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CHAPTER ONE 

Introduction 

1.1 Background of Study 

For the years, the location of semi-obnoxious (also known as semi-desirable) facility 

has been a widely studied topic by researchers in location theory. A facility is said to 

be semi-desirable when it gives service to certain customers in the neighbourhood 

but, on the other hand, is felt as obnoxious to its environment. For example stadia, 

airports, train stations and fire stations are examples of semi-obnoxious facilities. 

Since they are useful and necessary for the community, but they are a source of 

negative effects such as noise. New Juaben Municipality is one of municipalities of 

the Eastern Region and has estimated population of 152,858 people kilometers with a 

population density of 1,507. 

 

The Municipality shares boundaries on the north with East Akim Municipality on the 

south with Akuapem North, Yilo Krobo District on the East. Suhum Kraboa Coalter 

District on the west. It lies between latitude 60
0
N and 70

0
N.  

The new Juaben Municipality with Koforidua as capital is co-terminus with Eastern 

Regional Capital. Koforidua is located at the junction of the major truck roads in the 

Eastern Region. Farming is the main agricultural activities of most inhabitants in the 

Municipality. The major factory in the municipality is the Intravenous Infusion 

Limited at Koforidua that produces intravenous fluids for distribution throughout the 

country. The municipality has one fire station at Asokore serving the Municipality 

and East Akim Municipality as East Akim has no fire station. Most fire outbreaks in 

Ghana could be linked to misuse of electrical gadgets, wrongful electrical 
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connection, careless usage of candles, wrongful disposal of live cigarette butts and 

many other factors and behaviours. 

In U.K the great fire of London in 1666 set in motion changes which laid the 

foundation for organized firefighting. The only equipment available to fight in 1666 

which burnt for five days was two-quart (2.28 litres) hand syringes and a similar 

slightly large syringe (Louisa et al., 2006) . In the wake of the fire, the city council 

established the first fire insurance company “THE FIRE OFFICE” in 1677 which 

employed small teams of Thames Watermen as firefighters and provided them with 

uniforms and arm badges showing the company to which they belonged. The first 

organized municipal fire brigade in the world however, was established in 

Edinburgh, Scotland, when the Edinburgh fire engine Establishment was formed in 

1824. It was led by James Braidwood. In 1832, London fire Engine Establishment 

was also formed. 

 

1.2 Problem Statement  

It is a fact that cities or towns in Ghana do not have well located fire stations hence 

minor incidents which would easily be managed results is massive loss of property 

and even lives. Again roads are not properly layed out that access to places of fire 

outbreaks is simply not possible. The belief is that fire station should be located in 

such a way that allows firefighters to respond in a timely manner to emergencies. 

Facts that influence this decision are as follows: 

i. The risk of fire is not the same in all areas; industrial parts lf the 

municipality is more vulnerable to fire outbreaks. 



 4 

ii. Population is not spread equally around the municipality, and as a 

result there are parts of the municipality that are more populated than 

others. 

It has been shown that frequency of incidents is higher in the most populated areas. 

 

It is against this background that this study is being undertaken to develop a decision 

support system that will help authorities of New Juaben Municipality to strategically 

locate fire station. 

 

1.3 Objectives of the Study 

The objectives of the study are as follows: 

i. To model the location of fire station as Absolute Center Problem 

ii. Determine the optimal location and service coverage distance. 

 

1.4   Methodology 

The problem is to develop a decision support system to optimally locate fire station 

in the New Juaben Municipality. The p-center heuristics was used in the study. The 

study was descriptive and analytical in nature and therefore, made use of quantitative 

and qualitative data collection tools whereas the analyses of data involved the use of 

mathematical procedure. Data were obtained from statistical department of the New 

Juaben Municipality, formal and informal interviews with fire service management 

and some operational men. Map of the Municipality was obtained from planning 

department of the municipality. Floyd Warshalls‟ algorithm was used to compute 

Euclidean distance between all pairs of nodes. 
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Other information were obtained from the internet and department of mathematical 

library of KNUST (Kwame Nkrumah University of Science and Technology) 

 

1.5 Justification 

Optimal location of fire station in the country would boost foreign and local investor 

confidence in their economic activities. Plants and animal species which could be 

pushed to extinction as a result of wild bush fire will be reduced. Degradation of 

ecosystem, increased soil erosion, reduced water quality and increased soil salinity 

resulting from fire outbreaks will also be also be addressed thereby increasing 

productivity of the country. 

 

Damages, injuries loss of property and even death that, both human beings and 

animals suffer will be a large extent prevented. The findings of the study can   be 

implemented by authorities of New Juaben Municipality. 

Future researchers can replicate the study at other parts of the country using the work 

done as reference material. 

 

1.6    Organization of the study 

Chapter one talks about the profile of the area of study, fire history, causes of 

fire outbreaks, objectives, justification and methodology of the study. Chapter 

two is primarily about review of some location problem models.  

Chapter three considers three location models, strategies involved in choosing 

a site, network-based algorithms, absolute center problem, determination of 

upper envelope, local center and absolute center. 
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Chapter four is about result of location vertex or node center, local center and 

discussion. Chapter five considers conclusions and recommendations. 
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CHAPTER TWO 

Literature Review 

2.1 Introduction 

This chapter introduces some of the methods and models that other researchers have 

applied in solving location problems. 

 

2.2 Review of Location Problem Models 

Hongzhong et al. (2005), first surveyed general facility location problems and 

identified models used to address common emergency situations, such as house fires 

and regular health care needs. The authors then analyzed the characteristics of large-

scale emergencies and proposed a general facility location model that is sited for 

large-scale emergencies. This general facility location model could be cast as a 

covering model, a P-median model or a P-center model, each suited for different 

needs in large-scale emergencies. Illustrative examples were given to show how the 

proposed model could be used to optimize the location of facilities for medical 

supplies to address large-scale emergencies. 

 

The associated FORTRAN computer programme could be utilized to determine the 

travel time from a source of fire to a smoke detector. The difference in travel time 

from an isolated fire source to two or more detectors could be used to isolate those 

airways in which the source of fire is located. This model also has application in 

mine emergency stage. To determine the optimum location fire detectors, the mine 

network was divided into zones each of which was associated with a difference in 

calculated smoke arrival time between a pair of detectors. 
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Church and ReVelle (1974) and White and Case (1974), developed a maximal 

covering location problem model that did not require full coverage to all demand 

points. Instead, the model sought the maximal coverage with a given number of 

facilities. 

 

The maximal covering location problem and different variants of it had been 

extensively used to solve various emergency service location problems. A notable 

example was the work of Eaton et al. (1985), that used the maximal covering 

location problem to plan the emergency medical service in Austin Texas. The 

solution gave a reduced average emergency responses time with increased calls for 

service. 

 

Schilling et al., (2005), generalized the maximal covering location problem model to 

locate emergency fire fighting servers and depots in the city of Baltimore. In the 

authors‟ model, known as FLEET (facility location and Equipment Emplacement 

Technique) two different types of servers needed to be located simultaneously. A 

demand point was regarded „covered‟ only if both servers were located within a 

specified distance. 

 

Hodder and Dincer (1986), consider the location of capacitated facilities globally 

under exchange rate uncertainty. The model incorporates the financing aspects of 

plant construction by endogenously deciding how much of each plants‟ total cost to 

borrow from each country; the per-period cost of this financing is a random variable 

since the exchange rate are uncertain.  
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In addition, cost and per-unit profit are uncertain. The model maximizes a mean-

variance expression concerning the total profit. This objective is quadratic and 

involves a large-variance-covariance matrix, each off diagonal term of which 

requires a bilinear term in the objective function. Therefore, the author proposes an 

approximation scheme that effectively diagonalizes the variance-covariance matrix 

so that the objective function contains only squared terms and no bilinear terms.  

 

The resulting model is solved using an off-the-shelf quadratic programming solver 

for small problems and using a gradient search method for larger ones. No discussion 

is provided concerning the form of uncertainty (discrete or continuous) or the 

probability distributions governing it, but in theory any approach could be used as 

long as the random parameters can be expressed adequately in the form needed for 

the approximation. 

 

Berman and Odoni (1982), studied a single-facility location problem in which travel 

times are stochastic and the facility (e.g. Ambulance) may be relocated at a cost as 

conditions change. Travel times are scenario-based, and scenario transitions occur 

according to a discrete-time Markov process. The objective is to choose a facility 

location for each scenario to minimize expected transportation and relocation costs. 

The authors show that Hakimi property applies to this problem and that the problem 

on a tree is equivalent to the deterministic problem; any scenario can be used to 

determine the optimal location since I-median on a tree is independent of the edge of 

lengths. They then present a heuristic for the problem on a general network that 

involves iteratively fixing the location in all but one scenario and solving what 

amounts to I-median problem. They discuss simple bounds on the optimal objective 
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value of the multi-facility problem. Berman and LeBlanc, (1984), introduce a 

heuristic for this problem that loops through the scenarios, performs local exchanges 

within each, and then performs exchanges to link the scenarios in an effort to reduce 

relocations costs. 

 

Carson and Batta, (1990), present a case study of a similar problem in which a single 

ambulance is to be relocated on the Amherst campus of SUNY buffalo as the 

population moves about the campus throughout the day (from class-room buildings 

to dining halls to dormitories, etc.). Given the difficulties inherent in identifying 

probability distributions and estimating allocation costs in practice, Carson and Batta 

simply divide the day into four unequal time periods and solve I-median problem in 

each. Relocation costs are not explicitly considered, but the decision to use four time 

periods was arrived at in consideration of the trade off between frequent relocation 

and increased response times. 

 

Ghosh and McLafferty, (1982), introduce a model for locating multiple stores so as 

maximize market share in a competitive environment with demand uncertainty 

(actual, uncertainty as to which stores competitor plans to close, but in this setting 

they amount to the same thing). The authors discuss a model from the marketing 

literature for estimating market share given fixed store locations. 

The location model itself is formulated as a multi objective model, with each 

objective representing the market-share-maximization objective in a given scenario. 

 

Ultimately, the objectives are combined into a weighted sum to be minimized. If the 

weights represent scenario probabilities, the objective is equivalent to minimizing the 
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expected cost; otherwise, the weights can be adjusted systematically to find 

nondominated solutions (solutions for which no objective can be improved without 

degrading another objective). For a given set of weights, the problem is solved using 

an exchange heuristic. On a small sample problem, three noninferior solutions were 

found, and the authors provide some discussion as to how to choose among them. 

 

Benedict, (1983), Eaton et al., (1986), and Hogan and ReVelle, (1986), developed 

covering maximal location problem models for emergency service that had a 

secondly “back up-coverage” objective. The models ensured that a second (back up) 

facility could be available to service a demand area in case that the first facility was 

unavailable to provide services. Based on a hypercube queuing model, Javis (1977) 

developed a descriptive model for operation characteristics of an EMS system with a 

given configuration of resources and a location model for determining the placement 

of ambulances to minimize average response time or other geographically based 

variables. 

 

Marianov and ReVelle, (1996), created a realistic location model for emergence 

systems based on results from queuing theory. In their model the travel times or 

distances along arcs of network were considered as random variables. The goal was 

to place limited numbers of emergency vehicles, such as ambulances, in away as to 

maximize the call for service. 

 

Carbone, (1974), formulated a deterministic p-median model with the objective of 

minimizing the distance travelled by a number of users to fixed public facilities such 

as medical or day-care centers. Recognizing the number of users at each demand 
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node was uncertain. The author further extended the deterministic p-median node to 

a chance constrained model. The model sought to minimize distance and user costs, 

and maximize demand and utilization. 

 

Paluzzi, (2004), discussed and tested p-median based heuristic location model for 

placing emergency service facilities for the city of Carbondale. The goal of this 

model was to determine the optimal location for placing a new fire station by 

minimizing the total aggregate distance from the demand sites to the fire station. The 

results were compared with results from other approaches and the comparison 

validated the usefulness and effectiveness of the p-median based location model. 

 

Doeksen and Oehrtman, (1976), used a general transportation model based on 

alternative objective functions to obtain optimal fire stations for the rural fire system. 

The different objectives used to obtain the optimal sites include: minimizing 

responses time to fire, minimizing total mileage for fighting rural or country fires and 

minimizing protection per dollars‟ worth of burnable property. 

 

Plane and Hendricks, (1977), used the maximum covering distance concept to 

develop a hierarchical objective function for the set covering formulation of the fire 

station location problem. The objective function permitted the simultaneous 

minimization of the number of fire stations and minimization of the existing fire 

station within the minimum total number of stations. 

 

Badri et al. (1998), underlined the need for a multi objective model in determining 

the fire station location. The authors used a multiple criteria modeling approach via 
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integer goal programming in everlasting potential sites in 31 sub-areas in the state of 

Dubai. Their model determined the location of fire stations and the areas they are 

supposed to serve. It considered eleven (11) strategic objectives that incorporated 

travel times and travel distances from stations to demand sites, and also other cost-

related objectives and criteria-technical and political in nature. 

 

Church (2002), exhaustively reviewed the existing work linking GIS location science 

and asserted that GIS could support a wide range of spatial queries that aid location 

studies. He explored the integration of a heuristic algorithm into GIS for spatial 

optimization of fire station locations. This novel approach to solving optimization 

problem led to a paradigm shift in solving spatial analytical problems of a similar 

nature in the disciplines of transportation, networking and infrastructure design.  

 

Tzeng and Chen (1999), used a fuzzy multi objective approach to determine the 

optimal number and sites of fire stations in Taipeis‟ international airport. A genetic 

algorithm was then executed to weigh against the brute-force enumeration method. 

The results proved that the genetic algorithm was suitable for solving such location 

problems. Nevertheless, its efficiency still remained to be verified by large-scale 

problems. 

 

Talwar (2002), utilized a p-center model to locate and dispatch three emergency 

rescue helicopters to serve the growing EMS demands from accidents of tourist 

activities such as skiing, hiking and climbing at the north and south of Alphine 

mountain ranges. One of the models‟ aims was to minimize the maximum (worst) 

response times and the author use effective heuristics to solve the problem. 
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ReVelle and Hogan et al., (1989), formulated a model that sought to minimize a 

population which had a service available within a desired travel time with a stated 

reliability, given that only P servers were to be located. The authors computed the 

number Pi of servers needed for reliable coverage of node i, and maximized the 

population in nodes i, with pi or more servers. 

 

De Palma et al (1989), study a multi firm competitive facility location with random 

consumer utilities. A consumers‟ utility for firm i is expressed as a constant  (the 

mean utility for the firm) minus the distance from the consumer to the firms‟ nearest 

facility minus a random error term. After choosing its maximum–utility firm, each 

consumer will choose the nearest facility within that firm. 

 

Firm i will open  facilities to maximize its expected sales (market share). The 

authors proved that if the –median solution is unique for all i and if the 

consumers‟ tastes are sufficiently diverse, then there exists a unique location 

equilibrium, and in that equilibrium, firm i locates its facilities at the –median 

solution. The problem therefore reduces to solving a separate PMP for each firm. 

 

MirHassani et al(2000), formulate a study chain network design problem as a 

stochastic program with fixed recourse; the SP has binary first- stage variables and 

continuous second – stage variables. The objective function coefficient are 

deterministic; uncertainty is present only in the right- hand sides of the recourse 

constraints, which may represent for example, demands or capacities. The authors 
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focus especially on parallel implementation issues for their proposed Benders 

decomposition algorithm. 

 

 Tsiakis et al. (2001), consider a multiproduct, multiechelon supply chain under 

scenario- based demand uncertainty. The goal is to choose middle- echelon facility 

locations and capacities, transportation links and flows to minimize expected costs. 

