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Abstract

In this work, a fractional order SIR model with vaccination (µ1) and treatment

(µ2) is formulated to describe measles disease. Firstly, the method of solution

shows that the model possess non-negative solutions as desired in any population

dynamics. The basic reproductive number is established, and a thorough analysis

is carried out to study the stability of the equilibrium points. Numerical solutions

are presented to illustrate the stability analysis using Generalized Euler method.

Graphical results are presented and discussed.

The obtained result showed that the disease will persists within the population

if there is no vaccination (µ1) and treatment (µ2).
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Chapter 1

Introduction

1.1 Background of study

Mathematics has shown to be a valuable tool in epidemiology. Mathematical

modeling in epidemiology provides understanding of the basic mechanisms that

influence on the theory and practice of diseases and in the process it suggests

control strategies.

Worldwide, measles vaccination has been very effective, reducing measles deaths

by 78% from an estimated 562 400 death in 2000 to 122 000 in 2012 (WHO,

2012). Although global incidence has been significantly reduced through vaccina-

tion, measles still remains an important public health problem. Since vaccination

coverage is not uniformly high worldwide; measles is estimated to have caused

614 000 global deaths in 2002, with more than half of measles deaths occur in

sub-Saharan Africa as stated by Ousmane (2006).

Measles is an infectious disease highly contagious through person-to-person trans-

mission mode, with greater than 90% secondary attack rates among susceptible

persons. It is the first and worst eruptive fever occurring during childhood.

Measles is a respiratory disease caused by a virus called paramyxovirus. This

virus is spread through the respiratory route and contained in the millions of tiny

droplets that come out of the nose and mouth when a measles carrier coughs or

sneezes. One can catch measles by breathing in these droplets or, if the droplets

have settled on a surface, by touching the surface and then placing the hands near
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the nose or mouth. The measles virus can survive on surfaces for a few hours. As

a result, it can spread rapidly in a susceptible population. Infected people carry

the virus in their respiratory tract before they get sick, so they can spread the

disease without being aware of it.

The symptoms of the measles appear ten to fourteen days after a person is in-

fected with the measles virus.When a person becomes infected with the measles

virus, it begins to multiply within the cells that line the lungs and the back of

the throat. The virus can also spread to the lymph glands, bone marrow, liver,

eyes, thymus, tonsils, spleen, skin and brain. The symptoms include; fever, sore

throat, cough, sore eyes, red watery eyes, vomiting, runny nose, loss of appetite

and fatigue. The skin rash appears within three to five days from the onset of

the symptoms.

The consequences of a person infected with measles are; ear infection, pneumonia,

diarrhoea, convulsions, meningitis, conditions affecting blood clothing and deaths.

There is no treatment that can kill the virus but focusing on supportive care

can relief symptoms,this includes; getting plenty of water, and medication to

control fever or pain.

Mathematical modeling in epidemiology provides new aspect of understanding

the spread of measles disease and it suggested control strategy but most of these

dynamic has been limited to ordinary differential equations. In recent years, it

has turned out that many phenomena in different fields can be described very

successfully by the model using fractional order differential equations. This mo-

tivated the application of the fractional order differential equation approach to

model measles disease.
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1.2 Problem Statement

Measles is described as one of the most communicable diseases of humans and a

major cause of childhood deaths. The global attempts to reduce this infection aim

to achieve regular vaccination coverage of at least 90% in every district through-

out the world. So far, this attempt has resulted in a remarkable decline in deaths.

Even though this incidence has been importantly reduced through vaccination,

measles still remains an important public health problem.

Although, there have been a number of work over the years on measles, but

the emphasis has been on integer-order differential equation. Also ordinary dif-

ferential equation do not take into account of memory effect. But recently, it

has been observed that using non-integer order or fractional order differential

equations to model real life phenomena in different fields can be described very

successful. To the best of our knowledge, no works has been contributed to analy-

sis for a SIR model of fractional order differential equation for describing measles

diseases. This situation therefore motivated us to apply the fractional order SIR

differential equation to effectively model and analyze the disease.

1.3 Objectives of the study

The objectives of this work includes;

1.To propose a fractional order SIR differential equation model.

2.To analyze the dynamics or mathematical behavior of the solution of the model.

3.To Study the effect of vaccination and treatment of the disease.
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1.4 Methodology

The method employed in this thesis includes;

• A look at the basic concept and definitions of fractional differential equation.

This data was obtained from internet, journals, articles and books.

• A fractional order SIR model of the disease was formulated as a system

of differential equations and the equilibrium points (steady states) were

determined.

• The reproductive number and the stability analysis of the equilibrium points

was also determined.

• Simulation using MATLAB.

1.5 Justification

Focusing on the epidemiology of modeling diseases in Ghana, several mathemati-

cians have tried to find solution to analyze and control the measles infection but

all has been restricted to ordinary differential equation.

But recently, much attention has been given to fractional order differential equa-

tion for modeling most infectious disease, since it possess memory and also helps

to reduce the errors arising from the neglected parameters in modeling real life

problems.

In this situation, it is very vital if we look within the field of fractional order

differential equation in modeling the disease.

4



This thesis provides model epidemiology that can help to analyze any infectious

disease effectively. It contributes in the area of academics since we provide method

of solving the model by Laplace transformation. It also enables researchers and

students to develop interest in modeling any infectious disease or real life phe-

nomena by non-integer order.

1.6 Thesis Organization

This thesis comprises of five chapters. Chapter one reviews the background of the

study, statement of the problem, the objectives of the thesis, the methodology

applied in the study, as well as the justification and the organization of the thesis.

Chapter two consists of the review of relevant literature governing the theory.

It took us through some of the various method of modeling infectious diseases

and its control.

In chapter three we formulate the fractional order SIR model of the disease trans-

mission. The methods of solution, equilibrium points or steady states,as well as

the stability analysis and the reproductive number were determined.

Chapter four comprise of analysis and results. We determined the parameters

of the differential equations and numerical simulation of the model equations by

setting initial conditions.

Chapter five, the final chapter contains the conclusions and the recommenda-

tions of the thesis.
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Chapter 2

Literature Review

2.0.1 Introduction

In this chapter we reviewed the work of other researchers related to the topic.

2.0.2 Literature Relevant to this thesis

Most mathematical modeling of infectious diseases has been restricted to the use

of a system of integer-order ordinary differential equations. But of late, fractional

calculus has been widely applied in many fields, for instance many mathemati-

cians and researchers have tried to use fractional calculus to model real life pro-

cess.

First of all, considering the topic ”A Predictor-Corrector Approach for the Nu-

merical Solution of Fractional Differential Equations” by Diethelm et al. (2002).

They discuss an Adams-type predictor-corrector method for the numerical solu-

tion of fractional differential equations. The method may be used both for linear

and non-linear problems and it may be extended to equations involving more

than one differential operator too. They discuss an algorithm for the numerical

solution of differential equations of fractional order, set with suitable initial con-

ditions. They identified two possible ways forward, but stated that as to which

of these two or some other approach would be more appropriate. The first op-

tion they identified is to decrease the step size h used as the dimension of the

system increases. The second approach was to remove those zeros (that do not

contribute to the overall solution, so that the numerical solution gets stuck at the

initial value for the first approximately) by replacing the plain PECE structure
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by P (EC)ME version with a sufficiently large M (where M is any given number

of times i.e iterations). They also increased the accuracy of the numerical solu-

tion by using the Richardson extrapolation idea. They concluded that there is

the need to use much smaller values for the step size (h) in the case the order is

greater than one (α > 1) before we can see that the asymptotic behavior really

sets in. This would normally correspond to the situation that the coefficients

of the leading terms are small in magnitude compared to the coefficients of the

higher-order terms.

Antonio et al. (2008) stated an application of the SIR model to epidemics in

Portugal. They applied the SIR model to study the evolution of Measles and

Hepatitis C in Portugal using data from 1996 until 2007. They observed that

the annual data shows lower volatility than the monthly data and they found a

better fitting for the former data translated into higher correlation coefficients.

Their data from the Portuguese health system was too scarce to make possible

predictions for the evolution of virus epidemics, even though the particular cases

of Hepatitis C seem to be the one with complete data. In this case, they used their

previous results to forecast the number of infected individuals for the four sub-

sequent years using polynomial interpolation of 4th degree. They conclude that

even though the SIR model is quite simple and obtaining the 1996-2007 data was

scarce, it gave them some useful insight about the evolution of the Measles and

Hepatitis C viruses.

Hashim et al. (2009) presented homotopy analysis method for fractional initial-

value problems. In their paper, they applied the homotopy analysis method to

solve linear and non-linear fractional initial-value problems (fIVPS). They de-

scribed the fractional order derivatives by Caputo’s sense. They also obtained an

exact and approximate analytical solution of fIVPs. The Taylor series expansion

was employed to avoid the difficulties with radical non-linear terms. The reliabil-
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ity of HAM and the decrease in computations gave HAM a wider applicability.

They also demonstrated that ADM (Adomian decomposition method) is a special

case of HAM. Their results showed that, applying the procedure indicate high

accuracy and efficiency of the approach.

Ionescu et al. (2009) presented fractional-order models for the input impedance

of the Respiratory system. They discuss the use of fractional order models for

characterizing the input impedance of the human respiratory system in relation

to its fractal structure. They stated that a comparison with the well-inherited

fractional order model from the various specialized literature and recent published

hot-stone articles will situate their results. Based on available model structures

from literature and their investigations, four fractional order models were com-

pared on two sets of impedance data; healthy and COPD (Chronic Obstructive

Pulmonary Disease). Their results indicate that the two models broadly used

in the clinical studies and reported in the specialized literature were suitable for

frequencies lower than 15Hz. However, if the range of frequencies is higher, two

fractional orders in the model structure are necessary, in order to capture the fre-

quency dependence of the real part in the complex respiratory impedance. They

concluded that, since the real part may both decrease and increase within the

evaluated frequency interval, there is the need for both fractional order derivative

and fractional order integral parameters.

