine crop and agroforestry based cashew plantation in the same land during a 

time scale of 10 years.   

  

4.6 Conclusions  

The households of the Dassari Basin are driven by a broad range of factors which compromise 

their livelihoods and impacted environmental conditions. The main factors which involved the 

farmers’ decision making are population growth, high production of cotton based subsidy with 

fertilizers, farming based mechanization, the protection zoning area, the variability in rainfall 
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pattern and drought with dry skew and soil suitability. Population growth can lead to pressure 

on the land if the trend continues and the rate of migration doesn’t change.   

  

  

  

  

  

  

CHAPTER V: ECOLOGICAL DYNAMICS OF HETEROGENEOUS 

LANDSCAPE AGENTS IN THE DASSARI BASIN  

  

5.1  Introduction  

The role of land-use in global environmental change requires historical reconstruction of past 

land-cover conversions and/or projection of likely future changes (Stéphenne and Lambin, 

2001), with component processes and stated variables that may change rapidly in space and 

time (Beven and Kirkby, 1979). In the context of human ecological system modelling, the 

priority should be given to formulate and approve ecological processes that play important 

roles in building human-environment relationships (Le, 2005). Therefore, modelling the 

dynamics of ecosystem through forest yields and forest conversion due to natural and human 

disturbance becomes relevant to the representation of the complexity of the LULCC process. 

According to Le (2005) the major assumption of ecological dynamics of heterogeneous 

landscape agents is that different landscape patches have different potential productivities 

(forest yields) in response to natural conditions and human interventions.   

This chapter attempts to explain the complexity of the basin and the related environmental and 

biophysical characteristics through the following specific objectives:  

1. Estimate the historical rate of changes and trajectory in LULC of the basin,  
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2. Characterize the heterogeneity and biophysical characteristics of landscape agents and,  

3. Formulate and calibrate ecological sub-models (i.e. forest yield and natural transition) of 

landscape agents.  

  

  

  

  

  

  

5.2  Bio-physical characteristics  

5.2.1 Climate  

Long-term (1952-2010) minimum temperature of Natitingou station located 50 km from the site 

showed daily minimum temperature range from 15.25 to 25.08 ºC, with an average of  

20.53 ºC. In the same order, the observed daily maximum temperature ranged from 26.63 to 

39.27 ºC, with a mean temperature of 32.59 ºC. The observed trend line of these minimum and 

maximum temperatures during this period showed a positive slope of 0.0017 and 0.0023, 

respectively.   

Long-term (1971-2013) mean monthly precipitation for Tanguieta station (15-20 km from the 

study area) is 87.5 mm.  

The standardized precipitation index (SPI), developed by McKee and Kleist (1993), showed 

two periods, 1978-1979 and 1985-1986 of extreme drought with some years of moderate to 

severe droughts during the 42 years of observation.   

  

5.2.2 Soil types  

The basin is characterized by six soil types (Figure 5.1). These soil types are namely 

hydromorphic ferruginous soil on plate schist, ferruginous indurate soil on colluvium material, 
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ferruginous indurate soil on tablet schist, hydromorphic mineral soil, brute mineral soil on 

breastplate and little developed soil on alluvium-colluvium material.   

GIS tools were used to sum the area of all polygons that belonged to a soil class by estimating 

the area of these soils type. The ferruginous indurate soil on tablet schist covered a total of 

75.43 % of the total area of the basin. The maximum cropping area was growing within this  

soil type.   
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Figure 5. 1 Soil types of the study area  
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5.3  Methodology  

The ecological dynamics of the basin involves its complexity related to environmental and 

biophysical characteristics. The Landsat ETM+ was used to estimate deforestation rate from 

2001 to 2013. The deforestation rate is the main important input for simulating land use/cover 

change between two periods. In addition to the land use map, the biophysical characteristics of 

the basin (dealt in this chapter) and the sub-models from the chapter 3 were integrated in the 

BEN-LUDAS model.  

  

5.3.1 Methods for the classification of Landsat ETM+ of 2001  

a. Data source  

The Landsat 7 ETM + (Enhanced Thematic Mapper plus) was downloaded from  

http://glcf.umd.edu/index.shtml. The path-row 193-52 scene of 2001/10/20 was used based on the 

criterion defined in Section 3.2.1.1.   

  

b. Classification based Landsat 7 ETM+ key interpretation  

The classification of the scenes was mainly based on the key interpretation of Landsat 7 ETM+. 

Utility of each important selected band (1, 2, 3, 4 and 5) for this study is presented in Table 

5.1.   

The analyses of colour composite based on these criteria identified some features within the others 

(Figure 5.1). Thus:  

 For the true colour rendition, band 1 was displayed in the blue colour, band 2 was 

displayed in the green colour and band 3 was displayed in the red colour. The resulting image 

was fairly close to realistic and there was little contrast and features in the image, which were 

hard to distinguish;   
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 For the false colour, band 2 was displayed in blue, band 3 was displayed in green, and 

band 4 was displayed in red. This rendition looks rather strange vegetation, which jumps out 

as a bright red because green vegetation readily reflects infrared light energy;  

  

  

Table 5. 1 Application domain of each selected band for images classification of 2001  

 
Bands  Electro magnetic    
 Spectrum  (EMS)  Application domain   

And Band width ( , µm)  

 
1  Blue light  

(0.45-0.515)  

This band penetrates clear water better than other colours. It is 
absorbed by chlorophyll, so plants not show up very brightly in 
this band; useful for soil/vegetation discrimination, forest type 
mapping, and identifying man-made features  
  

2  Green light (0.525-0.605)  This band reflects more green light than any other visible colour; 
man-made features are still visible  

  

3  Red light (0.63-0.69)  It has limited water penetration; reflects well from dead foliage, 
but not well from live foliage with chlorophyll; useful for 

identifying vegetation types, soils and urban (city and town) 
features  

  

4  Near IR (NIR) (0.75-0.90)  A good band for mapping shorelines and biomass content; very 
good at detecting and analysing vegetation  

  

5  Shortwave IR  

(SWIR)  
(1.55-1.75)  

This band provides a good contrast between different types of 

vegetation; useful for measuring the moisture content of soil and 

vegetation  

 
Source: Landsat 7 ETM+ handbook (images were downloaded via GLCF:  
http://www.landcover.org/index.shtml)   

  

In the pseudo natural colour, band 2 was displayed in blue, band 4 was displayed in green, and 

band 5 was displayed in red. This rendition looks like a jazzed up true colour rendition - one 

with more striking colours.  

Different features presented various patterns from one colour composite to another. The 

crossing of information lead to the discrimination of two to three features (Table 5.2). In 

addition, four main criteria were defined and added to perform the analysis. These criteria were 

based on the mountainous area, the rivers, restricted areas like private area under protection 
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(farm of ostrich in Dassari) and the specific location of tree species like Terminalia macroptera. 

The discrimination of various land cover such as riparian forest and woodland, savanna 

woodland, shrub savanna and grassland was based on the use of gradient colour (from high to 

fairly). During the forest inventory, the field observations revealed the location of Terminalia 

macroptera in the area with high soil moisture content. To confirm the observation plots 

coordinates where 100% of this species appeared were selected and projected and recognized 

as woodland or wetland vegetation (Table 5.2) if dark red colour appeared when using false 

colour composite.  

  

Table 5. 2 Criterion for discriminating different land use / cover of 2001 in the study area  

Ground Cover Type  In Natural Colour (3,2,1), 

appears:  

In False Colour: 

(4,3,2), appears:  

In Pseudo Natural 

Colour (5,4,2), 

appears:  

Trees and bushes  Olive Green  

  

Red  Shades of green  

Crops  
Medium to light green  

  
Pink to red  Shades of green  

Wetland Vegetation  Dark green to black  Dark red  Shades of green  

Water  
  

Shades of blue and green  
Shades of blue  Black to dark blue  

Urban areas  

  

White to light blue  

  

Blue to gray  Lavender  

Bare soil   White to light gray   Blue to gray  
Magenta, Lavender, 

or pale pink  

Source: Landsat 7 ETM+ handbook. The information from this table provided keys indicators for the classification of 

the images for this work.  

  

In summary, a visual inspection of natural colour, false colour and pseudo natural colour (Table 

5.2) representation of the Landsat scene has been used to identify training areas of each feature 

(land use/cover class) in these colour composites. The training area was finally generated using 

the previous approaches. The supervised classification using maximum likelihood 

classification was performed.   
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Figure 5. 2 Colour composite of Landsat 7 ETM+ bands  

  

  

c. Accuracy assessment of land use map of 2001  

The accuracy assessment indices used were described in Section 3.2.2.1. The selected sample 

points for accuracy assessment were historical google earth images (2006) based. The points 

from land use classes such as riparian forest and woodland, savanna woodland, shrub savanna 

and grassland savanna were located in the specific areas such as mountains and strict protected 

zone for the fact that the classified Landsat ETM+ was from 2001 and the available high 

resolution google earth pro images was for 2006. In addition, we assumed that in terms of 
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ecological dynamics of the ecosystem in the mountainous area there is no significant change 

between 2001 and 2006 in the Sudan Savannah environment. The cropland was easily 

discriminated using the colour composite approach (Figure 5.1) and band 5 of Landsat ETM+. 

The chosen settlement points were based on the socio-economic information, i.e coupled 

information between the building date of churches and schools of the site and the overpassing 

date of satellite sensor. The overall accuracy and kappa index (Gómez and Montero, 2011) 

have respectively shown 0.75 and 0.70 acceptable to retain the results of the classification.   

  

d. Reclassification of land use/cover map  

The reclassification of the land use map used the same approach for 2013 in Section 3.2.2.2. 

