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Abstract: A comparative analysis of the sensitivity of NDVI and EVI to rainfall indicators 

has been carried out for different land use/covers in the Southwest of Burkina Faso. Three 

classified land use/covers maps for 1999, 2006 and 2011 were produced and change 

detection was applied to locate persistent areas. Thereafter monthly vegetation indices of 

plots of 750 × 750 m2 were extracted from 2001 to 2011 for persistent woodland, mixed 

vegetation, and agricultural area within 5 km radius around four rain gauges. Furthermore, 

correlation analysis to measure the relationship between vegetation indices and rainfall 

indicators was performed. The results indicate some similarities between NDVI and EVI. 

Both indices, for all land use/covers, showed significant and strong positive correlation with 

the rainfall indicators. In general, NDVI was more sensitive to rainfall than EVI in the study 

area, but the difference between the Pearson’s coefficient values of both vegetation indices 

was insignificant. The findings of this work agree with some previous studies, but 
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contrasting conclusions were also noted in literature. Hence wider spatial investigation will 

be necessary to confirm the results of this paper. 

Keywords: land use/cover; EVI; NDVI; rainfall indicators; Burkina Faso; West Africa 

 

1. Introduction 

Climate change is intensifying rainfall variability over West Africa causing extreme events, such as 

droughts and floods [1]. This may have consequences on land surface vegetation in this zone since 

climate plays a key role in vegetation condition. Therefore, it is essential to assess and quantify the 

response of vegetation to rainfall variability. 

Land use/cover (LULC) is of particular interest in assessing the relationship between vegetation and 

rainfall because their modification is a key factor in global environmental change [2]. For instance, 

Nightingale and Phinn [3] found a strong relationship between precipitation and NDVI (Normalized 

Difference Vegetation Index) of five land cover types within South Australia and also noted significant 

positive correlation between precipitation and NDVI for cumulative precipitation over two to  

four months. Comparing different land covers response to rainfall in the Sahel and East Africa, 

Nicholson et al. [4] concluded that NDVI is best correlated with the rainfall total for the concurrent and 

two antecedent months and found this correlation to be better in the Sahel than in East Africa. In Central 

Asia, Gessner et al. [5] assessed vegetation sensitivity to precipitation anomalies based on time-series 

of NDVI and gridded precipitation datasets (GPCC Full Data Reanalysis) during the period 1982–2006 

and found that the response of vegetation was strong for precipitation anomalies integrated over periods 

of two to four months, and there is a temporal lag between precipitation anomalies and vegetation activity 

for one to three months. Concerning the response timing of NDVI to rainfall, maximum correlation for 

lag of one month and three months cumulative rainfall have been reported by other researchers  

(e.g., [6,7]). All these studies generally used long time series of NDVI and rainfall against land use/cover 

data derived for a given year [5]. These researches assumed no change in land use/covers during the time 

of observation. Applying this method in an area like West African’s savanna where land use/covers 

change rapidly could cause bias in the analysis. 

Modeling approach has also been applied in the assessment of vegetation response to rainfall  

(e.g., [8–10]). Most often linear correlation is used to measure the relation between vegetation and rainfall 

(e.g., [3–5]), but also non-linearity of this relationship was found (e.g., [11,12]). For instance, a polynomial 

relationship was found to be the best fit between NDVI and rainfall by Boken and Chandra [11] and Fontes 

de Sousa et al. [12]. Gaughan et al. [8] applied geographically weighted regression to investigate the 

response of the end of the wet season vegetation production, as measured by MODIS NDVI, to the 

different months of wet season rainfall for different land cover types in a regional catchment of southern 

Africa; the results showed that intra-annual wet season rainfall accounts for significant amounts of April 

NDVI variation. Chaoka et al. [9] used a Seasonal Model (SM) and a linear Perturbation Model (LPM) 

to assess the relationship between NDVI and rainfall data in a large tropical catchment and concluded 

that the LPM performed better than the simple seasonal model. Hashemi [10] applied a simple linear 

regression and multivariate regression to model NDVI response to different cumulated monthly rainfall 
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in Azerbaijan province of Northern Iran and noticed that multivariate regression analysis performed 

better than simple linear regression. 

