KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY

COMPARATIVE ANALYSIS OF THE EFFICIENCY OF PSEUDO RANDOM

NUMBERS GENERATORS ALGORITHMS IN CRYPTOGRAPHIC

APPLICATIONS

BY

ABILIMI AYAABA CHRISTOPHER

NOVEMBER, 2012

COMPARATIVE ANALYSIS OF THE EFFICIENCY OF PSEUDO RANDOM
NUMBERS GENERATORS ALGORITHMS IN CRYPTOGRAPHIC

APPLICATIONS

Abilimi Ayaaba Christopher (BSc.)

A Thesis submitted to the Department of Computer Science,
Kwame Nkrumah University of Science and Technology

in partial fulfillment of the requirements for the degree of

MASTERS OF PHILOSOPHY

College of Science

November 2012

Copyright

©2012, Department of Computer Science
ABILIMI AYAABA CHRISTOPHER

ALL RIGHTS RESERVED

L]

Certification

I hereby declare that this submission is my own work towards the Masters and that, to
the best of my knowledge, it contains no material previously published by another
person nor material which has been accepted for the award of any other degree of the

University, except where due acknowledgment has been made in the text.

Abilimi A. Christopher, PG5090910

Student Name & ID Signature Date

Certify by:

Dr. M. Asante @Ld(/ Q’D Lfig’
First Supervisor Signature Date

Certify by:

Dr. J. B. Hayfron-Acquah

Second-Supervisor

i

— Certify by:

Dr. J. B. Hayfron-Acquah

Head of Department

Abstract

The importance of information security management systems is well recognized by the
information security literature. The goals of information security are protecting the
confidentiality, integrity and availability of information. Information security 1is
concerned with the confidentiality, integrity and availability of data regardless of the
form the data may take: electronic, print, or other forms. Cryptography is a science of
protecting information by encoding it into an unreadable format. It is an effective way of
protecting sensitive information as it is stored on media or transmitted through network
communication paths. Random Numbers determines the security level of Cryptographic
Applications as they are used to generate padding schemes in the encryption and
decryption algorithms as well as used to generate cryptographic keys. The more
randomness in the numbers a generator produces, the more effective the Cryptographic
Algorithms and the more secured it is for protecting confidential data. Sometimes
developers finds it difficult to be able determine which Random Numbers Generators
(RNGs) can provide a much secured Cryptographic Systems for secured enterprise
application implementations. This research aims to find an effective Pseudo Random
Number Generator algorithm among Fibonacci Random Numbers Generator
Algorithms, Gaussian Random Numbers Generator Algorithm, Specific Range Random
Numbers Generator Algorithms, and Secure Random numbers Generators, which the

most common Pseudo Random Numbers Generators Algorithms, that can be used to

o

=

improve the security of Cryptographic software systems. The researcher employed
statistical tests like Frequency test, Chi-Square test, Kolmogorov-Smirnov test on the

first 100 random numbers between 0 to 1000 generated using the above generators.

v

Table of Contents

Contents Pages

Copynghtu
e U T e e e e e e e e s e A
Abstract... A o T e e e e S ol I o A R o b
Table of Contents e e e P e P O s L T L T T iy AR Il SRR SR ORs UL UM,
List of Tables vn
List ofFlgures viil
List of Abbreviations ..
Acknowledgement ... A b O DY NSRS TS VISR ESCROReRR AR b o
CHAPTER ONE: INTRODUCT[ON-.................,...... el W RIS o] |y 1
1L AL 0731 Vo) e R A e s M e s Oy s PR 1
) B0 5] (277 Lot 121 1d 3 Lo 1| O U o B et e 4
I3 Jusniication Of the StUdY..........cccnivirmehie i o ssosssiconitssssasiossiges 5
1.4 The Objectives of the SRIOY....cccooro- DTo iicrisasssissssasssissssssosshanssenissinssssrensssamsasd
1:4:1 General OBJectiVes.....cccovvrviviog e UMM0co00000sstsosseensarntsosssassnssspusaransassonnsstesd
1. 4:2/SPECITIC ODJECHVES canerisvisessevser- REETIEEUNRIEINSNINIIINNY. ... 0. ryeseesnssnsesss 5
1.5 Significance of the research......... b ememrremeelBO coscssoousssnsiosssssnsasssbisssassessssasaisessessana
1.6/ScOPe OF the SIIAYcccorersoresess HTTETIEEI o SRR,:cscicissscsnisrsissonitinisassvasassvsssssisnstsnsn
7
7
7
8
8
9

25, e

1.7 Research questmns

1.8 Limitation and Deltmltatmn ofthe Study
1.8.1Limitation of the study.......... O, O e W WS et SO

1.8.2 Delimitation of the study ...

1.9 Outline of the Thesis...
CHAPTER TWO: LITERATURE REVIEW ..
2.1 INIPOAUCHION «oviioiovidenes i il o al s ol U R EAR I I ERb IR MRt UoML + 4o s ssouasssasnsnonsanavinnnsnsaspusnusmnsonavonss 9
2.2 Cryptography ... i DUPEIRRNIIE | e.oesnssnsnssassssanssnsnssonsssss LU
2.3 Rivest Shamir Adleman (RSA) cryptography .. 12
2.3.1 RSA Cryptosystem.... 4 L e RN) U
2.3.2 Chinese Remainder Theorem (CRT) Based RSA S - % N R e €
2.4 Attacks on the CRT-Based RSA .. e S VREIE A o ST |
2.4.1 Fault Attack and the Exlstmg Cnuntermeasures B AR SR e e (o
2.4.2Timing Attack .. 20
2.4.3 Power Attack... . e T, o e e R)|
2.5 Random Number ancl Random Blt Generators L EORNCT PRI e R T B IR S
2.6 Categories of Random Numbers Generators 25
27 Propertics Of GOOA PRINGS.ieresorsersassstmsssssussitsskssoasesnsesnssassensnssassssonsasassssssnsasmsans resssasssssosesenco b0
2.8 Conclusion... e o e A e g L R R o S R e e L)
CHAPTER THREE WTHODOLOGY A e T I S (R O 1
3.1 Infroduction .. - e e A A e e R A s Ol SRR SR
3.2 Test for Random Number Generators.............. L N L e imesdiny 2]
3.2.1 Tests for Randomness of Random Number Generators (RNGS). 0 L L P s T i
— 3.2.2 Chi-square Test.. e P P S e B e e I s
3.2.3 Kolmogorov- Smrrnov test (KS-test) e e e S N
3.3 Frequency Test of Random Numbers Generators oo It oy LM B el PR B tB Son N WSE 7
3.4. Conclusion... N e e vavs oxdisnasmn I D
CHAPTER FOUR RESULIS AND DISCUSSIONS e R L e S b
4. 1 Introduction .. 39
4.2 Frequency Test :::f Random Numbers Generators e s i vetasssh abbrmmsanansssoms T D

4.3 The Chi-Square Test for Uniformity of random numbers.........c.cocevmieniiiniiiiniiniii,
4.4 The Kolmogorov-Smirnov Test for Uniformity of random numbers.........ccccveeeiiinniinniininnnnne.

.44
46

...48
=90

4:5'Sainmary of FINdings and DISCUSSIONS . . .csx cissnssssresnsrassnsasteassorssssessnsvassasanssnsnassnssnrvaransseneonss
B B TR IS 16 £ o e WO I) SRl N o T . S . SO S
CHAPTER FIVE:CONCLUSIONS AND RECOMMENDATIONS
I R0 D11 (0 ST e e e e b e e e e D R e
2 a5) LN NI LS 118 4211 10)) bt oo orm sl s o Sl o S O S i o A R

--

51
=
e 2

.04

References .. ittt
Appendices

lll

e

List of Tables

Table'3.1: The Chi-Square test results for PRINGS.......cc. o iiiiicincincionsseiossssaiassss 34

Table 3.2: The descriptive Statistics for four random Generators...................... 36

Table 3.3: The Kolmogorov-Smirnov Test for Uniformity of Random numbers...37

Table 4.1: The Chi-Square Test for Independence of PRNGs......................... 45

iFableid 2 The descriptive statisticsS/OF PRIBIGS. cute cibtninisimsalbis om s sblaias smmeseson 46

Table 4.3: The Kolmogorov-Smirnov Test for Uniformity of PRNGs............... 47
— //’—-_

Vil

List of Figures

Figure 2.1: The process of hardware/software fault attack......................coinii 18
Fignre.2 2 Pseudo Random NGMDETS. ..o b coevsspicions sguasoiasmssnnsessssions seos ooen se 27
fapurer? 3 0uns RANAOMY NUIIDEESI ... oo vonves i vsiins ons soesdvanonses sewasiss i obansiens 27

Figure 4.1: The trend of randomness in Specific range random number generator....40

Figure 4.2: The trend of randomness in Secure random number generator............. 41
Figure 4.3: The trend of randomness in Gaussian random number generator.......... 42
Figure 4.4: The trend of randomness in Fibonacci random number generator......... 43
Figure 4.5: The number of repetitions in Pseudo Random Number Generators........ 44
— /
- by
abﬁ\)ﬂk‘* gﬂr

viii \‘ﬁ“

List of Abbreviations
RN 5 £0d 0% 595 Sah v aoa ot wSas s v Advanced Encryption Standard
IR 5 . T eh s dhd s codih ks b i e Federal Information Processing Standard
R B+ s s ssnvosvseanonsionion Payment Card Industry Data Security Standard
BN 0 b8 e d 5 v ks shassabs boarmuni Transparent Data Encryption
L R — Automatic Teller Machine

) M ——— " A

L A X World War I

L 8 R S National Security Agency
BRIl 4 s o svaivvuns danss Central Processing Unit

1 N o SRR ...International Business Management
BDBA...coviecvnen e aomatiis International Data Encryption Algorithm

POP. cccivinineniiranecsse s iretty Goou PHIVOEY

DES...cccvooiirccnrsdsnnslling et Data Encryption Standard
R v baasssson) woen W . Rivest Cipher
| b B OReh W < A, W, Message-Digest Algorithm
B e e ciiicains e T Secure Hash Algorithm
BRI s s e Liaan £ ehow aHE A oh Revest- Shamir- Adleman
o S e :;_-_:;_;;;Naﬁonal Institute of Standards and Technology
T b TR e e MENOREER TS Government Communication Headquarters
: LRI T P L Secure Socket Layer
BRI ianin s as st hasinesdns shansatie Transport Layer Security
1 S R YRR S e Digital Signature Algorithm 6"::" P
p\." wt (N
J‘ ’f}tﬁh \
ot ">
. ﬂ.i.‘-“ «

EE T) o e] elliptic curve cryptography

e i hem o B 3 SR oL Personal Identification Number
R A e e Chosen-Plaintext Attack
INVEAR . s e Internet Message Access Protocol
20RO e Post Office Protocol
BBV, e s Secure/Multipurpose Internet Mail Extension
32 00 L i S G SOt digital rights management
| DIVATT 7 o K R I 8 DO Digital Millennium Copyright Act
ST B0 D - e S S e High-Definition/Density Digital Versatile Disk
S R R P e Public-Key Cryptography Standards
[SAAC B ommans v oo s o soha Indirection, Shift, Accumulate, Add, and Count.
ISO....cmenneen s g International Standard Organisation
| D TRy I Internet Key Exchange
RING ..ot e i vn R Random Number Generators
PRNGS...... Fooh .. e Pseudo Random Numbers Generators
ANSL oo N o American National Standards Institute
VA . oo voinseammoinin o Media Access Control
105 D1 2 K S WP e Institute of Electrical and Electroﬁic Engineers
23 1 20 e R R e B Internet Engineering Task Force
IBR et Instruction Prevention Systems
e Yo ey ol S e Internet Protocol Security

Acknowledgement

During the past two years, I have had the privilege to be taught by Lecturers and
assisted by Non-teaching staff in the Department of Computer Science who have given
me their friendship, professional advice, and helped me to grow as a researcher.

I would first like to thank my Supervisor, Dr. M. Asante. He has been an 1deal
Supervisor, allowing and encouraging me to investigate topics of my choice. His
unrelenting support of my research and guidance in its dissemination has been
instrumental in any success I can claim as a graduate student.

Dr. J. B. Hayfron-Acquah, my Co-supervisor and Head, Computer Science
Department, I would like to thank for his assistance and encouragement to do this
research. His support has been crucial in this thesis.

I would like to thank my fellow graduate students in the Computer Science
Department that have helped me with anything from encryption, to software security. To
all the non-teaching staff in the Department who has supported me for anything
concerning this research, I say thank you.

Finally, I would like to thank my family and Church: without their loving
support, understanding and prayers throughout the years I would not have been able to
complete the program and for this, I thank you.

o

L= S e

Xi

CHAPTER ONE

INTRODUCTION

1.1 Introduction

According to Gary C. Kessler (2012), in the world of information security, we
often see statements such as ‘secured by 128-bit AES’ or ‘protected by 2048 bit
authentication’. We are used to people asking about the strength of the cryptographic
algorithms deployed in a security solution. Algorithms such as the AES, RSA and
ECC have a proven track record of being difficult to break. They are successfully
deployed in protocols that protect our identity and the integrity and confidentiality of
our data, on a daily basis. Consider, for instance, the use of SSL or TLS when you
buy a book at Amazon, or when you connect to your bank account to transfer a sum
of money (Fisnik Hasani, 2011). Or the use of IKE and IPsec when you connect your
laptop to the company network to check on your email and read documents stored on
the company network.

AuthenTec Embedded Security Solutions (2010) stated that what we see very
rarely, unfortunately, are statements about the strength of the random number
generator used by a security system. System designers are typically more concerned
with the powemon and bit generation speed, than with the actual
randomness of the bits generated.

This is strange, considering that in most, if not all, cryptographic systems, the

quality of the random numbers used directly determines the security strength of the

LlBRARY
mu% RKRUMAH
\NIVERSITY OF SCIENCE & TECHNCLEE
KUMAS }§

system. In other words, the quality of the random number generator directly
influences how difficult it is to attack the system (Thomas B., 2006).

This can be easily seen if you realize that modern cryptographic algorithms and
protocols are designed around a well-known principle by Kerckhoff, which roughly
translates into the statement that “The security of the system must depend solely on
the key material, and not on the design of the system”(AuthenTec Embedded
Security Solutions, 2010). This means that all modern security algorithms and
protocols have their ‘cryptographic strength’ expressed in the number of keys (bits)
that an attacker needs to guess before he can break the system. This expression of
strength implicitly assumes that the attacker has no knowledge of the bits of the
original key used. The ‘effective strength’ of an algorithm is diminished when better
attacks against it are found and more key bits can be derived from looking at (a
limited amount) of output data.

Take, for example, the effective strength of 3DES. Although it uses 3 keys of
56 bits each, 3DES is currently only expected to provide 112 bits of ‘effective’
security, since the best attack against it today has a complexity of 2'12 bits. This still
assumes that all 168 bits of the key used, are unknown and unpredictable by the
attacker. So what happens if we start with key material that is partly predictable to

the attacker? Immediately, the security of the system is weakened, regardless of the

algorithm or protocol used. If your 128-bit key contains 16 predictable bits, using it
in AES-128 domlou 128-bit protection; it only gives you 112 bits of

protection, making the security of your system ‘only’ as strong as 3DES today.

