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Abstract

In order to guarantee the fulfillment of their complex lifecycle, adult filarial nematodes release millions of microfilariae (MF),
which are taken up by mosquito vectors. The current strategy to eliminate lymphatic filariasis as a public health problem
focuses upon interrupting this transmission through annual mass drug administration (MDA). It remains unclear however,
how many rounds of MDA are required to achieve low enough levels of MF to cease transmission. Interestingly, with the
development of further diagnostic tools a relatively neglected cohort of asymptomatic (non-lymphedema) amicrofilaremic
(latent) individuals has become apparent. Indeed, epidemiological studies have suggested that there are equal numbers of
patent (MF+) and latent individuals. Since the latter represent a roadblock for transmission, we studied differences in
immune responses of infected asymptomatic male individuals (n = 159) presenting either patent (n = 92 MF+) or latent
(n = 67 MF2) manifestations of Wuchereria bancrofti. These individuals were selected on the basis of MF, circulating filarial
antigen in plasma and detectable worm nests. Immunological profiles of either Th1/Th17, Th2, regulatory or innate
responses were determined after stimulation of freshly isolated PBMCs with either filarial-specific extract or bystander
stimuli. In addition, levels of total and filarial-specific antibodies, both IgG subclasses and IgE, were ascertained from plasma.
Results from these individuals were compared with those from 22 healthy volunteers from the same endemic area.
Interestingly, we observed that in contrast to MF+ patients, latent infected individuals had lower numbers of worm nests
and increased adaptive immune responses including antigen-specific IL-5. These data highlight the immunosuppressive
status of MF+ individuals, regardless of age or clinical hydrocele and reveal immunological profiles associated with latency
and immune-mediated suppression of parasite transmission.
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Introduction

Lymphatic filariasis (LF) is a tropical helminth disease that

causes acute and chronic inflammation in patients spanning 72

countries. According to recent reports, an estimated 120 million

people are infected with around 40 million seriously incapacitated

and disfigured by the disease [1,2]. The consequential socioeco-

nomic impact has thus designated this infection a major public

health concern. The infection is provoked by threadlike

nematodes (Brugia malayi, B. timori or W. bancrofti), which are

transmitted by anopheline and culicine mosquitoes. 91% of

infections are caused by W. bancrofti [3] and adult worms release

millions of microfilariae in periodical patterns that then circulate

in the blood [1]. Although the detection of MF has been essential

for diagnosing bancroftian filariasis, to verify asymptomatic latent

infections other tests are required. For example, visualization of

active nematodes (filarial dance sign, FDS) can be determined via

ultrasonography of the lymphatic vessels in scrotal regions [4,5].

The rapid antigen card test can also be employed since this test

measures circulating filarial antigen (CFA) in the plasma [6,7].

Interestingly, CFA screening has revealed that there are roughly

equal proportions of MF+ and MF2 individuals and this latter

group has remained largely undetected and neglected in previous

studies since at the time of diagnosis affected individuals present

no severe pathology [8]. Since circulating MF are indispensable

in terms of transmission, studying the immunological profiles of

latently infected individuals may provide essential information as

to how MF are prevented from developing or traveling to the

periphery and thus, for the development of new therapeutic

strategies.
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Although filarial infections are often chronic and persist over

many years, the majority of patients elicit only few signs of disease

[9]. Nevertheless, regardless of whether the individuals are

microfilaremic or not, non-limited immune reactions can lead to

different clinical manifestations such as lymphedema, urogenital

disorders or hydroceles. Thus, the factor(s) responsible for eliciting

the degree of clinical disease and pathology remain a matter of

debate. However, the general consensus deems that alongside

genetic traits these overt reactions are related to the intensity of the

host’s responses to dead or dying worms [1,10,11,12,13,14] which

are then possibly enhanced by stronger reactions to unrelated

stimuli or secondary infections. In addition, the release of the

bacterial endosymbiont Wolbachia from moribund larvae or adult

worms may also be a factor especially since they trigger innate and

Th1/Th17 adaptive responses [15,16,17,18]. Wolbachia are

essential for worm survival and this unique relationship has

provided an alternative avenue for chemotherapeutic treatment

[19,20,21].

Parasitic helminths are known to elicit dominant Th2 (IL-5, IL-

13) responses whilst simultaneously inducing a suppressive milieu

[22]. A key paradigm in filariasis is that patients with elevated

levels of regulatory responses have high parasite numbers and low

pathological symptoms whereas patients with few or no parasites

and deliberating pathology mount strong filarial-specific responses

[23,24]. With regards to lymphatic filariasis, many studies have

focused on the immunological differences between patients

presenting different degrees of pathology [25,26,27]. For example,

patently infected individuals with no clinical signs of disease are

characterized by down-regulated IL-2 and IFN-c responses with a

shift towards Th2 (IL-4, IL-5) and Treg (IL-10 and TGF-b)

responses: this milieu is thought to be helminth-mediated in order

to evade host defenses and ensure helminth survival [9,10,28,29].

