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ABSTRACT

Many investors and portfolio managers always seek maximum returns with relative low
risk or conversely, minimum risk with maximum expected returns. Which model or
approach best meets investor’s investment decisions and portfolio selection. The dynamic
programming model amongst other things seeks to address such dilemma faced by
investors. Suppose an investor wants to invest and there are several opportunities
available to him/her then there arise a problem of choice/allocation. It would be realized
that each opportunity require deposits in financial terms and an expected return. The
investor may allocate all the money to just one opportunity or split the money between
the alternatives of investments all with the aim of obtaining the maximum returns from
the investment made. The problem of determining how much to invest in each investment
in order to maximize total returns is the major challenge faced by investors and this can
be achieved through a multi-stage decision process by modelling a Mathematical program
to find the optimal policy using Dynamic Programming. The general objective of this
study is to identify the various types of investments and their returns and use dynamic
programming to find the optimal investment portolio. Secondary data will be used in the
study. Interest rates and yield functions of various investments will be collected from both
Banking and Financial Institutions. The data collected will be collated and analyzed using
dynamic programming. The results of the research clearly prove that dynamic
pmgrmnmiugjﬁ; very efficientinaliocating resources for the optimal investment returns

from a portfolio. The study concluded that dynamic programming can be used in

R

allocating resources for the optimal investment returns from a portfolio. It is
recommended that investors should not invest too much money in a single investment.

One should always divide the resources available in bits to invest in different investments.

v
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CHAPTER ONE

1.0 Introduction

Many investors and portfolio managers always seek maximum returns with relative low
risk or conversely, minimum risk with maximum expected returns. Which model or
approach best meets investor’s investment decisions and portfolio selection. The dynamic
programming model amongst other models seeks to address such dilemma faced by

investors.

1.1 Background of Study

People throughout ages have sought to look for avenues to increase their wealth. The best
way to maintain and improve one’s wealth is to invest the little that one has. Individuals,
entities, organizations and cooperate bodies make investments towards the future. One
difficulty faced by all is where, how, when and for how long to invest, in the midst of all
opportunities, to obtain the maximum satisfaction from the investment made. Usually
investors might have a certain amount of money to invest. The investor may have various

options of investment based on the returns.

Any time one makes an investment one must decide on the optimal investment strategy.
Two very important strategies are active portfolio management and long term investment.
The strategies that one ww optimal strategy will depend on one’s investment

goals.

Investors invest in mutual funds for numerous reasons. The investment decision may be
driven by the need for diversification at a low cost or for the desire of professional

portfolio management.



Active portfolio management, in a substantial amount of cases, fails to cover the higher
costs it imposes on investors. Some studies, which focus on outlier performance, provide
empirical evidence that the top decile of investment management performers display a
skill in generating alpha (Kosowski, 2006). Parallel to this strand of literature is the
question of whether active portfolio management is more likely to provide alpha in

recessionary periods.

1.1.1 Investment

Investment has been defined by many and in many fields. Investing is laying out money

or capital in an enterprise with the expectation of profit.

Money i1s invested with an expectation of profit. Investment is the commitment of
something other than money (time, energy, or effort) to a project with the expectation of
some worthwhile result. Investment is the commitment of money or capital to purchase
financial instruments or other assets in order to gain profitable returns in a form of
interest, income, or appreciation of the value of the instrument. It is related to saving or

deferring consumption.

Farlex (2,(Jj2) stated that investment is the act of placing capital into a project or business

with the intent of making a profit on the initial placing of the capital. An investment may

—

involve the extension of a loan or line of credit, which entitles one to repayment with
interest, or it may involve buying an ownership stake in a business, with the hope that the
business will become profitable. Investing may also involve buying a particular asset with

the intent to resell it later for a higher price. Many types of investing exist, and each is



subject to greater or lesser regulation in the jurisdiction in which it takes place. Legally,
investing requires the existence and protection of individual property rights. Investing
wisely requires a combination of astuteness, knowledge of the market, and timing.

The concise encyclopedia defines investment as the process of exchanging income for an
asset that is expected to produce earnings at a later time. An investor refrains from
consumption in the present in hopes of a greater return in the future. Investment may be
influenced by rates of interest, with the rate of investment rising as interest rates fall, but
other factors more difficult to measure may also be important for example, the business
community's expectations about future demand and profit, technical changes in
production methods, and expected relative costs of labour and capital. Investment cannot
occur without saving, which provides funding. Because investment increases an

economy's capacity to produce, it is a factor contributing to economic growth.

An investment involves the choice by an individual or an organization such as a pension
fund, after some analysis or thought, to place or lend money in a vehicle, instrument or
asset, such as property, commodity, stock, bond, financial derivatives (e.g. futures or
options), or the foreign asset denominated in foreign currency, that has certain level of
risk and provides the possibility of generating returns over a period of time. When an

asset 1s bought or a given amount of money is invested in the bank, there is anticipation

that som_f_:_i"ﬁturn will be received-from the investment in the future.

Investment is a term frequently used in the fields of economics, business management and
finance. It can mean savings alone, or savings made through delayed consumption.
Investment can be divided into different types according to various theories and

principles.



According to economic theories, investment is defined as the per-unit production of
goods, which have not been consumed, but will however, be used for the purpose of
future production. Examples of this type of investments are tangible goods like
construction of a factory or bridge and intangible goods like six (6) months of on-the-job
training. In terms of national production and income, Gross Domestic Product (GDP) has

an essential constituent, known as gross investment.

In an economic sense, an investment is the purchase of goods that are not consumed today
but are used in the future to create wealth. In finance, an investment is a monetary asset
purchased with the idea that the asset will provide income in the future or appreciate and
be sold at a higher price. The building of a factory used to produce goods and the
investment one makes by going to college or university are both examples of investments

in the economic sense

According to business management theories, investment refers to tangible assets like
machinery and equipment and buildings and intangible assets like copyrights or patents
and goodwill. The decision for investment is also known as capital budgeting decision,

which is regarded as one of the key decision of management.

In finance, investment refers to-the purchasing of securities or other financial assets from
the capital market. It also means buying money market or real properties with high

market liquidity. Some examples are gold, silver, real properties, and precious items.
Financial investments are in stocks, bonds, and other types of security investments.

Indirect financial investments can also be done with the help of mediators or third parties,

such as pension funds, mutual funds, commercial banks, and insurance companies.



According to personal finance theories, an investment is the implementation of money for

buying shares, mutual funds.

Usually a combination of any of the above investment possibilities may be considered by
an investor or an individual. Any time an investor wishes to make an investment with a
certain sum of money, say, he must decide on the optimal investment strategy to adopt.
The optimal investment strategy could be long term or short term, active portfolio
management or long term investing. The choice of a particular investment should be
based on the cumulative returns on all the investments. In the financial sense
investments include the purchase of bonds, stocks or real estate property. Investing
usually involves the creation of wealth whereas speculating is often a zero-sum game;
wealth is not created. Although speculators are often making informed decisions,

speculation cannot usually be categorized as traditional investing.

1.2 Statement of the Problem

This is what the Good Book says about investment in Ecclesiastes 11:2

“But divide your investment among many places for you do not know what risks
might lie ahead”.

Suppose an investor wants to invest and there are several opportunities available to
him/her the_,_n there arise a problem of choice/allocation. It would be realized that each
opportunity require depMancial terms and an expected return. The investor may
~_allocate all the money to just one opportunity or split the money between the alternatives

of investments all with the aim of obtaining the maximum returns from the investment

made.



The problem of determining how much to invest in each investment in order to maximize
total returns is the major challenge faced by investors and this can be achieved through a
multi-stage decision process by modeling a Mathematical program to find the optimal

policy using Dynamic Programming.

1.3 Objectives of the Study
The objectives of this study are to:
(1) identify the various types of investments and their returns and

(i)  use dynamic programming to find the optimal investment portolio.

1.4 Methodology Used in the Study

The Mathematical methods that will be used in the research is Dynamic Programming.
Secondary data will be used in the study. Interest rates and yield functions of various
investments will be collected from both Banking and Financial Institutions. Dynamic
Programming will be used to determine the optimal investment and the appropriate

investment allocations to be made to each category of investment.

1.5 Justification of the Study

Many are those who have resources and would like to invest, but are not certain of where,

when andjoiw to put th/eir’mzs_o,ws in order to accrue the maximum returns. To justify

the products in which to invest, we need to look out for the various forms of investments
" available, the expected returns from each investment and the associated cost. Financial

institutions would like to know where to keep their excess cash flows to make the

maximum returns. All the above can be modeled as dynamic programming problem. It is



known that dynamic programming solves problems in stages and is quicker and less time

consuming far less than total enumeration.

1.6 Scope of the Study

The study will be carried out exclusively in Ghana. The scope of the study will be limited
to six financial institutions namely; the Government of Ghana’s Treasury Bills, Barclays
Bank Ghana, Ghana Commercial Bank, Data Bank, Guinness Ghana Limited and Fan

Milk Limited, Accra.

1.7 Limitations of the Study
The problem to be considered in this study is the Bellman’s Principle of Optimality using
Dynamic programming. We considered only six investments with five returns, this is due

to time constraints which did not allow the researcher to do total enumeration.

1.8 Organization of the Study
The study is organized into five chapters. Chapter One is the Introduction of Investment
in general, background, problem statement, objective, methodology and justification of

the study.

In Chapter-Two, we shall-put Torward pertinent literature on Dynamic programming and

it’s variants.

e

—

Chapter Three presents the research methodology of the study, Uncertain Pay-Offs,

Equipment Replacement problems using total enumeration and Dynamic Programming. It



considers cases where there is total enumeration and compares the time and stages used in

solving a problem.

Chapter Four deals with the collection, analysis of the data and interpretation of the
results..
Chapter Five, the last chapter of the study presents the conclusion and recommendations

of the study.

1.9 Summary

This chapter discussed the background, problem statement, objectives and methodology
of the study. The justification, scope and limitations of the study were also put forward.

The next chapter presents relevant literature on investment and dynamic programming.



CHAPTER TWO

LITERATURE REVIEW
2.0 Introduction

In this chapter, we shall review existing literature on dynamic programming.

2.1 Review of Existing Literature

Dynamic programming is a method for solving complex problems by breaking them
down into simpler sub problems. It is applicable to problems exhibiting the properties of
overlapping sub problems and optimal substructure. When applicable, the method takes
far less time than naive methods. The key idea behind dynamic programming is quite
simple. In general, to solve a given problem, we need to solve different parts of the
problem (sub problems), then combine the solutions of the sub problems to reach an

overall solution.

Dynamic programming is both a mathematical optimization method, and a computer
programming method. In both contexts, it refers to simplifying a complicated problem by
breaking it down into simpler sub problems in a recursive manner. While some decision
problems cannot be taken apart this way, decisions that span several points in time do
often break apart recursively; Bellman called this the “Principle of Optimality”.
Likewise, in computer s/c/iefll/ce,a_ggoblem which can be broken down recursively is said

S

to have optimal substructure.

—

If sub problems can be nested recursively inside larger problems, so that dynamic
programming methods are applicable, then there is a relation between the value of the
larger problem and the values of the sub problems. In the optimization literature this

relationship is called the Bellman equation.



