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Abstract 

In this thesis,we focus on using the Homotopy Analysis Method (HAM) to 

Fredholm and Volterra integral equation of the second kind.The HAM is based on 

homotopy,a fundamental concept in topology and differential geometry.After the 

classification of these integral equations ,we take a look at a review of integral 

equation and Homotopy Analysis Method (HAM) coupled with theories and 

definitions of homotopy theory.The description of the method (HAM) to solve 

Fredholm and Volterra integral equations is analyzed.In this method one 

constructs a continuous mapping of an initial guess approximation to the exact 

solution of considered equation.Application of the HAM to some examples of 

Fredholm and Volterra integral equations is carried out together with the 

auxiliary parameter } ,which controls the convergence rate of the series solution. 

After the realization of the exact solution of the various considered equations, 

MATLAB,a computational software is used to produce graphs of the various exact 

solutions which shows the convergence of the series solution. 
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Chapter 1 

INTRODUCTION 
Integral equations(IEs) which is encountered in both pure and applied 

mathematics plays an essential role in modern scientific disciplines such as 

numerous problem in mass and heat transfer, elasticity, fluid dynamics, oscillation 

theory, medicine, economics, filtration theory, electrical engineering, and 

mechanics (Polyanin and Manzhiric, 1998) and (Jerri, 1999). An initial value 

problems found in equations like ordinary differential as well as partial 

differential equations is treated in a better way by the methods of integral 

equations. The subject of integral equations (IEs) has received serous attention 

by researchers in modelling and in solving physical problems in science. Integral 

equations (IEs) which presents itself in the form, most essential tools in numerous 

areas of pure analysis . The exact solutions to integral equations present a useful 

part for better understanding of many physical problems that affect the 

environment and man in the field of science (Polyanin and Manzhiric,1998). 

1.1 Historical background of integral equations 

This concept of IE was introduced by du Bios−Reymond in 1888. Before that 

however there had been equations of this form. A classical example is the Laplace 

equation in 1782 which used the integral 

  (1.1) 

The general form is given below 

  (1.2) 
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The following are the different parameters in (1.2) for a given integral equation. 

Free term:h(x) free or forcing term in the equation. It is known and continuous. 

Unknown function: Ψ(x) is to be determined. 

Kernel: T(x,t) kernel,is known continuous function defined as appear in the 

square R: f ≤ x ≤ g, f ≤ t ≤ g of the (x,t)- plane. 

Limits: f(x) and g(x), the limits of integration. 

Investigative parameter: λ is a parameter which is introduced to determine 

variation of the problem . we vary λ to get the solution of the integral 

equation(Wazwaz, 2011). 

An IE is said to be an equation where an unknown function to be determined 

comes under one and more integral signs of the equation. Differential equations 

and integral equations have some close connections. 

1.2 Integral equations (IEs) 

1.2.1 Kinds of Integral Equations (IEs) 

Integral equations are of four types. We have two main classes which this work 

intends to solve (the Fredholm and the Volterra integral equations (FIE and VIE)) 

and two other types (Singular integral and integro-differential). 

(1) The Fredholm’s type (FIE) 

Here the integral equation presents itself in a way where the limits f and 

g associated with the integration are fixed (Wazwaz, 1997) or closed bounded set 

in Rn, for some n ≥ 1 as shown below 

  (1.3) 

(i) where g(x)=1, then (1.3) becomes 
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  (1.4) 

this equation is second kind of Fredholm type of integral equation . 

(ii) When the function g(x)=0, the (1.3)simply becomes 

 = 0 (1.5) 

and this is the first kind of Fredholm type of integral equation. 

(iii) Where g(x) is not 0 or 1 then equation (1.3) is said to be the third kind of 

Fredholm integral equation. Wazwaz(1997, 2011) . 

(2).The Volterra’s type (VIE) 

Here the Volterra type (VIE) is as shown below 

  (1.6) 

Thus, Ψ can be represented linearly and nonlinearly under integral sign and this 

kind of equation have the upper limit being variable. 

(i) Where g(x)=1, then equation (1.6) yields 

  (1.7) 

and (1.7) is the second kind of Volterra equation. 

(ii) But when g(x)=0, (1.6) simply yields 

 = 0 (1.8) 

And (1.8) is the first kind of Volterra integral equation. 

(iii) Where g(x) is not 1 or 0 then (1.6) is the third kind of volterra 

integralequation as can be found in (1.6) Burton(2005) and 

Wazwaz(1997,2011) 
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3. The Singular type 

This is the type of integral equation where the limits either one or both limits or 

the kernel is infinite in the integration 

.Then example below 

  (1.9) 

is the second kind of singular integral equation 

(i) It is refered to as weakly singular integral equation, if it appears below 

  (1.10) 

or  

F(x,t) = T(x,t)ln|x − t|α (1.11) 
And where T(x,t) is bounded, f ≤ x ≤ g and f ≤ t ≤ g with T(x,t) 6= 0, and a constant 

0 < α < 1. 

For example 

 1 (1.12) 

is known to be a generalized Abel’s IE with a weakly singular kernel. 

(ii)The Strongly singular integral equations: 

When F(x,t), the kernel is given below 

  (1.13) 

It is strongly singular and T(x, t)6=0 , is a function which is differentiable of (x,t). 

4.The Integro-differential equations: 

The unknown function f to be determined comes as both ordinary derivative and 

under the integral sign. For example, see (1.14) 

 (0) = 1 (1.14) 



 

5 

 (0) = 1 (1.15) 

Equation (1.14) is Fredholm type and 1.15 is Volterra type of the equation 

(Burton, 2005). 