Also deserving mention is the work of Srivastava and Rai (2009). They pre-

sented an approximate analytical solution of 3D fractional micro-scale heat equa-

tion using modified homotopy perturbation method. In their article, they used

modified homotopy perturbation method(HPM) to find approximate solution of

three-dimensional (3D) time fractional micro-scale heat transport equation. This

transport equation was at first transformed into equation of two functions. The

first one have both, the first order fractional time derivative and second order
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space derivatives, whereas the second one have only second order space deriva-

tive. They then applied the modified HPM on first and corresponding increments

in second function obtain by Taylor’s expansion for equal time step homotopi-

cally and for solution, couple them. The obtained solution was compared with

the previous numerical result for integer order time derivative and they found out

that the procedure was easy, accurate and user friendly in comparison to previous

work.

Zeng and Yang (2010) presented a fractional order HIV Internal viral dynam-

ics model. They established a fractional order model to describe HIV internal

viral dynamics involving highly active antiretroviral treatment (HAART) effect.

They proved that the model possess a non-negative solutions as preferred in any

population dynamics. A detailed analysis to study the stability of the equilib-

rium points was carried out. They also applied the PECE (Predict, Evaluate,

Correct, Evaluate) method to obtain their numerical simulations of the model,

and approximate solutions were displayed for step size 0.007 with different order

of 0.6 ≤ α ≤ 1 . Their numerical result shows that the uninfected cells pre-

dominate. They concluded that FODE can give another option to model viral

dynamics. Since fractional order models possess memory, FODE gives a more

realistic way to model viral dynamics.

Demirci et al. (2011) presented a fractional order SEIR model with density de-

pendent death rate. They introduce a fractional order SEIR epidemic model with

vertical transmission, where the death rate of the population is density depen-

dent, and they also assumed that there exists an infection related death rate.

They show the existence of non-negative solutions of the model and also gave

a detailed stability analysis of the equilibrium points. They gave a numerical

solutions of the system of fractional differential equations using an Adam’s-type

predictor Corrector method. They observed that although the equilibrium points
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are the same for both integer order and fractional order models, but the solution

of the fractional order model tends to the fixed point over a longer period of time.

Finally, they concluded by saying that when dealing with real life problems, the

order of the system can be determined by using the collected data.

Arafa et al. (2011) presented fractional order model of Human T-cell Lymphotropic

virus I (HTLV-I)infection of CD4+ T-cells. They introduce a fractional-order into

a model of (HTLV-I) infection of CD4+ T-cells. They gave approximate and an-

alytical solutions to their model using a Generalized Euler method (GEM). They

describe the fractional derivatives in the Caputo sense. Their results indicate that

varying the values of k (the rate at which uninfected cells are contacted by ac-

tively infected cells) and k1(the rate of infection of T-cells with virus from actively

infected infected cells) will alter the number of uninfected CD4+ T-cells, infected

cells, and leukemic cells. Their numerical results also indicate that increasing the

value of k and k1 makes the number of healthy CD4+ T-cells decreases dramat-

ically whereas the numbers of latently infected cells and leukemic cell increase

substantially. They also show that a decrease in R0 decreases the parameter k.

Their results show that the solution continuously depends on the time- fractional

derivative.

On optimal singular controls for a general SIR-model with vaccination and treat-

ment was presented by Ledzewicz and Schattler (2011). They considered a general

SIR-model with vaccination and treatment as a multi-input optimal control prob-

lem over a fixed time horizon. They analysed the structure of singular controls,

but was still remains to complete the analysis by determining the structure of

possible concatenations with bang-bang controls in order to determine an op-

timal synthesis of controlled trajectories. Based on their computations, it was

anticipated that the optimal treatment schedule will be bang-bang, most likely

with just one switch from umax to u = 0 (where u is a control parameter that
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represents the rate at which susceptible individuals are vaccinated and it takes

values in a solid interval 0 ≤ u ≤ umax ) whereas they expect a singular regimen

for the optimal vaccination strategy.

Yusuf and Benyah (2012) presented Optimal control of vaccination and treat-

ment for an SIR epidemiological model. They considered an SIR model with

variable size population and formulated an optimal control problem subject to

the model with vaccination and treatment as controls. Their main aim was to

find the optimal combination of vaccination and treatment strategies that will

minimize the cost of the two control measures as well as the number of infec-

tives. The analysis of the model show that the disease free equilibrium is globally

asymptotically stable if the basic reproduction ratio is less than one while the

endemic equilibrium exists and it is globally asymptotically stable whenever the

basic reproduction ratio is greater than one. They used Pontryagin’s maximum

principle to characterize the controls and derived the optimality system. They

solved the resulting optimality system numerically. Their results confirm that the

optimal combination of vaccination and treatment approach required to achieve

the set objective will depend on the relative cost of the control measures. In

conclusion, the results indicate that the case where it is more expensive to vac-

cine than to treat, resources should be invested in treating the disease until the

disease prevalence begins to fall. This option, does not decrease the number of

susceptible quickly enough, but rather result in an overall increase in the infected

population. On the other hand, if it is more expensive to treat than to vaccine,

then more resource should be put into vaccination. This case rather resulted

in a rapid decrease in the susceptible as well as an appreciable decrease in the

number of infectives. However, the case where both measures are equally ex-

pensive showed that the optimal way to derive the epidemic towards eradication

within the specified period is to use more of the vaccination control and less of the

treatment control initially to derive the epidemic to below certain threshold after
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which we can then apply less of vaccination control and more of the treatment

control.

Arqub and El-Ajou (2012) presented the solution of the fractional epidemic model

by homotopy analysis method. In their article, they examined the accuracy of

the homotopy analysis method (HAM) for solving the fractional SIR model order

problem of the spread of a non-fatal disease in a population. The HAM provides

a simple way to adjust and control the convergence region of the series solution

by introducing an auxiliary parameter. Their HAM also provided an analytical

approximate solution in terms of an infinite power series. They gave a numerical

solution to the system of equations. They observed that the HAM has success-

fully been applied to find the approximate solution of fractional SIR model. Their

scheme shows importance of choice of convergence control parameter to guaran-

tee the convergence of the solution. They concluded that, higher accuracy can

be achieved using HAM by evaluating more components of the solution.

Rida et al. (2012) showed the effect of the environmental parameter on the Han-

tavirus infection through a fractional-order SI model. They presented a fractional-

order model of the Hantavirus infection in terms of simple differential equations

involving the mice population. They study that the effect of changes in ecological

conditions and diversity of habitats can be observed by varying the value of the

environmental parameter k. They used a generalized Euler method (GEM)to ob-

tain an analytic approximate solution of the model. The GEM was implement to

describe the effect of carrying capacity k, which they used as a control parameter

in the model of Hantavirus pulmonary syndrome (HPS) described by the frac-

tional model. They presented their results by numerical solutions, and the result

shows that the solution continuously depends on the time-fractional derivative

and on the values of the parameters. They concluded that the population of

infected mice mi, will reduce to zero after 5 years regardless of the initial number
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and the population of susceptible mice ms on the other hand will approach a

steady state of 5 years. Their results also show that when α→ 1 the solution of

the fractional model (ms)α and (mi)α, reduce to the standard solution ms and mi.

Abdullah (2013) published Simulations of Hirschsprung’s Disease Using Frac-

tional Differential Equations. He examined a model of cell invasion focusing on

the wave front of the neural crest (NC) cells in the case of Hisrchsprung’s dis-

ease (HSCR). He used fractional differential equations based upon two basic cell

functions for simulation of the model. It was based on fractional trapezoidal

numerical scheme to simulate the mathematical model in a one-dimensional set-

ting. From his fractional trapezoidal numerical results, he concluded that, if host

NC-derived cells and donor NC- derived cells migrate in opposite directions, then

these cell vanguards might obstruct each other. Also, he observed from the re-

sults that, at the donor-host interface, neither donor nor host NC cells proliferate,

once maximum capacity is reached. His results also confirmed that anomalous

diffusion caused the proliferation of NC cells to slow down. He therefore, stated

that the growing gut is not able to fully colonize within a specific time frame

hence resulting in a Hirschsprung’s disease-like state.

The Fractional order SIR and SIRS epidemic models with variable population

size was showed by El-Saka (2013). In his work he dealt with the fractional-order

SIR and SIRS epidemic models with constant recruitment rate, mass action inci-

dence and variable population size. He analyzed the stability of the equilibrium

points. He used an Adams-type predictor-corrector method for the numerical

solution of the fractional integral equation. For the derivation of the method he

replaced the original fractional-order SIRS epidemic model by equivalent frac-

tional integral equations and then apply the PECE method. The results of the

numerical solution showed that in the fractional order case the peak of the infec-

tion is reduced but the disease take a longer time to be eradicated. He concluded
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that the differential equations can help us to reduce the errors arising from the ne-

glected parameters in modeling real life problem,and he argue that the fractional

order models are at least as good as integer order ones in modelling biological,

economic and social systems where memory effects are important.

Radi et al. (2013) published the effect of vaccination on the dynamics of childhood

diseases described by a fractional SIR epidemic model.They introduce fractional-

order into the SIR model that monitors the temporal dynamics of a childhood

disease in the presence of preventive vaccine. They used a Generalized Euler

method (GEM) to obtain an analytic approximate solution of the model. The

results show that the solution continuously depends on the time-fractional deriva-

tive and on the values of the parameters. It was observed that the population of

the susceptible group decreases with time while that of the removed group grad-

ually increases due to inclusion of vaccinated susceptible group, hence indicating

that the entire population remains disease free with all the time and the endemic

equilibrium remains stable. They concluded that the use of GEM for solving their

SIR model shows that GEM is a good tool in solving biological systems.

Numerical behavior of a fractional order HIV/AIDS epidemic model was pub-

lished by Mohammed and Nemat (2013) . In their paper, they investigate a frac-

tional order HIV/AIDS (FOHA) epidemic model with treatment. They firstly,

represent the FOHA system as an equivalent system of ordinary differential equa-

tions. In their second step, they solved the system obtained in the first step by

using the fourth order Runge-Kutta method. They solved the FOHA system

with 0.8 ≤ α < 1. They also analyzed the equilibrium points and stability of the

system of equations. The simulation results from the numerical behavior of the

FOHA show the effectiveness of the method.