Transportation cost are piecewise linear concave. The model is formulated as a large 

–scale MIP and solved using CPLEX. 
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CHAPTER THREE 

METHODOLOGY 

3.1 Introduction 

This chapter introduces a number of Locations models (p-median, center-of gravity 

etc) formulated and used in solving location problem. The chapter also discusses the 

methodology that would be used to in finding the optimal location where a fire 

station would be located in the Koforidua Township to ensure optimal response time 

for incident responders in the service coverage area. 

 

3.2 Spatial Representation of Location 

In support of decision processes that involve facility siting, location models are 

generally used.  

 

To formulate a location model, it is necessary to identify where the demand is 

located and where facilities can be sited. 

 

The problem of siting p facilities in some universe so as to satisfy a given set of 

criteria poses the following: 

 i)     The universe to be considered; 

 ii)   The assumptions to simplify the problem without 

                    distorting the solution radically; and 

 iii)   The objectives to be optimized. 
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These result in the emergence of many different formulations to the fundamental 

location problem. As one would expect, the more accurately a model reflects the 

„real life‟ situations the more complex the problem becomes. 

 

Three different universes will be addressed; 

i) Planar; 

ii) Network; and 

iii) Discrete. 

 

The whole essence of the siting problem is to locate several facilities to optimize a 

certain set of objectives. The objectives function could be any of the following: 

i) Minimise the maximum Euclidean distance; 

ii) Minimise average travel time or cost;  

iii) Minimise maximum travel time or cost; 

iv) Minimise net; and 

v) Minimise response time. 

 

3.3 The Universe to be considered 

The first universe to be considered is that of the entire plane, entitled the Planar 

location problem. Here the set of points making up the entire plane is the set of 

feasible solutions. For this basic formulation, the planar model assumes direct 

distance metric e.g Euclidean. On the other hand in a network problem, potential 

customers will normally travel the arcs or edges of the network, road or rail. This 

prompts the formulation of the network location model, where the facilities may be 

positioned on a vertex or an edge of network. Distances are then reformulated to be 
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the shortest path linking facilities and customers. There is also the discrete problem 

of siting a facility on vertices of a network. 

 (Francis et al., 1983) 

 

3.3.1 Planar Location Models 

A planar location model involves the location of p new facilities p N  within a 

feasible plane, so as to minimize some cost of the distance from each new facility to 

the other new facilities and any existing facility within the plane. 

 

Assumptions: 

Before any formulation of the above can be established a set of assumptions must be 

made: 

i) Any point in the plane can be a member of the feasible solution. 

ii) Each facility can be approximated by a point, i.e. it has no area. 

iii) A subset of the earths‟ surface can be approximated by a plane. 

 

The above assumptions immediately raise several questions about accuracy. 

Assumption (i) does not allow for the occurrence of infeasible area within the plane, 

such as property owned by other organizations, natural barriers are inaccessible sites. 

In these cases the model assumes that a site close to the optimal may be chosen with 

no loss of satisfaction. Assumption (ii) states that the feasible plane is infinitely 

bigger than the area taken by a facility. This is obviously unrealistic and may affect 

the results if the feasible area is on a very local scale and the potential facilities on 

large site area.  Assumption(iii) assumes that the feasible set is small enough so that 

the spherical curve of the sphere does not alter the shortest distance. 
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3.3.2   Network Location Models 

A network is a system of interconnecting routes which allows movement from one 

centre to others. It is made up of nodes (vertices) which may be population centres 

and links (edges) which are routes or services which connect them. In the network 

location model, the distance metric is measured along a road or rail system, or a set 

of flight or shipping routes. It may therefore be preferred for placement of the facility 

to occur on the edges or nodes of the network. 

 

Assumptions  

To adopt this model, the set of assumptions made above must first be modified as: 

(i) Each facility can be approximated by a point i.e. it has no area. 

(ii) Network distances between points are defined as shortest path 

distances which can be computed using Djikstra algorithm or 

Floyd Warshall  algorithm. 

(iii) Any point in the network can be a member of the feasible 

solution. 

 

These assumptions are similar to those of the planar model and will result in similar 

formulations. However, if the assumption that all the facilities provide the same kind 

of service and that a customer will only have to travel to the closest facility is 

introduced, a subset of the minimax or minisum formulation is addressed. 

 

3.3.3   Discrete Location Models 

Planar and Network location models have some limitations, in that: 

i) Every point in the plane or network is a candidate solution; 
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ii) Fixed costs for siting individual facilities at a particular point are 

ignored or assumed to be independent of the location chosen and so 

do not affect the optimal solution.  

 

These limitations are confronted when the solution set is reduced to that of a finite 

number of candidate solutions. Each candidate can be assigned an individual location 

cost which in turn can be incorporated into the objective function. (Moon I.D and 

Chandhry S.S, 1994) and (Mirchandani P.B and Francis R.L, 1990) 

 

3.4   Strategies Involved in Choosing a Site  

Location simplify refers to a place where something happens or exist. 

Many factors, both quantitative and qualitative have to be considered in selecting a 

location. Some of these factors are more important than others so people can use 

weightings to make the decision process more objective. Three of the main location 

strategies are the location break-even analysis, factor rating and centre-of-gravity 

methods. 

 

3.4.1    The Location Break-Even Analysis 

The location break-even analysis is the use of cost-volume analysis to make 

economic comparison of location alternatives. By identifying fixed and variable costs 

and graphing them for each location we can determine which one provides the lowest 

cost. Location break-even analysis can be done mathematically or graphically. The 

graphic approach has the advantage of providing the range of volume over which 

each location is preferable. There are three steps in location break-even analysis.  
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These are: 

i) Determine the fixed and variable costs for each location. 

ii) Plot the cost for each location, with cost on the vertical axis of the 

graph and production on volume the horizontal axis. 

iii) Select the location that has the lowest total cost for the expected 

production volume. 

 

3.4.2 The Factor Rating Method  

The factor rating is popular because a wide variety of factors, from education to 

labour skill to recreation, can be objectively included. The factor rating method has 

six steps: 

i) Develop a list of relevant factors. 

ii) Assign a weight to each factor to reflect its relative importance in the 

companys‟ objectives. 

iii) Develop a scale for each (e.g.  1 to 10 or 1 to 100) 

iv) Assign a score to each location for each factor using the scale in step 

(iii) 

v) Multiply the score by the weights for each factor and total the score 

for each location. 

vi) Make a recommendation based on the maximum point score, 

considering the results of quantitative approaches as well. 

 

When a decision is sensitive to mirror changes, further analysis of either the 

weighting or the points assigned may be appropriate. Alternatively, management 

may conclude that these intangible factors are not the proper criteria on which to 
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base a location decision. Managers therefore place primary weight on the more 

quantitative aspects of the decision. (Amponsah, 2006) 

 

3.4.3 Centre-of-Gravity Method    

The centre-of-gravity method is a mathematical technique used for finding the 

location of a distribution centre which minimizes distribution costs. This method 

takes into account the location of markets, the volume of goods shipped to those 

markets, and shipping costs in finding the best location for a distribution centre. 

 

The first step in the centre-of-gravity method is to place the location on a co-ordinate 

system. The origin of the co-ordinate system in the scale is arbitrary, just as long as 

the relative distances are correctly represented. This can be done by placing a grid 

over an ordinary map of the location in question. The centre-of-gravity is determined 

by equations (3.1) and (3.2)  

........................(3.1)
ix i

x

i

d W
C

W
 

........................(3.2)
iy i

y

i

d W
C

W
 

Where  

xC x Coordinate of the centre-of-gravity 

yC y Coordinate of the centre-of-gravity 

ixd x Coordinate of location i 

iyd y Coordinate of location i 

iW  Volume of goods to and from location i 
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Once the x and y-coordinates have been obtained, the new location is placed on the 

previously described map to determine the actual position on the map. If that 

particular location does not fall directly on a city, simply locate the nearest city and 

place new distribution centre there. (Louisa  et al., 2006) 

 

3.5 Network-Based Algorithms 

3.5.1      Shortest Path Problems 

Shortest path problems are the most fundamental and most commonly encountered 

problems in the study of transportation and communication networks (Salhi S, 1998). 

There are many types of shortest path problems. For example, we may be interested 

in determining the shortest path from one specified node in the network to another 

specified node or we may need to find the shortest paths from a specified node to all 

other nodes. Shortest path between all pairs of nodes in a network are required in 

some problems while sometimes one wishes to find the shortest path from one given 

node to another given node that passes through certain specified intermediate nodes. 

In some application, one requires not only the shortest path but also the second and 

the third shortest paths. There are instances when the actual shortest path is not 

required but only the shortest distance. We shall consider two most important 

shortest-path problems: 

i) How to determine (a shortest path) from a specific node S to another 

specific node T,  

ii) How to determine distance (a path) from every node to every other 

node in the network. 
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3.5.1.1   Floyd-Warshall Algorithm 

The Floyd-Warshall algorithm obtains a matrix of shortest path distance within 

3O n  computations. The algorithm is based on inductive arguments developed by 

an application of a dynamic programming technique.  

Let represent the length of the shortest path from node i to node j subject to the 

condition that this path uses the nodes 1, 2, …, k – 1 as internal nodes. Clearly, 

1 ,kd i j  represent the actual shortest path distances from the node i to j.  The 

algorithm first computes 2 ,d i j  for all node pairs i and j using 1 ,d i j , it then 

computes 2 ,d i j  for all node pairs i and j. It repeats this process until obtains 

1 ,kd i j  using , min , , ,k k kd i j d i k d k j . The Floyd-Warshall algorithm 

remains of interest because it handles negative weight edges correctly. 

 

3.5.1.2   Dijkstras’ Algorithm 

The Dijkstras‟ algorithm finds the shortest path from a source s to all other nodes in 

the network with nonnegative lengths. It maintains a distance label d(i) with each 

node i, which is an upper bound on the shortest path length from the source node s to 

any other node j. At any intermediate step, the algorithm divides the nodes of the 

network under consideration into two groups: those which it designates as 

permanently labeled (or permanent), and those which it designates as temporarily 

labeled (or temporal). The distance label to any permanent node represents the 

shortest distance from the source node to that node. The fundamental idea of the 

algorithm is to find out from source node s and permanently labeled nodes in the 

order of their distances from the node s. 
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Initially, node s is assigned a permanent label of zero (0) and each other node j a 

temporary label equal to infinity. At each iteration, the label of a node i is its shortest 

distance from the source node along a path whose internal nodes (i.e. node i other 

than s or node i itself) are all permanent labeled. The algorithm selects a node i 

within the minimum temporary label (breaking ties arbitrarily), makes it permanent 

and reaches out from that node (i.e. it scans all the edges coming out from the node i 

to update the distances label of adjacent nodes). The algorithm terminates when it 

has designated all nodes permanent. 

 

Dijkstras‟ algorithm can be expressed as a set of steps. 

Step 1:    Assign the permanent label O to the starting vertex. 

Step 2:    Assign temporary labels to all the vertices that are connected   

              directly to the most recently permanent labeled vertex  

Step 3:  Choose the vertex with the smallest temporary label and assign a 

              permanent label to that vertex. 

Step 4:   Repeat steps 2 and 3 until all vertices have permanent labels. 

Step 5:    Find the shortest path by tracing back through the network. 

 

3.6 Absolute Center Problem 

The center problem was first proposed by Sylvester (1857) more than one hundred 

years ago. 

The problem asked for the center of a circle that had the smallest radius to cover all 

desired destinations. The k-center model and its extensions had been applied in the 

context of locating facilities such as EMS centers, hospitals, fire station and other 

public facilities.  
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For a point x on the network G, let m(x) denote max d(x, ni) where d(x, ni), is the cost 

or distance of  the „shortest‟ path  between  x and „farthest‟ demand node ni. The 

general absolute center problem is   

i) Formulated as min min max , im x d x n subject to x G  

         The above formulation is applied in finding the vertex and local centers. 

ii) The vertex center (or node center) nx N  is a node such that for every 

node , ny N m x m y . 

The local center of an edge (p, q) is a point x, on (p, q) such that for every 

point y on. 

iii) (p, q), im x m y . The absolute center ax  is a point on G such that 

for every point y on G, (y may be on an edge of G), am x m y  

(Mirchandi P. B, and Francis R. L, 1990) 

 

To find a node center, we compute the matrix of the shortest paths costs 

(travel times, distances) for all pairs of nodes using the Floyd-Warshalls‟ or 

Dijkstras‟ algorithm, and then choose a node such that the maximum entry in 

its row in the matrix is smallest among the maximum entries of the rows. 

 

For example figure 3.1 shows a network of an urbanized area with nodes 

1 2 3 4 5, , ,n n n n and n representing points where demand for services is 

generated. 

                       

                                

n1 

n2 

n3 

n4 n5 

2 

2 

6 

8 

4 

 

6 

Fig. 3.1: Example of network showing demand nodes and distance 
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By using the Floyd-Warshalls‟ algorithm we obtain a matrix of the shortest paths of 

the network of figure 3.1.   

The algorithm computes d(p, q) for all node pairs p and q are shown in table 3.1 

 

Table 3.1: Matrix of shortest path distance for pairs of nodes for fig.3.1                                                

 n1 n2 n3 n4 n5 
Row 

max 

n1 0 8 8 6 2 8 

n2 8 0 2 10 6 10 

n3 8 2 0 12 8 12 

n4 6 10 12 0 4 12 

n5 2 6 8 4 0 8 

 

From table 3.1, the smallest among the entries in all rows occurs at either n1 or n5, 

with 1 5 8m n m n  and therefore n1 or n5 may be taken as the node center. 

 

3.7 Finding the Absolute Centre 

The absolute centre minimizes the cost (distance travel time). We look for the path of 

minimum cost (Euclidean distance) by finding the shortest path among all pairs of 

vertices using Floyd-Warshalls‟ or Dijkstras‟ algorithm. A vertex is a designated 

point in a network and an edge is a direct distance or arc between two vertices, p and 

q denoted by c (p, q) which is the edge cost or edge distance. 

 

A shortest path is the total distance between two vertices which may not be direct but 

passing through other vertices. Thus a shortest path may not be a direct distance or 

cost between two vertices. This is denoted by d(p, q) and is described as the 

minimum path cost;  

1

1

1

, min ,
i

i i

i

d p q c n n  
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Consider the edge (p, q) with a point x on it as shown in figure 3.2 

                                                                                                                                                                                                                                                                                                                           

 

                            Fig 3.2: Movement of x along edge (p, q) 

 

, , ,d x p d x q c p q        , , ,d x p c p q d x q  

For an undirected graph (a two-way road) with non-negative weight (cost), put  

max ( , )m x d x p  

If  x is on an edge or a node we require 
1 ( )m x m x , where 1

pqx x , the distance 

(cost) of the point x on edge (p, q) away from p.  

To calculate 1( )m x  

i. Evaluate all vertices and find the vertex center value and its 

cost. 

ii. Evaluate all edges to find the local center with minimum cost. 

iii. Compare the two costs, i.e., the minimum vertex center cost 

and the minimum edge cost, the lowest of the two costs is the 

solution, 1( )m x  

 

The local center for each edge can be found as shown. Consider an edge (p, q) with a 

point x on it. Assuming we want to move from x to ni where ni is any node or vertex 

on the network G, we find the minimum cost by moving to ni through p or q. 

 

 

p q x 
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p and q are demand points and is the farthest desired destination. 

