
 

 

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND 

TECHNOLOGY 

 

MATHEMATICAL MODEL FOR H1N1 HUMAN TO HUMAN 

TRANSMISSION IN BRONG AHAFO REGION 

By 

ANKAMU DANIEL 

(B.ED. Mathematics) 

A THESIS SUBMITTED TO THE DEPARTMENT OF MATHEMATICS, 

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY IN 

PARTIAL FUFILLMENT OF THE REQUIREMENT FOR THE DEGREE 

OF M.PHIL APPLIED MATHEMATICS 

October 17, 2015 



 

i 

Declaration 
I hereby declare that this submission is my own work towards the award of the 

M. Phil degree and that, to the best of my knowledge, it contains no material 

previously published by another person nor material which had been accepted 

for the award of any other degree of the university, except where due 

acknowledgement had been made in the text. 

Ankamu Daniel ..................... .................. 

Student Signature Date 

Certified by: 

Rev. Dr.William Obeng Denteh ..................... .................. 

 

Supervisor Signature Date 

Certified by: 

Prof. S.K Amponsah ..................... .................. 

 

Head of Department Signature Date 



 

ii 

Dedication 
I dedicate this work to God Almighty, my wife Millicent Ofori Atuahene and my 

son.  



 

iii 

Acknowledgements 
My humble gratitude goes to God Almighty for his guidance and confidence that 

has enabled me to complete this work successfully. I would like to express my 

special appreciation and thanks to my supervisor Rev. Dr. William Obeng Denteh 

,you have been tremendous mentor for me . I would like to thanks the this 

personalities Samuel Okyere, F. T. Oduro, Ebenezer Bonyah and Loius Munkayazi 

for wonderful publication which guide me through my work. I am also thankful 

to all the lecturers at the Mathematics Department of Kwame Nkrumah 

University of Science and Technology, Kumasi who have taught me in diverse 

ways for the award of this degree.  



 

iv 

Abstract 
In this work, SEIR model for H1N1 human transmission in Brong Ahafo Region 

of Ghana is formulated. The method of solution proves that the model possess 

positive solution. The basic reproduction number and the stability analysis of the 

disease free equilibrium and endemic states is carried out. The sensitivity 

analysis and the herd immunity of the model is also established. Numerical 

simulation of the model is carried out to show the results and represented 

graphically. The result indicates that by increasing the transmission rate (β) , the 

disease will spread but when the transmission rate is decreased the disease dies 

out. The results also indicate that %0.6 of the populate in Brong Ahafo needs to 

be vaccinated to control the disease in the region.  
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Chapter 1 

Introduction 

1.1 Background of study 

Flu, or influenza, is a contagious respiratory infection caused by a variety of flu 

viruses. Symptoms of flu involve muscle aches and soreness, headache, and fever. 

Flu viruses enter the body through the mucus membranes of your nose, eyes, or 

mouth. Every time you touch your hand to one of these areas, you are possibly 

infecting yourself with a virus. There are three types of flu viruses: A, B, and C. 

Type A and B cause the annual influenza epidemics that have up to 20% of the 

population sniffling, aching, coughing, and running high fevers. Type C also causes 

flu; however, type C flu symptoms are much less severe. There are three types of 

flu viruses: A, B, and C. Type A and B cause the annual influenza epidemics that 

have up to 20% of the population sniffling, aching, coughing, and running high 

fevers. Type C also causes flu; however, type C flu symptoms are much less severe. 

Type A flu virus is constantly changing and is generally responsible for the large 

flu epidemics. The influenza A2 virus (and other variants of influenza) is spread 

by people who are already infected. The most common flu hot spots are those 

surfaces that an infected person has touched and rooms where he has been 

recently, especially areas where he has been sneezing. Unlike type A flu viruses, 

type B flu is found only in humans. Type B flu may cause a less severe reaction 

than type A flu virus, but occasionally, type B flu can still be extremely harmful. 

Influenza type B viruses are not classified by subtype and do not cause pandemics. 

Unlike type A flu viruses, type B flu is found only in humans. Type B flu may cause 

a less severe reaction than type A flu virus, but occasionally, type B flu can still be 

extremely harmful. Influenza type B viruses are not classified by subtype and do 

not cause pandemics. Unlike type A flu viruses, type B flu is found only in humans. 

Type B flu may cause a less severe reaction than type A flu virus, but occasionally, 
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type B flu can still be extremely harmful. Influenza type B viruses are not 

classified by subtype and do not cause pandemics. 

Influenza A (H1N1) is transmitted from person to person through large 

respiratory droplets expelled directly through coughing or sneezing, indirectly 

through contact with respiratory droplets or secretions, followed by touching the 

nose or the mouth, and one needs not to be more than one meter to be infected 

(Racaniello, 2009).Preventing transmission requires removing one or more of the 

conditions necessary for transmission for example, blocking and or minimizing 

the ways by which the virus can get to a susceptible host, inhibiting or killing the 

virus. 

The rate at which the disease was spreading made the NADMO to come out with 

warning of possible outbreak of influenza H1N1(swine flu) in Ghana. The 

statement further issued that minors and children were the vulnerable groups. 

the spread of the influenza was also among a number of schools leading to their 

closed due to the overcrowding. it is against this background that, this research is 

embarked undertaken to develop a mathematical model to explain and inform the 

relevant publics about the transmission of H1N1 influenza. 

It is against this background that, this research is embarked undertaken to 

develop a mathematical model to explain and inform the relevant publics about 

the transmission of H1N1 influenza. 

1.2 Statement of the Problem 

It has been indicated that the H1N1 virus had infected more than one million 

people worldwide (World Health Organisation, 2009). In the Ghana, the outbreak 

of H1N1 predominantly occurs in schools - Eastern, Volta and Brong Ahafo 

Region. this happens due to the overcrowding situation in most of the schools. All 

the regions of Ghana reported suspected cases except Upper East Region which 

did not confirm any suspected H1NI cases. There were 75% of Confirmed cases 

in Greater Accra Region and 5.5% in Eastern(GHS annual report). Ashanti Region 
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is no exception to the menace of the influenza virus H1N1. The region was first 

hit by the influenza A (H1N1) pandemic on August 31, 1918, on a ship arriving 

from Freetown, Sierra Leone and it spread across Ghana along the main lines of 

communication, killing at least 100,000 people. This has been followed by so 

many influenza outbreaks, for instance the 1957 to 1958 Asian Flu (H2N2) and 

1968 to 1970 Hong Flu (H3N2). In April, 2005, outbreak of influenza A H5N1 and 

March, 2010, confirmed first case of pandemic Influenza A (H1N1) (Ghana Health 

Service, Kumasi, 2009). 

The H1N1 poses public health and developmental challenges similar to challenges 

posed by communicable and chronic diseases. This requires decision makers to 

act in the face of substantial uncertainties. 

Available literature suggests that H1N1 influenza has debilitating effect on any 

economy of which Ghana is no exception. However, there is no research on H1N1 

influenza in the Brong Ahafo Region which has lead to speculations and mysteries 

regarding the pandemic. Besides, no mathematical model on the transmission of 

H1N1 influenza has been generated for sensitization .This has created a 

knowledge gap that needed to be filled. 

This research therefore, sought to develop a mathematical model on transmission 

of H1N1 influenza. 

1.3 Objectives 

The research sought to achieve the following objectives 

• To develop a mathematical model for the spread of H1N1 influenza through 

human to human transmission in the Brong Ahafo Region. 

• To determine the stability of the equilibria and its reproductive number for 

the spread of the disease in the Brong Ahafo Region. 
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• Perform sensitivity analysis of the model parameters. 

1.4 Justification of the Problem 

H1N1 influenza is a pandemic which has created fear and panic in people .H1N1 

virus is considered as dangerous due to the way it can spread easily through 

coughing ,sneezing and touching.The fact that many people lose their life and 

every individual is vulnerable if effective measures are not instituted to cure the 

spread of the disease . 

Again ,this disease has a potential to reduce productivity since individuals 

affected will not be healthy engage in productive ventures, thereby reducing the 

growth of the economy. 

It is therefore imperative to design a mathematical model as a means of creating 

awareness on how the disease is transmitted from one person to another . This 

will do away with the speculations and mysteries surrounding the disease since 

individuals will get a better understanding and appreciation of the H1N1 

influenza. 

1.5 Methodology 

Mathematical model was model with compartmental diagrams, their system of 

ODE’s solved at equilibrium, the basic reproductive number determine, 

diseasefree and endemic equilibrium state determined, stability analysis ,Herd 

Immunity was carried out.Numerical simulation was carried out using Matlab 

software and results graph and analyzed . 

1.6 Organisation of the Study 

This thesis comprises of five chapters. Chapter one reviews the background of the 

study, statement of the problem, the objectives of the study, the methodology 

applied in the study, as well as the justification and the organization of the thesis. 
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Chapter two consists of the review of relevant literature governing the theory. It 

took us through some of the various method of modeling H1NI diseases and 

its control. 

In chapter three we formulate the SEIR differential equation model of the disease 

transmission. The equilibrium points or steady states, the stability analysis, as 

well as herd immunity and the reproductive number were determined. 

Chapter four comprise of analysis and results. We determined the parameters of 

the differential equations and numerical simulation of the model equations by 

setting initial conditions. 