Kuhnert et al. (2013) presented Simultaneous reconstruction of evolutionary his-
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tory and epidemiological dynamics from viral sequences with the birth-death

SIR model. They adapt a birth-death sampling model, which allows for seri-

ally sampled data and rate changes over time to estimate epidemiological pa-

rameters of the underlying population dynamics in terms of a compartmental

susceptible-infected-removed (SIR)model. Their approach resulted in a phylody-

namic method that enables the joint estimation of epidemiological parameters

and phylogenetic history, and the method provides separate information on inci-

dence and prevalence of infections. The Birth-Death SIR method (BDSIR) was

applied to five human immunodeficiency virus type 1 clusters sampled in the

United Kingdom (UK) between 1993 and 2003. The estimated basic reproduc-

tion number ranges from 1.9 to 3.2 among the clusters. Their results mean that

the local epidemics arose from the introduction of infected individuals into pop-

ulation of between 900 and 3000 effectively susceptible individuals, albeit with

wide margins of uncertainty. All the clusters show a turn down in the growth

rate of the local epidemic in the middle or end of the 90’s. The results also show

that the effective reproductive number of cluster 1 drops below one around 1994,

with the local epidemic having almost run its course by the end of the samples

period. For the other four clusters the effective reproductive number also de-

creases in excess of time, but stays above 1. They concluded that, the BDSIR

model provides the capacity to simultaneously reconstruct evolutionary processes

with their underlying host population dynamics from viral sequence data and in

particular the inferred parameters allow us to make statements about the future

fate of the epidemic.

Multi-species SIR Models from a Dynamical Bayesian Perspective was presented

by Zhuang et al. (2013). They proposed a dynamical Bayesian hierarchical SIR

(HSIR) model, to capture the stochastic or random nature of an epidemic process

in a multi-species SIR (with the recovered becoming susceptible again) dynam-

ical setting, under hidden mass-balance constraints, which they call MSIRB.
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Different from a classic multi-species SIR model, which they call MSIRC , their

approach imposes mass balance on the underlying true counts rather than im-

properly, on the noisy observations. In addition, the MSIRB model can cap-

ture the discrete nature of, as well as uncertainties in, the epidemic process. In

their case study for influenza in poultry and swine, they simulated datasets from

MSIRB and a hierarchical version of the MSIRC model, respectively. From the

simulation results, they observe the significance of incorporating between species

transmission into the modelling. Furthermore, they see the advantages of the

MSIRB model in accounting for uncertainties in the epidemic process while re-

taining the easily interpretable MSIRS flow that underlies the MSIRC model.

Anderson (2013) presented SIR Epidemic on a configuration model network.

They study Susceptible-Infectious-Recovered epidemics on configuration model

networks, for which they look at a closed population without births, deaths and

migration. On that population they look at an SIR epidemic, which divides the

population into three different states: susceptible, infectious and recovered. How

disease spreads through the population depends strongly on the relations between

infectious and susceptible individuals. By constructing a configuration model net-

work it was possible for them to investigate when the epidemic may become large

and when it will stay small with probability one and how the distribution of the

infectious period affects the outbreak. They answered these questions by using

generating functions and percolation theory. They observed that the early stages

of an epidemic outbreak can be approximated by a branching process, also this

approximation is possible until approximately the
√
nth infection in a population

that consists of n individuals. They also show that an epidemic outbreak is pos-

sible when the transmission probability is above the epidemic threshold. They

concluded that the transmission of the disease depend on the infectious periods, if

the infectious periods are fixed for all individuals the transmission is independent

and identically distributed whereas if the infectious periods are random this is
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not the case. If the infectious periods are random the extinction probability is

smaller when we assume that the transmission is independent than when we do

not.

Weiss (2013) published the SIR model and the Foundations of Public Health.

In their work, they introduced and analysed the most fundamental transmission

model for a directly transmitted infectious disease. The model consists of a system

of three coupled non-linear ordinary differential equations which does not hold a

formula solution. Down the way they illustrated how the model helps to lay a

theoretical basis for public health interventions and how several cornerstones of

public health required such a model to illuminate. They apply their compartment

models to study disease transmission like the number of laboratory confirmed flu

cases in the US during 2009-2010 H1N1 pandemic. They stated that if all the as-

sumptions of the SIR model held for the outbreak, it would imply there would be

only one peak. They also observed that the US experienced only one peak every

year expect during the pandemic years 1918, 1968, 2009, where is experienced

two or more waves. They also used comparatively extensions of the SIR model

to reveal five plausible mechanisms, each of which could have generated the two

peaks during 2009, both quantitatively and qualitatively. The first two mecha-

nisms capture changes in virus transmission and behavioural changes. The third

mechanism involves population heterogeneity where each wave spreads through

one sub-population. The fourth mechanism is virus mutation which causes de-

layed susceptibility of individuals, and the fifth mechanism is waning immunity.

They used the models to inspect the effects of border control at the beginning of

the epidemic and the timing of any amount of available vaccinations. They also

use the models to try to understand why China had only one peak and the US

had two peaks.

Almost all the aforementioned works, they indicate that fractional differential
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equations plays an important and increasing role in the application of modelling

real life problem by non-integer order.

In this work, we formulate a fractional SIR model, stability analysis and provide

a general approximate and analytical approach to the solution of the fractional

differential equations.
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Chapter 3

Methodology

3.1 Basic Concepts and Definitions

In this section we recall some definitions and basic results related in solving

fractional differential equation.

3.1.1 The Gamma Function

This function is basically tied to fractional calculus by definition. It’s explanation

is simply the generality of the factorial for all real numbers.

The definition of the gamma function is given by

Γ(z) =
∫∞

0
e−uuz−1du , for all z ∈ R

This function is only one of its kind in that the value for any quantity is, by

consequence of the form of the integral, equivalent to that quantity z minus one

times the gamma of the quantity minus one.

Γ(z + 1) = zΓ(z), also when z ∈ N+, then γ(z) = (z − 1)!

This can be shown through a simple integration by parts. Using the gamma

functions we define the function Φ(t), which is useful for proving alternate forms

of the fractional integral Φ(t), is given by Φα(t) =
tα−1
+

Γ(α)
(Loverro, 2004).

3.1.2 Beta Function

Beta Function, furthermore known as Euler Integral of the first kind, is an impor-

tant link in fractional calculus, its solution is defined through the use of multiple

Gamma Functions, but also share a form that is typically similar to the Fractional
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Integral/ Derivative of many functions, mostly polynomials of the form tα and

the Mittag - Leffler Function.

The equation below demonstrates the Beta Integral and its solution in terms of

the Gamma function

B(p, q) =
∫ 1

0
(1−u)p−1uq−1du = Γ(p)Γ(q)

Γ(p+q)
= B(q, p) where p, q ∈ R (Loverro, 2004).

3.1.3 Laplace Transformation and Convolution

The Laplace Transform is a function transformation usually used in the solution of

complex differential equation. With the Laplace transform it is often possible to

avoid working with equations of difference differential order directly by translating

the problem into a domain where the solution presents itself algebraically. The

formal definition of the Laplace transform is given by

L{f(t)} =
∫∞

0
e−stf(t)dt = f̃(s)

Also commonly used is the Laplace convolution, given by

f(t) ∗ g(t) =
∫ b

0
f(t− τ)g(τ)d(τ) = g(t) ∗ f(t)

The convolution of two function in the domain of t is sometime complex to resolve,

however in the Laplace domain(s), the convolution results in the simple function

multiplication as shown below.

L{f(t) ∗ g(t)} = f̄(s)g̃(s)

The final vital property of the Laplace transform that should be addressed is the

Laplace transform of a derivative of integer order n of the function f(t), given by

L{fn(t)} = snf̃(s)−
n−1∑
k=0

sn−k−1f (k)(0) = snf̄(s)−
n−1∑
k=0

skfn−k−1(0)

(Loverro, 2004).
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3.1.4 The Mittag-Leffler Function

This is an important function that finds prevalent use in the world of fractional

calculus. This function plays an equivalent role in the solution of non-integer or-

der differential equations. The standard definition of the Mittag-Leffler is given

by,

Eα(z) =
∞∑
k=0

zk

Γ(αk + 1)
, α > 0

The exponential function correspond to α = 1.

It is also common to represent the Mittag-Leffler function in two arguments, α

and β such that

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
, α > 0, β > 0

This is the more generalized form of the function (Loverro, 2004).

3.2 Definitions and Derivations

3.2.1 The Fractional Integral

Riemann-Liouville demonstrates the formula regularly attributed to Cauchy for

evaluating the nth integration of the function f(t)∫
−−−

∫ t
0
f(τ)dτ = 1

(n−1)!

∫ t
0
(t− τ)n−1f(τ)dτ

For the shortened illustration of this formula, Liouville introduce the operator Jn

such that

Jnf(t) := fn(t) = 1
(n−1)!

∫ t
0
(t− τ)n−1f(τ)dτ

Often one will also used another operator,D−n instead of Jn

Hence by replacing the factorial expression for its gamma function equivalent,

then the equation is generalized for all α ∈ R+, as

Jαf(t) := fα(t) = 1
Γ(α)

∫ t
0
(t− τ)α−1f(τ)dτ

First, Liouville considered integrations of order α = 0 to be an identity operator,

that is
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J0f(t) = f(t)

Also, given the nature of the integral’s description and based on the rule from

which it came (Cauchy Repeated Integral Equation), it can be seen that just as

JnJm = Jm+n = JmJn,m, n ∈ N

so to,

JαJβ = Jα+β = JβJα, α, β ∈ R

The one presupposed condition placed upon a function f(t) that needs to be

content for these and other similar properties to remain true, is that f(t) be a

fundamental function, that is, that it is vanishing for t 6 0

The effect is such that f(0) = fn(0) = fα(0) ≡ 0

An extra property of the Riemann-Liouville integral appears after the introduc-

tion of the function Φ as shown below,

Φα = tα−1

Γ(α)
⇒ Φα(t) ∗ f(t) =

∫ t
0

(t−τ)α−1
+

Γ(α)
f(τ)

t+ denotes the function vanishes for t ≥ 0 and hence the equation Φα is a funda-

mental function. From the definition of the Laplace convolution , it follows that

Jαf(t) = Φα(t) ∗ f(t) = 1
Γ(α)

∫ t
0
(t− τ)α−1f(τ)d(τ)

Here it was obtained by finding the Laplace Transform of the Riemann-Lioville

fractional integral.

