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ABSTRACT 

Genetic algorithm is a search heuristic that mimics the process of evolution. This work 

discusses the concept and design procedure of Genetic Algorithm and explores a well 



 

 

established methodology of the literature to realise the workability and application of 

genetic algorithms. 

Genetic algorithms are used to model the Travelling Salesman Problem. MATLAB 

simulations was carried out to find the optimal route of Zoomlion Ghana Limited as 7 6 

9 4 1 2 3 5 8. Due to the unique nature of the operations of Zoomlion Ghana Limited, 

Kumasi, the optimal route was divided into two sub-routes. The two sub-routes were found 

to be 9 6 7 9 and 9 4 1 2 3 5 8 9. The corresponding distances (fitness) of the two routes 

were calculated to be 18.72 km and 66.22 km respectivelv. the total distance being 84.94 

km. This shows that the total travelliug distance of the companv (i.e. 98.42 km), has been 

reduced by 13.48 km. 

 

Contents 

DECLARATION ii 

DEDICATION 
iii 

ACKNOWLEDGEMENT 

ABSTRACT 

iv 

1 INTRODUCTION 1 

 1.1 BACKGROUND           1 

 1.2 STATEMENT OF PROBLEM .       

  

2 

 1.3 OBJECTIVES         3 

 1.4 METHODOLOGY       3 



 

 

 1.5 PROBLEM JUSTIFICATION .         4 

 1.6 SCOPE/ORGANIZATION OF STUDY           5 

2 LITERATURE REVIEW 6 

 2.1 EVOLYVIONARY ALGORITHMS           

 

6 

8 

 2.1.2 Evolutionary Programming          9 

 2.1.3 Genetic Programming             10 

 2.1.4 Genetic Algorithm       

     
12 

2.2 A REVIEW OF WORKABILITY AND APPLICATION OF GENETIC 

ALGORITHMS (GAS)  

3.3 GENETIC ALGORITHM (GA) OPERATORS 35 

 3.3. I Selection Techniques in Genetic Algorithm (GA)     
 35 

 3.3.2 Crossover        
42 

 3.3.3 Mutation       54 

3.4 REPLACEMENT .         59 

 2.3 SIMULATED ANNEALING       
 

25 

 2.4 STOCHASTIC HILL CLIMBING      
 

26 

  2.4.1 Stochastic Hill Climbing Algorithm   

    

27 

3 METHODOLOGY 
 

29 

 3.1 WORKING PRINCIPLES OF GENETIC ALGORITHMS   
 29 

 3.2 ENCODING .        

 

32 

33 3.2.1 Binary Encoding      

  3.2.2 Permutation Encoding       
 33 

  32.3 

3.2.4 

3.2.5 

Value Encoding     Tree 

Encoding .      Fitness 

Function      

 34 

  32.6 Reproduction       35 



 

 

 3.4.1 Random Replacement  

     
60 

 3.4.2 Weak Parent Replacement 

     60 

 3.4.3 Both Parents       60 

3.5 SEARCWTERMINATION vergence Criteria)      
 61 

3.6 HOW GENETIC ALGORITHMS WORK        
 

61 

WHEN TO USE A GENETIC ALGORITHM      
 

62 

3.8 BUILDING BLOCK HYPOTHESIS        
 

63 

3.9 THE SCHEMA THEOREM       64 

3.10 NO-FREE-LUNCH THEOREM66 

 

3.11 DISTINCTION BETWEEN GENETIC ALGORITHMS WITH OTHER 

OPTIMIZATION TECHNIQUES 67 

3.12 THE FLOYD-WARSHALL ALGORITHM68 

 

4 GENETIC ALGORITHM MODEL FOR TRAVEL SALESMAN PROB- 
LEM (TSP)  6

9 

 4.1 MODEL      
 

7

0 

 4.2 DATA     
 

7

1 

 4.3 ENCODING .      
 

7

3 

 4.4 INITIAL POPULATION .      
 

7

7 

 4.5 CROSSOVER AND MUTATION     
 

7

8 

 4.6 FITNESS FUNCTION      
 

8

1 

4.7 OPTIMAL ROUTE WITH DISPOSABLE SITES  
 

8

3 

 4.8 PERFORMANCE COMPARISON      
 

8

4 



 

 

5 CONCLUSION AND RECOMMENDATION 

 8

6 

 5.1 CONCLUSION      

  

8

6 

 5.2 RECOMMENDATION     

  

8

7 

REFERENCE 
 8

8 

APPENDIX 

 9

3 

A FLOW CHART SHOWING GENETIC ALGORITHM MODEL FOR 

TSP94 
 

viii 





 

1 

Chapter 1 

INTRODUCTION 

Evolutionary algorithms (EAs) are population-based meta heuristic optimization 

algorithms that use biology-inspired mechanisms and survival of the fittest idea in order 

to refine a set of solution iteratively. The last decade has witnessed many researches in 

solving combinatorial optimization problems (COPs). Numerous algorithms were 

proposed for applying to this problem. One of these algorithms is named Genetic 

Algorithm. 

Genetic algorithms (GAS) are computing algorithms constructed in analogy with the 

process of natural evolution where the elements of search space are binarv strings or 

arrays of elementary types. They are algorithms for optimization of hard combinatorial 

optimization problems in a quick way and its solution is reliable and accurate. Once 

again, the advantage of applying GAS to hard combinatorial optimization problems such 

as Travel Salesman problem (TSP) lies in the ability to search the solution space in a 

broader way than heuristic methods based upon neighbourhood search. 

 

1.1 BACKGROUND 

Charles Darwin stated the theory of natural evolution ill the origin of species. Over manv 

generations, natural populations evolve according to the principle of natural selec- 
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tion (survival of the fittest) to reach certain remarkable tasks. Natural evolution works so 

well in nature, as a result it should be interesting to simulate natural evolution and 

develop a method, which solves concrete, and search optimization problems. 

In nature, an individual in population competes with each other for resources such as 

food, shelter and so on. Also members of the same species often compete to attract mate 

for reproduction. 

Those individuals which are most successful in surviving and attracting mates will have 

relatively large number of offspring. Poorly performing individuals will produce few to even 

no offspring at all. This means that the genes from thc highly adapted or " fit individuals 

will spread to an increasing number of individuals 111 each successive generation. The 

recombination of good characteristics from different ancestors can produce best fit " 

offspring whose fitness is better than the parent. In this way, species evolve to become more 

and well suited to their environment. 

In 1975, Holland developed this idea to describe how to apply the principles of natural 

evolution to optimization problems and built the first Genetic Algorithms. Holland •s theory 

has been further developed and now Genetic Algorithms (GAS) stand up as a powerful tool 

for solving search and optimization problems from a variety of sources by simulating 

evolution. Today GAS are used to solve complicated optimization problems like, job shop 

scheduling, games playing and Travel Salesman Problem (TSP). 

1.2 STATEMENfÕñROBLEM 

Ther€-are several issues that makes waste collection a problem. Apart from the fact that 

some road networks are bad, most settlement are badly planned and this poses a great 

challenge in transporting solid waste. These problems also results ill too much time being 

used in the collection and transporting process. 



 

3 

In an attempt to carry out their duties, the Zoomlion Limited end up spending more on 

their process due to the problem of routing (Travelling Salesman Problem) leading to a 

higher drop of income (drift to their income). Some attempt has been made to optimize 

their routing problem which resulted in a reasonable cost benefit analysis as per Samson 

et al (2012) 

However in their proceeds the application of Ant Colony Algorithm was implemented but 

in an ideal case as reviewed by literature, Genetic Algorithm is known to have produce a 

better result than Ant Colony. To this assertation, this thesis sort to approach the routing 

problem faced by Zoomlion Limited, Kumasi using Genetic Algorithm (GA). However, 

Genetic Algorithm has not yet been applied to waste management in our country to conclude 

its effectiveness as a better approach as far as waste disposal is concerned. 

1.3 OBJECTIVES 

For the above stated problem to be resolved. it is the objective of this work: 

1. to applv Genetic Algorithm to generate the optimal route for Zoomlion Ghana 

Limited 

2. minimize the total travelling distance of the vehicles 

1.4 METHODOLOGY 

It) order for these objectives to be accomplished, the following methods are required; 

 acquire data from the companv in a form of a secondarv data. For consistencv it is the 

same data that Samson-s et al used. 
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 preprocessing of data using the Floyd-Washall•s algorithm. 

 application of genetic algorithm to the resulting output of Floyd-Washall's algorithrn. 

 performance comparison to some existing methods. 

1.5 PROBLEM JUSTIFICATION 

Through the years the travelling salesman problem (TSP) has attracted a lot of attention from 

academic researchers and industrial practitioners. There are several reasons for this. Firstly, 

the TSP is very easy to describe,yet very difficult to solve. No polynomial time algorithm is 

known with which it can be solved. This lack of any polynomial time algorithm is a 

characteristic of a class of NP complete problems, of which the TSP is a classic example. 

Secondly a lot of information is already known about the TSP, it has become a kind of " test 

" problem. 

Moreover the TSP is broadly applicable to a variety of routing and scheduling problems. 

new combinatorial optimization methods are often applied to the TSP so that an idea can 

be formed of their usefulness. Finally, a great number of problems actuallv treated with 

heuristic techniques in artificial intelligence are related with the search of the best 

permutation of n elements. 

Although, the main motivation behind this work is to find the optimal route (tour) to 

minimize the totaþ  Zoomlion Ghana Limited carry out their 

duties which will again minimize their operational cost. This work would also help to 

achieye-the following. 
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 it would help manage waste in Kumasi and Ghana as a whole efficientlv at a reduced 

cost. 

 it would IWIp in rtstructunng networks therebv facilitating the duties carried 

out by the ernploy«'. 

 it would promote government and private sector investment since it sull be seen xs a 

profitable venture. 

 huge  into  waste management would sq'ek to promote competition 

in uaMte management companies thereby ensuring regular collection of solid waste 

and hence having cleaner and healthier communities. 

1.6 SCOPE/ORGANIZATION OF STUDY 

The first chapter introduces the research, the background of this research. the problem 

statement, objective, a brief methodolocv of the genetic algorithm as as problem 

justification. The second chapter reviews Evolutionary Algorithms, some heuristic 

methods and other earlier research carried out in Genetic Algorithms. A detailed 

methodology of the genetic algorithm is discussed in the chapter three and the 

application of GA to TSP ts presented tn chapter four. The fifth chapter of this work 

presents the conclusion and tv•cotntnetidation based on this research conducted. 
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Chapter 2 

LITERATURE REVIEW 

2.1 EVOLUTIONARY ALGORITHMS 

Evolutionary algorithms (EAs) are computer programs that attempt to solve complex 

problems by mimicking the process of Darwinian evolution. In an EA, a number of 

artificial creatures search over the space of the problem. They compete continually with 

each other to discover optimal areas of the search space. It is hoped that over time the 

most successful of these creatures will evolve to discover the optimal solution. 

The artificial creatures in EAs, known as individuals, are typicallv represented bv fixed 

length strings or vectors. Each individual encodes a single possible solution to the problem 

under considerations. For instance, in order to construct an EA to search the conformation 

space of a molecule, each angle of rotation around a flexible bond could be encoded as a 

real number. Concatenating these numbers gives a string which can be used within an—EA. 

Thus, would encode a specific set of torsion angles. EAS manipulate pools 

or populations of individuals, The EA is started with an initial popu ati011 of size 

comprising random individuals (that is, each value ill every string is set using a random 

number generator). Evorv individual is then assigned a fitness value. To generate a fitness 

score the individual is encoded to produce a possible solution to 

the problem. The value of this solution is then calculated using the fitness function. 

Population members with high fitness scores therefore represent better solutions to the 

problem than individuals with lower fitness scores. Following this initial phase the main 

iterative cycle of the algorithm begins. Using mutation (perturbation) and recombination 
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operators, the individuals is then formed from the p individuals in the current population 

and the children. the children arc assigned fitness scores. A new population of 

individuals is then formed from the individuals in the current population and the children. 

This new population becomes the current population and the iterative cycle is repeated. 

At some point in the cycle evolutionary pressure is applied. That is, the Darwinian 

strategy of the survival of the fittest is employed and individuals compete against cach 

other. This is achieved by selection based on fitness scores, with fitter individuals more 

likely to be selected. The selection is applied either when choosing individuals to parent 

children or when choosing individuals to form a new population. 

Traditionally four main variants of the evolutionarv algorithms are defined: L. Sekanina, 

(2005). Evolution strategies (ESs), developed in Germany by I. Rechenberg, (1973) and 

H. P. (1981); evolutionary programming (EP) originally developed by L. J. Fogel et al. 

(1966) and subsequentlv refined D. B. Fogel. (1995): genetic programming developed bv 

John Koza, (1992) and genetic algorithms (GAS) developed bv J. H Holland, (1992) and 

thoroughly revealed by D. E. Goldberg, (1989). Each of these three algorithms has been 

proved capable of yielding approximately optimal solutions given complex, multi-modal. 

non-differential, and discontinuous search spaces. Success has also been achieved for noisy 

and time-dependent landscapes. A simple description 

of each given  descriptions are given bv T. Bäck and 

SclNv•fel, (1993) T. Back, (1996) and D. B Fogel, (1993). 