Chapter five, the final chapter contains the conclusions and the recommendations 

of the thesis. 

Chapter 2 

Literature Review 

2.1 Introduction 

This reviewed is an attempt to discussed the historical perspective of the swine 

flu virus, its epidemiology and route of transmission to better understand the 

various control measures that may be taken to fight the danger of a global 

pandemic. Similarly, According to Leedy (1989), the purpose of the review of 

related literature on a study is to discover facts and findings, concerning the area 

of study and how they can propel the researcher to explore the unknown. 

2.1.1 General Overview 

It is interesting to notice the geographic variation in the spread of the H1N1 

virus. 
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From the World Health Organization website, one may obtain daily updates of the 

number of the laboratory confirmed cases of influenza A (H1N1) for most 

countries. It indicated that, as of June 17, 2009, there were 39620 confirmed cases 

in the world, 17855 cases in the United States, and 6241 cases in Mexico. The 

United States in particular, the H1N1 influenza is linked to between 3,000 and 

49,000 deaths and 200,000 hospitalizations each year . 

From the Center for Disease Control and Prevention website, one can readily find 

that as of June 5, 2009, there were 2217 cases in Wisconsin, 858 cases in the New 

York state, and 247 cases in Florida. One of the goals of my model is to provide a 

realistic explanation for this geographic variation in the spread of the H1N1 virus. 

In the mathematical biology literature, several mathematical models have been 

proposed. 

Okyere et al. (2012) presented the epidemiological model of influenza a (H1N1) 

transmission in Ashanti Region of Ghana. They show that pandemic potential of 

influenza A (H1N1) required decision makers to act in the face of uncertainties. A 

deterministic susceptible-exposed-infectious-recovered model was developed to 

study the spread of H1N1 using population data from the Ashanti region of 

Ghana.They assumed the population to be constant with birth rate equals death 

rate and they interact freely (homogeneous mixing).They determined the 

equilibria and stability of the equilibria with the aim of finding threshold 

conditions under which the disease spread or die out and illustrate the outcome 

with numerical solutions. Their results suggest that vaccinating 0.64 %of the 

susceptible population can significantly control the spread of the disease. 

As intimated by Sinha (2009), the novel H1N1 influenza virus that emerged in 

humans in Mexico in early 2009 and transmitted efficiently in the human 

population with global spread has been declared a pandemic strain. Here they 

reviewed influenza infections in swine since 1918 and the introduction of 

different avian and human influenza virus genes into swine influenza viruses of 

North America and Eurasia. These introductions often resulted in viruses of 
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increased fitness for pigs that occasionally transmitted to humans. The novel 

virus affecting humans is derived from a North American swine influenza virus 

that has acquired two gene segments [Neuraminidase (NA) and Matrix (M)] from 

the European swine lineages. This reassortant appears to have increased fitness 

in humans. The potential for increased virulence in humans and of further 

reassortment between the novel H1N1 influenza virus and oseltamivir resistant 

seasonal H1N1 or with highly pathogenic H5N1 influenza stresses the need for 

urgent pandemic planning 

From the point of view ofMalik et al. (2009) the one predictable aspect of 

influenza is its unpredictability. While attention was focused on the threat of an 

avian influenza H1N1 pandemic emerging from Asia, a novel influenza virus of 

swine origin emerged in North America, and is now spreading worldwide. The 

virus appears to confound us even in its nomenclature and the semantics of what 

constitutes a pandemic. During April, 2009, a novel H1N1 virus was detected in 

epidemiologically unrelated cases of influenza-like illness in California and was 

subsequently recognized to be the cause of a major outbreak of respiratory 

disease in Mexico that had been ongoing for some weeks previously. The virus 

was found to be an H1N1 virus that was antigenically and genetically unrelated 

to human seasonal influenza viruses and genetically related to viruses known to 

circulate in swine. In the ensuing weeks (as of 1st June 2009) this swine-origin 

influenza virus (S-OIV) H1N1 virus caused 17,410 virologically confirmed human 

cases and 115 deaths in 62 countries in the Americas, Europe, Asia and 

Australasia. The majority of the cases so far have been in Mexico (5029 with 97 

deaths), USA (8975 with15 deaths) and Canada (1336 with 2 deaths). 

From the standpoint of Racaniello (2009) Influenza A (H1N1) is transmitted from 

person to person through large respiratory droplets expelled directly through 

coughing or sneezing, indirectly through contact with respiratory droplets or 

secretions, followed by touching the nose or the mouth, and one needs not to be 
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more than one meter to be infected. Indeed, preventing transmission requires 

removing one or more of the conditions necessary for transmission for example, 

blocking and or minimizing the ways by which the virus can get to a susceptible 

host, inhibiting or killing the virus. 

Biosei J. At this critical juncture when the world has not yet recovered from the 

threat of avian influenza, the virus has returned in the disguise of swine influenza, 

a lesser known illness common in pigs. It has reached pandemic proportions in a 

short time span with health personnel still devising ways to identify the novel 

H1N1 virus and develop vaccines against it. The H1N1 virus has caused a 

considerable number of deaths within the short duration since its emergence. 

Presently, there are no effective methods to contain this newly emerged virus. 

Therefore, a proper and clear insight is urgently required to prevent an outbreak 

in the future and make preparations that may be planned well in advance. 

Brockwell-Staats et al. (2009), point out that H1N1 influenza virus that emerged 

in humans Mexico in early 2009 and transmitted efficiently in the human 

population with global spread has been declared a pandemic strain. They 

reviewed that influenza infections in swine since 1918 and the introduction of 

different avian and human influenza virus genes into swine influenza viruses of 

North America and Eurasia. These introductions often result in viruses of 

increased fitness for pigs that occasionally transmit to humans.The novel virus 

affecting humans is derived from a North American swine influenza virus that has 

acquired two gene segments [Neuraminidase (NA) and Matrix (M)] from the 

European swine lineages. This reassortant appears to have increased fitness in 

humans. The potential for increased virulence in humans and of further 

reassortment between the novel H1N1 influenza virus and oseltamivir resistant 

seasonal H1N1 or with highly pathogenic H5N1 influenza stresses the need for 

urgent pandemic planning. 
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Shil et al. (2011) studied the transmission dynamics of an outbreak of novel 

influenza A/H1N1 (2009) in June-July 2009 in a residential school in 

Maharashtra, India . A mathematical model of the type susceptible-exposed 

infectiousasymptomatic-recovered was adopted for the purpose. Analyses of 

epidemiological data revealed that close clustering within population resulted in 

high transmissibility with basic reproduction number R0 = 2.61 and transmission 

rate (β) being 0.001566. Model successfully described the dynamics of 

transmission in a residential school setting and helped in ascertaining the 

epidemiological parameters for asymptomatic cases and the effectiveness of the 

control measures. Their study presents a framework for studying similar 

outbreaks of influenza involving clustered populations. They stated that such 

models can be used to predict the pattern of disease propagation in the event of 

introduction of the virus in similar school settings and may also be used to assess 

the effectiveness of control measures. The transmission dynamics study provided 

estimates for various parameters for the outbreak such as the partial 

infectiousness and its duration in the asymptomatic cases, but concluded that 

such parameters were difficult to determine by clinical observations. 

Chong et al. (2013) presented ”A mathematical model of avian influenza with 

halfSaturated incidence”.They developed a mathematical model of avian 

influenza for both bird and human populations. The effect of half-saturated 

incidence on transmission dynamics of the disease is investigated. The half-

saturation constants determine the levels at which birds and humans contract 

avian influenza. To prevent the spread of avian influenza, the associated half 

saturation constants must be increased, especially the half saturation constant Hm 

for humans with mutant strain. The quantity Hm plays an essential role in 

determining the basic reproduction number of this model. Furthermore, by 

decreasing the rate bm at which human-to-human mutant influenza is contracted, 

an outbreak can be controlled more effectively. To combat the outbreak, they 
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propose both pharmaceutical (vaccination) and non-pharmaceutical (personal 

protection and isolation) control methods to reduce the transmission of avian 

influenza. Vaccination and personal protection will decrease bm, while isolation 

will increase Hm. Numerical simulations demonstrate that all proposed control 

strategies will lead to disease eradication; however, if they only employ 

vaccination, it will require slightly longer to eradicate the disease than only 

applying non-pharmaceutical or a combination of pharmaceutical and non-

pharmaceutical control methods. In conclusion, it is important to adopt a 

combination of control methods to fight an avian influenza outbreak. 

Hariyanto et al. (2013) stated the Construction of a Model of Pre-Coalition 

between H1N1-p and H5N1.Influenza Virus in Indonesia Influenza viruses which 

are often used for a study in Indonesia are H1N1-p, which is able to adapt without 

both hemaglutine and amino acids, and the H5N1 as a virus with 170 variants, 

consisting of 3 types whose spread varies widely. They considered the 

construction of a model of pre-coalition between influenza virus H1N1-p and one 

of H5N1 strains that attack poultry and humans. The reduction on the model is 

conducted based on the transition and genetic changes on individual population, 

via order the analysis of the co-existence of both virus transmissions. Their paper 

discusses the development of mathematical model of the spread of the virus 

which has the form of multi strain-multi species by constructing global diffusion 

only on susceptible and exposed population of both human and poultry hosts. The 

reduction of model is conducted based on transition and change experiences by 

every individual population. The approach performed emphasizing more on 

epidemiological aspect rather than mathematical aspect. Therefore the obtained 

model construction is more realistic. They concluded from their analysis on the 

influence of the virus on the system that: ‘1). On unstable condition of Ro > 1, 

H1N1-p influenza virus does not influence the change of the system if the density 

magnitude of susceptible population is bigger than the density of infected 

population and the coefficient of minimum global diffusion, 2) On a stable 
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condition of Ro < 1, H5N1 influenza virus still influences the change of the system 

although the influence is little if the density magnitude of susceptible population 

is the same as the density of infected population , and 3).Co-existence from 

coinfection on H1N1-p and H5N1 virus can occur almost at the same time with 

the occurrence of the spread of each of H1N1-p and H5N1 virus. 