One of the common points of these aforementioned studies (e.g., [3,5,8]) is the choice of NDVI as 

indicator of vegetation dynamics. Very few studies, like Bobee et al. [13], tried other indices like Leaf 

Area Index (LAI) to study the response of vegetation to rainfall in northwest Senegal. 

In savanna regions, NDVI signals were found to be limited to express vegetation response to  

rainfall [14,15]. Huete et al. [16] supported that this is due to spectral variability of background material, 

such as soil albedo, which causes nonlinearity between NDVI and vegetation cover. The Enhance 

Vegetation Index (EVI) has been developed to improve the quality of NDVI, by solving the problem of 

distortions in the reflected light due to atmospheric particles and the ground cover below the vegetation. 

In addition, EVI does not saturate rapidly as NDVI [17]. 

However, in literature, comparison studies carried out between NDVI and EVI showed contrasting 

results. Son et al. [18] noted that EVI-based models were slightly more accurate than those from  

NDVI-based models in rice crop yields estimation in the Mekong River Delta of Vietnam. On the other 

hand, Li et al. [19] in a study carried out in Northern Hebei Province of China indicate that NDVI has a 

stronger correlation with field data of vegetation covers than EVI and so has obvious advantages for 

predicting natural vegetation coverage better than EVI. Wardlow et al. [20] in turn found that for crop 

mapping EVI and NDVI produced equivalent results in Southwest Kansas. 

These contrasting conclusions raise the need for more investigation on the performance of NDVI and 

EVI especially relating to the relationship between vegetation and rainfall variability in West Africa’s 

savanna where comparative studies are limited, and researches on both indices behavior for different 

land use/cover types are still rare. The present research, focusing on the relation of NDVI and EVI with 

rainfall, will fill this gap. The aim of this study is to assess the sensitivity of NDVI and EVI to rainfall 

variability in the Southwest of Burkina Faso for different land use/covers. 

2. Methodology 

2.1. Study Area 

The study area is situated in the Black Volta basin of Burkina Faso and covers an area of  

5119.3 km2 (Figure 1). The climate is Sudan savanna modulated by the Inter Tropical Convergence Zone 

(ITCZ), and characterized by two main seasons. The rainy season extends from May to October. The 

dry season occurs between November and April. The average monthly temperature range from  

26 °C to 32 °C and the average annual rainfall in the period 1981–2012 is estimated to be 862.87 mm. 

Rainfall is marked by high inter-annual variability. Vegetation is characterized by Sudanese savanna. 

The dominant woody species are Gardenia sp, Combretum micranthum, Parkia biglobosa, Butyro 

spermum parkii, Bombax costatum, Berlinia grandifotia, among other. The dominant herbaceous are 

Vetiveria nigritana, Urena lobata, Oryza barthii, Paspalum orbiculare, Hygrophila auriculata. The 

annual herbaceous species are Andropogon pseudapricus, Loudetia Togoensis, Pennisetum 

pedicellatum, Diheteropogon hagerupii. Locally, natural vegetation is distributed according to 

topography (altitude, slope and aspect), edaphic conditions and especially ground water availability (e.g., 

woodlands dominating along river beds in topographic depressions) [21]. 
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Figure 1. Situation of the study area and the rain gauges utilized for this study. 

The main livelihood activity of the local population is farming. In this zone, agriculture is 

characterized by low inputs (e.g., fertilizers). Slash and burn remains the dominant farming practice [22]. 

The main crop productions are sorghum, cotton, maize, millet, bean, groundnut, sesame and rice. Bush 

fallow practice is less applied and most often land is cultivated until loss of fertility. Organic manure 

remains the most preferred fertilizer of most farmers. 