And it doesn’t stop with cryptographic key material. Many security protocols
require random bits to remain secure, even though the protocol definition will not

always call it random; typically, a protocol description will use the term

‘unpredictable’ to indicate that a certain value should be difficult to guess by an
attacker. True random numbers may be required if your application uses one of the
following:

e Keys and initialization values (IVs) for encryption;

e Keys for keyed MAC algorithms;

e Private keys for digital signature algorithms;

e Values to be used in entity authentication mechanisms;
e Values to be used in key establishment protocols;

e PIN and password generation;

e Nonces.

Exactly for the reasons mentioned above, the IETF has written a “Best
Practices’ document (RFC 4086 (Eastlake, al et, 2005)) to explain the importance of
true randomness in cryptography, and to provide guidance on how to produce
random numbers. NIST has a section on Random Number Generation in their
Cryptographic Toolbox pages, and a number of standards bodies such as IETF,
IEEE., NIST. ANSI. and ISO have, or are working on, standards related to random
number generation. This goes to show the importance of proper random number
generation. This research therefore compares the effectiveness of Pseudo Random

Numbers Generators so as to get a Secured Cryptographic System, when

im_p—l_emented in Cryptography.

e —

1.2 Problem Statement

Software development and engineering is one of the fastest growing areas in the
field of computer science, and particularly in software development industry (John,
H., 2006). As such more and more enterprises prefer the software systems of storing
their confidential information to the manual information system. This ensures the
confidentiality, integrity and availability of data regardless of the form the data may
take: electronic, print, or other forms.

Protecting confidential information is a business requirement, and in many
cases also an ethical and legal requirement. This calls for the choice of a better
security tool in the software development stage. Cryptography is effectively used to
assure secrecy. Wax seals, signatures, and other physical mechanisms were typically
used to assure integrity of the media and authenticity of the sender. With the advent
of electronic funds transfer, the applications of cryptography for integrity began to
surpass its use for secrecy. A secure-cryptographic application requires a secure
encryption and decryption keys algorithms, and this needs a good random number
generator to be associated with the algorithm (Elaine B. & Allen R., 2011). A good
random numbers generator produces a sequence of numbers that cannot be easily
guessed or determined by an adversary (Yehuda L., 2006)

It is for such reason that the researcher has thought it wise to compare
the efffectiveness of the Pseudo-Random Numbers Generators that can be used in to

_—

im_f:o?ove securityMraphic algorithms in the Software Industry.

L

1.3 Justification of the study

Data thefts as result of unauthorized access to data that leads to violations of
both data protection laws and business or ethical requirement of an Organization
(Robert S. & Corey C, 2009. These losses in data integrity, can lead to the loss of
billions of Ghanaian Cedi which inflates budgets for organizations.

Therefore this research addresses this crucial issue by investigating the
effectiveness of Random Numbers Generators that should be used on a cryptographic

application in order to enhance security of data in organizations.

1.4 The Objectives of the Study

1.4.1 General Objectives
The general objective is finding effective Pseudo Random Number Generator
algorithms that can be used to improve the security of Cryptographic software

systems.

1.4.2 Specific Objectives

The specific objectives of the study are:

. To test for the repetition of Pseudo-Random Numbers Generators.
II. ~ To test for the uniformity of a Pseudo-Random Numbers Generators
///——
(PRNGs) algorithms.
III. To test for independence of numbers generated by the Pseudo-Random
Numbers Generators algorithms.
Therefore the researcher based on the specific objectives will be able to

identify a pseudo random number generator with lesser repetition of numbers,

unevenly distribution numbers and highest independence of numbers
produced by the generator used in the research and hence that generator is
established as the effective pseudo random numbers generator which can be

used in cryptographic applications to improve data security.

1.5 Significance of the research

According to Elizabeth A. Smith (2001) a highly valued asset is loss when
companies lose their important and confidential data in enterprise applications
software. As such the security of the Cryptographic System is needed to be
transparent or high for Companies for key exchange, digital signatures, or encryption

of small blocks of data.

However, the randomness of the keys provide data or information security In
cryptographic applications, which protects data access by unauthorized users, and
that dependents on the independence of numbers, lesser repetition of numbers and
unevenly distribution of numbers in the PRNGs algorithms used (M. Jayakumar &T.
Christopher, 2012). This research is done to identify those factors that determine an
effective pseudo random numbers generator so as to enhance the security of

cryptographic applications when applied in the security process.

1.6 Scope of thf,s,tl'ﬂy-"

The area of the research is limited to Pseudo-Random Numbers Generators, and
it is concentrated on Cryptographic Application Systems, and also applied to
Organisations that use enterprise software applications. These gives a logistic

problem of data being accessed and used by unauthorized users or by attackers based

—

——

on weaker cryptographic algorithms, hence the reason for the researcher choice of

the sector.

1.7 Research questions

The researcher in an attempt to draw valid conclusion will find answers

to the following questions:

1. How can recurrence of numbers in PRNGs algorithms be determined?
2. How is the efficiency of PRNGs algorithm determined?
3. How can the uniformity of PRNGs algorithm be determined?

4. How can the dependency of numbers in PRNGs algorithms affect its

efficiency?

1.8 Limitation and Delimitation of the Study

1.8.1Limitation of the study

Cryptographic Systems use both Probabilistic (True) and Deterministic
(Pseudo) Random Numbers Generators algorithms to generate keys and algorithms
that are used to protect data from attackers. Unfortunately the researcher
concentrates on PRNGs algorithms for Cryptographic Systems.

The implementation of the information security management using Probabilistic
Random Numbers Generators involves a lot of complex technology which cannot be

afforded by the researcher.

.

P ——————————

1.8.2 Delimitation of the study
This research only covers the four Pseudo-Random Numbers Generators
algorithms that can be applied in information security for data protection. The

researcher used four Pseudo Random Numbers Generators for the thesis.

There are also many statistical tests for the effectiveness and efficiency of
Random Numbers Generators algorithms. However the researcher only employed

frequency test, Chi-Square test and Kolmogorov-Smirnov test.

1.9 Outline of the Thesis

This thesis starts with an Introduction to the research background, stating the
Research Problem, Objective as well as describing the Scope of Study. The
second Chapter looks at the literature that was reviewed to come with relevant
information that supported the research objective and methods of carrying out the
research. Methods of carrying out the research are covered in the third Chapter.
Results of the research are presented in the fourth Chapter. The results were
analyzed and discussed in the fifth Chapter of the thesis. The thesis ends with

general conclusions and recommendations made based on the research results.

O

CHAPTER TWO
LITERATURE REVIEW

2.1 Introduction

A Good Cryptography requires good random numbers (H. Mike et al, 2012).
This thesis evaluates software security based on Pseudo Random Number Generator
(PRNG) for use in Cryptographic Applications.

Almost all cryptographic protocols require the generation and use of secret
values that must be unknown to attackers. For example, random numbers generators
are required to generate public/private key pairs for asymmetric (public key)
algorithms including RSA, DSA, and Diffie-Hellman. Keys for symmetric and
hybrid cryptosystems are also generated randomly. RNGs are used to create
challenges, nonces (salts), padding bytes, and blinding values. This is because
security protocols rely on the unpredictability of the keys they use: random number
generators for cryptographic applications must meet stringent requirements. The
most important property is that attackers, including those who know the RNG design,
must not be able to make any useful predictions about the RNG outputs. In
particular, the apparent entropy of the RNG output should be as close as possible to
the bit length. The thesis compare the efficiency of different random numbers

generators in Cryptographic Algorithm to see which them is the best to be used for

—t g
cryptography.

This Chapter gives some background materials about Cryptography and its
applications, RSA cryptosystems, literature pertaining to the RSA cryptography and

the different types of Random Numbers Generators (RNGs), and qualities of good

RNGs used in Cryptographic Applications and specifically the RSA Cryptographic

Algorithm.

2.2 Cryptography

According to A. Kapadia , P. Tsang, and S. W. Smith (2005), Cryptography is
the practice and study of hiding information. Modern cryptography intersects the
disciplines of mathematics, computer science, and electrical engineering.
Applications of cryptography include Automatic Teller Machine (ATM) cards,

computer passwords, and electronic commerce.

Cryptology prior to the modern age was almost synonymous with encryption, the
conversion of information from a readable state to apparent unpredictable. The
sender retained the ability to decrypt the information and therefore avoid unwanted
persons being able to read it. Since World War I (WWI) and the advent of the
computer, the methods used to carry out cryptology have become increasingly

complex and its application more widespread (Yuval,l., 2011).

Mohammed, A., & Annapurna, P., P. (2012, February) stated that modern
cryptography follows a strongly scientific approach, and designs cryptographic
algorithms around computational hardness assumptions that are assumed hard to
break by an adversary. Such systems are not unbreakable in theory but it is infeasible
to do so for any praeticat-adversary. Information-theoretically secure schemes that
provably cannot be broken exist but they are less practical than computationally-
secure mechanisms. An example of such systems is the one-time pad. Alongside the
advancement in cryptology-related technology, the practice has raised a number of

legal issues, some of which remain unresolved.

LiIBRARY
KWAME NKRUMA -
WIVERSITY OF SCENCE % TEC N

10 KUMA S |

Until modern times cryptography referred almost exclusively to encryption,
which is the process of converting ordinary information (called plaintext) into
incomprehensible code (called ciphertext)(David Kahn, 2007). Decryption is the
reverse, in other words, moving from the unintelligible ciphertext back to plaintext.
A cipher (or cypher) is a pair of algorithms that create the encryption and the
reversing decryption. The detailed operation of a cipher is controlled both by the
algorithm and in each instance by a key. This is a secret parameter (ideally known

only to the communicants) for a specific message exchange context.

According to David, K. (2007), a "cryptosystem" is the ordered list of elements
of finite possible plaintexts, finite possible cyphertexts, finite possible keys, and the
encryption and decryption algorithms which correspond to each key. Keys are
important, as ciphers without variable keys can be trivially broken with only the
knowledge of the cipher used and are therefore useless (or even counter-productive)
for most purposes. Historically, ciphers were often used directly for encryption or

decryption without additional procedures such as authentication or integrity checks.

In colloquial use, the term "code" is often used to mean any method of
encryption or concealment of meaning. However, in cryptography, code has a more
specific meaningm the replacement of a unit of plaintext (that is, a
meaningful word or phrase) with a code word (for example, wallaby replaces attack
at dawn). Codes are no longer used in serious cryptography—except incidentally for
such things as unit de_signations (example: Bronco Flight or Operation Overlord)—
since properly chosen ciphers are both more practical and more secure than even the
best codes and also are better adapted to computers. Cryptanalysis is the term used

for the study of methods for obtaining the meaning of encrypted information without

11

access to the key normally required to do so; that is, it is the study of how to crack

encryption algorithms or their implementations.

Some use the terms cryptography and cryptology interchangeably in English,
while others (including US military practice generally) use cryptography to refer
specifically to the use and practice of cryptographic techniques and cryprology to
refer to the combined study of cryptography and cryptanalysis (Oded Goldreich,
2008). English is more flexible than several other languages in which cryptology
(done by cryptologists) is always used in the second sense above. In the English
Wikipedia the general term used for the entire field is cryptography (done by
cryptographers). The study of characteristics of languages which have some
application in cryptography (or cryptology), that is frequency data, letter

combinations, universal patterns, and so on, is called cryptolinguistics.

2.3 Rivest Shamir Adleman (RSA) cryptography

2.3.1 RSA Cryptosystem

RSA is an algorithm for public-key cryptography that is based on the presumed
difficulty of factoring large integers, the factoring problem. RSA stands for Ron
Riif;s:[-, Adi Shamard Adleman, who first publicly described it in
1977. Clifford Cocks, an English mathematician, had developed an equivalent
system in 1973, but it was classified until 1997. A user of RSA creates and then
publishes the product of two large prime numbers, along with an auxiliary value, as
their public key. The prime factors must be kept secret. Anyone can use the public
key to encrypt a message, but with currently published methods, if the public key is

large enough, only someone with knowledge of the prime factors can feasibly decode

the message.

12

The basic RSA cryptosystem has two public quantities referred to as n

Z" (n).

(modulus) and e (public key), as well as private quantities d (private key) and

l (n) is defined as the Least Common Multiple (LCM) of all the prime factors of n.

A

The secret exponent d is chosen as an integer smaller than ¥ (n) and relatively prime

A

to *~ (n). The public key e is the “multiplicative inverse” of d and can be calculated

asd =e'mod A(n).

There are two processes in the RSA cryptosystem, one is encryption/decryption
and the other is signing/signature-verification process (Kaliski & B, 1992). They

stated in their Research that before the message is encrypted or signed, it is split into

several blocks (the message to be sent): m,,m,,--- m;, (m, <n for k €[l, j]) with the

same wordlength in the case it has larger wordlength than the modulus ». During the

encryption/decryption process, the public key e is used to encrypt the message m as

c¢=m‘modn, and the secret key d is used to recover the message m from the

ol e iy

encrypted information ¢ asm=c’modn. In the signing/signature-verification

process, the secret key d is used to obtain the signature s from the message m by

using s = m“(modn), and the public key e is used to verify the signature s by

checking whether s° mod » equals to the message m.

FEY RAD ¥
et NKRUMAF
oF SQENBE #TECHY

. v
13 w VERSATY CUMA S :

The public quantity » of the two-prime RSA cryptosystem has two large prime

factors referred to as p and ¢ respectively such that n= p-q. The two-prime RSA
also has another public quantity e and the secret quantities d and A(n). These two

positive integers p and g are usually chosen to have similar wordlength. Public

quantities {n, e} are made public and {p, g, A(n), d} are kept private in the two-

prime RSA cryptosystem.

For the multi-prime RSA cryptosystem, the public modulus » has at least three

prime factors (Robert Griffin, 2009). Usually the first three prime numbers are

J
represented as p, g and r, so that n= Z:‘i = p-q-r---i,. Similarly, {n, e} are made
k=1

public and {p.q,r,--+i,,A(n),d} are kept private (RSA Security Inc., 2000) in multi-

prime cryptosystems. One of the typical cases of the multi-prime RSA cryptosystem
is the three-prime RSA, in which the modulus has three prime factors p, g and . The

prime numbers p, ¢ and r are prime numbers and need to be factorised using Chinese

—_— ’_,,r""'———’__'_
Remainder Theorem (CRT).

2.3.2 Chinese Remainder Theorem (CRT) Based RSA

The Chinese Remainder Theorem (CRT) can be described as follows (L. R. YU,

j
2002). First, we assume the number n=) n, and x,, ¥,,..,X, are positive integers,
k=1

where n,, n,, ..., n, are also positive integers and relatively prime to each other, i.e.

14

ged(n,n,) =1 for any i,k €[l, j] when i does not equal to k. Then, the system of

congruencies

x = x, mod n,

x = x, mod n,

x=x, modn, (k=3,8"7)

has a simultaneous solution x. x can be calculated as:

;
x=(Zxk -1, -5,)ymod n

k=1

where 7, :”i and s, =7, modn, forallk=1, -, ;.
K

The CRT can be used to speed up the decryption and signing process in two-prime or
mul%i:-prime RSA (=FQuisquater & C. Couvreur, 1982), (RSA Security Inc., 2000).
The RSA systems that use the CRT to speed up the calculations are called CRT-
based RSA. They stated in this paper that RSA is the most widely deployed public
key cryptosystem. It is used for securing web traffic,e-mail, and some wireless
devices. Since RSA is_based on arithmetic modulo large numbers it can be slow in
constrained environments. For example, 1024-bit RSA decryption on a small

handheld device such as the Palm III can take as long as 40 seconds. Similarly, on a

heavily loaded web server, RSA decryption significantly reduces the number of SSL

15

requests per second that the server can handle. Typically, one improves RSA’s
performance using special-purpose hardware. Current RSA coprocessors can perform
as many as 10,000 RSA decryptions per second (using a 1024-bit modulus) and even

faster processors are coming out.