Modeling the impact of an influenza A/H1N1 pandemic on critical care demand 

from early pathogenicity data: the case for sentinel reporting was presented by 

Ercole et al. (2009). Projected critical care demand for pandemic influenza H1N1 

in England was estimated in their study. The effect of varying hospital admission 

rates under statistical uncertainty was examined. Early in a pandemic, 

uncertainty in epidemiological parameters leads to a wide range of credible 

scenarios, with projected demand ranging from insignificant to overwhelming. 

However, even small changes to input assumptions make the major incident 

scenario increasingly likely. Before any cases are admitted to hospital, 95% 

confidence limit on admission rates led to a range in predicted peak critical care 

bed occupancy of between 0% and 37% of total critical care bed capacity, half of 

these cases requiring ventilation support. For hospital admission rates above 

0.25%, critical care bed availability would be exceeded. Further, only 10% of 

critical care beds in England are in specialist paediatric units, but best estimates 

suggest that 30% of patients requiring critical care will be children. Paediatric 

intensive care facilities are likely to be quickly exhausted and suggest that older 

children should be managed in adult critical care units to allow resource 

optimization. Their study highlights the need for sentinel reporting and real-time 

modeling to guide rational decision making. Their results indicate that if none of 

the first 6162 confirmed cases had been admitted to hospital, 95% confidence 

intervals for the hospital admission rate are calculated as 0-0.06%. This is 

significantly different to the United States admission rate of 9%. With these 

values, the modeled peak required critical care requirements for influenza cases 

alone ranges between 0% and 37% of capacity, with peak ventilator usage 
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ranging between 0% and 19% of total capacity. As increasing numbers of patients 

are hospitalised the lower bound on peak predicted impact rises rapidly. Best 

case critical care bed capacity is exceeded for hospitalisation rates above 0.25% 

(approximately 15 out of the current 6162 confirmed cases). Pandemic modeling 

and forecasting depends critically on epidemiological data. Unfortunately there is 

considerable statistical uncertainty in these parameters in the early stages of any 

outbreak, when the case numbers are small. Theyindicate that the available data 

are inevitably biased due to under-reporting and the lag between disease 

presentation, diagnostic confirmation and clinical progression making real-time 

prediction difficult. In the most uncertain scenario, before any patients are 

reported to have been hospitalised, their model suggests that the predicted effect 

on critical care resources ranges from no impact to a significant proportion of 

beds (37%) and ventilators (19%) being utilized. Best case predictions suggest 

that all critical care beds will be filled with influenza A/H1N1 patients if the 

hospital admission rate is greater than 0.25%. Disturbingly, even small increases 

to the observed admission rate make the overwhelming scenario increasingly 

statistically credible. They used the FLUSURGE model to estimate peak critical 

care bed occupancy. Whilst their estimates employed contemporary virulence 

data, the model makes assumptions regarding the detailed kinetics of disease 

spread which cannot be prospectively verified. This is an unavoidable limitation 

of their stud. They assumed an arbitrary pandemic duration of 12 weeks. 

However, their results scale inversely with duration and are thus easily 

generalizable. 

Prosper et al. (2011) presented Modeling control strategies for concurrent 

epidemics of seasonal and pandemic H1N1 influenza. They state that the lessons 

learned from the 2009-2010 H1N1 influenza pandemic, as it moves out of the 

limelight, should not be under-estimated, particularly since the probability of 

novel influenza epidemics in the near future is not negligible and the potential 

consequences might be huge. Hence, as the world, particularly the industrialized 
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world, responded to the potentially devastating effects of this novel A-H1N1 

strain with substantial resources, reminders of the recurrent loss of life from a 

well established foe, seasonal influenza, could not be ignored. The uncertainties 

associated with the reported and expected levels of morbidity and mortality with 

this novel A-H1N1 live in a backdrop of 36, 000 deaths, over 200,000 

hospitalizations, and millions of infections (20% of the population) attributed to 

seasonal influenza in the USA alone, each year. So, as the Northern Hemisphere 

braced for the possibility of a potentially ”lethal” second wave of the novel A-

H1N1 without a vaccine ready to mitigate its impact, questions of who should be 

vaccinated first if a vaccine became available, came to the forefront of the 

discussion. Uncertainty grew as they learned that the vaccine, once available, 

would be unevenly distributed around the world. Nations capable of acquiring 

large vaccine supplies soon became aware that those who could pay would have 

to compete for a limited vaccine stockpile. The challenges faced by nations dealing 

jointly with seasonal and novel A-H1N1 co-circulating strains under limited 

resources, that is, those with no access to novel A-H1N1 vaccine supplies, limited 

access to the seasonal influenza vaccine, and limited access to antivirals (like 

Tamiflu) are explored in this study. One and two-strain models are introduced to 

mimic the influenza dynamics of a single and co-circulating strains, in the context 

of a single epidemic outbreak. They used Optimal control theory to identify and 

evaluate the ”best” control policies. The controls account for the cost associated 

with social distancing and antiviral treatment policies. They also indicate that the 

optimal policies identified might have, if implemented, a substantial impact on 

the novel H1N1 and seasonal influenza co-circulating dynamics. Specifically, the 

implementation of antiviral treatment might reduce the number of influenza 

cases by up to 60% under a reasonable seasonal vaccination strategy, but only by 

up to 37% when the seasonal vaccine is not available. Optimal social distancing 

policies alone can be as effective as the combination of multiple policies, reducing 

the total number of influenza cases by more than 99% within a single outbreak, 

an unrealistic but theoretically possible outcome for isolated populations with 
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limited resources. They concluded that, in addressing the problem by applying 

optimal control theory to the SAIR model for novel H1N1 allowed them to 

determine optimal strategies for minimizing the H1N1 outbreak in a cost-

effective manner. Using a combination of social distancing and treatment, the 

optimal strategy reduced the number of H1N1 infections by more than 99% 

during the 100-day control period; social distancing alone produced similar 

results. However, the optimal treatment-only strategy only reduced morbidity by 

63% when the cost was low. This percentage decreases as the cost of treatment 

increases. This shows that for them using optimal control theory, they 

determined that implementing treatment and social distancing control measures 

optimally has a substantial effect on controlling the number of infections during 

an outbreak. 

Velasco-Hernandez and Leite (2011) stated ”A model for the A(H1N1) epidemic 

in Mexico, including social isolation”. They present a model for the 2009 influenza 

epidemic in Mexico to describe the observed pattern of the epidemic from March 

through the end of August (before the onset of the expected winter epidemic) in 

terms of the reproduction number and social isolation measures. The model uses 

a system of ordinary differential equations. The model is based on a SEIR 

compartmental scheme and includes compartments for social isolation. They 

performed computer simulations to optimize trajectories as a function of 

parameters. They report on the theoretical consequences of social isolation using 

published estimates of the basic reproduction number. The comparison with 

actual data provides a reasonable good fit. They indicate that the pattern of the 

epidemic outbreak in Mexico is characterized by two peaks resulting from the 

application of very drastic social isolation measures and other prophylactic 

measures that lasted for about two weeks. Their model is capable of reproducing 

the observed pattern. They concluded that the epidemic outbreak in Mexico 

shows two peaks resulting from the application of drastic social isolation and 

other prophylactic measures that lasted at least two weeks. They reproduced this 
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pattern, showing that it only occurs within a relatively narrow range of values for 

crucial parameters, such as the basic reproduction number, the isolation rate and 

the waning of prevention measures. Significant qualitative changes in this pattern 

obtained through manipulation of these parameters generated delayed single-

peak epidemics appearing many weeks after the end of the isolation period, or 

two-peaked epidemics but with much greater delay between them. They indicate 

that Mexico is a large country and the influenza epidemic occurred in 

geographically distant and different regions. Their model shows that the data 

reported by the federal Ministry of Health lumps together such geographical 

complexity, since social isolation and other measures were implemented across 

the whole country, their effect on local epidemics was likely the same as that 

observed at the country level. Finally, their model incorporates a minimal amount 

of information that can reproduce the observed pattern using only known 

parameters and excluding treatment. 