2.2. Data Acquisition and Processing 

2.2.1. Land Use/Covers and Persistent Areas Mapping 

Global land cover data, such as GlobCover and MODIS Land Cover Type (MCD12Q1) are available for 

the study area, but they are limited due to confusions for mixed and spatially heterogeneous classes [23]. 

Therefore, land use/cover data were derived by classifying freely available satellite images. In order to 

select more stable and persistent land use/covers during the observation period, three Landsat TM images 

of October 1999 and 2011 and November 2006 were chosen for classification. These images were 

acquired on 20 October 1999, 16 November 2006 and 29 October 2011. The acquisition dates at the 

onset of the dry season were particularly found suitable for the separation of cropland, especially from 

grassland and other types of natural vegetation, in the study region [24]. All the three images were free 

of clouds and recorded under good atmospheric conditions. 
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The Landsat images were obtained from GLOVIS website [25]. These images were geometrically 

corrected and calibrated. This means that, by using the respective metadata files, the digital number 

values of the different bands were converted to at-sensor reflectance. Aerial photos, high spatial 

resolution images of Quickbird and field data enabled the generation of training and validation data for 

the classification which was performed using Random Forest (RF) and the software, R. For each land 

use/cover the maximum training and validation samples were 800 and 2000 respectively. The number 

of trees built in each classification was 500. Five main land use/covers were considered: woodland, 

mixed vegetation (tree, shrub and grass mixture), agricultural area, bare surfaces (bare land, rock, urban 

area and tarred roads) and water. The number of classes was kept to a minimum in order to reduce 

confusion between classes and improve classification accuracy. 

Random Forest algorithm was used for the classification. This algorithm is a machine-learning based 

classifier such as Bagging and Boosting [26]. Characterized as ensemble model, RF combines the results 

of different models to compute an output. That is to say, many individual decision trees were constructed 

from which a final class assignment was determined [27]. RF is non-parametric method that is easy to 

parameterize and it is neither sensitive to noise nor subject to over fitting. Previous studies have found 

that RF returning accuracies exceeded those of numerous other classification algorithms (e.g., [28,29]). 

The resulting classified images were resampled to 250 m by applying the majority rule. Then the 

persistent land use/cover areas between 1999, 2006 and 2011 were identified by change detection; the 

aim is to focus the analysis on unchanged vegetation during the observation period because land 

use/covers change rapidly in West Africa’s savanna [22]. 

2.2.2. Rainfall Data 

Rainfall data were collected from the National Meteorological Directorate of Burkina Faso at monthly 

scale, from 2000 to 2011. The location of the four stations analyzed in this study is given in Figure 1. 

Four rainfall indicators have been computed (Table 1). It is mentioned in literature that these four rainfall 

indicators have better relation with vegetation temporal dynamics [3–5]. The period 2001–2011 were 

used to compute the monthly cumulated precipitation. 

Table 1. Indicators characterizing rainfall variability in the study. 

Indicators Description 

Amount of pcp (lag 1 month) 1 month lag precipitation 

Cumulated 2 months pcp Sum of precipitation of current and previous 1 month 

Cumulated 3 months pcp Sum of precipitation of current and previous 2 months

Cumulated 4 months pcp Sum of precipitation of current and previous 3 months

2.2.3. Vegetation Indices 

Vegetation indices data were obtained from MODIS Terra MOD13Q1 product from 2001 to 2011.  

It comprises 16-days composites of the Red, Near-Infrared (NIR), Mid-Infrared (MIR), Enhanced 

Vegetation Index (EVI) and NDVI. The data were downloaded from the USGS’ MRTWeb interface [30], 

then resized and reprojected to WGS 84 zone 30. The software TiSeG (Time-Series Generator) 

developed by Colditz et al. [31] was used firstly to assess the quality of the MODIS product and, 
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secondly to correct invalid data and fill gaps by linear interpolation. Among other settings of TiSeG, the 

quality setting UI5-CS (Perfect-Intermediate, no Cloud and no Shadow) was found to give results close 

to undisturbed situation and, therefore, was applied in this analysis. 