1.2.2 The Linearity of integral equations 

Here the linearity of an integral equation is defined with respect to how linear the 

function Ψ to be determined is in the integral sign 

(i) The IE is called linear if it is seen in (1.16) below 

  (1.16) 

The unknown function Ψ under integral sign is of exponent one. 

As seen in (1.17) below 

  (1.17) 

the function Ψ, the unknown function presents itself in a linear form. That is with 

power one 

(ii). For integral equations to be Nonlinear, it is as shown in (1.18) below 

  (1.18) 

thus, Ψ inside the integral sign has exponent other than one, Wazwaz(1997, 

2011). 

1.2.3 Homogeneity of integral equations 

As regard to homogeneity, if we set the free term h(x)=0, the resulting integral 

equation is homogeneous, for if h(x) 6= 0 is then called a non-homogeneous 

integral equation. 

i. Homogeneous integral equation : 
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If the function h(x), the free term of integral equation is equal to zero, for example 

  (1.19) 

this type is called homogeneous ii. For the Non 

homogeneous integral equation: 

Where h(x) of this type of integral equation , we have h(x) 6= 0, then this type is 

refered to as non-homogeneous. 

as shown 

  (1.20) 

Where h(x) 6= 0. 

this type is typical of equations of second kind only. 

1.3 Kinds of kernels 

1. Cauchy kernel. F(x,y) is cauchy when appears as in (1.21) below 

  (1.21) 

thus T(x,y) is a differentiable function of (x,y) with T(x; y)6=0, if the integral 

equation is seen as a singular equation which has cauchy kernel 

(2). We say F(x,y) is separable or degenerate kernel where the kernel is 

presented as the sum of finite number of terms and each of which is the product 

of a function of x and y only(Wazwaz,1997). 

Thus, 
k 

F(x,y) = Xai(x)bi(y) 
i=0 

The function ai(x) and bi(y) are linearly independent. 

(1.22) 



 

7 

3. Abel’s kernel. If the kernel F(x,y) is of form 

  (1.23) 

Where 0 < α < 1 and the function T(x,y) can continuously be differentiable. And 

this integral equations which have this kind of kernel are refered to as Abel 

integral equation. 

4. In the case where the kernel is in the(1.24) below is called Hilbert Kernel. 

Where the real variables x and y are Hilbert Kernel and are closely connected 

to the Cauchy kernel as they are in the unit circle 

 ] (1.24) 

  (1.25) 

where t=eiy , τ=eix 

5. When we have the kernel in the form as shown in (1.26) such type of kernel is 

called Skew-symmetric kernel. 

 F(x,y) = −F(y,x) (1.26) 

6. Symmetric (or Hermitian) kernel. The kernel F(x,y) is called symmetric 

if 

 F(x,y) = F ∗(y,x) (1.27) 

the asterisk in (1.27) represents the complex conjugate. This coincides with the 

definition F(x,y) = F(y,x) for a real kernel. 
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7. Kernel F(x,y) is Hilbert-Schmidt kernel. ,for every x, y , f ≤ x ≤ g and f ≤ y ≤ g, 

is such that 

  (1.28) 

And for each value of x in f≤x≤g, is 

  (1.29) 

Also for each value of y in f≤y≤g, is 

Z g 

 

|F(|x,y)|2dx < ∞ (1.30) 
f 

And there is a finite value and the kernel in this instance is called regular kernel 

and the corresponding integral equation is refered to as regular integral equation. 

1.4 Review of spaces 

Definition 1.4.1. A space is known to be a vector or linear space if it contains 

these properties: 

1. There should be C a field of scalars. 

2. Vectors of a set X of objects. 

3. There are vector addition,an operation which gives for each pair of vectors x, y 

in X a vector x+y in X,refered to as the sum of x and y, such that, 

(i) Commutativity of addition ,x+y = y+x. 

(ii) Associativity of addition,x+(y+z) = (x+y)+z. 

(iii) A unique vector 0 in K, known as zero vector, where a+0=a for all a in X. 

(iv) For each vector x in X there is a unique vector -x in X, such that x+(-x) = 0 

4. An operation known as scalar multiplication, which takes for each scalar a in C 

and vector y in Y to a vector ay in Y, this is the product of a and y, which 
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presents: 

(i) 1y=y, for every y in Y, 

(ii) (a1a2)y = a1(a2)y. (iii) a(x+y) = ax+ay. iv) (a1 + a2)y 

= a1y + a2y 

Definition 1.4.2. Vector norm on X. Let X a vector norm be a function on k.k from 

X into C, (where k.k represents the norm , X contains objects called a set of vectors 

and C a scalar field) where object x∈X is represented by kxk which contains these 

(i) kxk≥ 0 for all x∈X 

(ii) kxk=0, if and only if x=0 

(iii) kαxk=|α|kxk,for all α∈C and x∈X 

(iv) kx+yk≤ kxk +kyk (triangular inequality) 

For instance,as R represents set of all real,there is a vector norms from Rk into 

R,where 

kxk∞ = max kxik : 1≤i≤k and the 

Euclidean norm 

  (1.31) 

for the vector X =(x1,...,xk) 

Definition 1.4.3.Let X a space be a vector space.For if there is a norm space which 

is defined on the space such that, the space is represented by (X,k.k) 

Definition 1.4.4. Cauchy SequenceWe say a sequence is Cauchy if the elements 

in that sequence arbitrary become close to each other as the sequence progresses. 