Coburn et al. (2009) presented ”Modeling influenza epidemics and pandemics: 

insights into the future of swine flu (H1N1)”. They presented a review of the 

literature of influenza modeling studies, and discuss how the models can provide 

insights into the future of the currently circulating novel strain of influenza A 

(H1N1), formerly known as swine flu. They discuss how the feasibility of 

controlling an epidemic critically depends on the value of the Basic Reproduction 

Number (R0). They observed that the R0 for novel influenza A (H1N1) was recently 

been estimated to be between 1.4 and 1.6. The value was below values of R0 

estimated for the 1918-1919 pandemic strain (mean R0 2: range 1.4 to 

2.8) and is comparable to R0 values estimated for seasonal strains of influenza 

(mean R0 1.3: range 0.9 to 2.1). By reviewing results from previous modeling 

studies they conclude it is theoretically possible that a pandemic of H1N1 could 

be contained. However it may not be feasible, even in resource-rich countries, to 

achieve the necessary levels of vaccination and treatment for control. As a recent 
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modeling study has shown, a global cooperative strategy will be essential in order 

to control a pandemic. This strategy will require resource-rich countries to share 

their vaccines and antivirals with resource-constrained and resource-poor 

countries. They conclude their review by discussing the necessity of developing 

new biologically complex models. They suggested that the models should 

simultaneously track the transmission dynamics of multiple strains of influenza 

in bird, pig and human populations. Such models could be critical for identifying 

effective new interventions, and informing pandemic preparedness planning. 

Finally, they show that by modeling cross-species transmission it may be possible 

to predict the emergence of pandemic strains of influenza. They also recommend 

for more biologically complex models to be developed. 

Modeling of H1N1 Flu in Iran was stated by Haghdoost et al. (2009). They realized 

that new H1N1 flu strain has rapidly become a serious threat worldwide. This 

pandemic calls for urgent preparedness to mitigate its impact as much as 

possible. Employing this knowledge, they simulated a model of the outbreak of 

H1N1 in two cities of Iran (middle size: Kerman and metropolitan: Tehran). They 

developed a compartmental model to predict the expected number of patients 

who might develop severe (S), very severe (VS) disease or die (D). They assumed 

that, in winter, the Basic Reproductive Number (R0w) would reach 1.6 in Kerman 

and 1.8 in Tehran, respectively. Corresponding figures in summer varied from 1.2 

(R0sMin) to 1.4 (R0sMax) in Kerman and from 1.3 to 1.5 in Tehran. Also, they checked 

the effect of the number of imported infectious cases at the beginning of the 

outbreak based on predictions. The result obtained indicate that a minimum lag 

of six months was observed between introduction of the virus (June 2009) and 

beginning of the outbreak (December 2009). The lag was sensitive to the number 

of infectious cases and the R0: a lower R0 postponed the peak. In Kerman, with 

R0sMax of 1.4, the number of S, VS, and D were 2,728, 546 and 468 respectively. 

Corresponding numbers in Tehran with R0sMax of 1.5 were 83,363, 



 

17 

16,673, and 14,291. They concluded by stating that, since the number of S and VS 

cases would be crowded over a short period of time, the health care system most 

probably would not be able to provide appropriate services unless special 

measures are taken in advance. By reduction of R0 and the number of introduced 

infectious cases the peak of the outbreak might be postponed to the end of 2010. 

This would provide a golden opportunity to vaccinate a considerable proportion 

of the population. 

A Classical Approach for Estimating the Transmissibility of the 2009 H1N1 

Pandemic was showed by Mostaco-Guidolin et al. (2011). Following the 

emergence of an infectious disease, estimates of parameters pertaining to the 

nature of infection and its epidemiological characteristics are necessary to inform 

health policy decision making, and identify the type and intensity of interventions 

required for the prevention and control of disease spread. Mathematical 

modeling has proven to be an essential tool for describing disease dynamics in 

the population, and providing frameworks for estimating such parameters. Here, 

they apply a classical approach to demonstrate the usefulness of a simple 

mathematical SEIR model in estimating the reproduction number of a disease, 

defined as the number of secondary infections generated by a single infected case. 

Using data for laboratory confirmed cases of the 2009 H1N1 influenza pandemic, 

they estimate its transmissibility in Winnipeg, an urban center in the province of 

Manitoba, Canada. While detailing our results, they discuss the importance of 

integrating modeling, data analysis, simulations, and translating the findings into 

the context of public health for managing an emerging crisis. 

Chao et al. (2011) presented Planning for the control of Pandemic Influenza A 

(H1N1) in Los Angeles country and the United States Mathematical and computer 

models can provide guidance to public health officials by projecting the course of 

an epidemic and evaluating control measures. They built upon an existing 

collaboration between an academic research group and the Los Angeles County, 
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California, Department of Public Health to plan for and respond to the first and 

subsequent years of pandemic influenza A (H1N1) circulation. The use of models 

allowed the them to, 

1) project the timing and magnitude of the epidemic in Los Angeles County and 

the continental United States; 2) predict the effect of the influenza mass 

vaccination campaign that began in October 2009 on the spread of pandemic 

H1N1 in Los Angeles County and the continental United States; and 3) predict that 

a third wave of pandemic influenza in the winter or spring of 2010 was unlikely 

to occur. The close collaboration between modelers and public health officials 

during pandemic H1N1 spread in the fall of 2009 helped Los Angeles County 

officials develop a measured and appropriate response to the unfolding pandemic 

and establish reasonable goals for mitigation of pandemic H1N1. The use of 

epidemic simulation models to influence and direct local health department 

planning and operational response represents an important collaboration 

between research and public health practice. As evidenced in the utilization and 

adaptation of our pandemic influenza simulations by the LA County DPH during 

the pandemic H1N1 response, realistic and effective models allow local public 

health planners to use simulations to evaluate various disease control strategies 

and to better understand and respond to infectious disease events. Based on 

community demographic data and transportation patterns, the models provide 

local emergency health planners with a unique tool both to quantify the emerging 

threat (morbidity, hospitalizations,mortality, etc.) and to predict the effects and 

benefits of proposed pharmaceutical and non pharmaceutical interventions. They 

had initially planned for a devastating H5N1 pandemic, and as the FHCRC/UW 

group quickly adapted the model to pandemic H1N1, they projected a 

manageable scenario that did not require the disruption of schools or hospitals. 

The mild pandemic forecasts afforded the LA County DPH the opportunity to 

allocate scarce public health resources more wisely. Community-based 

simulation models provide an analytical set of tools, further enabling local health 
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officials to evaluate proposed strategies and make informed decisions. They also 

provide a starting point from which other local jurisdictions can evaluate and 

determine their best intervention and response strategies as well. They believe 

that their simulation-based approach to influenza pandemic guidance in LA 

County is general enough to apply to much of the United States. Their simulations 

of pandemic H1N1 in LA County and the continental United States produced 

similar results. Simulations for both LA 

County and the United States featured unmitigated illness attack rates of 

approximately 21.5% 

Hattaf and Yousfi (2009) presented Mathematical Model of the Influenza A 

(H1N1) Infection. The aim of their work was to give a mathematical model 

describing the transmission of influenza A (H1N1) virus and discuss how the 

model can provide insights into the future of the currently circulating novel strain 

of influenza A (H1N1). They proved that the disease will die out if the basic 

reproductive number R0 > 1 while the disease may become endemic if R0 < 1. The 

stability analysis of both endemic and disease free equilibrium were also 

discussed. They also gave some numerical simulations to illustrate their results 

and predict the the evolution of the disease in Morocco. The simulation of the 

model provides that the number of the infected individuals in Morocco begins to 

increase from 8 December, 2009. It will reach its maximum on 8 April, 2010 which 

is about one million and 968 200 cases and it decreases asymptotically to endemic 

equilibrium state which is 1 937 cases, it will arrive at this state on 22 July, 2010. 

They concluded that the Ministry of Health of Morocco starts by vaccination 

people with low immunity from 9 December, 2009, in order to reduce the number 

of infected cases. 

Balbach et al. (2009) showed Mathematical Modeling of H1N1. Mathematical 

models have been used to understand the dynamics of infectious diseases and to 

predict the future epidemic or pandemics. In 2009, a new strain of the influenza 
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A (H1N1) virus spread rapidly throughout the world. This ”swine flu,” as it is 

commonly known, increased to what is considered an epidemic in a matter of 

months. In order to understand the spread of this virus, and similar patterns in 

future outbreaks, they study a simplified SIR mathematical model to answer some 

epidemiological questions. They solved the model numerically and also study the 

qualitative properties of the model. It is important to mention that a solution of a 

mathematical model is not necessarily a solution to the real problem, but a 

solution to a simplified idealization of the real world problem. By using initial 

Susceptible, Infected and Recovered values from the CDC website, they were able 

to model the U.S. H1N1 flu based on a SIR model. A β value of 0.02 and γ value of 

0.1 was used based on a report on the SIR Model by Rachel Ragan. They then 

modeled the flu taking into account seasonal effects. They used different γ 

corresponding to the periodic nature of the cosine function. 