Monthly NDVI and EVI time series were extracted for each land use/cover type within plots of  

750 × 750 m2 (3 × 3 window). The plots were located inside a radius of 5 km around each of the 4 rain 

gauges spread in the study area. The computation of NDVI and EVI is described in Equations (1)  

and (2). ܰܫܸܦ = ܴܫܰ − ܴܫܰܦܧܴ +  ܦܧܴ
(

1) 

where, NIR and RED are, respectively, the near infrared and the red reflectance. NDVI generally is 

chlorophyll sensitive (greenness) [32]. ܫܸܧ = ܩ ∗ ܴܫܰ) − ܴܫܰ)(ܦܧܴ + ଵܥ ∗ ܦܧܴ − ଶܥ ∗ ܧܷܮܤ + (2) (ܮ

where, NIR, RED and BLUE are, respectively, near infrared, red and blue reflectance. L is the canopy 

background or soil adjustment factor. G is the gain factor. C1, C2 are the coefficients of the aerosol 

resistance. In the selected Terra MOD13Q1 product the coefficient values are; L = 1, ܥଵ = 6, ܥଶ = 7.5, 

and G = 2.5. The EVI products are expected to improve sensitivity in high biomass area and reduce 

atmospheric and canopy background effect on vegetation signal. Therefore EVI is more responsive to 

canopy structural variations, including LAI, canopy type and architecture [32,33]. 

 

Figure 2. First 16 days NDVI and EVI composited images of June of the study area. 

Figure 2 shows the distribution of NDVI and EVI values from the first 16 days of the month of June 

in the study area. It appears that the range of NDVI values is higher than EVI in this zone. 
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Correlation analysis was performed between each land use/cover indices (NDVI and EVI) and the 

different indicators of rainfall to assess their relationship. The coefficient of Pearson enabled the 

magnitude of each correlation to be measured. In total 48 correlations have been done and the 

performance of each vegetation index was then investigated. The formula of coefficient of Pearson (r) 

is given in Equation (3) as ݎ = ∑ ( ௜ܺ − തܺ)( ௜ܻ − തܻ)௡௜ୀଵට∑ ( ௜ܺ − തܺ)ଶ௡௜ ට∑ ( ௜ܻ − തܻ)ଶ௡௜  (

3) 

where ௜ܺ and ௜ܻ are individual observations of variables X and Y, respectively. തܺ and തܻ are the mean of 

X and Y. 

3. Results and Discussion 

3.1. Persistent Land Use/Cover Map 

The overall accuracy of the Random Forest algorithm classification derived according to Congalton 

and Green [34] were estimated to be 92.4%, 92.3% and 91.6% for 2011, 2006 and 1999 images, 

respectively. Figure 3 presents the change detection map highlighting persistent areas for each land 

use/cover type for the three different years. For the correlation analysis, plots of 750 × 750 m2 were 

located on persistent vegetated areas (for woodland, mixed vegetation and agricultural area) within a 

radius of 5 km around the rain gauges. The selected plots are shown in Figure 3. 

The study area has known important land use/cover conversion from one type to another; indeed the 

changed area represents 54.50% of the total study area (Table 2). The main causes of those changes are 

pressures due to human activities (e.g., cropland expansion, livestock, woodfuel collection, bushfire, 

mining activities, built up and charcoal production) [22], but also effects of climatic variability, which 

increased in this zone [1]. Despite of the conversion some spots remained unchanged in which 21.77%, 

10.59%, 12.95%, 0.15% and 0.04% are, respectively, woodland, mixed vegetation, agricultural area, 

water and bare surfaces. 