2.1.1 Evolutionary Strategies 

Bienert, Rechenberg and Schwefel developed evolutionary strategies (ES) in the 1960s, 

T. Bäck, (1996), for optimization purposes in industrial applications. Like genetic 

programming, ESS made no distinction between genotype and phenotype. Each 

individual is represented as a real-valued vector. In the simplest form, two-individuals 

ES employs a mutation operator which mutates each vector element. Mutation is 
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regarded as the primary operator, and aggregates a normal-distribution random variable 

with zero mean and a pre-selected standard deviation value. If a child gets better fitness 

than the parent, the child becomes the new parent. Otherwise, the parent is mutated to 

create a new child. This selection schema is known as (1+1)-ES. It is interesting that this 

approach traditionally belongs to evolutionary algorithms, even if only a one-member 

population exists. 

A pivotal feature of evolutionary strategies - which distinguishes the approach from 

others - is that an individual consists not only of an element of search space but also of 

a set of control (strategy) parameters. Evolutionary strategies operate with these strategy 

parameters (for instance, with the standard deviation and rotation angle) and these 

parameters are evolved together with variables within the individual. This is known as 

self — adaptation. 

Current state-of-the-art evolutionary strategies provide various genetic operators and 

two major selection scenarios: (p + and (P. Evolutionary strategy selects its parent 

solutions deterministically. The (p + picks the best individuals from both child and 

parent populations. The (P, picks the best // individuals from just the child population. 

2.1.2 Evolutionary Programming 

Evolutionary programming (EP) was originally developed by L. J. Fogel et al. (1966) for 

the evolution of finite state machines using a limited symbolic alphabet encoding. 

Subsequently D. B. Fogel extended the EP to encode real numbers, thus providing a tool for 

variable optimization, D. B. Fogel, (1995). Individuals in the EP comprise a string of real 

numbers, as in ESs. EP differs from GAS and ESS in that there is no recombination operator. 

Evolution is wholly dependent on the mutation operation, which uses a Gaussian probability 

distribution to perturb each variable. The standard deviations correspond to the square root 

of a linear transform of the parents' fitness score (the user is required to parametrize this 

transform). To overcome parametrization problems associated with the linear transform 

Fogel developed meta-evolutionary programming (meta-EP),D. B. Fogel (1992). In meta-
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EP individuals encode both object variables and variances (one variance for each object 

variable). As in ESS the variances are self-adapted and used to control the Gaussian mutation 

operator. 

Selection pressure is applied in the EP when forming a new population from parents and 

offspring of the mutation operator. using a mechanism called tournament selection. 

Stochastic q-tournament selection is emploved. where q is a parameter of the algorithm. 

Let U be the union of all parents and offspring. For each member •m of U, q opponents 

are selected from U at random. A count is then made of the number of opponents that 

have worse fitness scores than m. The 11, individuals with the highest tournament 

counts go on to form the new population. Note that as q increases the selection pressure 

in the algorithm increašés and the selection process becomes increasingly deterministic. 

One 

 
side-effect of this selection process is that the best individual is alwavs present in the new 

population. 

Like ESs, applications using EP are rare ill computational chemistry, though some successes 

have been achieved by B. T. Luke (1994) and DK. Gelllhaar et al. (1995). Like 

ESs, EP is a technique best suit@cl to parameter optimization. 

2.1.3 Genetic Programming 

Genetic programming [Banzhaf, W. , Nordin, P. , Keller, R. E. , Francone, F. D.; (1998)] 

 

was developed by John Koza in 1992, to allow automatic programming and program 

induction. It may be viewed as a specialized form of genetic algorithm, which manipulates 

with variable length chromosomes (i.e. with a specialized representations) using modified 

genetic operators. Unlike genetic algorithms, genetic programming does not distinguish 

between the search space and the representation space. However, it is not difficult to 

introduce genotype-phenotype mapping for any evolutionary algorithm formally (it could 

be one-to-one mapping in its simplest form). 
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The genetic programming search space includes not only the problem space but also the 

space of representation of the problem, i.e. genetic programming is also able to evolve 

representations. The theoretical search space of genetic programming is the search space of 

all possible (recursive) compositions over a primitive set of symbols (e.g. constants, 

functional symbols of different arities, etc.) which the programs are constructed over. 

The progress are represented either as trees or ill a linear form (e.g. machine-language 

instructions). Crossover is considered as a major operator for genetic programming 

(however, it has been criticized heavily, as can be seen from the discussion in Banzhaf, 

W. , Nordin, P. , Keller, R. E. , Francone, F. D.; (1998)). It interchanges randomly chosen 

subtrees of the parent's trees without the syntax of the programs being disrupted. Mutation 

picks a random subtrees and replaces it by a randomly generated one. Genetic 

programmilí@ traditionally evolves svmbolic expressions in a functional language 

 
like LISO. However, anv useful structure mav be utilized nowadays. 

Ali evolved program can contain code segments which when removed from the program 

would 110t alter the result produced by the program (e.g. the instruction a a + 0), i.e. 

semantically redundant code segments. Such segments are referred to as introns. The size 

of the evolved program can also grow uncontrollably until it reaches the maximum tree 

depth allowed while the fitness remains unchanged. This effect is known as bloat. The bloat 

is a serious problem in genetic programming, since it usually leads to timeconsuming fitness 

evaluation of the effect of search operators. Once it occurs, the fitness almost always 

stagnates. The problem and the benefits of introns and bloat and their relation are discussed, 

for example, in Banzhaf, W., Nordin, P., Keller, R. E., Francone, 

F. D; (1998). 

 

Parent  
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Fig. 2.1. A simple crossover in genetic programming 

Genetic programming can also employ a number of advanced genetic operators. For 

instance , automatically defined functions (ADF) allow the definition of sub-programs that 

can be called from the rest of the program. Then the evolution is to find the solution as well 

as its decomposition into ADFs together. 

The fitness functión is either application specific for a given environment or 

it takes the form of symbolic regression. In all cases, the evolved program must be executed 

in order to find out what is does. The outputs of the program are usually compared with the 

desired outputs for given inputs. Generally, we cannot wait for the encl of a program 

execution, since it is not certain if it ever stops (Bäck, T., 1996). Therefore, a terminating 

mechanism of the fitúess evaluation process must be introduced. 

Some papers compare genetic programming to machine-learning techniques. W. Banzhaf et 

al. (1998) claim that " the genetic programming representation is a superset of all other 

machine learning representations. Therefore, it is theoretically possible for properly 

designed genetic programming systems to evolve any solution that any other machine 

learning system can produce." J. Koza has also included similar statements in his book. As 

R. Poli mentioned, genetic programming is not quite ready as a replacement for stan(lard 

software development. It is unclear whether it could ever be, but it is more than competitive 

in some domains nowadays. It helps in cases when humans do not have any idea of how to 

create solutions. 

Child  
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2.1.4 Genetic Algorithm 

The genetic algorithm, which was created by John Holland in 1973 and made famous by 

David Goldberg (1989) is today the most widely used form of the evolutionary algorithm. 

Its simplex form, the canonical algorithm, or simple genetic algorithm, work as follows, 

Bentley, P. (1999): 

Simple Genetic Algorithm. 

initialize population with random alleles 

REPEAT 

evaluate individuals select 

individuals into 'mating pool  

REPEAT 

take two paréilts from 'mating pool  

 
randomly crossover to generate two 

offspring randomly mutate offspring place 

offspring into population 

UNTIL population is filled with new offspring 

UNTIL termination condition is satisfied 

This algorithm traditionally operates with a binary, integer, character or a real-valued vector 

stored in the chromosome of fixed length. One-point crossover is the simplest genetic 

recombination operator and, for example, it creates offspring ABcdef and abCDEF from two 

parents ABCDEF and abcdef if a random crossover point is 2, as seen in Fig. 2.2. Crossover is 

often used 

A B c d  

a b c D parents offspring 

Fig. 2.2 A simple one-point crossover in a genetic algorithm 
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about 70% of the time to generate offspring, for the remaining 30% offspring are simply. 

clones of their parents. Mutations occur rarely and usually swap a bit of the individual. 

Selection is typicallv implemented as a probabilistic operator. using the relative fitness 

Q/ E which determines the selection probabilitv of an individual (hi denotes the 

population size). This method is also known as roulette wheel selection. The algorithm 

terminates when a sufficient solution is found or the time (generation) limit is exhausted. 

For practical problems, the simple genetic algorithm is often considered as a basis for many 

enhancements, including: heuristic generation of the initial population, multi-point 

 
or more complicated crossover. elitism preserving the best individual for the next generati011, 

more realistic selection, etc. 

The selection mechanism is based solely on the fitness value. would mention other variants to 

the roulette wheel. Tournament selection works by taking a random uniform 



 

 

sample of a certain size q > 1 from the population, selecting the best of these q individuals 

to survive for the next generation, and repeating the process until the new population is 

filled. In the case of deterministic selection, p, parents create > H) offspring and the best 

offspring individuals are deterministically selected to replace the parents. An analysis that 

shows how different selection mechanisms provide selective pressures has been performed. 

[B ack, T. , 1996; Goldberg, D, 1989] 

2.2 A REVIEW OF WORKABILITY AND 

APPLICATION OF GENETIC ALGORITHMS 

(GAS) 

Chiong and Ooi Koon (2007), in their paper, a comparison between genetic Algorithms and 

Evolutionary Programming based on cutting stock problems stated that both GAS and 

Evolutionary (EP) are the well known optimization methods that belong to the class of 

Evolutionary Algorithms (EA) which have generally been recognised to have successfully 

solved many problems in recent years, especially with respect to engineering and individual 

problems. In their paper they looked at how these two methods tackle the one-dimensional 

cutting stock problem (CSP) and drew comparison to the effectiveness of GA and EP ill 

solving CSP. Clliong and Ooi 1<0011 (2007) proposed an improved algorithm based on the 

combination of GA and EP, using the steady-state replacement strategy and an order-based 

SR mutation. They believed that their proposed algorithm can improve the optimisation 

results of CSP significantly. In their concluding remarks, it was stated that WA are heuristic 

in nature and finding good design for the parameter settings is a díiájor task and requires 

substantial experience and suggested that an extensive experiments need to be done to verify 

their proposed algorithm and make it more effective. 

Wei (2009) described the application of Genetic Algorithm for text clustering using 

011tology and evaluating the validity of various semantic similarity measures. In this paper 
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Wei et al (2009) proposed a self-organised genetic algorithm for text clustering based on 

ontology method. They stated that the common problem in the fields of text clustering is 

that the document is represented as a bag of words, while the conceptual similarity is 

ignored. They took advantage of the thesaurus-based and corpus-based ontology to 

overcome this problem. However, they argued that the traditional corpus-based method is 

rather difficult to tackle. A transformed latent. semantic indexing (LSI) model which can 

appropriately capture the associated semantic similarity was proposed and demonstrated as 

corpus-based ontology in this archive. 

To investigate how ontology methods could be used effectively in text clustering. Wei 

et al (2009) implemented two hybrid strategies using various similarity measures. Their 

experimental result shown that Wei et al (2009) method of genetic algorithm in 

conjunction with the ontology strategy, the combination of the transformed LSI-based 

measure with the thesaurus-based measure apparently outperforms that of ... with 

traditional similarity measures. In conclusions Wei et al (2009) clustering algorithm 

also efficiently enhances the performance in comparison with standard GA and K-

means in the same similarity environments. 

A. Venables and G. Tan (2007) presented A • Hand 011' strategv for teaching Genetic 

Algorithms to the undergraduates. This paper describes a • hands on• strategy to introduce 

and teach genetic algorithms to undergraduate computing students. By borrowing an 

analogical model from senior biology classes. 

Venable et al (2007) described several introductory exercises that transport students from 

an illustratioyvof natural selection in Biston betula moths, onto the representation and 

solution of-differing mathTúT7ïÅncl computing problems. In their paper their discussion 

cover terms such as population. generation, chromosome, gene, mutation and crossover ill 

both their biological and computing contexts most importantly, the tasks underline the two 
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key design issues of genetic algorithms: the choice of an appropriate algorithrn 

representation and a suitable fitness function for each specific instances. Finallv, 

students were introduced to the notion of schema upon which genetic algorithms operate. 

Kannan, Sasikumar and Devika (2010) recast a Genetic Algorithm approach for solving 

a closed loop supply chain model. A case study of battery recycling. 

In this paper the authors developed a closed loop mixed integer linear programming 

model to determine the raw material level, production level, distribution and inventory 

level, disposal level and recycling level at different facilities with the objective of 

minimizing the total supply chain costs. The model is solved by the proposed heuristics 

based genetic algorithm (GA) and for smaller size problem the computational results 

obtained through GA are compared with the solutions obtained by (GAMS) 

optimization software. 

Kannan et al (2010) paper it was revealed that for smaller size problems the GAMS software 

provides better results but with worst computational time but some larger-size real-world 

problems which cannot be solved by GAMS or other commercial software are only solved 

by the proposed heuristics based GA as a solution methodology for the larger problem sizes. 

Moreover, it was revealed that the proposed methodology performs very well in terms of 

both qualitv of solutions obtained and computational time. Based on the above validation. 

the authors proposed model in this research was tested some real data extracted from the 

batterv industry sources and achieved a, cost reduction of 

32.4% for the battery manufacturing industry by integrating the forward supply chain 

with the reverse supply chain. 

Kannan et al (2010) concluded that the mathematical model is generalized enough to be 

relevant to most_types of OEMs or hazardous material involved manufacturers. 