However, the area of roads has been enlarged from 2001 to 2013. The socio-economic 

information gathered in the field revealed an increase of the size of the roads due to the 

development of the main roads. For example the main road from Benin-Burkina Faso was not 

bitumenous in 2001. To overcome this constraint, buffer zone of 12 m was applied as default 

to delineate the size of this road along Wantehou and Pouri villages (Figure 4.1). The overlay 

of agroforestry and plantation that were surveyed during the field work (2013) to the classified 

map was based on the historical planting date. Infact, when each agroforestry and plantation 

was surveyed with GPS and sometimes with the support of Rapid Eye high resolution image 

(0.5 -2 m resolution) the planting date was given by the owner of this agroforestry or plantation. 

The chosen layers from these agroforestry and plantation was based on the assumption that the 

tree must have a minimum of 5 years before the passing date of Landsat ETM+ sensor, i.e a 

minimum of 17 years in 2013. The agroforestry and plantation that responded to this query 

were extracted and overlaid to the land use map of 2001. We also assumed that plantations less 

than 5 years old do not contribute so much to the carbon sequestration.   

e. Change detection method  
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A number of the image analysis approaches to change detection can be referred to as linear 

techniques, meaning that land cover change at each image location is associated with some 

linear transformation of a bi-temporal spectral vector (Collins and Woodcock, 1996). Classified 

maps for 2001 and 2013 were compared quantitatively by change matrix and also qualitatively 

by evaluation of spatial change map. The image difference rows calculated for each class was 

obtained from Eq. 5.1 (Erener et al., 2012):   

  

Where;   
Idfr is image difference rows for each class, FCT is the final class total in pixel count, ICT is the initial class total 

in pixel count.   

5.3.2 Methods of landscape characterization  

The bio-physical characteristics of the study site are the main inputs into the BEN-LUDAS 

model. These bio-physical characteristics nourish the dynamics of ecosystems within the basin. 

The upslope contribution area for the patch is a proxy for soil nutrient accumulation. The 

elevation (m) at the patch location is used to derive surface slope (degree) at the patch location. 

This index is a profound indicator for soil erosion risk. The wetness index (a positive 

coefficient) at the patch location is a good proxy for indicating soil moisture content (Sørensen 

et al., 2006; Wilson and Gallant, 2000).   

  

a. Upslope contributing area   

Upslope area (PAs), is defined as the total catchment area above a point or short length of 

contour (Moore et al., 1991; Tarboton 1997). It is a distributed quantity that has important 

hydrological, geomorphological, and geological significance (Costa-Cabral and Burges, 1994). 

Upslope area is commonly used for the automatic demarcation of channels relying on the 

notion of a critical support area (O’Callaghan and Mark, 1984; Jenson and Domingue, 1998; 
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Morris and Heerdegen, 1988; Lammers and Band, 1990; Tarboton et al., 1992; Martz and 

Garbrecht, 1992).   

For a grid cell i of a DEM, PAs is computed from the grid cells from which the water flows into 

the cell i:  

  

Where, Ai is the area of the grid cell i, n is the number of cells draining into the cell i, ρi is the weight depending on 

the runoff generation mechanism, and b is the contour width approximated by the cell size.  

  

The mapping of upslope contributing area in ArcGIS 10.1 software was first based on the 

delineation of flow direction as input for flow accumulation. Once the flow accumulation was 

known the upslope was derived.  

  

b. Soil suitability index for agriculture  

The soil suitability for agriculture influences the farmer’s decision choice in the basin. Within 

the six soil types of the catchment, the level of their suitability to agriculture varies each from 

other. To express this constraint as the variable, which characterize the basin based suitability 

index, the logarithmic function of the suitability based on expert judgment was calculated.  

The level of suitability was classified (from 1 not suitable, to 6 highly suitable to agriculture).   

  

c. Topographical wetness index  

Topographic wetness index (Pwet) can quantify the control of local topography on hydrological 

processes and indicate the spatial distribution of soil moisture and surface saturation (Quinn et 

al., 1995). The distribution of the index may be calculated for any catchment and is used as a 
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basis for the prediction of source areas, saturation excess overland flow and subsurface flows. 

The index has the form:  

  

  

Where, in terms of a raster DEM, a = the upslope area, per unit contour length, contributing flow to a pixel; tanß 

= the local slope angle acting on a cell (this is taken to approximate the local hydraulic gradient under steadystate 

conditions)  

  

  

5.3.3 Method to specify forest yield function: (the Forest Yield Dynamics sub-model)  

a. Basal area of forest stand  

Basal area is the cross-sectional area of a tree trunk at breast height. The stand basal area was 

estimated using Eq. 5.4.   

  

Where BA is the basal area of the plot in m2.ha-1, A the area sampled in ha, n the number of the trees in the plot and 

CSA the tree cross sectional area in m2.   

  

According to Le (2005), BA indicates not only the forest yield, but also the stock of a forest 

stand, which is strongly correlated with the competition status that is important for the growth 

of forest trees. In forestry practice, the amount of timber logged is often expressed in terms of 

basal area (Le, 2005).   

The basal area was first estimated for each plot of each land use / cover system. Thus, the 

average forest yield (variable p_yieldforest) (YLUC) and its uncertainty range [YLUC - CILUC, 

YLUC + CILUC] where CILUC is the confidence interval of YLUC. At the confidence level of 95 

%:  

CILUC = 1.96 x SdtLUC/sqrt (NLUC) where SdtLUC = standard deviation of YLUC, and NLUC the 

number of plots surveyed in each land use / cover system.   

  

b. Forest growth model  
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The forest yield model developed in this study was previously developed in VN-LUDAS model 

(Le, 2005). The yield function can be expressed either by the integration of the growth function 

along elapsed time (i.e., tPGr = ∫ tZ G.dt), or by the previous residual stock (t-1PGr) plus the instant 

growth rate (i.e., tPGr = t-1PGr + t-1ZG). Thus the relationship of these concepts can be 

numerically expressed as follows:  

tPGr = (t-1 PGr + t-1 ZG)  - Gremovals                                             (5.5)  

  
Where tPGr is the basal area at time t, t-1PGr is the previous residual stock, t-1ZG is the instant growth rate; and Gremovals 

is the harvested basal area.   

  

Accordingly like Le (2005), we used residual basal area tPGr as the response variable to represent 

forest dynamics.   

ZG expresses the theoretical basal area growth (Vanclay, 1994) of a forest stand as a whole and 

can be calculated as:  

ZG = a(PG)ε – b(PG)                                                                 (5.6)  

Where, PG is stand basal area, a and b are the constants, and ε is a coefficient of very small value (ε -------> 0).   

  

  

However, when empirical data are available, it is still difficult to fit the equation of this nonlinear 

form with the data (Le, 2005; Vanclay, 1994).  

To determine the parameters a and b of Eq. 5.6, the following was assumed:  

1- The stand growth rate ZG is asymptotically zero in the equilibrium state (eqPG).  

2- The derivative of the growth function ZG is zero when it reaches the maximum  

(maxZG).  

3- eqPG is constant over space since there is no evidence to correlate this parameter with 

location variables.  

Accordingly, the eqPG and maxZG are settable either by forestry experts or review of literature on 

tropical forests (Havel, 1980; Vanclay, 1994).  
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Assuming that the parameters ε, eqPG and maxZG are known, the following equations determined 

the parameters a and b:  

    a = maxZG / [(
eqPG)ε (ε ε/(1- ε) – ε1/(1- ε))]                                    (5.7)     

b = maxZG / [
eqPG

 (ε ε/(1- ε) – ε1/(1- ε))]                                       (5.8)   

Where, maxZG is the value that can be approximated from the projected outputs of empirical growth models, eqPG 

is the high value of the plot basal area of the surveyed plots in the riparian forest and woodland, savanna 

woodland, shrub savanna and savanna grassland  ε is fixed by setting a very small value (i.e., ε = 10-6).  

  

In the case of the present study area we used reference from Jean-Louis (1997) to estimate 

maxZG. The author presented the basal area increment of some species in the region where the 

the rainfall is about 900 to 1000 mm per year in the West of Burkina-Faso. The region presents 

similar characteristics in rainfall pattern and specific species like our study site. For this reason, 

the mean increment basal area of species such as Entada Africana, Terminalia avicinoides, 

Lannea acida, Combretum glutinosum, Stereospermum kunthianum and Parkia biglobosa 

respectively showed 6.76, 2.13, 1.64, 6.20, 11.06 and 6.43 % of the mean increment basal area 

for Jean-Louis (1997) study. Thus the overall mean increment basal area was set to be 5.7 %. 

We used this mean increment for the present case study and assume that for any given tree 

species of stand basal area BA, its increment within the year is equal to  5.7 times BA divided 

by 100.   

The maxZG was then estimated for each LUC class of our plots data and the results were used as 

input into the BEN-LUDAS Model. The following steps were used before the integration into 

the BEN-LUDAS model:  

- Estimation of the individual cross sectional area of trees based on the plots data obtained 

from each land use/cover system,  

- Calculation of the average basal area of all trees for each LUC,  

- Applying 5.7 % to this average and considered the obtained value as maxZG for each  
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LUC.  

The maxZG increment for each LUC were 1.04 (riparian forest and woodland), 0.42 (savanna 

woodland), 0.16 (Shrub savanna), 0.23 (savanna grassland), and 0.03 (cropland and fallow).   

  

c. Special consideration for overcoming Gremovals for farming activity  

The main human activity in the Dassari Basin is farming. Increases of agricultural land are of 

the expense of removal of tree cover in riparian forest and woodland, savanna woodland and 

shrub savanna and in a few cases in savanna grassland.  Removals of tree cover were done by 

farmers through: logging of the small trees and burning of the big ones. It is assumed that 

burning and logging both contributed to the mortality of the tree, hence to the decrease of 

vegetation carbon and nitrogen stocks. Direct count of the number of logged and burned trees 

in the field are considered not realistic especially when the establishment of the farm to the 

detriment of natural vegetation took place over a certain number of years and in addition the 

residual trees were converted into firewood consumption or into charcoal production. To 

overcome this constraint, the amount logged or burned trees were approximated as the observed 

difference between basal area of forest and farm land.  The following steps were used based on 

available plots data.  