A sequence(xn) can also be said to be a Cauchy sequence, for each 

>0 if there is a positive integer N,for all real numbers such 

that 

  (1.32) 
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In any metric space X,we can define Cauchy sequences as the absolute value |xmxn| 

is replaced by the distance d(xm,xn), as d:X × X −→ R. 

Definition 1.4.5.Complete Space or complete Banach space is a complete normed 

vector space.A Banach spaces is the finite-dimensional vector spaces Rn which 

contain the maximum norm kxk = max|xi| : 1 ≤ i ≤ n and the Euclidean norm 

  (1.33) 

for the vectors X = (x1,..., xn) 

Definition 1.4.6. If X is Banach space for x0∈X and r > 0, the set 

B (x0, r) x ∈ X : kx - x0k≤ r 

is refered to (closed)ball of X with the centre x0 and the radius r. A set t ⊂ X is 

called 

Bound if can be found in a ball of X 

Open if there is any x0 ⊂ t and for r>0 such that B(x0, r) ⊂ t 

Closed if (xn) ⊂ t, xn −→ x implies x ∈ t 

It is relatively compact for every sequence (xn)⊂ t there is a convergent 

subsequence and the limit in X not necessarily belong to it. Compact if t is closed 

and relatively compact. 

A set t⊂X is closure t for the smallest closed set containing S.A set t⊂ X is called 

dense in X,if t = X. 

Theorem1.1.1:The sequence of vectors xk converges to x in Rn with respect to 

 for each n=1,2,...,k 

Definition 1.4.7. Inner product and Inner product space. Consider an inner 

product on X,which is a function. X is a vector space over K which is either R and 

C such that h.,.i : X×X −→ K Which gives for every h x, yi∈ X2 a value in K 

represented by h x, yi where the following properties fulfilled. 

1. positivity:h x, xi ≥0, for h x, xi=0 if and only if x=0. 
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2. Conjugate Symmetry h x, yi=hy,xi if K = R then hx, yi=h y, xi 

3. For Linearity, Let the vector y∈ X is fixed and for the first variable for all a, b 

∈ K, h ax1+ bx2, yi = ah x1, yi + bh x2, yi and again the pair (X,h.,.i) called inner 

product space over K. where K=C is complex inner product space,while if K = 

R is a real inner product space. For instance the L2 inner product on L2([a,b]) 

as shown below 

  (1.34) 

for 

f,g∈L2([a,b]) 

Definition1.4.8. The Linearly independent functions. By linear independence 

of set of functions ai’s it is meant that, if c1a1+c2a2+...+cnan=0 Where ci’s are 

arbitrary constants, then c1=c2=...=cn=0. 

Definition 1.4.9. L2-functions and L2-spaces. L2 function is a complex-valued 

function f(x) of a real variable x on an interval (a, b), and such that in the Lebesgue 

sense 

  (1.35) 

In Lebesgue sense, the set of all such functions is referred to as the function space 

L2 [a, b], 

  (1.36) 

And complex numbers C. Two L2 -function f and g which are equal for ’ almost all ’ 

values of x,that is , except for values of x being Lebesgue measure zero, are 

equivalent. Thus, f and g are equivalent if 

 = 0 (1.37) 
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And the function h(x) (a ’ null function ’)which is zero almost everywhere will not 

be different from the zero function 

 = 0 (1.38) 

For this convection, L2-function presents a complete inner product space with 

regard to the inner product(1.34). 

Furthermore, the space L2,with an appreciate norm and inner product, is an 

example of a Hilbert Space. We define the L2 norm of an L2-function as 

  (1.39) 

Definition 1.4.10.Delves and Mohammed(1885)Regularity conditions. 

there is two-dimensional kernel function K(x,y).there exist L2-function , if these 

conditions are fulfilled 

(i) And values x, y in the square f≤ x≤ g, f ≤ y≤ g, 

 , (1.40) 

(ii) And values x in f≤x≤g, Z g  

|K(x,y)|2dy < ∞, 
f 

(iii) And for values of y in f≤y≤g, 

Z g 

(1.41) 

|K(x,y)|2dx < ∞ (1.42) 
f 

And the condition shown is known as the regularity conditions on the kernel 

K(x,y) . 
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Definition 1.4.11. Measurable functions 

The functions are structure-preserving functions between measurable spaces , 

and for this reason, a natural context are form for integration theory specially a 

function which is between measurable spaces is refered to as measurable if the 

preimage of each measurable set is measurable. 

Definition 1.4.12. Lp-Space 

Lp-functions is refered to as a generalized L2-spaces if p≥1. The measurable 

function r must be p-integrable,instead of square integrable, for r to be in Lp. For 

measure space X, the Lp norm of a function r is as 

  (1.43) 

The Lp-functions are the functions where integral above converges.Consider p6=2, 

the space Lp-functions is known as Banach space which is not a Hilbert space. 

In the case where p=∞, we have L∞(D) defined as {r : measurableinDandkrk∞ < 

∞}, 

Where 

 kfk∞ = inf sup|f(x)| : x ∈ S,s ⊂ D, (1.44) 

have Lebesgue measure and of the set S=0 . 