It is shown in Φα that the fractional integral could be expressed as the convolu-

tion of two terms, thus, Φα and f(t). The Laplace transform of tα−1 is given by

L{tα−1} = Γ(α)S−α

Thus, given the convolution relation to the fractional integral through Φα and

the Laplace transform of the convolution, then the Laplace transform of the frac-

tional integral is found to be

L{Jα} = S−αf̄(s) (Loverro, 2004).
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3.2.2 Fractional Derivative

Left Hand Definition vs Right Hand Definition

Consider a differentiation of order α = 1
2
, α ∈ R+. Now, choose an integer m such

that m − 1 < α < m. Given these numbers, there are two likely ways to define

the derivative. The first method, which will be call the Left Hand Definition is

demonstrated graphically

Figure 3.1: Graphical Representation of left hand definition method

The explanation for this method is simple. Having found the integer m, the first

step of the procedure is complete operation (a), that is, integrate the function

f(t) by order m − α = 0.7 where for the figure,α = 2.3 . Second, differentiate

the resulting function, f0.7(t) by order m = 3 (operation(b)), thereby achieving a

resulting differentiation of order α.

This method is represented in its mathematical form as,

Dαf(t) =



dm

dtm
[ 1
Γ(m−α)

∫ t
0

f(τ)
(t−τ)α+1−mdτ ], m− 1 < α < m

dm

dtmf(t)
, α = m

The second method, referred to here as the Right Hand Definition, is

similarly shown graphically
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Figure 3.2: Graphical representation of Right - Hand Definition Method

The Right- Hand Definition attempts to appear at the same result using the same

operations (a), (b) but in the overturn order. The mathematical result of this is

shown below

Dαf(t) =



dm

Γ(m− α)

∫ t
0

f (m)(τ)

(t− τ)α+1−mdτ, m− 1 < α < m

dm

dtmf(t)
, α = m

The second definition, although referred to here as the ‘Right Hand’ Def-

inition was initially formulated by Caputo, and is therefore, usually called the

Caputo Fractional Derivative.

However, for the Right Hand definition, because one differentiates the function

f(t) by order m , it must be well-known that not only must f(0) = 0, but also

f (1) = f (2) −−−−f (m) = 0.

The Right Hand Definition is necessary when solving non-integer order differen-

tial equation.

Also, the fractional derivative of a constant using the LHD is not zero (0), and

in-fact is equal to
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Dαc = ct−α

Γ(1−α)

From the above explanation, it can be observe that representing the practicality

of the RHD over the LHD is suitably simple.

Finding the Laplace transform of the LHD fractional derivative, this may be writ-

ten in the form Dαf(t) = g(m)(t), where g(t) = Jm−αf(t),m− 1 ≤ α ≤ m

Using the Laplace transform of a derivative of integer order n of function f(t) and

the definition of the fractional Integral- Laplace transform, Caputo found that

L{Dαf(t)} = smg̃(s)−
m−1∑
k=0

skg(m−k−1)(0) = sαf̃(s)−
m−1∑
k=0

skD(α−k−1)f(0)

The requisite initial conditions are for all k to n-1 terms, fractional order deriva-

tive of f(t).

For the LHD the derivative is written in the form

Dα ∗ f(t) = Jm−αg(t), where g(t) = f (m)(t), m− 1 ≤ α < m

The Laplace transform is then given as

L{Dα ∗ f(t)} = s−(m−α)g̃(s) = sαf̃(s)−
m−1∑
k=0

sα−k−1f (k)(0) (Loverro, 2004).

For fractional order differentiation, we will make use of Caputo’s definition owing

to its convenience for initial conditions of the differential equations. It also help

us to find a connection between what is likely and what is realistic.

Definition: The fractional integral of order σ > 0 for a function f : R+ −→ R

is defined by

Iσf(t) = 1
Γ(σ)

∫ t
0
(t− τ)σ−1f(τ)dτ

and the Caputo fractional derivative of order σ ∈ (n− 1, n) of f(t) is defined by

Dσf(t) = In−σDnf(t)

with n-1 being the integer part of σ and D =
d

dt
. Also, Γ denotes the Gamma

Function.
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3.3 Model Derivation

The model we study in this thesis is a fractional order SIR epidemic model with

vaccination and treatment. The total population N(t) is partitioned into three

(3) compartments which are Susceptible, Infectious and recovered with sizes de-

noted by S(t), I(t) and R(t) in that order. Let b denote the birth (recruitment)

rate of the population, β denote the disease transmission rate which is assumed

to take place with direct contact between infectious and susceptible hosts. We

assume that the natural death rate d(N) depends on the size of the population.

For convenience, d is assumed to be a continuous and non-decreasing function

on R+ , which does not disagree with natural phenomena. We assume α to be

disease-induced death rate. Also, we assume there exists µ1 and µ2 which respec-

tively denotes proportion of the susceptible that is vaccinated per unit time and

proportion of the infective that is treated per unit time.

Figure 3.3: Flowchart showing the compartment model for SIR

Table 3.1: Variables used and their meaning
Variable Meaning
S(t) The number of Susceptible individuals at time, t
I(t) The number of Infectious individuals at time, t
R(t) The number of recovered individuals at time, t
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Table 3.2: Parameters used and their meaning
Parameter Meaning
b birth/recruitment rate
β diseases transmission rate between infections and susceptible
d natural dearth rate
α disease-induced dearth rate
µ1 the proportion of susceptible that is vaccinated per unit time
µ2 the proportion of infectious that is treated per unit time

The assumptions of the model leads to the following system of differential

equations

dS

dt
= b− βSI − dS − µ1S

dI

dt
= βSI − µ2I − dI − αI

dR

dt
= µ1S + µ2I − dR

By fractionalizing the system above, where DσS, DσI and DσR are the deriva-

tives of S(t), I(t), and R(t) respectively, of arbitrary order σ in the sense of

Caputo and 0 < σ < 1, then the system leads to fractional differential equations

given by,

DσS = b− βSI − dS − µ1S (1)

DσI = βSI − µ2I − dI − αI (2)

DσR = µ1S + µ2I − dR (3)

where S(0) = S0, I(0) = I0, R(0) = R0

The reason for considering a fractional order system instead of its integer order

matching part is that fractional order differential equations are generalization of

integer order differential equations. Also, using fractional order differential equa-

tions can help us to decrease the errors arising from the neglected parameters in

modeling real life phenomena.

Note that the system of fractional differential equations above can be reduced to

an integer order system by setting σ = 1
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But the equation of the population can be obtain by adding (1), (2) and (3)

Dσ(S + I +R) = b− βSI − dS − µ1S + βSI − µ2I − dI − αI + µ1S + µ2I − dR

But N = S + I +R, therefore by substitute, we have

DσN = b−Nd− αI

Then we have,

DσN = b−Nd− αI (4)

This means that the population size is not constant.

This implies that R(t) can always be obtained by the equation

R(t) = N(t)− S(t)− I(t)

We now consider our system of equations as

DσS = b− βSI − dS − µ1S (5)

DσI = βSI − µ2I − dI − αI (6)

DσN = b−Nd− αI (7)

S(0) = S0, I(0) = I0, N(0) = N0,where 0 < σ < 1

3.3.1 Non-Negative Solutions

Given the equation of the population as, DσN = b − Nd − αI, and from the

dynamics described by equations (1)-(4), then the region

R3
+ = (x ∈ R3 : x ≥ 0) and x(t) = (S(t), I(t), R(t))T

is positively invariant (non-negative solutions)

Methods of Solution

From (7) we have, DσN = b−Nd− αI

By grouping or rearranging the variable of interest , we have

DσN + dN = b− αI

Now assume that f(t) = b− αI , which is a constant function of time
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then we have DσN + dN = f(t)

Taking Laplace transform throughout, we have

L{DσN}+ L{dN} = L{f(t)}

but L{DσN} = sσÑ −
n−1∑
n=0

sσ−n−1N(0+), where
n−1∑
n=0

sσ−n−1N(0+) is the initial

condition

L{dN} = dL{N} = ds2Ñ and L{f(t)} = F (s)

This implies that,

sσÑ −
n−1∑
n=0

sσ−n−1N(0+) + ds2Ñ = F (s)

Thus, (sσ + ds2)Ñ =
n−1∑
n=0

sσ−n−1N(0+) + F (s)

Taking the initial condition to be zero, thus
n−1∑
n=0

sσ−n−1N(0+) = 0, then we have

Ñ = F (s)
sσ+ds2

, which involves two functions

We now find the Laplace inverse transform of Ñ to get N(t), then let g̃(s) = 1
sσ+ds2

and k̃(s) = F (s)

Now, g̃(s) = 1
sσ+ds2

= 1
s2

( 1
sσ−2+d

) = 1
d

s−2

( s
σ−2

d
+1)

Then g̃(s) = 1
d
( s−2

1−(− sσ−2

d
)
) = 1

d

∞∑
k=0

(−1)ks−2(
s−(σ−2)

d
)k

g̃(s) = 1
d

∞∑
k=0

(−1)k(
s−k(σ−2)−2

dk
)

g̃(s) = 1
d

∞∑
k=0

(−1)k(
s−[k(σ−2)+2]

dk
)

but

L−1{s−p} = t
p−1

Γ(p)
, where Γ is a Gamma function
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Now we let p = k(σ − 2) + 2, and by substitute into the above formula we

have,

L−1{s−[k(σ−2)+2)]} = tk[σ−2]+2−1

Γ(k(σ−2)+2)

⇒ g(t) = 1
d

∞∑
k=0

(
−1

d
)k

tk[σ−2]+2−1

Γ(k(σ − 2) + 2)
, d > 0

Thus, g(t) = 1
d
t
∞∑
k=0

(− tσ−2

d
)k

Γ(k(σ − 2) + 2)
, d > 0

Now assume z = −tσ−2

d
, u = σ − 2, v = 2, we have

g(t) = 1
d
t
∞∑
k=0

zk

Γ(uk + v)
, then by Mittag-Leffler function, we can let

Eu,v(z) =
∞∑
k=0

zk

Γ(uk + v)