2.4 Attacks on the CRT-Based RSA

The attack on RSA cryptosystems is the science of breaking the encoded data.
The attacks toward the smart Integrated Circuit (IC) card device of the RSA
cryptosystem can be classified into two basic categories as the traditional
mathematical attacks and the implementation attacks (Dan Boneh, 2000). The
traditional mathematical attacks are algorithms modeled as ideal mathematical
objects. Attacks of this kind are typically generalized and mostly theoretical rather
than operational. The physical implementation attacks strategies are always specific
instead of generalized (Dan Boneh, 2000). The vulnerabilities of the implementation

attacks are relatively more difficult to control and they have been historically used to

cra_s_ﬁ__t.he cryptosWer G. Neumann, 1998). Thus, the study of this thesis

is concentrated on the implementation attacks.

2.4.1 Fault Attack z_lpd the Countermeasures

Bell laboratories discovered that all tamperproof devices of cryptosystems,
which use public key cryptography for user authentication without special
countermeasure, are at the risk of the occurrence of hardware faults (Bell

16

Communications research, 1995). For example, smart cards that are used for data
storage, cards that personalize cellular phones, cards that generate digital signatures

or authenticate users for remote login to corporate networks are all vulnerable to this

attack.

The hardware fault attack is that the adversary induces some type of fault into
the devices so that the system will have erroneous responses or produce faulty
results. Then the adversary is able to obtain the secret information of the system
using the erroneous responses or results from the system. The hardware fault attack
of the cryptosystem is composed of two steps. The first step is to inject some fault
into the system at appropriate time. The second step is to exploit the erroneous
responses or results to obtain the secret information of the cryptosystem. The
process of the fault-based attack is shown in Figure 2. /. The success of the
hardware fault attack depends on whether the following three conditions are met or

not (D. Boneh.et al,2001):

(i). The message to be signed is known to the attacker.
(i1). A random fault occurs during the system calculations.

(iii). The faulty results or erroneous responses are sent out of the system.

17

e ———

——

Guaranteeing that one or more of the above three conditions is not met is one
way to protect the RSA devices against such attack. Concerning the first condition,
some countermeasures have been proposed to make sure the attacker has no access
to the message to be signed. The Full Domain Hash (FDH) (IEEE standard 1363-
2000, 2000) and Probabilistic Signature scheme (PSS) protocols (RSA Security Inc.,
2000) are two of these countermeasures that have been standardized. In both FDH
and PSS schemes, an original message m is converted to a hash value mHash by
applying a one-way hash function' to the message m. Then the hash value mHash is
transformed into an encoded message EM. Finally the signature s is generated from
the encoded message £M using the private key. Therefore, the attacker cannot

access the encoded message EM to factor the system.

1st step: Physical
Fault injection
Perturbatmn

Erroneous result
or
unexpected behavior

2nd step:
Fault exploitation

Figure 2. I: The process of the hardware/software fault attack

18

As regards to the second and the third conditions, some countermeasures have
been presented to avoid sending faulty signatures/erroneous responses out of the
device or system. The basic idea is to use the checking method to avoid
obtaining/sending out faulty results/erroneous responses (A. Shamir, 1995). The
most obvious way is to repeat the computation and check whether the same signature
is obtained both times, which slows down the signing operation by a factor of two.
Another way is to check whether the message m can be recovered from the signature
s to decide the correctness of the signature. One disadvantage of either repeating the
computation or checking whether the message can be recovered from the signature is
that the calculation speed is almost slowed down by a factor of two. Shamir
presented a checking method with simpler calculations, in which the intermediate
results are checked before the signafu-re s is computed. If the intermediate results are
claimed to be error-free, then the signature can be computed and sent out, otherwise,

the intermediated results will be recalculated and checked again until it is error-free

(A.Shamir, 1995), —

Other than the above countermeasures, which try to guarantee that at least one
of the three conditions is not met, there is another countermeasure proposed by Yen
et al, (2003). The idea is to revise the signature calculation method of the CRT-based

RSA., so that the faulty signature will not reveal the secret information of the CRT=

based RSA cryptosystem. Yen et al. proposed two protocols (Yen et al, 2003), which

19

- ——————

assure the occurred fault in one module will affect the other module or the overall

computation, so that the faulty signature will not reveal the secret information.

2.4.2Timing Attacks

The timing attack is basically a way of deciphering a user’s private key
information by measuring the time it takes to carry out cryptographic operations (E.
English & S. Hamilton, 1996). By carefully measuring the amount of time required
to perform private key operations in a smartcard that stores a private RSA key while
the card is tamper resistant, the attacker may be able to discover the private
decryption exponent d (W. Schindler, 2000). This attack is computationally
inexpensive and often requires knowing only the ciphertext to be performed. Actual
systems are potentially at risk, including cryptographic tokens, network-based
cryptosystems, and other applications where attackers can make reasonably accurate

timing measurements (P. Kocher, 1996).

o

#:There are some-tmethods (P. Kocher, 1996) to prevent the timing attack to the
RSA cryptosystems, in which the most obvious one is to make all operations take
exactly the same amount of time. The second approach is to make timing
measurements inaccurate by adding random delay to the processing time so that the
attack becomes unfeasible. Another method is to adapt blind signatures so that the

attackers do not know the input to the modular exponentiation function.

20

2.4.3 Power Attack

The power attack of a smartcard is a technique that involves directly
interpreting power consumption measurements collected during cryptographic

operations to expose the secret key d (P. Kocher et al, 1999).

There are several countermeasures to the power attack (S. Thomas, 2000). The
first approach is to reduce signal sizes and choose operations that leak less
information on their power consumption. However, making the attack infeasible by
aggressive shielding the device will significantly increase the cost and size of a
device. The second approach is to introduce noise into power consumption

measurements so that the measurements by the attacker are inaccurate.

2.5 Random Number and Random Bit Generators

A random number and random bit generator, RNG and RBG, respectively, is a
fundamental tool in many different areas (Andrea Rock, 2005). He stated in his paper
that the two main fields of application are stochastic simulation and cryptography. In
stochastic simulatﬁNEs—arc used for mimicking the behavior of a random
variable with a given probability distribution. In cryptography, these generators are
employed to produce secret keys, to encrypt messages or to mask the content of
certain protocols by combining the content with a random sequence. Andrea Rock
(2005) stated also that a further application of cryptographically secure random
numbers is the growing area of internet gambling since these games should imitate

very closely the distribution properties of their real equivalents and must not be

predictable or influenceable by any adversary.

21

A

A random number generator is an algorithm that, based on an initial seed or by
means of continuous input, produces a sequence of numbers or respectively bits. We
demand that this sequence appears random" to any observer (Wolfram Research Inc.,
2008). They stated in these Tutorials that most Researchers will claim that they know
what randomness means, but if they are asked to give an exact definition they will
have a problem doing so. In most cases terms like unpredictable or uniformly
distributed will be used in the attempt to describe the necessary properties of random
numbers. However, when can a particular number or output string be called
unpredictable or uniformly distributed? In this part we will introduce three different

approaches to define randomness or related notions (Andrea Rock, 2005).

In the context of Random Numbers and Random Number Generators (RNGs)
the notions of real" random numblers and True Random Number Generators
(TRNGS) appear quite frequently. By real random numbers we mean the independent
realizations of a uniformly distributed random variable, by TRNGs we denote
generators that output the result of a physical experiment which is considered to be
random, like radioactive decay or the noise of a semiconductor diode. In certain
circumstances, RNGs employ TRNGs in connection with an additional algorithm to

progi_ujc.e a sequence that-behaves almost like real random numbers (Fischer,V., et al,

2009).

However, why would we use RNGs instead of TRNGs? First of all, TRNGs are
often biased, this means for example that on average their output might contain more
ones than zeros and therefore does not correspond to a uniformly distributed random
variable. This effect can be balanced by different means, but this post-processing
reduces the number of useful bits as well as the efficiency of the generator. Another

problem is that some TRNGs are very expensive or need at least an extra hardware

22

device. In addition, these generators are often too slow for the intended applications.
Ordinary RNGs need no additional hardware, are much faster than TRNGs, and their
output fulfills the fundamental conditions, like unbiasedness, that are expected from

random numbers.

These conditions are required for high quality RNGs but they cannot be
generalized to the wide range of available generators. Despite the arguments above,
TRNGs have their place in the arsenal. They are used to generate the seed or the
continuous input for RNGs. In (Ellison, C. 1995) the author lists several hardware
sources that can be applied for such a purpose. Independently of whether a RNG is
used for stochastic simulation or for cryptographic applications, it has to satisfy
certain conditions. First of all the output should imitate the realization of a sequence

of independent uniformly distributed random variables.

Random variables that are not uniformly distributed can be simulated by
applying specific transformations on the output of uniformly distributed generators,
(L. Devroye, 1996) for some examples or (W. Hormann & J. Leydold, 2000), which
provides a program library that allows to produce non-uniform random numbers

from uniform RNGs.

S /
Andrea Rock (2005), in his paper limited his discussion on generators that

imitate uniformly distributed variables. In a binary sequence that was produced by
independent and identically uniform random variables the ones and zeros as well as
all binary n-tuples for-n>1 are uniformly distributed in the n-dimensional space.
Furthermore there exists no correlation between individual bits or n-tuples,

respectively. From the output of a high quality RNG we expect the same behavior.

spRAS
:“E “KRJU‘-F‘ =

L VERSVYY OF SCIENCE B TE

23 W LIMAS

For some generators those conditions can be checked by theoretical analysis, but for

most RNGs they are checked by means of empirical tests.

Moreover, a good RNG should work efficiently, which means it should be able
to produce a large amount of random numbers in a short period of time. For
applications like stochastic simulation, stream ciphers, the masking of protocols or
online gambling, huge amounts of random numbers are necessary and thus fast

RNGs are required.

In addition to the conditions above, RNGs for cryptographic applications must
be resistant against attacks (Mike Hamburg, 2012), a scenario which is not relevant
in stochastic simulation. This means that an adversary should not be able to guess
any current, future, or previous output of the generator, even if he or she has some
information about the input, the inner state; or the current or previous output of the
RNG.

The topic of cryptographic RNGs concerns both mathematicians and engineers.
Most of the time engineers are more interested in the design of specific RNGs or test
suites, whereas mathematicians are more concerned with definitions of randomness,
theoretical analysis of deterministic RNGs and the interpretation of empirical test
results (Andrea mln his thesis he tried to address both disciplines by
giving the description of five real-world cryptographic RNGs as well as the
necessary mathematical background. This thesis however comparatively analysis the
five real-world cryptographic RNGs to see which of them are more efficient than the

other to be used in Cryptography.

24

2.6 Categories of Random Numbers Generators

There are three types of random numbers, quasi-, pseudo- and true- random
numbers. These different types of random numbers have different applications
(Mario Riitti, 2004). (It is philosophical question what we can call random or not, but

here, we use the following descriptions, its simpler)

True Random Number: The most often used example for “truly” random numbers
is the decay of a radioactive material. If a Geiger counter is put in front of such a
radioactive source, the intervals between the decay events are truly random. True
random numbers are gained from physical processes like radioactive decay or also
rolling a dice. But rolling a dice is difficult; perhaps someone could control the dice

so well to determine the outcome.

Pseudo Random Number: According to Kaushik Patowary (2009), essentially,
PRNGs are algorithms that use mathematical formulae or simply precalculated tables

to produce sequences of numbers that appear random. Examples of PRNG are:

e Blum Blum Shub

« Complementary-multiply-with-carry

o Inversive cEp_g[ue.n.tial generator

 ISAAC (cipher)

» Fibonacci Random Numbers Generator

« Specific Range Random Numbers Generators

e Gaussian (Normal) Distribution Random Numbers Generators
e Secured Random Numbers Generators

« Linear congruential generator

« Maximal periodic reciprocals

25

« Mersenne twister
e Multiply-with-carry
e Naor-Reingold Pseudorandom Function

o Park—Miller random number generator

A good deal of research has gone into pseudo-random number theory, and
modern algorithms for generating pseudo-random numbers are so good that the
numbers look exactly like they were really random. According to F. Rusu and A.
Dobra (2007), AMS-sketches were used to determine mathematically the efficiency
of the Pseudo-Random Numbers generators. In this paper, they provided a thorough
comparison of the various generating schemes with the goal of identifying the
efficient ones. To this end, they explain how the schemes can be implemented on

modern processors and use such implementations to empirically evaluate them.

Quasi Random Number: A good description quoted from (W. H. Press et al,
1992) stated that sequences of n;tﬁples that fill n-space more uniformly than
uncorrelated random points are called quasi-random sequences. That term is
somewhat of a misnomer, since there is nothing random about quasi-random
sequences: They are cleverly crafted to be, in fact, sub-random. The sample points in

a quasi-random sequence are, in a precise sense, maximally avoiding each other.

Quasi random numbers are not designed to appear random, rather to be
uniformly distributed. One aim of such numbers is to reduce and control errors in
Monte Carlo simulations. A picture is always a good way to illustrate the difference
between this two types. In figure 2.2 and 2.3 we have plots with different numbers of
pseudo- and quasi-random numbers. This is a good demonstration to show the

structure of quasi-random numbers, but it is also possible to see that quasi-random

26

-

numbers fill continuously the hole plane, while pseudorandom numbers may build
clusters and holes. If we are talking about random numbers in the following parts, we

mean pseudo random numbers.

1 v - 1
0s} ost
os} ast
04} oa4ar
02} 1 o2t 1
0T Bx o1 88 o 1 % oz o0a o5 s
100 Foints 250 Fons
1 1 -—
08} osk
s} os}
04} aat
02 oz} |
% 62 o0z 0s o8 1 8 037 G4 L AE) b
500 Potnis 1000 Poinis
Figure 2.2: Pseudo Random Numbers
(Source: Mario Riitti, 2004)
= = L= -
os osp
os} as}-
o4} aa} “
azf- az2| 5
- . e == P " —
ﬂu___.,- o2 n: ;n P'u-r?:: ’,..'-e:a“-'- 1 uﬂ == ngu mﬂ_: ce
| R ST O b R S (R RS A
3 B DT
sl 1\ u.:j-._ﬂ
0.4 os FE08 _-
aaf . ol A
500 Paoinis 1000 Points

Figure 2.3: Quasi Random Numbers

(Source: Mario Riitti, 2004)

27

—

2.7 Properties of Good PRNGs

According to M. Hoemmen (2006), each PRNG defines a single sequence of
pseudorandom numbers. Since modular integer arithmetic allows only a finite
number of numbers, eventually the sequence must repeat. Once the numbers start
repeating, the numbers aren’t pseudorandom anymore; they are correlated. That is,
one can use previously seen numbers to predict future numbers in the sequence. This

can hurt the accuracy of Monte Carlo (MC) simulations.