- Calculation of the difference between the mean basal area of natural vegetation (riparian 

forest and woodland, savanna woodland, shrub savanna and grassland) and farm land,  

- Estimation of the difference of mean tree stock between natural vegetation and farm land,  

- Estimation of the mean logged cross sectional area for a single tree.   

- Estimation of the amount logged, which was equal to the mean difference of basal area 

(or mean trees stock times mean logged/burned basal area) between forest land and farm 

land.  
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5.3.4 Method for modelling natural transition among land-cover types: the Natural Transition sub-

model  

Two type of conversion govern forest ecosystem: natural conversion and human induced 

conversion. The natural conversion occurred in forest when trees grow in a normal way and 

stand basal area of the forest patch is higher than the threshold (Eq. 5.11) of LUC. The land 

use transition occurred in the case of N1 to N3 (normal transition routine) (Figure 5.3).  Three 

categories of human induced conversion occurred in the basin. The first category is the 

conversion due to logging activity, which occurred through the transition rule from riparian 

forest to savanna woodland, savanna woodland to shrub savanna and shrub savanna to 

grassland (decision rule H1, Eq.5.5 and 5.11).  

The second category of conversion occurred during the farming activity when the forest patch 

is transformed to the farm (decision rules H2 to H5, Eq. 5.5 and Section 5.3.3.3). The third 

category of conversion occurred when farmers’ decision was motivated by the implementation 

of REDD+. The first type of REDD+ is the initiative based regeneration of degraded land 

without human disturbance (decision rule H5, explained as the transition from cropland to 

grassland and to other forest land during long period).   

The second REDD+ initiative is the mitigation strategy to climate change based (decision rule H6 

to H7).   
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Figure 5. 3 Land use/cover transition in BEN-LUDAS: combination of human-induced 

transition (influenced by DECISION module) and natural transition (viz. Natural 

Transition sub-model)   

This type of conversation, which leads to the transition from cropland to plantation and 

agroforestry system is due to farmers’ decision motivated by farmers’ skills or the external 

action based carbon fund project. Other type of conversion occurred when the surrounding area 

in the settlements or the garden were converted to settlements (decision rule H8). These areas 

are naturally farm lands.   

The human induced conversion is the consequence of deforestation and forest degradation which 

required appropriate tools to estimate the deforestation rate.   

  

  

  



 

114  

  

  

5.3.5 Estimation of the deforestation rate based algorithms  

The deforestation rate was applied between 2001 and 2013 using the results of land use maps 

from the two periods. Deforestation rate was estimated (Eq. 5.9) following 

AguilarAmuchastegui et al. 2014 and Puyravaud, (2003) as,.  

  

In addition to Eq. 5.9 another equation from FAO, (1995) for comparison Eq. 5.10. The following 

equation is given as (FAO cited by Orekan, 2007):  

  
Where, r is the deforestation rate in decimals, t2-t1 is the difference between the years of the forest cover area 

assessments (the assessment period), A1 is the forest area at t1 and A2 is the corresponding area at t2  

  

When comparing the results obtained from the two equations, the difference in magnitude was 

of the order of 0.0, which is not significant. For that reason, the equation Eq. 5.9 which is easier 

to manipulate was selected.  

  

  

5.4  Results and discussion  

5.4.1 Land use cover change analysis (2001-2013)  

The land use/cover maps showed on increment in the area of cropland by 21.76 % between 

2001 and 2013 indicating most cropland expended at the expense of other land cover classes. 

The total area of cropland covered 34.25 % in 2001 (Table 5.3 and Figure 5.4) was increased 

to 41.70 % in 2013 (Table 5.3 and Figure 5.5). The forest land while comprised of riparian 

forest and woodland, savanna woodland and shrub savanna covered 62.11 % in 2001 and was 

decreased to cover 51.98 % of the total area of the basin. In 2013, the rate of decease in forest 
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cover within the period was therefore 1.48 % per year. The rate of increase in cropland cover 

was estimated to be 1.8 % per year.   

  

Table 5. 3 Statistics of land use/cover in 2001 and 2013  

 Land use cover  

classes  

   

Area in ha  

   

 Area in percentage  

2001  2013   

Riparian forest and 

woodland  

1531.35  320.4   

Savanna woodland  3238.02  5447.79  

 
Shrub savanna  7190.55  4241.88   

Grassland savanna  57.33  96.48   

Crop and fallow  6595.83  8031.15  
  

Bare land   122.4  107.91   

Settlements  33.75  486.72   

Agroforestry 

system  

2.07  20.7  

 
Plantation  9  16.74   

Rivers and water 

body  

344.61  348.57   
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Roads  132.48  139.05   

  

  

Figure 5. 4 Land use/cover map of 2001 in the Dassari basin  
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Figure 5. 5 Land use/cover map of 2013 in the Dassari Basin  
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5.4.2 Basin characterization  

The biophysical variables of the basin (Figure 5.6) were determined by the natural growth of 

the forest. Four main bio-physical variables based on statistical and GIS analysis were utilised. 

These variables were the elevation, slope, upslope contribution area and the wetness index.   

The basin was characterized by two reliefs (upland and mountainous zones) with range of 

elevation from 140 m to 277 m above mean sea level. The mountainous zone is covered by the 

same type of plant species seen in the upland zone. The mountainous area could be seen around 

Wantehou and Firihou villages. This elevation determined the slope gradient observed in the 

basin. The slope was expressed as a good indicator for erodibility (Le, 2005) and varied from 

0 to 0.34 radius or 2.44 to 4.83 º. When the slope is high in the area of high pressure on the 

land it contributed to the loss of the productivity in farm land. We use this indicator as an input 

for modelling the dynamics of the ecosystem. We used upslope contribution area as a proxy 

for soil nutrient accumulation (see Section 5.3.2.1). The nutrient accumulation helps to 

determine area of good vegetation and area of potential yield for cropping system. The upslope 

contribution area which was log10 transformed, varied from 30 to 62.106 with high value along 

the rivers and water body indicating the water flow accumulation. This variable was used to 

map biomass, carbon and nitrogen stocks following Gaussian distribution for each land use 

cover type. The wetness index is a good proxy for indicating soil moisture content (see Section 

5.3.2.3). The wetness index showed high pattern along the river and within the lowlands with 

the value ranging between 4.44 and 22.54. These biophysical factors for basin characterization 

were used as input in the BEN-LUDAS model to determine the dynamics of the ecosystem.  
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Figure 5. 6 Raster images of a) elevation (m), b) slope gradient (radius), c) upslope 

contributing area (m2/m) (log10 transformation), and d) wetness index in Dassari basin  
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∉ 

5.4.3 Modelling the dynamics of stand basal area  

The stand basal area is the key factor which has been applied to model farming activity in the 

Dassari Basin. It was assumed that when a forest patch is cleared and the land is sown for 

cropland purpose, its state changed by losing some amount of yield forest. The current state of 

each land use cover type within its uncertainty ranged is expressed in Eq. 5.11.  

  19.12 + random (11.18)       if    2013Pcover (j) = 1  

  07.915 + random (2.57)       if    20132013PPcover (j)cover (j)  ==  23   (5.11)  

03.1 + random (0.66)           if     

2013PGr (j)     2.85 + random (3)               if    2013Pcover (j) = 4  

1.35 + random (0.72)          if    2013Pcover (j) = 5  

  0.91 + random (1.08)         if    2013Pcover (j) = 7  
12.91 + random (7.4)         if    2013P 

  17.0 + random (33)            if    2013Pcover (j)cover (j)  ==  89   

  0                                          if    2013Pcover (j)  [6, 10, 11]  

Table 5. 4 Stand basal area in each land use/cover type (LUC)  

LUC  Descriptive statistic    

Mean YLUC,   

(m2ha-1)  

SE (Standard Error)  CILUC at 95 %  

Riparian forest and woodland  24.71  4.36  5.59  

Savanna woodland  9.20  2.06  1.285  

Shrub savanna  3.43  0.64  0.33  

Savanna grassland  2.85  0.38  1.50  

Cropland and fallow  2.48  0.43  0.36  

Settlement  1.45  0.41  0.54  

Agroforestry (Cashew)  16.61*  1.8  3.7  

Plantation (Eucalypt)  32**  3.44  15  

Note: *The socio-economic information revealed the age of this agroforestry system (cashew) ranged from 7 to 

16 years old. ** The socio-economic information revealed the age of this plantation (eucalyptus) ranged from 5 

to 35 years old. The plots from other plantations (10 plots) such as Gmelina arborea, Azadirachta indica, Tectona 

grandis and Mangifera indica were not involved in estimating stand basal area for the fact that their area are very 

small in the catchment.   
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The yield lost is a function of the initial state of the patch. A patch from the riparian forest and 

woodland, which has 24.71±5.59 (SE) m2ha-1 (Table 5.4), will be converted to cropland with 

the final yield of 2.48±0.36 (SE) m2.ha-1 (decision rule H2) during the life-span of the cropland 

or when the farmers decided to let it as fallow for a long time. The cropland can change the 

state and converted to grassland (decision rule H5) by increasing its yield from 2.48±0.36 (SE) 

m2.ha-1 to 2.85±1.50 (SE) m2.ha-1 if the cropland became not productive and it was abandoned 

by farmers. The recovery process of the patch can be started by gaining yield (regeneration) 

which was one of REDD+ implementation option. In the same order a farmer can decide to 

devote the degraded land to either agroforestry system or plantation (decision rule H7 and H6, 

Figure 5.3). When a cropland patch was devoted to agroforestry system and plantation its yield 

changed and respectively become 16.61±3.7 (SE) m2ha-1 and 32±15 (SE) m2ha-1.   