Sato et al. (2010) presented ”When should we intervene to control the 2009 

influenza A(H1N1) pandemic”?. They simulated the early phase of the 2009 

influenza A(H1N1) pandemic and assessed the effectiveness of public health 

interventions in Japan. They show that the detection rate of border quarantine 

was low and the timing of the intervention was the most important factor 

involved in the control of the pandemic, with the maximum reduction in daily 

cases obtained after interventions started on day 6 or 11. Early interventions 

were not always effective. They estimated the number of imported cases of 

pandemic influenza that passed the border quarantine undetected. The domestic 

pandemic caused by these cases was simulated using mathematical simulation to 

assess the optimal public health intervention to the influenza pandemic in the 

early pandemic phase in Japan. Their estimation of cases undetected in onboard 

quarantine inspections demonstrated the low detection rate of the technique. On 

28 April 2009, the World Health Organization (WHO) advised that no restriction 

of regular travel or closure of borders be implemented against the pandemic 

influenza virus. Their results were consistent with these views. To effectively 
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slow the epidemic curve, the Japanese public health responses to the pandemic 

influenza virus would have had to shift the emphasis from onboard quarantine 

inspection to active surveillance and preparation, and such interventions would 

have been necessary as soon as the first case of the virus was detected by the 

onboard quarantine inspection. However, their simulation of viral transmission 

showed that early initiation of an intervention is not always effective in reducing 

the maximum number of daily cases, as a secondary increase in influenza cases 

was observed after the implementation of the early intervention. They used the 

standardised person-day ratio as an indicator of required resources and showed 

various patterns of effectiveness versus resources. They concluded that the 

metod adopted by the Japan was ineffective in preventing the spread of the 

infection. 

Yarmand et al. (2010) presented ”A Simulation-Based Analysis of Different 

Control Policies for H1N1”. They conducted a cost-effectiveness analysis to 

examine the relative importance of vaccination and self-isolation in case of H1N1 

by developing a continuous-time simulation model for the spread of H1N1. The 

optimization model used consists of two decision variables, vaccination fraction 

and self-isolation fraction among infectives, and two upperbound constraints for 

maximum number of individuals under treatment and percentage of infectives. 

By considering the relative marginal cost for each decision variable, they used a 

linear objective function representing the relative cost of each control policy. 

They used grid search to obtain insight into the model and to find ”goo” feasible 

solutions. 

The model they developed in their work is an extension of the SEIR model for 

H1N1 with three types of interventions (vaccination, antiviral prophylaxis and 

antiviral treatment, and self-isolation and mandatory quarantine). Their 

preliminary results show that vaccination is much more effective than self-

isolation in controlling the diseases. They concluded based on the following 

summarized reasons. The direct effect of vaccination is to reduce the number of 
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susceptibles. But vaccination has an indirect effect as well. Indeed any 

intervention that reduces the number of susceptibles, would also reduce the 

number of infectives with a delay. That is because the horizontal incidence, which 

determines the rate at which susceptibles become infected, depends on the 

density of both susceptibles and infectives. Therefore fewer susceptibles would 

result in lower horizontal incidence, which in turn results in fewer infectives, and 

again lower horizontal incidence. On the other hand, self-isolation only has a 

direct effect which is to reduce the number of infectives. Due to the two fold 

impact of vaccination, they stated that health care officials should pay particular 

attention to vaccination in their attempts to control the spread of an infectious 

disease and in particular, the current H1N1 outbreak. 

The Effect of Risk Perception on the 2009 H1N1 Pandemic Influenza Dynamics 

was studied by Politti et al. (2011). They observed that the 2009 H1N1 pandemic 

influenza dynamics in Italy was characterized by a notable pattern: as it emerged 

from the analysis of influenza-like illness data, after an initial period (September-

mid-October 2009) characterized by a slow exponential increase in the weekly 

incidence, a sudden and sharp increase of the growth rate was observed by mid-

October. Their main aim is to understand whether spontaneous behavioral 

changes in the population could be responsible for such a pattern of epidemic 

spread. For this issue, they propose a mathematical model of influenza 

transmission, accounting for spontaneous behavioral changes driven by 

cost/benefit considerations on the perceived risk of infection, and validated 

against empirical epidemiological data. The performed investigation revealed 

that an initial overestimation of the risk of infection in the general population, 

possibly induced by the high concern for the emergence of a new influenza 

pandemic, results in a pattern of spread compliant with the observed one. Their 

finding is also supported by the analysis of antiviral drugs purchase over the 

epidemic period. Also, by assuming a generation time of 2.5 days, the initially 

diffuse misperception of the risk of infection led to a relatively low value of the 
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reproductive number 1:24, which increased to 1:48 in the subsequent phase of 

the pandemic. Finally, they concluded by indicating that spontaneous behavioral 

changes in the population, not accounted by the large majority of influenza 

transmission models, can not be neglected to correctly inform public health 

decisions. But, individual choices can drastically affect the epidemic spread, by 

altering timing, dynamics and overall number of cases. 

Pongsumpun (2013) presented Model for the Transmission of Influenza 

Pandemic 

Due to a New-Strain of the H1N1 Influenza a Virus with the Risk of Infection in 

Human. A New-strain of the H1N1 Influenza A Virus is transmitted between the 

people through coughing and sneezing. The virus spreads when droplets from a 

cough or sneeze of an infected person are propelled through the air and deposited 

on the mouth or nose of people nearby. This virus can also be contacted by 

touching something, contaminated with flu viruses and then touching their eyes. 

He study the transmission of this disease by constructing the mathematical 

model. The model is formulated by dividing the human into 5 groups such that 

Susceptible, Exposed, Infectious, Quarantine and Recovered classes. The contact 

between risk and non-risk groups is considered. Analysis of the dynamical model 

is done by using standard dynamical modeling method. He showed analytical and 

numerical results of the model. The output of the model were simulated for 2 

cases. The case 1 was for the local stability when V0 > 1, and observed that the 

fractions of populations oscillate to the endemic state. For case 2, when V0 < 1, the 

fractions of populations converge to the disease free state. He also compare the 

solution behaviors when there is the different basic reproductive numbers. It was 

observed that the length of epidemic outburst is shorter and the fraction of 

populations is higher when the basic reproductive number is bigger. The period 

of oscillations as they oscillate to the endemic state by means of solutions of the 

linearized system are calculated, he get 9 days, 5 days for V0 = 20 and V0 = 30, 

respectively. This means that if the number of secondary infectious cases 
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reproduced from primary cases is higher, then the time for controlling the 

epidemic outbreak is shorter. 

2.1.2 Types of H1N1 

According to World Health Organization (WHO), There are three types of 

influenza viruses: A, B and C. Human influenza A and B viruses cause seasonal 

epidemics of disease almost every winter in the United States. The emergence of 

a new and very different influenza virus to infect people can cause an influenza 

pandemic. Influenza type C infections cause a mild respiratory illness and are not 

thought to cause epidemics. 

Influenza A viruses are divided into subtypes based on two proteins on the 

surface of the virus: the hemagglutinin (H) and the neuraminidase (N). There are 

18 different hemagglutinin subtypes and 11 different neuraminidase subtypes. 

Influenza A viruses can be further broken down into different strains. Current 

subtypes of influenza A viruses found in people are influenza A (H1N1) and 

influenza A (H3N2) viruses. In the spring of 2009, a new influenza A (H1N1) virus 

(CDC, 2009) emerged to cause illness in people. This virus was very different from 

regular human influenza A (H1N1) viruses and the new virus caused the first 

influenza pandemic in more than 40 years. That virus (often called ”2009 H1N1”) 

has now mostly replaced the H1N1 virus that was previously circulating in 

humans. 

Influenza B viruses are not divided into subtypes, but can be further broken down 

into different strains.CDC follows an internationally accepted naming convention 

for influenza viruses. This convention was accepted by WHO in 1979 and 

published in February 1980 in the Bulletin of the World Health Organization. 

Influenza A (H1N1), A (H3N2), and influenza B viruses are included in each year’s 

influenza vaccine. Getting a flu vaccine can protect against flu viruses that are the 

same or related to the viruses in the vaccine. Information about this season’s 

vaccine can be found at preventing seasonal flu with vaccination. The seasonal flu 
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vaccine not protect against influenza C viruses. In addition, flu vaccines will not 

protect against infection and illness caused by other viruses that can also cause 

influenza-like symptoms. There are many other non flu viruses that can result in 

influenza-like illness (ILI) that spread during the flu season. 

2.1.3 Causes and Prevention 

Flu, or influenza, is a contagious respiratory infection caused by a variety of flu 

viruses. Symptoms of flu involve muscle aches and soreness, headache, and fever. 

Flu viruses enter the body through the mucus membranes of your nose, eyes, or 

mouth. Every time you touch your hand to one of these areas, you are possibly 

infecting yourself with a virus. This makes it very important to keep your hands 

germ-free with frequent and thorough hand washing. Encourage family members 

to do the same to stay well and prevent flu. 

In Ghana,World Health Organisation( WHO) was assisting Ghana to receive 

additional vaccines for the general public of which the country would have had to 

take care of the shipping cost and also the cost of distribution. The Director of 

Public Health in Ghana said his outfit was beginning an orientation programme 

for health professionals who would administer the vaccines at the national level 

and said all the ten regions would have their training within the regions, to be 

followed with the administration of the vaccines to the identified group. The 

vaccines had already been sent to the various regions ready to be 

administered.They also indicated that the rate at which people were catching the 

influenza had slowed down as compared to March this year and added that Ghana 

was recording more cases because health workers had been vigilant in looking up 

for the cases. He indicated that in some countries the case was different, as health 

professionals were rather playing down on the spread of the disease, a situation 

he pointed out was not the best and reiterated the need for the observance of 

personal hygiene to prevent the spread of the disease, since it was not yet over. 