He stated that correlations are also bad for cryptography algorithms, because
they mean that an adversary might see patterns in encrypted text and exploit them to
break the code. Encrypted text and exploit them to break the code. Statistical tests
can be used to determine whether a particular PRNG produces a sequence with
sufficient statistical randomness may break on a certain sensitive application. It may
be a good idea to test a MC simulation with multiple PRNG’s, to check if it’s

sensitive to the particular

A good PRNG will produce a sequence of numbers that cannot be easily
guessed or determined by an adversary. The general assumption is that the opponent
knows the algorithm being used. This is usually referred to as Kerckhoff's principle

(YehudaL, 2006

According to Andrew R. el at (2010), another factor to be considered for a good
PRNG is that the series generated should be statistically random. It should be able to
hide all patterns and cerrelations. This can be tested by some statistical tests. A
PRNG should have the statistical property that each value over the interval has an
equally likely occurrence. In the case of the interval [0,1] each number would appear

with the frequency 1/2 in a long run. Each pair of numbers would appear with

28

frequency 1/4, and each triplet with frequency 1/8. This would form a basis of
observation that the numbers being generated are unbiased and successive outcomes
are uncorrelated (James A., et al (2003)). Tests should also include mean and
variance checks. Mean should be close to 0.5 and variance 1/12 = 0.08 for uniformly

distributed pseudorandom numbers.

Again, NIST (2010) stated that, Frequency (Monaobits) Test is also another
test for efficiency. The focus of the test is the proportion of zeroes and ones for the
entire sequence. The purpose of this test is to determine whether that number of ones
and zeros in a sequence are approximately the same as would be expected for a truly
random sequence. The test assesses the closeness of the fraction of ones to Y4, that is,
the number of ones and zeroes in a sequence should be about the same. Test for
Frequency within a Block: The focus of the test is the proportion of zeroes and ones
within M-bit blocks. The purpose of this test is to determine whether the frequency

of one’s is an M-bit block is approximately M/2.

According to Justin A. (2012 August 1), Period is another factor that affects
the efficiency of PRNG algorithm: Each algorithm has a period that depends on its
input parameters. Whenever the algorithm produces a result that is the same as its

- !,,..-—"""'"__— -
seed, it starts over generating the same numbers. Note that the period of an algorithm
can depend strongly on its seed and/or its parameters. The shorter the period, the

more repetitions of numbers, the generator and hence the high probability of

predictability.

Uniformity: Good PRNG algorithms will generate numbers uniformly across
their ranges. Algorithms with small periods but large ranges will fail this test

(Christophe D.& Diethelm W.,2003 September). But even some algorithms with

29

large periods can give problematic results if there are correlations between the

numbers they produce.

Christophe D. and Diethelm W.(2003), stated that it is important to ensure
that a given PRNG does not have obvious correlations between successive elements
of its sequence. This can mean that even an algorithm with a large period and good
(eventual) uniformity can be strongly non-uniform when a limited number of values
are generated. The more the correlation, the more numbers generated are dependent

on each other, the less secured the generator.

2.8 Conclusion

In this Section, the most widely used Pseudo-Random Numbers Generators
(PRNG) in cryptography, more specifically, RSA Cryptography has been has been
described and related literature being reviewed in the quest to determine the

efficiency of the PRNG algorithm in a Cryptographic Application.

30

CHAPTER THREE

RESEARCH METHODOLOGY

3.1 Introduction

This chapter presents different methods of testing Random number Generators
(RNGs) for a Cryptographic Applications employed by the researcher. These tests
are the test for randomness of the Random Number Generator (RNGs) Algorithm,
and the test for the efficiency of the Random Number Generators (RNGs) Algorithm.
The following sections present three main methods of testing for Random Number
Generators (RNGs) and its parameters for testing for both efficiency and randomness
of the individual generator widely used in Cryptographic Applications employed the

researcher.

3.2 Test for Random Number Generators

Tests for RNGs can be used in two ways; they are used to determine whether a
set of data has a recognizable pattern to it, and the determining how efficient a

particular RNGs algorithm is (Wolfram & Stephen, pp. 975-976, (May 2002).).

-

_—

—_— /_,_’,""——_4___
3.2.1 Tests for Randomness of Random Number Generators (RNGs).
Randomness tests (or tests of randomness), in data evaluation, are used to
analyze the distribution pattern of a set of data. In stochastic modeling, as in

some computer simulations, the expected random input data can be verified to show

that tests were performed using randomized data.

31

3.2.2 Chi-square Test

The chi-square test is the most commonly used test for the randomness of data,

and 1s extremely sensitive to errors in pseudorandom sequence generators. The chi-

square distribution is calculated for the stream of bytes in the file and expressed as an

absolute number and a percentage which indicates how frequently a truly random

sequence would exceed the value calculated. The procedures used are as follows:

ii.

iil.

Java Programming codes is written for each of Fibonacci Random Numbers
Generators, Gaussian Random Numbers Generators, Secure Random
Numbers Generators and Specific Range Random Numbers Generators
This test involved producing sequences of 100 random integers between 0
and 1000 using the Java codes for each of Fibonacci Random Numbers
Generators, Gaussian Random Numbers Generators, Secure Random
Numbers Generators and Specific Range Random Numbers Generators. The
generated random numbers are shown in Appendix 1V
The generated random numbers in (ii) above is coded in Statistical Package
for Social Science (SPSS) software to test of randomness of the numbers in
the generators. The procedures include:
a. Go to and-etick on the Analyse Menu on the SPSS bar after the data
has been coded.
b. Choose Nonparametric Test on the submenu.
c. Go to and then Click on Chi-Square Test.
d. Select all the four random numbers generators and move them to the
variable list.

e. The results generated for the Chi-Square Test is show in the Appendix

II.

32

V.

-

f. The results obtained as in Appendix II are interpreted.

[f these generator produces uniformly distributed numbers, one would expect
to have about 1 occurrences of the integer 1, 1 occurrences of the integer 2
and so on up to 1 occurrences of the integer 100. Therefore, the expected
frequency would be 1.1 or 1.0 for each integer 1 to 100. The actual frequency
of each integer produced by the generator is the observed frequency for that
integer. The difference between the observed and the expected frequency of
each integer can be used to compute the chi-square statistic as follows:

R 2
(Of__EI)

=Y —

=1 1

Where R = 100, is the number of different random integers possible, Oi is the
observed frequency of occurrence for the random integer / and Ei is the
expected frequency of occurrence for the random integer i. Because the
distribution of integers 1s expécted to be uniform, the expected frequencies of
occurrence for each random integer are equal. If N is the total number of
observations, then the following equation can be used to compute Ei. The

Chi-Square values for the four random numbers generators obtained are

G ounbelow: L

33

e e ——— p—

Table 3.1

The Chi-Square Test Result for Pseudo-Random Numbers Generators

Test Statistics
Specific Secure Gaussian Fibonacci
Range Random Random Random
Random Number Number Number
Number Generator Generator Generator
Generator
Chi- 4.500" 7.380° 14.400°¢ .000¢
Square
Df 94 90 87 99
Asymp. 1.000 1.000 1.000 1.000
Sig.

a. 95 cells (100.0%) have expected frequencies less than 5. The minimum
expected cell frequency is 1.1.

b. 91 cells (100.0%) have expected frequencies less than 5. The minimum
expected cell frequency is 1.1.

c. 88 cells (100.0%) have expected frequencies less than 5. The minimum
expected cell frequency is 1.1.

d. 100 cells (100.0%) have expected frequencies less than 5. The
minimum expected cell frequency is 1.0.

v. We interpret the percentage as the degree to which the sequence tested is
suspected of being non-random. If the percentage is greater than 99% or less
than 1%, the sequence is almost certainly not random. If the percentage is

_between 99% and-95% or between 1% and 5%, the sequence is suspect.

Percentages between 90% and 95% and 5% and 10% indicate the sequence is

“almost suspect”.

34 yu

3.2.3 Kolmogorov-Smirnov test (KS-test)

The Kolmogorov-Smirnov test (KS-test) tries to determine if two datasets differ
significantly. The KS-test has the advantage of making no assumption about the
distribution of data. (Technically speaking it is non-parametric and distribution free.
The Kolmogorov-Smirnov test (Chakravart, Laha, and Roy, 1967) is used to decide
if a sample comes from a population with a specific distribution. The Kolmogorov-
Smirnov (K-S) test is based on the Empirical Distribution Function (ECDF).

Given N ordered data points Y}, Y5, ..., ¥n, the ECDF is defined as
Ey = n(i)/N

where n(i) is the number of points less than ¥; and the ¥; are ordered from smallest to
largest value. This is a step function that increases by 1/Nat the value of each

ordered data point.

The procedures used to perform the Kolmogorov-Smirnov test (KS-test)

for the four random numbers generators namely: Fibonacci Random Numbers

Generators, Gaussian Random Numbers Generators, Secure Random Numbers

Generators and Specific Range Random Numbers Generators are as follows:

e Java mg codes is written for each of Fibonacci Random
Numbers Generators, Gaussian Random Numbers Generators, Secure

Random Numbers Generators and Specific Range Random Numbers

Generators.
il. This test involved producing sequences of 100 random integers
between 0 and 1000 using the Java codes for each of Fibonacci

Random Numbers Generators, Gaussian Random Numbers

Generators, Secure Random Numbers Generators and Specific Range

35

Random Numbers Generators. The generated random numbers are

shown in Appendix IV.

1. The generated random numbers in (ii) above is coded in Statistical

Package for Social Science (SPSS) software to test of randomness of

the numbers in the generators. The procedures include:

a. Go to and click on the Analyse Menu on the SPSS bar after the

data has been coded.

b. Choose Nonparametric Test on the submenu.

c. Go to and then Click on One Sample KS-Test.

d. Select all the four random numbers generators and move them to

the variable list and check Normal.

e. Click on Exact tap and select asymptotic option and then click

OK.

f. The results generated for the One Sample KS-Test is show below:

Table 3.2

The descriptive statistics of the Random Numbers Generators

Genqgiors == Mean Std. Minimum Maximum
Deviation

Specific Range Random 100 479.07 302.50 2 088
——— Number Generator

Secure Random Number 100 512.32 284 .47 34 958

Generator

Gaussian Random 100 5.08 68.51 -121 126

Number Generator

Fibonacci Random 100 -90142675.73 975930540 -2092787285 2.E9

Number Generator

36

Table 3.3

The Kolmogorov-Smirnov Test for Uniformity of random numbers

Specific Secure Gaussian Fibonacci
Statistics Range Random Random Random
Random Numbers Numbers Numbers
Numbers Generator Generator Generator
Generator
N 100 100 100 100
Uniform Parameters Minimum 2 34 -121 -
2092787285
Maximum 088 058 126 2144908973
Absolute 0.103 0.070 0.072 0.202
Most Extreme
Differences
Positive 0.103 0.045 0.072 0.202
Negative -0.039 -0.070 -0.060 -0.164
Kolmogorov-Smirnov Z 1.027 0.701 0.725 2.020
Asymp.Sig. (2-tailed) 0.243 0.709 0.670 0.001
Sig. 0.300 0.670 0.640 0.000
Monte 90%Confidence Lower 0.225 0.593 0.561 0.000
carlo.Sig.(2- Interval Bound
tailed) Upper 0.375 0.747 0.719 0.23
Bound
3.3 E:équency Test of Random Numbers Generators

The researcher used four (4) Pseudo-Random Numbers Generators (PRNGs)

namely: Fibonacci Random Numbers Generator (FRNG), Secure Random Numbers

Generators (SRNG), Specific Range Random Numbers Generator (RRNG) and

Gaussian Random Numbers Generator (GRNG). The following procedures are used:

. The first 100 random numbers are generated with Java codes using the

above random numbers generators,

ii. The output of the generation is shown in Appendix IV.

37

iil. These outputs for the different random numbers generators are coded into

SPSS to compare the number of times each numbers in the generator

repeats itself. The procedures here are.

a.

Go to and click on the Analyse Menu on the SPSS bar after the data
has been coded.

Choose Descriptive Statistics on the submenu.

Go to and then Click on Frequency.

Select all the four random numbers generators and move them to the
variable window.

Click OK.

The results generated for the Frequency test is shown in Appendix

T

3.4. Conclusion

In conclusion, the researcher employed three main tests for the efficiency of the

PRNGs algorithms namely; the frequency test, Chi-Square test and Kolmogorov-

Smirnov test. The output of each of these tests is the determinant factor for whether

or not any of the four compared PRNGs is more secured generator than the other.

——

e

38

CHAPTER FOUR

RESULTS AND DISCUSSIONS

4. 1 Introduction

This chapter presents the analysis and discussions of the results for four Pseudo-
Random Number Generators (PRNGs) namely; Fibonacci Random Number
Generator, Secure Random Numbers Generators, Specific Range Random Numbers
Generator and the Gaussian Random Numbers Generator. Frequency Test, Chi-
Square and Kolmogorov-Smirnov Tests are used to test the first 100 random
numbers generated from these four PRNGs to determine its randomness. The

sections below present the analysis and the discussion of the results.

4.2 Frequency Test of Random Numbers Generators

4.2.1 Specific Range Random Numbers Generator

It is found out that the Specific Range Random Numbers Generator produces
bigger random numbers that are clustered together into a range of 0 to 200. The
quantum of random numbers however decrease between the range of 200 to 400, and
henceff.hen scatteredfromr the range of 400 to 1000. In general random numbers
produced as a result of this generator are not uniform as they are scattered throughout
from 0 to 100 ranges of input data as shown in Figure 4.1. Numbers produced in this
generator is therefore pattern-based as seen in Figure 4.1. 1t can easily be found that
if the first number prodﬁced is low then the second number will be high and vice
versa. This therefore makes Specific Range Random Generator less uniform and

hence deviate from the normal distribution curve with standard deviation of 302.502.

39

Specific Range Random Number Generator

Mean =479.07
Std. Dev. =302.502
N =100

|
1ML LAY
L w =~

0 200 400 600 800 1000

Frequency

Specific Range Random Number Generator

Figure 4.1: The trend of randomness in a Specific Range Random Number Generator

4.2.2 Secure Random Number Generator
The Secure Random Numbers Generator produces bigger random numbers just

like the Specific Range Random Numbers, but more skew to the center than its
counterpart. This also produces random numbers that are not much uniform and
hence does not follow the normal distribution curve. However, numbers at certain
ranges in the results are much uniform than at certain points. As shown in the Figure
4.2, bet}jﬁéﬁthe range%&%-%& 600-700 and 800-900, numbers are more
uniform than the ranges 200-400, 400-600, 650-800 and 900-1000. This results
deviates from the normal with a standard deviation of 284.471. Numbers produced in
this generator is also pattern-based as seen in Figure 4.2. It can easily be found also

that if the first number produced is low then the second number will be high and vice

versa.

40

Secure Random Number Generator

i
Mean =512 32
Std Dev. =284 471
N =100
10
8-'
-
o
c
@ |
T o
4 6
[
w
4 —
2-.
) gy | ' e 1
0 200 400 600 800 1000

Secure Random Number Generator

Figure 4.2: The trend of randomness in Secure Random Number Generator

4.2.3 Gaussian Random Number Generator

This generator produces smaller random numbers at the beginning and at the

end of the range used, while producing bigger numbers at the middle of the range of

the numb;rs generated as-shown in Figure 4.3. However abnormal uniformity occurs

at the range of -100 to 50. The generator produces random numbers that are much
i o =

| skewed to the center, hence produces a substantially good standard deviation of

68.515. This standard deviation value shows that the generator obeys the normal

distribution curve.