  

5.5  Conclusions  

A better understanding of the biophysical environment of any territory is a key factor for the 

evidence of the decision making. The current state of the socio-ecological system of the Dassari 

Basin could help to project for the future dynamic of the environment. The degradation rate of 

1.48 % per year in the basin is significant information to predict the future impacts on CO2 and 

N2O emissions from vegetation degradation under various policies setting or scenarios. The 

biophysical characteristics of the site can also be useful as input for BEN-LUDAS model. 

Forest yield and natural transition rule were the key factors which determined the dynamics of 

the site. The flexibility of BEN-LUDAS model allowed the integration of these parameters in 

the model procedures.   
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CHAPTER VI: IMPACTS ASSESSMENT OF LAND USE SCENARIOS   

  

6.1 Introduction  

The Kyoto Protocol (http://unfccc.int/kyoto_protocol/items/2830.php) of the United Nations 

Framework Convention on Climate Change (UNFCCC) was developed as an attempt to 

confront and begin to reverse the rising CO2 concentrations. Emissions of CO2 from land use 

and land-use change represent up to 20 % of current CO2 emissions from burning fossil fuels 

(Dixon et al., 1994; Smit et al., 2014; Brown et al., 1996). According to the Kyoto protocol, 

changes in land-use can positively impact atmospheric CO2 concentrations by either:  

i) Decreasing emissions that would occur without intervention, or ii)  Sequestering CO2 from 

the atmosphere into vegetation and the associated soil.  The Kyoto Protocol recognised the role 

that changes in the land use such as deforestation and afforestation, have on the global carbon 

cycle. Possible mitigation strategies to sequester carbon are planting trees, changing 

agricultural tillage or cropping practices, or reestablishing grasslands. In addition, the Protocol 

includes a mechanism by which industrialised (Annex I) nations can offset some of their 

emissions by investing in projects in non-industrialised (non-Annex I) nations in line with the 

clean development mechanism (CDM, Article 12).   

The purpose of the clean development mechanism is to assist Parties not included in Annex I 

in achieving sustainable development and in contributing to the ultimate objective of the 

convention, and to assist parties included in Annex I in achieving compliance with their 

quantified limitation and reduction commitments.   
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In the context of this study the land use scenarios are the different policies that could be adopted 

to change the way the land is used for agricultural purpose. In other terms, scenarios define the 

new approaches for agricultural practices with the aim to reduce the impacts of the current 

practice in the environment and to alleviate poverty at the household level. These scenarios or 

policies are characterized by the improvement of socio-economic and agronomic conditions of 

the site at different levels. These scenario need to be developed with the aim to set emission 

reduction target. These scenarios have a baseline or counterfactual with the aim to estimate 

what would have happened in the absence of a policy or project. It is required so that the 

mitigation impact of a project or policy can be quantified. In the forestry sector, the baseline is 

particularly important in attempts to reduce emissions from deforestation and degradation 

(Bond et al., 2009).  

The developed land use scenarios will help countries with historically high rates of 

deforestation to adjust their policy in term of land use management and to unfold the future 

impact of the defined policies. The present chapter addresses this issue in developing four land 

use scenarios based on the change of land use pattern between 2001 and 2013 and the socio-

economic situation of the study site.    

The aim was to compare scenarios based mitigation strategy to climate change as an issue of 

contributing for carbon and nitrogen sequestration, and the condition financial investment’ as 

an economic development pathway, and to explore the possible future temporal and spatial 

impacts on vegetation carbon/nitrogen stocks or CO2 and N2O emissions.  

  

6.2 International agreements for climate change mitigation strategy in AFOLU sector  

  

Kyoto Protocol   
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The Kyoto Protocol (1997) was adopted in Kyoto on 11th December 1997. The Protocol is the 

set of 28 Articles and the Parties to this Protocol being Parties to the UNFCCC. The Kyoto 

Protocol recognized that some GHGs such as Carbon dioxide (CO2), Methane (CH4), Nitrous 

oxide (N2O), Hydrofluorocarbon (HFCs), Perfluorocarbons (PFCs), Sulphur hexafluoride  

(SF6) destroy ozone layer and contribute to the global environmental change.   

   

Safeguards in REDD plus under the Cancun Agreement  

UNFCCC Cancun and Durban Agreements (Decision 1/CP.16 and Decision 12/CP.17) define 

safeguards as policies and measures that aim to address both direct and indirect impacts of 

REDD + in communities and ecosystems (UNFCCC, 2013). The safeguards comprise three 

levels (governance, social and environment) and are underlined as follows:  

 That actions complement or are consistent with the objectives of national forest 

programmes and relevant international conventions and agreements;   

 Transparent and effective national forest governance structures, taking into account 

national legislation and sovereignty;  

 Respect for the knowledge and rights of indigenous peoples and members of local 

communities, by taking into account relevant international obligations, national 

circumstances and laws.  

 The full and effective participation of relevant stakeholders, in particular indigenous 

peoples and local communities,  

 That actions are consistent with the conservation of natural forests and biological diversity, 

ensuring that the actions referred to in paragraph 70 of this decision are not used for the 

conversion of natural forests, but are instead used to incentivize the protection and 

conservation of natural forests and their ecosystem services, and to enhance other social 

and environmental benefits,  
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 Actions to address the risks of reversals;  

 Actions to reduce displacement of emissions.  

In line with the Cancun Agreement, Paris Agreement was approved by Parties in 2015.   

  

Paris Agreement (COP 21)  

The adoption of the Paris Agreement is recalling:  

 decision 1/CP.17 on the establishment of the Ad Hoc Working Group on the Durban  

Platform for Enhanced Action,  

 Articles 2, 3 and 4 of the Convention,  

 relevant decisions of the Conference of the Parties, including decisions 1/CP.16,  

2/CP.18, 1/CP.19 and 1/CP.20,  

The Paris Agreement is based on the key goal: “Transforming our world: the 2030 Agenda 

for Sustainable Development”. In accordance with this goal the main important retained 

resolution which fit with the present research study are:   

 The Conference of the Parties recognize that climate change represents an urgent and 

potentially irreversible threat to human societies and the planet and thus requires the widest 

possible cooperation by all countries, and their participation in an effective and appropriate 

international response, with a view to accelerating the reduction of global greenhouse gas 

emissions,   

 The Conference of the Parties notes with concern that the estimated aggregate greenhouse 

gas emission levels in 2025 and 2030 resulting from the intended nationally determined 

contributions do not fall within least-cost 2 ˚C scenarios but rather lead to a projected level 

of 55 gigatonnes in 2030, and also notes that much greater emission reduction efforts will 

be required than those associated with the intended nationally determined contributions in 

order to hold the increase in the global average temperature to below 2 ˚C above pre-

industrial levels by reducing emissions to 40 gigatonnes or to 1.5 ˚C.    
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The developed scenarios in the case of this research study were simulated from 2013 to 2025 

with the aim of determining the impact of each scenario in terms of emissions of carbon dioxide 

(CO2) and nitrous oxide (N2O) due to vegetation degradation in the basin and in addition to 

assess their future impacts in terms of emissions reduction and net removal of carbon dioxide.   

  

6.3 National circumstance    

  

Benin is a West African country located between latitude 6º 30’ and 12º 30’ North and 

longitude 1º and 3º 40’ East with an area of 114,763 km2 (DCN, 2011). Regarding the 

agricultural sector, the country produces cash crops mainly cotton with the emergence of 

pineapple and cashew (DCN, 2011). The most important food crops are maize, cassava and 

sorghum. Farming is still influenced by traditional practices.   

Brief analysis of the national inventory of GHGs emissions revealed the need for the country 

to build an effective climate change action and defines options for mitigating climate change. 

The country also provides a basis to participate in the flexibility mechanisms associated with 

the United Nations Framework Convention on Climate Change (UNFCCC), focusing on 

REDD+ with regards to these actions, the methodological approach for the national GHGs 

inventory was based on the IPCC Tier 1 method. The DCN (2011) revealed that in the year 

2000 the agricultural and energy sectors were the main sources of the total emissions, with 68 

and 30 %, respectively.   

In the agricultural sector, climate scenarios were used for the horizon 2015 and 2025 with the 

analysis of the magnitude of the impacts on crops yield in the different agro-ecological zones 

of Benin. In the forestry sector, the scenario were used for the horizon 2050 and 2100 with the 

analysis of the increase of the temperature on the ecosystem in terms of water stress or heat 

that could cause tree mortality.   
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Despite these actions to mitigate climate change in the AFOLU sector more effort are needs to 

be done. Infact, the country still uses the Tier 1 method for the GHGs inventory. In addition 

there is the lack of data provided from modelling land use/cover changes and its future impacts 

on the GHGs emissions in the AFOLU sector. The results provided by this research work will 

contribute towards closing these gaps for this part of the country (Sudan Savannah zone) and 

also contribute towards decision making at the national level.   

  

6.4  Methodology  

6.4.1  BEN-LUDAS model calibration and validation process  

The calibration and validation of the BEN-LUDAS model was based on socio-economic 

information, two time series land use cover maps and the deforestation rate (Figure 6.1) using 

the sub-model Time-Labour-allocation previously defined in Table 2.2.  