Posted by Lucy Adoma Yeboah 

Stories at 2 : 59 AM http://lucyadoma.blogspot.com/2010/0...1n1-death.html 
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July 28th, 2010 

2.1.4 Mathematical Model 

The SIR Model is the relatively good predictor for infectious diseases such as 

measles, mumps, and rubella. Under this model, when an individual becomes 

infected, he/she becomes immediately infectious and is able to infect other 

individuals. 

However, the infected individuals may recover from the disease and therefore 

move to a recovered class, where they will be no longer infectious while acquiring 

immunity to the disease.  
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Chapter 3 

Methodology 
The model we decided to use in studying the H1N1 virus is the 

susceptibleexposed-infectious-recovered compartmental model, or more 

commonly the SEIR model (Anderson and May, 1991). This model is the same as 

the SIR model, except that before the individual becomes infectious, of course 

he/she will be exposed to the environment. For the model, we consider four basic 

classes: 1. Susceptible (S); 2. Exposed (E); 3. Infectious (I); 4. Recovered (R). 

Susceptible class are individuals in the population who are at risk of becoming 

infected with 

H1N1 virus. The exposed class are individuals who have been infected with the 

H1N1 virus but not infectious (show no symptoms and cannot pass on the 

disease). Infectious class are Individuals who have been infected with the H1N1 

and can pass it on to susceptible persons. Lastly, the recovered class are 

individuals who have recovered or been removed from H1N1 infection (Uhavax, 

2001). For the model, we assume births and deaths occur at equal rate and that 

all newborns are susceptible (no inherited immunity). We denote the average 

birth and death rate by µ . The rate at which individuals are born into the 

susceptible class with no passive is µS . We also assume the population mix 

homogeneously, with no restriction of age, mobility or other social factors. Once 

infected, you become exposed to the environment before becoming infectious. 

The rate at which susceptible enters the exposed class without been infectious is 

βSI and the rate at which an exposed person becomes infectious is αE . The rate 

at which an infected individual may recover and will remain until death is γ . The 

transmission coefficient is β > 0 , the latency coefficient α > 0 , the recovery 

coefficient γ > 0 and the capital death rate µ > 0 . The flow diagram for the SEIR 

model is given in Figure 3.1 
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Figure 3.1: 

The following system of ordinary differential equations (ODEs) is used to 

represent this model: 

S1 = µN − µS − βSI 

E1 = βSI − (µ + α)E 

I1 = αE −(γ +µ)I (3.1) 

R1 = γI − µR 

From equation (3.1) the ODE’s shows that S1 + E1 + I1 + R1 = 0 

Hence the total population 

N = S + E + I + R 

That is N = µN − µS − βSI + βSI − (µ + α)E + αE − (γ + µ)I + µI − µR 

N = µN − µS − µE − µI − µR 

N = µN − µ(S + E + I + R) 

N = µN − µN = 0 

This shows that the total population is constant; 
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Normalising the system we have 

 

Now since the total population N=1, then s(t) + e(t) + i(t) + r(t) = 1 r(t) 

= 1 − s(t) − e(t) − i(t) We now have the ODE’s as s1 = µ − (µ + β)si e1 = βsi 

− (µ + α)e 

i1 = αe − (γ + µ)i (3.2) 

3.1 Method of Solution 

For this section we show that equation (3.1) has positive solution. 

(1). For, S0 = µN − µS − βSI 

That is,  

 

This is an equation of the form  

By using integration factor , we can solve the equation by multiplying by 

 

= 0 then  

We have,  

This implies that,  

 

Thus, we have,  

Now if t = 0, then,  
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(2). For, E0 = βSI − (µ + α)E 

That is,  

. By using integration factor, that is 

. Then we have 

 

This implies that,  

 

Thus, we have,  

Now if t = 0, then,  

(3).For, I0 = αE − (γ + µ)I 

That is,  

 , multiplying by the factor 

. Then we have 

 

This implies that,  

 



 

31 

Thus, we have,  

Now if t = 0, then,  

(4). For, R0 = γI − µR 

That is,  

, multiplying by the factor 

. Then we have 

 

This implies that,  

 

Thus, we have,  

Now if t = 0, then,  

This shows that equation (3.1) has positive solutions. 

3.2 Equilibrium Point 

To evaluate the equilibrium point of the system we equate 

s1 = 0 e1 

= 0 i1 = 

0 

µ − (µ + βi)s = 0 (3.3) 
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βsi − (µ + α)e = 0 (3.4) 

αe − (γ + µ)i = 0 (3.5) 

For disease free equilibrium i = 0 

From equation (3.5) αe − (γ + µ)0 = 0 

αe = 0 e = 0 

substitute i = 0 into equation (3), we have µ − µs = 0 where  

At disease free (s∗,e∗,i∗) = (1,0,0) 

3.3 Basic Reproductive Number 

Definition: The basic reproduction number (Ro) is defined as the average number 

of secondary infections produced by a single infectious host introduced into a 

totally susceptible population. In most cases, if R0 > 1, then the outbreak generates 

an epidemic; whereas, if R0 < 1, then the infection will disappear from the 

population. Since R0 synthesizes important elements of the infection transmission 

process, it identifies the most important factors in the infection transmission 

cycle. A method often used to derive R0 expression is the next generation matrix 

(NGM) approach. When the interactions within and between disease 

compartments are interpreted differently, the NGM approach may lead to 

different R0 

expressions. 

By using the next generation matrix approach NGM(K) = FV −1 we 

reorder the above equation to get 

i1 = αe − (γ + µ)i − − − − − − − − − − − − − − − − − −f1(i,s,e) 

s1 = µ − (µ + βi)s − − − − − − − − − − − − − − − − − −f2(i,s,e) 
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e1 = βsi − (µ + α)e − − − − − − − − − − − − − − − − − f3(i,s,e) 

Linearization of the above model gives the Generation matrix (G) 

 

f1i 

 

 

G = f2i 

 

 

 

f3i 

f1s 

f2s 

f3s 

 

f1e 

 

 

 

f2e  

 

 

f3e 

 

 

 0 

 

α 

0 

 

 

 

 

 

 

 

 

J = −(µ + β)s −(µ + βi) 

 

 

 

 βs βi −(µ + α) 

But at the disease free equilibrium (s∗ = 1,e∗ = 0,i∗ = 0) this implies 

 −(γ + µ) 0 

 

 

JDFE = −(µ + β) −µ 

 

 

 

α 

0 

 

 

 

 

 

 

 

 

 β 0 −(µ + α) 

since 
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Thus   =   = (µ+α)(γ+µ)   

       

Since R0 is the most dominant eigenvalues of the NEM, then 

 

3.4 An Endemic Equilibrium Point 

This is where there is no infection, thus I 6= 0, From equation (3.5) 



 

35 

Thus, αe − (γ + µ)i = 0 

, (3.6) 

substitute e into equation (3.4) to get s, thus 

 

 

 

 

since  

Now putting s into equation (3.3) to get i, we have 

 

 

 

 

i = β µ(R0 − 1) 

substitute i into equation (3.6) to get e we have 
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The endemic equilibrium point are 

 

3.4.1 Stability Analysis of Disease-free Equilibrium Point 

Theorem 1: At disease-free equilibrium the system is locally asymptotically 

stable if R0 < 1 

Proof: To prove this, we consider the equations below about the equilibrium 

point. 

s1 = µ − (µ + βi)s 

e1 = βsi − (µ + α)e 

i1 = αe − (γ + µ)i 

The Jacobian matrix J of the system is 

   

 −(µ + βi) 0 −βS 

   

   

J =  βi −(µ + α) βS  

   

   

   

 0 α −(γ + µ) 

At disease free equilibrium, s = 1, e = 0 and i = 0 

By inserting the Jacobian matrix becomes 
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 −µ 0 

 

 JDFE =  0 −(µ 

+ α) 

 

 

 

−β β  

 

 

 

 

 

 

 

 0 α −(γ + µ) 

Finding the characteristics equation, then it becomes 

   

 −µ − λ 0 −β 

   

   

JDFE − λI =  0 −(µ + α) − λ β  

   

   

   

 0 α −(γ + µ) − λ 

Now dividing the matrix into three 2 × 2 matrix, thus 

   

 −(µ + α) − λ β 

  d1 =   

  α −(γ + µ) − λ 

   

 0 β 

  d2 =   

   

0 −(γ + µ) − λ 

   

0 −(µ + α) − λ 

  d3 =   

   

 0 α 
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After finding d1,d2 and d3, then substitute into the formula below 

det(J − λI) = (−µ − λ) × d1 − 0 × d2 + (−β) × d3 = 0 

d1 = (−(µ + α) − λ)(−(γ + µ) − λ) − βα 

d1 = ((µ + α) + λ)((γ + µ) + λ) − βα 

d1 = (µ + α + λ)(γ + µ + λ) − βα 

d1 = µγ + µ2 + λµ + αγ + αµ + αλ + λγ + λµ + λ2 − βα 

d2 = 0 

d3 = 0 

By substituting into the formula, that is 

det(J − λI) = (−µ − λ)((µ + α + λ)(γ + µ + λ) − βα) = 0 

⇒ (−µ − λ)(µγ + µ2 + λµ + αγ + αµ + αλ + λγ + λµ + λ2 − βα) = 0 

−µ2γ − µ3 − λµ2 − αγµ − αµ2 − αλµ − λµγ − λµ2 + µαβ − µγλ − µ2λ − λ2µ − αγλ − αµλ − 

αλ2 − λ2γ − λ2µ − λ3 + αβλ = 0 

λ3 +λ2(µ+α+γ +µ)+λ(µ2 +αµ+µγ +µ2 +αβ +µγ +µ2 +αγ +αµ)+µ2γ + µ3 + αγµ + αµ2 − 

µαβ = 0 

λ3 + λ2(2µ + α + γ) + λ(3µ2 + 2µγ + 2αµ + αγ + αβ) + µ[(µ + α)(µ + γ) − βα] 
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Let 

a1 = (2µ + α + γ) 

a2 = (3µ2 + 2µγ + 2αµ + αγ + αβ) 

a3 = µ[(µ + α)(µ + γ) − βα] 

⇒ λ3 + a1λ2 + a2λ + a3 (3.7) 

Using the Routh-Hurwitz Criteria on (3.7) , we can prove that all roots of the 

polynomial(3.7) have negative real parts. The Routh-Hurwitz Criteria is stated as 

follows: Important criteria that give necessary and sufficient conditions for all of 

the roots of the characteristic polynomial (with real coefficients) to lie in the left 

half of the complex plane are known as Routh-Hurwitz criteria (Flores, 2013). 