Dynamic programming is a widely used programming technique in bioinformatics. In
sharp contrast to the simplicity of textbook examples, implementing a dynamic
programming algorithm for a novel and non-trivial application is a tedious and error
prone task. The algebraic dynamic programming approach seeks to alleviate this
situation by clearly separating the dynamic programming recurrences and scoring

schemes.

Hiller and Lieberman (2003) stated that Dynamic programming is a very useful technique
for making a sequence of interrelated decisions. It requires formulating an appropriate
recursive relationship for each individual problem. They further state that Dynamic
programming provides great computational savings over exhaustive enumeration to find

the best combination of decisions, especially for large problems.

Proper investment decision making is key to success for every investor in their efforts to
keep pace with the competitive business environment. Mitigation of exposure to risk
plays a vital role, since investors are now directly exposed to the uncertain decision
environment. The uncertainty (and risk) of an investment is increasing with the increased
number of competing investors entering to market. As a result, the expected return on
investment (ROI) of a decision quite often carries a high degree of uncertainty.

Dynamic programming is a systematic tool based on the simple idea of the principle of

—

optimality (Bertsekas, 2007). If a decision problem can be viewed as multiple stages with
multiple states and known state transitions associated with each particular action, then the
problem can be systematically solve with deterministic dynamic programming with the

help of prominent Bellman equation (Bertsekas,2007).If the state transition is

10



probabilistic, then we can apply stochastic dynamic programming. Apart from this, if the
number of stages 1s infinite (i.e., if we do not want to impose a limit on the number of

stages), then the problem becomes an Infinite Horizon Stochastic Dynamic Programming

Problem (IHSDP) (Bertsekas, 2007).

At present, investment decision making is a critical task because every investment
exhibits at least some amount of risk and uncertainty. These risks and uncertainties are
the results of huge business competition and vibrant market economy. As a result, recent
research in investment decision making is undergoing a paradigm shift with much
integration of new techniques with existing methods to develop robust decision making

processes (Heikkinen et al., 2009).

Xu-song and Jian-mou (2002) studied the investment decision-making of a project with
deterministic dynamic programming. Yan and Bai (2009) formulated a deterministic
dynamic programming model to allocate funds between stocks in a portfolio to maximize
income. The authors captured the risk issues by incorporating the positive correlation

between risks and returns of a stock to a large extent.

Heikkinen and Pietola (2009) studied the use of stochastic programming approaches to
make optimal investment decisions by modeling the problem as a Markov decision

=== 2 /’J:’——’—— : . . = .
process. A dynamic uncertainty cost is presented with the modification of the classical

__expected value of perfect information to a dynamic setting.

Dixit and Pindyck (1994) described the use of a Markov Decision Process (MDP) defined

in continuous time and with a continuous state spacefor optimal investment decisions.

11



Most of the prior research does not consider the inter-related dynamics of the systems that

can be encountered by a stochastic dynamic investment model (Botterud et al., 2007))

2.2 Investment Portfolio

Given the risk-return trade-off and the risk-reducing effect of diversification, the major
component of portfolio performance is investment policy — allocation of the portfolio
across different asset classes with different amounts of risk (Brinson et al., 1986). A key
study of private pension plans indicates that investment policy accounted for up to 94 per
cent of the variation of plan return (Brinson et al., 1986). Other studies also indicate that
investment policy is a determinant of investment return for public and/or private plans

(Ambachtsheer, 1994; Engebretson, 1995).

2.2.1 The Investment Process

According to Myles (2003), the investment process involves the following steps:

1) Determine Objectives: Investment policy has to be guided by a set of objectives.
Before investment can be undertaken, a clear idea of the purpose of the investment
must be obtained. The purpose will vary between investors. Some may be
concerned only with preserving their current wealth. Others may see investment as

a means of enhancing wealth. What primarily drives objectives is the attitude

=
-

towards taking on-risk-Some investors may wish to eliminate risk as much as is
possible, while others may be focused almost entirely on return and be willing to
accept significant risks.

i1) Choose Value: The second decision concerns the amount to be invested. This
decision can be consi&ered a separate one or it can be subsumed in the allocation

decision between assets (what is not invested must either be held in some other

12



form which, by definition, is an investment in its own right or else it must be
consumed).

111) Conduct Security Analysis: Security analysis is the study of the returns and risks
of securities. This is undertaken to determine in which classes of assets
investments will be placed and to determine which particular securities should be
purchased within a class. Many investors find it simpler to remain with the more
basic assets such as stocks and fixed income securities rather than venture into
complex instruments such as derivatives. Once the class of assets has been
determined, the next step is to analyze the chosen set of securities to identify
relevant characteristics of the assets such as their expected returns and risks. This
information will be required for any informed attempt at portfolio construction.
Another reason for analyzing securities is to attempt to find those that are
currently mispriced. For example, a security that is under-priced for the returns it
seems to offer is an attractive asset to purchase. Similarly, one that is overpriced
should be sold. Whether there are any assets are underpriced depends on the
degree of efficiency of the market. More is said on this issue later.

Such analysis can be undertaken using five alternative approaches:

a) Technical analysis: This is the examination of past prices for predictable trends.

Technical analysis employs a variety of methods in an attempt to find patterns of price
behaﬁgj that repeat thro ime. If there is such repetition (and this is a disputed

issue), then the most beneficial times to buy or sell can be identified.

-

m—

b) Fundamental analysis: The basis of fundamental analysis is that the true value of a
security has to be based on the future returns it will yield. The analysis allows for

temporary movements away from this relationship but requires it to hold in the long-

13



rum. Fundamental analysts study the details of company activities to makes
predictions of future profitability since this determines dividends and hence returns.

c) Portfolio Construction: Portfolio construction follows from security analysis. It is the
determination of the precise quantity to purchase of each of the chosen securities. A
factor that is important to consider is the extent of diversification. Diversifying a
portfolio across many assets may reduce risk but it involves increased transactions

costs and increases the effort required to manage the portfolio.

d) Evaluation. Portfolio evaluation involves the assessment of the performance of the
chosen portfolio. To do this it is necessary to have some yardstick for comparison
since a meaningful comparison is only achieved by comparing the return on the

portfolio with that on other portfolios with similar risk characteristics.

e) Revision. Portfolio revision involves the application of all the previous steps.
Objectives may change, as may the level of funds available for investment. Further
analysis of assets may alter the assessment of risks and returns and new assets may
become available. Portfolio revision is therefore the continuing reapplication of the

steps in the investment process.

2.3 Dynamic Programming

Based on the programming style, Steffen et al, (2005) introduced a generic product
i s

operation of scoring schemes. This lead to a remarkable variety of applications, allowing

———us to achieve optimizations under multiple objective functions, alternative solutions and

back tracing, holistic search space analysis, ambiguity checking, and more, without

additional programming effort. The authors demonstrated the method on several

applications for
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RNA secondary structure prediction. The product operation as introduced here adds a
significant amount of flexibility to dynamic programming. It provides a versatile text bed
for the development of new algorithmic ideas which can immediately be put to practice.

Institutional fund managers generally rebalance using ad hoc methods such as calendar

basis or tolerance band triggers.

Sun et al., (2005) proposed a different framework that quantifies the cost of a rebalancing
strategy in terms of risk-adjusted returns net of transaction costs. The authors then
developed an optimal rebalancing strategy that actively seeks to minimize that cost. They
used certainty equivalents and the transaction costs associated with a policy to define a
cost-to-go function, and they minimized this expected cost-to-go using dynamic
programming. The authors applied Monte Carlo simulations to demonstrate that their
method outperforms traditional rebalancing. They also showed the robustness of our

method to model error by performing sensitivity analyses.

The existence of an optimum and dynamic programming techniques was derived from
abstract assumptions based on primitive utility function U and its W and M primitive
aggregators. A non-positive-valued utility function U that is derived from a W dynamic
aggregator and an M stochastic aggregator was constructed. The resulting examples

exhibit mean growth without the distribution of unbounded support due to the few growth

restrictions of non-positive objective.

——

Differential dynamic programming is a technique, based on dynamic programming rather
than the calculus of variations, for determining the optimal control function of a nonlinear

system. Unlike conventional dynamic programming where the optimal cost function is



considered globally, differential dynamic programming applies the principle of optimality
in the neighborhood of a nominal, possibly no optimal, trajectory. This allowed the
coefficients of a linear or quadratic expansion of the cost function to be computed in
reverse time along the trajectory: these coefficients may then to be used to yield a new
improved trajectory (i.e. the algorithms are of the “successive sweep” type). A class of
nonlinear control problems, linear in the control variables, is studied using differential
dynamic programming. It is shown that for the free-end-point problem, the first partial
derivatives of the optimal cost function are continuous throughout the state space, and the
second partial derivatives experience jumps at switch points of the control function. A
control problem that has an analytic solution is used to illustrate these points. The fixed-
end-point problem is converted into an equivalent free-end-point problem by adjoining
the end-point constraints to the cost functional using Lagrange multipliers: a useful
interpretation for Pontryagin’s adjoin variables for this type of problem emerges from this
treatment. The above results are used to devise new second- and first-order algorithms
for determining the optimal bang-bang control by successively improving a nominal
guessed control function. The usefulness of the proposed algorithms is illustrated by the

computation of a number of control problem examples (Jacobson, 2003).

Dynamic programming solutions for optimal portfolios in which the solution for the
portfolio \E{:tdr of risky zis/s;,m's_mnstam were solved by Merton in continuous time and
by Hakansson and others in discrete time. There is no case with a closed form solution
-fu;i{ére this vector of risky asset holdings changes dynamically. Tenney (1995) derived
such solutions for the first time, and is thus a dynamic dynamic-programming solution as
opposed to a static dynamic-programming solution for this vector. The solution is valid

when there is a set of basis assets whose excess expected return is linear in the state
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vector, whose variance-covariance matrix is time-dependent and for which the interest

rate is a quadratic function of the state vector.

Battocchio (2002) considered a stochastic model for a defined-contribution pension fund
in continuous time. In particular, they, focused on the portfolio problem of a fund
manager who wants to maximize the expected utility of his terminal wealth in a complete
financial market with stochastic interest rate. The fund manager must cope with a set of
stochastic investment opportunities and two background risks: the salary risk and the
inflation risk. We used the stochastic dynamic programming approach. He showed that
the presence of the inflation risk can solve some problems linked to the use of the
stochastic dynamic programming technique, and namely to the stochastic partial
differential equation deriving from it. The author found a closed form solution to the
asset allocation problem, without specifying any functional form for the coefficients of
the diffusion processes involved in the problem. Finally, the derivation of a closed form
solution allows us to analyse in detail the behavior of the optimal portfolio with respect to

salary and inflation.

Guangliang et al., (1999) solved the problem of constructing an optimal portfolio
consisting of many risky assets to maximize the long-term growth rate of a representative
agent’s eﬂjséted utility,/igbjﬁnt_lo—a set of general linear constraints on the portfolio
weight vector as well as a constraint to prevent wealth drawdown’s below a dynamic

floor.

The dynamic floor is defined as the time-decayed historical all-time high. Our results

generalize those achieved by earlier authors, including Grossman and Zhou (1993) and
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Cvitannic and Karatzas (1994). The authors solved a special case of the authors’

problem by focusing on single risky assets without portfolio weight constraints.