3.2. Rainfall Variability between Stations 

The mean total annual rainfall (period of 1981–2012) of the stations lies between 880.20 mm and  

949 mm. The four stations have strong positive and significant correlation (Table 3). The inter-station 

correlation matrix shows coefficient of Pearson ranging from 0.848 to 0.917. The high values of the 

coefficient prove that rainfall has varied almost in the same way in all the stations during the period 

2001–2011, i.e., very similar spatial patterns of precipitation were recognized.  
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Figure 3. Map of persistent areas of land use/covers between 1999, 2006 and 2011 (250 m). 

Table 2. Proportion of persistent land use/covers and changed area between 1999, 2006  

and 2011. 

LULC Percentage 

Persistent woodland 21.77 

Persistent mixed vegetation 10.59 

Persistent agricultural area 12.95 

Persistent water 0.15 

Persistent bare surfaces 0.04 

Changed area 54.50 

Table 3. Correlation matrix of stations and mean total annual rainfall. 

Station Dano Fara Diebougou Dissin Mean Total Annual Rainfall

Dano 1 0.885 0.850 0.917 897.20 
Fara 0.885 1 0.874 0.899 880.81 

Diebougou 0.850 0.874 1 0.848 723.48 
Dissin 0.917 0.899 0.848 1 949.97 

Correlation is significant at the 0.01 level (2-tailed). 
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3.3. Correlation Analysis between Land Use/Covers and the Indicators of Rainfall  

3.3.1. NDVI as LULC Indicator 

All the correlations were significant at p value level of 0.01. The NDVI of the land use/covers and 

the rainfall indicators have strong positive correlation (Table 4). The value of Pearson’s coefficient 

ranges from 0.798 to 0.945. This is supported by previous studies like Nightingale and Phinn [3] that 

noted significant and strong positive correlation between precipitation and NDVI for cumulative 

precipitation over two to four months. The good positive correlation of vegetation with one month lag 

precipitation has also been mentioned by other researchers (e.g., [5,35]). 

The analysis shown in Table 4 revealed that cumulated three months, two months and four months 

precipitation have the highest influence on land use/cover classes, but to a less extent for the two latter. 

Most often, land use/covers were more sensitive to the variability of three months cumulated 

precipitation and less to one month lag precipitation. In various studies (e.g., [4,6,7]), three months 

cumulated rainfall was also found particularly performing with the NDVI. Another aspect raised by 

Table 4 is the response magnitude between and within land use/cover types. Actually no land use/cover 

type has shown a noticeable domination over others, except for cumulated four months precipitation 

where agricultural area shows higher performance in the four stations. The comparison of the four 

stations shows a difference in coefficient of Pearson within the same land use/cover class; this could be 

due to several factors, such as difference in soil moisture [14], plant community [36], anthropogenic 

activities and vegetation phenology [37–39]. 

Table 4. Correlation between NDVI of land use/cover types and rainfall variability indicators. 

Station LULC 
1 month 

Lag pcp 

Cum. 2 

Months pcp

Cum. 3 

Months pcp 

Cum. 4 

Months pcp

Dano 

Agricultural area 0.861 0.848 0.934 0.943 

Mixed vegetation 0.849 0.937 0.917 0.825 

Woodland 0.864 0.893 0.945 0.917 

Fara 

Agricultural area 0.896 0.921 0.944 0.880 

Mixed vegetation 0.860 0.911 0.918 0.846 

Woodland 0.849 0.903 0.919 0.850 

Diebougou 

Agricultural area 0.843 0.873 0.929 0.899 

Mixed vegetation 0.829 0.909 0.898 0.798 

Woodland 0.824 0.869 0.913 0.871 

Dissin 

Agricultural area 0.855 0.873 0.911 0.878 

Mixed vegetation 0.859 0.896 0.912 0.858 

Woodland 0.875 0.891 0.924 0.877 

Correlation is significant at the 0.01 level (2-tailed). 