The model calibration was based on the livelihoods strategy of farming. The human asset of 

the livelihoods strategy defines the percentage of time and the labour allocated to agriculture 

practices by the farmers. Time-Labour-Allocation sub-model was used through labour-spent 

procedure developed within the BEN-LUDAS model. Infact, the change of land use during the 

time and space is a function of the quantum time-labour (percentage of time devoted to 

farming) and the number of persons who farm. The sub-model Time-Labour-allocation  

(Table 2.2) expressed the time-labour (in % times persons) allocated to farm a piece of land (at 

the pixel scale or patch level) during a time scale of one year or unit of simulation. For this 

purpose, farming is a function of the time allocated to the agricultural practice and the number 

of persons or the number of workers within the household. The deforestation rate is inversely 

proportional to the time-labour, i.e. high is the time-labour allocated to sow a patch of land, 

low is the deforestation rate. The Time-Labour-Allocation sub-model was constructed by 

simulating the model several times (11) using land use map of 2013. We run the model at the 
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time scale of 12 years and we used the output to estimate the deforestation rate using Eq. 5.9. 

The log-transformation Time-Labour-Allocation sub-model was generated using SPSS 17 

packages. The sub-model was then expressed in the form of ln (TimeLabour) = -1.023 x ln 

(deforestation rate) + ln (38.924) function (Figure 6.1 and Table 6.1) with R2 = 0.9999. The 

sub-model was finally transformed in the exponential function (Eq.  

6.1) as follows:  

Time-labour [%] = exp [-1.023 x ln (deforestation rate) + ln (38.924)]    (6.1)  

 
 Deforestation rate [%]   

Figure 6. 1 Time-labour as a function of deforestation rate  

  

The Time-Labour-allocation sub-model was integrated into the BEN-LUDAS model for validation 

and for simulating LULCC of developed scenarios.  

  

Table 6. 1 Parameters of Time-Labour-Allocation sub-model   

  Coefficient  Standard error  Sig.  

Intercept  38.924  0.069  0.000  

ln (deforestation rate (%))  -1.023  0.004  0.000  

Observed 

Model curve 
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Note: The independent variable is ln (Time-Labour (%))  

  

  

The model validation was based on the following steps:  

 Estimation of the deforestation rate using Eq. 5.9,  

 Integration of the land use map of 2001 into the BEN-LUDAS model,  

 Simulating land use map of 2001 using the estimated deforestation rate from land use cover 

maps of 2001 and 2013,  

 Comparing (Table 6.2) 12 years simulated (2013), (the outputs of the model) to the 

classified land use map of 2013,  

 Estimating the difference between the classified map and the simulated one using Eq.  

6.2 as follows:  

    

Where:  
LUC 2013 is the classified land use/cover map of 2013 and simulated 2013 is the output of the classified 

land/cover 2001 simulating for 12 years under BEN-LUDAS.   
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Figure 6. 2 Flowchart showing the calibration and validation process of BEN-LUDAS  

  

The 12 years’ timeline simulated 2013 shows (Table 6.2) the order of difference with the 

magnitude of 0.09 % for forest land whereas the difference was estimated to be 0.46 % for cropland 

and fallow. The low difference estimated between the observed and the predicted confirms that 

the model mimics well the reality and can be used for simulating land use/cover changes under 

developed scenarios.   

Table 6. 2 Model validation (simulated 2013 versus classified land use cover maps of 2013)  

LUCa  Area in (ha)  Difference (%)  

 LUC 2001  LUC 2013   Simulated LUC 2013   

Forest land  11959.92  10010.25  10019.16  0.09  

  

Cropland and 

fallow  

6595.83 

    

8031.15  8068.59  0.46  

  

  

6.4.2 Land use scenarios  

a. Business as Usual Scenario  

The business as usual (BAU) scenario (LUS1) was based on the farmer’s practices. The farming 

activity comprises the logging and burning of plant biomass. The main crops were maize, 

sorghum, millet, yam, rice, and beans as food crops and cotton as industrial crop. The 

assumptions for the business as usual scenario were the population growth rate of 2.54 %, a 

deforestation rate of 1.48 % and the present mean crop yield of 0.7 t.ha-1. The observed 

deforestation rate of 1.48 % explained an increase of cropping area to 21.76 % from 2001 to 

2013.   

The assumptions of this scenario assumes that an increase of agricultural area without any 

AFOLU (Agriculture, Forestry and Other Land Use) initiative affects vegetation carbon and 
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nitrogen storage at the basin level and this leads to the emission of carbon dioxide and nitrous 

oxide into the atmosphere due to farming activity.   

  

b. Food security scenario  

The food security scenario (LUS2) aims to contribute to the policy enhancement in farming 

activity. The cotton production is perceived as one of land use change drivers which leads to 

the increment of farm land and does not significantly contribute to alleviate poverty of rural 

population (according to our investigations from different stakeholders). The policy based food 

security that will lead to the increment of crop yield by 2.5 t.ha-1 and the abandonment of cotton 

production in this part of the country is needed. Thus, this policy will help to decrease farm 

land size from 2013 to 2025 and to maintain the deforestation at the rate of 0.97. To estimate 

the deforestation rate of 0.97 % we first assumed that this rate was obtained under only food 

security between 2001 and 2013 i.e. assuming that cotton was not produced between 2001 and 

2013. Infact, the forest land decreases to 1949.85 ha between 2001 and 2013 meaning an 

increment of cropland to 23.02 %. The socio-economic information revealed that cotton 

represents 32.27 % to the total crop. To calculate deforestation rate without cotton 32.27 % of 

1949.85 was first estimated. This was then added to the area of forest land in 2013 and obtained 

10639.32 ha. This value was used to calculate the deforestation rate, which is without cotton, 

and we obtained a rate of 0.97%. This rate was used for food security scenario. In addition to 

these inputs, the population growth rate of  

2.54% was assumed.   

  

c. Business as usual based adaptation and mitigation strategy scenario  

This scenario (LUS3) assumed that farmer’s households are conscious of the fact that their 

environment or weather is changing. It is assumed the farmers believe that there is a 
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relationship between rainfall patterns and natural vegetation and that they decide as a result to 

devote a piece of their land for planting trees or adopt agroforestry systems to respond to the 

carbon market project and adaptation option to climate change. The mitigation strategy to 

climate change support farmers to adopt agroforestry systems and plantations at the farmer’s 

fields and adaptation options (cropping systems strategies used to increase productivity at the 

farmer’s field scale) contribute to increased resilience of farmers due to climate effect. To 

implement this scenario, input of LUS1 were considered and previous probability of 70 % and 

65 % respectively for agroforestry system and plantation estimated were applied. In addition, 

the adaptation options to climate change assumed to increase the crop yield from 0.7 to 2.5 

t/ha.   

The policy based on the assumptions of this scenarios support REDD+ initiatives. This includes 

activities related to: Afforestation, Reforestation and Vegetation (ARR),  

Agricultural Land Management (ALM), Improved Forest Management (IFM) and Reduced 

Emissions from Deforestation and Degradation (REDD). The assumptions for each scenario 

are outlined in Table 6.3.  

  

Table 6. 3 Main assumptions of the land use scenarios based on land use change between 

2001 and 2013 and on the socio-economic condition of the site  

LUS : BUA  
1 

(business as usual )  

LUS : Food  
2 

security  

LUS : BUA based  
3 

Adaptation and 

Mitigation strategy to 

climate change  

LUS :Food security  
4 

based  

 Mitigation strategy to 

climate change  

Population growth 

rate of 0.0254   

Population growth 

rate of 0.0254  

Probability of 

agroforestry system 

adoption is  70 %  

Probability of 

agroforestry system  

adoption is 70 %  
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Deforestation rate 

of 1.48 % 

(Increment of 

cropland based 

cotton production  

to 23. 02 %)  

  

Deforestation rate  

of  0.97 % 

(Increment of  

cropland to 15 %)   

  

Probability of 

plantation adoption   is 

65 %  

Probability of  

plantation adoption  is  

65 %  

Productivity  does 

not change (Mean  

Yield equal to 0.7   

T / ha)  

Policy enhancement 

in agricultural 

practices (yield 

improvement i.e 

from 0.7 to 2.5 t/ha)  

 Policy based adaptation 

strategy to climate 

change (yield 

improvement based 

adaptation option i.e 

from 0.7 to 2.5 t/ha)  

 Policy enhancement in 

agricultural practices 

(yield improvement i.e 

from 0.7 to 2.5 t/ha)  

  

d. Food security based mitigation strategy scenario   

The food security based mitigation strategy to climate change scenario (LUS4) used in addition 

to the assumptions of food security scenario the probability to adopt agroforestry system and 

plantation by farmers. Probability of 70 % (for agroforestry system) and 65 % (for plantation) 

were applied for this scenario.   

  

6.4.3 Approach for estimating carbon stocks change (Emission-Removal of CO2)  

In the context of this study, the key activity data requirement for modelling carbon dynamics 

are area of forest land remaining forest land, forest area affected by disturbance, land afforested 

derived from cropland and land converted to forest through plantation or natural regeneration. 

For land use, the IPCC recognizes two methods to estimate carbon emissions: the Stock-

Change method and the Gain-Loss method (IPCC, 2006). The Stock-change method estimates 

emissions by identifying the changes in carbon stocks at the beginning and end of the period 

over an entire monitoring area. The Gain-Loss method estimates emissions by identifying the 

area of change from one cover type to another and the difference in stocks between those two 

types per unit area (Angelsen, 2008). Hewson et al. (2014) provides a more detailed 

explanation and assert that for the Gain-Loss method, the field inventory is conducted to obtain 
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an estimate of mean stock-per-unit-area for each cover class. These stocks per-unit-area 

estimates can then be assumed to be constant, and land use is monitored to estimate the areas 

of change between pairs of classes. In this case, the data on the difference in stocks associated 

with a change between two classes over time are called Emission Factors (EFs), and the areas 

of change are called Activity Data. These are multiplied to estimate the emissions associated 

with each type of land-use change.   