41

Gaussian Random Number Generator

Mean =5.08
Std. Dev. =68.515
12 5= N =100

10.07

Frequency
g

0.0 T '
-150 -100 -50 0 50 100 150

Gaussian Random Number Generator

Figure 4.3: The trend of randomness Gaussian Random number Generator

4.2.4 Fibonacci Random Number Generator
From the results generated, it is found out that the Fibonacci Random

Numbers Generator started with smaller random numbers at the beginning, elevates
gradually, gets to its peak at a value of 0.0E0Q and declines gradually to the end of the
range as in Figure 4. 4-THis result tends to obey the normal distribution curve more
than all the other generators studied, with standard deviation of 9.759ES8.This

represents the greatest deviation of individual numbers produced by the generator

from each other and hence not normally distributed.

42

Fibonacci Random Number Generator

40+
Mean =-90142675.73
Std. Dev. =9.759E8
N =100

30
=
(1]
[=
L1}
A
o 20
| <2
'

|
10=
L
L~ N
-3.0E9 -2 0E9 -1.0ES 0.0ED 1.0E9 2 0ES 3.0E9

Fibonacci Random Number Generator

Figure 4.4: The trend of randomness in Fibonacci Random Number Generator

The researcher in comparing the four (4) Pseudo-Random Numbers
Generators (PRNGs) studied namely: Fibonacci Random Numbers Generator
(FRNG), Secure Random Numbers Generators (SRNG), Specific Range Random

Numbers (Génerator (RENQ)_and-Gaussian Random Numbers Generator (GRNG).

The results of the uniformity of the four generators are used to draw a line graph as

-

S

shown in Figure 4.5. The figure shows a line graph of frequencies (expressed in %)
for the four random numbers generators. It i1s found out that the random number
generator with the highest number of repeated numbers is Gaussian Random

Numbers Generator (22%), while Fibonacci Random Numbers Generator had no

43

repeated numbers in the random numbers. The repetition of the other generators
included (18%) and (10%) for Secure Random Numbers Generator and Specific
Range Random Numbers Generator respectively. This means that numbers were
more likely to be random with Fibonacci Random Numbers Generator than the other

generators compared with as shown in Figure 4.5.

Numbers Repitition

25
20
[}
€ 15
= |
_E 10 |—
5 engumSeriesl
0
Specific Range Secure Gaussian Fibonacci
Random Random Random Random
Numbers Numbers Numbers Numbers

Generator Generator Generator Generator

Figure 4.5: The number of repetitions in Pseudo Random Number Generators

4.3 The Chi-Square Test for Uniformity of random numbers

The analysis of the factors responsible for randomness in a random numbers
generators showed that factors tend to give much considerations to Fibonacci
Randomlqumbers Gew the other Generators compared with. This is
because the Chi-Square analysis for the independence of numbers in the generators

~— showed that numbers were more independent to each other in the Fibonacci Random
Numbers Generator (Chi-Square Value = 0.000) than the other generators under

studied. This is because independence of numbers increases with the decrease in Chi-

Square Value and vice versa.

e e e - o

However, the worst generator in terms of independence is Gaussian Random

Numbers Generator (Chi-Square value = 14.400) as shown in Table 4.1. This is

because it produces the highest Chi-Square Value from the test. This also means that

numbers in the GRNG were more likely to depend on each other’s than all the others

random numbers generators. Table 4.2 represents the descriptive statistics of the

analysis (Standard Deviation, Mean, etc.). Standard deviation of numbers increases

with decreases normality and vice versa. This means the higher the standard

deviation value the higher the deviation from the normal and vice versa. Therefore

Fibonacci Random Number Generator is more deviated from the normal distribution

than all the other generators while Gaussian Random Number Generator produces

numbers that obeys the normal distribution than all the generators compared with as

shown in Table 4.2.

Table 4.1

The Chi-Square Test for Independence of PRNGs

Specific Secure Gaussian Fibonacci
Statistics Range Random Random Random
=l __—" Random Numbers Numbers Numbers
Numbers Generator Generator Generator
Generator
Df 94 90 87 99
Asymp.Sig. 1.000 1.000 1.000 1.000
Monte carlo Sig. 1.000 1.000 1.000 1.000
Sig. e
; Lower 0.977 0.977 0.977 0.977
Bound
90% Confidence Upper 1.000 1.000 1.000 1.000
Interval Bound
23 A
| 22 s
v‘:i;“z'::“f
i W%‘ﬁ:s

Table 4.2

The descriptive statistics of the Random Numbers Generators

Generators N Mean Std. Minimum Maximum
Deviation

Specific Range Random 100 479.07 302.50 2 988

Number Generator

Secure Random Number 100 512.32 284 .47 34 958

Generator

Gaussian Random 100 5.08 68.51 -121 126

Number Generator

Fibonacci Random 100 -90142675.73 975930540 -2092787285 2.E9

Number Generator

4.4 The Kolmogorov-Smirnov Test for Uniformity of random numbers

In Kolmogorov-Smirnov, if the more the Z-Value falls in between the lower
and upper bound of the Monte carlo Signiﬁcﬁnce.@-tailed) Value, the more uniform
the numbers generated by the random number is and vice versa. From Table 4.3, the
Secure Random Number Generatorl and Gaussian Random Number Generator
produces more uniform numbers than its counterparts Fibonacci and Specific Range
Random Number Generators. This is because Secure Random Number Generator and
Gaussian Random Number Generator produces Z- Values that fall closer between the
lower and upper bommes, while Fibonacci and Specific Range Random
Number Generators produces Z-Values that fall outside the range of lower and upper
bounds Z-Values as shown in Table 4.3. The factors responsible for decision also
showed that factors tend to give more considerations to Fibonacci Random Numbers
Generators (K-S value = 2.020) than the other generators compared with in this
Thesis. This therefore makes Fibonacci random Numbers Generator less uniform

than the other generators: Secure Random Numbers Generator (K-S value = 0.701),

46

Specific Range Random Numbers Generator (K-S value = 1.027), Gaussian Random

Numbers Generator (K-S value = (0.725) as shown in Table 4.3.

However, the lesser the uniformity of numbers produced, the more
independent numbers are and vice versa. This accounts for why Fibonacci Random

Number Generator is most independent of the four generators as shown in (section

4.3).

Table 4.3

The Kolmogorov-Smirnov Test for Uniformity of random numbers

Specific Secure Gaussian Fibonacci
Statistics Range Random Random Random

Random Numbers Numbers Numbers

Numbers Generator Generator Generator

~ Generator
N ' wd00 100 100 100
Uniform Parameters Minimum 2 34 -121 -
2092787285
Maximum = 988 058 126 2144908973
Absolute 0.103 0.070 0.072 0.202
Most Extreme
Differences
= — Positive ~ 0.103 0.045 0.072 0.202
Negative -0.039 -0.070 -0.060 -0.164
Kolmogorov-Smirnov Z 1.027 0.701 0.725 2.020
Asymp.Sig. (2-tailed) 0.243 0.709 0.670 0.001
Sig. 0.300 0.670 0.640 0.000
Monte 90%Confidence Lower 0.225 0.593 0.561 0.000
carlo.Sig.(2- Interval — Bound
tailed) Upper 0.375 0.747 0.719 0.23

Bound

47

i

4.5 Summary of Findings and Discussions

According to the analysis of the factors responsible for decision to be taken on
the effectiveness of Pseudo Random Numbers Generators, it is found out that the
random number generator with the highest number of repeated numbers was
Gaussian Random Numbers Generator, followed by Secure Random Numbers
Generators and then Specific Range Random Numbers Generators, while Fibonacci
Random Numbers Generator has no repeated numbers in the random numbers. The
repetition of numbers in the other generators like the Secure Random Numbers
Generator and Specific Range Random Numbers Generator were found in between.
This means that numbers were more likely to be random using Fibonacci Random

Numbers Generator than the other generators compared with.

Again, the analysis of the factors responsible for randomness in a random
numbers generators showed that factors tend to give much considerations to
Fibonacci Random Numbers Generator than the other generators compared with.
This is because the Chi-Square analysis for the independence of numbers in the
generators showed that numbers were more independent to each other in the

Fibonacci Random Numbers Generator than the other generators under studied.

-

However, the “mr in terms of independence was Gaussian Random

Numbers Generator (GRNG). This means that numbers in the GRNG were more

likely to depend on each other’s than all the others random numbers generators.

Furthermore, the test for uniformity also shows that factors tend to give more
considerations to Secure Random Number Generator and Gaussian Random Number

Generator than the other generators compared with in this Thesis. This therefore

48

makes Fibonacci random Numbers Generator and Specific Range Random Numbers

Generator more than the other generators.

A good PRNG will produce a sequence of numbers that cannot be easily
guessed or determined by an adversary. The general assumption is that the opponent
knows the algorithm being used. This is usually referred to as Kerckhoff's principle
(Yehuda L., 2006). This assertion is evidenced in Fibonacci Random Numbers
Generator than the other Generators compared with. This is because the Chi-Square
analysis for the independence of numbers in the generators showed that numbers
were more independent to each other in the Fibonacci Random Numbers Generator

than the other generators under studied.

An additional reason for randomness of a pseudo random numbers generator is
the basis for good pseudo random number .generators (Andrew R. el at (2010)).
Every correlations and trends in the generators should be hidden. Statistically these
can be proven. The statistical compohent of a pseudo random numbers generators
shows that every value or results over a given range has equal chance of incidence.
Every number has a probability of % in the range of [0, 1]. Every couple of numbers
used will have an occurrence of % and a frequency of 1/8 for every triplet. That is
then bﬁgis for the nmﬁﬂ_gegéraled are not biased and consecutive output are not
correlated (James A., et al (2003)). The mean and variance computation must also be
included in the statistical randomness test. If the output for the Mean is closer to 0.5

and that of the variance is closer to 0.08, then the pseudo random numbers are

homogeneously.

Again, NIST (2010) stated that, Frequency (Monobits) Test is also another

test for efficiency. The focus of the test is the proportion of zeroes and ones for the

49

entire sequence. The purpose of this test is to determine whether that number of ones
and zeros in a sequence are approximately the same as would be expected for a truly
random sequence. The test assesses the closeness of the fraction of ones to %, that is,
the number of ones and zeroes in a sequence should be about the same. Test for
Frequency within a Block: The focus of the test is the proportion of zeroes and ones
within M-bit blocks. This test also determines whether the frequency of one’s is an
M-bit block is approximately M/2. In the analysis of the factors responsible for
decision to be taken on the random number generators revealed that Fibonacci
Random Numbers Generator produces random numbers that have less number of
ones and zeroes to be about the same than all the others random numbers generators
and hence makes numbers generated by this generator more independent of each

other.

4.6 Conclusion

The discussions of the findings indicate that Gaussian Random Numbers
Generator and Secure Random Numbers Generators Algorithms are the more
uniform, and then in terms of independence of numbers, it is the Fibonacci Random
Numbers Generator followed by Specific Range Random Number Generator that

i

numbers more independent than their counterpart generators compared.

50

T

e

s

CHAPTER FIVE

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

As stated earlier, this thesis is intended to compare the efficiency of Pseudo-
Random Numbers Generators (PRNGs) by testing for the repetition of numbers in
Generators, testing for the uniformity of numbers in the Generators algorithms, and
testing for independence of numbers generated by the Pseudo-Random Numbers
Generators algorithms.

In the test for uniformity of PRNGs, it showed that numbers generated using
Fibonacci Random Numbers Generators (K-S value = 2.020) were more uniform
than the other generators compared with: Secure Random Numbers Generator (K-S
value = 0.701), Specific Range Random Numbers Generator (K-S value = 1.027),

Gaussian Random Numbers Generator (K-S value = 0.725) (section 4.3).

The test for independence of PRNGs also revealed that numbers in the

Fibonacci Random Numbers Generator were more independent to each other than the

other Generators compared-with. This is because the Chi-Square analysis for the

independence in Fibonacci Random Numbers Generator (Chi-Square Value = 0.000)

was independence than the other generators under studied.

However, the worst generator in terms of independence was Gaussian Random
Numbers Generator (Chi-Square value = 14.400) (section 4.3). This means that

numbers in the GRNG were more likely to depend on each other’s than all the others

random numbers generators.

51 ‘Q:;l‘,\elc

5.2 Recommendations

According to Elizabeth A. Smith (2001) a highly valued asset is loss when
companies lose their important and confidential data in enterprise applications
software. Information security is also necessary to ensure that the data, transactions,
communications or documents (electronic or physical) are genuine, data cannot be
modified undetectably, and prevent the disclosure of information to unauthorized
individuals or systems (Akintunde M. Yinka , 2011). It is also important for
authenticity to validate that both parties involved are who they claim they are. This
makes data available to users according to their access right and ensuring that it
cannot be modified by unauthorized users. As such the security of the Cryptographic
System is needed to be transparent for Companies for key exchange, digital

signatures, or encryption of small blocks of data.

How random the keys are, provide information security in cryptographic
applications, which protects data access by unauthorized users, and that dependents
on the independence of numbers in the PRNGs algorithms used (M. Jayakumar &T.
Christopher, 2012). This will increase the security of enterprise software and
company’s revenue and the overall output performance of the organisation. The

e -
following are recommended:

e Software developers: Software developers are made aware of most effective
PRNG to be used for keys generations, keys handling and other practices that
are prescribed by t_he efficient PRNGs use in the product or application that
they develop. Furthermore, the standard needs to keep up with the latest
advances in cryptography and in cryptanalysis in order to phase out weaker or

broken algorithms.

52

Process: The software development process must provide the framework for
making the right decisions about implementing encryption, and this should
done using the right random numbers generator algorithm for its security.
Again, during software development and testing, cryptographic security
implementation needs to be reviewed and fully tested. This research ensures
that every PRNG algorithm used in cryptographic security will pass certain
statistical test.

It also recommended that by choosing the right PRNGs algorithm to be used
for encryption algorithms in cryptographic systems will ensure maximum
security of software data.

Researchers: Researchers who are keen in the Cryptographic applications, to
improve upon the weaknesses in security of cryptographic algorithms.
Researchers can also research into comparative analysis of the efficiency of

True Random Numbers Generators (TRNGs) algorithms.

53

References

Akintunde, M. Y. (2011). Data and Information Security, Electrical/Electronic
Engineering Department, Tower Polytechnic, Ibadan, Oyo State,Nigeria.
(http://www hrmars.com/admin/pics/272.pdf), (accessed 2012-
August 20).

Andrea, R. & Salzburg, A. (2005). .Pseudorandom Number Generators For
Cryptographic Applications. Paris, London, pp-1-3.

Andrew, R., Juan, S., James, N., Miles, S., Elaine, B., Stefan, L., et al. (2010).
“ A Statistical Test Suite for Random and Pseudorandom Number
Generators for Cryptographic Application, Revision 1a, USA, Special
Publication 800-22 (http://csrc.nist.gov/publications/nistpubs/800-22-
rev1a/SP800-22revla.pdf),” (accessed 2012 September 1).

AuthenTec Embedded Security Solutions (2010).”The importance of True
Randomness in Cryptography,” (http://www .authentec.com/
Portals/5/Documents/TRNG%20Whitepaper 9141 1.pdf), (accessed
2012 January 14).

Bell Communications research (1996, September).“New threat model breaks

W Pl

crypto codes,” Bellcore press release, Morristown,.

— Boneh, D., DeMillo, R., & Lipton, R.(2001). “On the importance of checking

cryptographic protocols for faults,”Journal of Cryptology, vol. 14, no. 2,

pp. 101-119. =

54

Carey-Smith, Mark T. and Nelson, Karen J. and May, Lauren J. (2007). Improving
Information Security Management in Nonprofit Organisations with Action
Research. In Valli, Craig and Woodward, Andrew, Eds. Proceedings The 5th
Australian Information Security Management Conference, pages pp. 38-46,
Perth, Western Austrialia.