Definition 1.4.13. A space C(R) is a vector space and r:R−→ K, continuous 

functions , where K stand for R or C. And C[0,1] consists of all continuous functions 

r:[0, 1]−→F, 

 krkc[0,1] = krk∞ = max|r(x)| (1.45) 

,for 

0≤x≤1 
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Theorem 1.1.2. (Arzela-Ascoli) 

Consider set F⊂ c[0, 1] is called relatively compact in c[0, 1] if and only if these 

two conditions are satisfied: 

(i) Functions r∈F are uniformly bounded, when there is a constant c such that 

|r(x)|≤c for all x∈[0, 1], r∈F. 

(ii) Functions r∈F called equicontinuous,where there is ε>0 we have a δ>0 such 

that, x1,x2∈[0, 1], |x1 − x2| 

≤ δ 

Implies 

|r(x1)-r(x2)|≤ ε for all r∈F see Delves and Mohammed(1885). 

1.5 Review of Operators 

Definition 1.5.1.(Zwiebach, 2013) Let an operator A:X−→Y assigns to every 

function r∈X a function Ar∈Y. This is a mapping which is between the two function 

spaces X and Y. When there is a range on the real line or in the complex plane, here 

the mapping is usually a functional instead of an operator. 

A linear map refers to a kind of function that takes one vector space A to another 

vector space B. If the linear map takes the vector space A to itself. Such a linear 

map is a linear operator. 

Definition 1.5.2.(Zwiebach,2013). A linear operator T on a vector space A is a 

function that takes A to A with the properties: 

1. T(x+y) = Tx+Ty, for all x, y ∈A. 

2. T(cx)= cTx, for all c∈F and x∈A 

L(A) is called the set of all linear operators that act on A. Let consider some 

examples of linear operators: 

(i) Let A denote the space of real polynomials p(x) of a real variable x with real 

coefficients.Let consider these two linear operators: 
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• Let T denotes differentiation : Tp = p0. This operator is linear because 

. 

• Let S denote multiplication by x:Sp=xp. S is also a linear operator. 

(ii) In the space F ∞ of infinite sequences define the left-shift operator L by 

L(a1,a2,a3,...) = (a2,a3,...) and this is consistent with linearity as we loose the first 

entry. And for the rightshift operator R that acts as follows: 

R(a1,a2,...) = (0,a1,a2,...). 

The first entry in the result could not be any other number except zero because 

the zero element(a sequence of all zeroes)should be mapped to itself and thus, by 

linearity(Zwiebach, 2013). 

Definition 1.5.3. The Linear Operator 

Consider X and Y as two vector spaces, if A: X−→Y where A which is defined on the 

values in X and in Y is linear operator if; A(r + s) = Ar + As, A(αr) = αAr for all r, s 

∈X and α∈R or C. Let now consider X and Y as normed spaces. And where an 

operator A: X−→Y is continuous if krn − rkx−→ 0 Implies kArn − Arky−→ 0 A linear 

operator A: X−→ Y is continuous if it is bounded, and have a constant c where 

kArky ≤ Ckrk . 

1.6 Objectives of the study 

This work is geared towards using homotopy analysis method (HAM) to solve 

integral equations. The research intends: 

(1) To examine the effectiveness of the homotopy analysis method(HAM). 

(2) To demonstrate iteratively the series solution of integral equation using 

homotopy analysis method(HAM) 

(3) To assess the effectiveness of convergence control parameter } to the solution. 
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1.7 Limitition and Scope 

1.7.1 Limitition of Study 

This research suffers some contraints of time and a crucial limitation is that of 

inadequate financial resource as well as material resources such as computer 

hardware and textbooks to help facilitate the execution of the study. 

1.7.2 Scope of Study 

This study would be confined to the existing works of researchers and 

academicians in the field under study, seasoned textbooks as well as some useful 

internet resource. Knowledge on LATEX which would be used to produce this 

work as well as MATLAB, a computer software would be of imperative advantage. 

1.8 Notations Used 

IEs...............Integral equations 

FIEs.............Fredholm Integral Equations 

VIEs.............Volterra Integral Equations 

HAM............Homotopy Analysis Method 

H(x, t)...........Kernel function 

λ...................Investigative Parameter 

}...................Convergence control parameter 

L...................Linear Operator N...................Non linear 

operator 

p...................Homotopy parameter 

H(x)..............Auxiliary function independent of p 

1.9 Organisation of the Thesis 

The dessertation of this thesis is composed of the following chapters: 
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• Chapter 1: Introduction 

• Chapter 2: Literature Review 

• Chapter 3: The Homotopy Analysis Method(HAM) 

• Chapter 4: Application of HAM 

• Chapter 5: Summary and Conclusion  
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Chapter 2 

LITERATURE REVIEW 

2.1 Introduction 

In this facet, a brief review of relevant literature is introduced. It encompasses a 

summary of abstracts on integral equations(IEs) and homotopy analysis 

method(HAM) and brief gloss over the concept of homotopy function. 

2.2 Integral Equation And Homotopy Analysis 

Method(HAM) 

There many biological or physical systems that leads to linear or nonlinear 

Fredholm and Volterra integral equations(FIEs and VIEs) either first or second 

kind(Abu jarad, 2009). Solving integral equations(IEs) analytically are usually 

difficult, so there is a need for a method that will effectively deals with mathematical 

problems which gives answers to many physical problems confronting humanity. 