⇒ g(t) = 1
d
tEu,v(z) and k(t) = F (t)

Hence we have, N(t) = 1
d
tEu,v(z)F (t) , where, u > 0, v > 0 and d > 0

Also by convolution, we can deduce that

N(t) = 1
d

∫ t
0
tEu,v(z)F (t)dt, u > 0, v > 0,

thus

N(t) = g(t) ∗ k(t) = 1
d

∫ t
0
(t− t′)Eσ−2,2(−(t−t′)(σ−2)

d
)kF (t′)dt′

Therefore we show that,

N(t) = 1
d

∫ t
0
(t− t′)Eσ−2,2(−(t−t′)(σ−2)

d
)kF (t′)dt1 ≥ 0, since d > 0,

Also if k → ∞, t → ∞, then N(t) → b
d
≥ 0, hence proved that the solution is

positive invariant

From equation (5), DσS = b− βSI − dS − µ1S

by grouping like terms, we have DσS + βSI + dS + µ1S = b
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Taking Laplace transform throughout we have,

L(DσS) + L(βSI) + L(dS) + L(µ1S) = L(b)

taking constant out we have

L(DσS) + βIL(S) + dL(S) + µ1L(S) = bL(1)

where

L(DσS) = sσS̃ −
n−1∑
n=0

sσ−n−1N(0+)

βIL(S) = βIs2S̃

dL(S) = ds2S̃,

µ1L(S) = µ1s
2S̃

bL(1) = bs−1 by substitution, we have, sσS̃−
n−1∑
n=0

sσ−n−1N(0+) +βIs2S̃+ ds2S̃+

µ1s
2S̃ = bs−1

Taking the initial condition to be zero, then we have

sσS̃ + βIs2S̃ + ds2S̃ + µ1s
2S̃ = bs−1

Now by factorizing S̃ leads to, S̃(sσ + βIs2 + ds2 + µ1s
2) = bs−1

Making S̃ the subject, thus, S̃ =
bs−1

sσ + βIs2 + ds2 + µ1s2

S̃ =
bs−1

s2(sσ−2 + βI + d+ µ1)
, where death rate (d) is positive

Assume that βI + d+ µ1 = c ,then we have

S̃ =
bs−1

s2(sσ−2 + c)
=

bs−3

sσ−2 + c
=

bs−3

c(
sσ−2

c
+ 1)

We now have to find the Laplace inverse transform of S̃ to get S(t)

S̃ =
bs−3

c(1 +
sσ−2

c
)

=
bs−3

c(1− (−s
σ−2

c
))

=
b

c

s−3

(1− (−s
σ−2

c
))
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We now have, S̃ =
b

c

∞∑
k=0

(−1)ks−3(
s−(σ−2)

c
)k

⇒ S̃ =
b

c

∞∑
k=0

(−1)k(
s−k(σ−2)−3

ck
)

Thus S̃ =
b

c

∞∑
k=0

(−1)k(
s−[k(σ−2)+3]

ck
)

but L−1{s−p} =
tp−1

Γ(p)
, where Γ is a Gamma function.

Now we let p = k(σ − 2) + 3, so by substitute we have,

L−1{s−[k(σ−2)+3]} =
tk(σ−2)+3−1

Γ(k(σ − 2) + 3)
=

tk(σ−2)+2

Γ(k(σ − 2) + 3)

This implies that, S(t) =
b

c

∞∑
k=0

(
−1

c
)k

tk(σ−2)+2

Γ(k(σ − 2) + 3)
=
b

c

∞∑
k=0

t2
(
−tσ−2

c
)k

Γ(k(σ − 2) + 3)

If we let z =
−tσ−2

c
, u = σ − 2 and v = 3 then we have

S(t) =
b

c
t2
∞∑
k=0

zk

Γ(uk + v)
, therefore by Mittag-Leffler function application, we

can let

Eu,v(z) =
∞∑
k=0

zk

Γ(uk + v)
, ⇒ S(t) =

b

c
t2Eu,v(z), u > 0, v > 0

Therefore, S(t) =
b

c
t2Eu,v(z) ≥ 0, since d > 0 and if t → ∞. Also, from the

above solution we assume that u = σ− 2, v = 3, z =
−tσ−2

c
, and c = βI + d+µ1

From equation (6), DσI = βSI − µ2I − dI − αI

By grouping variable of interest, we have DσI − βSI + µ2I + dI + αI = 0

Taking Laplace transform throughout, thus,

L(DσI)− L(βSI) + L(µ2I) + L(dI) + L(αI) = L(0)
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where,

L(DσI) = sσ Ĩ −
n−1∑
n=0

sσ−n−1N(0+)

L(βSI) = βSL(I) = βSĨs2

L(µ2I) = µ2L(I) = µ2Ĩs
2

L(dI) = dL(I) = dĨs2

L(αI) = αL(I) = αĨs2

L(0) = 0

By substituting into the Laplace transform of the equation above, thus,

sσ Ĩ −
n−1∑
n=0

sσ−n−1N(0+)− βSĨs2 + µ2Ĩs
2 + dĨs2 + αĨs2 = 0

Taking the initial condition,
n−1∑
n=0

sσ−n−1N(0+) = 0, then the equation becomes

sσ Ĩ − βSĨs2 + µ2Ĩs
2 + dĨs2 + αĨs2 = 0, d > 0

Now by factorizing Ĩ, we have, Ĩ(sσ − βSs2 + µ2s
2 + ds2 + αs2) = 0

Making Ĩ the subject,thus, Ĩ =
0

sσ − βSs2 + µ2s2 + ds2 + αs2
= 0

We now take the Laplace inverse of Ĩ to get I(t), but Ĩ = 0

Therefore, L−1{Ĩ} = L−1{0} = 0⇒ I(t) = 0

3.3.2 Basic Reproductive Number (R0) of the Model

The basic reproduction number R0 is defined as the average number of Sec-

ondary cases generated by a typical infective (patience) within a population with
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no immunity to the disease, in the absence of interventions produced by a single

infected individual introduced into a population of N susceptible. It is denoted

by R0 (Kermack and McKendrick, 1927). If R0 < 0, then there is no epidemics,

that is the disease dies out. If R0 > 0, then it implies that the disease spreads in

the susceptible population. But when R0 = 0, then the disease becomes endemic,

meaning the disease remains in the population at a constant rate, as one infected

individual transmit the disease to one susceptible.

Now, the system of equations is,

DσS = b− βSI − dS − µ1S (8)

DσI = βSI − µ2I − dI − αI (9)

DσN = b−Nd− αI (10)

with initial conditions, S(0) = S0, I(0) = I0, N(0) = N0 ,where 0 < σ < 1

We determine (R0) by using the Next Generation Matrix Approach or by simply

imposing the non-negativity condition on the infected Compartment I .

The Next Generation Matrix is given by K = FV −1.

The basic reproduction number is the eigenvalue of largest magnitude or spectra

radius of the next generation matrix.

We re-order the above equations to get

DσS = b− βSI − dS − µ1S.............................f2(I, S,N)

DσI = βSI − µ2I − dI − αI............................f1(I, S,N)

DσN = b−Nd− αI.........................................f3(I, S,N)

where 0 < σ < 1

Linearization of the above model gives the Generation matrix (G) evaluated at

the disease free equilibrium (DFE),

G =


f1I f1S f1N

f2I f2S f2N

f3I f3S f3N


Since f1 and f2 form a subsystem describing the generation and transition of

infectious, the Jacobian matrix associated with the linearized subsystem at Dis-
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ease Free Equilibrium (DFE) is given by,

J(I, S) =

 ∂f1
∂I

∂f1
∂S

∂f2
∂I

∂f2
∂S



Thus, JDFE(I, S) =

 βS0 − (µ2 + d+ α) 0

−βS0 −(d+ µ1)


JDFE is decomposed as F − V , where F is the transition matrix describing the

changes in individual states such as removal by death or recovery. Knowing ma-

trices F and V ,R0 can be simply obtained by calculating the spectra radius of

NGM K = FV −1. The DFE is locally stable if R0 < 0, whereas it is unstable if

R0 > 0 (Diekmann and Heesterbeck, 2000).

JDFE = F − V =

 βS0 0

0 0

−
 µ2 + d+ α 0

βS0 d+ µ1

,

Thus, F =

 βS0 0

0 0

 and v =

 µ2 + d+ α 0

βS0 d+ µ1



V −1 = 1
(d+µ1)(µ2+d+α)

 d+ µ1α 0

−βS0 µ2 + d+ α



FV −1 =

 βS0 0

0 0


 1

µ2+d+α
0

−βS0

(d+µ1)(µ2+d+α)
1

d+µ1



K = FV −1 =

 βS0

µ2+d+α
0

0 0


At Disease Free Equilibrium (DFE), S0 =

b

d+ µ1

, so by substitute into the above
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matrix, the Next Generation Matrix (NGM) becomes

K = FV −1 =

 bβ

(d+ µ1)(µ2 + d+ α)
0

0 0


Since R0 is the most dominant eigenvalue of the NGM, then

R0 = bβ
(d+µ1)(µ2+d+α)

3.3.3 Equilibrium point and Stability

To determine the stability analysis of the model, we first evaluate the equilibrium

point(s) or steady states of the system of fractional differential equations (8), (9),

and (10).

The equilibrium points involved determine the disease-free (where I = 0) and

endemic (where I 6= 0).

Consider the initial value problem (8)-(10) with 0 < σ < 1. To evaluate the

equilibrium points of (8)-(10), let

DσS = 0

DσI = 0

DσN = 0

3.3.4 The Disease-Free Equilibrium Solution

At the disease-free equilibrium , we consider the case where there is no infection.