 

 

 

 

 

 

 

( , ) ( , ) ( , )i ix d p n c p q x d q n is an edge and its cost is ,c p q . From the fig. 3.3 

( , )d p x x  and ( , ) ( , )d q x c p q x  hence, ( , ) ( , ) ( , )d p x d x q c p q  

The movement from x to ni (any of the nodes or vertices on the network G) can be 

done in two directions i.e. through p or q given rise to respectively the equations 

below; 

1 ( , ).......................(3.1)iy x d p n  

2 ( , ) ( , )...........................(3.2)iy c p q x d q n  

Where y1, is the distance from  x  to ni through p and y2 is the distance from x to ni 

through q. As  x moves along the edge (p, q) there will be a point when the two 

distances or costs would be equal. At this point 1 2y y and the kink/maximum/pareto 

could be found. Solving for the path of equal cost we have: 

( , ) ( , ) ( , )i ix d p n c p q x d q n  

( , ) ( , ) ( , )

2

i ic p q d q n d p n
x  

Where  x can be denoted by xm being the minimum cost. The equations (1) and (2) 

involving y1 and y2 are therefore used to draw graphs for the edge (p, q) from which 

the local centre can be determined. As ni assumes all the nodes on the network, a 

 nii 

d(q, ni) 
d(p, ni) 

x 
p q 

Fig. 3.3   Distance of x to ni through p and q 
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number of equations will be generated under equations (1) and (2). These equations 

would then be sketched on the same axes in a given range obtained from solving the 

kink point for the paths of equal distance for each pair of equations. 

An upper envelope is then obtained by tracing all paths of lines beyond which there 

are no higher points for the x-value in the given range on the graph. These graphs are 

indicated by thicks lines. The local center 
pq ix x  is the point that minimizes the 

upper envelope. The absolute center at termination of the process is the point ax  

(node centre nx  or local center
pq ix x ) that assigned the least value to m(x) 

Using figure 3.1 we would evaluate all edges in the given network to illustrate how 

the absolute centre can be found on a given network as follows: 

 

3.8 Location on edge (n1n3) 

Consider  

1( ) ( , )..............(3.3)im x y x d p n  

2 ( , ) ( , )iy c p q x d q n ………(3.4) 

Choosing n3 as the origin, we let p = n3 ad q = n1 such that 0 ( , )x c p q  

Putting 1in n , ie 1i then Table 3.1 we 3 1( , ) ( , ) 8id p n d n n  

( , ) ( , ) 0i i id q n d n n  and 3 1( , ) ( , ) 8c p q c n n  

Thus from (i) and (ii) 1 8y x  and  2 8y x . Solving for the path of equal 

distance or cost, we have 8 8 , 0x x x . That is, the kink point for the two 

equations being on left endpoint of the interval. By sketching, the equation 1 8y x  

falls outside the range and hence rejected. 

Putting 3, . . 3in n i e i  then 3 3( , ) ( , ) 0id p n d n n  and 1 3( , ) ( , ) 8id q n d n n . 
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Thus 1y x , 2 16y x  and solving for the path of equal distance or cost, we have 

16 , 8x x x  which is the kink point. It is at the right end point of the interval. 

By sketching, the equation 2 16y x  falls outside the range and hence rejected. In 

both instances above, we can accept and sketch the two equations below 

1 0 8.................(3.5)y x x  

2 16 0 8....................(3.6)y x x  

Putting 2 , . . 2in n i e i  then 3 2( , ) ( , ) 2id p n d n n  and 1 2( , ) ( , ) 8id q n d n n . 

The resulting equations 1 2y x  and 2 16y x  when solved for the path of equal 

distance or cost, we have 2 16 7x x x  which is the kink point. The 

following equations are then sketched in the given ranges 

1 2 0 7.................(3.7)y x x  

2 16 7 8....................(3.8)y x x  

Putting 4 , . . 4in n i e i  then 3 4( , ) ( , ) 12id p n d n n  and 1 4( , ) ( , ) 6id q n d n n  

The resulting equations, 1 12y x  and 2 14y x when solved for the path of 

equal distance or cost, we have 12 14 , 1x x x  which is the kink point. 

The following equations are then sketched within the given ranges. 

1 12 0 1.................(3.9)y x x  

2 14 0 8....................(3.10)y x x  

Putting 5 , . . 5in n i e i  then 3 5( , ) ( , ) 8id p n d n n  and 1 5( , ) ( , ) 2id q n d n n  

The resulting equations, 1 8y x  and 2 10y x when solved for the path of 

equal distance or cost, we have 8 10 1x x x  which is the kink point. 
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The following equations are then sketched within the given ranges. 

1 8 0 1.................(3.11)y x x  

2 10 0 8....................(3.12)y x x  

 

The eight equations are then sketched on the same axes as shown in fig. 3.4. The 

minimum cost or distance of the path can be found from the graph using the upper 

envelope 

1 3
8 ( ) 8n n lx and m x

 

The thick line represents the upper envelope of the graph and the minimum point on 

it is the local center
 

 
 

 

Thus the minimum cost on edge (n1, n3) i.e. 
1 3n nx , is selected by considering the 

point corresponding to the maximum cost for all nodes. In the example above, the 

minimum cost/distance for edge (n1, n3) is given as 
1 3 1, 8 ( ) 8n nx and m x units. 

 

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7 8 9

n1n3 

3
8 ( ) 8n lX m x  

Fig. 3.4   Graph showing upper envelope and local center for edge n1n3 
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3.9   Construction of the Upper Envelope 

After sketching all the equations resulting from the location on edge (n1,n3) on the 

same axes as shown in fig. 3.4 there is the need to construct an „upper envelope‟ 

which gives the minimum cost/distance of a shortest path from x to a farthest node on 

the given edge. To construct the upper envelope, we trace all paths of lines beyond 

which there are no higher points for the same x-value in the given range. This path is 

indicated by a thick line as shown in the figure 3.4  

 

3.10    Local center 

For each edge (p, q), the local center is found by plotting ( , )id x n  for each node 

in N  where 0 ( , )x c p q . 

The local center pq lx x  is the point that minimizes the upper envelope.  The 

absolute center ax  is the minimum point among the local centers. This occurs on the 

edge 5 2n n with 5( , ) 2ad x n  and 2, 4ad x n , ( ) 6am x  which implies, the 

maximum distance from point x to the farthest node is 6 units that is both nodes n5 

and n2 hence the optimum  location of the facility is on edge (n2,n5) which is 2 units 

from node n5 and 4 units from node n2.  

 

Finding a single absolute center of a network is more involving.  In practice, where a 

network has a large number of nodes, there would be equally a large number of 

edges to be enumerated for their respective local centers. 
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Table 3.2  local centers and corresponding cost or distance for figure 3.1 

Edge Edge distance Local centre  Cost  

 

 

 

 

 

 

8 

6 

2 

6 

4 

2 

At  

2 units from  

At or  

 

At  

 

At  

At   

8 units 

6 units 

8 units 

8 units 

8 units 

10 units 

 

The computation of the equations and graphs for the locations on the other edges in 

the network are shown in appendix A 

 

Fortunately, as indicated in the propositions (i) and (ii) below, many edges do not 

need to be explicitly enumerated for their respective local centers. 

 

Preposition (i) 

For the set of all points x on a fixed edge ,p q  of G, the maximum distance 

function m x  is piecewise linear whose slope is always 1 1or . 

 

Preposition (ii) 

For an edge ,p q , the local center satisfies the equation, 

,

2
l

m p m q c p q
m x  where ,c p q  denotes the cost of edge ,p q . 
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Proof 

Consider any point on the edge ,p q . Let : 0 ,x x c p q  denote the point p such 

that 0x  and the point ,x c p q  denote q. We take ,d x p  to be x and ,d x q  

to be ,c p q x . The cost ,d x p  of a shortest path between x  and the farthest 

demand node p is piecewise linear with a slope 1 1or  at each point of x . Its value 

at 0x  is m p  and its value at ,x c p q  is m q  where m p  and m q  are 

nodes centers for nodes p and q. Hence,  

: 0 , ......................(3.13)m x m p x For all x x c p q  

, : 0 , ......................(3.14)m x m q c p q x For all x x c p q  

By adding the two inequalities (i) and (ii), we obtain  

 

 

Where lx  simultaneously satisfies the two inequalities above. 

From  these  preposition and from observation that, by definition the maximum 

distance associated with the node center must be greater than or equal to the 

corresponding distance from the absolute i.e. n am x m x , we can derive the 

following test: 

n

,
If for edge , ,

2

m p m q c p q
p q m x  then the local center lx  of ,p q  

cannot improve on nm x  and therefore need not be found. This test which takes 

advantage of the fact that it is very simple to find the local center lx  often leads to 

,

2
l

m p m q c p q
m x
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considerable reduction in the computation effort required to obtain the absolute 

center. With respect to the five-node, six-edged network in fig. 3.1, we found easily 

that the node center is at nodes 1n and 5n  and that 1 5 8nm x m n m n   

 

On application of the test to the six edges of the network, we obtain 

Edge 
1 3 1 3

1 3

, 8 12 8
, : 6 8

2 2

m n m n c n n
n n

 

Table 3.3: Results of edges whose local centers are to be determined
 

Edge For edge (p,q):  m(  

( ) 6 6  

( ) 10  

( ) 6 6 8 

( ) 7 7 8 

( ) 7 7 8 

( )  8            8 8 

 

The results of the test above clearly suggest that the local center needs to be found 

for only edges. Edges 1 3 2 5 1 5 1 4, , , , , ,n n n n n n and n n . This makes significant 

savings in the computational effort and time. 
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3.11   Summary  

Planar, network and discrete location models which may be used to represent 

location problems and their respective assumptions have been discussed. 

A detailed explanation of p-center problem a heuristic method which is the means of 

locating a fire station at the New Juaben Municipality has been provided. 

The next chapter is data collection and analyses. 
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CHAPTER FOUR 

DATA COLLECTION AND ANALYSES 

4.1 Introduction 

The chapter provides New Juaben municipal map (Appendix B) and selected demand 

areas specifying the road distances between them. Data was obtained from municipal 

planning office and municipal town planning department and would be analyzed 

using the center-problem to identify where a fire station has to be optimally located 

in the municipality. 

Locations considered are: 

A – Koforidua 

B – Effiduase 

C – Baako Krom 

D – Koforidua Ada 

E – Affian 

F – Nyamekrom 

G – Asokore 

H – Agyeso 

I – Adweso 

J – Oyoko 

K – Kwakyekrom 

L – Mile 50 

M – Wawase 

N – Jumapo 

O – Kentenkiren 

P – Begrey 
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Q – Agricultural station 

R – Poposo 

S – Suhyen 

T – Akwadum 

 

Table 4.1: Selected edges specifying the road distance between them. 

NO. EDGE CONSIDERED DISTANCE (METRES) 

1 (A, B) 2200 

2 (A, C) 4000 

3 (A, D) 2300 

4 (A, R) 5500 

5 (A, H) 3800 

6 (A, I) 4100 

7 (B, G) 1100 

8 (B, L) 7200 

9 (B, M) 4800 

10 (C, B) 5000 

11 (C, F) 750 

12 (C, E) 2300 

13 (C, G) 5800 

14 (D, R) 5000 

15 (E, F) 1800 

16 (F, G) 6600 

17 (G, M) 4600 

18 (G, J) 3200 

19 (G, S) 8400 

20 (H, I) 1500 

21 (I, K) 1200 

22 (I, L) 900 

23 (J, N) 3700 

24 (J, S) 5200 

25 (K, O) 2500 

26 (M, P) 3000 

27 (M, Q) 3850 

28 (M, T) 4750 

29 (N, S) 1700 
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Developed network of data of table 4.1 having capital letters as nodes or vertices and 

the figures as distances between pairs of nodes 

 
            Fig. 4.1: Developed Network for selected demand destinations of New Juaben Municipality. 

 

4.2   All Pairs Shortest Path for the Data Collected 

From the network in figure 4.1 the minimum distance matrix d(i, j), that is the matrix 

of the shortest path using the Floyd-Warshalls‟ algorithm was obtained and is shown 

in Table 4.2 
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 A B C D E F G H I J K L M N O P Q R S T 
Row 

max 

A - 2200 4000 2300 6300 4750 3300 3800 4100 6500 5300 5000 7000 10200 7800 10000 10850 5500 11700 11750 11750 

B 2200 - 5000 4500 7300 5750 1100 6000 6300 4300 7500 7200 4800 8000 10000 7800 8650 7700 9500 9550 10000 

C 4000 5000 - 6300 2300 750 5800 7800 8100 9000 9300 9000 9800 12700 11800 12800 13650 9550 14200 14550 14550 

D 2300 4500 6300 - 8600 6300 5600 6100 6400 8000 7600 7300 9300 12500 10000 12300 13150 5000 14000 14050 14050 

E 6300 7300 2300 8600 - 1800 8100 10100 10400 11300 11600 11300 12100 15000 14100 15100 15950 11800 16500 16850 16850 

F 4800 5800 800 7100 1800 - 6600 8550 8900 9800 10100 9800 10600 13500 12600 14200 15050 10300 15000 15950 15950 

G 3300 1100 5800 5600 8100 6600 - 7100 7400 3200 8600 8300 4600 6900 11100 7600 8450 8800 8400 9350 11100 

H 3800 6000 7800 6100 10100 8550 7100 - 1500 10300 2700 2400 10800 14000 5200 13800 14560 9300 15500 15550 15550 

I 4100 6300 8100 6400 10400 8850 7400 1500 - 10600 1200 900 11100 14300 3700 14100 14950 9600 18300 15850 18300 

J 6500 4300 9000 8800 11300 9800 3200 10300 10600 - 11800 11500 7800 3700 14300 10800 11650 10020 5200 12550 14300 

K 5300 7500 9300 7600 11600 10050 8600 2700 1200 11800 - 2100 12300 15500 2500 15300 16150 10800 17000 17050 17050 

L 5000 7200 9000 7300 11300 9750 8300 2400 900 11500 2100 - 12000 15200 4600 15000 15850 10500 16700 16750 16750 

M 7000 4800 9800 9300 12100 11200 4600 10800 11100 7800 12300 12000 - 11500 14800 3000 3850 12500 13000 4750 14800 

N 10200 8000 12700 12500 15000 13500 6900 14000 14300 3700 15500 15200 11500 - 18000 14500 15350 15700 1700 16250 18000 

O 7800 10000 11800 10100 14100 12550 11100 5200 3700 14300 2500 4600 14800 18000 - 17800 18650 13300 19500 19550 19550 

P 10000 7800 12800 12300 15100 14200 7600 13800 14100 10800 15300 15000 3000 14500 17800 - 6850 15500 16000 7750 17800 

Q 10850 8650 13650 13150 15950 15050 8450 14650 14950 11650 16150 15850 3850 15350 18650 6850 - 16350 16850 8600 18650 

R 5500 7700 9550 5000 11800 10250 8800 9300 9600 10020 10800 10500 12500 15700 13300 15500 16350 - 17200 17250 17250 

S 11700 9500 14200 14000 16500 15000 8400 15500 18300 5200 17000 16700 13000 1700 19500 16000 16850 17200 - 17750 19500 

T 11750 9550 14550 14050 16850 15950 9350 15550 15850 12550 17050 16750 4750 16250 19550 7750 8600 17250 17750 - 19550 

                                                                  

Table 4.2 : Matrix of shortest path distance for all pairs of nodes from fig 4.1 



 42 

4.3         Results  

4.3.1   Locating the Vertex/Node Center 

Row 1 represents demand nodes of the network and Row 2 represents row maximum 

from table 4.2 

(a) Table 4.3 Vertex/Node Center from table 4.2 

NODE A B C D E F G H I J 

ROW 

MAX 
11750 10000 14550 14050 16850 15950 11100 15550 18300 14300 

 

NODE K L M N O P Q R S T 

ROW 

MAX 
17050 16750 14800 18000 19550 17800 18650 17250 19500 19550 

 

The node or vertex center (xn) is chosen as the smallest among the maximum entries 

of all rows in the matrix. From Table 4.2 the row with the minimum among the 

maximum entries occurs at node/vertex B with a maximum distance (cost) of 10000 

metres. Thus the node/vertex centre for the network in figure 4.1 is B, hence 

( ) 10000m B . 