Cvitannic and Karatzas (1994) solved a problem involving many risky assets but that
ignored portfolio weight constraints and the time decay on the dynamic floor. To
illustrate the usefulness of our method, the authors presented several numerical examples
based on both actual and simulated (Monte Carlo) returns. Finally, the authors suggested
applications of their results to various practical investment management problems,
including the management of hedge fund portfolios and ‘principal-protected’ investment

strategies.

Herman et al., (2009) developed a multi-period investment portfolio model that includes
risky farmland, risky and risk-free nonfarm assets, and debt financing on farmland in the
presence of transaction costs and credit constraints. The model is formulated as a
stochastic continuous-state dynamic programming problem, and is solved numerically for
South-western Minnesota, USA. Result show that optimal investment decisions are
dynamic and take into account the future decisions due to uncertainty, partial
irreversibility, and the option to wait. The optimal policy includes ranges of inaction,
states where the optimal policy in the current year is to wait. The risk-averse farmer
makes a _@Er investmgl't,in_:isky— farmland reflecting risk-avoiding behaviour. The

authors found that, in addition to risk aversion, the length of the planning horizon affects

i

risk-avoiding behavior in investment decisions. The authors found that higher debt
financing on farmland is optimal when risky nonfarm assets can be included in the
optimal investment portfolio and that the probability of exiting farming increases with the

risky nonfarm investment.
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Ghezzi (1997) considered an immunization problem, in which a bond portfolio is to be
periodically rebalanced. Max-min optimal control is applied to the problem. The target is
to maximize the final portfolio value under the worst possible evolution of interest rates.
The optimal control law, obtained by means of dynamic programming, turns out to be

different from any duration-based immunization policy.

Vila et al., (1991) used stochastic dynamic programming to study the inter-temporal
consumption and portfolio choice of an infinitely lived agent who faces a constant
opportunity set and a borrowing constraint. The authors showed that, under general
assumptions on the agent’s utility function, optimal policies exist and can be expressed as
feedback functions of current wealth. They described these policies in detail, when the

agent’s utility function exhibits constant relative risk aversion.

Optimal asset allocation deals with how to divide the investor’s wealth across some asset-
classes in order to maximize the investor’s gain. Pola et al., (2006) put forward the
optimal asset allocation in a multi-period investment setting: optimal dynamic asset
allocation provides the (optimal) re-balancing policy to accomplish some investment’s
criteria. Given a sequence of target sets, which represent the portfolio specifications at
each re-balancing time, an optimal portfolio allocation is synthesized for maximizing the
joint probability for themc; fulfill the target sets requirements. The approach
__pursued is based on dynamic programming. The optimal solution is shown to
conditionally depend on the portfolio realization, thus providing a practical scheme for

the dynamic portfolio rebalancing. Finally some case studies are given to show the

proposed methodology.
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Rudoy et al., (2008) studied the problem of optimal portfolio construction when the
trading horizon consists of two consecutive decision intervals and rebalancing is
permitted. It is assumed that the log-prices of the underlying assets are non-stationary,
and specifically follow a discrete-time co integrated vector autoregressive model. The
authors extended the classical Markowitz mean-variance optimization approach to a
multi-period setting, in which the new objective is to maximize the total expected return,
subject to a constraint on the total allowable risk. In contrast to traditional approaches,
they adopted a definition for risk which takes into account the non-zero correlations
between the inter-stage returns. This portfolio optimization problem amounts to not only
determining the relative proportions of the assets to hold during each stage, but also
requires one to determine the degree of portfolio leverage to assume. Due to a fixed
constraint on the standard deviation of the total return, the leverage decision is equivalent
to deciding how to optimally partition the allowed variance, and thus variance can be
viewed as a shared resource between the stages. The authors derived the optimal portfolio
weights and variance scheduling scheme for a trading strategy based on a dynamic
programming approach, which is utilized in order to make the problem computationally
tractable. The performance of this method is compared to other trading strategies using

both Monte Carlo simulations and real data, and promising results are obtained.

Ye (2007) modeled a continuous-time optimal life insurance, consumption and portfolio
is examined by dynamic'm;;g technique. The Hamilton-Jacobi- Bellman (HJB in
~_short) equation with the absorbing boundary condition is derived. Then explicit solutions
for Constant Relative Risk Aversion (CRRA) utilities with subsistence levels are

obtained. Asymptotic analysis was used to analyze the model.
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Papi er al., (2006) devoted a paper to the analysis of a discrete-time dynamic
programming algorithm for the numerical solution of an optimal asset-liability
management model with transaction costs and in presence of constraints. By exploiting
the financial properties of the model, the authors proposed an approximation method
based on the classical dynamic programming algorithm, which reduces significantly the
computational and storage requirements of the algorithm and avoids any artificial
boundary condition. The regularity of the value function is used to estimate the global

error introduced by the numerical procedure and to prove a convergence result.

Dijkhuizen et al., (1993) used a personal computer-based stochastic Dynamic
Programming (DP) model for the determination of the optimal replacement policy in
swine breeding is evaluated. The model provides the maximal expected annual net returns
of current herd sows and subsequent replacements over time. The DP-based system was
seen to be viable in modeling such factors as biological variations, but are limited by

hardware requirements. Result accuracy is effected by the number of DP runs achieved.

Lubbecke et al., (2005) used column generation method to solve linear programs with a
large number of variables. Dynamic program algorithms are used for column generation

and a simple technique is used to reduce the state space of these algorithms.

-

Dynamic Programming has been applied to a number of digital signal processing

s

m—

problems. Rader er al., (2003) discussed a well known application of determining the
optimum order of sections in a digital filter realization. The authors showed that the
method is quite insensitive to the specific details of the problem; it is applicable over a

wide range of possible optimality criteria, various kinds of arithmetic, scaling options,
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etc. This is characteristic of the application of dynamic programming to many signal
processing problems. Also, since a problem, to be solved by dynamic programming, must
be represented as the traversal of a directed graph, we usually discover unsuspected
structure in the problem when we attempt to solve it using dynamic programming. Quite
often it is necessary to recognize this structure in order to solve the problem efficiently. In
the case of ordering of filter section the structure leads to an efficient utilization of

memory.

A system and method are disclosed for capturing the full dynamic and multi-dimensional
nature of the asset allocation problem through applications of stochastic dynamic
programming and stochastic programming techniques. The system and method provide a
novel approach to asset allocation and based on stochastic dynamic programming and
Monte Carlo sampling that permit one to consider many rebalancing periods, many asset
classes, dynamic cash flows, and a general representation of investor risk preference. The
system and method further provide a novel approach of representing utility by directly
modeling risk aversion as a function of wealth, and thus provide a general framework for
representing investor preference. The system and method demonstrate how the optimal
asset allocation depends on the investment horizon, wealth, and the investors risk
preference and how optimal asset allocation therefore changes over time depending on
cash ﬂow_gpd the retumi,a@i’eled and how dynamic asset allocation leads to superior
results compared to static or myopic techniques. Examples of dynamic strategies for

various typical risk preferences and multiple asset classes are described.

The dramatic growth in institutionally managed assets, coupled with the advent of

Internet trading and electronic brokerage for retail investors, has led to a surge in the size
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and volume of trading. At the same time, competition in the asset-management industry
has increased to where fractions of a percent in performance can separate the top funds
from those in the next tier. In this environment, portfolio managers have begun to explore
active management of trading to boost returns. Controlling execution cost can be viewed
as a stochastic dynamic optimization problem because trading takes time, stock prices
exhibit random fluctuations, and execution prices depend on trade size, order flow, and
market conditions. In this article, the authors apply stochastic dynamic programming to
derive trading strategies that minimize the expected cost of executing a portfolio of
securities over a fixed time period. That is, they derive the optimal sequence of trade as a
function of prices, quantities, and other market conditions. To illustrate the practical
relevance of these methods, Bertsimas et al., (1999) applied them to a hypothetical
portfolio of 25 stocks. The authors estimated the methods’ price-impact functions using
1996 trade data and derive the optimal execution strategies. The authors also perform
several Monte Carlo simulations to compare the optimal strategy’s performance to that of

several alternatives.

Battocchio et al., (2002) considered a stochastic model for a defined-contribution pension
fund in continuous time. In particular, we focus on the portfolio problem of a fund
manager who wants to maximize the expected utility of his terminal wealth in a complete
financial market with stoitla’smjnlemst rate. The fund manager must cope with a setoff
stochastic investment opportunities and two background risks: the salary risk and the
~inflation risk. We use the stochastic dynamic programming approach. We show that the
presence of the inflation risk can solve some problems linked to the use of the stochastic
dynamic programming technique, and namely to the stochastic partial differential

equation deriving from it. The technique, and namely to the stochastic partial differential
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equation deriving from it.The authors a closed form solution to the asset allocation
problem, without specifying any functional form for the coefficients of the diffusion
processes involved in the problem. Finally, the derivation of a closed form solution
allows us to analyze in detail the behavior of the optimal portfolio with respect to salary
and inflation. The authors also solved the problem of constructing an optimal consisting
of many risky assets to maximize the long-term growth rate of a representative agent’s
expected utility, subject to a set of general linear constraints on the portfolio weight
vector as well as a constraint to prevent wealth drawdown below a dynamic floor. The
dynamic floor is defined as the time-decayed historical all-time high. Our results
generalize those achieved by earlier authors, including Grossman and Zhou (1993) and

Cvitannic and Karatzas (1994).

Grossman and Zhou (1993) solved a special case of our problem by focusing on a single
risky asset without portfolio weight constraints. Karatzas (1994) solved a problem
involving many risky assets but that ignored portfolio weight constraints and the time
decay on the dynamic floor. To illustrate the usefulness of our method, we present several
numerical examples based on both actual and simulated (Monte Carlo) returns. The
authors suggested applications of our results to various practical investment management
problems, including the management of hedge fund portfolios and ‘principal-protected’
investment_gjfré,tegies. ——

__ﬁ;{lzaher et al., (1990) used dynamic programming algorithm design to analyze soil
movement, to ensure water quality and reduce the costs of water treatment by facilitating
the control of agricultural sediment pollution in surface waters. The algorithm models

analyze the spatial characteristics of soil movement though a watershed and the impact of
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soil movement on reservoirs and water channels. The model solves this class of pollution
control problems by generating sediment abatement cost frontiers. This information is
valuable to watershed management and planning because it devises control strategies to

reduce sediment deposition in water courses and can be used to identify special problem

darcas.

Greco (1990) put forward that dynamic programming is a general technique for solving
optimization problems. It is based on the division of problems into simpler sub problems
that can be computed separately. In this paper, they showed that Datalog with aggregates
and other non-monotonic constructs can express classical dynamic programming
optimization problems in a natural fashion, and then we discuss the important classes of

queries and applications that benefit from these techniques.

The second interest of DP approach, and the main avenue for future research, is that it
allows RM to incorporate consumer choice within the optimization process. El1 Haber and
El Taha, 2004 formulated a dynamic programming model to solve the seat inventory
control problem for a two-leg airline with realistic elements of consumer behaviour.
Ahead of the Origin and Destination formulation, they consider cancellation, no shows

and overbooking.