There have been many publications of various aspects of integral 

equations(IEs) see(Jerri, 1999), (Cochran, 1972), (Ren, Zhang and Qiao, 1999), 

(Zabreyko, 1975), (Polyanin and Manzhirov, 1998), (Wazwaz, 2011), (Dariusz 

Bugajewski, 2003), (Rahman, 2007) . The solution of an integral equation(IEs)can be 

traced in Abel(Kline, 1972), (Abel, 1823) and (Abel, 1826) see (Abel, 1973). Many 

numerical and analytical methods for solving IEs, as in (Maleknejad and Mahmoudi, 

2004), (Burton, 2005), (Maleknejad and Sohrabi, 2007), (Adawi, Awawdeh and 

Jaradat, 2009)and recently, (Bazm and Babolian, 2012), (Nemati, Lima and 

Ordokhani, 2013), (Shirin and Islam, 2010), (Aziz, Siraj-ul-Islam and Khan, 2014), 

(Aziz and Siraj-ul-Islam, 2013). A review of homotopy analysis method, advances in 

homotopy analysis theorem(Liao, Abbasbandy, Shivanian, Motsa , Sibanda, 
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Van Gorder, and Vishal, 2013). Introducing a solution for integral equation by 

HAM (Abu jarad,2009), (Adomain, 1988). 

A powerful technique such as Reducing Initial Problem and Boundary 

Value Problem to VIE and FIE and Solution of Initial Value Problem by Habeeb 

Khudhur Kadhim see (Kadhim,2015). This report employs an analytic technique 

known as (HAM)for both linear and nonlinear types equations(Abu jarad,2009), 

(Khader, Kumar and Abbasbandy, 2013). The proposed homotopy analysis 

technique for solving nonlinear problem see (Liao, 1992). As introduced by Liao 

on the definitions, theorems and notes on the homotopy analysis method see 

(Liao, 2009), and the usage the method for the treatment of integral and 

integrodifferential problems see(Hossein Zadeh and Jafari and Karimi, 2010). In 

the application of HAM (Vahdati and Zulkifly Abass and Ghasemi, 2010) 

analytically solve problems involving integral equations . The method ensures 

convergence of series solution easily which presents the (HAM) as an effective 

method for complicated problems(Liao, 2009). And the (HAM)(Abu jarad,2009) 

solves the equations by its own techniques, and it does not necessarily have to 

resort to any advanced mathematical tools, that is, its methodology is 

understandable and can easily be implemented, and should be accepted easily in 

the field of engineering(Abu jarad, 2009). 

This method (HAM) does not need any modification in moving from 

linear to nonlinear case. The (HAM) which is derived from homotopy, a basic 

concept in topology and differential geometry. In dealing with the (HAM)(Abu 

jarad,2009) a map is contructed continuously starting with an initial value, 

iterating the result from each step to the exact answer of considered equations. 

For the series solution to converge, an auxiliary parameter is introduced. There is 

a great laxity in selecting auxiliary linear operators and initial approximation as 

result a nonlinear problem can be changed into infinite number of simplier linear 

sub problems see(Abu jarad, 2009), (Vahdati et al, 2010), (Hossein Zadeh et al, 

2010) (Liao, et al., 2013) and (Liao and Tan, 2007). 



 

20 

2.3 Homotopy function 

In homotopy,when two continuous functions from a particular topological space 

to another is refered to as homotopic,means one the function can be deformed 

continuously into another function, and this kind of deformation is known as 

homotopy between the two functions.Here some definitions are introduced that 

precisely define homotopy. 

Definition 2.3.1.(Adams and Franzosa, 2008). Consider Y as a topological space 

and B as a subset of Y. A continuous function g : Y → B is refered to as a retraction 

from Y onto B, where g(b)= b for each b ∈ B. In other words, where there is a 

retraction of g : Y → B, then B is called a retract of Y. 

Examples 2.3.1.(Adams and Franzosa, 2008).Consider m, n : R−→R be two 

continuous, real functions. Then m ' n. To show , define a function H: R×[0, 1]−→R 

by H(x, t) = (1-t).m(x) + t.n(x). Cleary, H is continuous,which is a composite of 

continuous functions. Thus, H(x,0) =(1-0).m(x) + 0.n(x) = m(x), and H(x,1) = (1-

1).m(x) + 1.n(x) = n(x). Thus , H is a homotopy between m and n. And this explains 

why any continuous map h : R−→R being nullhomotopic If f is homotopic to a 

constant map, that is, if f 'consty , for some y∈Y, then we say that f is 

nullhomotopic. 

In generalizing the example, let consider the following definitions. 

Definition 2.3.2.. Consider f, g :X−→Y a continuous functions. Let I=[0, 1] contains 

a subspace topology it inherits from R and that X×I which has a product topology. 

The f and g are homotopic if there exists a continuous function F: X×I−→Y such 

that F(x, 0) = f(x) and F(x, 1) = g(x), such a function F is called a homotopy between 

f and g. The expression f 'g shows f and g are homotopic, as shown in figure 2.1 

below 
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Figure 2.1: A homotopy deforms map f to map g 

. 

Here g and f are two functions that deforms the space X into space Y and 

g is homotopic to f (Adams and Franzosa, 2008). Theorem 2.3.1 Homotopy is said 

to be an equivalence relation on map(X, Y). 

Proof: Here look at the relation being reflexive, symmetric, and transitive. To 

show that ' is reflexive, let f : X−→ Y be a continuous function.Define a homotopy 

F : X×I−→Y by F(x, t) = f(x). Then F(x, 0) = f(x) and F(x, 1) = 

f(x), implies f ' f. 

To show ' is symmetric follows that if F(x, t) is a homotopy between f and g, then 

G : X×I−→Y , defined by G(x, t) = F(x, 1-t), is a homotopy between g and 

f. So f ' g implies g'f. 