Chaitin, G. J.(2001). Exploring RANDOMNESS, /BM Research, Published by

Springer-Verlag London, x + 164 pages, hardcover, ISBN 1-85233-4177.

Chapelle, O.,Vapnik,V., Bousquet, O., & Mukherjee, S.(2002).Choosing multiple

parameters for support vector machines. Machine Learning, 46(1):131-
159.

Christophe, D., & Diethelm, W. (2003, September 20). “A note on random
Number generation,” (http://cran.r project.org/web/packages/
randtoolbox/ vignettes/fullpres.pdf), (accessed 2012 September 7, 2012).

Dan, B.(2000).“ Twenty years of attacks on the RSA cryptosystem,” 2000.
(http://crypto.stanford.edu/~dabo/papers/RSA-survey.pdf.),(accessed
2012 May 10).

i Diffie,W. & Hellman, M.E.(1976). New directions in cryptography, IEEE

[transactions on Information theory, vol. 22, issue. 6, pp: 644-654.

Digital Signature Standard (DSS) (1994, May), Federal Information Processing

e Standards Publication 186.

DOI:Mishra, S. & Das, M. (2010). FPGA Based Random Number Generation for

Cryptographic Applications. National Institute of Technology,Rourkela,

India.

Eastlake, D., Schiller, J. & Crocker, S. (2005) “RFC 4086,” (http://www.ietf.org/

rfc/rfc4086.1xt.), (accessed 2012 June 10).

55

T

EI Gmal, T.(1985). “A public cryptosystem and a signature scheme based on
discrete logarithms,” Proceedings of CRYPTO 84 on Advances in
cryptology, Santa Barbara, California, United States, pp. 10-18.

Elaine, B., & Allen, R., (2011).Transitions: Recommendation for Transitioning
the Use of Cryptographic Algorithms and Key .NIST Special
Publication 800-131A.

Elizabeth, A. S.(2001).7he role of tacit and explicit knowledge in the workplace,
Journal Knowledge Management, Volume 5 , Number 4, 311-321
(http://www.uky.edu/~gmswan3/575/KM _roles.pdf), (accessed 2012
January 5).

English, E. & Hamilton, S.(1996). “Network security under siege: the timing
attack,” IEEE Computer, vol. 29, pp. 95-97.

Feistel, W. T., Don, C, Alan, K., Carl, M., Mike, M., Roy, A.,et al.(1993).
“Federal information processing standards publication 46-2: Data
encryption standard (DES),” (http://www.itl.nist.gov/fipspubs
/fip46-2.htm.), (accessed 2012 August 20).

Fischer,V., Aubert,A., Bernard,F., Valtchanov, B., Danger,J.-L. & Bochard, N.
(2009), True Random Number Generators in Configurable Logic Devices

— e |
University of Saint Etienne, Laboratory Hubert Curien CNRS UMR 5516

____—Fisnik, H. (2011). “Safe Internet Banking,” (http://www.itknowledge24.com

/blog/safe-internet-banking/), (accessed 2012 June 10).

Florin, R., & Alin, D. (2007).Pseudo-Random Number Generation for Sketch-
Based Estimations.USA, University of Florida Press.
Gary, C. K. (2012). “4n Overview of C ryptography,” (http://www.garykessler.

net/ library/crypto.html), (accessed 2012 August 10).

56

Hani, M. K., Lin, T. S., & Nasir, S-H.(2000). “FPGA implementation of RSA
public-key cryptographic coprocessor,” Proceedings on TENCON 2000,
vol. 3, pp.6-11.

[EEE standard 1363-2000 (2000, January). Standard specifications for public key
cryptography: additional techniques.

James, A. H., Abdissa N., Michael D. , Edwardes, B., & Janet E. F., (2003).
Statistical Analysis of Correlated Data Using Generalized Estimating
Equations: An Orientation, American Journal of Epidemiology, USA,
Volume 157, Issue 4 , pp. 364-375.

Jayakumar, M., & Christopher,T. (2012). Symmetric Algorithms Key Generate
Using Static Ip Address, International Journal of Advanced Research
in Computer Science and Engineering, volume 2, issue 2,(http://www.
ijarcsse.com/docs/papers/July2012/Volume 2 issue _7/V21700121.pdf),
(accessed 2012 August 12).

John, H. (2006),Trinity College DUBLIN, Annual Report 2006 —2007.

Joye, M., Lenstra,A.K.,& Quisquater,J.-J.(1999). “Chinese Remaindering based
cryptosystems in the presence of faults,” Journal of Cryptology, vol. 12,
no- 4, pp 241-245.

J ustin:; (2012). Prmf poor Pseudo-randomness, Cosmos Cluster

e 4,(http://cosmos.ucdavis.edu/archives/2012/cluster4/Adsuara,%20Justin.
pdf), (accessed 2012 August 14).

Koc, C. K. (1994). “High-speed RSA implementations,” Technical notes TR 201,

RSA Security Inc.

Koc, C.K.(1995). “RSA hardware implementation,” 7 echnical notes TR 801,

RSA Security Inc..

57

T

T —— cale

Kocher,P. (1996).“Timing attacks on implementations of Die-Hellman, RSA.,
DSS, and other systems,” CRYPTO’ 96, springer-verlag, pp. 104-113.
Kocher,P., Jaffe, J., & Jun, B.(1999) “Differential power analysis,” Proceedings
Of CRYPTO'99, pp. 388-397, Santa Barbara, CA, USA.
Korneru, P.(1994) “A systolic, linear-array multiplier for a class of right-shift
algorithms” IEEE Trans. Computer Arithmetic, vol. 43, pp. 892-898.
Krishnamurthy, A., Tang, Y., Xu, C., & Wang, Y.(2003, April). “An efficient
implementation of multi-prime RSA on dsp processor,” IEEE Int. Con.
on Acoustics, Speech, & Signal Processing, vol. 2, pp 413-416,
Hongkong, China.
Lai, X., & Massey, J.(1991). 4 proposal for a new block encryption standard,
Proceedings of Eurocrypt advances in Cryptology '90, Springer-
Verlag vol. 473, Berlin.
Mark, H. (2006).”Generating random numbers in parallel,” (http://www.cs.
berkeley.edu/~mhoemmen/csl 94/’1‘ utorials/prng.pdf), (accessed 2012-
May 10).
Marsaglia, G. (2011, October 4). “Random Number CDROM including the
Diehard Battery of Tests of Randomness,”(http://www stat.fsu.edu/pub

SSE _/”—_"/_’
/diehard/.) , (accessed 2012 August 27).

____Menezes,A. . Van,P. O, & Vanstone,S.(Update 2011), Handbook of applied

cryptography, CRC press.
Mike, H., Paul, K., Mark, E. M.(2012). Analysis of Intel’s Ivy Bridge Digital
Random Number Generator,(http://www.cryptography.com/public

/pdf/Intel TRNG_Report_2012031 2.pdf), (accessed 2012 August 20.)

. “
58 AL

T ———

e]

ey

Mohammed, A. ,& Annapurna, P., P.(2012,February)./mplementing a secure key
issuing scheme for communication in p2p networks. M.S.Ramiah Institute
of Technology,Department of Computer Science and Engineering,
Bangalore- 560054, India.

Montgomery, P.L. (1998). “Modular multiplication without trial division,”

Mathematics of Computation, vol. 44, pp. 519-521.
Peter, G. N. (1997), Principal Scientist, Computer Science Laboratory, SRI

International,MenloParkCA94025-3493.1-650-859-

2375 (http://www.csl.sri.com/neumann.html), (accessed 2010 November 1).

Quisquater,J.-J.& Couvreur, C.(1982) “Fast decipherment algorithm for RSA
public-key cryptosystem,” Electronic Letters, vol. 18, no. 21, pp 905-
907.

Rivest, R. L., Shamir, A., & L. Adleman, L.(1978). A method for obtaining

digital signatures and public-key cryptosystem, Communications of the
ACM, vol. 21, no. 2, pp.120-126.

Robert, S., & Corey, C. (2009). “Preserving identities: protecting personal
identifying information through enhanced privacy policies and laws,
lengths ,Information Technology Laboratory ,”(http://www .albanylaw-

i =
journal. org/files/19.1/sprague_format_dpl_ys.pdf), (accessed 2012 July
18).
RSA laboratory bulletin number 13. (2000, April). “A cost-based security

analysis of symmetric and asymmetric key lengths,”

(http://www.rsasecurity.com/rsalabs/node.asp?id=2088.), (accessed 2012

July 12)

55

e R

= T

RSA Security Inc.(2000). Crypto FAQ.(4" ed, pp 8-45), Cambridge Center,USA.
Claude E. S. (2012, January 31). Communication Theory of Secrecy
Systems. Bell System Technical Journal, vol. 28(4), pp- 656-715, 1949.

RSA Security Inc.,(2000).Crypto FAQ: Chapter 6: Laws concerning
Cryptography, 6.3. Patents on cryptography.(4™ ed, pp 174-197).
Cambridge Center, USA.

RSA Security Inc.(2000, July). “PKCS #1 v2.0 amendment 1: Multi-prime
RSA,”. (fip:/ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-

Oal.pdf.), (accessed 2012 June 14).

San, F. (2004). Diploma Thesis A Random Number Generator Test Suite for the
C++ Standard.

Schindler,W.(2000). “A4 timing attack against RSA with the Chinese Remainder
Theorem,” Proceedings of Cryptographic Hardware and Embedded
Systems, pp. 109-124.

Shamir, A. (1997, May). “How to check modular exponentiation,” Eurocrypt 97.

Shamir, A.(1999, November). “Method and apparatus for protecting public key
schemes from timing and fault attacks,” US patent 5991415.

Thomas, B- (2006).”Analysis of a strong Pseudo Random Number Generator,”

R /_.4—""—-‘_—_? .
(http://www.suse.de/~thomas/papers/random-analysis.pdf), (accessed

o February 2012).

Thomas, S.(2000). Messages, “Power analysis attack countermeasures and their
weaknesses,” Security Technology Research Laboratory.
Vander,A.J. S., Jack D. (2008)."Overview of Recent Supercomputers,"

(https://computing.lInl.gov/tutorials/parallel_comp/), (accessed-

2012 September 2).

60

Wiener, M.J. (1990) “Cryptanalysis of short RSA secret exponents,” IEEE
I'ransactions on Information Theory, vol: 36, Issue: 3, pp: 553-338.
Wolfram Research, Inc.(2008), Random Numbers Generation, United States of

America.

Wolfram, S.(2002). A New Kind of Science. Wolfram Media.pp. 975—
976. ISBN 1-57955-008-8.

wordiQ.com.(2004,December 9).“History of cryptography,” (http://www.wordiq-
.com/definition/History of cryptography.), (accessed 2011 January 2)

Wu, C.-H. , Hong, J.-H., & Wu, C.-W.(2001). RSA cryptosystem design based the
Chinese Remainder Theorem,” Proceedings of the ASP-DAC, pp: 391-395.

Yang, C.-C., Chang, T.-S., & Jen C.-W.(1998). “A new RSA cryptosystem
hardware design based on Montgomery's algorithm,” IEEE Transactions
on Circuits and Systems I1: Aralog and Digital Signal Processing, vol:45,
[ssue: 7, pp: 908-913.

Yehuda, L. (2006). Introduction to Cryptography, 89-656,(http://u.cs.biu.ac.1l/-
~lindell/89-656/Intro-to-crypto-89-656.pdf), (accessed 2012 August 1).
Yen,S., Kim,S., Lim,S., & Moon, S.(2003).“RS4 speedup with Chinese Remainder

Theorem immune against hardware fault attack,” IEEE

- /’————‘-_“_
Transactions on computers, vol. 52, pp. 461-472.

e

__——YU,L.R.(2002) “The generalization of the Chinese Remainder Theorem,” Acta
Mathematica Sinica, English Series, vol. 18, pp. 532-538.
Yuval,I.,(2011).Theory of Cryptography, 8" Theory of Cryptography

Conference,TCC 2011 Providence,RI,USA.

61

Appendices

Appendix I

Java Codes for Pseudo-Random Number Generators (PRNGsS)
Algorithms

Fibonacci Random Numbers Generator Algorithm
/**

* This program prints out the first 20 numbers in the Fibonacci sequence. Each
* term is formed by adding together the previous two terms in the sequence,

* starting with the terms 1 and 1.

* By Christopher A Abilimi
v/
public class Fibonacci {
public static void main(String[] args) {
intn0 =1, nl =1, n2;// Initialize variables
System.out.print(n0Q + " " + // Print first and second terms
nl +""): // of the series
for (int i =0; 1< 18; i++) { / Loop for the next 18 terms
n2 =nl + n0; / Next term is sum of previous two
System.out.print(n2 + " "); // Print it out
n0 =nl; // First previous becomes 2nd previous
nl = n2; // And current number becomes previous
e T
System.out.printin(); / Terminate the line

(IBRARY
} w:lME NK RV EF

£ & TECHNOLD™
OF SCIBNGCE &1
NIVERSITY KUMAS §

Secure Random Generator Algorithm

/*

* A Program to generate random numbers using Secure Random Generator
o

package generator;

import java.util.Random;

62

/t*
*

* @author Christopher A Abilimi
2l
public class Main {

/#*

* @param args the command line arguments
i
public static void main(String[] args) {
// TODO code application logic here
!#
* To change this template, choose Tools | Templates

* and open the template in the editor.
*/

log("Generating 10 random integers in range 0..99."):

//note a single Random object is reused here
Random randomGenerator = new Random();
for (int idx = I; idx <= 100; ++idx){
int randomInt = randomGenerator.nextint(1000);
log("Generated : " + randomInt);

|

log("Done.");
}

F]

private static void log(String aMessage){
System.out.printin(aMessage);

J
J

Specific Range Generator

-"'--.-——-.E-L
.

* A program to generate random numbers using the Specific Range Generator
%

o
package specificrange;
import java.util.Random;
/%%

"
* @author Christopher A Abilimi
%
public class Main {
/t#

* @param args the command line arguments
*/

63

public static void main(String[] args) {
// Specific Range Generator.