 

4.3.2  Locating the Local Centers  

, 11750 10000 2200
, 9775 10,000

2 2

m A m B c A B
Edge A B

 

Table 4.4 test for edges whose local centers are to be determined for the developed 

network. 

Edge For edge (p,q):  m(  

(A,B) 9775 9775  

(A,C) 11150 11150  
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(A,D) 11750 11750  

(A,R) 11750 11750  

(A,H) 11750 11750  

(A,I) 12975 12975  

(B,G) 10000 10000  

(B,L) 9425 9425  

(B,M) 10000 10000  

(C,B) 9775 9775  

(C,F) 148750 148750  

(C,E) 14550 14550  

(C,G) 9925 9925  

(D,R) 13150 13150  

(E,F) 15500 15500  

(F,G) 1675 1675  

(G,M) 10650 10650  

(G,J) 11100 11100  

(G,S) 11100 11100  

(H,I) 16175 16175  

(I,K) 17075 17075  

(I,L) 17075 17075  

(J,N) 14300 14300  

(J,S) 14300 14300  

(K,O) 17050 17050  

(M,P) 15925 15925  
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(M,Q) 15925 15925  

(M,T) 15925 15925  

(N,S) 17900 17900  

 

From table 4.4 edges whose local centers are to be determined are (A,B), (B,L), 

(C,B) and (C,G)  

 

Location on edge (A, B) 

Let A P , B q  such that 0 ,x c p q  and , , 2200c p q c A B  

Putting , then , , 0, , , 2200i i in A d p n d A A d q n d B A  

1 2and 4400 when solvedy x y x  

4400 , 2200 Kink pointx x x  

1 0 2200.................. 4.1y x x  

 

Putting , then , , 2200, , , 0i i in B d p n d A B d q n d B B  

1 2and 2200 when solvedy x y x  

2200 2200 , 0 Kink pointx x x  

2 2200 0 2200.................. 4.2y x x  

 

Putting , then , , 4000, , , 5000i i in C d p n d A C d q n d B C  

1 24000 and 7200 when solvedy x y x  

4000 7200 , 1600 Kink pointx x x  

1 4000 0 1600.................. 4.3y x x  
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2 7200 1600 2200.................. 4.4y x x  

Putting , then , , 2300, , , 4500i i in D d p n d A D d q n d B D  

1 22300 and 6700 when solvedy x y x  

2300 6700 , 2200 Kink pointx x x  

1 2300 0 2200.................. 4.5y x x  

 

Putting , then , , 6300, , , 7300i i in E d p n d A E d q n d B E  

1 26300 and 9500 when solvedy x y x  

6300 9500 , 1600 Kink pointx x x  

1 6300 0 1600.................. 4.6y x x  

2 9500 1600 2200.................. 4.7y x x  

 

Putting , then , , 4750, , , 5750i i in F d p n d A F d q n d B F  

1 24750 and 6950 when solvedy x y x  

4750 6950 , 1100 Kink pointx x x  

1 4750 0 1100.................. 4.8y x x  

2 6950 1100 2200.................. 4.9y x x  

 

Putting , then , , 3300, , , 1100i i in G d p n d A G d q n d B G  

1 23300 and 5500 when solvedy x y x  

3300 5500 , 1100 Kink pointx x x  
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1 3300 0 1100.................. 4.10y x x  

2 5500 1100 2200.................. 4.11y x x  

 

Putting , then , , 3800, , , 6000i i in H d p n d A H d q n d B H  

1 23800 and 8200 when solvedy x y x  

3800 8200 , 2200 Kink pointx x x  

1 3800 0 2200.................. 4.12y x x  

 

Putting , then , , 4100, , , 6300i i in I d p n d A I d q n d B I  

1 24100 and 8500 when solvedy x y x  

4100 8500 , 2200 Kink pointx x x  

1 4100 0 2200.................. 4.13y x x  

 

Putting , then , , 6500, , , 4300i i in J d p n d A J d q n d B J  

1 26500 and 6500 when solvedy x y x  

6500 6500 , 0 Kink pointx x x  

2 6500 0 2200.................. 4.14y x x  

 

Putting , then , , 5300, , , 7500i i in K d p n d A K d q n d B K  

1 25300 and 9700 when solvedy x y x  

5300 9700 , 2200 Kink pointx x x  

1 5300 0 2200.................. 4.15y x x  
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Putting , then , , 0, , , 2200i i in L d p n d A L d q n d B L  

1 25000 and 9400 when solvedy x y x  

5000 9400 , 2200 Kink pointx x x  

1 5000 0 2200.................. 4.16y x x  

 

Putting , then , , 7000, , , 4800i i in M d p n d A M d q n d B M  

1 27000 and 7000 when solvedy x y x  

7000 7000 , 0 Kink pointx x x  

1 7000 0 2200.................. 4.17y x x  

 

Putting , then , , 10200, , , 8000i i in N d p n d A N d q n d B N  

1 210200 and 12400 when solvedy x y x  

10200 12400 , 1100 Kink pointx x x  

1 10200 0 1100.................. 4.18y x x  

2 12400 0 2200.................. 4.19y x x  

 

Putting , then , , 7800, , , 2200i i in O d p n d A O d q n d B O  

1 27800 and 12200 when solvedy x y x  

7800 1200 , 2200 Kink pointx x x  

1 7800 0 2200.................. 4.20y x x  
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Putting , then , , 10000, , , 7800i i in P d p n d A P d q n d B P  

1 210000 and 10000 when solvedy x y x  

10000 10000 , 0 Kink pointx x x  

2 10000 0 2200.................. 4.21y x x  

 

Putting , then , , 10850, , , 8650i i in Q d p n d A Q d q n d B Q  

1 210850 and 10850 when solvedy x y x  

10850 10850 , 0 Kink pointx x x  

2 10850 0 2200.................. 4.22y x x  

 

Putting , then , , 0, , , 7700i i in R d p n d A R d q n d B R  

1 25500 and 9900 when solvedy x y x  

5500 9900 , 2200 Kink pointx x x  

1 5500 0 2200.................. 4.23y x x  

 

Putting , then , , 11700, , , 9500i i in S d p n d A S d q n d B S  

1 211700 and 11700 when solvedy x y x  

11700 11700 , 0 Kink pointx x x  

2 11700 0 2200.................. 4.24y x x  

 

Putting , then , , 11750, , , 9550i i in T d p n d A T d q n d B T  

1 211750 and 11750 when solvedy x y x  
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11750 11750 , 0 Kink pointx x x  

2 11750 0 2200.................. 4.25y x x  

 

 

 

Computations for equations for the locations on edges (B,L), (C,B) and (C,G) 

and graphs to determine their local centers are shown in appendices D and E 

respectively. 

(b) Local Center  

 

Table 4.5 below has column one as edge number, column two is edge name, column 

three is location of edge center and column four is the least point of the upper 

envelope of each of the edges 
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Fig. 4.2   Graph showing upper envelope and local center for edge AB 
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Table 4.5 Shows local centers and cost for edges (A, B), (B,L), (C, B),  and (C,G) 

No. Edge Local Center ( lx ) cost ( )lm x  

1 (A, B) At node B 10200 

2 (B, L) At node B 10000 

3 (C, B) At node B 10000 

4 (C, G) At node G 11100 

 

The least of the local centers of table 4.5 is 10000 and occurred at node B 

4.4     Discussion 

From table 4.3 the node or vertex center,  is 10000 metres. The least of the 

local centers,  from table 4.4 is 10000 metres. The least of the local centers is 

compared with the vertex or node center and the minimum is taken as the absolute 

center. By inspection the minimum of the node center and the least of the local 

centers is 10000. Hence the absolute center,  is 10000 metres and occurred at 

node B of the network. 
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATION 

5.1 Conclusion  

The main objective of the study was to use the Absolute center-heuristic method to 

optimally locate a fire station in the New Juaben Municipality. The following 

findings were realized 

1. The optimal location of the fire station for selected demand destinations 

of New Juaben Municipality was found to be at Effiduase (node B of the 

network).  

      2.  The optimal service coverage distance was found to be 10000 metre radius 

           from node B.  

 

5.2 Recommendation  

            From the results obtained, the following recommendations are made: 

            1.      No fire station should be sited without the appropriate scientific    

                     technique.  

      2.      Studies be carried out to find the optimal locations and service coverage 

               areas for other fire stations. 
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APPENDIX A 

Computations of the equations for the locations 

1 4 1 5 4 5 5 2 3 2, , , , , , , ,n n n n n n n n and n n  

 

LOCATION ON EDGE 1 4,n n  

Choosing 1n  as the origin, let p n and 4q n  such that 0 ,x c p q  

Putting 1, . . 1in n i e i then 1 1 4 1, , 0, , , 6i id p n d n n d q n d n n  and 

1 4, , 6,c p q c n n  The resulting equations 1y x  and  2 12y x  when solved  

12 6x x x  (Kink point) 

1 0 6.......................( )y x x i  

Putting 2 , . . 2in n i e i then 1 2 4 1, , 8, , , 10i id p n d n n d q n d n n   

1 8y x  and  2 16y x  when solved  

8 16 4x x x  (Kink point) 

1 8 0 4.......................( )y x x ii  

2 16 4 6.......................( )y x x iii  

Putting 3, . . 3in n i e i then 1 3 4 3, , 8, , , 12i id p n d n n d q n d n n   

1 8y x  and  2 18y x  when solved  

8 18 5x x x  (Kink point) 

1 8 0 5.......................( )y x x iv  

2 18 5 6.......................( )y x x v  

Putting 4 , . . 4in n i e i then 1 4 4 4, , 6, , , 0i id p n d n n d q n d n n   

1 6y x  and  2 6y x  when solved  
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6 6 0x x x  (Kink point) 

2 6 0 6.......................( )y x x vi  

 

Putting 5 , . . 5in n i e i then 1 5 4 5, , 8, , , 4i id p n d n n d q n d n n   

1 2y x  and  2 10y x  when solved  

2 10 4x x x  (Kink point) 

1 2 0 4.......................( )y x x vii  

2 10 4 6.......................( )y x x viii  
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LOCATING ON EDGE 1 5,n n  

Choosing 1n p  and 5q n  such that 1 5, , 2c p q c n n  

Putting 1, . . 1in n i e i then 1 1 5 1, , 0, , , 2i id p n d n n d q n d n n   

1y x  and  2 4y x  when solved  

4 2x x x  (Kink point) 

1 0 2.......................( )y x x i  

Putting 2 , . . 2in n i e i then 1 2 5 2, , 8, , , 2i id p n d n n d q n d n n   

1 8y x  and  2 8y x  when solved  

8 8 0x x x  (Kink point) 

2 8 0 2.......................( )y x x ii  

Putting 3, . . 3in n i e i then 1 3 5 3, , 8, , , 8i id p n d n n d q n d n n   

1 8y x  and  2 10y x  when solved  

8 10 1x x x  (Kink point) 

1 8 0 1.......................( )y x x iv  

2 10 1 2.......................( )y x x v  

Putting 4 , . . 4in n i e i then 1 4 5 4, , 6, , , 4i id p n d n n d q n d n n   

1 6y x  and  2 6y x  when solved  

6 6 0x x x  (Kink point) 

2 6 0 2.......................( )y x x v  

 

Putting 5 , . . 5in n i e i then 1 5 5 5, , 2, , , 0i id p n d n n d q n d n n   

1 2y x  and  2 2y x  when solved  
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2 2 0x x x  (Kink point) 

2 2 0 2.......................( )y x x vi  

 

 
 

 

 

LOCATING ON EDGE 4 5,n n  

Choosing 4n p  and 5q n  such that 4 5, , 4c p q c n n  

Putting 1, . . 1in n i e i then 4 1 5 1, , 6, , , 2i id p n d n n d q n d n n   

1 6y x  and  2 6y x  when solved  

6 6 0x x x  (Kink point) 

1 6 0 4.......................( )y x x i  

Putting 2 , . . 2in n i e i then 4 2 5 2, , 10, , , 6i id p n d n n d q n d n n   

1 10y x  and  2 10y x  when solved  

10 10 0x x x  (Kink point) 
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2 10 0 4.......................( )y x x ii  

Putting 3, . . 3in n i e i then 4 3 5 3, , 12, , , 8i id p n d n n d q n d n n   

1 12y x  and  2 12y x  when solved  

12 12 0x x x  (Kink point) 

2 12 0 4.......................( )y x x iii  

Putting 4 , . . 4in n i e i then 4 4 5 4, , 0, , , 4i id p n d n n d q n d n n   

1y x  and  2 8y x  when solved  

8 4x x x  (Kink point) 

1 0 4.......................( )y x x iv  

Putting 5 , . . 5in n i e i then 4 5 5 5, , 4, , , 0i id p n d n n d q n d n n   

1 4y x  and  2 4y x  when solved  

4 4 0x x x  (Kink point) 

2 4 0 4.......................( )y x x v  
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LOCATING ON EDGE 5 2,n n  

Choosing 5p n  and 2q n  such that 5 2, , 6c p q c n n  

Putting 1, . . 1in n i e i then 5 1 2 1, , 2, , , 8i id p n d n n d q n d n n   

1 2y x  and  2 14y x  when solved  

2 14 6x x x  (Kink point) 

1 2 0 6.......................( )y x x i  

Putting 2 , . . 2in n i e i then 5 2 2 2, , 6, , , 0i id p n d n n d q n d n n   

1 6y x  and  2 6y x  when solved  

6 6 0x x x  (Kink point) 

2 6 0 6.......................( )y x x ii  

Putting 3, . . 3in n i e i then 5 3 2 3, , 8, , , 2i id p n d n n d q n d n n   

1 8y x  and  2 8y x  when solved  

8 8 0x x x  (Kink point) 

2 8 0 6.......................( )y x x iii  

Putting 4 , . . 4in n i e i then 5 4 2 4, , 4, , , 10i id p n d n n d q n d n n   

1 4y x  and  2 16y x  when solved  

4 16 6x x x  (Kink point) 

1 4 0 6.......................( )y x x iv  

Putting 5 , . . 5in n i e i then 5 5 2 5, , 0, , , 6i id p n d n n d q n d n n   

1y x  and  2 12y x  when solved  
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12 6x x x  (Kink point) 

1 0 6.......................( )y x x v  

  

 
 

 

 

LOCATING ON EDGE 3 2,n n  

Choosing 3p n  and 2q n  such that 3 2, , 2c p q c n n  

Putting 1, . . 1in n i e i then 3 1 2 1, , 8, , , 8i id p n d n n d q n d n n   

1 8y x  and  2 10y x  when solved  

 8 10 1x x x  (Kink point) 

1 8 0 1.......................( )y x x i  

 2 10 1 2.......................( )y x x ii  

Putting 2 , . . 2in n i e i then 3 2 2 2, , 2, , , 0i id p n d n n d q n d n n   

1 2y x  and  2 2y x  when solved  
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2 2 0x x x  (Kink point) 

2 2 0 2.......................( )y x x iii  

Putting 3, . . 3in n i e i then 3 3 2 3, , 0, , , 2i id p n d n n d q n d n n   

1y x  and  2 4y x  when solved  

 4 2x x x  (Kink point) 

1 0 2.......................( )y x x iv  

Putting 4 , . . 4in n i e i then 3 4 2 4, , 12, , , 10i id p n d n n d q n d n n   

1 12y x  and  2 12y x  when solved  

 12 12 0x x x  (Kink point) 

2 12 0 2.......................( )y x x v  

Putting 5 , . . 5in n i e i then 3 5 2 5, , 8, , , 6i id p n d n n d q n d n n   

1 8y x  and  2 8y x  when solved  

8 8 0x x x  (Kink point) 

2 8 0 2.......................( )y x x vi  
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CHAPTER ONE 

Introduction 

1.1 Background of Study 

For the years, the location of semi-obnoxious (also known as semi-desirable) facility 

has been a widely studied topic by researchers in location theory. A facility is said to 

be semi-desirable when it gives service to certain customers in the neighbourhood 

but, on the other hand, is felt as obnoxious to its environment. For example stadia, 

airports, train stations and fire stations are examples of semi-obnoxious facilities. 