Since the model-was consideYõTõFÃfÑIQie objective optimization, the authors proposed 

that ill the future the multi objective model should be considered. 
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The problem of drawing graphs nicely contains several computationally intractable 

subproblems It is on this note that Eloranta and NI akinen (2001) presented a paper Tim 

GA: A genetic algorithm for drawing undirected graphs. The authors indicated that it is 

natural to apply genetic algorithms to graph drawing. Their paper introduces a genetic 

(Tim GA) which nicely draws undirected graphs of moderate size. The aesthetic criteria 

used are the number of edge crossings, even distribution of nodes, and edge length 

deviation. Eloranta et al (2001) indicated that although Tim GA usually works well, there 

are some unsolved problems related to the genetic crossover operation of graphs and 

concluded that Tim GA's search is mainly guided by the mutation operations. 

The weight constrained shortest path problem (WCSPP) is one of the most several 

known basic problems in combinatorial optimization. Because of its importance in 

many areas of applications such as computer science, engineering and operations 

research. Many researchers have extensively studied the WCSPP and Khaled et al 

(2005) presented a paper 'Reduction of search space by applying controlled Genetic 

operators for weight constrained shortest path problem(WCSPP). 

In this paper, the authors have proposed a computationally fast method to find WCSPP in a 

graph. The Floyd-Warshall's algorithm was used to approximate the chromosome length 

which revealed that if the dimension of the chromosome is just equal to the dimension of 

the optimal shortest path. some controlled schemes of genetic operators on list chromosome 

representation were adopted. This approach gave a near optimum solution with smaller 

elapsed generation than classical GA technique. From further analysis on the matter a new 

generalised schema theorem is also developed from the philosophy of 

Holland's theorem. 

 

explored by Keri Woods (2007) on his paper Genetic Algorithms: Colour image 

segmentati011 to discuss the feasibility of using genetic algorithms to segment general 

colour images and also discuss the issues involved in designing such algorithms. 

Keri Woods (2007) indicated that Genetic Algorithms are commonly used approach to 
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optimising the parameters of existing image segmentation algorithms and stated that the 

major decisions are choosing a method of segmentation to which genetic algorithms will be 

applied, finding a fitness function that is a good measure of the quality of image 

segmentation and finding a meaningful way to represent the chromosomes. Keri Woods 

(2007) used modified GAS and Hybrid GAS to solve this problem. 

A new stereo matching approach using a genetic algorithm has been presented to 

improve the conventional stereo matching method by Han et al. (2001) on their paper 

entitled stereo matching using genetic algorithm with adaptive chromosomes. Han et al. 

(2001) adapted GAS as an efficient search technique to obtain corresponding points 

between stereo images. 

Accordingly the authors also adopted genetic operators for the circumstances of stereo 

matching such that a 21) disparity set was used as an individual and a fitness function 

was composed of intensity similarity and disparity smoothness constraints which are 

commonly used in stereo matching. 

111 order to acquire a consistent disparity map relative to the image appearance, Han 

et al. (2001) extracted a region of the input image, divided by zero-crossing points 

which was used in the determination of the chromosome shape. As a result. a disparity 

output that coincides with the input was obtained without any modification to the 

matching algorithm by Han et al. (2001) and consequently resulted in the improvements 

ill output quality as well as in convergence speed. 

A recast of  and the Evolution of Neural Networks for language 

processing by Jaine-T] (2009) presc<-ÇÃÇiK which he have used GAS to find which 
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Neural Networks (NTN) parameter values produce natural language task. 111 addition to 

this, the svstem has been modified and studied ill order to evaluate ways ill which coding 

methods in the GA and the NN can affect performance. In the case of GA coding. an 

evaluation method based on scheuaa theory is presented. This methodology can help 

determine optimal balances between different evolutionary operators such as crossover and 

mutation, based on the effect of different ways of resenting words and sentences at the 

output layer is examined with binary and floating points schemes. 

A computational technique based on a real coded genetic algorithm for microwave imaging 

purposes was discussed by Carsi. S. (2000). This study solves a non-linear inverse scattering 

problem for short range microwave imaging. Comparative analysis of the results obtained 

by approximate formulations and binary coded genetic algorithms (GAS) is made. Further, 

a hybrid version is presented and preliminary tested. 

A dynamic routing control based on genetic algorithm can provide flexible real time 

management of the dynamic traffic changes in broadband networks. It was demonstrated 

through computer simulations using genetic algorithms by Shimamoto N. (2000). The 

proposed technique can generate the exact solution of path arrangement that keeps the traffic 

loss rate below the target value, even after changes in traffic. 

A genetic algorithm for shortest path routing problem and the sizing of population was 

applied lov Chang Wook et. al (2002). Variable length chromosomes and their genes have 

been used for encoding the problem. The proposed algorithm can cure all feasible 

chromosomes with a simple repair function. A population sizing equation is emphasized 

using computer simulations. 

The multiple desÿxation routing algorithm was formulated for finding a minimal cost tree 

which contaiïiS designated-G7ÅÑcl multiple destination nodes to satisfy certain 
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constraints in a given communication network. The simulation studies for sparse and dense 

network demonstrate the robustness and efficiency of the proposed algorithm in terms of 

yielding high quality solutions. 

A novel approach to solve very large scale integration (VLSI) channel and switch box 

routing problems was discussed by Lienig et. al (1997). This approach is based upon 

genetic algorithms that run on a distributed network of workstations. An extensive 

investigation shows the qualitatively better results and significantly reduction in 

occurrence of cross talk. 

Usefulness of heuristic algorithms as the search method for diverse optimization 

problem is examined by Jang Sung Chun et. al (1998). Immune algorithms, genetic 

algorithms, evolutionary algorithms were compared on diverse optimization problems 

and the results reveal the out-performance of genetic algorithms. Based on genetic 

algorithms, surface permanent magnet synchronous motor is designed. 

The problem of premature convergence in genetic algorithms optimization was 

discussed by Mori. N. et. al(1996). A novel thermodynamical genetic algorithm 

approach was suggested, which adopts the concepts of temperature and entropy in the 

selection rule. Simulated annealing was used to maintain diversity of the population. A 

comparison of the thermodvnamical genetic algorithm approach with the simple genetic 

algorithm is carried out taking a knapsack problem. 

Takagi-Sugeno-Kang (TSK) type recurrent fuzzy network. is proposed by Chia Feng 

Juang (2002), which develops from a series of recurrent fuzzy if-then rules with 

TakagiSugeno-Kang (TSK) type consequent parts. Takagi-Sugeno-Kang (TSK) type 

recurrent fuzzy network willvsupervised learning is suggested for the problems having on-

line training data. To drrúónstrate tl superiority of Takagi-Sugeno-Kang (TSK) type 
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recurrent network. it is applied to clvnamic svstem. BV comparing the results the efficiencv 

of Takagi-Sugeno-l{ang (TSK) tvpc recurrent fuzzv network is verified. 

Optimization of antenna and scattering patterns using genetic algorithms was demon- 

strated by Haupt et. al (1995). The proposed algorithm encodes each parameter into binary 

sequences called a gene and a set of gene is called chromosome. Several examples have 

been taken and implemented in MATLAB. For optimal solution of antenna patterns and 

back scattering radar cross-section pattern. 

An orthogonal genetic algorithm approach for multimedia multicast routing was 

suggested by Qing Fu Zhang et al (1999). It can be investigated that the search space is 

statistically sound and is well suited for parallel implementation and execution. The 

implementation results reveal that the orthogonal genetic algorithms can find near 

optimal solution within moderate number of generations for practical problem sizes. 

Dimeo R and Lee (1995) suggested a novel approach for boiler turbine control system using 

genetic algorithms. Proportional integral controller and a state feedback controller for non-

linear multi-input-multi-output (MIMO) plant model is developed. Experimental results 

show the optimal control of boiler using genetic algorithms. 

Channel assignment problem in hexagonal cellular network with two band buffering was 

discussed bv Ghosll S. C. et al (2003). An algorithm is presented for solving channel 

assignment problem using etilist model of genetic algorithm which shows the optimal 

results within a reasonable computational time. 

A vehicular wire antenna was designed using genetic algorithms used for both global 

positioning system GPS) and indium systems. The antenna was simulated using numerical 

codes—ÃïTT7iabricated and tested. The voltage standing wave ratio (VSWR) and circular 

polarization radiation patterns were compiled and mea sured. Altshuler et. al (2000) 
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suggested a new approach, which uses genetic algorithms ill conjunction with 

electromagnetic code, produces configurations that are unique and seem to outperform 

more conventional design. 

Design of direct form of a finite word length, finite impulse response (FIR) low pass filter 

was proposed by Xu and Daley (1995). The results of the proposed design techniques are 

compared with an integer programming technique and it is inferred from the results that 

genetic algorithm based technique outperforms the traditional approach. 

Design of optimal disturbance rejection using genetic algorithms was suggested by 

Krohling and Rey (2001). The method was proposed to design an optimal disturbance 

rejection proportional integral derivative (PID) controller. A condition for disturbance 

rejection of control system is described which is further formulated as a constrained 

optimization problem. A constraint optimization problem to optimize integral of time and 

absolute error (ITAE) was tested by proportional integral derivative (PID) controller as 

applied to servo motor system. A double genetic algorithm was applied for solving 

constraint optimization problem. Simulation results demonstrate the performance and 

validity of the methods. 

Length of Yagi-Uda antenna was optimized bv Jones and Joines (1997) using genetic 

algorithms. To illustrate the capabilities of the method. the length and spacing of several 

Yagi-uda antennas are optimized for various performance characteristics. 

Genetic algorithms were applied to pattern recognition problem by Raymer M. L. et. al 

(2000). A new approach is suggested to feature extraction in which feature selection and 

feature extiyction was simultaneously done using genetic algorithms. The genetic algorithm 

optirrriïés a featur weight vector used to scale the individual features in the original pattern 

vectors. 
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Wei-Yen Wang and Li (2003) proposed a novel approach to adjust both the control points of 

B-spline membership functions and the weights of fuzzy neural network using reduced form 

genetic algorithms (RCA). Simulation results show the faster convergence of the evolution 

process and effectiveness of reduced form genetic algorithms. 

Problem of finding robust for flexible solutions for scheduling problems for real world 

application was suggested by Jensen M. T, (2003). Experimentally, it is shown that using a 

genetic algorithm, it is possible to find robust and flexible schedules with a low makespan. 

Scheduling of hydraulically coupled plants can be approximated by genetic algorithms. An 

effective approach was suggested by Po-Hung Chen and Chang (1996) to 24 hrs ahead 

generation scheduling of hydraulically coupled plants. Experimental results show that the 

genetic algorithm approach obtains a more highly optimal solution than the conventional 

dynamic programming method. 

Design of finite impulse response filter using genetic algorithms was suggested by Suckley 

D. et. al (1991). Genetic algorithm was used for automatic rapid and minimal computational 

complexity to design a filter. 

An early paper ill terms of genetic algorithms and its applications was presented by Tang 

K. S et. al (1996) which elaborates the genetic algorithm technology and its comparison 

with other optimization techniques. The genetic algorithm procedures were discussed to 

implement signal processing applications for infinite impulse response (IIR) adaptive 

filtering , time cl?loy estimation, active noise control and speech processing, which are 

being implemented and describã——-—— 
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Hong Y. (2002) applied genetic algorithms on economic dispatch for congregation units 

considering multi-plant multi-buyer wheeling, which transmits microwaves to design load 

buses via wheeling. Varying the weights coefficient for penalty functions and determina- 
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tion of gene variables using genetic algorithms were discussed. The IEEE 30 and 

IEEE 188 bus system were used as test systems to illustrate the applicability of the 

proposed method. 

Engineering applications of genetic algorithms were introduced by Man and Tang 

(1996). This study reveals how genetic algorithms can be integrated to form the 

framework of design tool for industrial engineers. An attempt has also been made to 

explain why, when and how to use genetic algorithms as an optimization tool for process 

controllers. 

To find the shortest path, genetic algorithms can be used to encode a path in graph into a 

chromosome. The proposed approach have been tested by Gen M. et. al (1997) with 

different size from 6 nodes to 70 nodes and from 10 edges to 211 edges. The encouraging 

results using genetic algorithms can find the optimum very rapidly and with very high 

probability. 

Genetic algorithm can be applied for svstcm identification of both continuous and 

discrete time svstems. Thev are effective in both domains for finding poles and zeroes. 

 

elled dynamics were presented by Kristinsson and Dumont (1992). 

Harmonic optimization of multilevel converter using genetic algorithms was proposed by 

Ozpineci et. al (2004). The optimization technique is applied to multilevel inverter to 

determine opt)uum switching angles for cascaded multilevel inverters for eliminating some 

higher 01déf harmonics-ÝITïT7ÄWtaining the required fundamental voltage. 

Simulations tuning of power system damping controller using genetic algorithms was done 

by Do Bomfilll ct. al (2000). Damping controller structures arc assumed to be fixed 



 

 

consisting lead lag filter during the study. The study reveals the efficacy of genetic 

algorithms for the proposed system. 

2.3 SIMULATED ANNEALING 

111 metallurgy and material science, annealing is a heat treatment of material with the goal 

of altering its properties such as hardness. Simulated annealing was originally inspired by 

formation of crystal in solids during cooling i.e., the physical cooling phenomenon. It is a 

method that simulates the thermodynamic process in which a metal is heated to its melting 

temperatures and then is allowed to cool slowly so that its structure is frozen at the crystal 

configxtration of lowest energy. The slower the cooling, the more perfect is the crystal 

formed. By cooling, complex physical systems naturally converge towards a state of 

minimal energy. For an infinitely slow cooling, this method is certain to find the global 

optimum. The only point is that infinitely slow consists in finding the appropriate 

temperature decrease rate to obtain a good behaviour of its algorithm. 