To show that ' is transitive, Let f, g and h be continuous maps from X to Y. Suppose 

that f is homotopic to g via the homotopy F and g is homotopic to h via the 

homotopy G. Then , as illustrated in Figure 2.2, define a function H : 

X×I−→ Y by 

 ) for 0  

  1) for  
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For t = , the expressions F(x, 2t) and G(x, 2t-1) both equal g(x) and hence 

they agree on the set where they are both used in the definition. It follows 

 

Figure 2.2: Forming H from F and G 

that H is continuous by the Pasting Lemma. Since H(x, 0) = f(x) and H(x, 1)= h(x), 

then the prove that f = g and g = h imply f = h, shown in Figure 2.2 above and 

proved in Adams and Franzosa(2008) 

Proof,By example 2.3.1, and by convexity. Let’s take X, Y spaces to be two 

topological spaces, then(X, Y)a map is the set of all continuous maps from X to Y. 

Definition 2.3.3.(Adams and Franzosa, 2008). For a subset B⊂Rn to be convex, 

when given any two points m, n ∈B refer to as straight line segment from m to n 

is contained in B, where (1-t)m + tn ∈ B, for every t∈[0, 1]. 

Preposition 2.3.1.(Adams and Franzosa, 2008) Consider A to be a convex subset 

of Rn which contains the sub-space topology, and X be any topological space. 

Thus any two continuous maps f , g: X−→A are homotopic. 

Preposition 2.3.2.If the space Y is contractible, then any map to this space f: X 

−→Y is nullhomotopic. 

Proof : By composing the map f with the homotopy taking Y to a point and obtain 

a homotopy of f and the constant map to that point. 
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Chapter 3 

Methodology 
The Homotopy Analysis Method (HAM) to Fredholm and Volterra Integral 

Equations (FIEs and VIEs) 

In this thesis, an application of the method known as (HAM) is employed to solve 

linear and nonlinear second kind of (FIEs and VIEs). In 1992, Liao proposed this 

method. The method helps us to get the solution of considered equations by 

summing the infinite solution series, ususlly converges to the exact solution. The 

method comes from homotopy, an aspect of topology. This HAM, a construction of 

continuous mapping with an initial guess and iterating with solution series of a 

given equation to arrive at the solution.The method allows the choosing of 

auxiliary linear operator as bases for constructing this continuous mapping and 

the method employs auxiliary parameter which helps to ensure the solution 

converges(Liao, 1997). The HAM again allows for the selection of initial 

approximation and auxiliary linear operators to obtain the required result which 

is valid for small and large parameters. A very important method and here the 

study treats nonlinear and linear Fredholm and Volterra equations by iteratively 

deforming the given equations to get series solutions where their sum give the 

exact solution. (Abu jarad, 2009)and (Adawi et al, 2009). Let 

Z 

 y(x) = g(x) + λ H(x,t)dt (3.1) 
a 

In the equation (3.1) the upper limit is either variable or fixed depending whether 

it is Fredholm or Volterra type of integral equation(Wazwaz, 1997). λ, H(x, t) and 

g(x) are all parameters which are known of (3.1), whereas y is to be determined 

(Vahdati et al, 2010). 
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3.1 The description of the method 

Let the following equation 

N[y(x)]=0 

Where N in the equation above is nonlinear operator, y(x) that is unknown 

function,and y0(x) represents an initial value of y(x). In order to construct the 

homotopy,there should be L which is the auxiliary linear operator that have a 

property L[y(x)] = 0 for y(x)= 0. As p∈[0, 1] is embedding homotopy parameter, 

(Liao, 1997) and(Adawi et al, 2009). 

 (1 − p)L[φ(x : p) − y0(x)] − p}H(x)N[φ(x : p)] = 0 (3.2) 

The method allows for the selection of y0(x) which is an initial guess, L and } which 

is introduced to ensure convergence(Liao, 2003) and the function H(x). 

Then, 

 (1 − p)L[φ(x : p) − y0(x)] = p}H(x)N[φ(x : p)]. (3.3) 

As p=0,(Adawi et al, 2009 the equation (3.2) yields φ(x:0)= y0(x) Where for p=1 

equation (3.2) as noted by Liao in (Liao, 2003)and (Liao, 1997) is equal to φ(x:1)= 

y(x). For (3.2) and (3.3) where’p’ appreciate in value from 0 to 1, φ(x:p) changes 

progressively starting from y0(x) to exact solution y(x)(Hossein Zadeh et al, 

2010). Where the changes that are seen are what is refered to as deformation. The 

exponential series of p of φ(x;p) is expanded by Taylor’s theorem in the form as 

shown below 

  (3.4) 

where 
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  (3.5) 

For the initial guess y0(x), L, } and function H(x) if properly chosen(Vahdati etal, 

2010) helps for the convergence of the exponential series (3.4)of φ(x:p), where it 

converges at p=1.Then,the solution is presented in the form below(Adawi et al, 

2009) 

 ) (3.6) 

Therefore,  

yn(x) = y0(x),y1(x),y2(x),...,yn(x) (3.7) 

from (3.5), yn(x) is solved by the deformation equation (3.3). By means of 

differentiating (3.3) in n number of times for q thereby multiplying by ! as p=0, 

the nth-series deformation equation is then realised (Adawi et al,2009). 