Since they are useful and necessary for the community, but they are a source of 

negative effects such as noise. New Juaben Municipality is one of municipalities of 

the Eastern Region and has estimated population of 152,858 people kilometers with a 

population density of 1,507. 

 

The Municipality shares boundaries on the north with East Akim Municipality on the 

south with Akuapem North, Yilo Krobo District on the East. Suhum Kraboa Coalter 

District on the west. It lies between latitude 60
0
N and 70

0
N.  

The new Juaben Municipality with Koforidua as capital is co-terminus with Eastern 

Regional Capital. Koforidua is located at the junction of the major truck roads in the 

Eastern Region. Farming is the main agricultural activities of most inhabitants in the 

Municipality. The major factory in the municipality is the Intravenous Infusion 

Limited at Koforidua that produces intravenous fluids for distribution throughout the 

country. The municipality has one fire station at Asokore serving the Municipality 

and East Akim Municipality as East Akim has no fire station. Most fire outbreaks in 

Ghana could be linked to misuse of electrical gadgets, wrongful electrical 
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connection, careless usage of candles, wrongful disposal of live cigarette butts and 

many other factors and behaviours. 

In U.K the great fire of London in 1666 set in motion changes which laid the 

foundation for organized firefighting. The only equipment available to fight in 1666 

which burnt for five days was two-quart (2.28 litres) hand syringes and a similar 

slightly large syringe (Louisa et al., 2006) . In the wake of the fire, the city council 

established the first fire insurance company “THE FIRE OFFICE” in 1677 which 

employed small teams of Thames Watermen as firefighters and provided them with 

uniforms and arm badges showing the company to which they belonged. The first 

organized municipal fire brigade in the world however, was established in 

Edinburgh, Scotland, when the Edinburgh fire engine Establishment was formed in 

1824. It was led by James Braidwood. In 1832, London fire Engine Establishment 

was also formed. 

 

1.2 Problem Statement  

It is a fact that cities or towns in Ghana do not have well located fire stations hence 

minor incidents which would easily be managed results is massive loss of property 

and even lives. Again roads are not properly layed out that access to places of fire 

outbreaks is simply not possible. The belief is that fire station should be located in 

such a way that allows firefighters to respond in a timely manner to emergencies. 

Facts that influence this decision are as follows: 

i. The risk of fire is not the same in all areas; industrial parts lf the 

municipality is more vulnerable to fire outbreaks. 
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ii. Population is not spread equally around the municipality, and as a 

result there are parts of the municipality that are more populated than 

others. 

It has been shown that frequency of incidents is higher in the most populated areas. 

 

It is against this background that this study is being undertaken to develop a decision 

support system that will help authorities of New Juaben Municipality to strategically 

locate fire station. 

 

1.3 Objectives of the Study 

The objectives of the study are as follows: 

i. To model the location of fire station as Absolute Center Problem 

ii. Determine the optimal location and service coverage distance. 

 

1.4   Methodology 

The problem is to develop a decision support system to optimally locate fire station 

in the New Juaben Municipality. The p-center heuristics was used in the study. The 

study was descriptive and analytical in nature and therefore, made use of quantitative 

and qualitative data collection tools whereas the analyses of data involved the use of 

mathematical procedure. Data were obtained from statistical department of the New 

Juaben Municipality, formal and informal interviews with fire service management 

and some operational men. Map of the Municipality was obtained from planning 

department of the municipality. Floyd Warshalls‟ algorithm was used to compute 

Euclidean distance between all pairs of nodes. 
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Other information were obtained from the internet and department of mathematical 

library of KNUST (Kwame Nkrumah University of Science and Technology) 

 

1.5 Justification 

Optimal location of fire station in the country would boost foreign and local investor 

confidence in their economic activities. Plants and animal species which could be 

pushed to extinction as a result of wild bush fire will be reduced. Degradation of 

ecosystem, increased soil erosion, reduced water quality and increased soil salinity 

resulting from fire outbreaks will also be also be addressed thereby increasing 

productivity of the country. 

 

Damages, injuries loss of property and even death that, both human beings and 

animals suffer will be a large extent prevented. The findings of the study can   be 

implemented by authorities of New Juaben Municipality. 

Future researchers can replicate the study at other parts of the country using the work 

done as reference material. 

 

1.6    Organization of the study 

Chapter one talks about the profile of the area of study, fire history, causes of 

fire outbreaks, objectives, justification and methodology of the study. Chapter 

two is primarily about review of some location problem models.  

Chapter three considers three location models, strategies involved in choosing 

a site, network-based algorithms, absolute center problem, determination of 

upper envelope, local center and absolute center. 
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Chapter four is about result of location vertex or node center, local center and 

discussion. Chapter five considers conclusions and recommendations. 
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CHAPTER TWO 

Literature Review 

2.1 Introduction 

This chapter introduces some of the methods and models that other researchers have 

applied in solving location problems. 

 

2.2 Review of Location Problem Models 

Hongzhong et al. (2005), first surveyed general facility location problems and 

identified models used to address common emergency situations, such as house fires 

and regular health care needs. The authors then analyzed the characteristics of large-

scale emergencies and proposed a general facility location model that is sited for 

large-scale emergencies. This general facility location model could be cast as a 

covering model, a P-median model or a P-center model, each suited for different 

needs in large-scale emergencies. Illustrative examples were given to show how the 

proposed model could be used to optimize the location of facilities for medical 

supplies to address large-scale emergencies. 

 

The associated FORTRAN computer programme could be utilized to determine the 

travel time from a source of fire to a smoke detector. The difference in travel time 

from an isolated fire source to two or more detectors could be used to isolate those 

airways in which the source of fire is located. This model also has application in 

mine emergency stage. To determine the optimum location fire detectors, the mine 

network was divided into zones each of which was associated with a difference in 

calculated smoke arrival time between a pair of detectors. 
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Church and ReVelle (1974) and White and Case (1974), developed a maximal 

covering location problem model that did not require full coverage to all demand 

points. Instead, the model sought the maximal coverage with a given number of 

facilities. 

 

The maximal covering location problem and different variants of it had been 

extensively used to solve various emergency service location problems. A notable 

example was the work of Eaton et al. (1985), that used the maximal covering 

location problem to plan the emergency medical service in Austin Texas. The 

solution gave a reduced average emergency responses time with increased calls for 

service. 

 

Schilling et al., (2005), generalized the maximal covering location problem model to 

locate emergency fire fighting servers and depots in the city of Baltimore. In the 

authors‟ model, known as FLEET (facility location and Equipment Emplacement 

Technique) two different types of servers needed to be located simultaneously. A 

demand point was regarded „covered‟ only if both servers were located within a 

specified distance. 

 

Hodder and Dincer (1986), consider the location of capacitated facilities globally 

under exchange rate uncertainty. The model incorporates the financing aspects of 

plant construction by endogenously deciding how much of each plants‟ total cost to 

borrow from each country; the per-period cost of this financing is a random variable 

since the exchange rate are uncertain.  
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In addition, cost and per-unit profit are uncertain. The model maximizes a mean-

variance expression concerning the total profit. This objective is quadratic and 

involves a large-variance-covariance matrix, each off diagonal term of which 

requires a bilinear term in the objective function. Therefore, the author proposes an 

approximation scheme that effectively diagonalizes the variance-covariance matrix 

so that the objective function contains only squared terms and no bilinear terms.  

 

The resulting model is solved using an off-the-shelf quadratic programming solver 

for small problems and using a gradient search method for larger ones. No discussion 

is provided concerning the form of uncertainty (discrete or continuous) or the 

probability distributions governing it, but in theory any approach could be used as 

long as the random parameters can be expressed adequately in the form needed for 

the approximation. 

 

Berman and Odoni (1982), studied a single-facility location problem in which travel 

times are stochastic and the facility (e.g. Ambulance) may be relocated at a cost as 

conditions change. Travel times are scenario-based, and scenario transitions occur 

according to a discrete-time Markov process. The objective is to choose a facility 

location for each scenario to minimize expected transportation and relocation costs. 

The authors show that Hakimi property applies to this problem and that the problem 

on a tree is equivalent to the deterministic problem; any scenario can be used to 

determine the optimal location since I-median on a tree is independent of the edge of 

lengths. They then present a heuristic for the problem on a general network that 

involves iteratively fixing the location in all but one scenario and solving what 

amounts to I-median problem. They discuss simple bounds on the optimal objective 
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value of the multi-facility problem. Berman and LeBlanc, (1984), introduce a 

heuristic for this problem that loops through the scenarios, performs local exchanges 

within each, and then performs exchanges to link the scenarios in an effort to reduce 

relocations costs. 

 

Carson and Batta, (1990), present a case study of a similar problem in which a single 

ambulance is to be relocated on the Amherst campus of SUNY buffalo as the 

population moves about the campus throughout the day (from class-room buildings 

to dining halls to dormitories, etc.). Given the difficulties inherent in identifying 

probability distributions and estimating allocation costs in practice, Carson and Batta 

simply divide the day into four unequal time periods and solve I-median problem in 

each. Relocation costs are not explicitly considered, but the decision to use four time 

periods was arrived at in consideration of the trade off between frequent relocation 

and increased response times. 

 

Ghosh and McLafferty, (1982), introduce a model for locating multiple stores so as 

maximize market share in a competitive environment with demand uncertainty 

(actual, uncertainty as to which stores competitor plans to close, but in this setting 

they amount to the same thing). The authors discuss a model from the marketing 

literature for estimating market share given fixed store locations. 

The location model itself is formulated as a multi objective model, with each 

objective representing the market-share-maximization objective in a given scenario. 

 

Ultimately, the objectives are combined into a weighted sum to be minimized. If the 

weights represent scenario probabilities, the objective is equivalent to minimizing the 
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expected cost; otherwise, the weights can be adjusted systematically to find 

nondominated solutions (solutions for which no objective can be improved without 

degrading another objective). For a given set of weights, the problem is solved using 

an exchange heuristic. On a small sample problem, three noninferior solutions were 

found, and the authors provide some discussion as to how to choose among them. 

 

Benedict, (1983), Eaton et al., (1986), and Hogan and ReVelle, (1986), developed 

covering maximal location problem models for emergency service that had a 

secondly “back up-coverage” objective. The models ensured that a second (back up) 

facility could be available to service a demand area in case that the first facility was 

unavailable to provide services. Based on a hypercube queuing model, Javis (1977) 

developed a descriptive model for operation characteristics of an EMS system with a 

given configuration of resources and a location model for determining the placement 

of ambulances to minimize average response time or other geographically based 

variables. 

 

Marianov and ReVelle, (1996), created a realistic location model for emergence 

systems based on results from queuing theory. In their model the travel times or 

distances along arcs of network were considered as random variables. The goal was 

to place limited numbers of emergency vehicles, such as ambulances, in away as to 

maximize the call for service. 

 

Carbone, (1974), formulated a deterministic p-median model with the objective of 

minimizing the distance travelled by a number of users to fixed public facilities such 

as medical or day-care centers. Recognizing the number of users at each demand 
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node was uncertain. The author further extended the deterministic p-median node to 

a chance constrained model. The model sought to minimize distance and user costs, 

and maximize demand and utilization. 

 

Paluzzi, (2004), discussed and tested p-median based heuristic location model for 

placing emergency service facilities for the city of Carbondale. The goal of this 

model was to determine the optimal location for placing a new fire station by 

minimizing the total aggregate distance from the demand sites to the fire station. The 

results were compared with results from other approaches and the comparison 

validated the usefulness and effectiveness of the p-median based location model. 

 

Doeksen and Oehrtman, (1976), used a general transportation model based on 

alternative objective functions to obtain optimal fire stations for the rural fire system. 

The different objectives used to obtain the optimal sites include: minimizing 

responses time to fire, minimizing total mileage for fighting rural or country fires and 

minimizing protection per dollars‟ worth of burnable property. 

 

Plane and Hendricks, (1977), used the maximum covering distance concept to 

develop a hierarchical objective function for the set covering formulation of the fire 

station location problem. The objective function permitted the simultaneous 

minimization of the number of fire stations and minimization of the existing fire 

station within the minimum total number of stations. 

 

Badri et al. (1998), underlined the need for a multi objective model in determining 

the fire station location. The authors used a multiple criteria modeling approach via 
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integer goal programming in everlasting potential sites in 31 sub-areas in the state of 

Dubai. Their model determined the location of fire stations and the areas they are 

supposed to serve. It considered eleven (11) strategic objectives that incorporated 

travel times and travel distances from stations to demand sites, and also other cost-

related objectives and criteria-technical and political in nature. 

 

Church (2002), exhaustively reviewed the existing work linking GIS location science 

and asserted that GIS could support a wide range of spatial queries that aid location 

studies. He explored the integration of a heuristic algorithm into GIS for spatial 

optimization of fire station locations. This novel approach to solving optimization 

problem led to a paradigm shift in solving spatial analytical problems of a similar 

nature in the disciplines of transportation, networking and infrastructure design.  

 

Tzeng and Chen (1999), used a fuzzy multi objective approach to determine the 

optimal number and sites of fire stations in Taipeis‟ international airport. A genetic 

algorithm was then executed to weigh against the brute-force enumeration method. 

The results proved that the genetic algorithm was suitable for solving such location 

problems. Nevertheless, its efficiency still remained to be verified by large-scale 

problems. 

 

Talwar (2002), utilized a p-center model to locate and dispatch three emergency 

rescue helicopters to serve the growing EMS demands from accidents of tourist 

activities such as skiing, hiking and climbing at the north and south of Alphine 

mountain ranges. One of the models‟ aims was to minimize the maximum (worst) 

response times and the author use effective heuristics to solve the problem. 
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ReVelle and Hogan et al., (1989), formulated a model that sought to minimize a 

population which had a service available within a desired travel time with a stated 

reliability, given that only P servers were to be located. The authors computed the 

number Pi of servers needed for reliable coverage of node i, and maximized the 

population in nodes i, with pi or more servers. 

 

De Palma et al (1989), study a multi firm competitive facility location with random 

consumer utilities. A consumers‟ utility for firm i is expressed as a constant  (the 

mean utility for the firm) minus the distance from the consumer to the firms‟ nearest 

facility minus a random error term. After choosing its maximum–utility firm, each 

consumer will choose the nearest facility within that firm. 

 

Firm i will open  facilities to maximize its expected sales (market share). The 

authors proved that if the –median solution is unique for all i and if the 

consumers‟ tastes are sufficiently diverse, then there exists a unique location 

equilibrium, and in that equilibrium, firm i locates its facilities at the –median 

solution. The problem therefore reduces to solving a separate PMP for each firm. 

 

MirHassani et al(2000), formulate a study chain network design problem as a 

stochastic program with fixed recourse; the SP has binary first- stage variables and 

continuous second – stage variables. The objective function coefficient are 

deterministic; uncertainty is present only in the right- hand sides of the recourse 

constraints, which may represent for example, demands or capacities. The authors 
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focus especially on parallel implementation issues for their proposed Benders 

decomposition algorithm. 

 

 Tsiakis et al. (2001), consider a multiproduct, multiechelon supply chain under 

scenario- based demand uncertainty. The goal is to choose middle- echelon facility 

locations and capacities, transportation links and flows to minimize expected costs. 