The system moves randomly, but the probability to stay in a particular configuration 

depends directly on the energy of the system and on its temperature as in Gibs law.  

Gibs law gives this probability as: 

P err 

Where E stands for the energy. k is the Boltzmann constant and T is the temperature. 

Research has revealed that Simulated Annealing algorithms with appropriate cooling 

strategies will asymptotically converge to the global optimum. In describing Simulated 

Annealing as used to solve a minimizing objective function of an optimization 

problem the algorithm that follows is used. 

 

Algorithm for Simulated Annealing 

AlgõFiîÝ1in begins pneu,.g 4— initial guess 

Prur Pnew 
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  Pneu 

t 4— O while termination Criterion is not satisfied do 

 

if ('E < O then 

Pcur Pnew if f (pneu,.x) < f  then P* 4—Pcur 

else 

T 4— get Temperature(t) if random 

(generate) < eTk then pcur 4— pneu, update 

temperature 

 

return P*:r end 

Simulated Annealing is a serious computer to Genetic Algorithms. Both Genetic 

Algorithms and Simulated Annealing are derived from analogy with natural system 

evolution and both deal with the same kind of optimization problem. 

However. it is less efficient compared to the Genetic Algorithm since it onlv deals with one 

individual at each iteration. In light of this. Simulated Annealing is faster and simple or 

easier to implement. The Simulated Annealing can be used to determine the optimal layout 

of printed circuit board or the travelling salesman problem. 

2.4 STOCHASTIC HILL CLIMBING 
 

Hill climbing is a verv old and simple search and optimization algorithm for continuous 

um-modal functions. It uses a kind of gradient to guide the direction of the search. In 

principle, hill climbing algorithms perform a loop in which the currently known best 

solution is used to search for a new one. Stochastic hill climbing (also called stochastic 

26 



 

 

gradient descent) which is one of such methods consists of choosing randomly a solution 

in the neighbourhood of the current solution and retains this new solution only if it improves 

the objective function. 

On multi-modal functions, the algorithm is likely to stop on the first peak it finds even if it 

is only a local optimum. This is a problem of hill climbing. To avoid this problem, it is 

advisable to repeat several hill climbs each time starting from a different randomly chosen 

point after the first local optimum. This method is sometimes known as iterated hill 

climbing. Once different local optimal points have been obtained, the global optimum can 

easily be observed. However, if the function of interest is very noisy with many small peaks 

then definitely stochastic hill climbing is not the best method. Nevertheless the advantage 

of this method is that it is easy to implement to achieve a fairly good solution faster. 

Stochastic hill climbing usually starts from a randomly selected point. In describing the 

algorithm, below is a well stated outline. 

2.4.1 Stochastic Hill Climbing Algorithm 

Input: f: the objective function subject to minimization 

Data: the new element created 

Data: p* : the (currently) best individual 

Output: x* : the best element found 

1. p* f— create (Implicitly: .x 4—  

2. while terminating Criterion is not satisfied do 

 



 

 

4. if f (pneu,.x) < f(p*.:r) then p* pnew 

5. return .x 

6. end 
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Chapter 3 

METHODOLOGY 

3.1 WORKING PRINCIPLES OF GENETIC 

ALGORITHMS 

The workability of genetic algorithm (GA) is based on Darwinian's theorÿ of survival of the 

fittest. Genetic algorithms (GAS) may contain a chromosome, a gene, set of popIllation, 

fitness, fitness function. breeding, mutation. and selection. Genetic algorithms (GAS) begin 

with a set of solutions represented by chromosomes, called population. Solutions from one 

population are taken and used to form a new population. which is motivated by the 

possibility that the new population will be better than the old one. Further. solutions arc 

selected according to their fitness to form new solutions. that is, offspring. The above 

process is repeated until some condition is satisfied. Algorithmically, the basic genetic 

algorithm (GAS) is outlined as below; 

1. Start  gene.Late4-populati011 of n I-bit chromosomes (candidate 

solutions to a problem). 

2. Calculate the fitness f of each chromosome in the population 

3. Repeat the following steps until n offspring have been created: 

(a) Select a pair of parent chromosomes from the current population, the probability 

of selection being an increasing function of fitness. Selection is done with 

replacement. 
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(b) With probability pc (the "crossover probability" or "crossover rate"), cross over 

the pair at a randomly chosen point (chosen with uniform probabilitv) to form 

two offspring. If no crossover takes place, form two offspring that are exact 

copies of their respective parents. (Note that here the crossover rate is defined to 

be the probability that two parents will cross over in a single point. There are 

also " multi-point crossover" versions of the GA in which the crossover rate for 

a pair of parents is the number of points at which a crossover takes place.) 

(c) Mutate the two offspring at each locus with probability pm (the mutation 

probability or mutation rate), and place the resulting chromosomes in the new 

population. If n is odd, one new population can be discarded at random. 

4. Replace the current population with the new population. 

5. Go to step 2. 

Each iteration of this process is called a generation. A GA is tvpicallv iterated for anvwhere 

from 50 to 500 or more generations. The entire set of generations is called a run. At the end 

of a run there are often one or more highlv fit chromosomes in the population. Since 

randomness plavs a large role in each run, two runs with different random-number seeds 

will generally produce different detailed behaviours. GA researchers often report statistics 

(such aythe best fitness found in a run and the generation at which the indivicinal with that 

best fitness Iras discovered) average over many different 

runs of the GA on the same problem. The simple procedure just described is the basis for 

most applications of GAS. There are a number of details to fill in, such as the size of the 

population and the probabilities of crossover and mutation, and the success of the algorithm 

often depends greatly on these details.  

As a more detailed example of a simple GA, suppose that I (string length) is 8, that f (x) is 

equal to the number of ones in bit string (an extremely simple fitness function, used here 

only for illustrative purposes), that n (the population size) is 4, that pc 0.7 and that pm 

0.001. (Like the fitness function, these values of I and n were chosen for simplicity. More 
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typical values of I and n are in the range 50-1000. The values for pc and pm are fairly. 

typical.) 

The initial (randomly generated) population might look like this: 

Chromosomes Label  Chromosomes String  Fitness 

 
00000110 2 

 
11101110 

6 

c 00100000 1 

D 00110100 3 

Table 3.01: 

A common selection method in GAS fitness-proportionate selection, ill which the number 

of times an individual is expected to reproduce is equal to its fitness divided bv the average 

of fitness in the population. (This is equivalent to what biologists call viability selection" .) 

Genetic Algorithm is a random search optimization technique that has it roots in the 

principle of genetics. Before a GA can be run, a suitable coding (or representation) for the 

problem IXItIŠt be advised. We also require a fitness function, which assigns a figure of 

merit to each coded solution. During the run, parents must be selected for the reproduction 

, and recombined to generate offspring. 

Genetic diversity or variation is a necessity for the process of evolution. The genetic 

operators used ill GAS maintain genetic diversity Genetic operators are analogues to 

those which occur in real world. These operators are: 

 Selection 

 Crossover 

 Mutation 
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As already mentioned, GAS evolve a population of individuals according to the process 

of natural selection. During this process, genetic operators create new individuals from 

highly fit old individuals. These operators are used after the coding process and the 

genetic algorithm enters the reproduction stage. Holland's introduction of a population 

based algorithm with selection, crossover, inversion and mutation was a major 

innovation. These operators are used at different stages of the GA. 

In addition to these operators, there are some parameters of GAS. One important parameter 

is Population Size. The population size says how many chromosomes are in population, if 

there are only few chromosomes, then GA would have a few possibilities to perform 

crossover and only a small part of search space is explored, if there are many chromosomes. 

then GA slows down. Research shows that after some limit, it is not useful to increase 

population size, because it does not help ill solving the problem faster. The population size 

depends on the type of encoding and the problem. 

3.2 ENCODING 

It is assumed that--á potential solution to a problem may be represented as a set 

of parameters (for example, the dimensions of the beams is a bridge design). These 

parametets, known as genes are joined together to form a string of values referred to as a 

chromosome. Holland (HOI 75) first showed, and manv still believe, that the ideal wav for 

encoding is to use a binary alphabet for the string. For instance. if our problem is to 

maximize a function of three variables, F (T, y, z), we might represent each variable 

bv a 10 — bit binary number (suitably scaled). Our chromosome ssould therefore 

contain thr«• gents, and consist of 30 binarv digits. In genetic terms, the set of 

parameters represented by a particular chromosome is referred to as genotype. The 

genotype contains the information required to construct an organism which is referred 

to as the phenotype. The same terms are used in GAS. For example, in a bridge design 

task, the set of parameters specifying a particular design is the genotype, while the 

finished construction is the phenotype. The fitness of an individual depends on the 
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performance of the phenotype. This can be inferred from the genotype, i.e. it can be 

compared from the chromœorne, using the fitness function. Various encoding 

techniques used in genetic algorithms (GAS) are binary encoding, permutation 

encoding, value encoding,and tree encoding. 

3.2.1 Binary Encoding 

It is the most common form of encoding in which the data value is converted into binary 

strings. Binary encoding gives many possible chromosomes with a small number of alleles. 

A chromosome is represented in binary encoding as shown in Fig. 3.01 Chromosome I 

 

Fig. 3.01. Binary Encoding 

3.2.2 Permutation Encoding 

Permutation encoding is best suited for ordering or queuing problems. Travvlling salesman 

problem is aa•fmllenging problem in optimization, where permutation encoding is used. In 

permutation encoding, everv chromosome is a string of numbers in a sequence as shgyu-in 

Fig. 3.02 



 

 

Chromosome 1 

Chromosome 2 

Fig. 3.02. Permutation Encoding 

3.2.3 Value Encoding 

Value encoding can be problems where some complicated values such as real numbers are 

used. Value encoding is a technique in which every chromosome is a string of some values 

and is used where some more complicated values are required. It can be expressed as shown 

in Fig. 3.03 

Chromosome 2  

Fig. 3.03 Value Encoding 

3.2.4 Tree Encoding 

Evolving expressions or programs such as genetic programming is the best suited technique 

for programming languages. 111 tree encoding. every chromosome is a tree of some objects, 

functions or commands in programming languages. 

3.2.5 Fitness Function 

A fitness function must be devised for each problem to be solved. Given a particular 

chromosome. the  numerical " fitness" or " figure of 

merit  

which is supposed to be proportional to the utility" or ability" of the individual which 

that-rhYöïi10some represents. For many problems, particularly function optimization, 

it is obvious what the fitness function should measure: it should just be the value of the 

function. However, this is not always the case, for example with combinatorial 

optimiza- 
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tion. In a realistic bridge design task, there are many performance measures we mav 

want to optimize: strength/weight ratio, span, width, maximum load, cost, construction 

time or, more likely, some combination of all these. The fitness function quantifies the 

optimality of a solution (chromosome) so that a particular solution may be ranked 

against all the other solutions. The function depicts the closeness of a given solution to 

the desired result. 

3.2.6 Reproduction 

At the reproduction phase of the GA, individuals are selected from the population and 

recombined, producing offspring which will comprises the next generation. Parents are 

selected randomly from the population using a scheme which favours the more fit 

individuals. Good individuals will probably be selected several times in a generation, poor 

ones may not be at ll. Having selected two parents, their chromosomes are recombined, 

typically using the operators of GAS. 

3.3 GENETIC ALGORITHM (GA) OPERATORS 

The simplest form of genetic algorithm involves three types of operators: selection, 

crossover and mutation. 

3.3.1 Selection Techniques in Genetic Algorithm (GA) 

After deciding on an encoding, the second decision to make in using a genetic algorithm is 

how to perform selection, that is, how to choose the individuals ill the population that will 

create offspring for the next generation and how manv offspring cach will create. The 
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purpose of selection is, of course, to emphasize the fitter individuals in the population in 

hopes that their offspring will in turn have even higher fitness. According to Darwin-s 

evolution theory "survival of the fittest" . the best ones should survive and create new 

offspring. Selection has to be balanced with variation from crossover and mutation (the 

"exploitation/exploration balance"). Because, too strong selection means that suboptimal 

highly fit individuals will take over the population, reducing the diversity needed for further 

change and progress while, too weak selection will result in too slow evolution. Selection 

means extract a subset of genes from an existing population, according to any definition of 

quality. Every gene has a meaning, so one can derive from the gene a kind of quality 

measurement called fitness function. Following this quality (fitness value). selection can be 

performed. As was the case for encodings, numerous selection schemes have been proposed 

in the GA literature. Some of the most common methods will be described. These 

descriptions do not provide rigorous guidelines for which method should be used for which 

problem; this is still an open question for GAS. All the various selection operators 

essentially do same thing. They pick from current population the strings of above average 

and insert their multiple copies in the mating pool in a probabilistic manner. The Selection 

operators are also called Reproduction operators. The most commonlv used methods of 

selection that will be described are: 

• Roulette wheel selection 

• Boltzmann Selection 

• Rank Selection 

• Steady state selection 

• Tournament _sglection 
 

 

Roulette Wheel Selection (Fitness-Proportionate Selection) 

Roulette wheel selection, also known as Fitness Proportionate selection, is a genetic 

operator. used {Or selecting potentially useful solutions for recombination. In 
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fitnessproportionate selection, the an individual being selected is proportional to 

its 

fitness, greatcr or less than its competitor's fitness. Conceptually, this can be thought as 

a game of Roulette. 

The Roulette wheel simulates 8 individuals with fitness values Fi, marked at its 

circumference; e.g., the 5th individual has a higher Fitness than others, so the wheel would 

choose the 5th more than other individuals. The fitness of the individuals is calculated as 

the wheel spun n 8 times, each time selecting an instance, of the string, chosen by the wheel 

pointer. 