Ryzin's work, Van Ryzinmgj(zm 1)considered a revenue management, network
__capacity control problem in a setting where heterogeneous customers choose among the
various products offered by a firm (for example, different fight times, fare classes and/or
routings). Customers may thelj:fore substitute if their preferred products are not offered,
even buy up. Their choice model is very general, simply specifying the probability of

purchase for each fare product as a function of the set of fare products offered. Overall,
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the value of this paper is to facilitate the understanding of more complex, and probably

more realistic, models of revenue management.

Dynamic programming addresses how to make optimal decisions over time under
uncertain conditions and to control a system. Most RM situations can be analyzed

assuming a discrete-state and a discrete time over a finite-horizon modeling.

Four criteria of research analyzed:

1) A paper could consider a single product (at various prices) or multiple products
(depending on purchase restrictions or independent demands for example);

i1) A paper could consider a static policy (assuming a strict order of booking arrivals)
or allow for a dynamic policy (not assuming the early birds hypothesis);

1) A paper could consider various forms of demand process;

iv) A paper could consider either a single resource for 1 to » products or multiple

resources (such as an airline network of hubs and spokes).

2.4 Summary

In this chapter, relevant literature on investment and dynamic programming were put

forward. In the next chapter, we shall discuss the research methodology of the study.

— /_’”
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CHAPTER TRHEE

METHODOLOGY
3.0 Introduction

This chapter discusses the research methodology and design strategy to be adopted for
this study. The chapter will address data collection instruments, methods, research
technique, the population, sampling procedure, sampling type, sampling technique and
data analysis to be used for this study. It will provide detailed explanations to each of the
methods employed and how the methods adopted were used to address the aims and

objectives of the study.

3.1 Data Collection Methods

Secondary data were used for the study. They are already compiled data for statistical
analysis. They are not collected especially for the investigation under consideration but
have been collected for some other purpose(s). Secondary data are cheaper and easier to
obtain.

Extraction from Administrative Records: This method is solely used to collect secondary
data from published sources such as administrative files, libraries, print/electronic media,
internet etc. Information on interest rates in Ghana could be obtained from Government of
Ghana and the Ghana Stock Exchange. selected for the study. In our study secondary data

was obtained from some seleetedfinancial institutions.

—3.2 Dynamic Programming
Dynamic Programming is a technique that can be used to solve many optimization
problems. In most applications, dynamic programming obtains solutions by working
backward from the end of a problem toward the beginning, thus breaking up a large,

unwieldy problem into a series of smaller, more tractable problems.
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In mathematics and computer science, dynamic programming is a method for solving
complex problems by breaking them down into simpler sub problems. It is applicable to
problems exhibiting the properties of overlapping sub problems which are only slightly

smaller and optimal substructure (described below). When applicable, the method takes

far less time that naive methods.

The key idea behind dynamic programming is quite simple. In general, to solve a given
problem, we need to solve different parts of the problem (sub problems), then combine
the solution of the sub problems to reach an overall solution. Often, many of these sub
problems are really the same. The dynamic programming approach seeks to solve each
sub problem only once, thus saving a lot of computation. This is especially useful when

the number of repeating sub problems is exponentially large.

Top-down dynamic programming simply means storing the results of certain calculations,
which are later used again since the completed calculation is a sub-problem of a larger
calculation. Bottom-up dynamic programming involves formulating a complex

calculation as a recursive series of simpler calculations.

The term dynamic prongas originally was originally used in the 1940s by
Richard Bellman to describe the process of solving problems where one needs to find the
“best decisions one after another. By 1953, he refined this to the modern meaning,
referring specifically to nesting smaller decision problems inside larger decisions, and the
field was there after recognized by the IEEE as a systems analysis and engineering topic.

Bellman’s contribution is remembered in the name of a systems Bellman equation, a
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central result of dynamic programming which restates an optimization problem in

recursive form.

The word dynamic was chosen by Bellman because it sounded impressive, not because it
described how the method worked. The word programming referred to the use of the
method to find an optimal program, in the sense of a military schedule for training or
logistics. This usage is the same as that in the phrases linear programming and

mathematical programming a synonym for optimization.

Finding the shortest path in a graph using optimal substructure; a straight line indicates a
single edge; a wavy line indicates a shortest path between the two vertices it connects
(other nodes on these paths are not shown); the bold line is the overall shortest path from

start to goal.

Dynamic programming is both a mathematical optimization method and a computer
programming method. In both contexts it refers to simplifying a complicated problem by
breaking it down into simpler sub-problems in a recursive manner. While some decision
problems cannot be taken apart this way, decisions that span several points in time do
often break apart recursively; Bellman called this the “Principle of Optimality”. Likewise,
in computer science, a problem which can be broken down recursively is said to have
optimal sulg_s_t:rl-lcture. A e

dﬁﬂs}lb-problems can be bested recursively inside larger problems, so that dynamic
programming methods are applicable, then there is a relation between the value of the
larger problem and the values of the sub-problems (Bellman, 2011) In the optimization

literature this relationship is called the Bellman equation.
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3.2.1 Principle of Optimality

Dynamic programming is an approach for optimizing multistage decision processes. It is

based on Bellman’s principle of optimality.

An optimal policy has the property that, regardless the decisions taken to enter a
particular state in a particular stage, the remaining decisions must constitute an optimal
policy for leaving that state. To implement this principle, begin with the last stage of an n-
stage process and determine for each stage the best policy for leaving that state and
completing the process, assuming that all proceeding stages have been completed. Then
move backwards through the process, stage by stage. At each stage, determine the best
policy for leaving each state and completing the process, assuming that all proceeding
stages have been completed and making use of the results already obtained for the
succeeding stage. In doing so, the entries of table one (1) will be calculated, where:

U =the state variable, whose values specify the states

Mj (u) = optimum return from completing the process beginning at stage J in state U

Dj(u) = decision taken at stage j that achieves mj (u)

Table 3.1: A Multistage decision processes table

1}

- 0 1 2 3 , :
m;(u) e AN 4 Stage |
dn(u) . n y
| mMy1(u1) 1Stage ﬁ,
dn~l(u) n-1
m;(u) = Stage
d;(u) one
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The entries corresponding to the last stage of the process, m, (u) and d, (u), are generally
straight forward to compare. The remaining entries are obtained recursively that is the
entries for the Jth stage (=1, 2,...... , (n — 1)) are determined as functions of the entries
for the (j+1) stage. The recursion formula is problem dependent, and must be obtained

anew for each different type of multi stage process.

Note: the values of m, (u) forU=0,1,...... ,b are given by the formula
ivi(ay=toptmam [fe)] 0 0 0 e L 0
(1)
0<x<p

The recursion formula is mj (u) = optimal [ fj(x)+mj-;(u-x)] ...
2)
0<x<u
Forj=n-1, n-2,..,1
3.2.2 Policy Tables

For process in which randomness exits in the states associated with the decisions, a policy
in particular , an optimal policy — may be exhibited as a policy table here, dj(ap)
=L2....n, =12 ....4 r) denotes the decision at stage j if the process finds itself in

state aj

Table 3.2 Optimal Policy table

States
aj T nsm——— e N ... a,
| 7 d] (3.1) d1(ag) ............... d] (&r)

Stages | 2— G R ) e da(a,)

------------------------------------------------------------

N dn(a;) dilay) T e d.(ay)
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3.3 Dynamic Programming in Mathematical Optimization

In terms of mathematical optimization, dynamic programming usually refers to
simplifying a decision by breaking it down into a sequence of decision steps over time.
This is done by defining sequence of value functions Vi, Va,...V,, with an argument y
representing the state of the system at times I from 1 to n. the definition of Viu(y) is the
value obtained in state y at the last time n. they values V; at earlier times i=n-1,.. 2,1 can
be found by working backwards, using a recursive relationship called the Bellman
equation. For i=2,...n, Vi for the those states. Finally, V; at the initial state of the system
is the value of the optimal solution. The optimal values of the decision variables can be

recovered, one by one, tracking back the calculations already performed.

3.4 Dynamic Programming in Computer Programming
There are two key attributes that a problem must have in order for dynamic programming
to be applicable: optimal substructure and overlapping sub problems which are only

slightly smaller.

When the overlapping problems are, say, half the size of the original problem the strategy
is called “divide and conquer” rather than “dynamic programming”. This why merge sort,

quick sort, and finding all matches of a regular expression are not classified as dynamic

pmgrammin__g _ﬁfoblems* ol 8 T =

#(r);').t—imal substructure means that the solution to a given optimization problem can be
obtained by the combination of optimal solutions to its sub problems. Consequently, the
first step towards devising a dynamic programming solution is to check whether the

problem exhibits such optimal substructure. Such optimal substructures are usually
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described by means of recursion. For example, given a graph G = (V, E), the shortest path
p from a vertex u to a vertex v exhibits optimal substructure: take any intermediate vertex
won this shortest path p. If p is truly the shortest path, then the path p; from u to w and p»
from w to v are indeed the shortest paths between the corresponding vertices (by the
simple cut-and-paste a argument described in CLRS). Hence, one can easily formulate the
solution for finding shortest paths in a recursive manner, which is what the Bellman-Ford

algorithm does.

Overlapping sub problems means that the space of sub problems must be small, that is,
any recursive algorithm solving the problem should solve the same sub problems over
and over, rather than generating new sub problems. For example, consider the recursive
formulation for generating the Fibonacci series: F;= F,.; + F,,, with base case F;=F,=1.
Then F43 = F42 + F4y, and F4p = F41 + F40. Now Fy; is being solved in the recursive sub
trees if both F43 as well as F4,. Even though the total number of sub problems is actually
small (only 43 of them), we end up solving the same problems over and over if we adopt
a naive recursive solution such as this. Dynamic programming takes account of this fact
and solves each sub-problem only once.
This can be a achieved in either of two ways
e Top-down approach:
This is llj_a_::lﬂirect fall-out of ursive formulation of any problem. If the solution
to any problem can be formulated recursively using the solution to its sub problems,

—

and if its sub problems are overlapping, then one can easily memorize or store the

—

solutions to the sub problems in a table. Whenever we attempt to solve a new sub

problem, we first check the table to see if it is already solved. If a solution has been
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recorded we can use it directly, otherwise we solve the sub problem and add its

solution to the table.

e Bottom-up approach:
This is the more interesting case. Once we formulate the solution to a problem
recursively as in terms of its sub problems, we can try reformulating the problem in a
bottom-up fashion: try solving the sub problems first and use their solutions to build-
on and arrive at solutions to bigger sub problems. This is also usually done in a
tabular form by iteratively generating solutions to bigger and bigger sub problems by
using the solutions to small sub problems. For example, if we already know the values

of F41 and F4o, we can directly calculate the value of Fy..

3.5 Characteristics of Dynamic Programming Applications

There are a number of characteristics that are common to all problems and all dynamic

programming problems.

1. The problem can be divided into stage with a decision required at each stage. In
capital budgeting problem the stages were the allocations to a single plant and the
decision was how much to spend.

