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ABSTRACT

We introduce certain iterative methods (Krasnoselskij, Mann and Ishikawa) that
ensure convergence to a fixed point for certain classes of operators that satisfy weak
contractive type conditions, for which the Picard iteration guarantees no
convergence. Some convergence theorems are stated and proved for these classes of
operators.

We finally compare the convergence rate of Krasnoselskij and Mann iterative
methods known to converge to a fixed point of Lipschitzian generalized pseudo-

contractive operators in Hilbert spaces.
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CHAPTER 1

1.0 INTRODUCTION

The topic under study falls under a branch of Mathematics called Functional
Analysis. It is concerned with the study of spaces of functions and operators acting
on them. It has its historical roots in the study of transformations, such as the Fourier
transform, and in the study of differential and integral equations. This usage of the
word functional goes back to the calculus of variations, implying a function whose
argument is a function. Its use in general has been attributed to mathematician and
physicist Vito Volterra and its founding is largely attributed to mathematician Stefan
Banach (www.wikipedea.org, 15/02/10, 15:50GMT).

An important object of study in functional analysis is the continuous linear operators
defined on Banach and Hilbert spaces. In the modern view, functional analysis is
seen as the study of complete normed vector spaces over the real or complex
numbers. Such studies are narrowed to the study of Banach spaces. An important
example is a Hilbert space, where the norm arises from an inner product.

In this thesis, we consider some fixed point theorems — the existence of fixed points
using well known iterative methods of (Picard, Krasnoselskij, Mann and Ishikawa
iterative schemes). We also state a theorem to compare two iteration processes
(Krasnoseskij and Mann iterative schemes) for Lipschitzian generalized pseudo-
contractions in Hilbert spaces. This is intended to compare to know which of the

schemes converges faster to the fixed point of the operator.


http://www.wikipedea.org/

Definition 1.1 Let (X,d) be a metric space. A mapping T : X — X is called
contractive if

d(Tx, Ty)< d(x,y) Vx,yeX; x#Y;
Definition 1.2 Let H be a real Hilbert Space with norm || - || and an inner product

<-->, and K be a non-empty subset of H.

An operator T : K — K is said to be a generalized pseudo-contraction if, for all x, y

in K, there exists a constant r > 0 such that
| Tx =Ty ||2 <r’x-y ||2 +|Tx =Ty —r(x- y)||2
and Lipchitzian if there exist a constant L > 0 such that

|Tx=Ty|< L] x=y] forall x,yinK.

Generally, the ambient space X, say, considered in fixed point theorems cover a
variety of spaces: lattice, metric space, normed linear space, generalized metric
space, uniform space, linear topological space etc., while the conditions imposed on
the operator T, say, are generally metrical or compactness type conditions.

Judged from the perspective of its concrete applications, that is, from a numerical
point of view, a fixed point theorem is valuable if, apart from the conclusion
regarding the existence (and, possible, uniqueness) of the fixed point, it also satisfies
some minimal numerical requirements, amongst which we mention:

(a) it provides a method (generally, iterative) for constructing fixed point(s);

(b) it is able to provide information on the error estimate (rate of convergence) of the

iterative process used to approximate the fixed point, and



(c) it can give concrete information on the stability of this procedure, that is, on the

data dependence of the fixed point(s).

Only a few fixed point theorems in literature are known to fulfill all three

requirements above. Moreover the error estimate and the data dependence of fixed

points appear to have been given for Picard iteration (sequence of successive

approximation) in conjunction with various contraction conditions.

Example 1.1 If T: X — X is an a—contraction on a complete metric space, (X,d)

that is, there exists a constant 0 <a < 1 such that
d(Tx, Ty)<ad(x,y) VxyeX
then by contraction mapping theorem (Banach) we know that
@ Fix(M)={x'};
(b) X, =T "X, Picard iteration converges to x" forall x, € X ;

(c) Both the a priori and the a posteriori estimates

A =0, 1,2 I

a

d(xn,x*)gﬁ

-d(x, 5, %), n=0,12,..,

n-17 *n

respectively hold.

(d) The rate of convergence is given by

d(xn,x*) <a-d (xn_l, x*) <a"-d (x0 : x*) n=0,12,..

(1)

)

@)



Remark.

The errors d(xn,x*) are decreasing rapidly as the terms of geometric progression

with ratio a, that is, {x, }:’:0 converges to x at least as rapidly as the geometric

series. The convergence is however linear, as shown by
d(xn,x*)g a-d(xH, x*), n=0,12,..,
If T satisfies a weaker contractive condition, e.g., T is nonexpansive, then Picard

iteration does not converge, generally, or even if it converges, its limit is not a fixed

point of T. More general iterative procedures are needed. (Berinde, 2002).

Definition 1.3  Let (X,d) be a metric space. A mapping T:X — X is called
nonexpansive if T is 1-Lipschitzian.

Note. T is L-Lipschitzianif d(Tx, Ty) < L- d(x,y) VX yeX;

Under weak contractive conditions, the general problem of studying the rate of
convergence of a fixed point iterative method arises usually into two different
contexts.

1) For certain fixed point iterative method, (Picard, Krasnoselskij, Mann,
Ishikawa etc.) an analytical error estimate is not known. In this case an
empirical study of the rate convergence is studied.

2) For large classes of operators (like quasi-contractions) two or more fixed
point iteration procedures are known to be able to approximate the fixed
points. In such situations, it is of theoretical importance to compare these

methods with regard to the convergence rate, in order to establish if possible,
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which one converges faster with respect to a certain concept of rate of

convergence.

Definition 1.4 Let E be a normed space. An operator T : E — E is said to be quasi-
contractive if there exists a number «, 0<a < 1 such that forall x,y inE
|Tx=Ty |[<a-M(x,y),

where

M (x,y):=max{| x=y [, [x=Tx|, | y=Ty[, [x-Ty]. | y-T¢|
In the absence of theoretical results, some authors have performed an empirical study
of the rate of convergence of fixed point iterative methods, using the FIXPOINT
software package, specially designed for that purpose (Berinde, 2007; Babu, 2006;
Chatterjea, 1972; Ciric, 1974; Hardy and Rogers1973; Rhoades, 1976).
The empirical approach of the rate of convergence of fixed point iteration procedures
is still of scientific interest and perspective because it also offers the possibility of
inferring theoretical rate of convergence from empirical observations.
Fixed point iterative procedures are designed to be applied in solving concrete
nonlinear operator equations, variational inequalities, etc. The classical importance of
fixed point theory in functional analysis is due to its usefulness in the theory of
ordinary and partial differential equations. The existence or construction of a solution
to a differential equation is often reduced to the existence or location of a fixed point
for an operator defined on a subset of a space of functions. Fixed point theorems have
also been used to determine the existence of periodic solutions for functional

equations when solutions are already known to exist.



The importance of metrical fixed point theory consists mainly in the fact that for
most functional equations F(x)=y we can equivalently transform them in a fixed

point problem Xx=T x and then apply a fixed point theorem to get information on
the existence or existence and uniqueness of the fixed point, that is, of a solution for
the original equation. Moreover, fixed point theorems usually provide a method for
constructing such a solution.

Fixed point theorems are also used to obtain existence or existence and uniqueness
theorems for various classes of operator equations (differential equations, integral
equations, integro-differential equations, variational inequalities etc.)

Apart from this deep involvement in the theory of differential equations, fixed point
theorems have been extremely useful in such problems as finding zeros of non-linear
equations and proving surjectivity theorems. Partly as a consequence of the
importance of its applications, fixed point theory has developed into an area of
independent research.

Problems concerning the existence of fixed points for Lipschitz map have been given
considerable interest in nonlinear Operator Theory. The study of nonlinear operators
had its beginning about the start of the twentieth century with investigations into the
existence property of solutions to certain boundary value problems in ordinary and
partial differential equations. The earliest techniques, largely devised by E. Picard,
involved the iteration of an integral operator to obtain solutions of such problems
(Chidume, 1996). In 1922 these techniques of Picard were given precise abstract
formulation by S. Banach and R. Cacciopoli in what is now generally referred to as

the Contraction Mapping Principle. It is involved in many of the existence and



uniqueness proofs of ordinary differential equations, and is probably the most useful
fixed point theorem (Chidume, 1996).

An earlier fixed point theorem, called the Brouwer Fixed Point Theorem, concerns
continuous mappings and has an advantage over The Banach Contraction Mapping
Principle in that it applies to a much larger class of functions. It is, however, in a
sense weaker than the Banach Contraction Mapping Principle because the sequence
of iterates of the function at a given point need not converge to a fixed point.

Furthermore it is confined to finite dimensional spaces.

1.1 Brouwer Fixed Point Theorem (1910)
Let B be the closed unit ball of any finite dimensional Euclidean space and

f : B — B be continuous. Then f has a fixed point.

The first analytic attempt at generalizing Brouwer’s Fixed Point Theorem to infinite

dimensional spaces was made by Birkoff and Kellog. They were able to show that a
continuous operator defined from a compact, convex subset of C" [0, 1] into itself has

a fixed point. This result was then applied in solving certain differential and integral

equations. Further generalizations resulted in the following theorem:

1.2 Schauder-Tychonov Theorem

Let K be a compact convex subset of a Banach space E. If T : K — K is continuous,

then T has a fixed point.



Despite the fact that there is no known constructive technique for determining a fixed
point of T, the Schauder —Tychonov fixed point theorem is extremely important in

the proofs of many existence theorems of differential equations. (Chidume, 1996)

1.3 Fixed Point lterations

Iteration means to repeat a process integrally over and over again. To iterate a

function, we begin with a seed for the iteration. This is a (real or complex) number

X, say. Applying the function to X, yields the new number, X, say. Usually the

iteration proceeds using the result of the previous computation as the input for the

next. A sequence of numbersx,, X, X,,... is then generated. A very important

question, then, is whether this sequence converges or diverges — and particularly for
the purpose of this work, whether it converges to a fixed point or not.

This work focuses on fixed point theorems for maps defined on some ambient spaces
(i.e. Metric, Normed, Banach, Hilbert spaces, etc.) and satisfying a variety of
conditions. A lot of metrical fixed point theorems have been obtained, more or less
important from a theoretical point of view, which establishes usually the existence, or
the existence and the uniqueness of fixed points for a certain contractive operator.
Even so only a small number of these fixed point theorems are important from a
practical point of view, that is, they offer a constructive method for finding fixed
points. Among the last ones, only a few gave information on the error estimate (the
rate of convergence) of the method.

From a practical point of view it is important not to know that a fixed point exists

(and, possible is unique), but also to be able to construct that fixed point(s). Since the
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constructive methods used in metrical fixed point theory are generally iterative
procedures, it is also of crucial importance to have a priori or a posteriori error
estimates (or alternatively, rate of convergence) for such a method.