The probability of ith string is Pi Fi/(E Fj), where n numberofindividuals, called population 

size; Pi probability of ith string being selected; Fi fitness for ith string in the population. 

Because the circumference of the wheel is marked according to a string's fitness, the 

Roulette-wheel mechanism IS expected to make F/F copies of the 'ith strmg. 

Average fitness =FFj/n; Expected count (n + 8) * Pi 

Cumulative Probability E Pi 

Typically, early in the search the fitness variances in the population is high and a small 

number of individuals are much fitter than the others. Under fitness proportionate selec

tion. individuals and their descendants will multiplv quicklv in the population. in effect 

preventing the GA from doing any further exploration. This is known as " premature 

convergence. In other words, fitness proportionate selection earlv on often puts too 

much emphasis on exploration of highly fit strings at the expense of exploration of other 

regions of the search space. Later in the search, when all individuals in the population 

are very similar (the fitness variance is low), there are no real fitness differences for 

selecti011 to exploit, and evólution  halt. Thus, the rate of evolution 

depends on the variance of fitness in the population. 

Boltzmann Selection 

Sigma scaling keeps the selection pressure more constant over a run. But, often different 

amounts of selection pressure are needed at different times in a run for example, early on it 

might be good to be liberal, allowing less fit individuals to reproduce at close to the rate of 
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fitter individuals, and having selection occur slowly while maintaining a lot of variation in 

the population. Later it might be good t have selection be stronger in order to strongly 

emphasize highly fit individuals, assuming that, the early diversity with slow selection has 

allowed the population to find the right part of the search space. One approach to this is " 

Boltzmann Selection" (an approach similar to simulated annealing), in which a continuously 

varying temperature" controls the rate of selection according to a pre-set schedule. The 

temperature starts out high, which means that selection pressure is low (i.e., every individual 

has some reasonable probability of reproducing). The temperature is gradually lowered, 

which gradually increases the selection pressure, thereby allowing the GA to narrow in ever 

more closely to the best part' of the search space while maintaining the appropriate" degree 

of diversity. 

Simulated annealing is a method used to minimize or maximize a function. The svstem ill 

thermal equilibrium at a temperature T has its energy distribution based 011 the probabilitv 

defined by P (E) exp(-E/kT) where k is the Boltzmann constant. 

The above expression suggests that a system at a higher temperature has almost uniform 

probability at any energy state, but at lower temperature it has a small probability of being 

at a higher energy state. Thus by controlling the temperature T and assuming 

 
that the selection process follows Boltzmann probability distribution, the convergence of 

the algorithm is controlled. 

Rank Selection 

Rank —•lection is an alternative method purpc— to presm•ot serp-nce. 

In the w•rsion propœ«l by Baker (1985), the individuals in the population are ranked 

according to fitnes, and the expect«l value of individual depends on its rank rather than 

on its absolute There is no to scale in this since differences in are ot»cured. This 

discarding of at»olute in- 

formation can have advantages (using alN)lute fitnes can lead to convergence problems) 

and disadvantages (in N)tne cass it might be important to know that one individual is far 

fitter than its nearest competitor). Ranking avoids giving the far largest share of 

offspring to a small group of highly fit individuals, and thus reduces the selection when 
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the fitnes variance is high. It also keeps up pressure when the fitness variance is low: the 

ratio of expected values if individuals ranked i and i 1 will be the same whether their 

absolute fitness difference are high or low. 

The linear ranking method propœed by Baker is follows: Each individual in the 

population is ranked in increasing order of fitness. form 1 to X. The  the 

expected value Mox of the individual sutli rank X. with Max co. The expected of 

each individual I in the population at time t given bv 

rank(i.t) — I 

E.rpVal(i,t) Min (Max Min) 

where Min is the expected value of the individual with rank 1. Given the constraints 

MaxeO and  (since population size stays constant from generation to 

generation), it is required that 1 d Mard 2 and Min 2 Max. At each generation tlw• 

individual in the population  assigned  according to the 

above «luation. Baker  1.1 and shourd that this scbetoe 

fasourably to proportionate selection on  test problems. Rank a 

disulvantage: slouing down means that the GA will in some be in find.ng highly 6t 

individuals. in many  
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the increased preservation of diversity that results from ranking leads to more successful 

search than the quick convergence that can result from fitness proportionate selection. 

a variety of other ranking schemes (such as exponential rather than linear ranking) have 

also been tried. 

Steady State Selection 

The GAS described so far has been generational. At each generation the new population 

consist entirely of offspring formed by parents in the previous generation (though some 

of these offspring may be identical to their parents). In some schemes, successive 

generations overlap to some degree, some portion of the previous generation is retained 

m the new population. The fraction individuals at each generation has been called the 

' generation gaps" (De Jong, 1975). In steady state selection, only a few individuals are 

replaced in each generation, usually a small number of the least fit individuals are replaced 

by offspring resulting from crossover and mutation of the fittest individuals. Steady states 

GAS are often used in evolving rule-based svstems (e.g., classifier systems) in which 

incremental learning (and remembering what has alreadv been learned) is importallt and ill 

which members of the population collectivelv (rather than individuallv) solve the problem 

at hand. 

Tournament Selection 

The fitness proportionate methods described above require two passes through the 

population at each get-tera Ion: one-pass-tõõlîipute the mean fitness (and, for sigma scaling. 

the standard deviation) and one pass to compute the expected value of each individual. 

RankÃ71i—ng requires sorting the entire population bv rank a potentially time consuming 

procedure. Tournament selection is similar to rank selection in terms of selection pressure. 

but it is computationally more efficient and more amenable to parallel implementation. Two 



 

 

individuals are chosen at random from the population. A random number r is then chosen 

between 0 and 1. If r < k (where k is a parameter, for example 

0.75), the fitter of the two individuals is selected to be a parent; otherwise the less fit 

individual is selected. The two are then returned to the original population and can be 

elected again. 

Example of Selection 

Evolutionary Algorithm is to maximize the function f (x) — with x in the integer 

interval [0,31], i.e. x 0, 1, 2, .......30, 31. 

1. The first step is encoding of chromosomes; 5-bits are used to represent integers up to 

31 

2. Assume that the population size is 4 

3. Generate initial population at random. They are chromosomes or genotypes: e.g. 

01101, 11000. 01000. 10011 

4. Calculate fitness value of each individual.  

(a) Decode the individual into an integer (phenotypes), 01101 —+ 13: 

11000 -+ 24; 01000 8; 10011 19; 

(b) Evaluate the fitness according to f (x) a•2, 

13  576; 8 64; 19 —Y 361. 

5. Select parents for crossover based on their fitness in Pi (Probability of ith string 

be—tïföelected). Out of manv methods for selecting the best chromosomes, if 

roulettewheel selection is used, then the probability of the string in the population 

is 

Pi Fi/ E fj , where 
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Fi is the fitness for thc string i in the population, expressed as f(T) 

Pi is probability of the string i being selected, n is number of 

individuals in the population, is population size, n 4 n * Pi is expected 

count 

String  

Number  

Initial 

Population 

X Value  Fitness Fi  

 

Pi 

Expected Count n 

*Pi 

1 01101 13 169 0.14 0.58 

2 11000 24 576 0.49 1.97 

3 01000 8 64 0.06 0.22 

4 10011 19 361 0.31 1.23 

Sum   1170 1.00 4.00 

Average   293 0.25 1.00 

Max   576 0.49 1.97 

Table 3.02: Example of Selection 

The string number 2 has maximum chance of selection 

3.3.2 Crossover 

Crossover is a genetic operator that combines (mates) two chromosomes (parents) to 

produce a new chromosome (offspring). The idea behind crossover is that the new 

chromosome may be bftÿer than both of the parents if it takes the best characteristics from 

each of the Crossoverú7TFÇGring evolution according to a user definable 

crossover probabilitv. Crossover selects genes from parent chromosomes and create a new 

offspring. It could be said that the main distinguishing feature of a GA is the use of 

crossover. Crossover takes two individuals, and cuts their chromosomes strings at some 

randomly chosen position, to produce two head segments and two tail segments. The tail 
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segments are then swapped over to produce two new full length chromosomes Crossover is 

not usually applied to all pairs of individuals selected for mating. A random choice is made 

where the likelihood of crossover being applied is typically between 0.6 and 1.0. If 

crossover is not applied, offspring are produced simply by duplicating the parents. The 

crossover operators to be discussed are; 

• One-Point Crossover 

• Two-Point Crossover 

• Uniform Crossover 

• Arithmetic Crossover 

Heuristic Crossover 

• Multi-Point Crossover (N-Point Crossover) 

• Three Point Crossover 

• Crossover with Reduced Surrogate 

• Shuffle Crossover 

• Precedence Preservative Crossover (PPX) 

• Ordered Crossover 

• Partially Mat§þed Crossover (PNIX) 

 

• Cyclic Crossover 

The operators are selected based on the way chromosomes are encoded 



 

 

One-Point Crossover (Single Point Crossover) 

One-point crossover is the simplest form. The idea here is, to recombine building blocks on 

different strings. Single point crossover has some shortcomings, though. For one thing, it 

cannot combine all possible schemas. For example, it cannot in general combine instances 

of 11 * 1 and * * 11 * * to form an instance of 11 * * 1. Likewise, schemas with long 

defining lengths are likely to be destroyed under single point crossover. Eshelman, Caruana, 

and Schaffer (1989) call this "positional bias": the schemas that can be created or destroyed 

by a crossover depend strongly on the location of the bits in the chromosome. Single point 

crossover assumes that short, low order schemas are the functional building blocks of 

strings, but one generally related bits together on a string, since particular bits might be 

crucial in more than one schema. The tendency of single point crossover to keep short 

schemas intact can lead to the preservation of hitch-hikers; bits that are not part of a desired 

schema but which, by being close on the string. hitch-hike along with the beneficial schema 

as it reproduces. Many People have also noted that single point crossover treats some loci 

preferentially: the segments exchanged between the two parents always contain the 

endpoints of the strings. 

One point crossover operator randomlv selects one crossover point and then copv 

everything before this point from the first parent and then everything after the crossover 

point copy from the second parent. The crossover would then look as shown below. 

Consider the two parents selected for crossover; 

 

 

Fig, 3.04: Single Point Crossover 

a TECHNOLOGS 
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Interchanging the parents chromosomes after the crossover points - 

The offspring produced are: 

Offspring I 

Offspring 2 

Fig, 3.05: Single Point Crossover 

The symbol l, a vertical line, is the chosen crossover point. 

Two Point Crossover 

To reduce bias and this endpoint effect, many GA practitioners use two-point crossover, in 

which two positions are chosen at random and the segments between them are exchanged. 

Two-point crossover is less likely to disrupt schemas with large defining lengths and can 

combine more schemas than single-point crossover. In addition, the segments that are 

exchanged do not necessarily contain the endpoints of the strings. Again, there are schemas 

that two-point crossover cannot combine. GA practitioners have experimented with 

different numbers of crossover points. As mentioned, the two-point crossover operator 

randomly selects two crossover points within a chromosome then interchanges the two 

parent chromosomes between these two points to produce two new offspring (children) for 

mating in the next generation. 

Consider two parents selected for—erossöVëf.' 

 

Fig. 3.06: Two Point Crossover 

Interchanging the parents chromosomes between the crossover points - 

Parent  2 



 

 

The offspring produced are: 

 

Offspring 2  

Fig. 3.07: Two Point Crossover 

In the figure above, the dotted lines indicate the crossover point. 

Uniform Crossover 

Uniform crossover operator decides with some probability (known as the mixing ratio) 

which parent will contribute how the gene values in the offspring chromosomes. The 

crossover operator allows the parent chromosomes to be mixed at the gene level rather than 

the segment level (as with one and two point crossover). Uniform crossover works as 

follows; for each bit position 1 to L, randomly pick each bit from either of the two parent 

strings. This means that each bit is inherited independentlv from anv other bit and that there 

is ill fact no linkage between bits. It also means that uniform crossover is unbiased with 

respect to defining length. Some practitioners believe stronglv in the superiority of " 

parameterized uniform crossover," in which an exchange happens at each bit position with 

probability p (typically 0.5 d p d 0.8). Parameterized uniform crossover has no positional 

bias: anv schemas contained at different positions in the parents can potentiallv be 

recombined in the offspring. However, this lack of positional bias can prevent co-adapted 

allelesfrom ever46fTTTiTÇTthe population, since parameterized uniform crossover can be 

highlv disrupted of anv schema. 

Consider the two parents selected for crossover; 

46 

Parent 1  

Parent 2  

Fig. 3.08: Uniform Point Crossover 
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If the mixing ratio is 0.5 approximately, then half of the genes in the offspring will come 

from parent 1 and other half will come from parent 2. 

The possible set of offspring after uniform crossover would be: 

Offspring I  

Offspring 2  

Fig. 3.09: Uniform Point Crossover 

Arithmetic Crossover 

Arithmetic crossover operator linearly combines two parent chromosomes vectors to produce 

two new offspring according to the equations: 

Offspring 1 a * Parentl + (1 — a) * Parent2 

Offspring 2 (1 — a) * Parentl + a * Parent2 

Where a is a random before each crossover operation. 

Consider two parents (each of 4 float genes) selected for crossover: 

Parent I (0.3) (1.4) (0.2) (7.4) 

Parent 2 (0.5) (4.5) (0.1) (5.6) 

Applying the above two equations and assuming the weighing factor a = 0.7, applying above 

equations we get two resulting offspring. 