We applied the stock-change approach (Eq. 6.3) in the case study to estimate emission and 

removals of carbon and nitrogen during 12 years simulations (2013-2025) for all scenarios. 

Land use transition rule based change detection approach (Section 5.3.15) was applied to 

determine area of change between the two periods and the carbon and nitrogen stock was 

assumed to be constant. This change detection approach used the two land use maps: the map 

of 2013 and the output of one of the scenarios. The net losses in total ecosystem carbon stocks 

were used to estimate CO2 emissions to the atmosphere, and net gains in total ecosystem carbon 

stocks were used to estimate removal of CO2 from the atmosphere (IPCC,  

2006).  

Equation 6.3 was used to express this removal/emission for each LUC class:  

  
  
Where:   
ΔC = annual carbon stock change in the pool, Gg C yr-1  
Ct1= carbon stock in the pool at time t1, Gg C  
Ct2= carbon stock in the pool at time t2, Gg C   

The conversion from the biomass to carbon and from the carbon to the carbon dioxide at the tree 

level was based on the Eq 6.4 as follow:  

              (6.4)  

Where:  
CO2 = Carbon dioxide emission  
AGB = Aboveground biomass at the tree level using allometric equation C%   

= carbon content (%) of the tree species   
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6.4.4 Illustration of the emission/removal process based on the zoom in the specific areas  

The specific area was zoomed with few pixels to explain the process of land use transition 

matrix and its implication in the estimation of carbon dioxide emissions and removal from land 

use cover changes. It was first assumed that the mean carbon stock previously estimated for 

each LUC class in the Table 3.19 was constant over the year. In fact, the mean carbon stock or 

emission factors (EFs), which is agro-ecological zone based for each country, is the key input 

for carbon accounting recommended by IPCC (2006). At the pixel level for example, the 

decision rules of land use transition from Figure 5.3 and the mean carbon stock from Table 

3.19 can be applied to estimate emission or removal of carbon dioxide `during two periods. 

The removal and emission process during two periods (2013 and 2025) are explained in Figure 

6.3. The process of land use transition and its implication in the removal /emission process 

were explained in the four scenarios as an example and which mimic the real world. These 

cases are as followed:  

1. The pixel A (Figure 6.2) was savanna woodland in 2013 and has changed to cropland under 

the scenarios LUS1. Thus, the named pixel holds the mean carbon stock of 21.35±1.16 Mg.ha-

1 which has become 1.52±0.14 Mg.ha-1 over 12 years timeline because of farming activity or 

shifting cultivation. Thus, the estimation of emission/removal factor was based on the 

difference between two mean carbon stocks from two LUC class. The lost was equal to 19.53 

Mg .ha-1 meaning the difference of: 21.35 Mg.ha-1 – 1.52 Mg.ha-1. For this given pixel of the 

size 0.09 ha which represented the activity data (AD) it will release 1.75 Mg of carbon or 6.45 

Mg of carbon dioxide during the change of its state from savanna woodland to cropland.   
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LUS1: Business as usual scenario LUS2: Food security  LUS3: Business as usual  LUS4: Food security scenario

 based adaptation and  based mitigation  
 mitigation strategy to climate  strategy to climate  
 change scenario change scenario   

Figure 6. 3 Land use transition scheme and its implication in the removal/emission process  

2. The pixel B was cropland in 2013 and has changed the state to become plantation under 

the scenario LUS3. Thus, it can be said that the owner of the land decided to adopt mitigation 

based plantation. This mitigation action to climate change lead to a reduction of (1.52 Mg.ha-1 

- 97.83 Mg.ha-1. x 0.09 ha) of carbon from the atmosphere equals the removal of 31.81 Mg of 

carbon dioxide from the atmosphere.   

3. The pixel C was riparian forest and woodland in 2013 and has changed the state to 

become agroforestry under the scenario LUS3. This context means that during the 12 years 

simulation it was assumed that the farmers aim to first convert the forest land to agricultural 

land for crop production during a certain number of years before they decide to transform that 

land to either agroforestry or plantation. In the present case, the final state is concerned despite 

we could say there is first emission before that emission was reduced due to agroforestry 

system. The emission was estimated to be 2.10 Mg of C or 7.73 Mg of CO2 despite agroforestry 

has been established after cropland. In the absence of agroforestry 3.89 Mg of C or 14.29 Mg 

of CO2 will be emitted. It was previously explained in Section 3.3.8 that agroforestry cannot 

help to compensate the total amount of carbon loss from riparian forest when it is converted to 

cropland.   

Initial state in  2013 
A 

A A A A 

B 

B B B B 

C 

C C C C 

D 

D D D D 
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4. The pixel D was cropland in 2013 and has changed to agroforestry under the scenario 

LUS4 indicating the removal of 1.78 Mg of C or 6.56 Mg of CO2 from the atmosphere.   

  

6.5  Results and discussion  

6.5.1 Impact assessment of land use cover change on CO2 and N2O emission (2001-2013)  

The assessment of LULCC on CO2 and N2O emission from 2001 to 2013 was based on the 

results of mean carbon stock used to estimate emission factors (Table 3.19). The mean carbon 

stocks were assumed to be constant over time during 2001 and 2013.   

  

Table 6. 4 Emission of CO2 and N2O in Gg per year during 2001-2013  

Period  CO2 

emission  

CO2  

removal  

N2O   

  

Net removal  

  

Emission  CO2eq.  

2001-2013  12.04  -36.62  0.03  -24.58  21.34  

  

The total of 21.34 CO2 eq Gg of carbon dioxide was emitted per year during 2001 and 2013 

due to farming activity. This trend will continue if there is no policy to mitigate the effect of 

change or to reduce emission from the vegetation degradation.   

  

6.5.2 BEN-LUDAS as a tool for visualizing and testing the impacts of land-use scenario  

BEN-LUDAS graphic user interface (GUI) is presented in 3 main parts as follows:  

 The button of importation of spatial data, the button that enable user to generate basal 

area, biomass, carbon and nitrogen stocks and the button for the importation of the households 

data. All these buttons were executed under the command procedure based submodels (number 

1 of part 1). The set of number 2 buttons in part 1 deal with the spatial attributes such as 

elevation, slope, upslope, spatial policy, restricted area, wetness index, land use, soil type. 

These spatial attributes can also be visualized several times as soon as the buttons of the 

biomass, carbon and nitrogen content. The setup button allows clearing all data in the screen. 
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The number 3 presented the GIS raster, simulation button and output exportation button (Figure 

6.3).  

 Part 2 (numbers 4, 5 and 6) describe the global parameters and the parameters for land 

use scenarios development. The set of number 4 button dealt with the times scale of the 

simulation, the global parameters such as spatial policy related to protected zone area, the 

deforestation rate, the vision of the farmer or its sphere of influence, the productivity 

parameters, the markets price input and the counter of population dynamic. User will find the 

parameters of mitigation setting of the set of buttons in number 5. This set of buttons show the 

on/off buttons for adoption or not of mitigation strategy (adoption or not of agroforestry and 

plantation) during the scenario running and their defined probability. The set of buttons in 

number 6 show the population dynamic sub-model. This population dynamic sub-model was 

built based on the assumption of birth and death and the rates associated.   

 The part 3 (numbers 7 to 18) show respectively the Lorenz curve, the financial return 

to the farmers if mitigation strategy was applied during the implementation of carbon fund 

project in scenarios based mitigation, the size of different groups of household during the 

simulation process, the curve of household growth (or population growth), the Gini index, the 

annual gross income based carbon credit curve, the annual gross income based cultivated area, 

the area in hectares of each LUC, the biomass, carbon and nitrogen stocks and finally the area 

of mitigation strategy.  

   

  

  

  



 

 

  



 

 

 



 

 

           Figure 6. 4 The BEN-LUDAS’s graphic-user interface enables users to visualize and test impacts of land-use scenarios  
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6.5.3 Impact assessment of developed land use scenarios    

a. Impacts of developed land use scenarios on LULCC  

The business as usual scenario is based on the continuation of observed trends in land use 

practise and livelihood of rural communities known as business-as-usual scenario. The 

deforestation rate was 1.48 % per year for the business-as-usual scenario. The business-asusual 

scenario (LUS1 in Figure 6.5) in this context will contribute to the increment of cropland by 

3.79 % per year by 2025, whereas the area of forest land (riparian forest, savanna woodland 

and shrub savanna) will decrease by 3.03 % per year if the trends continue without any policy 

change. The current way of using the land will lead to the abandonment of much farm lands as 

fallows. This situation can be explained by the decrease of productivity from 2013 to 2025 

because some land will be over-exploited due to the high pressure on the land as a result of 

lack of forested area for farming in the future.  

The policy intervention actions under the food security scenario are the improvement of the 

productivity at the farmer’s field scale and on a legislation declares the West-Atacora on which 

the study area as not suitable for cotton production. Infact, these actions aim to restore the 

degraded land by limiting the impact of human pressure in the forest land. The effects of these 

actions tested under food security scenario (LUS2 in Figure 6.5) will contribute to the 

increment of cropland by 2.12 % per year and the decrease of forest land by 2.65 % per year. 

The productivity improvement could strengthen the resilience of rural communities and 

alleviate poverty at the household scale.   

The scenario based adaptation and mitigation strategy to climate change (LUS3 in Figure 6.4) 

was built to change policy setting of business as usual by adopting agroforestry and planting 

tree in the devoted land by farmers and by improving crop based adaptation options (different 

cropping systems used at the farm scale to improve productivity). The adaptation options to 

climate change will be applied to strengthen the resilience of farm land thus, of rural  
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communities who are dependent on the productivity of the land. This scenario will lead to an 

increment of agroforestry system by 481.52 % per year and increment of the plantation area by 

191.93 % per year. The increment of cropland was estimated to be 1.64 % per year and the 

decrease of forest land by 2.62 % per year, which is in contrast to the developments under  

LUS1.  