2. Each stage has a number of states associated with it. The states for a capital
budgcti_rlgj_;r{}blem CW the amount spent at that point in time. In the

shortest path problem the states were the node reached.

s

—

3. The decision at one stage transforms on state into a state in another stage. The
decision of much to spend gave a total amount spent for the next stage. The decision

of where to go next defined where you arrived in the next stage.
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4. Given the current state, the optimal decision for each of the remaining state does not
depend on the previous states or decisions. In the budgeting problem, it is not

necessary to know how the money was spent in previous stages, only how much was

spent.
In the path problem, it is not necessary to know how you got to a node, only that you
did.

5. There exist a recursive relationship that identifies the optimal decision for stage j,
given that stage(j + 1) has already been solved.

6. The final stage must be solvable by itself. The last time properties are tied up in the

recursive relationship given above.
3.6 Computational Efficiency of Dynamic Programming
In smaller networks it would be a matter of determining the shortest path form on point to

another by enumerating all the possible paths (after all there are only a few path).

In larger networks however, compute enumeration is practically impossible and the use of

dynamic programming is much more efficient for determine a shortest path.

In a network where there five stage with: stagel — 1 state, stage 2 — 3 state, stage 3 — 3

state, stage 4 — 2 state and stage 5 — 1 state. Total enumerate will result in 1(3)(3)(2)(1) =

18 paths while DP with result in 1(3)3)(2)(1) = 18 path.

If ln another network there are seven stages with 5 states each. The total enumeration

gives 5(5°) paths.
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However DP require 4(25) + 5 = 105 addition = DP requires 105 = 0.00 7 times as many

additions is explicit enumeration.

3.7 Deterministic Dynamic Programming Versus Stochastic Dynamic Programming

There is one major difference between Stochastic Dynamic Programming and
Deterministic Dynamic Programming. In Deterministic Dynamic Programming the
complete decision path is known. In Stochastic Dynamic Programming the actual
decision path will depend on the way the random aspects play out. Because of this solving
a Stochastic Dynamic Programming problem involves giving a decision rule for every
possible state, not just along an optimal path,

A multi-stage decision process is Stochastic if the return associated with at least one
decision in the process is random. This randomness generally enters in one of two ways;
cither the states are uniquely determined by the decisions but the returns associated with
one or more states are uncertain or the returns are uniquely determined by the states

arising from one or more decision are uncertain,

If the probability distributions goveming the events are known and if the number of
stages are finite, then deterministic dynamic programming approach is useful for
optimizing a stochastic multistage decision process. The general procedure is to optimize
the expected value of the retuenin those cases where the randomness occurs exclusively
in the returns associated with the states arising from the decision, this procedure has the

effect of transforming a stochastic process into a deterministic one. For processes in

which randomness exists in the states associated with the decisions, a policy may be

exhibited as a policy table.
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3.8 Integer Programming

An Integer Programming problem (IP) is a Linear Programming (LP) problem in which
some or all the variables are required to be nonnegative integers. An Integer programming
in which all variables are required to be integers is a Pure Integer Programming problem.
Many problems can be modeled as an Integer Programming problem. The model is;

For a maximization problem

Maximize Z =" r(ax; +b)

Subject to ie1 X1 < ¢

x;=0,1,2,3,4,..,N

3.9 Applications of Dynamic Programming
Dynamic programming can be used many types of Integer Programming-Consumption
and savings problems, shortest path problem, The Knapsack Problem, Network Problems,

Inventory Problems, Equipment replacement problems, Resource Allocation Problems etc

3.10 Optimal Consumption and Saving Problems
A mathematical optimization problem that is ofien used in dynamic programming to
economists concerns a consumer who lives over the periodst = 0,1,2....,T and must decide

how much to consume and how much to save in each period.

e

-

Let ¢, be consumption in period t, and assume consumption yields utilityu(c;) = In(c,) as

s

—

long as the consumer lives. Assume the consumer is impatient, so that he discounts future
utility by a factor b each period, where 0 <b< 1. Let k, be capital in period t. Assume
initial capital is a given amount ko> 0, and suppose that this period's capital and

consumption determine next period's capital as k; + 1 = Ak{ — ¢;, where A is a positive
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constant and 0 <a< 1. Assume capital cannot be negative. Then the consumer's decision

problem can be written as follows:
s T
Maximize Z=),_,btin(c)
Subject to kiyi =Akg —c, =0
forallt=0,1,2,...,T
Written this way, the problem looks complicated, because it involves solving for all the

choice variables ¢y, ¢, ¢;, ..., cr and kq, ks, ..., k4, simultaneously. (Note that ko is not a

choice variable—the consumer's initial capital is taken as given.)

The dynamic programming approach to solving this problem involves breaking it apart
into a sequence of smaller decisions. To do so, we define a sequence of value
functions Vy(k), for t =0,1,2,...,T,T + 1 which represent the value of having any
amount of capital k at each time t. Note that V., (k) = 0,that is, there is (by assumption)

no utility from having capital after death.

The value of any quantity of capital at any previous time can be calculated by backward

induction using the Bellman equation. In this problem, for each t =0,1,2,...,T the

Bellman equation is  V(k;) =max(In(c;) + bV 4 j(k¢41)

subjectto Ak — ¢, =0
S /_‘.‘—"'"""_-__._

“This problem is much simpler than the one we wrote down before, because it involves
only two decision variables, ¢, and k., . Intuitively, instead of choosing his whole

lifetime plan at birth, the consumer can take things one step at a time. At time t, his
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current capital k. is given, and he only needs to choose current consumption ¢, and

savingk,, .

To actually solve this problem, we work backwards. For simplicity, the current level of
capital is denoted as k. V., (k) is already known, so using the Bellman equation once we
can calculate Vr(k), and so on until we get to V,(k), which is the value of the initial
decision problem for the whole lifetime. In other words, once we know Vr_;,4(k), we
can calculate Vr_;(k), which is the maximum of In(cy_;) + bVr_j 4, (Ak® = Cpip)
where cr_; is the choice variable and working backwards, it can be shown that the value
function at time t = T — j iswhere each V;_; is a constant, and the optimal amount to

consume at time t =T — j iswhich can be simplified to

Ak®
1+ab+a?b?

cr(k)=Ak?, and cr_1(k) = (1 +x)" = 14—4:1%, and ¢r —2(k) =

We see that it is optimal to consume a larger fraction of current wealth as one gets older,

finally consuming all remaining wealth in period T, the last period of life.

3.11 Dijkstra's Algorithm for the Shortest Path Problem

From a dynamic programming point of view, Dijkstra’s the shortest path problem is a
successive approximation scheme that solves the dynamic programming functional
equation for the shortest path problem by the Reaching method.

N s

In fact, Dijkstra's explanation of the logic behind the algorithm is to find the path of
minimum total length between two given nodes P and Q. We use the fact that, if R is a
node on the minimal path from P to Q, knowledge of the latter implies the knowledge of
the minimal path from P to R. This is a paraphrasing of Bellman’s famous Principle of

Optimality in the context of the shortest path problem.
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Dynamic programming may look somewhat familiar. Both the shortest path algorithm

and our method for CPM project scheduling have a lot in common with it.

Let's look at a particular type of shortest path problem. Suppose we wish to get from A to

BNy

@3 _
I 4

J in the road network of Figure 3.1

D

1
e 3

Figure 3.1: Road Network

The numbers on the arcs represent distances._[_)ue to the special structure of this problem,
we can break it up into stages. Stage 1 contains node A, stage 2 contains nodes B, C, and
D, stage 3 contains node E, F, and G, stage 4 contains H and I, and stage 5 contains J. The
states in each stage correspond just to the node names, so stage 3 contains states E, F, and
G. s

—— //_—’l

—+f-we let S denote a node in stage j and let f;(S) be the shortest distance from node S to

the destination J, we can write

— min
fi($) = nodes Z in stage j + 1{653 ¢ ﬁ““l(z)}
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where cg, denotes the length of arc SZ. This gives the recursion needed to solve this

problem. We begin by setting f5(J) = 0 and follow with the rest of the calculations:

Stage 4:
During stage 4, there are no real decisions to make: you simply go to your destination J.
So you get:

 f4(H) =3 by goingto],

e fi(I) =4 by goingtoJ.
Stage 3:
Here there are more choices. Here's how to calculatef, (F). From F you can either go to
H or 1. The immediate cost of going to H is 6. The following cost isf,(H) = 3. The total
cost is 9. The immediate cost of going to I is 3. The following cost is f,(I) = 4for a total
of 7. Therefore, if you are ever at F, the best thing to do is to go to I. The total cost is

7,.fo(F) = 7 and so.

Table 3.3 gives all the calculations:

Table 3.3 Dijkstra’s Algorithm Table for Road network Stage 1

S3 CS3 Z3 + Fy(Z3) F3(S53) Decision
H I

E 4 8 4 H

G 6 7 6 H

i —

—

You now continue working back through the stages one by one, each time completely

computing a stage before continuing to the preceding one. The results are:

41 1R As> -
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Table 3.4 Dijkstra’s Algorithm Table for Road network Stage 2

SZ CSZ Zz = F3( Zg) F3( Sg) Decision
Go to
E F G
B 11 11 12 11 EorF
C 7 9 10 7 E
D 8 8 11 8 EorF

Table 3.5 Dijkstra’s Algorithm Table for Road network Stage 1

Sl CSI Zl o FZ(ZJ_) FZ(SI) Decision
B C D Go to
A 13 11 11 11 CorD

There is another formulation for the knapsack problem. This illustrates how arbitrary our
definitions of stages, states, and decisions are. It also points out that there is some
flexibility on the rules for dynamic programming. Our definitions required a decision at a
stage to take us to the next stage (which we would already have calculated through
backwards recursion). In fact, it could take us to any stage we have already calculated.

This gives us a bit more flexibility in our calculations.

===
-

The recursion I am aboutm a forward recursion. For a knapsack problem, let
the stages be indexed by w, the weight filled. The decision is to determine the last item
added to bring the weight to w. There is just one state per stage. Let g(w) be the maximum

benefit that can be gained from a w pound knapsack. Continuing to use bjand wjas the

weight and benefit, respectively, for item j, the following relates g(w) to previously

calculated g values:
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max
gw) = j {bj + g(w —w))}
Intuitively, to fill a w pound knapsack, we must end off by adding some item. If we add

item j, we end up with a knapsack of size w — w;to fill. To illustrate on the above

example:

g0)=0

g(1) =30 add item 3.

e g(2)=max{65+ g(0) = 65,30 + g(1) — 60} = 65add item 1.

e g(2)=max{65 + g(1) = 95,80 + g(0) = 80,30 + g(2) = 95} = 95add item 1 or 3.

e g(2)= max {65+ g(2) = 130,80 + g(1) = 110,30 + g(3) = 125} = 130 add item
1.

e g(2)=max{65 + g(3) = 160,80 + g(2) = 145,30 + g(4) = 160} = 160add item 1
or3.

This gives a maximum of 160, which is gained by adding 2 of item 1 and 1 of item 3.