Transportation cost are piecewise linear concave. The model is formulated as a large 

–scale MIP and solved using CPLEX. 
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CHAPTER THREE 

METHODOLOGY 

3.1 Introduction 

This chapter introduces a number of Locations models (p-median, center-of gravity 

etc) formulated and used in solving location problem. The chapter also discusses the 

methodology that would be used to in finding the optimal location where a fire 

station would be located in the Koforidua Township to ensure optimal response time 

for incident responders in the service coverage area. 

 

3.2 Spatial Representation of Location 

In support of decision processes that involve facility siting, location models are 

generally used.  

 

To formulate a location model, it is necessary to identify where the demand is 

located and where facilities can be sited. 

 

The problem of siting p facilities in some universe so as to satisfy a given set of 

criteria poses the following: 

 i)     The universe to be considered; 

 ii)   The assumptions to simplify the problem without 

                    distorting the solution radically; and 

 iii)   The objectives to be optimized. 
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These result in the emergence of many different formulations to the fundamental 

location problem. As one would expect, the more accurately a model reflects the 

„real life‟ situations the more complex the problem becomes. 

 

Three different universes will be addressed; 

i) Planar; 

ii) Network; and 

iii) Discrete. 

 

The whole essence of the siting problem is to locate several facilities to optimize a 

certain set of objectives. The objectives function could be any of the following: 

i) Minimise the maximum Euclidean distance; 

ii) Minimise average travel time or cost;  

iii) Minimise maximum travel time or cost; 

iv) Minimise net; and 

v) Minimise response time. 

 

3.3 The Universe to be considered 

The first universe to be considered is that of the entire plane, entitled the Planar 

location problem. Here the set of points making up the entire plane is the set of 

feasible solutions. For this basic formulation, the planar model assumes direct 

distance metric e.g Euclidean. On the other hand in a network problem, potential 

customers will normally travel the arcs or edges of the network, road or rail. This 

prompts the formulation of the network location model, where the facilities may be 

positioned on a vertex or an edge of network. Distances are then reformulated to be 
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the shortest path linking facilities and customers. There is also the discrete problem 

of siting a facility on vertices of a network. 

 (Francis et al., 1983) 

 

3.3.1 Planar Location Models 

A planar location model involves the location of p new facilities p N  within a 

feasible plane, so as to minimize some cost of the distance from each new facility to 

the other new facilities and any existing facility within the plane. 

 

Assumptions: 

Before any formulation of the above can be established a set of assumptions must be 

made: 

i) Any point in the plane can be a member of the feasible solution. 

ii) Each facility can be approximated by a point, i.e. it has no area. 

iii) A subset of the earths‟ surface can be approximated by a plane. 

 

The above assumptions immediately raise several questions about accuracy. 

Assumption (i) does not allow for the occurrence of infeasible area within the plane, 

such as property owned by other organizations, natural barriers are inaccessible sites. 

In these cases the model assumes that a site close to the optimal may be chosen with 

no loss of satisfaction. Assumption (ii) states that the feasible plane is infinitely 

bigger than the area taken by a facility. This is obviously unrealistic and may affect 

the results if the feasible area is on a very local scale and the potential facilities on 

large site area.  Assumption(iii) assumes that the feasible set is small enough so that 

the spherical curve of the sphere does not alter the shortest distance. 
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3.3.2   Network Location Models 

A network is a system of interconnecting routes which allows movement from one 

centre to others. It is made up of nodes (vertices) which may be population centres 

and links (edges) which are routes or services which connect them. In the network 

location model, the distance metric is measured along a road or rail system, or a set 

of flight or shipping routes. It may therefore be preferred for placement of the facility 

to occur on the edges or nodes of the network. 

 

Assumptions  

To adopt this model, the set of assumptions made above must first be modified as: 

(i) Each facility can be approximated by a point i.e. it has no area. 

(ii) Network distances between points are defined as shortest path 

distances which can be computed using Djikstra algorithm or 

Floyd Warshall  algorithm. 

(iii) Any point in the network can be a member of the feasible 

solution. 

 

These assumptions are similar to those of the planar model and will result in similar 

formulations. However, if the assumption that all the facilities provide the same kind 

of service and that a customer will only have to travel to the closest facility is 

introduced, a subset of the minimax or minisum formulation is addressed. 

 

3.3.3   Discrete Location Models 

Planar and Network location models have some limitations, in that: 

i) Every point in the plane or network is a candidate solution; 
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ii) Fixed costs for siting individual facilities at a particular point are 

ignored or assumed to be independent of the location chosen and so 

do not affect the optimal solution.  

 

These limitations are confronted when the solution set is reduced to that of a finite 

number of candidate solutions. Each candidate can be assigned an individual location 

cost which in turn can be incorporated into the objective function. (Moon I.D and 

Chandhry S.S, 1994) and (Mirchandani P.B and Francis R.L, 1990) 

 

3.4   Strategies Involved in Choosing a Site  

Location simplify refers to a place where something happens or exist. 

Many factors, both quantitative and qualitative have to be considered in selecting a 

location. Some of these factors are more important than others so people can use 

weightings to make the decision process more objective. Three of the main location 

strategies are the location break-even analysis, factor rating and centre-of-gravity 

methods. 

 

3.4.1    The Location Break-Even Analysis 

The location break-even analysis is the use of cost-volume analysis to make 

economic comparison of location alternatives. By identifying fixed and variable costs 

and graphing them for each location we can determine which one provides the lowest 

cost. Location break-even analysis can be done mathematically or graphically. The 

graphic approach has the advantage of providing the range of volume over which 

each location is preferable. There are three steps in location break-even analysis.  
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These are: 

i) Determine the fixed and variable costs for each location. 

ii) Plot the cost for each location, with cost on the vertical axis of the 

graph and production on volume the horizontal axis. 

iii) Select the location that has the lowest total cost for the expected 

production volume. 

 

3.4.2 The Factor Rating Method  

The factor rating is popular because a wide variety of factors, from education to 

labour skill to recreation, can be objectively included. The factor rating method has 

six steps: 

i) Develop a list of relevant factors. 

ii) Assign a weight to each factor to reflect its relative importance in the 

companys‟ objectives. 

iii) Develop a scale for each (e.g.  1 to 10 or 1 to 100) 

iv) Assign a score to each location for each factor using the scale in step 

(iii) 

v) Multiply the score by the weights for each factor and total the score 

for each location. 

vi) Make a recommendation based on the maximum point score, 

considering the results of quantitative approaches as well. 

 

When a decision is sensitive to mirror changes, further analysis of either the 

weighting or the points assigned may be appropriate. Alternatively, management 

may conclude that these intangible factors are not the proper criteria on which to 
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base a location decision. Managers therefore place primary weight on the more 

quantitative aspects of the decision. (Amponsah, 2006) 

 

3.4.3 Centre-of-Gravity Method    

The centre-of-gravity method is a mathematical technique used for finding the 

location of a distribution centre which minimizes distribution costs. This method 

takes into account the location of markets, the volume of goods shipped to those 

markets, and shipping costs in finding the best location for a distribution centre. 

 

The first step in the centre-of-gravity method is to place the location on a co-ordinate 

system. The origin of the co-ordinate system in the scale is arbitrary, just as long as 

the relative distances are correctly represented. This can be done by placing a grid 

over an ordinary map of the location in question. The centre-of-gravity is determined 

by equations (3.1) and (3.2)  

........................(3.1)
ix i

x

i

d W
C

W
 

........................(3.2)
iy i

y

i

d W
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Where  

xC x Coordinate of the centre-of-gravity 

yC y Coordinate of the centre-of-gravity 

ixd x Coordinate of location i 

iyd y Coordinate of location i 

iW  Volume of goods to and from location i 
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Once the x and y-coordinates have been obtained, the new location is placed on the 

previously described map to determine the actual position on the map. If that 

particular location does not fall directly on a city, simply locate the nearest city and 

place new distribution centre there. (Louisa  et al., 2006) 

 

3.5 Network-Based Algorithms 

3.5.1      Shortest Path Problems 

Shortest path problems are the most fundamental and most commonly encountered 

problems in the study of transportation and communication networks (Salhi S, 1998). 

There are many types of shortest path problems. For example, we may be interested 

in determining the shortest path from one specified node in the network to another 

specified node or we may need to find the shortest paths from a specified node to all 

other nodes. Shortest path between all pairs of nodes in a network are required in 

some problems while sometimes one wishes to find the shortest path from one given 

node to another given node that passes through certain specified intermediate nodes. 

In some application, one requires not only the shortest path but also the second and 

the third shortest paths. There are instances when the actual shortest path is not 

required but only the shortest distance. We shall consider two most important 

shortest-path problems: 

i) How to determine (a shortest path) from a specific node S to another 

specific node T,  

ii) How to determine distance (a path) from every node to every other 

node in the network. 
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3.5.1.1   Floyd-Warshall Algorithm 

The Floyd-Warshall algorithm obtains a matrix of shortest path distance within 

3O n  computations. The algorithm is based on inductive arguments developed by 

an application of a dynamic programming technique.  

Let represent the length of the shortest path from node i to node j subject to the 

condition that this path uses the nodes 1, 2, …, k – 1 as internal nodes. Clearly, 

1 ,kd i j  represent the actual shortest path distances from the node i to j.  The 

algorithm first computes 2 ,d i j  for all node pairs i and j using 1 ,d i j , it then 

computes 2 ,d i j  for all node pairs i and j. It repeats this process until obtains 

1 ,kd i j  using , min , , ,k k kd i j d i k d k j . The Floyd-Warshall algorithm 

remains of interest because it handles negative weight edges correctly. 

 

3.5.1.2   Dijkstras’ Algorithm 

The Dijkstras‟ algorithm finds the shortest path from a source s to all other nodes in 

the network with nonnegative lengths. It maintains a distance label d(i) with each 

node i, which is an upper bound on the shortest path length from the source node s to 

any other node j. At any intermediate step, the algorithm divides the nodes of the 

network under consideration into two groups: those which it designates as 

permanently labeled (or permanent), and those which it designates as temporarily 

labeled (or temporal). The distance label to any permanent node represents the 

shortest distance from the source node to that node. The fundamental idea of the 

algorithm is to find out from source node s and permanently labeled nodes in the 

order of their distances from the node s. 

 



 25 

Initially, node s is assigned a permanent label of zero (0) and each other node j a 

temporary label equal to infinity. At each iteration, the label of a node i is its shortest 

distance from the source node along a path whose internal nodes (i.e. node i other 

than s or node i itself) are all permanent labeled. The algorithm selects a node i 

within the minimum temporary label (breaking ties arbitrarily), makes it permanent 

and reaches out from that node (i.e. it scans all the edges coming out from the node i 

to update the distances label of adjacent nodes). The algorithm terminates when it 

has designated all nodes permanent. 

 

Dijkstras‟ algorithm can be expressed as a set of steps. 

Step 1:    Assign the permanent label O to the starting vertex. 

Step 2:    Assign temporary labels to all the vertices that are connected   

              directly to the most recently permanent labeled vertex  

Step 3:  Choose the vertex with the smallest temporary label and assign a 

              permanent label to that vertex. 

Step 4:   Repeat steps 2 and 3 until all vertices have permanent labels. 

Step 5:    Find the shortest path by tracing back through the network. 

 

3.6 Absolute Center Problem 

The center problem was first proposed by Sylvester (1857) more than one hundred 

years ago. 

The problem asked for the center of a circle that had the smallest radius to cover all 

desired destinations. The k-center model and its extensions had been applied in the 

context of locating facilities such as EMS centers, hospitals, fire station and other 

public facilities.  
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For a point x on the network G, let m(x) denote max d(x, ni) where d(x, ni), is the cost 

or distance of  the „shortest‟ path  between  x and „farthest‟ demand node ni. The 

general absolute center problem is   

i) Formulated as min min max , im x d x n subject to x G  

         The above formulation is applied in finding the vertex and local centers. 

ii) The vertex center (or node center) nx N  is a node such that for every 

node , ny N m x m y . 

The local center of an edge (p, q) is a point x, on (p, q) such that for every 

point y on. 

iii) (p, q), im x m y . The absolute center ax  is a point on G such that 

for every point y on G, (y may be on an edge of G), am x m y  

(Mirchandi P. B, and Francis R. L, 1990) 

 

To find a node center, we compute the matrix of the shortest paths costs 

(travel times, distances) for all pairs of nodes using the Floyd-Warshalls‟ or 

Dijkstras‟ algorithm, and then choose a node such that the maximum entry in 

its row in the matrix is smallest among the maximum entries of the rows. 

 

For example figure 3.1 shows a network of an urbanized area with nodes 

1 2 3 4 5, , ,n n n n and n representing points where demand for services is 

generated. 

                       

                                

n1 

n2 

n3 

n4 n5 

2 

2 

6 

8 

4 

 

6 

Fig. 3.1: Example of network showing demand nodes and distance 
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By using the Floyd-Warshalls‟ algorithm we obtain a matrix of the shortest paths of 

the network of figure 3.1.   

The algorithm computes d(p, q) for all node pairs p and q are shown in table 3.1 

 

Table 3.1: Matrix of shortest path distance for pairs of nodes for fig.3.1                                                

 n1 n2 n3 n4 n5 
Row 

max 

n1 0 8 8 6 2 8 

n2 8 0 2 10 6 10 

n3 8 2 0 12 8 12 

n4 6 10 12 0 4 12 

n5 2 6 8 4 0 8 

 

From table 3.1, the smallest among the entries in all rows occurs at either n1 or n5, 

with 1 5 8m n m n  and therefore n1 or n5 may be taken as the node center. 

 

3.7 Finding the Absolute Centre 

The absolute centre minimizes the cost (distance travel time). We look for the path of 

minimum cost (Euclidean distance) by finding the shortest path among all pairs of 

vertices using Floyd-Warshalls‟ or Dijkstras‟ algorithm. A vertex is a designated 

point in a network and an edge is a direct distance or arc between two vertices, p and 

q denoted by c (p, q) which is the edge cost or edge distance. 

 

A shortest path is the total distance between two vertices which may not be direct but 

passing through other vertices. Thus a shortest path may not be a direct distance or 

cost between two vertices. This is denoted by d(p, q) and is described as the 

minimum path cost;  

1

1

1

, min ,
i

i i

i

d p q c n n  
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Consider the edge (p, q) with a point x on it as shown in figure 3.2 

                                                                                                                                                                                                                                                                                                                           

 

                            Fig 3.2: Movement of x along edge (p, q) 

 

, , ,d x p d x q c p q        , , ,d x p c p q d x q  

For an undirected graph (a two-way road) with non-negative weight (cost), put  

max ( , )m x d x p  

If  x is on an edge or a node we require 
1 ( )m x m x , where 1

pqx x , the distance 

(cost) of the point x on edge (p, q) away from p.  

To calculate 1( )m x  

i. Evaluate all vertices and find the vertex center value and its 

cost. 

ii. Evaluate all edges to find the local center with minimum cost. 

iii. Compare the two costs, i.e., the minimum vertex center cost 

and the minimum edge cost, the lowest of the two costs is the 

solution, 1( )m x  

 

The local center for each edge can be found as shown. Consider an edge (p, q) with a 

point x on it. Assuming we want to move from x to ni where ni is any node or vertex 

on the network G, we find the minimum cost by moving to ni through p or q. 

 

 

p q x 
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p and q are demand points and is the farthest desired destination. 