In the last four decades, numerous papers were published on the iterative
approximation of fixed points of self and nonself contractive type operators in metric

spaces, Hilbert spaces or several classes of Banach spaces (Berinde, 2003).

In order to approximate fixed points of certain classes of operators which satisfy
weak contractive type conditions that do not guarantee the convergence of Picard
iterative process (or method of successive approximation) certain mean value fixed
point iterations, namely Krasnoselskij, Mann and Ishikawa iteration methods are
useful to approximate fixed points. Though these iterative procedures have been
introduced mainly in order to approximate fixed points of those operators for which
the Picard iteration does not converge, even so there are results on important classes
of contractive mappings, that is, the class of quasi-contractions, for which all Picard,
Krasnoselskij, Mann, and Ishikawa iterations converge.

The Krasnoselskij iteration [15], [5], [12], [13], the Mann iteration [16], [8], [17] and
the Ishikawa iteration [10] are certainly the most studied of these fixed point iteration
procedures, [1] (Berinde, 2003).

The classical Banach’s contraction principle is one of the most useful results in fixed

point theory. In a metric space setting it can be briefly stated as follows.



Theorem 1.1. Let (X,d) be a complete metric space and T:X — X a strict
contraction, i.e. a map satisfying

d(Tx, Ty )<ad(x,y), forall xye X, (1.1.1)
where 0 <a< 1 is a constant. Then T has a unique fixed point p and the Picard
iteration {x, |7, defined by

=Tx (1.1.2)

n+1

converges to p, forany x,e X.

Theorem 1.1. has many applications in solving nonlinear equations, but suffers from

one drawback — the contractive condition (1.1.1) forces T be continuous on X.

Theorem 1.2 Let (X,d) be a complete metric space and T : X — X a map for
which there exist the real numberse, fand y satisfying O<a <1, 0< f3, ¥ < 1/2

such that for each pair x, y € X , at least one of the following is true:

(z,) d(Tx, Ty) < ad(x,y);

(z,) d(Tx, Ty) < gld(x ™)+d(y, Ty)];

(z5) d(Tx.Ty) < y[d(xTy )+d(y, Tx)].

Then T has a unique fixed point p and the Picard iteration defined by
X TN n=0,12,..

n+1 n?

converges to p, for any x, € X.

[The proof of the above Theorem 1.2 is clearly stated in chapter 2]

One of the most general contraction condition for which the unique fixed point can
be approximated by means of Picard iteration, has been obtained by Ciric [7] in 1974:

there exists 0 < h <1 such that

10



d(Tx, Ty)<h-max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty),d(y,Tx) } ¥ x,ye X (1.2.1).

Theorem 1.3 Let E be an arbitrary Banach space, K a closed convex subset of E,

and T: X — X an operator satisfying condition of Theorem 1.2. Let { x, }‘::0 be the

Mann iteration, for x, € X with «, €[ 0,1]satisfying

L (i

n=0

Then the sequence converges strongly to the fixed point of T.

In 1968 R. Kannan [11], obtained a fixed point theorem which extends Theorem 1.3

to mappings that need not be continuous, by considering instead of (1.1.2) the next

condition: there exists b e (O, %) such that

d(Tx,Ty)<b[d(x, Tx) +d(y, Ty)] Vxye X. (1.3.1)

Following Kannan’s theorem, a lot of papers were devoted to obtaining fixed point
theorems for various classes of contractive type conditions that do not require the
continuity of T, see for example, Rus [22], and references therein.

One of them, actually a sort of dual of Kannan fixed point theorem, due to Chatterjea
[6], is based on a condition similar to (1.3.1): there exists c € [0, %j such that
d(Tx,Ty)<c[d(x Ty)+d(y,Tx)], VxyeX. (1.3.2)

It is known, from Rhoades [19] that (1.1.1) and (1.3.1), (1.1.1) and (1.3.2),

respectively, are independent contractive conditions.
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In 1972, Zamfirescu [24] obtained a very interesting fixed point theorem, by
combining (1.1.1), (1.3.1) and (1.3.2). The theorem is stated above (Theorem 1.2)

without proof.

Remarks.

A mapping satisfying (1.2.1) is commonly called quasi contraction. It is obvious that

each of the conditions (1.1.1), (1.3.1), (1.3.2) and (z,)- (z,) implies (1.2.1). An

operator T which satisfies the contractive conditions in Theorem 1.2 will be called a
Zamfirescu.

One of the most studied class of quasi-contractive type operators is that of
Zamfirescu operators, for which all important fixed point iteration procedures, i.e.,
the Picard [24], Mann [17] and Ishikawa [18] iterations, are known to converge to the
unique fixed point of T. Zamfirescu showed in [24] that an operator which satisfies
the contractive conditions in Theorem 1.2 has a unique fixed point that can be
approximated using the Picard iteration. Later, Rhoades [17], [18] proved that the
Mann and Ishikawa iterations can also be used to approximate fixed points of
Zamfirescu operators.

The class of operators satisfying contractive conditions in Theorem 1.2 is
independent, see Rhoades [17], of the class of strictly (strongly) pseudocontractive
operators, extensively studied by several authors in the last years. For the case of
pseudocontractive type operators, the pioneering convergence theorems, due to
Browder [4] and Browder and Petryshyn [5], established in Hilbert spaces, were

successively extended to more general Banach spaces and to weaker conditions on

12



the parameters that define the fixed point iteration procedures, as well as to several
classes of weaker contractive type operators.
It is shown by Rhoades ([18], Theorem 8), that in a uniformly Banach space E, the

Ishikawa iteration, for x, € K converges (strongly) to the fixed point of T, where

T :K — K is a mapping satisfying conditions of Theorem 1.2, K is a closed convex

subset of E, and { «, }, a sequence of numbers in [0, 1] such that

S a,(1-a, ) = o, (')

n=0

[Note: The various iterative schemes are more fully defined in the chapter 2].

Verma [7] approximated fixed points of Lipschitzian and generalized pseudo-
contractive operators in Hilbert spaces by both Krasnoselskij and Mann type iterative
methods. When for a certain class of mappings, two or more fixed points iteration
procedures can be used to approximate their fixed points, it is of theoretical and
practical importance to compare the rate of convergence of these methods and to find
out, if possible which of them converges faster.

This work focuses on some Fixed Point Theorems — thus we major on the existence
of fixed points of four iterative procedures for certain operators, and it also compares
the convergence rate of the Krasnoselskij and Mann iterative methods, both known to
converge to a fixed point of Lipschitzian generalized pseudo-contractive operators.
Finally, we shall obtain a result on the fastest iteration in the family of the

Krasnoselskij iterative scheme.
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CHAPTER 2

2.0 BASIC DEFINITIONS AND CONVERGENCE RESULTS

We consider some basic definitions of maps, spaces and convergence results.
2.1 Fixed Point: Let X be a non-empty set and T : X — X a self map. We say

x € X is a fixed point of T if T(x)=x.

We denote the set of all fixed points of Thy F. ={xe X /T(x)=x} or by FixT.

2.2 Linear Map: Let X and Y be linear spaces over a scalar field K. A mapping

T:X — Y issaid to be a linear map if
T (ax+By)=aT (x)+ AT (y),
For arbitrary X,y e X and arbitrary scalarsa, € K. Sometimes the terms linear

operator or linear transformation are used instead of linear map. The above

condition is equivalent to the following two conditions:

) T(x+y)=T(x)+T(y) VXx,yeX; and

i) T (ax)=aTx V x e X and for each scalar, o .

2.3 Strong Contractive Map: Let (X || , ||) be a normed vector space over Real or

Complex numbers. An operator T acting from a closed convex set Q < X into itself

is strongly contractive if there exists a constant 0 <q <1 such that for all x and y in
Q,
[ Tx=Ty[< af x=y].

14



Then the well known Banach contraction mapping principle asserts that there exists a
fixed point x* of the map T in Q (i.e. Tx" =x") and it is unique. The approximating

sequence defined by x,.,=Tx,, n=1, 2,.... converges strongly to x".

n+l
2.4 Weak Contraction: Let (X,d) be a metric space. A mapping T : X — X is

called weak contraction if there exist a constant & < (0,1) and some L >0 such that

d(Tx, Ty) < 5-d (x,y)+Ld (y,Tx), VX yeX (2.4.1)

Remark.
Due to the symmetry of the distance, the weak contraction condition (2.4.1)
implicitly includes the following dual one

d(Tx, Ty) < §-d (x,y)+Ld (x, Ty), Vx yeX (2.4.2)
obtained from (2.4.1) by formally replacing d(Tx,Ty) and d(x,y) by d(Ty, Tx) and
d (y, x) respectively, and then interchanging x and y. Consequently, in order to check

the weak contractiveness of T, it is necessary to check both (2.4.1) and (2.4.2).
Obviously, any strict contraction satisfies (2.4.1), with 6 = a and L = 0, and hence

is a weak contraction (that possesses a unique fixed point).

25 Let (X, d) be a metric space. A mapping T : X — X is called
2.5.1 Lipschitzian (or L — Lipschitzian ) if there exists L > 0 such that

d(Tx, Ty)< L-d(x,y) VxyeX;

15



2.5.2 (Strict) contraction (or a-contraction) if there exists a constant a € (0, 1]such
that T is a-Lipschitzian;
2.5.3 Nonexpansive if T is 1-Lipschitzian;

254 Contractive if d(Tx, Ty)< d(x,y) Vx,yeX; x=y;
2.5.5 lsometry if d(Tx, Ty)=d(x,y) V¥xyeX;

2.6 Metric Space: Let X be a non empty set. A mapping d: X x X — R is called
metric or distance on X provided that

(d,)  d(x,y)>0foreverypair x,y e X
(d;) d(xy)=0ex=y
(d,) d(y,x)=d(x,y), forallx,yeX ;

(d,) d(x,z)<d(x,y)+d(y,z), forall x,y,ze X (triangular inequality).

A set X endowed with metric d is called metric space and is denoted by (X,d).

2.7 Norm Vector Space: Let X be a linear space over K (field of all Real or

Complex nnumbers). A norm on X is a real-valued function | - |,
|+ ]:X —[0,)
such that the following conditions are satisfied:

N1 | x||>0 forevery x e X

N2 | x||=0 ifand only if x =0,

N3 | kx| =|k|| x| forall keK and x € X,
N4 | x+y|<|x]|+|y]| (triangle inequality)

The pair (X|| , ||) is called a normed (linear) space.
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2.8 Banach Contraction Mapping Principle: Let (X,p) be a complete metric

space and T : X — X be a contraction map. Then T has a unique fixed point in X.

moreover, the sequence {T"(x, ) |, converges to the fixed point.