/** Generate random integers in a certain range. */
log("Generating random integers in the range 1..1000.");
int START = 1;
int END = 1000;

Random random = new Random();

for (int idx = 1; idx <= 1000; ++idx){
showRandomInteger(START, END, random);

)

log("Done.");

h

private static void showRandomInteger(int aStart, int aEnd, Random aRandom){
if (aStart > aEnd) {

throw new Illegal ArgumentException("Start cannot exceed End.");

b
//get the range, casting to long to avoid overflow problems
long range = (long)aEnd - (long)aStart + 1;
// compute a fraction of the range, 0 <= frac <range
long fraction = (long)(range * aRandom.nextDouble());
int randomNumber = (int)(fraction + aStart);
log("Generated : " + randomNumber);

J

private static void log(String aMessage){
System.out.println(aMessage);

i

;
T // TODO code application logic here

Gaussian (Normal) Distribution Generator

/*
* A Program to generate random numbers using Gaussian Distribution Generator
*

e

-

gt - | e

package Gaussian;
import java.util.Random;

.
*

. * @author Christopher A Abilimi
%y

public class Main {
[**
* @param args the command line arguments
il
public static void main(Stringf] ::}rgs) {
// TODO code application logic here

64

S

// Create a new instance or object of class Random

Random util_Random = new Random();

// Generate a pseudorandom number between 0.0 and 1.0

/I (Note: number will in the range of 0.0 to 1.0, but never 1.0)
double util_Random_Double = util Random.nextDouble():

// Returns the next pseudorandom, Gaussian ("normally") distributed
// double value with mean 0.0 and standard deviation 1.0

double util Random_Gaussian = util _Random.nextGaussian():

// Generate a number between 1.40129846432481707e-45
//'to 3.40282346638528860e+38 (positive or negative)
float util Random_Float = util Random.nextFloat();

// Generate a number between -9,223,372,036,854,775,808
// to +9,223,372,036,854,775,807
long util Random_Long = util Random.nextLong();

// Generate a number between -2,147,483,648 to 2,147.483.647
int util Random Integer = util Random.nextInt();

// Generate an integer from a specified range (if your pass
// In n as a parameter you numbers will range from 0 to n-1)
int util Random_Integer from n =util Random.nextInt(1000);
// Generate either true or false pseudorandomly

boolean util Random Bool = util Random.nextBoolean();
// Create and initialize an array of 5 bytes

byte[] bytes = new byte[1000];

// Populate the array with 5 randomly generated bytes

// Note: byte is a value that ranges from -128 to 127

util Random.nextBytes(bytes);

// Creates a java.util.Random object and calls

// the nextDouble() method

double math Random = Math.random();

// Display-all the results from above methods

System.out.println("Math+andom() -> " + math_Random);
System.out.println("nextDouble() ->" + util Random_Double)‘;
System.out.println("nextGaussian() -> " + util_Random_Gaussian);
System.out.println("nextFloat() > " + util Random_Float);
System.out.println("nextLong() -> " + util Random_Long);
System.out.println("nextInt() -> " + util Random_Integer);
System.out.println("nextInt(n) -> " + utiergndom_Integer_from_n);
System.out.printin("nextBoolean() -> " + util Random_Bool);
System.out.println("nextBytes(bytes) ->)

for(int i = 0; i < bytes.length; i++) |
System.out.println("Byte " + (i+1) + ™ " + bytes|[i]);

}

3

}
}

65

Appendix I1

Chi-Square Test

Frequencies

Specific Range Random Number Generator

Observed N | Expected N | Residual
2 1.1 0
9 1.1 0
19 1.1 0
22 1.1 0
41 2 1.1 9
56 1.1 0
76 1.1 0
78 1.1 0
80 1.1 0
86 e 1.1 .0
o | 1.1 0
96 1.1 4
100 B 4
111 L A
116 1] £
123 1.} 3

66

125 1.1
128 1.1
134 1.1
144 1.1
151 1.1
153 1.1
163 1.1
166 1.1
167 1.1
177 1.1
217 1.1
220 1.1
227 .1
248 1.1
249 1.1
259 1.1
262 /J__%u
268 1.1
282 1.1
336 1.1
361 .1
365 .1
416 1.1

67

430

455

456

458

461

463

495

512

524

526

549

554

564

567

1%

587

1.1

589

1.1

601

1.1

603

1.1

604

1.1

605

1.1

618

1.1

620

634

1.1

68

655 1.1
1656 1]
663 1.1
.679 1.1
1;02 1.1
705 1.1
r7l4 1.1
719 1.1
739 1.1
742 1.1
751 1.1
756 1.1
762 1.1
766 1
769 1.1
782 1.1
827 =13
834 1.1
T‘) 1.1
852 1.1
856 1.1
873 1.1
877 1.1

L ——— R

895] 11 0
901] 1] 0
902] 11 0
917] 11 0
930] 11 0
952] 1.1 0
974 1 1.1 0
983 1 1.1 0
984 1 1.1 0
988 I 141} 0
Total 100

Secure Random Number Generator

Observed N | Expected N | Residual
34 I 7 i
4 oyl 1| TSS S 0
46 1 1.1 .0
.‘: 5 1 1.1 .0
72 1 1.1 0
76 2 1.1 9
80 1 1.1 .0
86 1 1.1 .0

70

lil

1.1

1.1

1.1

1.1

1.1

1.1

1.1

1.1

1.1

101

123

136

159

168

171

178

194

203

205

206

218

222

230

236

244

251

294

299

334

359

71

397

1.1

405

1.1

427

1.1

436

1.1

444

1.1

447

1.1

450

J.}

459

1.1

461

1.1

469

11

479

1.1

488

1.1

500

1.1

503

e

512

1.1

524

1.1

552

355

1.1

397

l']

607

1.1

609

1.1

610

1.1

611

72

1.1

1.1

1.1

1.1

1.1

1.1

1.1

1.1

1.1

1.1

1.1

1.1

1.1

1.1

1.1

1.1

1.1

1.1

1.1

1.1

1.1

1.1

1.1

]

613

632

638

6438

663

665

670

672

675

676

686

700

715

LT

751

766

784

810

813

825

844

849

859

73

I 1.1
I 1.1
1 1.1
l 1
1 1.1
| L
! 1.4 \}
900 l 1.1
919 | 1.1
923 I 1.1
933 2 L |
1945 1] 1 o
1952 1 Ll 0
958 2 n _.;l
Total | 100 I
= L 'S

Gaussian Random Number Generator

Observed N | Expected N | Residual

—I-

1 1.1 -1
= 1 = -

| 1.1 -1
| 1.1 -1
1 1.1 -1

74

e

-

~ _— Ry PR S

- . -
. L —l - - -

| 1.1 -]

2 L1 9

1| 11 ¥

2 11 9

I 1.1 w
1 11| -.IJ
1 1.1* 1]
4 11 29

1 1.1 A

1 L1 1
1 1.14' -.J
1 11| -4

I 11 -1

1 BTl -.||
i 1.1 -1

Al 1.1 5,

| 1 |
1

|

1

1|

1

- G

FE———

ot —— = el

W -

== S i~ — g~ — T —

L e

2 1 1.1 =
91 1 11 =
92 1 11 =
= I 1.1 =1
2 1 1.1 N
101 1 1.1 51
102 | v i |
104] 1.1 =]
107 1 1.1 =4
112] 1] =
114 1 1.1 -1
123 2 1.1 9
124] 1.1 1
125 1 1.1 1
126 2 1.1 9
Total 100

Ja X

Fibonacci Random Number Generator

Observed N | Expected N Residual

-2092787285 __l 1.0
-2079590721 1 1.0
-2015728079 1 1.0

78

e E—— e ™ —

- —_— ey e

- Ty = e

=

T

e i i -

-1958435240

1.0
-1869596475 L0
-1781832971 1.0
-1709589543 1.0
-1691007710 1.0
-1581614984 1.0
1507123775 1.0
_1418756969 1.0
-1408458269 Lo|
-1323752223 1.0
-1289228135 1.0
-1262539787 1.0|
-1230842041 1.0
-1109825406 1.0
-1070442683 1.0
-1055680967 1.0
-1036647147 e 1.0
980107325 1.0
j;45834654 1.0
-944741150 1.0
-889489150 1.0
-811192543 1.0

- |-798870975 LY

79

l—660827267 1.0 ol
-433386095 10 '0
-401779575 1.0 0
-298632863 1.0 0
-285007387 1.0 0
-188547518 1.0 0
90618175 10| 0
! 1.0 0
2 1.0 0
3 1.0] 0
5 1.0 0
8 1.0 0l
13 1.0 0

x
21 1.0 .cJ
34 1.0 0
55 1.0 0
Rl = g | EXTNT 0
144 1.0 0
233 1.0 r
377 10| .
610 1.0 -
987 1.0 2
1597 1.0

Yy

181

6765

10946

17711

28657

146368

75025

121393

196418

(317811

514229

832040

il346269

12178309

3524578

R —

5702887

9227465

114930352

24157817

39088169

63245986 B

102334155

i —

81

-

"'"-

- -

i
1
|
|

e R

165580141

1.0
267914296 1.0
363076002 1.0
368225352 1.0
375819880 1.0
433494437 1.0
511172301 1.0|
512559680 1.0
572466946 1.0
695895453 1.0
696897233 1.0
701408733 1.0
708252800 1.0
764848393 1.0
885444751 1.0
887448560 1.0
1073992269 Yo 1.0
1134903170 1.0f
:;i2467027 1.0
1582341984 1.0
1640636603 1.0
1642909629 1.0
1776683621 1.0

82

— ——

T——

1820529360] 1.0 0
1836311903 1 1.0 0
1845853122 1 1.0 0
2118290601 1 1.0 0
2144908973 1 1.0 .0
Total 100
Test Statistics
Specific Range Secure Gaussian Fibonacci
Random Random Random Random
Number Number - Number Number
Generator Generator Generator Generator
Chi-Square 4.500° 7.380° 14.400‘:' 000"
Df 94 90 87 99
Asymp. Sig. l .OOOP 1.000 1.000 1.000

a. 95 cells (100.0%) have expected frequencies less than 5. The minimum
expected cell frequency is 1.1.

b. 91 cellf; .(100.0%) have-expected frequencies less than 5. The minimum
expected cell frequency is 1.1.

expected cell frequency is 1.1.

. 88 cells (100.0%) have expected frequencies less than 5. The minimum

expected cell frequency is 1.0.

d. 100 cells (100.0%) have expected frequencies less than 5. The minimum

83

Appendix III

Frequency Test for Random Numbers Generators

Statistics
Specific Range Secure Gaussian Fibonacci
Random Random Random Random
Number Number Number Number
(Generator Generator Generator (Generator
N |Valid 100 100 100 100
Missing 0 0 0 0
Frequency Tables
Specific Range Random Number Generator
Cumulative
Frequency | Percent | Valid Percent Percent
--"":=_-_ ;
Valid |2 51 1.0 1.0 1.0
19 l 1.0 1.0 3.0
22 |- 1 '0 | _O 40
56 l 1.0 1.0 7.0

P LS 1.0 8.0
78 1.0 1.0 9.0
e 1.0f LoL 10.0
o 1.0 1.0 11.0
- 1.0 10 12.0
- 1.0 1.0| 13.0)
100 10| 1.0 14.0)
111 1.0 1.0 15.0|
116 1.0] 1.0 16.0)
123 1.0 1.0 17.0)
125 1.0 10| 18.0|
128 10| 1.0, 19.0|
134 1.0 10| 20.0
144 1.0 10| 21.0
151 1.0| 1.0 22.0
iy 1 K

153 >’ fig 1.0 23.0
163 1.0 o] 24.0
166 2.0 20 26.0
167 1.0/ 10 27.
177 e Y T
217 1.0 . 29,
1220 1.0 1. 30.

[227 10| T
248 1.0l ”y
249 1.0 313.0
259 1.0 34.0
262 1.0l 35,
268 L9 36.0
282 1.0 1ol 37.0
336 1.0| 1.0l 38.0
361 10| 1.0| 39.0
| -
1365 1.0 1.0 40.0
416 1.0Il 1.0} 41.0
430 1.0 10 42.0
455 10| 1.0 43.(
456 20| 2.0 45.0
l453 10| 1.0l 46.0
4.01 1.C 47.0
1.0 1.0 48.0
1.0 490
10 50.
1.0 51.C
1.0 52.(

- -

554 0 - =
564 i - o
567 10 ¥ o
g Mo 1.0 57.0
589 T i o
601 1.0 1.0 59.0|
603 1.0 1.0 60.0
604 1.0 1.0 61.0
605 1.0| 1.0 62.0
618 1.0 1.0 63.0
620 1.0 1.0 64.0
634 1.0 1.0 65.0
655 1.0 1.0 66.0
656 1.0 1.0 67.0
663 1.0 1.0 68.0
679 IIS==%8 1.0 69.0
702 1.0 1.0 70.0
705 1.0 1.0 71.0
714 1.0 1.0 72.0
719] 1.0 1.0 73.0
739 2.0 2.0 75.0
742 1.0 1.0 76.0

87

‘A 2.0 2.0 78.0
756 10 ‘o =
i 1.0 1.0 80.0
766 1.0 i e
769 1.0 T o
782 1.0 1.0 83.0
827 1.0 1.0 84.0
834 1.0 1.0 85.0
849 1.0 1.0 86.0
852 1.0 1.0 87.0
856 1.0 1.0 88.0
873 1.0 1.0 89.0
877 1.0 1.0 90.0
895 1.0 1.0 91.0
901 1.0 1.0 92.0
002 X7 1.0 93.0
917 1.0 1.0 94.0
930 1.0 1.0 95.0
952 1.0 1.0 96.0
974 3 1.0 1.0 97.0
083 1.0 1.0 98.0
984 1.0 1.0 99.0

88

988 I 1ol 1. 100.

-
Total 100 100.0 100.

Secure Random Number Generator

Frequency | Percent | Valid Percent

34 1 1.0 1.0

45 1| 1.0 1.0

46 1 1.0

55 L

72

76

80 R

86

101

123

136

159

168
71

178

glalzlslalelslslslslsls

i 1.0 1.0 42.0
459 10 i o
461 1.0 10 P
g 1.0 1.0 45.0
479 1.0 T e
ek 1.0 1.0 47.0
500 1.0 1.0 48.0
503 1.0 1.0 49.0;
512 1.0 1.0 50.0
524 1.0 1.0 51.0
552 2.0 2.0 53.0
555 1.0 1.0 54.0|
597 10| 1.0 55.01
607 1.0| 1.0 56.0
609 2.0 2.0 58.0|
610 =38 1.0 59.0|
611 1.0 1.0 60.0}
613 1.0 1.0 61.0}
632 1.0 1.0 62.0
638 _ 1.0 1.0 63.0}
648 1.0 1.0 64.0
663 1.0 1.0 65.0

91

66.0

67.0

68.0

69.0

70.0

71.0

72.0

73.0

74.0|

75.0

78,

78.0

79.0]

80.0

81.0

82.0

83.0

84.0

85.0

86.0

87.0}

88.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

2.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

2.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

J it ¥

665

670

672

675

676

686

700

715

T

751

766

784

810

813

825

844

849

859

860

864

866

881

e s Py P % e T et A Sy 2 Wl e e W A et 5 it oW

Mhs v w7 Tl et N e

92

Ia93 |

895 f
897 1
900 1
919 1 1
923 1
933 2
945 1
952 1
958 2
Total_T 100

Frequency
-121
-115
A
-106
S|

6.0

7.0

9.0|

10.0

11.0

12.0

14.0

15.0]

16.0

17.0

18.0

19.0

20.0

21.0|

22.0

23.0

25.0

26.0

27.0

28.0

29.0j

30.0

1.0

1.0

2.0

1.0

1.0

1.0

2.0

1.0

1.0|

1.0

1.0

1.0

1.0

1.0|

1.0

1.0

2.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

2.0

1.0

1.0

1.0

2.0

1.0§

1.0

1.0

1.0

1.0

1.0

1.0

1.0

2.0

1.0

1.0

1.0

1.0

1.0

o

-100

95

-89

-87

-82

-79

77

-76

-73

-69

-68

-67

-66

-64

=57

-51

.49

47

-44

-43

-42

94

31.0

32.0

33.0|

34.0

35.0

36.0

38.0

39.0

40.0

41.0

42.0

43.0

44.0

45.0

46.0

48.0

49.0

50.0

51.0

52.0

53.0

54.0

1.0

1.0

1.0

1.0

1.0

1.0

2.0

1.0f

1.0

1.0

1.0

1.0

1.0

1.0

1.0

2.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

2.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

2.0

1.0

1.0

1.0

1.0

1.0

1.0

-41

-40

-38

-36

-33

-29

-27

-25

-19

-18

-15

-12

-11

11

12

14

e, s mm — il

S S U ST SR S S P — - —_SrerSuere———— P S S SSRGS e

e —

95

55.0

56.0

58.0

59.0

61.0]