  

The food security scenarios based mitigation strategy to climate change will lead to an 

increment of cropland by 0.94 % per year from 2013 to 2025 whereas the area of forest land 

will decrease by 1.89 % per year and area of agroforestry and plantation will respectively 

increase by 401.88 % and 182.66 % per year if mitigation strategies are adopted at the farmer’s 

field scale within the degraded land.   

The future spatial pattern (2013-2025) of land use/cover for these scenarios is illustrated in 

Figure 6.6. The observation of land use cover trajectory of LUS1 revealed that except for the 

villages of Wantehou and Koupendry (Figure 4.1) the pressure on the land will increase in the 

areas of the remaining villages and the national park which was protected is at risk and may be 

an object of conflict between farmers and the authority in charge of the protection of this zone 

regarding the trajectory of change for all scenarios. In the other way, in the absence of land for 

farming, households may be constrained to migrate. Infact, the land use trajectory has shown 

the area of change between the two periods for all scenarios. The outputs provided is an 

important tool for decision making in the setting of land and forest management to mitigate 

climate change. The trajectory of change between 2013 and all scenarios is in line with the past 

trend (2001-2013) (Figures 5.4 and 5.5).  
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LUS1: Business as usual scenario  LUS2: Food security scenario  

  
LUS3: Business as usual based adaptation and mitigation strategy LUS4: Food security based mitigation strategy to climate change to 

climate change scenario  scenario  

  

  

  



 

 

Figure 6. 5 Simulated areas of land-uses /cover changes for developed scenarios between 2013 and 2025 Source: 

Data exported from BEN-LUDAS 
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LUC IN 2013 



 

 

 
 LUS1: Business as usual  LUS2: Food security  LUS3: Business as usual based  LUS4: Food security based  

scenario scenario adaptation and mitigation  mitigation strategy to 

climate strategy to climate change  change scenario 

 scenario   

Figure 6. 6  Simulated land-uses/cover changes for developed scenarios between 2013 and 2025 Source: 

Data exported from BEN-LUDAS  
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SIMULATED LAND USE COVER CHANGES UP TO  2025   FOR THE FOUR SCENARIOS 



 

148  

  

b. Impacts of developed land use scenarios on the vegetation carbon and nitrogen stocks  

  

The research in Chapter 3 determined respectively a total storage of 175347.75 ± 21042.48 (CI) 

and 875.53 ± 101.45 (CI) Mg of carbon and nitrogen stocks in 2013 at 95 % confidence interval. 

The analysis of the scenarios revealed that LUS1 and LUS2 scenarios will respectively 

contribute to the decrease of carbon stocks by 2.34 and 1.66 %, and nitrogen stocks by 2.31 

and 1.64 % per year. In contrast, the scenarios LUS3 and LUS4 will respectively help to uptake 

carbon by 0.85 % and 1.12 % per year and sequestered nitrogen into the vegetation by 0.03 and 

0.37 % per year.  

  

Figure 6. 7 Simulated stocks of carbon (in Mg) for developed scenarios between 2013 

and 2025 in each LUC Source: Data exported from BEN-LUDAS  
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Figure 6. 8 Simulated stocks of nitrogen (in Mg) for developed scenarios between 2013 

and 2025 Source: Data exported from BEN-LUDAS  

  

The amount of carbon and nitrogen sequestered within the forest land will decrease whereas 

the carbon sequestration of cropland will increase under scenarios LUS1 and LUS2 (Figures 

6.7 & 6.8). This will lead to the emission of CO2 and N2O into the atmosphere and contribute 

to global warming for the future climate.   

  

c. Impacts of developed land use scenarios on future emissions of CO2 and N2O   

The business as usual scenario or the baseline (LUS1) will contribute to the emissions of 16.805 

Gg of CO2 and 0.033 Gg of N2O, to the net removal of 21.70 Gg of CO2 and to the total 

emissions of 26.70 Gg of CO2 eq. per year over the period 2013-2025 (Table 6.5). The impact 

of the policy under food security (LUS2) scenario will contribute to decrease the total emission 

by 29.25 % and will increase the net removal by 42.94 % whereas policy based adaptation and 

mitigation strategy to climate change (LUS3) and food security based mitigation strategy to 

climate change (LUS4) will respectively contribute to reduce the total emission by 13.14 % 

and 36.47 %. The scenarios LUS3 and LUS4 will also respectively contribute to increase the 
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net removal by 105.05 % and 131.11 % per year from 2013 to 2025. To reach the objectives of 

the policy behind the baseline motivated by the adaptation and mitigation strategy to climate 

change scenario (LUS3) which is built to support REDD+ and MRV initiatives, 101.4 ha and 

32.13 ha respectively for agroforestry system (mixed crops and fruit based trees) and plantation 

(timber based trees) will be adopted per year from 2013 to 2025. This action means the 

conversion 1.4 % of cropland to agroforestry and plantation per year. In the same time for the 

food security motivated by the mitigation strategy to climate change, 84.91 ha of agroforestry 

and 31.97 ha of plantation will be adopted per year by the households of the basin meaning 

conversion of 1.3 % of cropland to agroforestry and plantation. The analyses of the results 

(Table 6.5) allow asserting that the basin will still be a sink for the next 12 years (up to 2025).  

Despite this, it is time to act and react with the aim to strengthen resilience of farmers and 

contribute to carbon sequestration through local project development or project based carbon 

fund.   

  

Table 6. 5 Results of simulated CO2 and N2O emission in Gg per year from 2013 to 2025   

Scenarios  CO2  

emission  

CO2  

removal  

N2O  

 emission  

Net removal  Emission of  

CO2 eq.  

LUS1  16.80  -38.50  0.033  -21.70  26.70  

LUS2  11.88  -42.91  0.024  -31.02  18.89  

LUS3  14.59  -59.09  0.029  -44.50  23.19  

LUS4  10.67  -60.85  0.021  -50.17  16.96  

  

In the context of this study, we analysed the net removal that could occur due to the adaptation 

and mitigation to climate change for the scenarios LUS3 and estimated this to be  

44.5 Gg of CO2 eq per year. In the same line, the net removal that could occur in applying  

LUS4 was estimated to be 50.17 Gg of CO2 eq per year.  

  



 

151  

  

d. Impacts of developed land use scenarios on the socio-economic status of households  

  

Lorenz curve was used to measure the income distribution of households when simulating 

various land use scenarios. The Lorenz curve is shown in Figure 6.9 for each scenario. The 

Gini index (Figures 6.10) is a measure of the inequality of a distribution. A value of 0 expressed 

total equality and a value of 1 explained the maximal inequality. Given the Lorenz Curve plot, 

the Gini coefficient was computed as a function of socio-economic status of households under 

developed land use scenarios using NetLogo 4.1.3.   

  
Lorenz curve for LUS 1  Lorenz curve for LUS2  

  
Lorenz curve for LUS3  Lorenz curve for LUS4  

Figure 6. 9 Graphical outputs of Lorenz Curve under the four scenarios Source: Data 

exported from BEN-LUDAS  

  

The Gini values showed significant trends after 6 years of simulation. The difference of Gini 

values of 0.01 within the same year between two scenarios can explain the significant 

difference in term of livelihood of population as Gini varies from 0 to 1.   
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The Gini index increased during the 12 years simulation of LUS1 and tested that the population 

will be poorest for the coming years due to the high pressure on the land and its lack and mainly 

due to the low productivity obtained at the farmer’s plots. The other scenarios showed 

increasing trends but with a moderate slope and tested the importance of the improvement of 

crop yield at the farmer’s plots level and in addition the adoption of agroforestry systems and 

financial returns for farmers as an issue of mitigation strategy to climate change. The Gini 

values for each scenario during 12 years simulation were presented in appendix 1 and Table 

9.2.  

  

  

 

Figure 6. 10 Graphical outputs of Gini index showing the simulated  

income distribution of the households  Source: Data exported from BEN-

LUDAS   

  

6.6  Conclusions  

The impacts of developed land use scenarios on CO2 and N2O emission revealed an increment 

of the amount of CO2 and N2O into the atmosphere if the present trend of land disturbance 

would continue for the next 12 years (from 2013 to 2025). The business as usual scenario or 

the baseline (LUS1) will contribute to the emissions of 16.805 Gg of CO2, 0.033 Gg of N2O, 
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to the net removal of 21.70 Gg of CO2 and to the total emissions of 26.70 Gg of CO2 eq. per 

year over the period 2013-2025. The impact of food security (LUS2) based policy action would 

lead to reduction of the total emissions by 29.25 % and would increase the net removal by 

42.94 % whereas policy based adaptation and mitigation strategy to climate change (LUS3) 

and food security based mitigation strategy to climate change (LUS4) would respectively 

contribute to reduce the total emissions by 13.14 % and 36.47 %. The scenarios LUS3 and 

LUS4 would also respectively contribute to increase the net removal by 105.05 % and 131.11 

% per year from 2013 to 2025.  

  

  

  

  

  

  

  

  

  

  

  

  

CHAPETR VII: CONCLUSIONS AND RECOMMENDATIONS  

7.1 Introduction  

The present research was conducted to support REDD and MRV initiatives and to inform 

policy makers about the current status of land use and the future impacts of various policy 

setting on carbon dioxide and nitrous oxide emissions from vegetation degradation in the 
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Dassari Basin. The key conclusions and recommendations are focused on the impacts of policy 

settings tested under business as usual, food security, business as usual motivated by adaptation 

and mitigation strategy to climate change and food security based mitigation strategy to climate 

change scenarios.   