Various generalizations of the contraction mapping principle abound, and are usually

obtained in two ways:

1) By weakening the contractive properties of the map and, possibly, by
simultaneously giving the space a sufficiently rich structure, in order to
compensate the relaxation of the contractiveness;

2) By extending the structure of the ambient space.

2.9 Inner Product: Let X be a linear space. An inner product on X is a function

<;> : X x X — C (the set of complex numbers) such that the following three conditions
are satisfied: for x,y,ze X, @a,f€C,
l,:(x,x)>0 and (x,x)=0 ifand only x=0

I, :(x,y)=(x,y) where the “bar” indicates complex conjugation

I, :{ax+ By, z)=a(x,z)+ B(y,z). The pair (X()) is called an inner product space.

2.10 Hilbert Space: A sequence {xn}fzoin X is called Cauchy if and only if
<xn—xm,xn—xm>]/2 =[x, =X, >0 asn,m—0

An inner product space X is said to be complete if every Cauchy sequence in X

converges to a point of X. A complete inner product space is called a Hilbert space.
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2.11 Convex Set: The subset C of a real vector space X is called convex if, for any
pair of points X, y in C, the closed segment with extremities X, y, that is, the set

{Ax+(1-2)y: 1 €[0,1]} is contained in C. A subset C of a real normed space is

called bounded if there exists M > 0 such that || X || <M, forall xeC.

2.12 Let H be areal Hilbert Space with norm | - | and an inner product <, >, and

K be a non-empty subset of H. An operator T :K — K is said to be a generalized
pseudo-contraction if, for all x, y in K, there exists a constant r > 0 such that
| Tx=Ty [ < i x=y [ +|Tx-Ty—r(x-y)| (2.1)

condition (2.1) is equivalent to
(Tx=Ty,x=y)<r|x-y ||2
(2.2)

orto

(=Tx=(1=T)y, x=y)2(@-r)|x-y[",
where | is the identity map. Clearly, if T is generalized pseudo-contraction with r <
1, then I — T is strongly monotone.
Forr=11in(2.1), T is called pseudo-contraction.
The operator T is called Lipschitzian (or Lipschitz continuous) if there exist a

constant L > 0 such that
|Tx=Ty||<L-|x-y]| forall x,yinK. (2.3)
By the Cauchy-Schwarz inequality,

(Tx =Ty, x=y)| < | Tx=Ty |- x-y],
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It is clear that any Lipschitzian operator T, that is, for which there exists L > 0 such
that
[Tx=Ty <L x=y]| X, ye K

is also a generalized pseudo-contractive operator with r = L. Consequently, for a
Lipschitzian operator with L > 0, the only reason to consider also a generalized
pseudo-contractive condition of the form (2.1) is that r could be smaller than L.

The following example shows that an operator T can be simultaneously Lipschitzian
with constant L and generalized pseudo-contractive with constant r, and r < L. It also
shows the limitation of the Picard iteration in approximating fixed points of certain

operators.

Example 2.1 Let H a real line with usual norm, K =B 2} and T:K —» K a self

map defined by Tx = & , for all x in K. Then L is Lipschitzian with constant L = 4 and
X

also
generalized pseudo-contractive with constant r = 4. Moreover, T is also generalized
pseudo-contractive with any constant r > 0 arbitrary.

The Picard iteration, x,,, =Tx,, n > 0, does not converge, for any initial guess
X, #1(which is the unique fixed point of T). The Picared iteration yields an

oscillatory sequence

1 1
D A
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In order to approximate fixed points of the operators considered in this work we shall

make use of other well known iterative methods.
2.13 Let E be an arbitrary real Banach space. A mapping T with domain D(T) and
range R(T) in E is called
(@) Strongly Pseudo-contraction if there exists k >0such that for all x,ye D(T)
there exists j(x,y) € J (x—y)such that

(=T)x=(1=-T)y, j(x=yh= k- [x=y][*
(b) Pseudo-contractive if for each x,y e D(T) there exists j(x —y) e J(x—Yy)
such that

(=T)x=(1=T)y, j(x-y))=0

where J is normalized duality mapping.

2.14 A mapping U with domain and range in E is called

(@) Strongly accretive if there exists a positive number k such that for each
X,y e D(U)
there existsa j(x —y) € J (x—y) such that
Ux-Uy, j(x=y))= k|x=y|?;
(b)  Accretive if for each x, y € D(U) we have
(Ux-Uy, j(x-y))>0

Remarks.

1) By comparing Definitions 2.11 and 2.12, ,we remark that an operator T is

(strongly) pseudo-contractive if and only if (I —T) is (strongly) accretive;
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2) As a consequence of a result of Kato [1], the concepts of pseudo-contractive
and accretive operators can be equivalently defined as follows:
(i) T is strongly pseudo-contractive if there exists t > 1 such that, for all

x,y € D(T) and k >0, the following inequality holds
Ix=y| < ||@+r)(x+y)-rt(Tx-Ty)|;
(i) T is pseudocontractive if t= 1 in the previous inequality;
(iii) T is strongly accretive if there exists k >0 such that the inequality
Ix=y | <[ (x=y)+r[(T=k)x—(T -kl )y]|
holds for all x, y e D(U) and r>0;

(iv) Tisaccretive if k = 0 in previous the inequality.

2.15 The Picard iteration method: Let X be any setand T : X — X a self map. For

any x, € X , the sequence {x,} _, c X given by

n=0

e e Rl T =T, ...

n

is called the sequence of successive approximations with the initial valuex,. It is

also known as the Picard iteration.

2.16 The Krasnoselskij iteration method. For x, € K and 1 <[0,1] the sequence

{x,}7,, defined by

n=0"
Xpy = (L= 2) %, + AT, n=0,1,2,.. (2.4)
is called Krasnoselskij iterative method or Kranoselskij iteration and is denoted by

K, (X, A,T).
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2.17 The Mann iteration method. For x, € Kand {a}”, a sequence in [0,1], the
sequence {y, |-, defined by

Vo, =W—a,)y, +a,Ty,, n=0,12,... (2.5)
is called Mann iterative method or Mann iteration and will be denoted by

Mn(yO’an’T)

2.18 The Ishikawa iteration method: For x, € K, the sequence {x, |7, defined by
x,.,=(@1-a,)x, +aT[d-b )x, +b -Tx ] n=012.., (26)

where {a}”, f{b}” are sequences of reals satisfying 0<a,, b, <1 is called the

Ishikawa iteration, and is denoted by 1(x,,e,,5,.T).

The above equation (2.6) can be rewritten in a system form

{yn =(1-b,)x, +b,Tx, n=0,12,..
X = (1_ an)' X, + anTyn n=0,12, (27)

Remarks

It’s obvious that, for 4 =1, the Krasnoselskij iteration reduces to the Picard iteration
(the method of successive approximations), while for «, = A(const), the Mann
iteration reduces to the Krasnoselskij method.

Again equation (2.7) can be regarded as a sort of double Mann iteration, with two

different parameters sequences.
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Despite this apparent similarity and the fact that, for b, =0, Ishikawa iteration

reduces to the Mann iteration, there is not a general dependence between
convergence results for the Mann iteration and Ishikawa iteration.

As mentioned in the introduction the special software package (the FIXEDPOINT

software) was designed by Andrei BOZANTAN (as a MSc Dissertation thesis). The
execution of the program FIXPOINT for some input data had lead to the following

observations:

1) The Krasnoselskij iteration converges to p=1 for any A€ (0,1) and any initial
guess X, (recall that the Picard iteration does not converge for any initial value
X, €[1/2, 2] different from the fixed point). The convergence is slow for 4 close

enough to 0 (that is, for Krasnoselskij iterations close enough to the Picard iteration)
or close enough to 1. The closer to 1/2, the middle point of the interval (0,1), 1 is,

the faster it converges.

For 4= 0.5 the Krasnoselskij iteration converges very fast to p =1, the unique fixed
point of T . For example, starting with x,= 1.5, only 4 iterations are needed in order
to obtain pwith 6 exact digits: x, =1.08335, X, =1.00325, x, =1.000053, and
X, =1,

For the same value of A and x, =2, again only 4 iterations are needed to obtain p
with the same precision, even though the initial guess is far away from the fixed
point: x, =1.25, x, =1.025, x, =1.0003, and X, =1,
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2) The speed of Mann and Ishikawa iterations also depends on the position of {an}
and { .} in the interval (0,1). If we take x,=1.5, @, =1/(n+1), B, =1/(n+2),
then the Mann and Ishikawa iterations converge (slowly) to p=1: after n=35

iterations we get: X, =1.000155 for both Mann and Ishikawa iterations.

For a,=1/3n+1, B, =1/4/n+2, we obtain the fixed point with 6 exact digits

performing 8 iterations (the Mann scheme) and, respectively, 9 iterations (the
Ishikawa iteration). Notice that in this case both Mann and Ishikawa iterations

converge not monotonically to p =1.
Conditions like o, —>0 (asn—>w) or /and g, —0 (asn—o) are usually

involved in convergence theorems. The next results show that these conditions are in
general not necessary for the convergence of Mann and Ishikawa iterations.

Indeed, taking

we obtain the following results.

For the Mann iteration: x, =2, X, =15 x,=1166, Xx,=1.034, x, =1.0042
X, =1.00397, x, =1.000031, x, =1.000002, and X, =1,

For the Ishikawa iteration: X, =X, =2, X, =1.357, Xx,=1.120, x, =1.0289

X, =1.0047, x,=1.0057, x,=1.000054, x,=1.00004, and x, =1,

For all combinations of x,, 4, «, and f,, we notice the following decreasing (with

respect to their speed of convergence) chain of iterative methods: Krasnoselskij,
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Mann, Ishikawa. Consequently, if for a certain operator in the same class, all these
methods converge, then we shall use the fastest one (empirically deduced).
The next example presents a function with two repulsive fixed points with respect to

the Picard iteration
Example. Let K =[0,1] and T:K — K given by Tx = (1—x)°.
Then T has p, = 0.2219and p, = 2.1347 as fixed points (obtained with Maple).

Here there are some numerical results obtained by running the new version of the

program FIXPOINT, to support the previous assertions.

Krasnoselskij iteration: for x, =2,and A4 =0.5, we obtain x, =1.5, X, =0.757,
x, =0.379, x,=0.2181 x, =0.2322 and x, = 0.2214;

Mann iteration: for x,=2,and a, =1/(n+1), we obtain x,=1.0, x,=0.5,
X, =0.338, x, =0.2748 X, =0.2489 and x, =0.2378;

Ishikawa iteration: for x,=2, a,=1/(n+1),and 2, =1/(n+1) we obtain and

X, =0.01, x,=0.55 x,=0.346, x,=0.2851, x,=0.2527 and X, =0.2392.