3.12 The Knapsack Problem
Imagine we have a homework assignment with different parts labeled A through G. Each
part has a “value” (in points) and a “size” (time in hours to complete). For example, say

the values and times for our assignment are:

Table 3.6:  The Knapssl/t:l(_ELq_hlﬂm Table

A B C D E F G
___Value 7 9 5 12 14 6 12
Time 3 4 2 6 7 3 5

Say we have a total of 15 hours: which parts should we do? If there was partial credit that

was proportional to the amount of work done (e.g., one hour spent on problem C earns
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you 2.5 points) then the best approach is to work on problems in order of points/hour.
But, what if there is no partial credit? In that case, which parts should you do, and what is

the best total value possible? The above is an instance of the knapsack problem, formally

defined as follows:

In this case, the optimal strategy is to do parts A, B, F, and G for a total of 34 points. We

notice that this doesn’t include doing part C which has the most points/hour!

In the knapsack problem we are given a set of n items, where each item iisspecified by a
size s; and a valuev;. We are also given a size bound S (the size of our knapsack).The
goal is to find the subset of items of maximum total value such that sum of their sizes is
atmost S (they all fit into the knapsack).We can solve the knapsack problem in
exponential time by trying all possible subsets. With Dynamic Programming, we can
reduce this to time O(nS).Let’s do this top down by starting with a simple recursive
solution and then trying to memorize.

it. Let’s start by just computing the best possible total value, and we afterwards can see

how to actually extract the items needed.

3.13 Network Problems
In many applications, dynamic programming reduces to finding the shortest (or longest)
path joining two points in a /gixﬁu,nctwork. Dynamic programming (working backward)

can be used to find the shortest path in a network.

——

3.13.1 Equipment Replacement Problems

Suppose a shop needs to have a certain machine over the next five year period. Each new
machine cost $1000. the cost of maintaining the machine during its with year of operation
is as follows: ¢; = $60, ¢, =$80, and c; = $120. A machine may be kept up to three
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years before being traded in. the trade in value after i years is s, = $800,s, = $600 as

s3 = $500. How can the shop minimize cost over the five year period?

Let the stages corresponds to each year. The state is the age of the machine for that year.

The decision are whether to keep the machine or trade it in for a new machine.

Let f;(x) be the minimum cost incurred from time t to time S, given the machine is x

years old in time t.
Since we have to trade in at time 5 f5(x)= —s,
Now we consider the time periods.
If you have three year old machine in time t, you must trade in, so
fe(3) = =500 + 1000 + 60 + f;.,(1)
If you have a two year old machine you can either trade or keep.
- Trade will not cost =600 + 1000 + 60 + fz41(1)
- Keep will cost 120 + f;,1(3)
So the best thing to do with a two year old machine is the minimum of the two
f:(2) = min{—600 + 1000 + 60 + f;,,(1),120f,,(3)}
For a one year old machine trade will cost -800 + 100 + 60 + f;,,(1)
Keep will cost 80+f;,1(2)
f:(1) =min{—800 + 1000 + 60 + f;(1),80 + f; (2)}
For a zero year old machine we-haveto buy 1000 + 60 + f;(1)
f0(0)=1000+60+£; (1)
fo(0)=1060+1,(1)
fe(1) =min (260+f;4+1(1),80 + fi=1(2)
£ (2) =min (460+f;41(1),120 + f+1(3))

fe(3) =min(560 + fe41(1))
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fS(x) = _5::
fs(1)=—5; =-800

f5(2) = =5, = - 600
fs(3) ==S5=- 500

This is solved with backwards recursion as follows:

Table 3.7 Decision table for Equipment Replacement Problem at Stage 5
Age X fs(x)
1 -800
2 -600
3 -500

Table 3.8 Decision table for Equipment Replacement Problem at Stage 4

Age Trade Keep fa(2) Decision
1 -540 -520 -540 Trade
2 -340 - -380 -380 Keep
3 -240 - -240 Trade

Table 3.9 Decision table for Equipment Replacement Problem at Stage 3

Age Trade Keep f3(2) Decision
1 -280 -300 -300 Keep
,,--"'""———_-_—.__
2 -80 -120 -120 Keep
-y 3 20 20 Trade
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Table 3.10 Decision table for Equipment Replacement Problem at Stage 2

Age Trade Keep f1(2) Decision

1 220 220 220 Trade or Keep

Table 3.11 Decision table for Equipment Replacement Problem at Stage 1

Age Trade Keep fo(2) Decision

0 - 1280 1280 Keep

So the cost is 1280 and one solution is to trade in years; 1 and 2. There are other optimal

solutions.

3.13.2 An Inventory Problem

In this section, we illustrate how dynamic programming can be used to solve an inventory

problem with the following characteristics:

1. Time is broken up into periods, the present period being period 1, the next period 2,
and the final period T. At the beginning of period 1, the demand during each period is
known.

2. At the beginning of each period, the firm must determine how many units should be
produced. Production capacity during each period is limited.

3. Each peiif d’S demand fwl on time from inventory or current production.

During any period in which production takes place, a fixed cost of production as well

as a variable per-unit cost is incurred.

4. The firm has limited storage capacity. This is reflected by a limit on end-of- period

inventory. A per-unit holding cost is incurred on each periods ending inventory.
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5. The firm’s goal is to minimize the total cost of meeting on time the demands for

periods 1,2,....T.

3.13.3 Resource Allocation Problems
Resource allocation problems, in which limited resources must be allocated among
several activities, are often solved by dynamic programming. Recall that we have solved

such problems by linear programming. To use linear programming to do resource

allocation three assumptions must be made:

Assumption 1

The amount of a resource assigned to an activity may be any nonnegative number.
Assumption 2

The benefit obtained from each activity is proportional to the amount of the resource
assigned to the activity.

Assumption 3

The benefit obtained from more than one activity is the sum of the benefits obtained from

the individual activities.

Even if assumptions 1 and 2 do not hold, dynamic programming can be used to solve

resource allocation problems efficiently when assumption 3 is valid and when the amount

e

of the resource allocated to Wis a member of a finite set.
3.14 Summary

In this chapter, we considered the research methodology of the study. The next chapter is

devoted for data collection and analysis of the study.
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CHAPTER FOUR
4.0 Data Collection, Methodology and Analysis

In this chapter Four, investment features are considered in order to test the performance
of the trading strategy and returns. We collect data on the six investments —Government
of Ghana’s Treasury Bills, Barclays Bank Ghana, Ghana Commercial Bank, Data Bank.
Guinness Ghana Limited and Fan Milk Limited, Accra. Sample period ranges from 2003
to 2011 and we normalize the price series such that each commodity’s price changes have
annualized volatility of 10%. Each commodity characteristic is its past returns at various
time horizons. As such, in order to predict the 1-year return factors for the commodities,
pooled panel regression on the data set is run to obtain the annual returns. Dynamic
programming is then used to determine the optimal investment returns and the

corresponding investments to be made.

The companies used in the research are Government of Ghana’s Treasury Bills, Barclays
Bank Ghana, Ghana Commercial Bank, Data Bank, Ghana Guinness Limited and Fan
Milk Limited, Accra.

We make the following notations:

Return from investment 1 - Government of Ghana’s Treasury Bills

Return from investment 2 - Barclays Bank Ghana, Accra

Return ﬁom#r%estment 3 - Ghamma Commercial Bank

Retul:n from investment 4 - Data Bank, Accra

Return from investment 5 - Ghana Guinness Limited, Accra

Return from investment 6 — Fan Milk Limited, Accra
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We state that the amount invested are restricted to be integral multiples of ¢100. There is

a maximum of ¢900 available and six investment options. The table shows the amount

invested and the return at the end of one year period.

We start the algorithm by first identifying the appropriate state, stage and decision. We
define stage such that when one stage is remains, the problem will be trivial to solve. That
is if we arrange the investment in no specific other as shown in the table above.

At Investment 6:

Investment 6 Returns = Investment 5 Returns + Investment 6 inputs

At Investment 1:

Investment 1Returns = Investment 2 Returns + Investment 1 inputs

Hence Investment is the stage.

Define the state of the stage that is at each stage (investment) the investor will have to
decide how much money he will have to invest. To do this we need to know only the

amount of money left at the beginning of the investment (stage). Hence State is the

amount of money left to be invested.

Letting f;(x)(i = 1,2, 3,4,5, 6) denotes the return in (¢) from investment i when X units

of money are invested in it. The above return table has been written as shown below

— /_”—"l_—
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Table 4.0 Returns from Investment table

AMOUNT INVESTED

RETURN FROM [0 [ 100 [200 [300 [400 [500 | 600 |700 ]800 |900

INVESTMENT
(%) 0 |10 |20 [25 [33 |35 [40 |45 [55 |60
£,(x) 0 |15 [30 [40 [45 [50 [55 |70 [80 |90
1 (x) oAz “ 227327 [350. 1| %07 1[50 hilieoniese k70
fu(x) g 18 40 " [50 |55 |65 |70 70 ]85 |95
fo (%) 0 [20 [28 §F3aI\ B0} [ISN\.[75] [s0 [s0 [85
fo () 0 [19 |25 35 |40 [50° [60 70 e |30

Return values of various units as the number of units of money invested in investmenti.
Define x;(i = 100,200,300,400,500,600,700,800,900) as the number of units of
money invested in investmenti.
Define M; (i) = the best return beginning in stage j and state i.
d;(i) = Decisions taken at state that achieves M; (i)
We note that M;(0) = 0 and d;(0) = 0
The model for solving the above is :
Maximize: Z = f1(x) + £L(x) + f3(x) + fo(x) + fs(x) + fe(x)
Subject tox; + X, + X3 + X4 + X5 + Xg + X7 + Xg + X9 < 900

SOLUTION A v

We begin the solution by considering the last stage of the process, stage 6. We assume
that the previous stages have been completed and we are to complete the allocation of the
money to the investment 6. Since we do not know how much was allocated to the
previous investment (investment 5), we do not know how many units are available for

investment 6. Thus we consider all possibilities.
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After the first five investments have been made there will be either ¢0, ¢1, ¢2, ¢3, ¢4,

¢5, ¢6, ¢7, ¢8, ¢9. It is clear from the definition of f,(x) that the best way to complete

the process is to allocate all available units to investments 6.