  

7.2 Conclusions  

The results from this study help to close the existing knowledge gap with respect to vegetation 

carbon and nitrogen estimation in the Sudan Savannah environment. The generalized linear 

models, equations fitted on local data can be useful for future scientific works in the Sudan 

Savannah environment generally populated by the determined main species in the present 

study. The estimation of carbon and nitrogen stock and aboveground biomass in each land use 

cover category are of great importance for carbon balance calculations in the Sudan Savanna 

in West Africa.  

The work has provided indispensable information on wood density of the main species of the 

Sudan Savannah zone, the related biomass expansion factor, the carbon and nitrogen content 

of the main tree species, the biomass, carbon and nitrogen stocks in each land use cover 

category that will be an important tool for carbon accounting programme related to the 

implementation of REDD+ in the Sudan Savanna environment.    

The impacts of developed land use scenarios predicted an increment of the emission of CO2 

and N2O into the atmosphere if the present trend of land disturbance is continued for the horizon 

2025. The business as usual scenario or the baseline (LUS1) will contribute to the emissions of 

16.805 Gg of CO2, 0.033 Gg of N2O, to the net removal of 21.70 Gg of CO2 and to the total 

emissions of 26.70 Gg of CO2 eq. per year over the period 2013-2025. The impact of the policy 

based food security (LUS2) will contribute to decrease the total emission by 29.25 % and will 
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increase the net removal by 42.94 % whereas policy based adaptation and mitigation strategy 

to climate change (LUS3) and food security based mitigation strategy to climate change (LUS4) 

will respectively contribute to reduce the total emission by 13.14 % and 36.47 %. The scenarios 

LUS3 and LUS4 will also respectively contribute to increase the net removal by 105.05 % and 

131.11 % per year by 2025.  

The main factors which involved the farmers’ decision making are population growth, high 

production of cotton based subsidy with fertilizers, the farming based mechanization, the 

protection zoning area, the variability in rainfall pattern and drought with dry spells and the 

soil suitability. The farmers of Dassari basin still have little knowledge on the adaptation 

strategies to climate change and there is no significant factor affecting adoption of these 

strategies at the farm level.   

Despite that, the basin will still be a sink up to 2025. It is time to act and react with the aim to 

strengthen the resilience of farmers and contribute to carbon sequestration through local project 

development or project based carbon fund.   

  

7.3 Limitations  

The study presented some few limitations in the evolving global carbon budget. We did not 

parameterize this component and we stuck to the forest growth sub-model which used the basal 

area as increment of the tree species of the basin to illustrate the dynamic of the ecosystem. 

Indeed, the increment of stand basal area is a function of the rainfall pattern and other climatic 

and biophysical environment. Except for the rainfall pattern which could define climate 

variability, our model involved biophysical parameters in the BEN-LUDAS procedures. The 

study mainly focused on Net Ecosystem Productivity (NEP) which can be assessed as a time-

averaged C stocks of the system (Hairiah et al., 2010; IPCC, 2006) using the forest yield 
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dynamic sub-model. Another limitation could be the miss validation using current land use 

cover map of 2015 or 2016 which was not available. Further research need to focus on other 

carbon pools which were not taken into account by the present research study. In addition, the 

current research study focuses only on CO2 and N2O. Further research on the ratio of emitted 

GHGs from biomass burning is recommended.   

  

7.4 Research outlook   

The World Bank’s BioCarbon Fund provides carbon finances for projects that sequester or 

conserve greenhouse gases in forest, agroecosystems and other ecosystems. The BioCarbon  

Fund aims to “test and demonstrate how land use, land-use changes and forestry activities can 

generate high-quality emission reductions with environmental and livelihood benefits that can 

be measured, monitored and certified and stand the test of time” (GOFC-GOLD, 2013).   

Each BioCarbon Fund project is expected to deliver between 400,000 and 800,000 tonnes of 

CO2 equivalents (CO2eq) over a period of 10 to 15 years. In return, a typical project will receive 

about US$2-3 million in payments (GOFC-GOLD, 2013). It is hoped that the finding of this 

study can convert the LUS3 or LUS4 as a project acceptable in the BioCarbon Fund. The 

implementation of one or two of these scenarios can support the baseline by the adaptation and 

mitigation strategy to climate change which can receive a minimum of US$ 2 million in 

payment.   

In addition the project will involve some other relevant scientific researches that were not a 

part of this work. The additional research aspect will involve for example the remaining carbon 

pools and other parameters in the BEN-LUDAS model.   
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7.5 Recommendations for policy and research  

The research findings are important decision making tools for environmental management 

when attempting to alleviate poverty and contribute to the implementation of the Kyoto 

Protocol and REDD+ initiatives. The policy tested under baseline motivated by adaptation and 

mitigation strategy to climate change scenario can be a useful strategy to reduce the emission 

of carbon dioxide from the basin into the atmosphere while maintaining economic growth.   

For scientists, the present research needs to be completed by taking into account other carbon 

pools.   
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9 APPENDICES  

9.1 Appendix 1. Land use cover change matrix between 2001 and 2013  

 Table 9. 1 Land use transition matrix between 2001 and 2013  

 

 Land use / cover in 2001   

Riparian forest 

and woodland 
Savanna 

woodland 
Shrub 

savanna 
Grassland 

savanna 
Crop and 

fallow Bareland  Setlement  
Agroforestry 

system Plantation 
Rivers and 

water body Roads 
Total (ha) in  
2001 

Riparian forest and 

woodland 162.27 1150.47 116.91 31.59 70.11 0.00 0.00 0.00 0.00 0.00 0.00 1531.35 

Savanna woodland 81.63 1944.99 618.12 44.73 544.23 0.54 2.70 0.00 0.27 0.00 0.81 3238.02 

Shrub savanna 62.73 1900.26 2225.34 17.73 2803.23 12.96 147.87 2.34 5.13 0.00 12.96 7190.55 

Grassland savanna 0.09 2.52 43.92 0.09 7.20 0.00 3.51 0.00 0.00 0.00 0.00 57.33 

Crop and fallow 15.93 429.03 1244.16 0.81 4572.63 4.50 290.70 16.65 5.40 0.00 16.02 6595.83 

Bareland  0.63 7.02 11.07 0.00 3.78 89.55 10.08 0.09 0.00 0.00 0.18 122.40 

Setlement  0.00 0.36 1.98 0.00 2.52 0.09 28.80 0.00 0.00 0.00 0.00 33.75 

Agroforestry system 0.00 0.09 0.00 0.00 0.36 0.00 0.09 1.53 0.00 0.00 0.00 2.07 

Plantation 0.18 0.09 0.27 0.00 2.16 0.09 0.27 0.00 5.94 0.00 0.00 9.00 

Rivers and water body 17.73 38.52 14.85 1.62 26.46 0.00 0.45 0.00 0.09 244.89 0.00 344.61 

Roads 0.00 3.15 5.94 0.00 11.79 0.18 3.87 0.09 0.00 0.63 106.83 132.48 

Total (ha) in 2013 341.19 5476.50 4282.56 96.57 8044.47 107.91 488.34 20.70 16.83 245.52 136.80 19257.39 
Legend: The yellow cell represents the unchanged pixels between 2001 and 2013. The cells up and bellow yellow cells explain the value of pixels that were changed from one 

LUC to another between 2001 and 2013. The red cell is the total area in hectares.   
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Table 9.2 Gini values of each scenario during 12 years simulation  

  

Years  

   

1  

  Scenarios   

LUS1  LUS2  LUS3  LUS4  

0.33  0.33  0.33  0.33  

2  0.36  0.36  0.35  0.36  

3  0.38  0.37  0.38  0.38  

4  0.40  0.40  0.40  0.39  

5  0.43  0.42  0.43  0.42  

6  0.45  0.44  0.44  0.44  

7  0.49  0.46  0.46  0.46  

8  0.51  0.48  0.48  0.48  

9  0.52  0.50  0.50  0.50  

10  0.55  0.52  0.52  0.51  

11  0.58  0.54  0.53  0.53  

12  0.59  0.57  0.55  0.54  

  

  

9.2 Appendix 2. Simulated major land-use/cover changes  

The following figures expressed the simulated land-use/cover changes from 2013 to 2025 for 

the four scenarios.   

  

Figure 9. 1. Comparison of simulated changes in forest land (ha) under four scenarios  
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Figure 9. 2. Comparison of simulated changes in cropland (ha) under four scenarios  

  

Figure 9. 3. Comparison of simulated changes in agroforestry system (ha) under four 

scenarios  

  

Figure 9. 4. Comparison of simulated changes in plantation (ha) under four scenarios  
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9.3 Appendix 3. Simulated carbon and nitrogen stocks   

The following figures showed the simulated carbon stocks under the four scenarios.  

  

Figure 9. 5. Comparison of simulated carbon stocks in forest land (ha) under four 

scenarios  

  

Figure 9. 6. Comparison of simulated carbon stocks in cropland land (ha) under four 

scenarios  
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Figure 9. 7. Comparison of simulated carbon stocks in  agroforestry 

system (ha) under four scenarios  

  

  

Figure 9. 8. Comparison of simulated carbon stocks in plantation (ha) under four 

scenarios  
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9.4 Appendix 4. Simulated socio-economic status of the site  

The socio-economic status of households on the horizon 2025 were illustrated through the 

annual gross income based cultivated (annual and perennial crops, agroforestry and plantation) 

and annual gross income based carbon credits if a carbon fund project is implemented.   

  

Figure 9. 9. Simulated households dynamics under the four scenarios Note: 

The household’s trend does not change for the four scenarios  
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Figure 9. 10. Simulated annual gross income based cultivated under four scenarios  

  

Figure 9. 11. Simulated annual gross income based cultivated and carbon credits under 

four scenarios  

  