Theorem 2: Routh-Hurwitz Criteria 

Given the polynomial 

P(λ) = λn + a1λn−1 + .... + an−1λ + an. 

Where the coefficient ai are real constants, i = 1,...,n define the n Hurwitz matrices 

using the coefficients ai of the characteristic polynomial: 

 

a 

 1 

H1 = (a1), H2 =  

 

a3 

 

a 

 1 

 

 

 

 a3 

1  

1 

a2 

a4 

... 

0 

0 

a1 

a3 

... 

0 

0 

1 

a2 

... 

0 

... 

... 

... 

... 

··· 

 

0  
 
 

0 
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, Hn = a5 

  a2  

 ... 

 

 

 

 

0 

0 

 

 

 

... 

 

 

 

 

an 

where aJ = 0 if j > n. All of the roots of the polynomial P(λ) are negatives or have 

negative real parts if and only if the determinants of all Hurwitz matrices are 

positive: 

det(Hj) > 0,j = 1,2,...,n. 

For the characteristic polynomial in (3.7), when n = 3, the Routh-Hurwitz criteria 

are 

a1 > 0,a2 > 0,a3 > 0, and det(H1) = a1 > 0, 

 

a 
 1 

det(H2) =  

 

0 

 

1 

 

 = a1a2 > 0,and 

 

a2 

 

a1 

 

 

det(H3) = a3 

 

 

 

0 

 

1 0 

 

 

 = a1a2a3 − a23 > 0 ⇒ a1a2 − a3 > 0, a2

 a1  
 

 

0 a3 

Since all the determinants of the Hurwitz matrices are positive, then it means all 

the eigenvalues of the Jacobian matrix have negative real part and R0 < 1. 

Therefore, disease-free equilibrium point is stable. 
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Conversely, if R0 > 1 it implies that a3 < 0, and since the remaining coefficients (a2, 

and a3 ) of the polynomial (3.7) are positive then all the roots of this polynomial 

cannot have negative real parts. Therefore, the disease-free equilibrium point is 

unstable. 

3.4.2 Stability Analysis of Endemic Equilibrium Point 

Theorem 3: At endemic equilibrium the system is locally asymptotically stable if 

R0 > 1 

Proof: To prove this, we consider the equations below about the equilibrium 

point. 

s1 = µ − (µ + βi)s 

e1 = βsi − (µ + α)e 

i1 = αe − (γ + µ)i 

The Jacobian matrix J of the system is 

   

 −µ − βi) 0 −βS 

   

   

J =  βi −(µ + α) βS  

   

   

   

 0 α −(γ + µ) 

but, for endemic equilibrium,  
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α 

Finding the characteristics equation we have 

 

Now dividing the matrix into three 2 × 2 matrix, thus 

 

 
   

µ(R0 − 1) −(µ + γ) − λ  d3 = 

  

   

 0 α 

After getting d1,d2,d3 we substitute into the formula 
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d2 = µ(R0 − 1)(−(γ + α + λ)) 

d3 = αµ(R0 − 1) 

By substituting into the formula, we have 

 

 

 

⇒ λ3 + λ2(µR0 + µ + 2γ + α) + λ(µ2R0 + 2µγR0 + µγR0 + µγ + αµ + γ2 + 

 

Now we let, 

λ3 + λb1 + λb2 + b3 = 0 

Where, 

b1 = µR0 + µ + 2γ + α 
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Similarly,from Routh-Hurwitz stability criteria, if the coefficient of the 

characteristic equation b1 > 0,b3 > 0 and b1b2 −b3 > 0 are true then all the roots of 

the characteristic equation have negative real parts which means a stable 

equilibrium (Flores, 2013). The first two conditions are true for R0 > 1 as b1 and 

b3 are both positive quantities. The third condition 

b1b2−b3 > 0 given by µ[R0(3µ + α + µR0)(α + γ) + µ2(3 + 2R0) + µ2 + µ(α + γ) + αγ] is greater 

than zero (for all parameter values and R0 > 1), hence it is also true. 

Thus the endemic steady state is stable when R0 > 1 by Routh-Hurwitz criteria. 

3.4.3 Herd Immunity 

Definition: Herd immunity has to do with the protection of populations from 

infection which is brought about by the presence of immune individuals. The 

concept has a special aura,,in its implication of an extension of the protection 

imparted by an immunization program beyond vaccinated to unvaccinated 

individuals and in its apparent provision of a means to eliminate totally some 

infectious diseases. It is a recurrent theme in the medical literature and has been 

discussed frequently during the past decade. This new popularity comes as a 

consequence of several recent major achievements of vaccination programs. 

According to the equation given by Diekmann and Heesterbeek (2000), the herd 

immunity can be estimated by the formula,  

By this procedure we estimate the herd immunity and is given as 
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3.4.4 Sensitivity Analyis 

Sensitivity Analysis is the study of how the uncertainty in the output of a 

mathematical model or system can be apportioned to different sources of 

uncertainty in its inputs. 

 reproductive number based on the disease-free equilibrium. 

Thus,  (7) 

This indicate that the analysis depends on β,α,µ and γ. 

(a) By doubling β and inserting in equation (7), that is if β = 2β 

Then,  

 

(b) By doubling α and inserting into equation (7), that is , α = 2α 

Then,  (8) 

Now dividing equation (8) by equation (7), we have 
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Since the numerator is greater than the denominator, then 

 

 , thus doubling α increases . 

(c). Doubling µ and inserting into (7) then 

 (9) 

Dividing (9) by (7) , we have 

 

 

Since the denominator is greater than the numerator then 

 

 

This implies that doubling µ decreases  

(d). Doubling γ and putting into (7), we have 

 (10) 

Now dividing (10) by (7) , we have 
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Since the denominator is greater than the numerator then 

 

Thus . This implies that doubling γ decreases . 

Chapter 4 

Analysis 

4.1 Introduction 

This chapter deals with the analysis and numerical simulation of the Brong Ahafo 

regional data collected from Ghana Statistical Service on H1N1 from 2010. The 

simulation analysis to illustrate our results on stability as well as numerical 

simulation and graphical representation of the data is also done using MATLAB 

to see how the model works practically. 

4.2 Parameter Determination 

We used Brong Ahafo regional data and the population N = 2282128, β = 

0.1508,α = 0.25,γ = 0.14285 and µ = 0.0044 
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4.3 Numerical Simulation 

From the parameter values given , we estimate that  

⇒ R0 = 1.006396. Thus the basic reproductive number R0 = 1.006396 > 1 From 

Theorem 1 the disease-free equilibrium (s∗,e∗,i∗) = (1,0,0) is unstable 

since R0 > 1 and from theorem 3 (  

Thus (  

⇒ (s∗,e∗,i∗) = (0.9936,0.0001099,0.0001866). Showing that the endemic 

equilibrium is stable for R0 > 1 

Now estimating the herd immunity from the data , we have 

 

Thus the herd immunity is 0.6355%. 

Sensitivity Analysis of the data 

1. For β = 2β = 2(0.1508) = 0.3014,α = 0.25,γ = 0.14285,µ = 0.0044 then R0 = 

2.0128 

2. For α = 2α = 2(0.25) = 0.50,β = 0.1508,γ = 0.14285,µ = 0.0044 then R0 = 

1.0152 

3. For γ = 2γ = 2(0.14285) = 0.2857,β = 0.1508,α = 0.25,µ = 0.0044 then R0 = 

0.5108 
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4. For µ = 2µ = 2(0.0044) = 0.0088,β = 0.1508,α = 0.25,γ = 0.14285 then 

R0 = 0.96 

Table 4.1: Sensitivity analysis of the disease-free equilibrium state 

Nature of steady state β α γ µ R0 

Unstable 0.3014 0.25 0.14285 0.0044 2.0128 

Unstable 0.1508 0.50 0.14285 0.0044 1.0152 

Stable 0.1508 0.25 0.2857 0.0044 0.5108 

Stable 0.1508 0.25 0.14285 0.0088 0.96 

Table 4.1 and 4.2 indicates the sensitivity analysis for both the 

diseasefree and endemic equilibrium point respectively. 