The previous numerical results suggest that Krasnoselskij iteration converges faster
than both Mann and Ishikawa iterations. This fact is more clearer illustrated if we

choose X, = p,, the repulsive fixed point of T: after 20 iterations, Krasnoselskij
method gives x,, =0.2219, while Mann and Ishikawa iteration procedures give

X,, =0.6346, and  x,, =0.6347,respectively. The convergence of Mann and

Ishikawa iteration procedures is indeed very slow in this case: after 500 iterations we

get Xso, = 0.222, for both methods.
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Note that for xe{-2,3,4} and the previous values of the parameters A,a, and
B, all the three iteration procedures: Krasnoselskij, Mann and Ishikawa, converge to

1, which is not a fixed point of T.

The convergence Theorems below, stated for the Krasnoselskij and Mann
iterative methods respectively, by Verma [7] will be used in the proof of the main

results.

Theorem 2.2 Let K be a non-empty closed convex subset of a real Hilbert space H,
and T:K —> K be a Lipschitzian and generalized pseudo-contractive, with the

corresponding constants L >0 and r >0 satisfying

O<r<land r<L (2.2.1)
Then:
(1) T has a unique fixed point p in K;
(i) The Krasnoselskij iteration {xn };‘;O = Kn(xo,/l,T) converges strongly to p,

forany x,eK andall 1<(0,a)n(0,1), where

a=2(1-r)/(1-2r +1?) (2.2.2)

Theorem 2.3 Let H be a real Hilbert space and K be a non-empty closed convex

subset of H. Let T:K — K be Lipschitzian and generalized pseudo-contractive

0

., bean

operator with the corresponding constants L>1 and r>0. Let {«,}

increasing sequence in [0,1] such that
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(2.3.1)

Then
(1) T has a unique fixed point p in K;
(i) The Mann iteration {y, }:‘“:0 =M, (y,.ta,,T) converges strongly to p for any

y, € K and all tin (0, a) that satisfy

0<@-tf-2t@-t)r + t°L* <1

where a is given by (2.2.2)

Remarks

Theorem 2.2 was obtained under the assumptions r < 1 and L>1. Thus in the
following we shall assume that the Lipschitzian constant r and the generalized
pseudo-contractivity constant L fulfill the conditions.

U <™ anflcr Sy (p)

2.19 Rate of Convergence

Now in order to compare two fixed point iteration procedures, we shall make use of
the following concept of rate of convergence, introduced and studied by Berinde [1,

2,3, 4].

Let{a,}”,, {b,}", be two sequences of real numbers that converge to a and b,

n=0"

respectively, and assume there exists

QD
|
QD

| =lim+—
"> b, —b)|
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a) If 1 =0, then it is said that {a, |, converges faster to a than {b,}|’ to b;

b) If O0<l<ow, then we say that {a,}”, and {b,}”, have the same rate of

n=0 n=0

convergence.

0

c) If =00, {b,}” converges faster than {a, " .
Suppose that for two fixed points iteration, {u,}” and {v,|”  both converging to
the same fixed point p, the following error estimates

lu, - p|<a,. n=0,1,2,. (*)

and

” Vo — P ”Sbn n=O,1,2,...
(* *)

o0

are available, where {a,}”, and {b,}", are sequences of positive numbers (both
converging to 0).
Definition 2.1. Letand {u, |, and{v, " be two fixed point iterations procedures

that converge to the same fixed point p, such that (*) and (* *) are satisfied.

If {a,}”, converges faster than {b, |~ , then we say that {u, |~ converges faster

0

n=0 "

than {v, |, orsimply, that {u,}”, is better than {v, }

Remarks:

Rhoades [6] considered that {u,}”, is better than {v, | if

n=0

lu, = p| <|v,-p|, foraln,
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Example 2.2. Consider p=0, u, L and v, :1, nx1.
n+1 n

Then {u, } is better than {v, } in this sense;
i.e.
lu, = p|<|v,—p| forall n,

although {u, } and {v, } have the same rate of convergence, in the sense of

Definition 2.1, since lim Un =1.

nN—o0 V
n

The previous example also shows that the concept used by Rhoades [6] is

independent by that given by Definition 2.1.

2.20 Some Results Obtained from the Iterative Methods

Results have shown that, if an operator T is continuous and the Mann iterative
process converges, then it converges to a fixed point of T. But if T is not continuous,
then there is no guarantee that, even if the Mann process converges, it will converge

to a fixed point of T, as shown by the following example.
Example 1.1. Let T:[0,1]—[0,1] be given by T(0)=T (1)=0 and Tx=1,

O<x< 1.

Then F, ={0} and the Mann iteration M(x,,e,,T) with 0<x <1 anda, :i,
n

n=>1, converges to 1, which is not a fixed point of T. (F; denotes the set of fixed

points of T).
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CHAPTER 3

3.0 THE PICARD AND KASNOSELSKIJ ITERATION

Let (X,d) be a metric space, D < X a closed subset of X (we often have D = X))
and T:D — D a self map possessing at least one fixed point p € ;. For a given

X, € X , we consider the sequence of iterates {x, |, determined by the successive
iteration method

X, =T(X,,)=T"(x,), n=12,.. (3.1)
We are interested in obtaining (additional) conditions on T, D, and X, as general as

possible, and which should guarantee the (strong) convergence of the iterates {xn };"zo

to the fixed point of T in D.
The sequence defined by (3.1) is known as successive approximations with the

initial value Xx,. It is also known as the Picard iteration.

Usually, if the Picard iteration converges to a fixed point of T, we will be interested
in evaluating the error estimate (or, alternatively, the rate of convergence) of the
method — that is in obtaining a stopping criterion for the sequence of successive
approximation

When the contractive conditions are slightly weaker, then the Picard iteration need
not converge to a fixed point of the operator T, and some other iterative procedures

must be considered.
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The next fixed point iteration scheme considered is the Krasnoselskij iteration. We
define it in the real normed spaced (E,||-|). Let T:E — E be a self-map, x, €E,
and 4 €[0,1]. The sequence { x, |, given by

X,,,=(1-2)x,+ ATx,, n=0,1,2, ... (3.2)
is called the Krasnoselskij iteration.
From (3.2) when A = 1, the Krasnoselskij iteration reduces to the Picard iteration.
In this work the Picard iteration is studied in connection with strict contractiveness
type while the Krasnoselskij is associated with Lipschitzian and pseudocontractive
type conditions. The theorems stated in this chapter are done to show the existence of
fixed points for the Picard and Krasnoselskij iterative schemes.
In chapter 2 we stated the Contraction Mapping Principle (Theorem 2.1). This is
reformulated here in an extended form. This fundamental result in metrical fixed

point theory is usually called theorem of Banach or theorem of Picard-Cacccioppoli

or Contraction mapping theorem (principle).

3.1 The Contraction Mapping Principle
Theorem 3.1 Let (X,d) be a complete metric spaceand T:X — X beana
a—contraction , that is an operator satisfying

d(Tx, Ty)<ad(x, y), forany x, y € X (3.1.1)
with a €[0,1) fixed. Then
(i) T has aunique fixed point, that is F, = {x*};
(i) The Picard iteration associated to T; i.e., the sequence {x, |~ ,, defined by
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X, =T(x,,)=T"(x,), n=12,.. (3.1.2)

Converges to x*, for any initial guess x, € X

(ili)  The a priori and a posteriori error estimates

d(xn,x*)sla -d (g, %) n=0,1,2,..
e (3.1.3)
d(Xn,x*)g_ a _.d(xnfl,xn), n=0,1,2, (3.1.4)
1-a
respectively hold.
(iv) The rate of convergence is given by
d(x,, x")<a-d(x,5,%,), n=0,1,2,. (3.1.5)

Proof. There is at most one fixed point, i.e., F < 1. Indeed, assuming x*,y" e F;
X" #y" we get the contradiction

d(x*, y*)=d(Tx*,Ty*) £a~d(x*, y*)< d(x*, y*),
since 0<a< 1.

To prove the existence of a fixed point, we will show that, for any given X, € X,
the Picard iteration {x}”, is a Cauchy sequence. Notice that by (3.1) we have
d(x,, %, )=d(Tx,Tx,)<ad(x,, X, ),
and by induction,

n+l? “*n

d(x,,,,x,)<a"d(x,%,),  n=0,12,.. (3.1.6)

Thus, for any numbers n, pe N, p >0, we have
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n+p

-1
d(Xe %)< Dk d(x,, %)< -d(x,, % ) (3.1.7)

k=n k=n 1_ a

A,y %, )<

Since 0<a<l1, it results that a, >0 (as n—>oo), which together with (3.1.7)
shows that {x, }::0 is Cauchy sequence. But (X,d) is a complete metric space,

therefore {x,}” , converges to some x" € X.
On the other hand, any Lipschitzian mapping is continuous. So denoting
lim=x",
nN—o0

we find

X =limx,, =lim=T(x,)=T(lim=x, )=T x",

which gives x* =Tx", i.e. x" is a fixed point of T.

This shows that for any x, € X the Picard iteration converges in X and it’s limit is a
fixed point of T. Since T has at most one fixed point, we deduce that, for every choice
of X, € X, the Picard iteration converges to the same value X", that is, the unique
fixed point of T. So we proved (i) and (ii).

To prove (iii) we use (3.1.7),

-d(x,,x,)  forall peN-,

and the continuity of the metric and so, by letting p — oo, we find

n

-d(%,,%) n>0

a
n+p?n

d(xn,x*)zd(x*,xn)zyjﬂd(x X )Sl—a

And so (3.1.7) is proved.

To obtain the posteriori estimation (4), let us notice that by (1) we have
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and by induction,
d(X, o Xq)<a*d(x,, x,,),  keN”

n+k ?* n+k-1 n?! “np-1

SO

d(xmp,xn)g(a+a2 +..+a )d(x,, xn_l)sﬁ d(x,, X, 4 )

By letting p — ooin the last inequality we get exactly (4).

Remarks.

1) The a priori estimate (3.1.7) shows that, when starting from an initial guess

X, € X, the approximation error of the n"iterate is completely determined by the
contraction constant a and the initial displacement d(x, ;)

2) Similarly, the a posteriori estimate shows that, in order to obtain the desired

error approximation of the fixed point by means of Picard iteration, that is, to have

d(xn, x*)< &, we need to stop the iterative process at the step n for which the

displacement between two consecutive iterates is at most w.
a

So, the a posteriori estimation offers a direct stopping criterion for the iterative
approximation of fixed points by Picard iteration, while the a priori estimation
indirectly gives a stopping criterion.