From investment 6:

M¢(9) = max|fe(0), fs(1), f6(2), f6(3), f6(4), fs(5). £5(6). £6 (7). £5(8), £5(9)]

= max]0, 19, 25, 35, 40, 50, 60, 70, 75, 80] M¢(9) = 80withdg(9) =9

Mg (8) = max[f¢(0), fs(1), f¢(2), 16(3), f6(4), f6(5), f6(6), f6(7), f6(8)]

= max[0, 19, 25, 35, 40, 50, 60, 70, 75] M,(8) = 75withd(8) = 8

Mﬁ (7) = max[fﬁ (O)rf(i(l)f fﬁ(z)! f5(3)r f6(4)r fﬁ(S)! f6(6)r fﬁ (7)]

= max[0, 19, 25, 35, 40, 50, 60, 70] M, (7) = 70withd,(7) = 7

M¢(6) = max(fs(0), f6(1), f6(2), f6(3), f6(4), f6(5), f6(6)]

= max[0, 19, 25, 35, 40, 50, 60] M¢(6) = 60withdg(6) = 7

Mg(5) = max[f5(0), fe(1), f6(2), f6(3). f6(4), f6(5)]

= max|0, 19, 25, 35, 40, 50] M¢(5) = 50withdg(5) =5

Me(4) = maX[fs(f})rfs(l):fs(Z),f6(3).fe(4)]

S _’,.,-—"'"""'——-—_ d
= max|[0, 19, 25, 35, 40] Mg(4) = 40 withdg(4) =4

e

e —

M, (3) = max[f4(0), fe(l),fs(Z).fs(B)]
= max[0, 19, 25, 35] Mg(3) = 35 withdg(3) =3

Mg (2) = max[f;(0), fs(1), fs(2)]
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= max[0, 19, 25]
Mg (2) = 25withdg(2) = 2
Me(1) = max[f5(0), f5(1)]
= max[0, 19]
Mg (1) = 19withdg(1) = 1
M¢(0) = max[f,(0)]

= max|[0] M¢(0) = Owithd,(0) =0

From investment 5:
Ms(9) = max[fs(0) + Ms(9),  fs(1) + Mq(8),
fs(2) + Mg(7),  f5(3) + Mg(6),  fs(4) + Mc(5),
fs(5) + Mg(4),  fs(6) +Ms(3),  f5(7) + Mq(2),

fs(8) + Mg (1), fs(9) + Mg (0)]

M:(9) = max|[0 + 80, 2075, 28+ 70, 38+ 60, 504 50, 75 + 40,
75+ 35, 80 + 25, 80 + 19, 85 + 0]
M:(9) = max[80, 95, %88 98, " 10G IS ™ 1104 105, 99, 85]
M<(9) = 115 with  ds(9) =5
Ms(8) = max[fs(0) + Mg(8),  fs(1) + Mg(7),
fs(2) + Mg(6), fs(3) +Mc(5),  fs(4) + Mg(4),
LM KO+ M@, f5(7) + Me(D),
Ty f5(8) + Mg (0)]
M:(8) = max[0 + 75, 20 + 70, 28 + 60, 38+ 50, 50 + 40, 75 + 35,
75 + 25, 80 + 19, 80 + 0]
M<(8) = max[75, 90, 88, 88, 90, 110, 100, 99, 80]
M. (8) = 110 with ds(8) =5
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Ms(7) = max[fs(0) + Mq(7),  fs(1) + Mg(6),
fs(2) + Me(2), fs(3)+Ms(4),  f5(4)+ Mc(3),
fs(5) + Mg(2),  f5(6) + Mg(1),  f5(7) + Mg(0)]
M<(7) = max[0 + 70, 20 + 60, 28 + 50, 38 + 40, 50+ 35; 75425,
75+19, 80+0,]
Ms(7) = max[70, 80, 78, 78, 85, 100, 92, 80]
Ms(8) = 100 with ds(7) =5
Ms(6) = max[fs(0) + M(6), fs(1) + M (5),
fs(2) + Mg(4), fs(3)+Ms(3),  fs(4) + Mg(2),
fs(5) + Mg(1),  f5(6) + Mg (0)]
M:(6) = max[0 + 60, 20 + 50, 28 + 40, 38+ 35, 0 A 157418,
75 + 0]
M:(6) =maX[60 % 70688338 75,-94,"275]
M.(6) = 94with  ds(6) =5
Ms(5) = max[f5(0) + Mg(5),  fs(1) + Mg(4),
fs2) + Mc(3), fs(B)+Mc(2),  fs(4)+ Me(D),
f5(5) + Mg(0)]
M<(5) = max[0 + 50, 20+40, 28+35 38+25 50+19, 75+0]
M:(5) = max{-SO 60, 63—63, 69, 75]

Mc(5) =75 with ds(5) =5

—

e

M:(4) = max[f5(0) + Mg(4), fs(1) + Mg(3),
)+ M@, (3 FM(D),  fo(8) + Me(0)]

M:(4) = max[0 + 40, 20 + 35, 28 + 25, 38+19, 50 + 0]
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Ms(4) = max[40, 55, 53, 57, 50
Ms(4) =57 with d<(4) = 4

Ms(3) = max[fs(0) + Mq(3),  f5(1) + Mg(2),
fs(2) + Mg(1), f5(3) + Mq(0)]
M:(3) = max[0 + 35, 20 + 25, 28+ 19, 38+ 0]
Ms(3) = max[35, 45, 47, 38]

Ms(3) =47 with d<(3) =2

Ms(2) = max[fs(0) + Mg(2),  f5(1) + Ms(1),  f5(2) + M4(0)]
Ms(2) = max[0 +25, 20419, 28+ 0]
M;s(2) = max[25, 39, 28]
M(2) =39 with dc(2)=1
Ms(1) = max[fs(0) + Mg(1),  fs(1) + Mg(0))
Ms(1) = max[0 +19, 20 +0]
Ms(1) = max[19, 20]
Mc(1) =20 with ds(1) =1
Ms(0) = max[f5(0) + M¢(0)]
o __—M5(0) = max[0 + 0]
Ms(0) = max[0]

-—

M<(0) =0 with ds(0) =0

—

—

From investment 4:
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My(9) = max|f, (0) + M5(9), fa(D)+Ms(8), £i(2) +M(7), £.(3)+ Ms(6),
fa(®) + Ms(5),  fa(B)+ Ms(4),  fi(6) + M:(3),
(7)) +MsQ2),  fo(8)+Ms(1),  f,(9) + Ms(0)]
M,(9) = max[0 + 115, 18 + 110, 40 + 100, 50 + 94, 551175,
65+57, 70+47, 70+39, 85+20, 95+0]
M,(9) = max[115, 128, 140, 144, 130, 122, 117, 109, 105, 95]
M4(9) = 144 with d,(9) = 3
M,(8) = max[f,(0) + Ms(8),  fu(1) +Ms(7), fa(2) + Ms(6), f2(3) + Ms5(5),
fa(h) + Ms(4),  fu(5)+Ms(3),  fa(6) + M5(2),
fa(7) + Ms(1),  f4(8) + M5(0)]
M,(8) = max[0 + 110,  18+100, 40+94, 50+75  55+57,
65+47, 70+39, 70+20, 85+0]
M,(8) = max[110;*118, 134,< 125, 112, 112y 112,90, 85]

M,(8) = 134 with  d,(8) = 2

M4(7) = max[f,(0) + Ms(7),  fo(1) + Ms(6),  fo(2) + M5(5), fa(3) + Ms(4),
i) +Ms(3),  fi(5) +Ms(2),  fa(6) + M5(1),
fa(7) + M5(0)]
M,(7) = max[0 + 100, 18 +94,  40+75, 50+57,  55+47,
%5+ 39——70F20, 7040]
M,(7) = max[100, 112, 115, 107, 102, 104, 90, 70]

-

Ma(6) = max[£.(0) + Ms(6), (D +Ms(S),  Fi@ +Ms(®), fi(3)+ Ms(3)
F@+ M2, fi(5)+Ms(D),  fa(6) + Ms(0)]
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M,(6) = max[0 + 94, 18+75 ~ 40+57, 50+47, 55439 65 + 20,

70 + 0]

M,(6) = max[94, 92, 97, 97, 94, 84, 70]

M,(6) =97 with d,(6) = 2

M,(5) = max|f,(0) + M5(5),  fo(D)+Ms(4),  £,(2) + M;(3), fa(3) + Ms(2),
fa(4) + Ms(1),  fa(5) + M5(0)]
My(5) = max[0+75 ~ 18+57, 40447, 50+39, 55+20, 65+0]
M,(5) = max[75, 75, 87, 89, 75  65]

My(5) =89 with d,(5)=3

M,(4) = max[f,(0) + M5(4), fa(D+Ms(3), fa(2) + Ms(2), f2(3) + Ms(1),
fa(4) + M5(0)]
M,(4) = max[0 +57, 18 +47,  40+39, 50+20, 55+ 0]
M,(4) = max[57, 65, 79, 70, 55]

M,(4) =79 with du(4)=2

M,(3) = max[f,(0) + Ms(3),  fa(1) + M5(2),
f2(2) + Ms(1), fa(3) + M5(0)]
-——: -M.;(S) = maxf0=+%47, 18+39, 40+20, 50+ 0]
M,(3) = max[47, 57, 60, 50]
M,(3) =60 with d,(3)=2
M,(2) = max[f,(0) + Ms(2),  fa() +Ms(1),  fa(2) + Ms(0)]
M, (2) = ﬂlax[o +39, 18+20, 40+ 0]

M,(2) = max[39, 38,  40]
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M,(2) =40 with d,(2) =2

Ms(1) = max[f,(0) + Ms(1),  £,(1) + Ms(0)]
M;(1) = max[0 + 20, 18+ 0]
M,(1) = max[20, 18]
My(1) =20 with d,(1) =0
M,(0) = max[f,(0) + M5(0)£; (0) + M5(0)]
M,(0) = max[0, 0]
M,(0) =0 with du0)=0
From investment 3:
M3(9) = max[f3(0) + My(9),  f5(1) + M,(8),
f3(2) + My(7), f3(3) +Ma(6),  f3(4) + M,(5),
f(5)+Mu(4),  f3(6) + My(3),  f3(7) + My (2),
f:(8) + My(1),  f3(9) + My(0)]
Ms(9) = max[0 + 144, 124134, 22+115 32+97, 35+89,
40+79, 50+60, 60+40, 65+20, 70+0]
M;(9) = max[144, 146, 137, 129, 124, 119, 107, 100, 85, 70]

M;(9) = 146 with d3(9) = 1

M, (8) = max[f, () AM5EB), fo(1) + My(7),
Q) +M(6), [ +M5),  fi(®)+My(4),

£G)+M(3),  f3(6) +Mu(2),  f3(7) + Mu(D),

f2(8) + M,(0)]

M,(8) = max[134, 127, 119, 121, 114, 100, 90, 80, 65]
M,(8) = 134 with d5(8) =0
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T S e r———

M3(7) = max|[f3(0) + My(7),  f2(1) + M,(6),
[(2) + My(5), fs(3)+Mu(4),  f3(4) + My(3),
O)+Mu(2),  f2(6) + My(1),  £5(7) + My(0)]
M5(7) = max[0 + 115, 12 + 97, 22+ 89, 32+ 79, 35+ 57,
40 + 40, 50 + 20, 60 + 0]
M;(7) = max[115, 109, 111, 111, 92, 80, 70, 60]

M3(7) = 115 with d(7) = 0

M3(6) = max[f3(0) + My(6),  f3(1) + My(5),
:(2) + Mu(4), f23) +M,(3),  f3(4) + M,(2),
f3(5) + Ms(1),  f3(6) + M4(0)]
M;(6) = max[0 + 97, 2.1 89 22 S32 +.57, 35 + 40, 40 + 20,
50 + 0]
M;(6) = max[97, S0 101, “8Onbeiads; 60, 50]

M;(5) = max[f3(0) + M,(5), f2(1) + M, (4),

f3(2) + My(3), f:(3) + M4(2),

= @ F M (1), f2(5) + My(0)]
M,(5) = max[0 +89, 12+79, 22+57, 32+40, 35+20, 40+0]

M,(5) = max[89, 91, 79, 72, 55, 40]