 (0) = 0 (3.8) 

where 

  (3.9) 

and 

 

for n ≤ 

1 

 1 for n ≥ 1 

As noted in (Abu jarad,2009) the equation(3.8) is governed by L,  )) as 

shown in (3.9) for N (Adawi et al,2009). As a result, yn(x) can be realised by using 

MATLAB software. And the solution y(x) depends on the choice of L, }, H(x) as 

well as y0(x)(Liao, et al., 2013). Note here that for this analytical techniques, the 

convergence sometimes are determined as ) moves to a limit as n −→ 

∞, and as a result, gives the solution(Adawi et al, 2009) and 

(Vahdati etal, 2010). 
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3.2 HAM’s solution to Fredholm and Volterra integral 

equations 

Let consider equation 

Z 

 h(t)u(t) = g(t) + λ H(t,x)u(x)dx (3.10) 
r 

where the solution to equation (3.10)can be categorized into both Fredholm and 

Volterra integral equations(Vahdati et al, 2010). 

3.2.1 For the first kind of Fredholm and Volterra integral 

equations(Vahdati et al, 2010) 

For instance, by substituting h(t)=0 into equation (3.10),as 

  (3.11) 

by equation (3.3), the HAM’s zeroth-order deformation for equation (3.11) will be 

  (3.12) 

As p=0 and p=1, then u(t,0,})=0,u(t,1,})=u(t). 

For Maclauin series of u(t,p,})which match to p, 

  (3.13) 

which 

  (3.14) 

If p=1,equation (3.13), gives 
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 (3.15) And the nth-order deformation looks like 

 ) (3.16) 

The result of nth-order deformation equation where n≥1 is as follows 

 ) (3.17) 

and 

  (3.18) 

3.2.2 The second kind of Fredholm and Volterra integral 

equations(Vahdati et al, 2010) 

If h(t)=1 is substituted into equation(3.10), then 

  (3.19) 

Thus construct the zeroth-order deformation for this kind of integral equations as 

 

where p=0 and p=1, 

u(t,0,})=g(t) u(t,1,})=u(t) 

As Maclaurin series of u(t,p,}) matching to p, 

  (3.21) 

which 

  (3.22) 
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substituting p=1, into (3.21)gives 

 (3.23) Thus the nth-order equation 

 ) (3.24) 

And the result of the nth-series for n≥1 yields 

  (3.25) 

and 

  (3.26) 

The solution of the problem look similar to that of Homotopy Perturbation 

Method when one choose } = -1 (Liao, et al 2013) and (Vahdati et al, 2010) 
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Chapter 4 

Application of HAM 
In this part, the HAM is applied for solving some considered examples of FIE and 

VIE. 

4.1 Fredholm integral equation (FIEs) of the second 

kind 

Let first consider the following FIEs 

  (4.1) 

where H(x, t) refers to as kernel of the integral equation 

Example 1. Let look at the following Fredholm integral equations 

  (4.2) 

To begin with, choose 

 φ0(x) = 3x (4.3) 

Choose the linear operator L 

 L[φ(x,p)] = φ(x,p) (4.4) 

And defining N as 

  (4.5) 

where nth-series deformation is constructed as 
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 ) (4.6) 

And 

  (4.7) 

where the solution of the nth-series (4.6) becomes 

 )] (4.8) 

Finally, 

 ) (4.9) 

where 

 

. 

. 

Hence 

 

If }=-1 

 

  (4.10) 

which is the exact solution of equation(4.2)as shown in figure 4.1 below 
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Figure 4.1: Example 1. Exact solution to equation (4.2) 

Example 2. Let look at this FIE 

Z 1 

 φ(x) = 2x + x yφ(y)dy (4.11) 
0 

To begin with, choose 

 φ0(x) = 2x (4.12) 

the linear operator is presented as 

 L[φ(x,p)] = φ(x,p) (4.13) 

the nonlinear operator N is constructed on (4.11) as 

  (4.14) 
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where (4.15) is expressed as follows 

 ) (4.15) 

And 

  (4.16) 

Where the solution of (4.15) is 

 )] (4.17) 

Finally, 

 ) (4.18) 

Then 

 

. 

. 

Hence φ(x)=φ0(x) + φ1(x) + φ2(x) + φ3(x) + 

φ4(x)+... 

 

If }=-1 
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 ) (4.19) 

Which is the exact solution to equation (4.11) which is represented in figure 4.2 

below 

 

Figure 4.2: Example 2. Exact solution to equation (4.11) 

4.2 The second kind of Volterra integral equa- 

tion 

Let’s look at Volterra type, which reads 

  (4.20) 

where H(x,t), the kernel in (4.20) 

Example 3. Let take a look at the followig example 
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  (4.21) 

To begin,choose 

 φ0(x) = x (4.22) 

Let L befined as 

 L[φ(x,p)] = φ(x,p) (4.23) 

Thus, N is constructed on (4.21) as 

  (4.24) 

Where 

 ) (4.25) 

And 

  (4.26) 

The solution of (4.23) is 

 )] (4.27) 

Finally, 
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 ) (4.28) 

Then 

 

. 

. 

. 

Hence φ(x) = φ0(x) + φ1(x) + φ2(x) + φ3(x) + 

φ4(x)+... 

 

If }=-1 

 

  (4.29) 

Which is the exact solution of equation(4.21)as shown in figure 4.3 below 
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Figure 4.3: Example 3. Exact solution to equation (4.21) 

Example 4.Let look at the example below 

  (4.30) 

To solve equation (4.30),choose 

 φ0(x) = 2x − x2 (4.31) 

Where L is constructed as 

 L[φ(x,p)] = φ(x,p) (4.32) 

Thus,nonlinear operator is define as 

  (4.33) 
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And the nth-series is as follow 

 ) (4.34) 

where 

 (4.35) Hence the 

solution of (4.30) presents as 

 )] (4.36) 

Finally  

+∞ φ(x) = 

φ0(x) + Xφn(x) (4.37) 
n=1 

And 

 

. 