3) It is easy to see that the a posteriori estimation is better than the a priori one,

in the sense that from (3.1.4) we can obtain (3.1.5), by means of (3.1.6).
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4) Each of the three estimations given in Theorem 3.1 shows that the rate of

convergence of the Picard iteration is at least as quick as that of the geometric series
D a.

When the contractive conditions are slightly weaker, then the Picard iteration need
not converge to a fixed point of the operator T, and some other iteration procedures
can be used. The next fixed point iteration scheme (the Krasnoselskij iteration) is

defined in a real normed space (E,| [). Let T:E - E be a self-map, x, e Eand
Ae [0,1].
The sequence {x, |7, given by

Xy =(@—A)X, +ATx,, n=0,12,. (4.1)
is called is called the Krasnoslskij iteration procedure or, simply, Krasnoselskij
iteration. It is easy to see that the Krasnoselskij iteration {x, }:’:0 given by is exactly
the Picard iteration corresponding to associated operator

T,=(1-A)1+A-T, |=the identity operator

and that for 4 =1 the Krasnoselskij iteration reduces to the Picard iteration.
Moreover we have Fix (T )= Fix(T,), forall 2<(0, 1] .
It is known that if T is assumed to be only a nonexpansive map, then the Picard
iteration {I’”x0 }XZO need no longer converge (to a fixed point of T). In fact, in

general, T need not have a fixed point. For our work in this thesis the Krasnoselskij
iteration will be mainly associated with the approximation of fixed points for
nonexpansive operators. This kind of result is gotten by imposing certain additional

conditions on the operator T and/ or on the ambient space itself, and to consider a
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convex combination of two successive terms of the Picard iteration, that defined the
Krasnoselskij iteration.

The following proof is called the Browder—Gohde—Kirk fixed point theorem. It is
known to be a basic fixed point existence result for nonexpansive operators. Unlike
the result gotten for Picard iteration (Theorem 3.1), this proof is given in a Hilbert

space setting, suitable for many convergence theorems on the Krasnoselskij iteration.

3.2 Browder-Gohde-Kirk fixed point theorem

Theorem 3.2. Let C be a closed bounded convex subset of a Hilbert space H and

T :C — C be a nonexpansive operator. Then T has at least one fixed point.

Proof. For fixed point element v,in C and a number s with 0< s < 1, we denote

(- i, sDer et C .

U, (x)
Since C is convex and closed, we deduce that U, :C — C is and s—contraction
and it has a unique fixed point u, (from the contraction mapping principle). On the

other hand, since C is closed , convex and bounded in a Hilbert space H, is weakly

compact. Hence we may find a sequence {sj} in (0, 1) such that s; -1 (j > )
and u; — ug converges weakly to an element p of H.

Since C is weakly closed, p lies in C. We shall prove that p is a fixed point of T. If u

any arbitrary point in H, we have

~uf = —p)+(p-0)[ =[u;=p [ + [ p-u [ +2(u;-p.p-u),
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2(uj-p,p-u)—>0 (as joo),
since u;—p converges weakly to zero in H. Moreover since s; —1 and
U,u; =u;, we have
Tuj—uj:[szuj+(1—sj)voj—uj+(1—sj)[Tuj—voJ:
:( sjY; —Uj)+ (1—31)(TU,- ~V,) = 0+(1—sj)(Tuj —V,)—>0, as j >

Setting u=Tp above, we obtain

im{ | u, ~To [ ~u, - [ )= p-To "
On the other hand, since T is nonexpansive, we have
[ Tu;=Te] < u; - p]
and hence
Jui=Te] = Ju; =Tu; | + [ 7u; =To | <, ~Tu; | + fu; -Te].

Thus

lim sup (Huj -Tp || u; - pH)S lim|u; ~Tu; | =0

Jox©

and, due to boundedness of C, we have also
lim sup (H u,-Tp H2 ~[u;-p Hz) -
lim sup (Hu,- -Tp H—HUJ - pH)(H“J -Tp H_Hui - pH)S 0
which yields

| p-Tp[" =0,

that is, p is a fixed point of T.
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Definition 3.1. Let H be a Hilbert space and C a subset of H. A mapping
T:C — His called demicompact if it has the property that whenever {un} is a
bounded sequence in H and {Tun —un} is strongly convergent, the there exists a
subsequence {unk} of {un} which is strongly convergent.

We now consider a result on approximating fixed points of nonexpansive and

demicompact mappings by means of Krasnoselskij iteration.

3.3 Nonexpansive And Demicompact Operator

Theorem 3.3. Let C be a bounded closed convex subset of a Hilbert space H and

sequence T:C — C be a nonexpansive and demicompact operator. Then the set
F; of fixed points of T is a nonempty convex set and for any given X,in C and any
fixed number 4 with 0< 4 < 1, the Krasnoselskij iteration { x, }::O given by

Xl = (1= 1) % 14T =012, .., (3.3.1)
converges (strongly) to a fixed point of T.
Proof. Since T is nonexpansive, by Theorem 3.2, T has fixed points in C, that is,
F; # ¢ . Furthermore, F; isconvex, i.e.,, when X,yeF and 1e [0,1] we have

u,=[@-A)x+1, ek
Indeed, we have
| Tu, =] =[Tu, =Tx| <[u, =x] and |Tu, =y <]u, -y].

which imply that

[ %=yl < lx=Tu, | +[Tu, ~y[<]x-v]
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This shows that for some a, b with 0< a, b< 1, we have
x-Tu, = a(x—u,)and y-Tu, = b(y-u,)
from which it follows that Tu, = u, e F;.
For any x, € C, the sequence {xn }°n°:0 given by (3.3.1) lies in C and is bounded. Let p
be a fixed point of T, and, so of U, given by
U,=[@-2)1+AT (I = the identity map). (3.3.2)

We first prove that the sequence {Tun - un} converges strongly to zero. Indeed

neN

X1~ P= (1_1) X, +ﬂ’TXn = (1_)’)(Xn - p)+ﬂ'(TXn - p)

On the other hand, for any constant a,
a(x, -Tx,)=a(x, - p)-a(Tx, - p).
Then
[ =p = @=2° % ~p[ +2Tx,~p[ +
L9 2 (1L NI
and
a?|| x, =Tx, |* =a?| x,—p | +a?| Tx,— p|’ —2a% <Tx,~ p,x, ~ p>.
Hence adding the corresponding sides of the preceding two inequalities and using the

fact that T is nonexpansive and Tp = p, we get
| %0 —p[F+a2 % ~Tx, | < [2a?+22 +@-2F] | %, —p | +
+2[A@-2)-a] -<Tx, - p,x, - p>

If we choose now an a such that a® < A (1— 1) then from the last inequality we obtain
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EI R P

< (2a2+ 2 +@-2F +220-2)-122) | x, - p[* = | x, - p|]

{ we use the Cauchy - Schwarz inequality
<TX, =P X, = P> < [Tx, =P | x, = p| < ||xn—p||2 '

Letting a? =4 (1—-2) > 0 and summing up the obtained inequality
a* [ %, =%, [* < [, =p [~ %0 —p [

for n=0to n=N we get
N 2 al 2 2
La-2)3 %= < 3 [ - -l %= p ] -
n=0 n=0
=[ % =PI ~[xva=P[ < |%-p[
which shows that i | x, =Tx, |* < o and hence | x, —Tx, |—0,as n — .
n=0

As T is demicompact, it results that there exists a strong convergent subsequence

{xni} such that x,. = p €F;; since T is nonexpansive, Tx,. = Tp and Tp = p.
The convergence of the entire sequence { x, }n"’:oto p follows from the inequality
=| x,, — P || < | x, = p|, which is deduced from the nonexpansiveness of T and is

valid for each n.
Remarks.

1) It has been shown that if in Theorem 3.3, we remove the assumption that T is
demicompact, the Krasnoseskij iteration does not longer converge strongly, in

general, but it converges (at least) weakly to a fixed point.
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CHAPTER 4

4.0 THE MANN ITERATION

The Mann iteration was chronologically introduced two years earlier than the
Krasnoselskij iteration; even so it is a generalization of the latter and in its normal
form is obtained by replacing the parameter A in the Krasnoselskij iteration formula
by a sequence {a, }.
The normal Mann iteration procedure or Mann iteration, starting from
X, € E, is the sequence {x, |”, defined by

X.,=(1-a,)x,+aTx, n=012..,
where {a,}”, <o, 1].
If we consider

T,=(@0-a)l+a,T

then we have Fix (T)= Fix(T,), forall a, (0, 1].
If the sequence a, = 4 (const), then the Mann iterative procedure obviously reduces

to the Krasnoselskij iteration.
There is a lot of literature on the convergence of Mann iteration for different classes

of operators considered on various spaces.
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4.1 Strongly Pseudocontractive Operators

Let E be a Banach space, K a subset of E, and T:K — K a strongly
pseudcontractive operator, then there exist a number t > 1 such that the inequality
[ x=y| <[ @+r)(x=y)-rt(Tx=Ty)| (4.1)
holds for all x,ye K and r>0.
In chapter 2, it was stated that a mapping is strongly pseudo contractive if and if
| -T is a strongly accretive mapping, i.e. there exist j(x-y)eJ(x-y) and a
positive number k such that
(1-T)x= (1-T)y, i(x-y)) > K[ x-y]f 42
that, in
|x=y| < |x=y +r [(1-T=ki)x—(1-T—kI)y]| turn,is
equivalent to the fact that the next inequality

(4.3)

holds forany x,ye K andany r > 0 (where k = tt—l).