Table 4.2: Sensitivity analysis of the endemic equilibrium state 

Nature of steady state β α γ µ R0 

Stable 0.3014 0.25 0.14285 0.0044 2.0128 

Stable 0.1508 0.50 0.14285 0.0044 1.0152 

Unstable 0.1508 0.25 0.2857 0.0044 0.5108 

Unstable 0.1508 0.25 0.14285 0.0088 0.96 

From Table 4.1, increasing the rate of transmission and the rate of latency , the R0 

> 1 and the disease-free equilibrium state is found to be unstable. This shows that 

the cause of an outbreak, that is, the disease will spread. On the other hand, as the 

recovery rate and death rate increases , the R0 < 1 and the disease-free 

equilibrium is found to be stable, meaning the disease can die out. 

From Table 4.2, increasing the rate of transmission and the rate of latency , the R0 

> 1 and the endemic equilibrium point is stable.On the other hand , as the recovery 

rate and death rate increases , the R0 < 1 and the endemic equilibrium is found to 

be unstable. 

Using the parameter values given, we ran simulate for a period of 5 

months for interaction between susceptible, exposed, infectious and recovered. 
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The Brong Ahafo regional data obtained indicate that S(0) = 2282126,E(0) = 2,I(0) 

= 2 and R(0) = 0. 

Dividing through by the total population of Brong Ahafo region which is 2282128 

(Ghana statistical service, 2010), we have; s(0) = 0.999999123, e(0) = 8.763750 × 

10−7, i(0) = 8.763750 × 10−7, and r(0) = 0.0 , from this simulation we obtain Figure 

4.1 

From Figure 4.2, we varied the proportion of infective, that is i(0) = 0.4 

around the neighborhood of the endemic equilibrium point for a period of 5 

Figure 4.1: Dynamics of the various compartments at the initial outbreak of H1N1 

in Brong Ahafo 

 

months.It can be observed that the proportion of exposed individuals initially 

increased from 0.00 to 0.03 in the second month and then reduce to a minimum 

of 0.02 in the fifth month. The proportion of the susceptible declines from a value 
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of 0.6 during the first month to a minimum value of 0.5 by the fifth month. The 

proportion of the recovered on the other hand increases exponentially with time. 

From Figure 4.3, we varied the proportion of infective, that is i(0) = 

0.4 around the neighborhood of the endemic equilibrium point for a period of 20 

months.From the Figure the proportion of the exposed individuals initially 

increased from 0 to 0.05 in the second month then decrease gradually to 0.01 by 

the twentieth month. The proportion of the susceptible declines from a value of 

0.6 during the first month to a minimum value of 0.41 by the twentieth month. 

The proportion of the recovered on the other hand increases exponentially with 

time and reaches a maximum value of 0.52 by the twentieth month. 

Figure 4.2: Graph of an increased in the proportion of infectious (5 months 

period) on various compartments. 

 

Figure 4.3: Graph of an increased in the proportion of infectious (20 months 

period) on various compartments. 
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Chapter 5 

Conclusion 
In analyzing the mathematical behavior of the SEIR model we obtained the 

nonnegative solutions of the model by integration factor.The reproductive 

number of the SEIR epidemiological model was estimated by the next generation 

method approach and the results indicated that R0 > 1. 

We obtained the stability analysis of the model by Routh-Hurwitz stability 

criteria. The mathematical behavior indicate that the disease-free equilibrium 

point was asymptotically stable since R0 < 1 and the endemic equilibrium point 

was also asymptotically stable since R0 > 1. 

The sensitivity analysis carry out indicate that doubling or increasing the 

transmission rate (β),the disease spread but when the transmission rate is 

decreased the disease dies out. 

The simulated results indicate that the initial proportion of the infectives has no 

effect on the model, but as the infectives increases, the proportion of the 

susceptible decreases. This shows that as more people are infected with the H1N1 
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virus, the disease will spread in the Brong Ahafo region. The herd immunity was 

estimated and the data obtained shows that about 0.6% of the populate needs to 

be vaccinated to control the diseases in the region. 

We obtained the numerical solution of the model by using generalized Euler’s 

method. 

Findings: The major contribution to this work is our ability to provide numerical 

simulation of the model using Euler’s method and also providing solution to the 

model using integration factor. 

5.1 Recommendations 

Since H1N1 is a public health issue we recommend that the health sectors in the 

region can adopt the model to help control the disease. 

In addition, we recommend researchers and academicians to further discuss the 

global asymptotic behavior of the model.  
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Appendix A 
CODES FOR FIGURE 4.1 

Title: Dynamics of the various compartments at the initial outbreak of H1N1 

in Brong Ahafo 

clear, clc, beta = 0.1508; alpha = 0.25; 

gamma = 0.14285 mu = 0.0044; h = 0.1 t 

= 0 : 0.5 : 5; n = length(t); solS = []; solE = 

[]; solI = []; solR = []; 

S = zeros(n,1); E = S; I = S; R = S; 

S(1) = 0.9;E(1) = 8.763750 × 10−7;I(1) = 8.763750 × 10−7;R(1) = 0.0; 

for i = 1 : n − 1 

S(i + 1) = S(i) + h ∗ (mu − mu ∗ S(i) − beta ∗ I(i) ∗ S(i)); 

E(i + 1) = E(i) + h ∗ (beta ∗ I(i) ∗ S(i) − (mu + alpha) ∗ E(i)) ; 

I(i + 1) = I(i) + h ∗ (alpha ∗ E(i) − (gamma + mu) ∗ I(i)); R(i + 1) = R(i) 

+ h ∗ (alpha ∗ E(i) − (gamma + mu) ∗ I(i)); end solS(:,2) = S(:); solE(:,2) 

= E(:); solI(:,2) = I(:); solR(:,2) = R(:); 

figure(1); plot(t,sol S(:,2),’r’,t,sol E(:,2),’g’,t,sol I(:,2),’b’ ,t,sol R(:,2),’k’); 

xlabel(’Time(months)’), ylabel(’Susceptible, Exposed, Infectious, Recovered’); 

legend(’Susceptible’,’Exposed’, ’Infectious’, ’Recovered’) 

CODES FOR FIGURE 4.2 

Title: Graph of an increased in the proportion of infectious (5 months 

period) on various compartments. 

clear, clc, beta = 0.1508; alpha = 0.25; 

gamma = 0.14285 mu = 0.0044; h = 0.1 t 

= 0 : 0.5 : 5; n = length(t); solS = []; solE = 

[]; solI = []; solR = []; 

S = zeros(n,1); E = S; I = S; R = S; 
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S(1) = 0.6;E(1) = 0.001;I(1) = 0.4;R(1) = 0.001; 

for i = 1 : n − 1 

S(i + 1) = S(i) + h ∗ (mu − mu ∗ S(i) − beta ∗ I(i) ∗ S(i)); 

E(i + 1) = E(i) + h ∗ (beta ∗ I(i) ∗ S(i) − (mu + alpha) ∗ E(i)) ; 

I(i + 1) = I(i) + h ∗ (alpha ∗ E(i) − (gamma + mu) ∗ I(i)); R(i + 1) = R(i) 

+ h ∗ (alpha ∗ E(i) − (gamma + mu) ∗ I(i)); end solS(:,2) = S(:); solE(:,2) 

= E(:); solI(:,2) = I(:); solR(:,2) = R(:); 

figure(1); plot(t,sol S(:,2),’r’,t,sol E(:,2),’g’,t,sol I(:,2),’b’ ,t,sol R(:,2),’k’); 

xlabel(’Time(months)’), ylabel(’Susceptible, Exposed, Infectious, Recovered’); 

legend(’Susceptible’,’Exposed’, ’Infectious’, ’Recovered’) 

Appendix B 
CODES FOR FIGURE 4.3 

Title:Graph of an increased in the proportion of infectious (20 months 

period) on various compartments. 

clear, clc, beta = 0.1508; alpha = 0.25; 

gamma = 0.14285 mu = 0.0044; h = 0.1 t 

= 0 : 2 : 20; n = length(t); solS = []; solE = 

[]; solI = []; solR = []; 

S = zeros(n,1); E = S; I = S; R = S; 

S(1) = 0.5;E(1) = 0.01;I(1) = 0.4;R(1) = 0.02; 

for i = 1 : n − 1 

S(i + 1) = S(i) + h ∗ (mu − mu ∗ S(i) − beta ∗ I(i) ∗ S(i)); 

E(i + 1) = E(i) + h ∗ (beta ∗ I(i) ∗ S(i) − (mu + alpha) ∗ E(i)) ; 

I(i + 1) = I(i) + h ∗ (alpha ∗ E(i) − (gamma + mu) ∗ I(i)); R(i + 1) = R(i) 

+ h ∗ (alpha ∗ E(i) − (gamma + mu) ∗ I(i)); end solS(:,2) = S(:); solE(:,2) 

= E(:); solI(:,2) = I(:); solR(:,2) = R(:); 
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figure(1); plot(t,sol S(:,2),’r’,t,sol E(:,2),’g’,t,sol I(:,2),’b’ ,t,sol R(:,2),’k’); 

xlabel(’Time(months)’), ylabel(’Susceptible, Exposed, Infectious, Recovered’); 

legend(’Susceptible’,’Exposed’, ’Infectious’, ’Recovered’) 