We now consider the equations below and solve for the values of S and N, since

at this point there is no infection, thus I = 0
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b− βSI − dS − µ1S = 0 (11)

βSI − µ2I − dI − αI = 0 (12)

b−Nd− αI = 0 (13)

From equation (12)

I(βS − µ2 − d− α) = 0

I = 0

substitute I = 0, into equation (11), we have

Sb− dS − µ1S = 0, this implies that, S = b
d+µ1

Now substituting I = 0, into equation (13) yields

b−Nd = 0, implies N = b
d
.

At diseases - free equilibrium solution,

(S∗, I∗, N∗) = ( b
d+µ1

, 0, b
d
)

3.3.5 An Endemic Equilibrium Solution

For this stage, thus an endemic equilibrium solution, we consider the case where

there is infection.

From equation (12)

S = µ2+d+α
β

Substitute S into equation (11) to find I, then we have

b− β(µ2+d+α
β

)I − d(µ2+d+α
β

)− µ1(µ2+d+α
β

) = 0

b− (µ2 + d+ α)I = d(µ2+d+α
β

) + µ1(µ2+d+α
β

)

I = bβ−d(µ2+d+α)+µ1(µ2+d+α)
β(µ2+d+α)
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I = bβ−(µ1+d)(µ2+d+α)
β(µ2+d+α)

= (R0 − 1)µ1+d
β

Now substitute I into equation (13) to get N,

Nd = b− αI

Nd = bβ(µ2+d+α)−α(bβ−(µ1+d)(µ2+d+α))
β(µ2+d+α)

Nd = bβµ2+bβd+αbβ−αbβ+α(µ1+d)(µ2+d+α)
β(µ2+d+α)

N = bβ(µ2+d)+α(µ1+d)(µ2+d+α)
dβ(µ2+d+α)

At endemic equilibrium we have the point,

(S∗, I∗, N∗) = (µ2+d+α
β

, bβ−(mu1+d)(µ2+d+α)
β(µ2+d+α)

, bβ(µ2+d)+α(µ1+d)(µ2+d+α)
dβ(µ2+d+α)

)

3.3.6 Stability Analysis of Disease-Free Equilibrium Point

Theorem 2: The disease-free equilibrium point of the system is asymptotically

stable if R0 < 1

Proof: To determine the stability of the system at disease-free equilibrium, we

consider the linearized form of the system of the equations below about the equi-

librium point.

DσS = b− βSI − dS − µ1S

DσI = βSI − µ2I − dI − αI

DσN = b−Nd− αI

The Jacobian matrix J of the system is
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J =


−βI − d− µ1 −βS 0

βI βS − µ2 − d− α 0

0 −α −d


At disease-free equilibrium, S = b

d+µ1
, I = 0 and N =

b

d
, therefore, by sub-

stitute into J, the Jacobian matrix becomes,

JDFE =


−d− µ1

−bβ
d+µ1

0

0
bβ

d+ µ1

− µ2 − d− α 0

0 −α −d


Now by finding the characteristic equation of the matrix above, we set the deter-

minant of JDFE −h to zero,

Thus,

det(JDFE −hI) =


−d− µ1 −h

−bβ
d+ µ1

0

0
bβ

d+ µ1

− µ2 − d− α−h 0

0 −α −d−h

 = 0

We divide the above matrix into three 2 × 2 matrices and find their determi-

nants.

Let,

d1 =

 bβ

d+ µ1

− µ2 − d− α−h 0

−α −d−h



d2 =

 0 0

0 −d−h



d3 =

 0 bβ
d+µ1

− µ2 − d− α−h

0 −α


After finding d1, d2 and d3 we substitute the values into the formula below
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det(JDFE −h) = (−d− µ1 −h)× d1 − ( −bβ
d+µ1

)× d2 + 0× d3

Now solving for d1, d2 and d3 we have

d1 = ( bβ
d+µ1

− µ2 − d− α−h)(−d−h)− 0(−α) = 0

d1 = ( bβ
d+µ1

− µ2 − d− α−h)(−d−h)

d2 = 0

d3 = 0

By applying the formula and substituting the values of d1, d2 and d3 we have

det(JDFE−hI) = (−d−µ1−h)( bβ
d+µ1
−µ2−d−α−h)(−d−h)× (−d−h) = 0

This implies that,

(−d− µ1 −h)( bβ
d+µ1

− µ2 − d− α−h)(−d−h)× (−d−h) = 0

Therefore, h1 = −(d + µ1), h2 = bβ
d+µ1

− (µ2 + d + α) and h3 = −d. This

shows that the matrix JDFE have eigenvalues,

h1 = −(d+ µ1) < 0, h3 = −d < 0 but h2 = bβ
d+µ1

− (µ2 + d+ α)

For asymptotic stability we require h2 < 0, thus, bβ
d+µ1

− (µ2 + d + α) < 0,

which is equivalent to
bβ

(d+ µ1)(µ2 + d+ α)
= R0 < 1

Remarks: The case where R0 = 1 is a critical threshold point because the
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disease-free equilibrium loses its asymptotic stability and becomes (neutrally)

stable. Furthermore, it becomes unstable right away R0 > 1 and this will lead to

the existence of a stable endemic equilibrium.

Notice that the case R0 = 1 can literary be viewed as a transcritical bifurcation

point where stability is exchanged between disease-free equilibrium and endemic

equilibrium point.

3.3.7 Stability Analysis of Endemic Equilibrium Point

Theorem 3: The endemic equilibrium point is asymptotically stable if R0 > 1.

Proof: The system has an endemic infection because of the introduction of those

with secondary infection. To determine this, we linearized the Jacobian matrix J

evaluated at the endemic equilibrium point.

The Jacobian matrix of the system is,

J =


−βI − d− µ1 −βS 0

βI βS − µ2 − d− α 0

0 −α −d


At endemic equilibrium, S∗ =

µ2 + d+ α

β
, I∗ =

bβ − (µ1 + d)(µ2 + d+ α)

β(µ2 + d+ α)

and N∗ =
bβ(µ2 + d) + α(µ1 + d)(µ2 + d+ α)

dβ(µ2 + d+ α)

Inserting S∗, I∗andN∗, into the Jacobian matrix gives

J =


− (bβ−(µ1+d)(µ2+d+α))

(µ2+d+α)
− d− µ1 −(µ2 + d+ α) 0

(bβ−(µ1+d)(µ2+d+α))
(µ2+d+α)

(µ2 + d+ α)− µ2 − d− α 0

0 −α −d


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J =


− bβ

(µ2+d+α)
−(µ2 + d+ α) 0

bβ
(µ2+d+α)

− (µ1 + d) 0 0

0 −α −d


This can also be represented as,

J =


−R0(µ1 + d) −(µ2 + d+ α) 0

(R0 − 1)(µ1 + d) 0 0

0 −α −d


Where R0 = bβ

(µ1+d)(µ2+d+α)
is the basic reproduction number.

We determine the eigenvalues of J by calculating the determinants of the ma-

trix.

Thus, det(J −hI) =


−R0(µ1 + d)−h −(µ2 + d+ α) 0

(R0 − 1)(µ1 + d) 0−h 0

0 −α −d−h


We divide the matrix into three 2× 2 matrices to find the determinants.

Let,

d1 =

 0−h 0

−α −d−h

, d2 =

 (R0 − 1)(µ1 + d) 0

0 −d−h

 and

d3 =

 (R0 − 1)(µ1 + d) 0−h

0 −α



We then apply the formula below after determine the value(s) of d1, d2 and d3.

det(J −hI) = (−R0(µ1 + d1 −h)× d1 − (−(µ2 + d+ α))× d2 + 0× d3 = 0

det(J −hI) = (−R0(µ1 + d1 −h)× d1 + (µ2 + d+ α)× d2
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Now calculating the value(s) of d1, d2 and d3, we have

d1 = (−h)(−d−h) + 0× (α)⇒ d1 = (−h)(−d−h)

d2 = (R0 − 1)(µ1 + d)(−d−h)

d3 = (R0 − 1)(µ1 + d)(−α)− 0(0−h)⇒ d3 = (R0 − 1)(µ1 + d)(−α)

Inserting d1, d2 and d3 into the formula gives,

det(J − hI) = (−R0(µ1 + d) − h) × (−h)(−d − h) + (µ2 + d + α) × (R0 −

1)(µ1 + d)(−d−h) = 0

(−R0(µ1 +d)−h)× (−h)(−d−h)+(µ2 +d+α)× (R0−1)(µ1 +d)(−d−h) = 0

(−d−h)((−R0(µ1) + d)−h(−h) + (µ2 + d+ α)(R0 − 1)× (µ1 + d) = 0

This implies that,

h = −d and h2 +R0(µ1 + d) h +(R0 − 1)(µ1 + d)(µ2 + d+ α) = 0

Thus, h1 = −d < 0 , but to find h2 and h3 from

h2 +R0(µ1 + d) h +(R0 − 1)(µ1 + d)(µ2 + d+ α) = 0

Then by using the formula h2,3 = −b±
√
b2−4ac

2a
,

where a = 1, b = R0(µ1 + d) and c = (R0 − 1)(µ1 + d)(µ2 + d+ α)
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Inserting the value of a, b and c, we have

h2,3 =
−R0(µ1 + d)±

√
R2(µ1 + d)2 − 4(R0 − 1)(µ1 + d)(µ2 + d+ α)

2

This shows that if R0 > 1, then h2 < 0 and h3 < 0, hence it becomes asymptot-

ically stable.
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Chapter 4

Analysis

This chapter deals with the analysis and numerical simulation of the model.

The estimation of the parameters, simulation analysis to illustrate our results

on stability, as well as numerical simulation and graphical representation of the

system of fractional differential equations.

4.1 Estimation of parameters

The parameter values and initial conditions used for the analysis and numerical

solutions to the system of equations are shown in the table below,

Table 4.1: Parameters and values of the system of fractional differential equation
Parameters Meaning Values
b birth/recruitment rate 0.03
β disease transmission rate between infective and susceptible 0.75
d natural dearth rate 0.02
α disease -induced dearth rate 0.1
So initial number of susceptible individuals 0.95× 103

Io initial number of infective individuals 0.05× 103

No initial number of total population 1.0× 103

Source: Yusuf and Benyah (2012)

4.1.1 Simulation

By using the Generalized Euler method (GEM), we obtained the numerical solu-

tion of the system of fractional differential equations.