The possible set of offspring after arithmetic crossover would be: 

Offspring 1 (0.36) (2.33) (0.17) (687) 

Offspring 2 (0.402) (2.981) (0.149) (5.842) 



 

 

Heuristic 

Heuristic crossover operator uses the fitness values of the two parent chromosomes to 

determine the direction of the search. 

The offspring are created according to the equations: 

Offspring 1 BestParent r * (BestParent — WorstParent) 

Offspring 2 = Best Parent 

Where r is a random number between 0 and 1. 

It is possible that offspring 1 will not be feasible. This can happen if r is chosen such that 

one or more of its genes fall outside of the allowable upper or lower bounds. For this reason. 

heuristic crossover has a user defined parameter n for the number of times to trv and find 

au—r that results-À<r-frxsîble chromosome. If a feiusible chromosome is not produced 

after n tries. the worst parent is returned as offspring 1. 

.18 

Multi-Point Crossover (N-Point Crossover) 

There are two ways in this crossover. One is even number of cross-sites and the other odd 

number of cross-sites. In the case of even number of cross-sites, cross-sites are selected 

randomly around a circle and information is exchanged. In the case of odd number of cross-

sites, a different cross-point is always assumed at the string beginning 

Three Parent Crossover 

In this crossover technique, three parents are randomly chosen. Each bit of the first 

parent is compared with the bit of the second parent. If both are the same, th bit is taken 

for the offspring otherwise; the bit from the third parent is taken for the offspring. 
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This concept is illustrated in Fig. 3.09 

Parent 1  

Parent 2  

Parent 3  

Child  

Fig. 3.09. Three Parent-Crossover 

 

Crossover with Reduced Surrogate 

The reduced surrogate operator constrains crossover to always produce new individuals 

wherever possible. This is implemented by restricting the location of crossover points such 

that crossover points onlv occur where gene values differ. 
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Shuffle Crossover 

Shuffle crossover is related to uniform crossover. A single crossover position (as in 

singlepoint crossover) is selected. But before the variables are exchanged, they are 

randomly shuffled in both parents. After recombination. the variables in the offspring are 

unshuffled. This removes positional bias as the variables are randomly reassigned each 

time crossover is performed. 

Precedence Preservative Crossover (PPX) 

PPX was independently developed for vehicle routing problems by Blanton and 

Wainwright (1993) and for scheduling problems by Bierwirth et al. (1996). The operators 

passes on precedence relations of operations given in two parental permutations to one 

offspring at the same rate, while no new precedence relations are introduced. PPX is 

illustrated in below, a problem consisting of six operations A-F. 

The operator works as follows: 

 A vector of length Sigma (a), sub to Illi, representing the number of operations 

involved in the problem, is randomly filled with elements of the set 1,2. 

 This vector defines the order in which the operations are successively drawn from 

parent 1 and-parent 2.  

 We can also consider the parent and offspring permutations as lists. for which the 

operations 'appencr and 'delete' are defined. 

 First we start bv initializing an emptv offspring. 

 The leftmost operation in one of the two parents is selected in accordance with the 

order of parents given in the vector. 
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 After an operation is selected it is deleted in both parents. 

 Finally the selected operation is appended to the offspring. 

 This step is repeated until both parents are empty and the offspring contains all 

operations involved. 

 Note that PPX does not work in a uniform-crossover manner due to the 

'deletionappend' scheme used. Example is shown in Fig. 3.11. 

Parent Permutation 1  

Parent Permutation 2  

Select Parent no. (1/2)  

Offspring Permutation  

Fig. 3.11. Precedence Preservative Crossover (PPX) 

Ordered Crossover 

Ordered two-point crossover is used when the problem is of order based, for example in U-

shaped assenyþ)y line balancing etc. Given two parent chromosomes, two random 

crossover points=ãf€selected payti•fiõñïñ7îTiem into a left, middle and right portion. The 

ordered two-point crossover behaves ill the following way: Child 1 inherits its left and right 

section from parent 1, and its middle section is determined by the genes in the middle 

section of parent 1 ill the order ill which the values appear in parent 2. A similar process is 

applied to determine child 2. This is shown in Fig. 3.12. 

Parent 1  

Parent 2  
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Child 1  

Child 2  

Fig. 3.112. Ordered Crossover 

Partially Matched Crossover (PMX) 

PNIX can be applied usefully in the TSP. Indeed, TSP chromosomes are simply sequences 

of integers, where each integer represents a different city and the order represents the time 

at which a citv is visited. Under this representation, known as permutation encoding, we 

are 0111v interested in labels and not alleles. It mav be viewed as a crossover of 

permutations that guarantees that all positions are found exactlv once in each offspring, 

i.e. both offspring receive a full complement of genes, followed by the corresponding filling 

in of alleles from their parents. 

PNIX proceeds as follows: 

l. The two chromosomes are aligned. 
 

2. Two crossing sites are selected uniformly at random along the strings, defining a 

matching section. 

3. The matching section is used to effect a cross through position-by-position exchange 

operation. 

4. Alleles arc moved to their new positions in the offspring. 

The following illustrates how PMX works 

• Consider the two strings shown in Fig 3.13. 

• Where the dots mark the selected cross points. 
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• The matching section defines the position-wise exchanges that must take place in 

both parents to produce the offspring. 

• The exchanges are read from the matching section of one chromosome to that of the 

other. 

• In the example, the numbers that exchange places are 5 and 2, 6 and 3, and 7 and 

10. 

• The resulting offspring are as shown in Fig. 3.14. 

Name 9 8 4 . 5 6 7 . 1 

3 2 1 0 

Allele 1 0 1 0 0 1 1 1 0 

0 

Name 8 7 1 . 2 3 1 0 . 

9 5 4 6 

Fig. 3.13. Strings given 

Allele 1 1 1 0 1 1 1 1 

0 1 

Name 9 8 4 . 2 3 1 0 . 

1 6 5 7 Allele 1 0 1 

0 1 0 . 1 

0 0 1 

Name 8 1 0 1 . 5 6 7 . 

9 2 4 3 

 Allele  . 1 1 1 . 1 0 

0 1 

Fig. 3.14. Partially matched crossover 

Crossover Probability 
 

The basic parameter ill crossover technique is the crossover probability (Pc). Crossover 

probability is a parameter to describe how often crossover will be performed. If there is no 

crossover, offspring are exact copies of parents. If there is crossover, offspring are made 

from parts of both parent's chromosome. If crossover probability is 100%, then all offspring 

are made by crossover. If it is 0%, whole new generation is made from exact copies of 

chromosomes from old population (but this does not mean that the new generation is the 

same!). Crossover is made in hope that new chromosomes will contain good parts of old 
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chromosomes and therefore the new chromosomes will be better. However, it is good to 

leave some part of old population survive to next generation. 

3.3.3 Mutation 

A common view in the GA community, dating back to Holland's book Adaptation in 

Natural and Artificial Systems, is that crossover is the major instrument of variation and 

innovation in GAS, with mutation insuring the population against permanent fixation at any 

particular locus and thus playing more of a background role. This differs from the traditional 

positions of other evolutionary computation methods, such as evolutionary programming 

and clearly versions of evolution strategies, in which random mutation is the only source of 

variation. However, the appreciation of the role of mutation is growing as the GA 

community attempts to understand how GAS solve complex problems. Some comparative 

studies have been performed on the power of mutation versus crossover; for example, 

Spears (1993) formallv verified the intuitive idea that. while mutation and crossover have 

the same ability for disruption of existing schemas. crossover is a more robust constructor 

of new schemas. Nliilllenbeili (1992), on the other hand, argues that in many cases a hill 

climbing strategy will work better than a GA with crossover and that "the power of mutation 

has been underestimated in traditional genetic algorithms." It is not a choice between 

crossover or mutation but rather the balance among crossover, mutation, and seltction that 

is all important. The correct balance also depends on details of the fitnešfúnction and-t-

ÌíãÃ7GÍîKg Furthermore. crossover and mutation vary in relative usefulness over the 

course of a run. Precisely how all this happens still need to be elucidated. In my opinion, 

the most promising prospect for producing the right balances over the course of a run is to 

find ways for the GA to adapt its own mutation and crossover rates during a search. Some 

attempts at this will be described below. 

Mutation is traditionally seen as a background operator, responsible for reintroducing 

inadvertently lost gene values (alleles), preventing genetic drift, and providing a small 

element of random search in the vicinity of the population when it has largely converged. 
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Though it is widely held that crossover is the main force leading to a thorough search of 

the problem space, examples in nature however show that asexual reproduction can evolve 

sophisticated creatures without crossover; for example bdelloid rotifers. Biologists indeed, 

see mutation as the main source of raw material for evolutionary change. 

Schaffer et al (SCLD 1989) did a large experiment to determine optimum parameters for 

GAS. They found that naïve evolution (just selection and mutation) performs a hill climb 

like search which can be powerful without crossover. 

Mutation is applied to each offspring individual after crossover. It randomly alters each 

gene with a small probability (typically 0.001). Mutation provides a small amount of 

random search, and helps ensure that no point in the search space has a zero probability of 

being examined. 

Mutation is an important part of the genetic search. in the sense that it helps prevent the 

population from stagnating at a local optima. Mutation is intended to prevent the search 

falling into a local optimum of the state space. That is mutation helps maintain genetic 

diversity from one generation of a population of chromosomes to the next. Mutation alters 

one or more gene values in a chromosome from its initial state. This can result in entirely 

new gene values being added to the gene pool. With the new gene values, the GA nay be 

able  solution than was previously possible. 

Mutation operators are of many types with the commonest ones being; 

• Flip Bit (Flipping) 

• Boundary 

• Non-Uniform 

• Uniform 
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• Gaussian 

• Interchanging 

• Reversing 

The operators are selected based on the way chromosomes are encoded. 

Flip Bit 

The mutation operator simply inverts the value of the chosen gene. i.e. 0 goes to 1 and 

1 goes to 0. 

This mutation operator (flip bit) can only be used for binarv genes. 

Consider the two original off-springs selected for mutation. 

Original  I 

Original Offspring 2 

Fig. 3.15. Flip Bit mutation 

Invert the value of the chosen gene as 0 to 1 and 1 to O. 

The mutated off-sfrri»g produced are: 
 

Mutexted-Offspring I  

Mutated Offspring 2 

Fig. 3.16. Flip Bit mutation 

Boundary 

This mutation operator replaces the value of the chosen gene with either the upper or lower 

bound for that gene (chosen randomly). This mutation operator can only be used for integer 

and float genes. 

1 1 0 1 1 0 1 0 0 1 

1 0 1 0 
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Non-Uniform 

The mutation operator increase the probability such that the amount of the mutation 

will be close to 0 as the generation number increase. The Non-uniform mutation 

operator prevents the population from stagnating in the early stages of the evolution 

and then allows the genetic algorithm to fine-tune the solution in the later stages of 

evolution. The mutation operator can only be used for integer and float genes just as 

the boundary operator. 

Uniform 

The mutation operator replaces the value of the chosen gene with a uniform random value 

selected between the user-specified upper and lower bounds 101' that gene. Just like 

boundarv and non-uniform mutation operators this operator can also be 0111v used for 

integer and float genes. 

Gaussian 

This mutation operator adds a unit Gaussian distributed random value to the chosen 
 

gene. The new value is clipped if it falls outside of the user-specified lower or upper bounds for 

that gene. This operator is used onlv for integer and float genes. 



 

 

Interchanging 

Two random positions of the strings are chosen and tell bits corresponding to those 

positions are interchanged. This is shown in Fig. 3.17. 

 arent     

 11       

Fig. 3.17 Interchanging 

Reversing 

A random position is chosen and the bits next to that position are reversed and child 

chromosome is produced. This is shown in Fig. 3.18. 

 arent        

 arent      

Fig. 3.18. Reversing 

Mutation Probability 

The important parameter ill the mutation technique is the mutation probabilitv (Pm). The 

mutation probability decides how often parts of chromosome will be mutated. If there is no 

mutation, offspring are generated immediately after crossover (or directly copied) without 

any change. If mutation is performed, one or more parts of a chromosome are changed. If 

mutation probability is 100%, whole chromosome is changed, it is 0%, nothing is clranged. 

Mutation generally prevents the GA from falling into local extreme. 
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3.4 REPLACEMENT 

One of the most important stages of any breeding cycle is replacement which happens to 

be the last stage in the cycle. Once an offspring have been produced, there should be 

replacement which determines the current members of the population, if any should be 

replaced by the new offspring (solution). Two parents are drawn from a fixed size 

population, they breed two children, but not all four can return to the population, so two 

must be replaced. The technique used to decide which individual stay in a population and 

which are replaced in on a par with the selection in influencing convergence. Basically, 

there are two kinds of methods for maintaining the population; generational updates and 

steady state updates. 

The basic generational update scheme consists in producing N children form a population 

of size N to form the population at the next time step (generation), and this new population 

of children completely replaces the parent selection. Clearly this kind of update implies 

that an individual can only reproduce with individuals from the same generation. Derived 

forms of generational update are also used like (X + "-update and (A. "-update. This time 

from a parent population of size p, a little of children is produced of size > p. Then the best 

individuals from either the offspring population or the combined parent and offspring 

populations (for (A. p)-and (A + p)-update respectively), form the next generation. 