Based on the form (4.3) of the strong pseudo-contractiveness property, it can be
proved that the Mann iteration process converges strongly to the unique fixed point

of a Lipschitzian and strongly pseudocontractive operator.
Theorem 4.1 Let E be a Banach space and K a nonempty closed convex and

bounded subset of E. If T:K — K is a Lipchitzian strongly pseudocontractive

operator such that the fixed point set of T, Ft is nonempty, then the Mann iteration
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{x,} = K generated by x, € K and the sequence {ea,}c (0, 1], with {e«,}

satisfying
M Ya,=o; i) @ -0 (asn— )

converges strongly to the unique fixed point of T.
Proof. Let p be a fixed point of T. Since is a strongly pseudocontractive operator,
| =T is strongly accretive, i.e., the inequality (4.3) holds for any x,yeK and
r > 0.Let L > 0 be the Lipschitz constant. Then from the definition of {x, },

Xy =(1-a, )X, +a,TX,, Nn=1,2,.. (4.1.1)
and therefore we have

X, =X+, X, —o, T X, =(1+a, )X, +

n+1

+a,(1-T -kl )x ., —(2-K)a, X,,, +a, X, +a, (T x,,,-T X, )=

ne1
=(-a,)x,  +o, (1-T =kl )x, ., —(2-K)e,[1-a,)x, +a,T x, |+
ot X, + o (T X0 =T X, )= U+ @y ) Xy + 0, (=T =K1 )X, -
—(1-Kk)er,x, +(2-k)-a?(x, =T x, )+, (T x,., - T x,).
As Tp = p, we have
Xy =P =t a ) (Xps = P)+a,U=T =kl )(x,.; = p)= (1= k), (%, = )+

+(2-k)- a2 (x, T x, )+, (T x Tx,)

n+l
Now, using the inequality (4.3), we get
” X, — P ”2 (1+an) ” X — P ||_(1_k )an” X,— P ”_

—(2=K) a2 | X, =T %, [ [[aT Xpia =T x|

n+1
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Since T is Lipschitzian, it follows that

[T Xpus =T X | < L [ Xpr =%, | < LL+D) e, | %, — P .
and then
[ % —pl = @+a)|xu-p| - Q-ka[x. .- p|-
—(2-K)al |, -Tx, | - L(L+1)aZ | x,—p|
Hence

| %a—p] < [1+0-K)a,] Q+a,)" [ x,—p|+(2-k)a? Q+a,)"
[ %, =T x || +L(L+Da? Q+ea,) | x, - p] <
<[1+0@-k)a,] (1—an+a§)|| Xy

+ L(L+D)e [x,—p| (4.1.2)

and so we obtain

||X —p|| < (1—k0(n )||Xn—p||+M al,

n+1

for some constant M > 0, in view of the fact that K is bounded.

Now using Lemma 2.1, part (ii), it follows that the sequence {|| X, =P | } converges

to 0, that is, { xn} converges strongly to the (unique) fixed point p of T.

4.2 Quasi—Contractive type Operators

An important class of quasi-contractive mappings, which is independent of the class

of strictly pseudo-contractive mappings, is the class of Zamfirescu mappings.
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In chapter 2 we have proven (Theorem 1.4 of chapter 1) that for any Zamfirescu
mappings T considered on a complete metric space, the Picard iteration converges to
the unique fixed point of T.

We now show that in a more particular ambient space, the Mann iteration converges

as well.

Theorem 4.2  Let E be a uniformly convex Banach space, K a closed convex subset

of E,and T :K — K be a Zamfirescu mapping. Then the Mann iteration {xn},
X, =(1-a,)x, + a,Tx,, n=12.. (4.2.1)
with {e, } satisfying the conditions

(i) a,=1; (i) 0<a,<1,for n>1 and (i) > e, (1-«a,)

o0,

converges to the fixed point of T.

Proof. Theorem 1.4 shows that T has a unique fixed point in K. Let us denote it by p.

Forany x, € K, we have
[ %oa =Pl <@=a)| %, —p[+a, [ Tx, = p|.
Since any Zamfirescu mapping is quasi-contractive we deduce that
[T = e[ <[ * =p].
which shows that the sequence {|| Xo = P | } is decreasing. We also have
[ %0 =T, [ =] (x, = p)= (T, = p) [ = 2] (x, = P)]|

Now let us assume that there exist a number a > 0 such that | x, — p | >a for all
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Suppose {|| Xo = TX, | }nZl does not converge to zero. Then there are two

possibilities: either there exists an ¢ > 0 such that | x, —Tx, | > & forall n or

liminf | x, -Tx, | =0

In the first case, using Lemma of Groetsch [1] with b = 26 (g/|| Xo =P | ) we get

[ %0 =P = (@-a,@-a,)b)) [ (x, - P)] <
< xos =P —@na-any)b | x, = p|=ba, -, )] (x, - p)] <
< [ %0 = o[ =blay,@-a,1)+ e, @-a,)] - | (x, — p)].
By induction one obtains
a <~ pl <] (6~ p)|-b3 e -a) - [ (x, - )],
Therefore

a {1 - bzn:ak (1—ak)} < | (x, = p)| which contradicts (iii)
k=1

In the second case, there exists a subsequence { x,, | such that

lim =0
k

Xp — TX

nk

If X,,, X, satisfy (z,) (see Theorem 1.4), that is

[T =Ty, | < @ X0 = %o |
then
[T =T | < L %ok = T [+ X0k =Xy [+ X0 = %1 | ]
and hence
H X, —Tx,, | < a(l—a)‘l[ Xy — TX,, +H TX,, — X ]
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and if x,,, x,, satisfy (z,), then

[T =% | < B Xok = T ] Xor =T%or || ]
and if x,,, x,, satisfy (z,), then
e e I | S ' . )
which yields
[T =Ty | < 7220 )7 [ %ot = T [+ %o =T ||

Therefore in all situations {Txnk} is a Cauchy sequence and hence convergent.
Let u be it’s limit. From (4.2.2) it results that

imx,, = limTs,, —u
Moreover,

Ju-Tu] < ||u—xnk

+

Xo e [ X

+|| T, —Tu ||

nk
We will show that u=Tu, that is, u is a fixed point of T. indeed, if x_,, u satisfy
(z,), then

|| TX,, —Tu || <«

X — U |-
If x,,, usatisfy (z,), then
+lu-Tul]

” TXq —Tu ” = ,B[ Xk = Moy

which leads to
Ju=Tu | <[ u=xy |+@+B) [ oo = T |1 / (1-8)
and, finally, if x,, , u satisfy (z,), then

|<

|| TX,, —Tu || < 7/[

X = TU [[+] u=Tx,,
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I

|+|| TX,, — Tu ||+|| u—Tx,,

<7 [| Xik _Txnk

or

it

[T = Tul < #(1-7)" |

Xo = DXy

‘+Hu—Txnk

Hence u=Tu.

Now, since p is the unique fixed point of T, it results that p=u and so the two

conditions limx,, =u(=p) and {|| X, — P ||} decreasing with respect to n yield

Ilrfnxn =p.

Remarks.
1) Having in view that any Kannan mapping is a Zamfirescu mapping, from
Theorem 4.2 we obtain the convergence of the Mann iteration, in the class of

Kannan mappings;

2) If «, =% for all n, from Theorem 4.2 we obtain two theorems (Theorem 2

and Theorem 3) of Kannan [2], while if «, 2 =4 for all n, we obtain Theorem 3 of
Kannan [3].

3) As both Picard iteration and Krasnoselskij iteration converge in the class of
Zamfirescu mappings, it is natural to try to compare these methods in order to know
which one converges faster to the (unique) fixed point of T. However, such results

have not been made available in this work.
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CHAPTER 5

5.0 THE ISHIKAWA ITERATION

The Ishikawa iteration method: Let X be any setand T : X — X a self map. For
X, € K, the sequence {x, |~ defined by

X,.,=(-a )x +aT[d-b,)x,+b -Tx,] n=012,.., (5.1)
where {a}”, {b}",are sequences of reals satisfying 0<a,, b, <1 is called the
Ishikawa iteration, and is denoted by 1(x,,c,,5,.T).

The above equation (5.1) can be rewritten in a system form

{yn UL ) sl T NI OIS

X Wl 8 ). XSO LVE * o _ Qi) 52)

Then we can regard the Ishikawa iteration as a sort of double Mann iteration, with
two different parameter sequences.
It’s obvious that, for 4 =1, the Krasnoselskij iteration reduces to the Picard iteration

(the method of successive approximations), while for «, = A (constant), the Mann

iteration reduces to the Krasnoselskij method.
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Despite this apparent similarity and the fact that, for b, =0, Ishikawa iteration

reduces to Mann iteration, there is not a general dependence between convergence
results for Mann and Ishikawa iterations. Recently, some authors considered the so
called modified Mann iteration, respectively modified Ishikawa iteration, by
replacing the operator T by its n-th iterate T".

It is mentioned in chapter 2, if an operator T is continuous and the Mann
iterative procedure converges, then it converges to a fixed point of T. But if T is not
continuous, then there is no guarantee that, even if the Mann process converges, it
will converge to a fixed point of T.

If instead of the Mann iteration, we consider another iterative process, which is in
some sense a double Mann iterative process, then it is possible to approximate the
fixed point of some other classes of contractive mappings. This new iterative process,
is called the Ishikawa iteration, and was introduced for the class of Lipchitzian
pseudo-contractive operators. Thus it first used to establish the strong convergence to
a fixed point of a Lipschitzian and pseudo-contractive selfmap of a convex compact
subset of a Hilbert space.

As shown in chapter 4, the Mann iteration process converges in a special case of
Lipschitzian and strongly pseudocontractive operators. However, if T is only a
pseudocontractive mapping, then generally the Mann iterative process does not
converge to fixed point.

Interest in pseudocontractive maps stems mainly from their firm connection with the
class of non-linear accretive operators. It is a classical result, that if T is an accretive

operator, then the solution of the equations
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T(x)=0
correspond to the equilibrium points of some evolution systems.
This explains why a considerable research effort has been devoted to iterative
methods for approximating solutions of the equation above, when T is accretive or,
correspondingly, to the iterative approximation of fixed points of pseudocontractions.
Results of this kind have been obtained firstly in Hilbert spaces, but only for
Lipschitz operators, and then, they have been extended to more general Banach
spaces and to more general classes of operators.
There are still no results for the case of arbitrary Lipschitzian and pseudocontractive
operators, even when the domain of the operator is a compact convex subset of a
Hilbert space. This explains the importance, from this point of view, of the
improvement brought by the Ishikawa iteration.

It is shown that, under certain assumptions of the sequences {e,}, {f,}, the

Ishikawa iterative process associated to a Lipschitzian pseudocontractive operator
converges strongly to a fixed point of T. The original result of Ishikawa is stated in

the following.

5.1 Lipschitzian Pseudocontractive Operators

Theorem 5.1. Let K be a convex compact subset of a Hilbert space H, T : K -> K a

Lipschitzian pseudocontractive map and X, € K. Then the Ishikawa iteration {xn},
x, =1 {x a,, B, T} ie.,the sequence defined by

Xon = (—a,) %, + o, T[A-B,) %, + BT, (5.1.1)
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where { e, }, { B}, are sequences of positive numbers satisfying

() 0<a,<p,<Ln=L (i) limp, =0 (i) Yab=on

converges strongly to a fixed point of T.

Proof. Since T is pseudo-contractive, for any X,y € K we have
| Tx=Ty | <[ x=y[*+] (1 =Tx=(1 =Ty |, (5.1.2)
where | is the identity map.

From the assumption that T is Lipschitzian, we state that there exists a positive

number L such that
[Tx=Ty|<L|x-y] forany x,y e K. (5.1.3)
Since K is a convex compact set and T is continuous (being Lipschitzian), from

Schauder’s fixed point theorem we obtain that the set of fixed points of T, F(T), is
non-empty. Let p denote any point of F(T).