3.3.2. EVI as LULC indicator and comparative analysis with NDVI 

The analysis with EVI showed significant and strong positive correlations with rainfall indicators  

(see Table 5); these results are in some cases similar to those of NDVI. The Pearson’s coefficient for 

EVI is in the range of 0.768–0.946. This finding supports the good relationship noted in literature 
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between the four rainfall indicators and vegetation indices. No land use/cover type is dominating in the 

relation with rainfall indicators, except agricultural areas that still remain more sensitive to four months of 

cumulated precipitation in the four stations. Similar to the NDVI results, the strength of correlations 

between EVI and rainfall indicators is different within each land use/cover type, which is likely due to the 

influence of local environment on the magnitude of vegetation response to rainfall. In the case of EVI, in 

addition to factors like soil moisture, plant community and phenology, topography may also cause 

difference in the response. Indeed, Méndez-Barroso et al. [36] noted that elevation controls EVI dynamics. 

There are also discrepancies in the results. Unlike NDVI, the EVI of land use/cover has stronger 

correlation with cumulated two months precipitation or cumulated three months precipitation. 

Furthermore, it was observed that a lag of one month precipitation as well as four months cumulated 

precipitation had the lowest influence on EVI. 

Table 5. Correlation between EVI of land use/cover types and rainfall variability indicators. 

Station LULC 
1 Month 

Lag pcp

Cum. 2 

Months pcp 

Cum. 3 

Months pcp 

Cum. 4 

Months pcp 

figureDano 

Agricultural area 0.872 0.887 0.946 0.922 

Mixed vegetation 0.830 0.939 0.893 0.783 

Woodland 0.859 0.904 0.942 0.890 

Fara 

Agricultural area 0.856 0.907 0.907 0.832 

Mixed vegetation 0.836 0.910 0.897 0.812 

Woodland 0.796 0.904 0.876 0.778 

Diebougou 

Agricultural area 0.859 0.897 0.932 0.877 

Mixed vegetation 0.828 0.927 0.889 0.768 

Woodland 0.844 0.903 0.925 0.857 

Dissin 

Agricultural area 0.844 0.881 0.901 0.844 

Mixed vegetation 0.831 0.896 0.890 0.811 

Woodland 0.860 0.908 0.916 0.840 

Correlation is significant at the 0.01 level (2-tailed). 

The difference between NDVI and EVI was also noticed in the magnitude of their response to the 

rainfall indicators. Table 6 shows that the EVI often responded stronger to 2 months cumulated 

precipitation than NDVI. For the three other rainfall indicators, NDVI has better results. Generally, the 

magnitude of the correlations with EVI is often low compared to NDVI. This is illustrated by Figure 4a 

where 66.67% of the correlations were stronger with NDVI as against 29.17% with EVI. 4.17% of the 

correlations had the same coefficient of Pearson with both indices. For all the land use/cover types NDVI 

was found to perform better than EVI mostly for mixed vegetation and woodland (see Figure 4b). 

Generally, the difference between the Pearson’s coefficient values of both vegetation indices was slight 

in the four stations. This means that their performances with rainfall are not so much different. 

It is also observed that the two indices showed opposite reaction to the number of cumulated month 

rainfall (from two to four months). NDVI performs better when the number of cumulated month of 

rainfall increases, whereas the performance of EVI rather decreases (Table 6). This situation might be 

due to the time lag response of each vegetation index; indeed, NDVI has longer time lag of response to 

rainfall than EVI at the sub-Saharan’s savanna area where rainfall is a controlling factor as noted by  

Jamali et al. [37]. However, more investigations are necessary for better clarification. 
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The difference noted with EVI and NDVI shows that the land use/covers reaction to rainfall variability 

in savanna areas varies according to the type of vegetation index and to the rainfall indicators. 

The results disagree with studies [14,15], which found that NDVI signals were limited in savanna 

zone due to the effects of soil background material and exposure. The present work has demonstrated 

that those disturbances do not so much influence the performance of the signals of NDVI to express the 

response of vegetation to rainfall variability in the Sudanese savanna around the location of Dano, 

Diebougou, Dissin and Fara. This finding is supported by the work of Li et al. [19], which revealed that 

NDVI performs better than EVI for some land use/covers classes. 