In a steady state update, new individuals are inserted in the population as soon as they are 

created, asÃjpposed to the generational update where as entire new generation is produced 

at each time step. he insertion of a new individual usually necessitates the replacement of 

another population member. (it leads to very strong selection pressure). or as the oldest 

member of the population, but those method are quite radical: Generally steady state 

updates use an ordinal based method for both the selection and the replacement, usually a 

tournament method. Tournament replacement is exactly analogous to tournament selection 

except the less good solutions are picked more often than the good ones. A subtitle 

alternative is to replace the most similar member in the existing population. 
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3.4.1 Random Replacement 

The children replace two randomly chosen individuals in the population. The parents are 

also candidates for selection. This can be useful for continuing the search in small 

populations, since weak individuals can be introduced into the populations 

3.4.2 Weak Parent Replacement 

In weak parent replacement, a weaker parent is replaced by a strong child. With the four 

individuals only the fittest two. parent or child, return to population. This process improves 

the overall fitness of the population when paired with a selection technique that selects 

both fit and weak parents for crossing. but if weak individuals and discriminated against in 

selection the opportunitv will never raise to replace them. 

3.4.3 Both Parents 

Both parents replacement is simple. The child replaces the parent. In this case, each 

individual only gets to breed once. As a result, the population and genetic material moves 

around buueacls to a n combined with a selection technique that strongly 

favours fit parents: the fit breed and then are disposed of. 

3.5 SEARCH TERMINATION (Convergence Crite- 

ria) 

The various stopping condition are listed as follows: 

• Maximum generations - The genetic algorithm stops when the specified number of 

generations have evolved. 

• Elapsed time - The genetic process will end when a specified time has elapsed. Note: 

If the maximum number of generation is reached before the specified time has elapsed, 

the process will end. 
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• No change in fitness - The genetic process will end if there is no change to the 

populations best fitness for a specified number of generations. 

Note: If the maximum number of generation has been reached before the specified 

number of generation with •no changes is reached, the process will end. 

• Stall generations - The algorithm stops if there is no improvement in the objective 

function for a sequence of consecutive generations. 

• Stall time limit - The algorithm stops if there is 110 improvement in the objective 

function during an interval of time in seconds equal to Stall time limit. 

The termination or convergence criterion finally brings the search to a halt. The 

following are the few methods of termination techniques. 

3.6 HOW GENETICALGORITHMS WORK 

Although genetic algorithms are simple to describe and program, their behaviour can be 

complicated, and many open questions exist about how they work and for what types of 

problems they are best suited. NIuch work has been done on the theoretical foundations 

of GAS. The traditional theory of GAS assumes that , at a very general level of description, 

GAS work by discovering , emphasizing, and recombining good building blocks of 

solutions in a highly parallel fashion. The idea here is that good solutions tend to be made 

up of good building blocks, combinations of bit values that confer higher fitness on the 

strings in which they are present. Holland (1975) introduced the notion of schemas (or 

schemata) to formalize the informal notion of building blocks. A schema is a set of bit 

strings that can be described by a template made up of ones, zeroes, and asterisks; the 

asterisks representing wild cards (don't cares). For example, the schema H = 1 * * * *1 

represents the set of all 6-bit strings that begin and end with 1 where H stands for 

"hyperplane". H is used to denote schemas because schemas define hyperplanes; planes 

of various dimensions in the I dimensional space of length-I bit strings. 

The strings that fit this template (e.g., 100111 and 110011) arc said to be instances of 
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H. The schema H is said to have two defined bits (non-asterisks) or, equivalently, to be of 

order 2. Its defining length (the distance between its outermost defined bits) is 5. Here the 

term schema is used to denote both a subset of strings represented by such a template and 

the template itself. 

3.7 WHEN TO USE A GENETIC ALGORITHM 

The GA literature describes a large number of successful applications, but there are also 

many cases in which GAS perform poorly. Given a particular potential application, how 

do we know if GA is good method to use? There is no rigorous answer, though manv 

researchers share the intuitions that if the space to be searched is known not to be perfectly 

smooth and uni-modal (consists of a single smooth hill), or is not well understood. or if 

the fitness function is noisy. and if the task does not require a global optimum to be 

 is, if quicklv finding a sufficientlv good solution is enough, a GA will have a 

good chance of being competitive with or surpassing other weak methods. If a space is not 

large, then it can be searched exhaustively, and one can be sure that the best possible 

solution has been found, whereas a GA might converge on a local optimum rather than on 

the globally best solution. If the space is smooth or uni-modal, a gradient-ascent algorithm 

such as steepest-ascent hill climbing will be much more efficient than a GA in exploiting 

the space's smoothness. If the space is well understood, search methods using domain-

specific heuristics can often be designed to outperform any general-purpose method such 

as a GA. If the fitness function is noisy (e.g., if it involves taking error-prone measurements 

from a real-world process such as the vision system of a robot), a one-candidate-solution-

at-a-time search method such as simple hill climbing might be irrecoverably led astray by 

the noise, but GAS, since they work by accumulating fitness statistics over many 

generations, are thought to perform robustly in the presence of small amounts of noise. 

These institutions, of course, do not rigorously predict when a GA will be an effective 

search procedure competitive with other procedures. A GA's performance will depend very 

much on details such as the method for encoding candidate solution, the operators, the 

parameter settings, and the particular criterion for success. 
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3.8 BUILDING BLOCK HYPOTHESIS 

A genetic algorithm seeks near-optimal performance through the juxtaposition of short. low-

order, high-performance schemata, called the building blocks (BBS). 

The building block hypothesis is one of the most important criteria of how a genetic 

algorithm work. The importance of building blocks (BBS) and their role in the working of 

GAS have long ú1Þxecognised Holland, 1975; Goldberg, 1989). Furthermore, the 

following six conditions for a GA success have been proposed (Goldberg, Deb and Clark, 

 

• Identify GAS which are the processing-building blocks. 

• Ensure an adequate initial supply of raw BBS. 



 

 

• Ensure growth of superior BBS. 

• Ensure the mixing of BBS. 

• Ensure good decisions among competing BBS and 

• Solve problems with bounded 13B difficulty. 

One of the important conditions is to make sure that the GA is well supplied with a 

sufficient supply of the BBS required to solve a given problem. It is also equally important 

that proportion of the good ones in the population grow. 

The first and the second task, that is guaranteeing the increase in market share of good BBS 

in a population has been recogmised by Goldberg, Sactry and Laloza, (2001). The usual 

approach in achieving this is the schema theorem (Holland and Dejong (1997)). 

3.9 THE SCHEMA THEOREM 

Considering proportionate selection. single-point crossover. and no mutation the schema theorem 

mav be written as follows 

 

where m(H, t + 1) is the expected number of individuals that represent the schema H at 

generation t + 1, rn(H, t) is the number of individuals that represent the schema H at counts 

generation Q' (H.  fitness value of the individual containing schema H 

at generation t, f(t) is the average fitness of the population at generation t. Pc is the-

cmšsover probabilitv, ô(H) is the defining length defined as the distance between the outer-

most fixed positions of the schema and L is the string length. 

Inspection of the schema theorem and an analysis of proportionate selection and 

singlepoint crossover indicates that the term m(H, t) f( H't) account for the selection and 

the  term {1 — PcH} account for crossover operation. 

t) 
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It should be noted that the term representing the selection operator is exact and inequality 

occurs due to crossover operation. Some factors like crossover between identical 

individuals (self-crossover) are neglected. 

The Schema theorem tells us that the proportion of schemata increases when they have above 

average fitness and relativelv low crossover disruption. 

However, the schema theorem as given by the equation above is restricted to 

proportionate selection and one-point crossover. This concern can be eliminated by 

identifying the characteristic form of schema theorem and substituting appropriate 

terms for other selection schemes and genetic operators. However, the generalized 

schema theorem can alternativelv be written in the form 

 

where (1 — pm account for mutation operations and O(H) is the number of fixed bits in the 

schema. 

These particular schemata are called building blocks and its applications are as follows 

 It provides some tools to check whether a given representation is well-suited to a 

 The analysis of nature of the good schemata gives few ideas on the efficiency of genetic 

algorithm. 

3.10 NO-FREE-LUNCH THEOREM 

The No-Free-Lunch theorem states that without any structural assumption on a search or 

optimization problem, no algorithm can perform better than blind search. 

t) (5(11) .f(H.  



 

68 

To achieve a performance evaluation for an algorithm, it is not sufficient to demonstrate 

its better performance on a given set of functions. Instead of this, the diversity of an 

algorithm should be considered. The total number of possible algorithms as well should be 

computed and compared with the number of algorithms instances that a random search or 

a population based algorithm can have. 

The question now is, how many different algorithms can be provided by such an algorithm 

class, and how does this number behave with respect to the total number of possible 

algorithms? 

The answer gives us a ranking for algorithms according to their smaller or larger number 

of instances. It comes out that by such a ranking, random search is worst, while 

evolutionary approaches are (at least theoreticallv) able to provide anv search sequence 

that is possible which implies that, population-based algorithms are principallv able to 

cover the set of all possible algorithms. 

The No-Free-Lunch theorem also provides information on the following:- 

• the geometric interpretation of what it means for an algorithm to be well matched to 

a problem. 

• brings insigTíKprovided Information theorv into the search procedure. 

•4<1Tjvides that independent of the fitness function one cannot (without prior domain 

knowledge) successfullv choose between two algorithms based 011 their previous 

behaviour. 
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3.11 DISTINCTION BETWEEN GENETIC ALGO- 

RITHMS WITH OTHER OPTIMIZATION 

TECHNIQUES 

Genetic Algorithm differs substantially from all traditional search and optimization methods. 

The four most significant differences are: 

• It operates with coded versions of the problem parameters rather than parameters 

themselves i.e., GA works with the coding of solutions and not with the solution 

itself. 

• Almost all conventional optimization techniques search from a single point but 

Genetic Algorithms always operate on a whole population of points (strings) i.e., it 

uses population of solutions rather than a single solution from searching. This plays 

a major role to the robustness of genetic algorithms. It improves the chance of 

reaching the global optimum and also helps in avoiding local stationarv point. 

• It uses fitness function for evaluation rather than derivatives. As a result. thev can be 

applied to any kind of continuous or discrete optimization problem. The key point to 

be performed here is to identifv and specify a meaningful decoding function. 

• It uses probabilities transition operators while conventional methods for 

continuous optimization applv-f<TiTïTiTßñc transition operators i.e.. GAS do 

not use deterministic rules. 

3.12 THE FLOYD-WARSHALL ALGORITHM 

The Floyd-Warshall Algorithm compute the all pairs shortest path matrix. It uses a 

vectorised version of the Floyd-Warshall function. As in the dynamic programming 
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algorithm, we assume that the graph is represented by an n x n matrix with the weights of 

the edges. 

if i = j 

Wij if i + j and (i, j) E 

if i 74 j and (i, j) 4 E 

Output Format: an n x n distance D [dij] where dij is the distance from vertex i to j. 

The objective is to find an estimate for the infinitesimal values using the Algorithm. 

The algorithm for the Floyd-Warshall is as follows 

Floyd-Warshall (w,n) 

{for i 1 to n do initialise for j I to n do { 

DO[i.j] pred[i,j] nil;} for k 1 to n do

 Dynamic programming 

for i 1 to n do for j — 

1 to n do 

 

else (1k [i, j) (1k—1 [i, j]: 

return dn[l..n. l..n] } 

Chapter 4 

GENETIC ALGORITHM MODEL 

FOR TRAVEL SALESMAN 

(dk-l[i$)  <  [i,  j)) 

— 
Wij 
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PROBLEM (TSP) 

In travelling salesman problem, salesman travels n cities and returns to the starting city with 

the minimal cost, he is not allowed to cross the city more than once. 

The Travelling salesman problem (TSP) can be solved using genetic algorithm (GA) 

because the cities are random. The goal is to find the shortest distance between X different 

container locations. The path that the salesman takes is called a tour. 

Operations of Zoomlion Ghana Limited (Kumasi) has been studied carefully. The oporations of 

this company is to empty containers at eight (8) different sites in Kumasi 

(i.e. Subin  (Asokwa) to the Kuwait dump site popularlv 

known as the Oti dump site with pick-ups and deliverv. 

This operations of the company can be modelled as a Travelling Salesman Problem 

(TSP). This is because all containers picked up at a site must be replaced with a new one and each 

truck can pick only one container at a time. 

A data was collected from Zoomlion Ghana Limited which has been used to create a set 

of routes on which the company must use to minimize the total travelling distance of the 

vehicles. 

Testing every possibility for N city tour would be IV!. This implies testing 8 container 

locations and their central packing space (i.e. Asokwa) making it 9 city tour, we would 

have to measure 9! = 362880 different tours. Calculating 362880 different tours for it fittest 

to determine the minimum distance would take years. 
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However genetic algorithm can be used to find a solution in the shortest possible time, 

although it might not find the best solution, it can find a near perfect solution for a 100 

city tour in less than a minute. 

There are couples of basic steps to solving the travelling salesman problem using GA which has 

been discussed below. 

4.1 MODEL 

The company uses two trucks with a specific capacity of one. container at a time per truck. 

The trucks are all located at their central parking space at Asokwa.The eight (8) specific 

locations of the containers are; 

 KATH Quarters  

'—Okemfo Anokye Teaching Hospital 

 Amak0111 Market 

 Amak0111 Division 

 Central prisons 

 4BN Barracks 

 Central Market 

 Labour 

However, all containers pick-up are to be emptied at only one disposal facility, Landfill site 

(Atonsu Kuwait) 

The schedule of the two trucks and their assigned routes as partitioned are as follows. 