Now, for any x,vy,z ina Hilbert space H and a real number A4, we have
|+ 0-2)y=2f = A x-2 [ +0- D) y-2[ - 20- D x-y [ (514
Using (5.1.4) we obtain the following three equalities

||Xn+1 - p”2 = ”anT [ﬂnTXn +(1_ﬂn )X]+ (1_an )Xn - p”2 =
= an”T [ﬂnTXn +(1_ﬂn )Xn]_ p”2 + (l_an mxn - p”2 -

_an(l_an)”T [ﬁn-ﬁzn +(1_ﬂn)xn]_xn ”21



(5.1.5)

” ﬂnTXn +(1_ﬂn)xn -Pp ”2 = IBn” TXn -p ”2 +(l_ﬂn)|| X, =P ”2 - (1_an)

— B, BT =, |, (5.1.6)

and, respectively,
” ﬂnTXn + (1_13n)xn =T [ﬂnTXn + (1_ﬂn )Xn]”2 =

B, | T%, =T [ B,Tx, +(1-3,) || +(1-25,)

”Xn _T[ﬂnTXn +(1_ﬂn )Xn ]|2 _ﬂn(l_ﬁn ]ITXn - Xn||2' (517)

Applying (5.1.2) we deduce the following two inequalities
T I8, + @)% = p [ =[ T [T, + - 8,)x,]-To | <
<8P (l=B )=l +
+ BT+ (0= B) %, T [B.T%, + 1 8,)%, ][, (5.1.8)
and
I =PI =% =To [ < [y = p [+, =T, | (5.19)
Now performing the computations in (5.5) + e, [ (5.6)+ (5.7)+ (5.8)+ /3,(5.9) ], we
get

[%a=p I <% =p["—anf, 0=28,) T, =%, |+
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+a, B, | T, =T [B,Tx, + A= B,) %, ]| -

_an(ﬁn_an )” Xy — [ﬂTX + 1 ﬂ ]”

and so, in view of (i), it follows that

” X1 — P ”2 < ” X, —p ”2 _anﬂn (1_2ﬂn )” TXn =X, ”2 +

va By | T =T [BT%, + 0= 8,)Tx, 1| (5.1.10)

Since T is Lipschitzian, we have

51.11
1%, ~T (8T + (1= 8, % 1 < LA | Tx,—x, | O

and hence, from (5.1.10) and (5.1.11) we deduce
[ %= < % - p [~ (1-26,- 1287 )| %, - %, |* (5.1.12)
By summing (5.1.12) for ne {m,m+1,...,n} we obtain
o =pl < %ol = Reap, (126 A7 o - [
which can be written as
Y (1-28,-18 )| T x| < | x,—p [ -] xu-p[

Now by exploiting the assumption (ii), we deduce that there exists a positive integer

N such that
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28, +L2p7 < % for all integers k> N .

Then, for %m > N we obtain

1 n
Ez a B | T =X, ||2 <[ T, - p ||2 — [T —p ||2 (5.1.13)
k=m

Since K is bounded, the right-hand side quantity in (5.1.13) is bounded. This means
that the series in the left hand side is convergent and therefore, by (iii),

it results that

liminf |Tx, —x| = 0,

which in turn implies (K is compact) that there is a subsequence {xnk }Iil that

converges to certain point q of F(T).
Now, since q is a fixed point of T, from (5.12) we obtain for n> N
[ %os =] < | %, —al.,

that is, the sequence{” X, —q | } is decreasing.

Having in view that there is a subsequence {‘ X, —q H } converging to zero, it finally

results that {x, } converges to g.

Remarks.
1) In its original form, the Ishikawa iteration does not include the Mann
iteration, because of the assumption (i) in Theorem 5.1. Indeed, if one had

B, =0(n > 1), then it would result o, =0, as well.
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2) In the effort to obtain an Ishikawa iteration which should include a Mann
iteration as a special case, some authors, amongst them Naimpally and Singh, K.L.
[1] and Liu, Q. [1], have modified (i) to a weaker condition of the form
0<e,, B,<1.

3) Liu, Q. [1] extended Theorem 5.1 to the class of Lipchitzian hemicontractive
maps. A hemicontractive is a pseudocontractive map with respect to a fixed point,
I.e., if p is a fixed point of T, and x is a point in the space, then T satisfies

[Tx=p[ < |x=p [ +]x-Tx]".
4) However neither the proof of Q. Liu nor that of Ishikawa can be used to

establish a similar result for the Mann iterative process.

5.2 Quasicontractive type operators

As mentioned earlier in chapter 1, the Picard, Krasnoselskij, Mann and Ishikawa
iterative methods all converge for quasi-contractive operators. It was again

mentioned (as shown by Rhoades ([18], Theorem 8), ) that in a uniformly Banach
space E, the Ishikawa iteration {xn }fzo given by (5.1.1) and x, € K converges

(strongly) to the fixed point of T, where T:X — X is a mapping satisfying

conditions (z,),(z,), and (z,) of Theorem 1.2, K is a closed convex subset of E, and

{an } a sequence of numbers in [0, 1] such that

Zan(l_an):w' (i)

n=0
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It was also stated that in [3] the Berinde proved the following convergence theorem
in arbitrary Banach spaces, for the Mann iteration associated to operators satisfying

conditions (z,),(z,), and (z;), extending in this way another result of Rhoades

([17], Theorem 4). We briefly state it here also.

Theorem 5.2. Let E be an arbitrary Banach space, K a closed convex subset of E,

and T : X — X an operator satisfying condition Z. Let {x, }:’:0 be the Mann iteration

defined by (1.1) and x, € X with , €[0,1]satisfying

S, =, (ii)

n=0
converges strongly to the fixed point of T.
We now present a convergence theorem for the Ishikawa iteration, corresponding to a
typical representative of the class of quasicontractive operators, i.e., the class of

Zamfirescu operators.

5.2.1 The Zamfirescu operator
Theorem 5.3 Let E be an arbitrary Banach space, K a closed convex subset of E,

and T : K — K a Zamfirescu operator. Let { x,}” , be the Ishikawa iteration defined
by (5.1.1) and X, € K, where {«,}” and {p, | are sequences of positive
numbers in [0, 1] with {a,}” satisfying (ii). Then, the Ishikawa iteration,

{ X, }°n°:0 converges strongly to the fixed point of T.

S7



Proof. By Theorem 1.4 , we know that T has a unique fixed point in K, say p.

consider X,y e K. Since T is a Zamfirescu operator, at least one of the conditions

(z1), (z2) and (z3) is satisfied. If (z,) holds, then

[Tx=Ty || < b[|x-Tx|+]y-Ty]]
< b{|x=Tx |+ [ y=x[+]x-Tx]+| Tx-Ty | ]}
So
@-b)| Tx=Ty| <b-[|x-y]|+20]x=Tx]],

which yields (using the fact that 0<b <1)
b 2b
|Tx=Ty || < ﬁ” x—y||+ﬁ|| X=Tx | (5.3.1)

If (z3) holds, then similarly we obtain

c 2¢ (5.3.2)
[T =Ty | < = x-y |+ 2o x-Tx|

Denote

S = max {aii} (5.3.3)
1-b 1-c

Thenwe have 0 < 6 <1 and, in view of (z3), (5.1) and (5.2) it results that the
inequality

|Tx=Ty| < &|x-y|+25|x-T¥| (5.3.4)

holds for all x,yeK.

Now let { x, |~ be the Ishikawa iteration and x, € K arbitrary.

n=0
Then
” Xn+1 -p ” = ” (1_an ) Xn + anTyn _(1_an + @, )p” =
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= ” (1_an)(xn - p) + an(Tyn - p)”S
< (1_an)|| (Xn - p)||+an|| Tyn -p ”
With x:= p and y:=vy,, from (5.3.4) we obtain
[0 =Pl -lva=pl.

Where ¢ is given by (5.3.6). Further we have

|| Yo =P ” L ” (1_ﬂn)xn +ﬂnTXn _(1_ﬂn +ﬂn) p ||

= ” (1_18n )(Xn - p)+ﬁn(TXn - p)”
< 1=8.)] 0 =p)[+ B T, — P
Again by (5.3.4), this time with x:= p; y:=X,, we find that
[T —p[<s:] % —p]

and hence, by (5.3.5) — (5.3.8) we obtain

[ X =P < 1-0-8),@-58,) ]| x, - p].

Which, by the inequality
1-(1-6)a,@1-68,) <1-(1-6)a,,

Implies

| Xu—p | <[1-0=6Fa, || % -p[. n=012..

By (5.3.9) we inductively obtain

[%a-p| <[[h-0-6Fa]|%-p| n=012,.
k=0

(5.3.5)

(5.3.6)

(5.3.7)

(5.3.8)

(5.3.9)

(5.3.10)

Using the factthat 0<6<1, o, p,€[0, 1], and > a, =0, by (ii) it results that
n=0
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which by (5.3.10) implies
|n|:r£ ” X~ P ” = 01

i.e. {x,|, converges strongly to p.

Remarks.
1) Condition (i) in Theorem 1 is slightly more restrictive than condition (ii) in
our Theorem 2, known as a necessary condition for the convergence of Mann and

Ishikawa iterations. Indeed, in virtue of (i) we cannot have «, =1 or «, = Oand
hence

0<a,l-a,)<a, n=012,..,
which shows that (i) always implies (ii). But values of {an} exist that satisfy (ii),
e.g., a, = 1, such that (i) is not true.

2) Since the Kannan’s and Chattejea’s contractive conditions are both included
in the class Zamfirescu operator, by Theorem 5.3 we obtain corresponding

convergence theorems for the Ishikawa iteration in these classes of operators.

Corollary 5.1. Let E be an arbitrary Banach space, K a closed convex subset of E,

and T:K — K a Kannan operator, i.e., an operator satisfying (1.5). Let {x,}~  be

=0

the Ishikawa iteration defined by (5.1) and x, K, with {a,}, {8,}<[0, 1]

satisfying (ii). Then { x, }:’zo converges strongly to the fixed point of T.
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Corollary 5.2. Let E be an arbitrary Banach space, K a closed convex subset of E,
and T:K — K a Chatterjea operator, i.e., an operator satisfying (1.6). Then the

Ishikawa
iteration {x, )7, be the defined by (5.1) and x, e K, with {a,}, {£,}< [0, 1]
satisfying

(ii). Then { x, |, converges strongly to the fixed point of T.

Conclusions.