For instance considering the initial value problem
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Dσy(t) = f(t, y(t)), y(0) = y0, 0 < σ < 1, t > 0

The general formula for the Fractional Euler’s method of the above initial value

problem is tj+1 = tj + h,

y(tj+1) = y(tj) +
hσ

Γ(σ + 1)
f(tj, y(tj))

for j = 0, 1, · · · , k − 1. It is clear that if σ = 1, then the generalized Euler’s

method reduces to the classical Euler’s method.

For this purposes we attempts to find numerical solution for a general class of

fractional order SIR epidemic model of the disease.

Considering,

DσS(t) = b− βS(t)I(t)− dS(t)− µ1S(t) (14)

DσI(t) = βS(t)I(t)− µ2I(t)− dI(t)− αI(t) (15)

DσN(t) = b−N(t)d− αI(t) (16)

S(0) = S0 = 0.95× 103, I(0) = I0 = 0.05× 103, N(0) = N0 = 1.0× 103,

0 < σ < 1, t > 0

From (14), DσS(t) = b− βS(t)I(t)− dS(t)− µ1S(t)

We let f(t, S(t)) = b− βS(t)I(t)− dS(t)− µ1S(t)

⇒ DσS(t) = f(t, S(t)), S(0) = S0, 0 < σ < 1, t > 0

Let [0, b] be the interval over which we want to find the solution of the problem.

We generate a set of points (tj, S(tj)) for our approximation.

For convenience we subdivide the interval [0, b] into k subintervals [tj, tj+1] of

equal width h =
b

k
by using the nodes tj = jh, for j = 0, 1, · · · , k.

Suppose that S(t), DσS(t), and D2σS(t) are continuous on [0, b] and by using the

generalized Taylor’s formula to expand DσS(t) = f(t, S(t)) about t = t0 = 0. For

each value t there is a value c1 so that

S(t) = S(t0) + (DσS(t))(t0)
tσ

Γ(σ + 1)
+ (D2σS(t))(c1)

t2σ

Γ(2σ + 1)

Now when (DσS(t))(t0) = f(t, S(t)) and h = t1 are substitute into the above
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equation, then the results is an expression for S(t1);

S(t1) = S(t0) + f(t0, S(t0))
hσ

Γ(σ + 1)
+ (D2σS(t0))(c1)

h2σ

Γ(2σ + 1)

If the step size h is chosen small enough, then we may neglect the higher order

term (thus, h2σ) and get

S(t1) = S(t0) + f(t0, S(t0))
hσ

Γ(σ + 1)

The process is repeated and generates a sequence of points that approximates the

solution S(t). Then, the general formula for fractional Euler’s method of S(t) is

tj+1 = tj + h,

S(tj+1) = S(tj) +
hσ

Γ(σ + 1)
f(tj, S(tj))

but f(tj, S(tj)) = b− βS(tj)I(tj)− dS(tj)− µ1S(tj)

By inserting we have,

S(tj+1) = S(tj) +
hσ

Γ(σ + 1)
(b− βS(tj)I(tj)− dS(tj)− µ1S(tj))

for j = 0, 1, · · · , k − 1.

From (15), DσI(t) = βS(t)I(t)− µ2I(t)− dI(t)− αI(t)

Let f(t, I(t)) = βS(t)I(t)− µ2I(t)− dI(t)− αI(t)

⇒ DσI(t) = f(t, I(t)), I(0) = I0, 0 < σ < 1, t > 0

Let [0, b] be the interval over which we want to find the solution of the problem.

We generate a set of points (tj, I(tj)) for our approximation.

For convenience we subdivide the interval [0, b] into k subintervals [tj, tj+1] of

equal width h =
b

k
by using the nodes tj = jh, for j = 0, 1, · · · , k.

Suppose that I(t), DσI(t), and D2σI(t) are continuous on [0, b] and by using the

generalized Taylor’s formula to expand DσI(t) = f(t, I(t)) about t = t0 = 0. For

each value t there is a value c1 so that

I(t) = I(t0) + (DσI(t))(t0)
tσ

Γ(σ + 1)
+ (D2σI(t))(c1)

t2σ

Γ(2σ + 1)

Now when (DσI(t))(t0) = f(t, I(t)) and h = t1 are substitute into the above
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Taylor’s expansion of I(t) , then the results is an expression for I(t1);

I(t1) = I(t0) + f(t0, I(t0))
hσ

Γ(σ + 1)
+ (D2σI(t0))(c1)

h2σ

Γ(2σ + 1)

Now if the step size h is chosen small enough, then we may neglect the higher

order term (that is, h2σ) and get

I(t1) = I(t0) + f(t0, I(t0))
hσ

Γ(σ + 1)

The process is repeated and generates a sequence of points that approximates the

solution I(t). Then, the general formula for fractional Euler’s method of I(t) is

tj+1 = tj + h,

I(tj+1) = I(tj) +
hσ

Γ(σ + 1)
f(tj, I(tj))

but f(tj, I(tj)) = βS(tj)I(tj)− µ2I(tj)− dI(tj)− αI(tj)

By inserting we have,

I(tj+1) = I(tj) +
hσ

Γ(σ + 1)
(βS(tj)I(tj)− µ2I(tj)− dI(tj)− αI(tj))

for j = 0, 1, · · · , k − 1.

Similarly, from (16), DσN(t) = b− dN(t)− αI(t)

N(0) = N(0), 0 < σ < 1, t > 0

Let f(t, N(t)) = b− dN(t)− αI(t)

⇒ DσN(t) = f(t, N(t)), N(0) = N0, 0 < σ < 1, t > 0

Let [0, b] be the interval over which we want to find the solution of the problem.

We generate a set of points (tj, N(tj)) for our approximation.

For convenience we subdivide the interval [0, b] into k subintervals [tj, tj+1] of

equal width h =
b

k
by using the nodes tj = jh, for j = 0, 1, · · · , k.

Suppose that N(t), DσN(t), and D2σN(t) are continuous on [0, b] and by using

the generalized Taylor’s formula to expand DσN(t) = f(t, N(t)) about t = t0 = 0.

For each value t there is a value c1 so that

N(t) = N(t0) + (DσN(t))(t0)
tσ

Γ(σ + 1)
+ (D2σN(t))(c1)

t2σ

Γ(2σ + 1)
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Now when (DσN(t))(t0) = f(t, N(t)) and h = t1 are substitute into the above

Taylor’s expansion of N(t) , then the results is an expression for N(t1);

N(t1) = N(t0) + f(t0, N(t0))
hσ

Γ(σ + 1)
+ (D2σN(t0))(c1)

h2σ

Γ(2σ + 1)

Now if the step size h is chosen small enough, then we may neglect the higher

order term (that is, h2σ) and get

N(t1) = N(t0) + f(t0, N(t0))
hσ

Γ(σ + 1)

This process is repeated and generates a sequence of points that approximates

the solution N(t). Then, the general formula for fractional Euler’s method of

N(t) is tj+1 = tj + h,

N(tj+1) = N(tj) +
hσ

Γ(σ + 1)
f(tj, N(tj))

but f(tj, N(tj)) = b− dN(tj)− αI(tj)

By inserting we have,

N(tj+1) = N(tj) +
hσ

Γ(σ + 1)
(b− dN(tj)− αI(tj))

for j = 0, 1, · · · , k − 1.

4.1.2 Numerical Results

In this section, we will study the effect of vaccination(µ1) and treatment(µ2) on

the disease described by the fractional SIR model using GEM.

From the parameter values given in Table 4.1, we estimate thatR0 =
0.0225

(µ1 + 0.02)(µ2 + 0.12)

From the results in the presented figures, it is clear that varying the values of µ1

and µ2 will alter the number of susceptible and infected persons.

R0 is known as the basic reproduction number. If R0 > 1, the disease persists in

the population but if R0 < 1, the disease always die out.

For instance, if µ1 = µ2 = 0, then R0 = 9.3750 > 1, the endemic equilibrium

is locally asymptotically stable. Thus, the results show that if there are no vac-

cination (µ1) and treatment (µ2) then the disease persist, while the number of
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susceptible decrease (see fig. 4.1) and the number of infectious increases (see fig.

4.2).

If µ1 = µ2 = 1, then R0 = 0.0197 < 1, the disease free equilibrium is locally

asymptotically stable. Thus, the disease will die out in the population whereas

the size of the susceptible increase (see fig. 4.4) and that of the infectious de-

creases (see fig. 4.5).

It is obvious from the meaning of R0 that R0 decreases as the parameter µ1 and

µ2 increases, hence R0 can be low for high parametric value of µ1 and µ2.

The obtained results are shown in Figure 4.1, 4.2, 4.3, 4.4, 4.5 where µ1, µ2 vary.

Figure 4.1: Size of the susceptible class over time for the system with no
vaccination(µ1 = 0) for different values of σ
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Figure 4.2: Size of the infectious class over time for the system with no
treatment(µ2 = 0) for different values of σ

Figure 4.3: Size of the total population class over time for the system with dif-
ferent values of σ
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Figure 4.4: Size of the susceptible class over time for the system with
vaccination(µ1 = 1) for different values of σ

Figure 4.5: Size of the infectious class over time for the system with
treatment(µ2 = 1) for different values of σ
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Chapter 5

Conclusion

In analyzing the mathematical behavior of the model we obtained the non-

negative solutions of the model by Laplace transform. The fractional order model

conformed to the assumption of the model.

The results confirmed that in the absence of vaccination and treatment the dis-

ease persists.

We have been able to extend the ODE to take care of all the properties and also

the principle of the propose model possess memory. By comparing to the ordi-

nary differential equation we observed that this provide more accurate results.

In the presented problem, the suspected group, the infected group and the total

population group have been obtained, the results obtained indicate that when

σ = 1 the solution of the fractional model, DσS,DσI and DσN reduce to the

standard solution S(t) , I(t) and N(t), thus the model tends to ordinary differen-

tial equation.