 

 

 

 

 

 

 

( , ) ( , ) ( , )i ix d p n c p q x d q n is an edge and its cost is ,c p q . From the fig. 3.3 

( , )d p x x  and ( , ) ( , )d q x c p q x  hence, ( , ) ( , ) ( , )d p x d x q c p q  

The movement from x to ni (any of the nodes or vertices on the network G) can be 

done in two directions i.e. through p or q given rise to respectively the equations 

below; 

1 ( , ).......................(3.1)iy x d p n  

2 ( , ) ( , )...........................(3.2)iy c p q x d q n  

Where y1, is the distance from  x  to ni through p and y2 is the distance from x to ni 

through q. As  x moves along the edge (p, q) there will be a point when the two 

distances or costs would be equal. At this point 1 2y y and the kink/maximum/pareto 

could be found. Solving for the path of equal cost we have: 

( , ) ( , ) ( , )i ix d p n c p q x d q n  

( , ) ( , ) ( , )

2

i ic p q d q n d p n
x  

Where  x can be denoted by xm being the minimum cost. The equations (1) and (2) 

involving y1 and y2 are therefore used to draw graphs for the edge (p, q) from which 

the local centre can be determined. As ni assumes all the nodes on the network, a 

 nii 

d(q, ni) 
d(p, ni) 

x 
p q 

Fig. 3.3   Distance of x to ni through p and q 
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number of equations will be generated under equations (1) and (2). These equations 

would then be sketched on the same axes in a given range obtained from solving the 

kink point for the paths of equal distance for each pair of equations. 

An upper envelope is then obtained by tracing all paths of lines beyond which there 

are no higher points for the x-value in the given range on the graph. These graphs are 

indicated by thicks lines. The local center 
pq ix x  is the point that minimizes the 

upper envelope. The absolute center at termination of the process is the point ax  

(node centre nx  or local center
pq ix x ) that assigned the least value to m(x) 

Using figure 3.1 we would evaluate all edges in the given network to illustrate how 

the absolute centre can be found on a given network as follows: 

 

3.8 Location on edge (n1n3) 

Consider  

1( ) ( , )..............(3.3)im x y x d p n  

2 ( , ) ( , )iy c p q x d q n ………(3.4) 

Choosing n3 as the origin, we let p = n3 ad q = n1 such that 0 ( , )x c p q  

Putting 1in n , ie 1i then Table 3.1 we 3 1( , ) ( , ) 8id p n d n n  

( , ) ( , ) 0i i id q n d n n  and 3 1( , ) ( , ) 8c p q c n n  

Thus from (i) and (ii) 1 8y x  and  2 8y x . Solving for the path of equal 

distance or cost, we have 8 8 , 0x x x . That is, the kink point for the two 

equations being on left endpoint of the interval. By sketching, the equation 1 8y x  

falls outside the range and hence rejected. 

Putting 3, . . 3in n i e i  then 3 3( , ) ( , ) 0id p n d n n  and 1 3( , ) ( , ) 8id q n d n n . 
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Thus 1y x , 2 16y x  and solving for the path of equal distance or cost, we have 

16 , 8x x x  which is the kink point. It is at the right end point of the interval. 

By sketching, the equation 2 16y x  falls outside the range and hence rejected. In 

both instances above, we can accept and sketch the two equations below 

1 0 8.................(3.5)y x x  

2 16 0 8....................(3.6)y x x  

Putting 2 , . . 2in n i e i  then 3 2( , ) ( , ) 2id p n d n n  and 1 2( , ) ( , ) 8id q n d n n . 

The resulting equations 1 2y x  and 2 16y x  when solved for the path of equal 

distance or cost, we have 2 16 7x x x  which is the kink point. The 

following equations are then sketched in the given ranges 

1 2 0 7.................(3.7)y x x  

2 16 7 8....................(3.8)y x x  

Putting 4 , . . 4in n i e i  then 3 4( , ) ( , ) 12id p n d n n  and 1 4( , ) ( , ) 6id q n d n n  

The resulting equations, 1 12y x  and 2 14y x when solved for the path of 

equal distance or cost, we have 12 14 , 1x x x  which is the kink point. 

The following equations are then sketched within the given ranges. 

1 12 0 1.................(3.9)y x x  

2 14 0 8....................(3.10)y x x  

Putting 5 , . . 5in n i e i  then 3 5( , ) ( , ) 8id p n d n n  and 1 5( , ) ( , ) 2id q n d n n  

The resulting equations, 1 8y x  and 2 10y x when solved for the path of 

equal distance or cost, we have 8 10 1x x x  which is the kink point. 
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The following equations are then sketched within the given ranges. 

1 8 0 1.................(3.11)y x x  

2 10 0 8....................(3.12)y x x  

 

The eight equations are then sketched on the same axes as shown in fig. 3.4. The 

minimum cost or distance of the path can be found from the graph using the upper 

envelope 

1 3
8 ( ) 8n n lx and m x

 

The thick line represents the upper envelope of the graph and the minimum point on 

it is the local center
 

 
 

 

Thus the minimum cost on edge (n1, n3) i.e. 
1 3n nx , is selected by considering the 

point corresponding to the maximum cost for all nodes. In the example above, the 

minimum cost/distance for edge (n1, n3) is given as 
1 3 1, 8 ( ) 8n nx and m x units. 

 

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7 8 9

n1n3 

3
8 ( ) 8n lX m x  

Fig. 3.4   Graph showing upper envelope and local center for edge n1n3 
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3.9   Construction of the Upper Envelope 

After sketching all the equations resulting from the location on edge (n1,n3) on the 

same axes as shown in fig. 3.4 there is the need to construct an „upper envelope‟ 

which gives the minimum cost/distance of a shortest path from x to a farthest node on 

the given edge. To construct the upper envelope, we trace all paths of lines beyond 

which there are no higher points for the same x-value in the given range. This path is 

indicated by a thick line as shown in the figure 3.4  

 

3.10    Local center 

For each edge (p, q), the local center is found by plotting ( , )id x n  for each node 

in N  where 0 ( , )x c p q . 

The local center pq lx x  is the point that minimizes the upper envelope.  The 

absolute center ax  is the minimum point among the local centers. This occurs on the 

edge 5 2n n with 5( , ) 2ad x n  and 2, 4ad x n , ( ) 6am x  which implies, the 

maximum distance from point x to the farthest node is 6 units that is both nodes n5 

and n2 hence the optimum  location of the facility is on edge (n2,n5) which is 2 units 

from node n5 and 4 units from node n2.  

 

Finding a single absolute center of a network is more involving.  In practice, where a 

network has a large number of nodes, there would be equally a large number of 

edges to be enumerated for their respective local centers. 
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Table 3.2  local centers and corresponding cost or distance for figure 3.1 

Edge Edge distance Local centre  Cost  

 

 

 

 

 

 

8 

6 

2 

6 

4 

2 

At  

2 units from  

At or  

 

At  

 

At  

At   

8 units 

6 units 

8 units 

8 units 

8 units 

10 units 

 

The computation of the equations and graphs for the locations on the other edges in 

the network are shown in appendix A 

 

Fortunately, as indicated in the propositions (i) and (ii) below, many edges do not 

need to be explicitly enumerated for their respective local centers. 

 

Preposition (i) 

For the set of all points x on a fixed edge ,p q  of G, the maximum distance 

function m x  is piecewise linear whose slope is always 1 1or . 

 

Preposition (ii) 

For an edge ,p q , the local center satisfies the equation, 

,

2
l

m p m q c p q
m x  where ,c p q  denotes the cost of edge ,p q . 



 35 

 

 

Proof 

Consider any point on the edge ,p q . Let : 0 ,x x c p q  denote the point p such 

that 0x  and the point ,x c p q  denote q. We take ,d x p  to be x and ,d x q  

to be ,c p q x . The cost ,d x p  of a shortest path between x  and the farthest 

demand node p is piecewise linear with a slope 1 1or  at each point of x . Its value 

at 0x  is m p  and its value at ,x c p q  is m q  where m p  and m q  are 

nodes centers for nodes p and q. Hence,  

: 0 , ......................(3.13)m x m p x For all x x c p q  

, : 0 , ......................(3.14)m x m q c p q x For all x x c p q  

By adding the two inequalities (i) and (ii), we obtain  

 

 

Where lx  simultaneously satisfies the two inequalities above. 

From  these  preposition and from observation that, by definition the maximum 

distance associated with the node center must be greater than or equal to the 

corresponding distance from the absolute i.e. n am x m x , we can derive the 

following test: 

n

,
If for edge , ,

2

m p m q c p q
p q m x  then the local center lx  of ,p q  

cannot improve on nm x  and therefore need not be found. This test which takes 

advantage of the fact that it is very simple to find the local center lx  often leads to 

,

2
l

m p m q c p q
m x
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considerable reduction in the computation effort required to obtain the absolute 

center. With respect to the five-node, six-edged network in fig. 3.1, we found easily 

that the node center is at nodes 1n and 5n  and that 1 5 8nm x m n m n   

 

On application of the test to the six edges of the network, we obtain 

Edge 
1 3 1 3

1 3

, 8 12 8
, : 6 8

2 2

m n m n c n n
n n

 

Table 3.3: Results of edges whose local centers are to be determined
 

Edge For edge (p,q):  m(  

( ) 6 6  

( ) 10  

( ) 6 6 8 

( ) 7 7 8 

( ) 7 7 8 

( )  8            8 8 

 

The results of the test above clearly suggest that the local center needs to be found 

for only edges. Edges 1 3 2 5 1 5 1 4, , , , , ,n n n n n n and n n . This makes significant 

savings in the computational effort and time. 
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3.11   Summary  

Planar, network and discrete location models which may be used to represent 

location problems and their respective assumptions have been discussed. 

A detailed explanation of p-center problem a heuristic method which is the means of 

locating a fire station at the New Juaben Municipality has been provided. 

The next chapter is data collection and analyses. 
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CHAPTER FOUR 

DATA COLLECTION AND ANALYSES 

4.1 Introduction 

The chapter provides New Juaben municipal map (Appendix B) and selected demand 

areas specifying the road distances between them. Data was obtained from municipal 

planning office and municipal town planning department and would be analyzed 

using the center-problem to identify where a fire station has to be optimally located 

in the municipality. 

Locations considered are: 

A – Koforidua 

B – Effiduase 

C – Baako Krom 

D – Koforidua Ada 

E – Affian 

F – Nyamekrom 

G – Asokore 

H – Agyeso 

I – Adweso 

J – Oyoko 

K – Kwakyekrom 

L – Mile 50 

M – Wawase 

N – Jumapo 

O – Kentenkiren 

P – Begrey 
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Q – Agricultural station 

R – Poposo 

S – Suhyen 

T – Akwadum 

 

Table 4.1: Selected edges specifying the road distance between them. 

NO. EDGE CONSIDERED DISTANCE (METRES) 

1 (A, B) 2200 

2 (A, C) 4000 

3 (A, D) 2300 

4 (A, R) 5500 

5 (A, H) 3800 

6 (A, I) 4100 

7 (B, G) 1100 

8 (B, L) 7200 

9 (B, M) 4800 

10 (C, B) 5000 

11 (C, F) 750 

12 (C, E) 2300 

13 (C, G) 5800 

14 (D, R) 5000 

15 (E, F) 1800 

16 (F, G) 6600 

17 (G, M) 4600 

18 (G, J) 3200 

19 (G, S) 8400 

20 (H, I) 1500 

21 (I, K) 1200 

22 (I, L) 900 

23 (J, N) 3700 

24 (J, S) 5200 

25 (K, O) 2500 

26 (M, P) 3000 

27 (M, Q) 3850 

28 (M, T) 4750 

29 (N, S) 1700 
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Developed network of data of table 4.1 having capital letters as nodes or vertices and 

the figures as distances between pairs of nodes 

 
            Fig. 4.1: Developed Network for selected demand destinations of New Juaben Municipality. 

 

4.2   All Pairs Shortest Path for the Data Collected 

From the network in figure 4.1 the minimum distance matrix d(i, j), that is the matrix 

of the shortest path using the Floyd-Warshalls‟ algorithm was obtained and is shown 

in Table 4.2 
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 A B C D E F G H I J K L M N O P Q R S T 
Row 

max 

A - 2200 4000 2300 6300 4750 3300 3800 4100 6500 5300 5000 7000 10200 7800 10000 10850 5500 11700 11750 11750 

B 2200 - 5000 4500 7300 5750 1100 6000 6300 4300 7500 7200 4800 8000 10000 7800 8650 7700 9500 9550 10000 

C 4000 5000 - 6300 2300 750 5800 7800 8100 9000 9300 9000 9800 12700 11800 12800 13650 9550 14200 14550 14550 

D 2300 4500 6300 - 8600 6300 5600 6100 6400 8000 7600 7300 9300 12500 10000 12300 13150 5000 14000 14050 14050 

E 6300 7300 2300 8600 - 1800 8100 10100 10400 11300 11600 11300 12100 15000 14100 15100 15950 11800 16500 16850 16850 

F 4800 5800 800 7100 1800 - 6600 8550 8900 9800 10100 9800 10600 13500 12600 14200 15050 10300 15000 15950 15950 

G 3300 1100 5800 5600 8100 6600 - 7100 7400 3200 8600 8300 4600 6900 11100 7600 8450 8800 8400 9350 11100 

H 3800 6000 7800 6100 10100 8550 7100 - 1500 10300 2700 2400 10800 14000 5200 13800 14560 9300 15500 15550 15550 

I 4100 6300 8100 6400 10400 8850 7400 1500 - 10600 1200 900 11100 14300 3700 14100 14950 9600 18300 15850 18300 

J 6500 4300 9000 8800 11300 9800 3200 10300 10600 - 11800 11500 7800 3700 14300 10800 11650 10020 5200 12550 14300 

K 5300 7500 9300 7600 11600 10050 8600 2700 1200 11800 - 2100 12300 15500 2500 15300 16150 10800 17000 17050 17050 

L 5000 7200 9000 7300 11300 9750 8300 2400 900 11500 2100 - 12000 15200 4600 15000 15850 10500 16700 16750 16750 

M 7000 4800 9800 9300 12100 11200 4600 10800 11100 7800 12300 12000 - 11500 14800 3000 3850 12500 13000 4750 14800 

N 10200 8000 12700 12500 15000 13500 6900 14000 14300 3700 15500 15200 11500 - 18000 14500 15350 15700 1700 16250 18000 

O 7800 10000 11800 10100 14100 12550 11100 5200 3700 14300 2500 4600 14800 18000 - 17800 18650 13300 19500 19550 19550 

P 10000 7800 12800 12300 15100 14200 7600 13800 14100 10800 15300 15000 3000 14500 17800 - 6850 15500 16000 7750 17800 

Q 10850 8650 13650 13150 15950 15050 8450 14650 14950 11650 16150 15850 3850 15350 18650 6850 - 16350 16850 8600 18650 

R 5500 7700 9550 5000 11800 10250 8800 9300 9600 10020 10800 10500 12500 15700 13300 15500 16350 - 17200 17250 17250 

S 11700 9500 14200 14000 16500 15000 8400 15500 18300 5200 17000 16700 13000 1700 19500 16000 16850 17200 - 17750 19500 

T 11750 9550 14550 14050 16850 15950 9350 15550 15850 12550 17050 16750 4750 16250 19550 7750 8600 17250 17750 - 19550 

                                                                  

Table 4.2 : Matrix of shortest path distance for all pairs of nodes from fig 4.1 
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4.3         Results  

4.3.1   Locating the Vertex/Node Center 

Row 1 represents demand nodes of the network and Row 2 represents row maximum 

from table 4.2 

(a) Table 4.3 Vertex/Node Center from table 4.2 

NODE A B C D E F G H I J 

ROW 

MAX 
11750 10000 14550 14050 16850 15950 11100 15550 18300 14300 

 

NODE K L M N O P Q R S T 

ROW 

MAX 
17050 16750 14800 18000 19550 17800 18650 17250 19500 19550 

 

The node or vertex center (xn) is chosen as the smallest among the maximum entries 

of all rows in the matrix. From Table 4.2 the row with the minimum among the 

maximum entries occurs at node/vertex B with a maximum distance (cost) of 10000 

metres. Thus the node/vertex centre for the network in figure 4.1 is B, hence 

( ) 10000m B . 