1) The convergence theorems of two mean value fixed point iteration procedures
for Kannan operators [12], [13] are extended to the larger class of Zamfirescu
operators and simultaneously from uniformly convex Banach spaces to arbitrary
Banach spaces and to the Ishikawa iteration;

2) The fixed point theorem of Chatterjea is extended from the Picard iteration to
the Ishikawa iteration. This also contains, as a particular case, the corresponding
convergence theorem for Mann and Krasnoselskij iterations;

3) While the convergence of Picard iteration in the class of Zamfirescu operators
cannot be deduced by Theorem 8 of Rhoades [18], our main result also include, as a

particular case, the convergence of both Picard and Krasnoselskij iterations.
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CHAPTER 6

6.0 COMPARISON OF FASTNESS OF THE CONVERGENCE
AMONG KRASNOSELSKIJ AND MANN ITERATIONS IN
HILBERT SPACE

The interest of this chapter is to compare the fastness of the convergence to the
fixed point among the Krasnoselskij and Mann iterations for the class of Lipschitzian
and generalized pseudocontractive operators in Hilbert spaces. Thus it is shown that
to each Mann iteration there is a Krasnosleskij iteration which converges faster than
the Mann iteration.

Theorem 6.1 in this section shows that the Krasnoselskij iteration is more suitable
than the Mann iteration for approximating fixed points of a Lipschitzian and

generalized pseudo-contractive operators.

62



We shall also show that amongst all the Krasnoselskij there exists one which is

fastest with respect to the concept of rate of convergence given by Definition 2.1.

6.1 Lipschitzian generalized pseudo-contractive operator

Theorem 6.1. Let H be a real Hilbert space and K a non-empty closed convex
subset of H. Let T:K — K be a Lipschitzian generalized pseudo-contractive
operator with corresponding constantsL > 1 and0<r <1.

Then:

1) T has a unique fixed point p in K;

2)  Foranyx,eK and A€(0, a) with a given by (2.2.2) the Krasnoselskij
iteration {x, }” , = K, (x,,4,T) converges strongly to p;

3) For any y, eK and {a,}”in [0, 1] satisfying (2.2.3), the Mann iteration
{y. 1 =M, (Yo, e,,T) converges strongly to p.

4) For any Mann iteration converging to p, with 0 <«, <b <1, there exists a

Krasnoselskij iteration that converges faster to p.

Proof.

1)-2) Forall 1€ [0,1], consider the operator T, on K given by
T,x=(L-A)x+ATx, xeK (6.1.1)

Since K is convex, we haveT,(K)c K , forall 1 €[0,1].

From the generalized pseudo-contractive and Lipschitzian conditions on T and

[T x-T,y[" =] @ 2)(x-y)+ ATx-Ty) [ =
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=AY x—y| +24@-2)-(Tx=Ty,x—y )+ 22| Tx=Ty |’
we find that
|Tx=T,y [ < [@-2F +220-2) + 20 || x=y ],
S
ITx-T,y||<6-|x-y| forallx,yinkK, (6.1.2)
where 0 <0 =|(1-AF+24 (1-A)r + 2%|*® <L as A<a
Since K is a closed subset of a Hilbert space, K is a complete metric space. Then by

Banach contraction mapping principle, T, has a unique fixed point q in K and the
Picard iteration associated to T, ,

n>a0, (6.1.3)
converges strongly to g, for any X, € K.

Now using the fact that { x, }‘::0 given by (3.3) is exactly the Krasnoselskij iteration
K,(%,, 4, T ) associated to T, on the one hand, and the fact that F(T)=F(T,), for

all1e (0, 1), that is p = q is the unique fixed point of T , on the other hand we obtain
1) and 2).

3) Let {y,}”, be the Mann iteration with {e,} ", < [0,1] satisfying (2.3.1).
Considert, 0 <t <1, and denote a, =%0¢n ,n=0,1,2,....

Then the Mann iteration will be given by
Vo= (L-ta,)y, +ta Ty, n=0,12...

we have
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” Yna— P ”:” (1_a'n)yn +an[(1_t)yn + tTyn]_ p ” <

< (-a,)|y, - p|+a, | (1-t)(y, - p)+t(Ty, - Tp)| (6.1.4)

Using the properties of T we find that

[ t(Ty, =Tp) + @-t)(y, —p)|" = @-tF |y, —p[ +

+2t(A-t )(Ty, - p.y, - p)+t| Ty—p [’ <

By (6.1.4) and (6.1.5) we get

1
| Vo= P < {1—an+an [(1—t)2 + 2t (l—t)r+t2L2]2}. Iy, -p|

=(1-@-0)a,)-| v.—p]|

<[T(1- (1-6)a)] v p| 616

k=1

where
0<6=|(1-tF+ 2a@-t)r+t2* | <1,

forall t suchthat 0 <t < 2(1—r)/{l-2r+L?) .

Since by (2.3.1) Zan diverges, follows that Zan diverges, too, and in view of

n=0 n=0

6 < 1 we get that

N—oo

|imf[(1—(1—9)ak)= 0,

which by (6.1.6) shows that {y, } converges strongly to p.
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4) Take x:=x,, y:=X,, in(6.1.2) to obtain

X1 =X [0 ]| %0 =%,y |

n+l

which inductively yields

[ %o =] 0" [ %= |

n+1

and hence by triangle rule we obtain

‘ Xorp =X || < 6" (L+0++0"" )|| X =%, |, (6.1.7)
valid forall n,pe N”
Now letting p — oo in (6.1.7) and using part 2), we get
. 0"
‘ X, =X = —=— [ x,=% || (6.1.8)

1- 6
Therefore in view of (6.1.6) and (6.1.8), in order to compare the Krasnoselskij and

Mann iterations, we have to compare
6" and ] [1- 0-0)a,]
k=1

Let {y,}; be a certain Mann iteration converging to p, with {«,}” satisfying
0<a,<b<1.Then, a, <b/t (denote b/t by b) and for any m, 0<m<1, we

find @ < (0, 1) such that

b < —l_(%).
1-6
m(1-b)

Indeed, to this end it is enough to take 6 <
1- bm
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Using the fact a, < b, it results

0

— L < 1,
1-(1-0)a, m=

which shows that

. o )
lim <limm" =0,
n n—oo

i-(1-0)a]

k=1

o0

= K, (X, 6, T) converges faster than the

So the Krasnoselskij iteration {x,}
considered Mann iteration, { y, |” . =M, (Yo, @,, T).

To end the proof we still need to show that the intervals (0, a) with a given by

(2.2.2) and (0, Mj have a nonempty intercession. But this is immediate, since

M> 0and O0< a =2(1——r)2 < 1, under the hypothesis of Theorem 6.1.
1-m 1-2r +L
Remarks

1) Part 4) in Theorem 6.1 shows that, in order to approximate the fixed points of

a Lipschitzian and pseudo-contractive operator T, it is always more convenient to
use a certain Krasnoselskij iteration in the family (2.4) with 1< (0, a) and a is given
by (2.2.2).

2)  Moreover, amongst the Krasnoselskij iterations { x,}”, there exists one

which is the fastest in that family in the sense of Definition 2.1.
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6.2 Fastest iteration in the family of Krasnoselskij
Theorem 6.2 [1] Let all assumptions in Theorem 2.2 be satisfied. Then the fastest

iteration { x, }, in the family (2.4) with 1 € (0, a) is that obtained for

0
Amin = (1=1)/(1=2r+L) (6.2.1)
Proof
We have to find the minimum of the quadratic function
f(x)=(0—x)* +2x(L=x)r +x*L?
with respect to x, that is to minimize the function
f(x)=(-r+?)x*=2(t-r)x+1, x<(0, a)
with a given by
a=2(1-r)/(1-2r+1)
From (/) we have that
=71 + T (I el
and hence f does admit a minimum, which is attained for
W

with A given by (6.2.1). The minimum value of f(x)is then

fon = (C=r2)(1-2r+12),

min

which shows that the minimum value of @ given (5) is then

0= [( L% - rz)/(l—Zr + Lz)], that completes the proof.
Remarks
1) Theorem 4 shows that the fastest iteration is commonly obtained for 4

situated in the middle of the interval to which the parameter belongs.
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2) Observe that in view of the conditionA < 1, the convergence of the Picard
iteration cannot be obtained from Theorems 2.2 — 6.2. Actually, as shown by
Example 1, the Picard iteration does not generally converge and this is the reason we
need to consider other fixed point iteration procedures, like Krasnoselskij and Mann,
in order to approximate fixed point of Lipchitzian and generalized pseudo-

contractions.

CHAPTER 7

7.0 CONCLUSION AND DISCUSSION

This topic was chosen basically to underline some fixed point theorems and to
study the strong convergence to a fixed point of four iterative procedures (Picard,
Krasnoselskij, Mann and Ishikawa iterative methods). Finally, in chapter 6 we
compared the rate of convergence of the Krasnoselskij and Mann iterative schemes
for Lipschitzian and generalized pseudocontractive operators to determine which of
the scheme is better, i.e., which one converges faster to the fixed point of the
operator? It’s quite significant because of the several applications of fixed points
iterative procedures — some of which have been listed in the introduction.

It is clear from results displayed in chapters 3 to 5 that each of the four iterative
procedures converge strongly to a fixed points of the various operators considered.
Theorem 6.1 clearly shows that in comparing the rate of convergence of the

Krasnoselskij and Mann iterative schemes for Lipschitzian and generalized Pseudo-
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contractive operator, the Krasnoselskij iteration method converges faster than the
Mann iteration method.
In summary, each of these topics was introduced by the basic definitions of the
iterative schemes, it’s relationship to the preceding one, and then we state one or two
theorems for which they converge to a fixed point of the operator.
Under the Picard iteration we considered the convergence to a fixed point in a
complete metric space for an a—contraction, a priori and posteriori estimates. Results
for the Krasnoselskij iteration was obtained for a closed bounded convex subset of a
Hilbert space H, and the operators considered were Nonexpansive and
Demicompact. Under the Mann iteration the spaces and operators considered were a
Banach Space (Complete Normed Linear Space), Uniformly Convex Banach Space
and Strongly Pseudcontractive and the class of Zamfirescu Mappings respectively.
Finally for the Ishikawa iteration: Banach Space, Convex Compact subset of a
Hilbert space and Lipschitzian Pseudcontractive and Zamfirescu Map.
This work was limited only to the strong convergence of iteration methods to fixed
points. Weak convergence was not our focus.
For exciting new problems for research, we may consider the following
questions:
o How do we compare the convergence to a fixed point for three or four different
iterative schemes in order to measure which of them is the fastest?
o If that were possible, do we restrict this study to one space and for the same
operators, or varied spaces and operators? What criteria do we use to determine

the fastest scheme for the latter condition?
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e  Thirdly, given that we consider spaces and maps different from those
considered in this work will the iterative methods yield a fixed point for maps.
Is it possible to impose some conditions on the space or map to obtain a fixed

point?
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