62.0

63.0

64.0

63.0

69.0

70.0

71.0

72.0

73.0}

74.0

75.0f

76.0

77.0

78.0

79.0

80.0

81.0

1.0

1.0

2.0

1.0

2.0

1.0

1.0

1.0

4.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

2.0

1.0

2.0

1.0

1.0

1.0

4.0

1.0|

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

X7

i

15

18

19

20

21

23

25

29

30

33

34

42

43

49

33

58

63

70

74

76

85

..r..r"'i.lll.|ln e e i S S ._.l.l.l..l...l.___-..-,.|.|._1.-..i._|...1...l| -

96

ﬁ

i 1 1.0 1.0 82.0
89 1 1.0| 1.0 83.0
90 1 1.0 1.0 84.0
2 : 1.0 1.0 85.0
2 : 1.0 1.0 86.0
94 1 1.0 1.0 87.0
99 1 1.0 1.0 28.0
101 1 1.0 1.0 39.0
102] 1.0 1.0 90.0
104 1 1.0 1.0 91.0
107 1 1.0 1.0 92.0
112 1 1.0 1.0 93.0
114 1 1.0-- 1.0 94.0
123 2| 20| 2.0 96.0
124 1 1.0 1.0 97.0
125 s tEx-T 1.0 98.0
126 2 2.0 2.0 100.0
Total 00| 100.0 100.0

97

Fibonacci Random Number Generator
Cumulative
Frequency | Percent | Valid Percent Percent
Valid |-2092787285 l 1.0 I.(;I 1.0
2079590721 1L 1.0* 1.0 2.0
2015728079 1 1.0A 1.0 3.0
-1958435240 1 1.0 1.0 4.0
1869596475 1 1.0 1.0 5.0
| -1781832971 1 1.0 1.0 6.0
11709589543 | 1 1.0 1.0[7.0
-1691007710 H - R 1.0 8.0;
1581614984 | | 1 — L?L 9.0|
11507123775 | T 1.0 10.0)
11418756969 | I 1.0} 1.0 11.0
11408458269 1 10| 1.0 12.0
S -13237szzzaI 19 1.0| 13.
11289228135 ! 10| 1.0| 14.0
premg R TET| N 1 1s.
11230842041 | i 10 1. 16.
1109825406 | Tl '-‘{ k. 17

L

—

|
|

[t

-1070442683 1.0 10 13.0l
-1055680967 1ol 10 19.0
-1036647147 1.0 1.0 20.0
-980107325 1.0 1.0 21.0|
-945834654 1.0 1.0 22.0
-944741150 1.0 1.0 23.0|
-889489150 1.0 1.0 24.0|
-811192543 1.0| 1.0| 25.0
-798870975 1.0f 1.0 26.0
-660827267 1.0 1.0 27.0
-433386095 1.0 1.0 28.0
-401779575 1.0 1.0 29.0
1298632863 1.0 1.0 30.0
-285007387 1.0| 1.0| 31.0)
-188547518 1.0y 1.0 32.0
90618175 | 1.0 1.0 33.0}
| 1.0} 1.0 34.0
2 1.0] 1.0 35.0
; 1.0 10| 36.0|
5 1.0| 1.0 37.0|
g 1.0 1.0 38.0
3 10| 1.0 39.0
99

R =

W —— . v

21

1.0 1.0 40.0
= 1.0 1.0 41.0
2 10| 1.0 42.0
32 1.0 1.0 43.0
144 1.0 1.0 44.0
233 1.0 1.0 45.0
377 1.0 1.0 46.0
610 1.0| 1.0 47.0
987 1.0 1.0 48.0
1597 1.0 1.0 49.0
2584 1.0 1.0 50.0
4181 1.0 1.0 51.0
6765 1.0 1.0 52.0
10946 1.0| 1.0 53.0|
17711 1.0 1.0 54.0
28657 A 1.0 1.0 55.0
46368 1.0 1.0f 56.0
75025 1.0 1.0 57.0
121393 1.0 1.0 58.0
196418 1.0 1.0| 59.0
317811 1.0 1.0 60.0
514229 1.0 1.0 61.0

100

Gor =W

B —

:

832040

1.0 1.0 62.0
1346269 1.0 1.0 63.0
2178309 1.0 10 64.0
3524578 10l 1.0 65.0
5702887 1.0 1.0 66.0
9227465 1.0 1.0 67.0
14930352 1.0 1.0f 68.0|
24157817 1.0 1.0 69.0
39088169 1.0 1.0| 70.0
63245986 1.0 1.0 71.0
102334155 1.0| 1.0 72.0
165580141 1.0 1.0 73.0
267914296 1.0 1.0 74.0
363076002 1.0} 1.0 75.0
368225352 1.0 1.0 76.0
175819880 | 1.0| 1.0 77.0
433494437 1.0 1.0 78.0
511172301 1.0} 1.0 79.0
512559680 1.0 1.0 80.0
572466946 1.0 1.0] 81.0
695895453 1.0 1.0 82.0
696897233 1.0 1.0 83.0

101

701408733 1 1.0 1.0 84.0
708252800 1 1.0 1.0] 85.0
764848393 1 1.0 1.0 86.0
885444751 l 1.0 1.0 87.0
887448560 1 1.0 1.0 88.0
1073992269 1 1.0 1.0 89.0
1134903170 1 1.0 1.0 90.0
1412467027 I 1.0 1.0 91.0
1582341984 I 1.0 1.0 92.0
1640636603 1 1.0 1.0 93.0
1642909629 I 1.0 1.0 94.0
1776683621 1 1.0 R1.0 95.0
1820529360 1 1.0 1.0 96.0
1836311903 1 1.0 1.0 97.0
1845853122 1 1.0 1.0 98.0
2118290601 | 1 1.0 1.0 99.0
2144908973 I 1.0 1.0 100.0
Total 100 100.0 100.0

102

Appendix IV
Random Numbers generated by Various Generators
a. Specific Range Random Number Generator: 782.0, 134.0, 78.0, 849.0,
702.0,217.0,163.0,456.0,128.0,19.0,220.0,80.0,144.0,259.0,766.0,589.0,877.0,
512.0,762.0,262.0,739.0,719.0,852.0,461.0,663.0,282.0,22.0,917.0,714.0,655.0
,455.0,116.0,248.0,41.0,739.0,656.0,984.0,111.0,895.0,2.0,988.0,705.0,834.0,7
51.0,587.0,86.0,9.0
b. Secured Random Number Generator:
461.0,958.0,396.0,844.0,945.0,933.0,436.0,359.0,555.0,923.0,236.0,503.0,610.
0,159.0,488.0,597.0,766.0,919.0,251.0,136.0,552.0,717.0,244.0,632.0,459.0,16
8.0,86.0,136.0,676.0,866.0,334.0,686.0,397.0,849.0,101.0,864.0,76.0,469.0,45.
0,76.0,611.0,933.0,897.0,123.0, 881.0,670.0,893.0,900.0,46.0,512.0,860.0,825.
0,123.0,607.0,672.0,80.0,784.0,203.0,859.0,648.0,895.0,524.0,205.0,638.0,397
.0,751.0,479.0,171.0,609.0,613.0,299.0,715.0,405.0,230.0,663.0,813.0, 810.0,6
09.0,206.0,362.0,952.0,766.0,222.0,700.0,194.0,675.0,665. 0,500.0,72.0,447.0,
427.0,552.0,294.0,958.0,178.0,55.0,218.0,34.0,444. 0,450.0
c. Gaussian Random Numbers Generator: 30.0,-95.0,125.0,5.0,-19.0,124.0,-
— 43.0,760,101.0,70.0,42.0,107.0,-33.0,2.0,94.0,30.0,-27.0,-73.0,-51.0;-
87.0,99.0,-69.0,25.0,126. 0,-82.0,25.0,-29.0,-52.0,-51.0,19.0,20.0,-42.0,-
67.0,30.0,112.0,86.0,-41.0,-115.0,-3.0,11.0,33.0,-79.0,-49.0,-77.0,-64.0,-
104.0,53.0,92.0,-18.0,-102.0,14.0,114.0, 74.0,-68.0,15.0,126.0,-8.0,49.0,18.0,-
121.0,-3.0,34.0,-76.0,123.0,-89.0,43.0,-106.0,54.0,102.0,19.0,-9.0,91.0,104.0,
77.0,-38.0,21.0,30.0,-44.0,-47.0,-57.0,123.0,-11.0,23.0,-25.0,-27.0,-36.0,-

100.0,-40.0,58.0,89.0,90.0, 85.0, 21.0,-89.0,-12.0,-66.0,12.0,-15.0,8.0,63.0.

103

|
!
|
|
|
_F
|
l

Fibonacci Random Numbers Generators:

1,02, 0,3.0,5.0,8,0,13.0,21.0,34.0,55.0,89. 0,144.0,233.0,377.0,610.0,987. 0,159

7.0,2584.0,4181.0,6765. 0,10946.0,17711.0,2865 7.0,46368.0,75025.0,121393.0
,196418.0,317811.0,514229. 0,832040.0,1346269.0,21 78309.0,3524578.0,5702
887.0,9227465.0,1.4930352E 7,2.4157817E7,3.9088169E7,6.3245986F /,1.0233

4155E8,1.65580141E8,2. 67914296E8,4.33494437E8,7.01408 733E8,1.13490317
£9,1.836311903 £9,-1.323752223F9,5.1255968E8,-8. 11192543E8,
2.98632863E8, -1.1 09825406E9, 1.408458269E9, 1.776683621 E9,
3.68225352E8, 2.144908973E9,-1.781832971 E9,3.63076002ES8, -

1.418756969E9,-1.055680967E9,1. 82052936E9,7.64848393ES, -

1.709589543E9,-9.4474115E8,1.64063 6603E9,6.95895453E8,-1.95843524F9, -
1.262539787E9,1.073992269E9,—1.8854?518E8, 8.85444751E8, 6.96897233E8,
1.582341984E9, -2.015728079E9, 4.33386095E8, 1.845853122E9,
1.412467027E9,-1.036647147E9,3.7531988!:'8,—6.60827267E8,-2.85007387E8, -
9.45834654E8, -1.230842041FE9, 2.118290601E9, 8.8744856E8,-
1.289228135E9, -4.01779575E8, -1.69100771E9, -2.092787285ES9,
5.11172301ES8, -1.581614984E9,-1.070442683E9, 1.642909629E9,
i

5.72466946E8, -2.079590721E9, -1.507123775E9, 7.082528E8 -7.98870975E8,

-9.0618175E7, -8.8948915E8, -9.80107325E8, -1.869596475E9

104

	001_L(9).pdf (p.1)
	003_L(7).pdf (p.2)
	005_L(6).pdf (p.3)
	007_L(6).pdf (p.4)
	009_L(5).pdf (p.5)
	011_L(4).pdf (p.6)
	013_L(4).pdf (p.7)
	015_L(4).pdf (p.8)
	017_L(4).pdf (p.9)
	019_L(4).pdf (p.10)
	021_L(4).pdf (p.11)
	023_L(4).pdf (p.12)
	025_L(4).pdf (p.13)
	027_L(4).pdf (p.14)
	029_L(4).pdf (p.15)
	031_L(4).pdf (p.16)
	033_L(4).pdf (p.17)
	035_L(4).pdf (p.18)
	037_L(4).pdf (p.19)
	039_L(4).pdf (p.20)
	041_L(4).pdf (p.21)
	043_L(4).pdf (p.22)
	045_L(4).pdf (p.23)
	047_L(4).pdf (p.24)
	049_L(4).pdf (p.25)
	051_L(4).pdf (p.26)
	053_L(4).pdf (p.27)
	055_L(4).pdf (p.28)
	057_L(4).pdf (p.29)
	059_L(4).pdf (p.30)
	061_L(4).pdf (p.31)
	063_L(4).pdf (p.32)
	065_L(4).pdf (p.33)
	067_L(4).pdf (p.34)
	069_L(3).pdf (p.35)
	071_L(3).pdf (p.36)
	073_L(3).pdf (p.37)
	075_L(3).pdf (p.38)
	077_L(3).pdf (p.39)
	079_L(3).pdf (p.40)
	081_L(3).pdf (p.41)
	083_L(3).pdf (p.42)
	085_L(3).pdf (p.43)
	087_L(3).pdf (p.44)
	089_L(3).pdf (p.45)
	091_L(3).pdf (p.46)
	093_L(3).pdf (p.47)
	095_L(3).pdf (p.48)
	097_L(3).pdf (p.49)
	099_L(3).pdf (p.50)
	101_L(3).pdf (p.51)
	103_L(3).pdf (p.52)
	105_L(3).pdf (p.53)
	107_L(3).pdf (p.54)
	109_L(3).pdf (p.55)
	111_L(3).pdf (p.56)
	113_L(3).pdf (p.57)
	115_L(3).pdf (p.58)
	117_L(3).pdf (p.59)
	119_L(3).pdf (p.60)
	121_L(3).pdf (p.61)
	123_L(3).pdf (p.62)
	125_L(3).pdf (p.63)
	127_L(3).pdf (p.64)
	129_L(3).pdf (p.65)
	131_L(3).pdf (p.66)
	133_L(3).pdf (p.67)
	135_L(3).pdf (p.68)
	137_L(3).pdf (p.69)
	139_L(3).pdf (p.70)
	141_L(3).pdf (p.71)
	143_L(3).pdf (p.72)
	145_L(3).pdf (p.73)
	147_L(3).pdf (p.74)
	149_L(3).pdf (p.75)
	151_L(3).pdf (p.76)
	153_L(3).pdf (p.77)
	155_L(3).pdf (p.78)
	157_L(3).pdf (p.79)
	159_L(3).pdf (p.80)
	161_L(3).pdf (p.81)
	163_L(3).pdf (p.82)
	165_L(3).pdf (p.83)
	167_L(3).pdf (p.84)
	169_L(3).pdf (p.85)
	171_L(3).pdf (p.86)
	173_L(3).pdf (p.87)
	175_L(3).pdf (p.88)
	177_L(3).pdf (p.89)
	179_L(3).pdf (p.90)
	181_L(3).pdf (p.91)
	183_L(3).pdf (p.92)
	185_L(3).pdf (p.93)
	187_L(3).pdf (p.94)
	189_L(3).pdf (p.95)
	191_L(3).pdf (p.96)
	193_L(3).pdf (p.97)
	195_L(2).pdf (p.98)
	197_L(2).pdf (p.99)
	199_L(2).pdf (p.100)
	201_L(2).pdf (p.101)
	203_L(2).pdf (p.102)
	205_L(2).pdf (p.103)
	207_L(2).pdf (p.104)
	209_L(2).pdf (p.105)
	211_L(2).pdf (p.106)
	213_L(2).pdf (p.107)
	215_L(2).pdf (p.108)
	217_L(2).pdf (p.109)
	219_L(2).pdf (p.110)
	221_L(1).pdf (p.111)
	223_L.pdf (p.112)
	225_L.pdf (p.113)
	227_L.pdf (p.114)
	229_L.pdf (p.115)
	231_L.pdf (p.116)