. 

. 

φ(x) = φ0(x) + φ1(x) + φ2(x) + φ3(x) + φ4(x) + ... 

 

when }=-1,then 

 

  (4.38) 
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Which is the exact solution to equation (4.30) 

Example 5. consider this equation 

  (4.39) 

To solve equation(4.39),choose  

φ0(x) = x 

Then the operator L is 

(4.40) 

L[φ(x,p)] = φ(x,p) 

Thus,the operator N is as 

(4.41) 

  (4.42) 

construct nth-series equation as 

 ) (4.43) 

where 

 (4.44) The solution of the nth-

order deformation(4.39) 

 )] (4.45) 

Finally 

 ) (4.46) 

And , 

 



 

 

 

. 

. 

. 

Hence 

 

If } = −1 

 

 ) (4.47) 

Which is the exact solution to equation(4.39) as shown in figure 4.4 below 

 

Figure 4.4: Example 5. Exact solution to equation (4.39) 

Example 6. Let consider the Volterra integral equations 
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  (4.48) 

To solve equation(4.48),choose 

φ0(x) = x 

then operator L is defined as 

(4.49) 

L[φ(x,p)] = φ(x,p) 

Thus,the N is explain on the equation as 

(4.50) 

 (4.51) Constructing the nth-series 

equation is represented as 

 ) (4.52) 

where 

 (4.53) The solution of the nth-

order deformation(4.48) 

 )] (4.54) 

Finally  

+∞ φ(x) 

= φ0(x) + Xφn(x) (4.55) 
n=1 

And , 

 

. 
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. 

. 

Hence 

 

If } = −1 

 

Which is the exact solution to equation(4.48)as shown in figure 4.5 below. 

 

Figure 4.5: Example 6. Exact solution to equation (4.48) 
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Chapter 5 

Conclusion 

5.1 Summary and Conclusion 

This work focused on an analytical method proposed by Liao, in the name 

homotopy analysis method (HAM) to deal with linear and nonlinear integral 

equations (I.E)of FIE and VIE of the second kind. A powerful method in seaking 

analytical answers for integral equations. We begun by exploring historical 

background of integral equations, classification of integral equations and glossing 

over kinds of kernel as well as review of spaces and operators that have been 

subsequently brought forth in this work. A review of integral equations and HAM 

as well as the concept of homotopy function are looked at. The research presented 

a description of HAM and subsequently followed it by analytical solutions of the 

method. Where a MATLAB codes generated give a graphical representation of the 

various solutions of considered equations. 

In analysising a given equation by HAM, the research considered the 

Fredholm(FIE) and Volterra(VIE) in the process of the analysis. The analysis of 

the homotopy solution series of specific examples are iteratively determined. As 

the perturbation method is dependent of small/large physical parameters, this 

method does not relie on such. The controlling tool } in the solution series helps 

greatly in influencing the solution converging but this control parameter is to be 

chosen properly to influence the convergence. In order to obtain the exact 

solution, the infinite series solutions are summed. Apparently, as seen from the 

report, an integral equation is best analysed by HAM a powerful analytical 

method. The HAM presents an easy approach for ensuring the convergence of the 

approximation solution series. It also makes it easy and more flexible in choosing 

the type of equation. It is apparently seen from the result that this analytical 
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method is an efficient approach of getting solutions of linear and nonlinear 

equations.  
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Appendix A 
function [x,sumc] = solplot1(x,alpha,n) sumc(1) = 

3*x; for i=1:n num = (-1)^i; m=i-1; den = (3^m) * 

(alpha^i); rsult = num*x/den; sumc(i+1) = sumc(i) 

+ rsult; end plot(1:n,sumc(2:end)) end function 

[x,sumc] = solplot2(x,n) sumc(1) = 2*x; for i=1:n 

num = (-2); den = 3^i; rsult = num*x/den; 

sumc(i+1) = sumc(i) + rsult; end 

%plot(1:n+1,sumc) 

plot(1:n,sumc(2:end)) end function 

[x,sumc] = solplot3(x,n) sumc(1) = x; 

for i=1:n num = (-3)^i; den = factorial(2*i+1); rsult = 

num/den; rsult = rsult*x^(2*i+1); sumc(i+1) = sumc(i) + rsult; 

end plot(1:n+1,sumc) %plot(1:n,sumc(2:end)) end function 

[x,sumc] = solplot4(x,n) sumc(1) = x; m=1; for i=1:n m = 

2*m+1; num = 1; den = factorial(m); rsult = (num*x^m)/den; 

sumc(i+1) = sumc(i) + rsult; end plot(1:n,sumc(2:end)) end 

function [x,sumc] = solplot5(x,n) sumc(1) = x; m=sqrt(2); for 

i=1:n 

m = m^2 + 1; num 

= x^m; den = 2*m; 

rsult = (-1)^(i+1) * 

(num/den); 

sumc(i+1) = 

sumc(i) + rsult; 

end 
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plot(1:n,sumc(2:e

nd)) end 

% % Script to run 

solplot1(1,1,100) 

solplot2(1,100) 

solplot3(0.5,100) 

solplot4(1,100) 

solplot5(1,100) 