Table 6. Best performing index according to land use/covers and rainfall indicators. 

Station LULC 
1 Month 

Lag pcp 

Cum. 2 

Months pcp 

Cum. 3 

Months pcp 

Cum. 4  

Months pcp 

Dano 

Agricultural area EVI EVI EVI NDVI 

Mixed vegetation NDVI EVI NDVI NDVI 

Woodland NDVI EVI NDVI NDVI 

Fara 

Agricultural area NDVI NDVI NDVI NDVI 

Mixed vegetation NDVI NDVI NDVI NDVI 

Woodland NDVI Equal NDVI NDVI 

Diebougou 

Agricultural area EVI EVI EVI NDVI 

Mixed vegetation NDVI EVI NDVI NDVI 

Woodland EVI EVI EVI NDVI 

Dissin 

Agricultural area NDVI EVI NDVI NDVI 

Mixed vegetation NDVI Equal NDVI NDVI 

Woodland NDVI EVI NDVI NDVI 

 

 

Figure 4. (a) Global best performance between NDVI and EVI; (b) NDVI and EVI 

performance according to land use/covers.  

Some possible factors that could explain the performance of NDVI have been discussed elsewhere.  

As mentioned by Li et al. [19], estimating vegetation dynamics from NDVI or EVI is not a 

straightforward achievement. Although in this work quality assessment was done on the MOD13Q1 

product to eliminate noises, other factors, such as plant community [36], anthropogenic perturbation, 

vegetation phenology and sensor conditions [38–40], may influence the temporal dynamics of the two 

indices and their response to rainfall. Figure 5 shows that NDVI and EVI are strongly correlated for all land 
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use/covers with Pearson’s coefficient value ranging from 0.976 to 0.984. This confirms that the problem of 

NDVI saturation is not quite pertinent in the study area and thus does not influence the reaction of the index, 

which can explain its performance. In addition, the sensitivity of NDVI and EVI to soil moisture, which has 

not been investigated in this study, may also explain the discrepancies between them. 

 

Figure 5. Correlation between NDVI and EVI for different land use/cover types. 

4. Conclusions 

A study to assess the relationship between vegetation dynamics and rainfall variability has been 

carried out in the savanna biome of the Southwest of Burkina Faso. Unlike other studies, this study 

focuses on comparative analysis between NDVI and EVI in assessing the response of land use/covers to 

different rainfall indicators. 

The main conclusion of the research is that NDVI and EVI are well correlated with rainfall variability 

according to different land use/cover types. This finding is supported by the results of previous studies. 

Some similarities were noticed in the response of NDVI and EVI to rainfall, but discrepancies were also 

found and mainly seen on the response magnitude and the influence of the rainfall indicators. Between 

both indices, and for all land use/covers, NDVI was generally more sensitive to rainfall variability 

compared to EVI. However, the difference between the Pearson’s coefficient values of both vegetation 

indices was slight in the four stations. 

As this study focused on only a selected area on a local scale, there is the need for further analysis on 

regional scale in order to reaffirm the results obtained. Nevertheless, the study reveals important findings 

that will trigger further investigations on EVI and NDVI with respect to their accuracy in estimating 

vegetation temporal dynamics. For example further study to understand the difference in response 

magnitude between both indices by determining the contributing factors has to be explored. 

The similar performance of the vegetation indices may suggest combined investigations on 

biophysical parameters like Leaf Area Index (LAI) and Fraction of Absorbed Photosynthetically Active 

Radiation (FAPAR). Optimal correlations of a certain vegetation index may be misleading in case that 

this index is underperforming in its relation to that quantifiable biophysical variables used in 

environmental modeling. Those investigations could be relevant for improving the understanding of the 

environmental dynamics that is occurring in the Southwest of Burkina Faso. 
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