DS represents disposal site at Atonsu Kuwait. (Oti landfill site) 

Truck I: ASOkwa —y  DS KATH Q Central P "IBN  
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Asokwa 

Truck 2: ASOkwa —Y AlllakOIÏ1  Asa.fO —¥  —¥  —Y 

Asokwa 

The total distance travelled by both trucks in emptying all eight (8) containers was found to be 

98.42 km, with 55.28 km for truck 1 and 43.14 km for truck 2. 

4.2 DATA 

Matlab is used to plot the graph of all the 9 cities using their local grid points (coordinates), Table 

4.00, as shown in ig. 4.01 

  

653319.761 739756.815 

651753.257 740794.647 

651302.778 739970.992 

652188.778 739970.953 

652445.851 740402.992 

654557.989 739511.174 

654169.042 739547.516 

651271.065 740208.777 

651286.921 740414.581 

651286.921 740414.579 
Table 4.00: (X,Y) Coordinates 
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Y: 7.408e+05 City Locations 
X: 6.513e+05 
Y: 7.406e+05 

7.408 

7.404 

7.402 

7.4 

7.398 

7.396 

7.394 
 6.54 6.545 

Fig. 40Tõraph Showing the Coordinates 

4.3 ENCODING 

Permutation encoding is used. Numbers are assigned to all the 9 cities as shown below. 

City 1  ABN 

City 2  Komfo Anokye Teaching Hospital (KATH) 

City 3  KATH Quarters 

City 4  Central Prisons 

City 5  Asafo Market City 

6  Arnakom Division 
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City 7  Amakom Market 

City 8  Labour 

City 9  Central Station, Asokwa (i.e. tour starts from city with index 9) 

Table 4.2 shows distance between disposable site at Atonsu Kuwait to the cities (container 

sites) in kilometres. 

  
KATH  KATH Q  Cent. P  Asafo  Amak D  Amak Xl  Labour Asok 

Isposa e 

site (DSS) 6.08 6.10 6.18 5.47 4.76 4.98 4.90 4.88 3.00 

Table 4.01 

Distance square matrix from all container sites in kilometres to the parking space of the trucks 

ler sites that will be required in partitioning 

the tour is shown ill Table. 4.02 

CITY 1 2 3 4 5 6 7 8 9 

1  0.48 O. 54 1.08 2.37 
   

3.81 

2 0.48  0.1 0.73 1.96 
  

00 3.80 

 0.54 0.1  0.82 1.85 
   

3.78 

4 1.08 0.73 0.82  
1.36 2.14 2.56 1.28 2.93 

5 2.37 1.96 1.85 1.36  
1.15 1.57 0.30 1.98 

6    2.14 1.15 
 

0.42 1.30 1.97 

7    2.56 1.57 0.42 
 

0.88 2.03 

8    1.28 0.30 1.30 0.88 
 

2.05 

9 3.81 3.8 3.78 2.93 1.98 1.97 2.03 2.05 
 

Table 4.02 
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The main objective is to find a set of least cost routes such that all containers are emptied. 

Since we cannot work with infinitesimal values in the distance matrix, the Floyd-Washall's 

algorithm is used to find approximate distances between the cities. The distance matrix 

after Flovd-Washall has been applied is shown in Table 4.03 and the corresponding 

distance square matrix is plot using Matlab as shown ill Fig. 4.02 

 

CİTY 1 2 3 4 5 6 7 8 9 

1 
 0.48 O. 54 1.08 2.37 3.22 3.24 2.36 3.81 

2 0.48 o 0.1 0.73 1.96 2.87 2.89 2.01 3.80 

3 0.54 0.10 o 0.82 1.85 2.96 2.98 2.10 3.78 

4 1.08 0.73 0.82 o 1.36 2.14 2.56 1.28 2.93 

5 2.37 1.96 1.85 1.36 o 1.15 1.57 0.30 1.98 

6 3.22 2.87 2.96 2.14 1.15 0 O.42 1.30 1.97 

7 3.24 2.89 2.98 2.56 1.57 0.42 o 0.88 2.03 

8 2.36 2.01 2.1 1.28 0.30 1.30 0.88 o 2.05 

9 3.81 3.80 3.78 2.93 1.98 1.97 2.03 2.05  

Table 4.03 
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4.4 INITIAL POPULATION 

We create a group of many random tours in what is called a initial population. Population 

is a combination of chromosomes . We present the population as array of 1 2 3 4 5 6 7 8 9 

chromosomes which represent all the different container locations and the central packing 

space as 9. 

For each chromosome we calculate the length that is coded into it, actually this is the fitness 

of the tour. Fitness function is nothing but the minimum cost. Initially the fitness function 

is set to the maximum value and for each tour the cost is calculated and compared with the 

fitness function. The new fitness value is assigned to the minimum cost. Initial population 

is randomly chosen and taken as the parent. 
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4.5 CROSSOVER AND MUTATION 

The two main problems for using GA to solve the TSP are choosing the proper methods of 

crossover and mutation that is used to combine the two parent tours to make the child tours. 

The cvclic crossover is used. 

Given a random population of 8 7 9 1 2 3 4 5 chromosome. This means that we start from 

the central packing space we go to container site 1 to site 2 to site 3 to site 4 and to site 5 

or from 9 we go to site 7 to site 8. 

Unlike other methodÁúJf  do not require crossover point. We 

choose the. first gene from one of the parent chromosomes. If our parents arc 

Parent  1 2 3 9 4 5 6 

7 8 Parent 2 > 8469 

12357 

Say we pick 1 from parent 1 

 

We must pick every element from one of the parents and place it in the position it was 

previously in. Since the first position is occupied by I, the number 8 from parent 2 cannot 

go there. So we must now pick the 8 from parent 1 

 Child  * * * * * * * * 8 

This forces us to put the 7 in position 4 as 111 parent 1. 

Child  
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since the same set of position is occupied by 1, 4, 7, 8 in parent 1 and parent 2, we finish bv 

filling in he blanks positions with the elements of those positions in parent 2. 

Thus 

Child 1 . 1 5 2 9 4 3 6 78 

and we get child 2 from the complement of child 1. This type of crossover ensures that 

newly created chromosome is legal. A chromosome is legal if it is constructed according 

to the requirements  problem. In this crossover we notice that it is possible 

for us to encl up with offspring being the same as the parents. This is not a 

it will usually occur if parents have high fitness, in this case it could still be a good chance. 



 

 

To solve the problem of not getting trapped in a local optimum we could use mutation. Due 

to the randomness of the process we will occasionally have chromosomes near a local 

optimum but not near the global optimum. Therefore the better the fitness the less chance 

of hiding the global optimum. So mutation is a completely random way of getting to a 

possible solution that would otherwise not be found. 

Mutation is performed after crossover. The mutation index must decide whether to 

perform mutation on this child chromosome or not. We then choose a point to mutate 

and switch that point. For instance we had 

Child * 1 2 3 9 4 5 6 7 8 

If we decide to choose the mutation point to be gene 2 and 7, the child would become 

Child 7 3 9 4 5 6 2 8 

We simplv switched the places of genes 2 and 7. Another mutation that takes place is 

inverting a sub-tour in our child chromosome. So we have the chromosome 

Child — 1 2 3 9 4 5 6 7 8 

And choose the same mutation points 2 and 7. The sub-tour between these tour point is 

switched in reverseoxder  

Chita--šl 7 3 9 4 5 6 2 8 

After the mutation process the program makes a strict verification of the chromosome. 
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KUMAS ' 
All the non legal chromosome are ignored. 

The idea of the travelling salesman problem is to find a tour of a given number of cities, 

visiting each city once and returning to the starting city where the length of this tour is 

minimized. 

The product finds a solution to the travelling salesman problem. For this purpose we use 

cities, chromosomes and populations, where our cities are the various container sites, 

chromosomes are the individual tours and the population is the combination of all the 

individual tours, i.e. 9! = 362880 tours. 

Each city (container site) is situated on coordinates (x,y) on the map. Fig. 4.01 shows the 

coordinates of all the cities (container sites). In the working process a defined number of 

cities are being created. Then the program solves the travelling salesman problem for these 

cities. 

4.6 FITNESS FUNCTION 

The purpose of the fitness is to decide if a chromosome (tour) is good and how good it is. 

In the travelling salesman problem, the criteria for good chromosome (tour) is the length of 

the chromosome. The longer the tour that is coded, the better the chromosome. Calculation 

takes place during the creation of the chromosomes. Each chromosome is created and then 

it s fitness function is calculated. The length of the tour is measured in pixels bv the scheme 

of the tour. 

fitness tour = di 

where n is the number of cities (container sites) and di is the distance between a city and 

a dump side (DS). 
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Matlab code is used to find the optimal route (tour) which is given as 

769412 3 58 
and its corresponding graph shown in Fig. 4.03 

 

Bearing in mind that the Zoomiion Ghana Limited uses two cars for picking up and 

delivery, the optimal route is rearranged for the two cars as represented below 

Route 1: 769  

Route 2: 4 1 2358 

Rearranged 

9 6 7 9 

94123589 

4.7 OPTIMAL ROUTE WITH DISPOSABLE SITES 

The optimal routes after they have been rearranged is as follows. This is done together with 

the disposal sites, represented by DS. Route 1: 9 6 DS 7 —y DS —+ 9 

Route 2: 9 4 —y DS  1 —y DS —y 2 —+ DS 3 DS _+ 5 DS 8 DS 9 

Total distance for route 1 is calculated to be 18.72 km and total distance for route 2 is 

Fig.  4.03 
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66.22 km, hence the total distance of the two trucks is 84.94 km. 

The fitness tour was calculated based on the following assumptions being used by Zoomlion 

Ghana Limited, Kumasi. 

 Two trucks are used to empty the containers. 

 All containers are emptied at only one disposable side (Atonsu Kuwait). 

 There is enough space at each container site for one additional container to be placed 

there. 

 All the two trucks have the same capacity and that each truck can pick only one 

container at a time. 

 There are no traffics and other constraints after a tour has been established. 

Then the optimal tour from the population depends on 

 The shortest distance from the starting point to any of the pick-up location 

(container site). 

 All the distances from the dis osal site to the cities (pick-up) locations gives the 

minimum fitness value. 

4.8 PERFORMANCE COMPARISON 

Samson et al (2012) used the Ant colony algorithm and carne out With four different feasible 

partitions for the 8 container location With each partition providing two routes. 

Partition 1: ABN -Y KATH -+ KATH Q -+ Cent P —Y Asokwa Asafo 

Amakom D —+ Amakom M —¥ Labour —+ Asokwa 

Partition 2: ABN -Y KATH -+ KATH Q -+ Asafo -+ Asokwa 

Cent P —Y Amakom D —Y Arnakom M —+ Labour —Y Asokwa 
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Partition 3: ABN KATH -+ KATH Q -+ Asokwa 

Cent P —+ Asafo —Y Amakom D —+ Amakom M —+ Labour —Y Asokwa 

Partition 4: 'IBN —Y KATH —+ KATH Q —Y Cent P —+ Asafo —+ Asokwa 

Amakorn D —+ Amakom M —+ Labour —Y Asokwa 

Each pair of the routes under a Single partition was run With the ant colonv algorithm 

to obtain the total distances for TSP tours. 

 

Partition 1  
1 

2 

53.52 km  

43.00 km 

96.52 km 

Partition 2  
1 

2 

50.20 km  

 

94.60 km 

Partition 3  
1 

2 

44.28 km  

53.92 km 

98.20 km 

Partition 4  
1 

2 

61.14 km  

33.46 km 

94.60 km 

Table 4.04 

Hence they concluded that an optimal routing which reduces the total distance of 

Zoomlion Ghana Limited, Kumasi is achieved to be Partition 2 or 4. This reduces the 

total distance by 3.82 km. However using the genetic algorithm, it has been proven that 

the total distance to be covered by the two trucks is 84.94 km Which reduces the total 

distance travelled by the company by 13.48 km. 
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Chapter 5 

CONCLUSION AND 

RECOMMENDATION 

5.1 CONCLUSION 
Genetic algorithms can be applied to solve combinatorial optimization problems (COPs) 

such as TSP. Genetic algorithms can find optimal solutions among the search space with 

the operators like crossover and mutation. Thev are not instantaneous, but can perform an 

excellent search. In this work. Genetic algorithm is tested to find the optimal route for the 

TSP which shows the superioritv of Genetic Algorithm to Ant Colonv Algorithm. 

It is also proven that if the company in retrospective uses this work, they would be able to 

reduce their operational distance by 13.48 km thereby reducing their cost of fuelling their 

trucks which will intend reduce the cost of operations of the company. We are of the view 

 work if adopted would increase the profit margin of the companv and as well 

help the companv to improve remuneration of all staff members of the company. 

5.2 RECOMMENDATION 
As an efficient optimization tool for combinatorial optimization problems, Genetic 

algorithm is very useful for solving problems which can be modelled as the TSP, thereby 

finding the optimal distance. In light of this capacity of the genetic algorithm, it is 

recommended that the GA should be used to solve Travelling Salesman Problem (TSP) 

instead of other traditional heuristic methods. 

The following recommendations should also be considered by the company; 
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• It is advised that one personnel should not be allowed to ply only one route to ensure 

fairness. 

• It is also recommended that the operations of Zoomlion i.e. (pick ups and delivery) 

should be done after 10:00 pm where there will be no traffic congestions. 

• In future work, due to the success of the GA in this research, it is recommended that 

Genetic Algorithm should be considered for waste management problems in 

Ghana at large. 
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