My(5) =91 with d3(5) =1
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M3(4) = max[f3(0) + My(4),  f;(1) + M,(3),
L@ +MQ2), £,3)+M(1),  f5(4) + M,(0)]
M;(4) = max[0 + 79, 12 +57, 22+ 40, 32 + 20, 35+ 0]
M3(4) =max[79, 69, 65 62, 35]
Mi(4) =79 with d.(4) =0
M3(3) = max[f3(0) + M,(3),  f3(1) + M, (2),
f3(2) + My(1),  f3(3) + M4(0)]
M;(3) = max| 0 + 60, 12+ 40, 22+ 20, 32 + 0]
M;(3) = max[60, 52, 42, 32]
Ms(3) =60 with ds(3) =0
M3(2) = max[f3(0) + M4(2),  fa(1) + Mg(1),  £3(2) + M4(0)]
M;(2) = max[0 + 40, 12+20, 22+0]
M,(2) = max[40, 32, 22]

M;(2) =40 with d3(2)=0

M3(1) = max[f3(0) + M4(1), f3(1) + M, (0)]
M;(1) = max[0 + 20, 12 + 0]
M;(1) = max[20, 12}
M;(0) = max[f3(0) + M4(0)]
i s 08 =
M;(0) = max[0 + 0]
M(0) = max[0]

M;(0) =0 with ds(1)=0



e

e

From investment 2:
M;(9) = max[f(0) + M3(9),  f£,(1) + My(8),
f(2) +M3(7), £,3)+Ms3(6),  f,(4) + Ms(5),
LG)+M;(4), f(6)+M;(3),  £(7) + Ms(2),
2(8) + M3(1),  f(9) + M;(0)]
M,(9) = max[0 + 146, 15 + 134, 30 +115, 40+ 101, 45 915
50 + 79, 55+60, 70+ 40, 80+20, 90+ 0]
M,(9) = max[146, 149, 145, 141, 136, 129, 115, 111, 120,

M,(9) = 149 with d,(9) =1

M;(8) = max[f(0) + M3(8),  f>(1) + M;(7),
2(2) + M3(6), f(3)+M3(5), f(4) + M3(4),
2(5) +M3(3),  £2(6) + M3(2),  fo(7) + M3(D),
2(8) + M3(0)]
M,(8) = max[0 + 134, 15+115,  30+101, 40+91, 45+79,
50 + 60, 55+40, 70+20, 80+0]
M,(8) = max[134, 130, 131, 131, 124, 107, 95, 90, 80]
M,(8) = 134 with d,(8) =0
M,(7) = max[f,(0) + M5(7),  f>(1) + M5(6),
f £(2) if},’(_s_),/fzm) +M;(4), f(&)+M3(3),
£5)+M;(2), f(6)+Ms(1),  f(7) + M3(0)]
— M,(7) = max[0 + 115, 15+101, 30+91, 40+79,  45+60,
50 + 40, 55+20, 70+0]

M,(7) = max[115, 16, 121, 119, 105, 90, 75, 70]

M,(7) = 121 with  d,(7) = 2
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M;(6) = max[f,(0) + M3(6),  f£,(1) + M,(5),
(2)+M;(4), £)+M;(3),  f,(4) + My(2),
£25) + M5(1),  £,(6) + M3(0)]
M,(6) = max[0+101, 15491, 30479, 40+60, 45+ 40,

50 +20, 55+ 0]
M,(6) = max[101, 106, 109, 97, 100, 95, 70]
M,(6) = 109 with d,(6) =2
M,(5) = max[f,(0) + M(5), £Q) + M;(4),
(2) + M3(3), f(3)+M5(2),  f,(4) + M;5(1),
f2(5) + M3(0)]
M,(5) = max[0 + 91, 15+79, 30 +60, 40+ 40, 45 + 20, 50 + 0]
M,(5) = max[91, QENENS"SSS0ANNG5, 50]

M,(5) =94 with d,(5) =1

M,(4) = max[f,(0) + M3(4),  f>(1) + M5(3),
£@2)+M;2), £B)Y+M;(1),  f(4)+ M3(0)]
M,(4) = max[0 + 79, 15 + 60, 30 +40, 40+ 20, 45 + 0]
M,(4) =max[79, 75 70, 60,  45]
M,(4) =79 with dy(4)=0
AT
M,(3) = max[f,(0) + M5(3),  fo(1) +Ms(2),
£@) +M3(1), f(3) + M;3(0)]
M, (3) = max[0 + 60, 15 + 40, 30 + 20, 40+ 0]
M,(3) :__max[ﬁo, 55, 50, 40]
M,(3) =60 with d,(3) = 0
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M,(2) = max[f,(0) + M;(2), f2(1) + M3(1), f2(2) + M3(0)]
M;(2) = max[0+40, 15+20, 30+ 0]
M,(2) = max[40, 35, 30]

M,(3) =40 with d,(2) =0

M, (1) = max[f,(0) + M5(1), f2(1) + M;3(0)]
M,(1) = max[0 + 20, 15 + 0]
M,(1) = max[20, 15]

M,(1) =20 with d,(1)=0

M, (0) = max[f,(0) + M5(0)]
M,(0) = max[0 + 0]
M,(0) = max[0]

From investment 1:
M;(9) = max[£,(0) + M;(9), i) +M(8), A2 +M(7),  [1(3) + M(6),
@) +MG5),  AHG) M4,  fi(6) +M(3),
D+ My(2), A +M(D),  f1(9)+M(0)]

M;(9) = max[0 + 149, —36-+134, 20+121, 25+109,  33+094,

35+ 79, 40 + 60, 45 + 40, 55 + 20, 60 + 0]

e

m—

M;(9) = max[149, 144, 141, 134, 127, 114, 100, 85,
79, 60]
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ALLOCATION
The optimal return from the investment is 149 which we obtained by starting the
allocation from stage 1, then to stage 2 up to stage 6 as follows:

i. With 9 units, available allocate to stage 1, d;(9) = 0, leaving 9 —0=9.

ii. With 9 units, available allocate to stage 2, d,(9) = 1, leaving 9 — 1 = 8.

iil. With 8 units, available allocate to stage 3, d3(8) = 0, leaving 8 — 0 = 8.

iv. With 8 units, available allocate to stage 4, d4(8) = 2, leaving 8 —2 = 6.

V. With 6 units, available allocate to stage 5, d<(6) = 5, leaving 6 — 5 = 1.

vi.  With 1 units, available allocate to stage 6, d¢(1) =1, leaving 1 —1 = 0.

Table 4.1 Optimal allocations and returns from investment table

e e e —— g

AMOUNT INVESTED
RETURN FROM | 40 | 100 200 |300 |400 |500 |[600 |700 |800 |900
INVESTMENT
f1() 0 101200 95— 133N | 35" / 405 55 60
*
fo(x) 0 157 B0 a0~ |45 |50napS5eml 70 (80 |90
%k
fa(x) 0 17 Wmml32 |35 =40 LSO 60" | 65 70
*
fi (%) 0 g (40 |80 1758 651 | 70 70 85 95
*
fs(x) 0 0 |28 (38 [50 [75 |75 |8 |80 |8
*
75 | 80
fex) |0 19#__; 25 [35 [40 (S0 |60 |70

e

—

The table shows that with ¢900 available for investment and given the corresponding

annual returns from the various financial institutions we should not invest in Government

of Ghana’s Treasury Bills and Ghana Commercial Bank. However, we should invest ¢100

in Barclays Bank to get ¢15, ¢200 In Data Bank, Accra to get ¢40, ¢500 in Ghana
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Guinness Limited, Accra for a return of ¢75 and ¢100 in Fan Milk Limited, Accra for a

return of ¢19. This gives the optimal returns of ¢149.

4.1 Summary
In this chapter, we undertook collection and analysis of the study of the study. The next

chapter discusses the summary, conclusions and recommendations of the study.



CHAPTER FIVE

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

5.0 Introduction

This concluding chapter provides insights into the major findings of the study. It further

provides key recommendations to policy implications and also outlines recommendations

for further research.

5.1 Summary

The use of Dynamic Programming in Investment Portfolios helps to decide whether to
accept or reject an investment with more realism. There are two main points to note. One
is the proposition that DP in Investment Portfolios allows to relax the low-before-high
fare order of arrival bookings. The problem can be solved from any direction, without any
particular arrangement of the investments. However, the optimal solution is obtained by a
backward substitution. In practice, the Dynamic Programming provides the optimal
policy for the Portfolio problem, by evaluating the whole tree of possibilities and making
at each point in time the decision that would imply higher future expected revenues,
processing backward recursion. The dark side is the increase in the computation

difficulties according to the dimension of the problem.

—— ST e W
5.2 Conclusion

Based on the above literature review and the analysis of the data it could be concluded
that dynamic programming can be used in allocating resources for the optimal investment

returns from a portfolio. The findings from the research optimally allocate the ¢900 to

obtain a maximum return of ¢145. The allocation was done first by a forward substitution,

identifying the optimal at each stage and then a backward substitution for the allocations
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to obtain the optimal returns. The maximum return that was realized from the six stage
programme beginning from stage 6 with ¢’900 was achieved as follows allocating
d,(9) =0 to investment 1 leaving 9 — 0 = 9 units for investment 2. But d,(9) = 2
indicating that we allocate 2 units to investment 2, leaving 9 — 2 = 7 for investment three.
Then allocate nothing to investment 3 since d3(7) = 0. With ¢7, available allocate to
stage 4, d4(7) = 2, leaving 7 — 2 = 5. With ¢5, available allocate to investment 5,
d=(5) = 5 and nothing for investment 6.The results of the research clearly prove that

Dynamic Programming as very efficient in allocating resources for the optimal

investment returns from a portfolio.

5.3 Recommendation

It is recommended that investors should not invest too much money in a single
investment. One should always divide the resources available in bit to invest in different
investments. An important aspect of investment that was assumed to be equal is risk. The
research did not consider the risk associated with the portfolios. When the element of risk
is considered then we can apply a Stochastic Dynamic Programming. For instance, we
have the option to buy Guinness Ghana Limited share at ¢0.70. We can exercise this
option at any time in the next ten days. The current price of Guinness Ghana Limited is
¢0.50. Assuminga model of Guinness Ghana Limited share movement that predicts the

==, : _/_
following: on each day the share will go up by ¢0.02 with probability 0.4, stay the same

with probability 0.1 and go down by ¢0.02 with probability 0.4. the value of the option if

we exercise it at price x is x — 0.70. Then we can formulate this as a Stochastic Dynamic

Programming as follows: =

We will have stage i for each day i, just before the exercise or keep decision.
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Let f;(x) be the expected value of the option on day i given that share price is x. Then the

optimal decision is given by

fi(x) =max{x — 0.70, 0.4f;.1 (x + 0.02) + 0.1fi41f (x) + 0.5f;41 (x — 0.02)}, and
fi0(x) =max {0, x — 0.70}.

The above problem can be solved with the help of a spread sheet.

5.3.1 Recommendations for future Research
The study can be strengthened by increasing the sample size and including participants in
other geographical areas. With an increased sample size, a more detailed analysis among

the available investment portfolios can be undertaken and be reported in a future study.

Another approach to develop this research to a higher level might be carrying out similar

research in different countries in the West Africa sub-Region.
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