 

4.3.2  Locating the Local Centers  

, 11750 10000 2200
, 9775 10,000

2 2

m A m B c A B
Edge A B

 

Table 4.4 test for edges whose local centers are to be determined for the developed 

network. 

Edge For edge (p,q):  m(  

(A,B) 9775 9775  

(A,C) 11150 11150  
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(A,D) 11750 11750  

(A,R) 11750 11750  

(A,H) 11750 11750  

(A,I) 12975 12975  

(B,G) 10000 10000  

(B,L) 9425 9425  

(B,M) 10000 10000  

(C,B) 9775 9775  

(C,F) 148750 148750  

(C,E) 14550 14550  

(C,G) 9925 9925  

(D,R) 13150 13150  

(E,F) 15500 15500  

(F,G) 1675 1675  

(G,M) 10650 10650  

(G,J) 11100 11100  

(G,S) 11100 11100  

(H,I) 16175 16175  

(I,K) 17075 17075  

(I,L) 17075 17075  

(J,N) 14300 14300  

(J,S) 14300 14300  

(K,O) 17050 17050  

(M,P) 15925 15925  
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(M,Q) 15925 15925  

(M,T) 15925 15925  

(N,S) 17900 17900  

 

From table 4.4 edges whose local centers are to be determined are (A,B), (B,L), 

(C,B) and (C,G)  

 

Location on edge (A, B) 

Let A P , B q  such that 0 ,x c p q  and , , 2200c p q c A B  

Putting , then , , 0, , , 2200i i in A d p n d A A d q n d B A  

1 2and 4400 when solvedy x y x  

4400 , 2200 Kink pointx x x  

1 0 2200.................. 4.1y x x  

 

Putting , then , , 2200, , , 0i i in B d p n d A B d q n d B B  

1 2and 2200 when solvedy x y x  

2200 2200 , 0 Kink pointx x x  

2 2200 0 2200.................. 4.2y x x  

 

Putting , then , , 4000, , , 5000i i in C d p n d A C d q n d B C  

1 24000 and 7200 when solvedy x y x  

4000 7200 , 1600 Kink pointx x x  

1 4000 0 1600.................. 4.3y x x  
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2 7200 1600 2200.................. 4.4y x x  

Putting , then , , 2300, , , 4500i i in D d p n d A D d q n d B D  

1 22300 and 6700 when solvedy x y x  

2300 6700 , 2200 Kink pointx x x  

1 2300 0 2200.................. 4.5y x x  

 

Putting , then , , 6300, , , 7300i i in E d p n d A E d q n d B E  

1 26300 and 9500 when solvedy x y x  

6300 9500 , 1600 Kink pointx x x  

1 6300 0 1600.................. 4.6y x x  

2 9500 1600 2200.................. 4.7y x x  

 

Putting , then , , 4750, , , 5750i i in F d p n d A F d q n d B F  

1 24750 and 6950 when solvedy x y x  

4750 6950 , 1100 Kink pointx x x  

1 4750 0 1100.................. 4.8y x x  

2 6950 1100 2200.................. 4.9y x x  

 

Putting , then , , 3300, , , 1100i i in G d p n d A G d q n d B G  

1 23300 and 5500 when solvedy x y x  

3300 5500 , 1100 Kink pointx x x  
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1 3300 0 1100.................. 4.10y x x  

2 5500 1100 2200.................. 4.11y x x  

 

Putting , then , , 3800, , , 6000i i in H d p n d A H d q n d B H  

1 23800 and 8200 when solvedy x y x  

3800 8200 , 2200 Kink pointx x x  

1 3800 0 2200.................. 4.12y x x  

 

Putting , then , , 4100, , , 6300i i in I d p n d A I d q n d B I  

1 24100 and 8500 when solvedy x y x  

4100 8500 , 2200 Kink pointx x x  

1 4100 0 2200.................. 4.13y x x  

 

Putting , then , , 6500, , , 4300i i in J d p n d A J d q n d B J  

1 26500 and 6500 when solvedy x y x  

6500 6500 , 0 Kink pointx x x  

2 6500 0 2200.................. 4.14y x x  

 

Putting , then , , 5300, , , 7500i i in K d p n d A K d q n d B K  

1 25300 and 9700 when solvedy x y x  

5300 9700 , 2200 Kink pointx x x  

1 5300 0 2200.................. 4.15y x x  
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Putting , then , , 0, , , 2200i i in L d p n d A L d q n d B L  

1 25000 and 9400 when solvedy x y x  

5000 9400 , 2200 Kink pointx x x  

1 5000 0 2200.................. 4.16y x x  

 

Putting , then , , 7000, , , 4800i i in M d p n d A M d q n d B M  

1 27000 and 7000 when solvedy x y x  

7000 7000 , 0 Kink pointx x x  

1 7000 0 2200.................. 4.17y x x  

 

Putting , then , , 10200, , , 8000i i in N d p n d A N d q n d B N  

1 210200 and 12400 when solvedy x y x  

10200 12400 , 1100 Kink pointx x x  

1 10200 0 1100.................. 4.18y x x  

2 12400 0 2200.................. 4.19y x x  

 

Putting , then , , 7800, , , 2200i i in O d p n d A O d q n d B O  

1 27800 and 12200 when solvedy x y x  

7800 1200 , 2200 Kink pointx x x  

1 7800 0 2200.................. 4.20y x x  

 



 48 

Putting , then , , 10000, , , 7800i i in P d p n d A P d q n d B P  

1 210000 and 10000 when solvedy x y x  

10000 10000 , 0 Kink pointx x x  

2 10000 0 2200.................. 4.21y x x  

 

Putting , then , , 10850, , , 8650i i in Q d p n d A Q d q n d B Q  

1 210850 and 10850 when solvedy x y x  

10850 10850 , 0 Kink pointx x x  

2 10850 0 2200.................. 4.22y x x  

 

Putting , then , , 0, , , 7700i i in R d p n d A R d q n d B R  

1 25500 and 9900 when solvedy x y x  

5500 9900 , 2200 Kink pointx x x  

1 5500 0 2200.................. 4.23y x x  

 

Putting , then , , 11700, , , 9500i i in S d p n d A S d q n d B S  

1 211700 and 11700 when solvedy x y x  

11700 11700 , 0 Kink pointx x x  

2 11700 0 2200.................. 4.24y x x  

 

Putting , then , , 11750, , , 9550i i in T d p n d A T d q n d B T  

1 211750 and 11750 when solvedy x y x  
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11750 11750 , 0 Kink pointx x x  

2 11750 0 2200.................. 4.25y x x  

 

 

 

Computations for equations for the locations on edges (B,L), (C,B) and (C,G) 

and graphs to determine their local centers are shown in appendices D and E 

respectively. 

(b) Local Center  

 

Table 4.5 below has column one as edge number, column two is edge name, column 

three is location of edge center and column four is the least point of the upper 

envelope of each of the edges 
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Fig. 4.2   Graph showing upper envelope and local center for edge AB 
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Table 4.5 Shows local centers and cost for edges (A, B), (B,L), (C, B),  and (C,G) 

No. Edge Local Center ( lx ) cost ( )lm x  

1 (A, B) At node B 10200 

2 (B, L) At node B 10000 

3 (C, B) At node B 10000 

4 (C, G) At node G 11100 

 

The least of the local centers of table 4.5 is 10000 and occurred at node B 

4.4     Discussion 

From table 4.3 the node or vertex center,  is 10000 metres. The least of the 

local centers,  from table 4.4 is 10000 metres. The least of the local centers is 

compared with the vertex or node center and the minimum is taken as the absolute 

center. By inspection the minimum of the node center and the least of the local 

centers is 10000. Hence the absolute center,  is 10000 metres and occurred at 

node B of the network. 

 

 

 

 

 

 

 

 

 

 

 



 51 

CHAPTER FIVE 

CONCLUSION AND RECOMMENDATION 

5.1 Conclusion  

The main objective of the study was to use the Absolute center-heuristic method to 

optimally locate a fire station in the New Juaben Municipality. The following 

findings were realized 

1. The optimal location of the fire station for selected demand destinations 

of New Juaben Municipality was found to be at Effiduase (node B of the 

network).  

      2.  The optimal service coverage distance was found to be 10000 metre radius 

           from node B.  

 

5.2 Recommendation  

            From the results obtained, the following recommendations are made: 

            1.      No fire station should be sited without the appropriate scientific    

                     technique.  

      2.      Studies be carried out to find the optimal locations and service coverage 

               areas for other fire stations. 
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APPENDIX A 

Computations of the equations for the locations 

1 4 1 5 4 5 5 2 3 2, , , , , , , ,n n n n n n n n and n n  

 

LOCATION ON EDGE 1 4,n n  

Choosing 1n  as the origin, let p n and 4q n  such that 0 ,x c p q  

Putting 1, . . 1in n i e i then 1 1 4 1, , 0, , , 6i id p n d n n d q n d n n  and 

1 4, , 6,c p q c n n  The resulting equations 1y x  and  2 12y x  when solved  

12 6x x x  (Kink point) 

1 0 6.......................( )y x x i  

Putting 2 , . . 2in n i e i then 1 2 4 1, , 8, , , 10i id p n d n n d q n d n n   

1 8y x  and  2 16y x  when solved  

8 16 4x x x  (Kink point) 

1 8 0 4.......................( )y x x ii  

2 16 4 6.......................( )y x x iii  

Putting 3, . . 3in n i e i then 1 3 4 3, , 8, , , 12i id p n d n n d q n d n n   

1 8y x  and  2 18y x  when solved  

8 18 5x x x  (Kink point) 

1 8 0 5.......................( )y x x iv  

2 18 5 6.......................( )y x x v  

Putting 4 , . . 4in n i e i then 1 4 4 4, , 6, , , 0i id p n d n n d q n d n n   

1 6y x  and  2 6y x  when solved  
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6 6 0x x x  (Kink point) 

2 6 0 6.......................( )y x x vi  

 

Putting 5 , . . 5in n i e i then 1 5 4 5, , 8, , , 4i id p n d n n d q n d n n   

1 2y x  and  2 10y x  when solved  

2 10 4x x x  (Kink point) 

1 2 0 4.......................( )y x x vii  

2 10 4 6.......................( )y x x viii  
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LOCATING ON EDGE 1 5,n n  

Choosing 1n p  and 5q n  such that 1 5, , 2c p q c n n  

Putting 1, . . 1in n i e i then 1 1 5 1, , 0, , , 2i id p n d n n d q n d n n   

1y x  and  2 4y x  when solved  

4 2x x x  (Kink point) 

1 0 2.......................( )y x x i  

Putting 2 , . . 2in n i e i then 1 2 5 2, , 8, , , 2i id p n d n n d q n d n n   

1 8y x  and  2 8y x  when solved  

8 8 0x x x  (Kink point) 

2 8 0 2.......................( )y x x ii  

Putting 3, . . 3in n i e i then 1 3 5 3, , 8, , , 8i id p n d n n d q n d n n   

1 8y x  and  2 10y x  when solved  

8 10 1x x x  (Kink point) 

1 8 0 1.......................( )y x x iv  

2 10 1 2.......................( )y x x v  

Putting 4 , . . 4in n i e i then 1 4 5 4, , 6, , , 4i id p n d n n d q n d n n   

1 6y x  and  2 6y x  when solved  

6 6 0x x x  (Kink point) 

2 6 0 2.......................( )y x x v  

 

Putting 5 , . . 5in n i e i then 1 5 5 5, , 2, , , 0i id p n d n n d q n d n n   

1 2y x  and  2 2y x  when solved  
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2 2 0x x x  (Kink point) 

2 2 0 2.......................( )y x x vi  

 

 
 

 

 

LOCATING ON EDGE 4 5,n n  

Choosing 4n p  and 5q n  such that 4 5, , 4c p q c n n  

Putting 1, . . 1in n i e i then 4 1 5 1, , 6, , , 2i id p n d n n d q n d n n   

1 6y x  and  2 6y x  when solved  

6 6 0x x x  (Kink point) 

1 6 0 4.......................( )y x x i  

Putting 2 , . . 2in n i e i then 4 2 5 2, , 10, , , 6i id p n d n n d q n d n n   

1 10y x  and  2 10y x  when solved  

10 10 0x x x  (Kink point) 
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2 10 0 4.......................( )y x x ii  

Putting 3, . . 3in n i e i then 4 3 5 3, , 12, , , 8i id p n d n n d q n d n n   

1 12y x  and  2 12y x  when solved  

12 12 0x x x  (Kink point) 

2 12 0 4.......................( )y x x iii  

Putting 4 , . . 4in n i e i then 4 4 5 4, , 0, , , 4i id p n d n n d q n d n n   

1y x  and  2 8y x  when solved  

8 4x x x  (Kink point) 

1 0 4.......................( )y x x iv  

Putting 5 , . . 5in n i e i then 4 5 5 5, , 4, , , 0i id p n d n n d q n d n n   

1 4y x  and  2 4y x  when solved  

4 4 0x x x  (Kink point) 

2 4 0 4.......................( )y x x v  
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LOCATING ON EDGE 5 2,n n  

Choosing 5p n  and 2q n  such that 5 2, , 6c p q c n n  

Putting 1, . . 1in n i e i then 5 1 2 1, , 2, , , 8i id p n d n n d q n d n n   

1 2y x  and  2 14y x  when solved  

2 14 6x x x  (Kink point) 

1 2 0 6.......................( )y x x i  

Putting 2 , . . 2in n i e i then 5 2 2 2, , 6, , , 0i id p n d n n d q n d n n   

1 6y x  and  2 6y x  when solved  

6 6 0x x x  (Kink point) 

2 6 0 6.......................( )y x x ii  

Putting 3, . . 3in n i e i then 5 3 2 3, , 8, , , 2i id p n d n n d q n d n n   

1 8y x  and  2 8y x  when solved  

8 8 0x x x  (Kink point) 

2 8 0 6.......................( )y x x iii  

Putting 4 , . . 4in n i e i then 5 4 2 4, , 4, , , 10i id p n d n n d q n d n n   

1 4y x  and  2 16y x  when solved  

4 16 6x x x  (Kink point) 

1 4 0 6.......................( )y x x iv  

Putting 5 , . . 5in n i e i then 5 5 2 5, , 0, , , 6i id p n d n n d q n d n n   

1y x  and  2 12y x  when solved  
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12 6x x x  (Kink point) 

1 0 6.......................( )y x x v  

  

 
 

 

 

LOCATING ON EDGE 3 2,n n  

Choosing 3p n  and 2q n  such that 3 2, , 2c p q c n n  

Putting 1, . . 1in n i e i then 3 1 2 1, , 8, , , 8i id p n d n n d q n d n n   

1 8y x  and  2 10y x  when solved  

 8 10 1x x x  (Kink point) 

1 8 0 1.......................( )y x x i  

 2 10 1 2.......................( )y x x ii  

Putting 2 , . . 2in n i e i then 3 2 2 2, , 2, , , 0i id p n d n n d q n d n n   

1 2y x  and  2 2y x  when solved  
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2 2 0x x x  (Kink point) 

2 2 0 2.......................( )y x x iii  

Putting 3, . . 3in n i e i then 3 3 2 3, , 0, , , 2i id p n d n n d q n d n n   

1y x  and  2 4y x  when solved  

 4 2x x x  (Kink point) 

1 0 2.......................( )y x x iv  

Putting 4 , . . 4in n i e i then 3 4 2 4, , 12, , , 10i id p n d n n d q n d n n   

1 12y x  and  2 12y x  when solved  

 12 12 0x x x  (Kink point) 

2 12 0 2.......................( )y x x v  

Putting 5 , . . 5in n i e i then 3 5 2 5, , 8, , , 6i id p n d n n d q n d n n   

1 8y x  and  2 8y x  when solved  

8 8 0x x x  (Kink point) 

2 8 0 2.......................( )y x x vi  
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