The mathematical behavior indicate that the disease-free equilibrium point is lo-

cally asymptotically stable since R0 < 1 and the endemic equilibrium point was

also asymptotically stable since R0 > 1. By using the stability analysis on a

fractional order model, some sufficient conditions on the parameters for the local

stability of equilibrium has been given.

We carried out numerical solution to confirm the analysis by applying GEM. Our

studies on the use of GEM for solving the presented model prove that GEM is

a good tool in solving the biological system. One of the advantages of GEM

is its ability of preventing us with continuous solution, thus giving us a better

understanding as well as detail over the time interval.

The numerical results confirmed that increasing the number of vaccination and
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treatment will eradicate the disease completely.

Also, the basic reproductive number confirmed that in the absence of vaccina-

tion and treatment the disease persists whiles in the presence of vaccination and

treatment the disease dies out.

In particular our work shows that FODE gives us a more realistic way of modeling

any infectious disease since it helps to reduce errors arising from the neglected

parameters.

Major Findings: Our major contribution to this work was the ability to prove

the solution of the model by Laplace transformation.

5.1 Recommendations

We recommend that the public health sector can used the proposed model to

understand the spread and control of measles.

Researchers and mathematical modelers should also used the equation proved,

whenever they encounter such problem.

The global asymptotic behavior of the FODE of modeling the disease is still open.

We therefore recommend for further discussion on this question.
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Appendix A

CODES FOR FIGURE 4.1

Title: Size of the susceptible versus time with no vaccination for dif-

ferent values of order sigma

clear, clc;

b = 0.03;

beta = 0.75;

d = 0.02;

alpha = 0.1;

h = 0.1;

mu1 = 0;

mu2 = 0;

sigma = [0.5, 0.6, 0.7, 1.0];

t = 0 : h : 100; n = length(t);

m = length(sigma);

solS = []; solI = []; solN = [];

for k = 1 : m

S = zeros(n, 1); I = S; N = S;

S(1) = 0.95× 103; I(1) = 0.05× 103; N(1) = 1.0× 103;

for i = 1 : n− 1

S(i+ 1) = S(i) + (hsigma(k)/gamma(sigma(k) + 1)) ∗ (b− beta ∗ S(i) ∗ I(i)− d ∗

S(i)−mu1 ∗ S(i));

I(i + 1) = I(i) + (hsigma(k)/gamma(sigma(k) + 1)) ∗ (beta ∗ S(i) ∗ I(i) −mu2 ∗

I(i)− d ∗ I(i)− alpha ∗ I(i));

N(i+1) = N(i)+(hsigma(k)/gamma(sigma(k)+1))∗ (b−d∗N(i)+alpha∗ I(i));

end

solS(:, k) = S(:); solI(:, k) = I(:); solN(:, k) = N(:);

end
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plot (t, solS(:, 1),′ r′, t, solS(:, 2),′ g′, t, solS(:, 3),′ k′, t, solS(:, 4),′ b′);

xlabel (’Time’), ylabel(’Susceptible ’), title(’Size of the susceptible versus time

with no vaccination for different values of order sigma’);

legend (′sigma = 0.5′,′ sigma = 0.6′,′ sigma = 0.7′,′ sigma = 1.0′)

CODES FOR FIGURE 4.2

Title: Size of the infectious versus time with no treatment for different

values of order sigma

clear, clc;

b = 0.03;

beta = 0.75;

d = 0.02;

alpha = 0.1;

h = 0.1;

mu1 = 0;

mu2 = 0;

sigma = [0.5, 0.6, 0.7, 1.0];

t = 0 : h : 100; n = length(t);

m = length(sigma);

solS = []; solI = []; solN = [];

for k = 1 : m

S = zeros(n, 1); I = S; N = S;

S(1) = 0.95× 103; I(1) = 0.05× 103; N(1) = 1.0× 103;

for i = 1 : n− 1

S(i+ 1) = S(i) + (hsigma(k)/gamma(sigma(k) + 1)) ∗ (b− beta ∗ S(i) ∗ I(i)− d ∗

S(i)−mu1 ∗ S(i));

I(i + 1) = I(i) + (hsigma(k)/gamma(sigma(k) + 1)) ∗ (beta ∗ S(i) ∗ I(i) −mu2 ∗

I(i)− d ∗ I(i)− alpha ∗ I(i));
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N(i+1) = N(i)+(hsigma(k)/gamma(sigma(k)+1))∗ (b−d∗N(i)+alpha∗ I(i));

end

solS(:, k) = S(:); solI(:, k) = I(:); solN(:, k) = N(:);

end

plot (t, solI(:, 1),′ r′, t, solI(:, 2),′ g′, t, solI(:, 3),′ k′, t, solI(:, 4),′ b′);

xlabel (’Time’), ylabel(’Infectious ’), title(’Size of the infectious versus time with

no treatment for different values of order sigma ’);

legend (′sigma = 0.5′,′ sigma = 0.6′,′ sigma = 0.7′,′ sigma = 1.0′)

CODES FOR FIGURE 4.3

Title: Size of the total population versus time for different values of

order sigma

clear, clc;

b = 0.03;

beta = 0.75;

d = 0.02;

alpha = 0.1;

h = 0.1;

mu1 = 0;

mu2 = 0;

sigma = [0.5, 0.6, 0.7, 1.0];

t = 0 : h : 100; n = length(t);

m = length(sigma);

solS = []; solI = []; solN = [];

for k = 1 : m

S = zeros(n, 1); I = S; N = S;

S(1) = 0.95× 103; I(1) = 0.05× 103; N(1) = 1.0× 103;

for i = 1 : n− 1
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S(i+ 1) = S(i) + (hsigma(k)/gamma(sigma(k) + 1)) ∗ (b− beta ∗ S(i) ∗ I(i)− d ∗

S(i)−mu1 ∗ S(i));

I(i + 1) = I(i) + (hsigma(k)/gamma(sigma(k) + 1)) ∗ (beta ∗ S(i) ∗ I(i) −mu2 ∗

I(i)− d ∗ I(i)− alpha ∗ I(i));

N(i+1) = N(i)+(hsigma(k)/gamma(sigma(k)+1))∗ (b−d∗N(i)+alpha∗ I(i));

end

solS(:, k) = S(:); solI(:, k) = I(:); solN(:, k) = N(:);

end

plot (t, solN(:, 1),′ r′, t, solN(:, 2),′ g′, t, solN(:, 3),′ k′, t, solN(:, 3),′ b′); xlabel(’Time’),

ylabel(’Total Population ’), title(’Size of the total population versus time for dif-

ferent values of order sigma ’);

legend (′sigma = 0.5′,′ sigma = 0.6′,′ sigma = 0.7′,′ sigma = 1.0′)
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Appendix B

CODES FOR FIGURE 4.4

Title: Size of the susceptible versus time with vaccination for different

values of order sigma

clear, clc;

b = 0.03;

beta = 0.75;

d = 0.02;

alpha = 0.1;

h = 0.1;

mu1 = 1;

mu2 = 1;

sigma = [0.5, 0.6, 0.7, 1.0];

t = 0 : h : 100; n = length(t);

m = length(sigma);

solS = []; solI = []; solN = [];

for k = 1 : m

S = zeros(n, 1); I = S; N = S;

S(1) = 0.95× 103; I(1) = 0.05× 103; N(1) = 1.0× 103;

for i = 1 : n− 1

S(i+ 1) = S(i) + (hsigma(k)/gamma(sigma(k) + 1)) ∗ (b− beta ∗ S(i) ∗ I(i)− d ∗

S(i)−mu1 ∗ S(i));

I(i + 1) = I(i) + (hsigma(k)/gamma(sigma(k) + 1)) ∗ (beta ∗ S(i) ∗ I(i) −mu2 ∗

I(i)− d ∗ I(i)− alpha ∗ I(i));

N(i+1) = N(i)+(hsigma(k)/gamma(sigma(k)+1))∗ (b−d∗N(i)+alpha∗ I(i));

end

solS(:, k) = S(:); solI(:, k) = I(:); solN(:, k) = N(:);
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end

plot (t, solS(:, 1),′ r′, t, solS(:, 2),′ g′, t, solS(:, 3),′ k′, t, solS(:, 4),′ b′);

xlabel (’Time’), ylabel(’Susceptible ’), title(’Size of the susceptible versus time

with no vaccination for different values of order sigma’);

legend (′sigma = 0.5′,′ sigma = 0.6′,′ sigma = 0.7′,′ sigma = 1.0′)

CODES FOR FIGURE 4.5

Title: Size of the infectious versus time with treatment for different

values of order sigma

clear, clc;

b = 0.03;

beta = 0.75;

d = 0.02;

alpha = 0.1;

h = 0.1;

mu1 = 1;

mu2 = 1;

sigma = [0.5, 0.6, 0.7, 1.0];

t = 0 : h : 100; n = length(t);

m = length(sigma);

solS = []; solI = []; solN = [];

for k = 1 : m

S = zeros(n, 1); I = S; N = S;

S(1) = 0.95× 103; I(1) = 0.05× 103; N(1) = 1.0× 103;

for i = 1 : n− 1

S(i+ 1) = S(i) + (hsigma(k)/gamma(sigma(k) + 1)) ∗ (b− beta ∗ S(i) ∗ I(i)− d ∗

S(i)−mu1 ∗ S(i));

I(i + 1) = I(i) + (hsigma(k)/gamma(sigma(k) + 1)) ∗ (beta ∗ S(i) ∗ I(i) −mu2 ∗
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I(i)− d ∗ I(i)− alpha ∗ I(i));

N(i+1) = N(i)+(hsigma(k)/gamma(sigma(k)+1))∗ (b−d∗N(i)+alpha∗ I(i));

end

solS(:, k) = S(:); solI(:, k) = I(:); solN(:, k) = N(:);

end

plot (t, solI(:, 1),′ r′, t, solI(:, 2),′ g′, t, solI(:, 3),′ k′, t, solI(:, 4),′ b′);

xlabel (’Time’), ylabel(’Infectious ’), title(’Size of the infectious versus time with

no treatment for different values of order sigma ’);

legend (′sigma = 0.5′,′ sigma = 0.6′,′ sigma = 0.7′,′ sigma = 1.0′)
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