In contrast, patients with chronic pathology display a stronger Th1

immune response [24,29,30] or even a Th17 response [31] which

in turn induces the secretion of VEGF-C which is associated with

the development of filarial lymphedema [20]. Pathological profiles

of filarial-infected patients are also reflected in their Ig responses.

For example, asymptomatic MF+ individuals present elevated

IgG4 levels whereas those with chronic pathology have higher

IgE:IgG4 ratios [32,33]. IgG4 is a non-complement fixating Ig

that binds weakly to effector cell Fc receptors and can compete

with IgE for antigen-binding sites [34,35]. Its secretion from B cells

is mediated by regulatory T cells in an IL-10 and TGF-b
dependent manner [36,37].

As mentioned above, with the introduction of concise diagnostic

tools, field studies have elucidated that in comparison to MF+

individuals there are equal numbers of asymptomatic MF2

patients harboring cryptic infection [7]. Therefore, we deciphered

the immunological profiles of 159 filarial-infected patients which

were classified as patently (n = 92) or latently (n = 67) infected. On

the basis of filarial-specific Ig levels in plasma or cytokine release

following antigen-specific re-stimulation of PBMCs, this compre-

hensive study has determined the differences in adaptive immune

responses between patient groups. Indeed, our data reveal that

MF+ individuals are more strongly immune-suppressed than

amicrofilaremic patients, providing novel insight into immune

responses of MF2 patients who represent an impasse for the

parasite’s continuous transmission.

Methods

Study population and ethics statement
We studied a cohort population of 159 W. bancrofti-infected

asymptomatic males (18–50 years) from an endemic region of

Ahanta West District, Ghana, in 2008. Recruited individuals were

part of a treatment study (ISRCTN15216778). Asymptomatic

criteria was based on the lack of lymphedema; 12 patients did

however show the presence of clinical hydrocele according to

Mand et al. [38], (MF+ n = 7 and MF2 n = 5). For comparison,

samples were collected from 22 infection-free volunteers. Since

these volunteers resided in the same region and stemmed from

similar socioeconomic backgrounds they were classified as

endemic normals (EN). Written informed consent was obtained

from all individuals. Ethical clearance for this study was given by

both the University of Bonn Ethics committee (‘‘Ethikkommission

der Medizinischen Fakultät der Rheinischen Friedrich-Wilhelms-

Universität Bonn’’), the Committee on Human Research Publi-

cation and Ethics, University of Science and Technology, Kumasi

and the Liverpool School of Tropical Medicine, UK.

Parasitological assessment
The entire study population was screened for other helminth

infections via stool and urine analysis, furthermore subclinical

malaria infection was determined using NADAL Test (nal von

Minden, Moers, Germany). To verify an ongoing filarial infection

patients were tested for circulating filarial antigen (CFA) which

was detected using the TropBioH ELISA test kit (TropBio,

Townsville, Australia) as described previously [39,40]. Due to

the periodicity of the MF, levels of MF were determined from

blood samples collected between 21–23 h. In short, 1 ml of blood

was filtered through a 5 mm Whatman Nucleopore filter (Karl

Roth, Karlsruhe, Germany), the retained MF were then visualized

via Giemsa staining and microscopically counted. 92 individuals

were MF+ and 67 were MF2. 10 individuals (n = 6 MF+ and n = 4

MF2) were also positive for one other helminth infection (Ascaris

lumbricoides n = 8, Strongyloides stercoralis n = 1, Trichuris trichiura n =

1). As mentioned above, 22 volunteers were diagnosed as

uninfected controls since they were both CFA and MF negative.

Study participants were examined for occurrence of adult filariae

and lymph dilation in the scrotum using a portable ultrasound

machine (SONOSITE 180 Plus, Sonosite, Bothell, USA) equipped

with a 7.5 MHz linear transducer [19]. The number of worm nests

Author Summary

The tropical helminth infection lymphatic filariasis affects
more than 120 million people worldwide and is considered
a major public health concern. Over 90% of infections are
elicited by Wucheria bancrofti and adult worms reside in
the lymphatic system releasing millions of microfilariae
(MF), which periodically circulate in the blood. New
diagnostic tools have provided a method to determine
asymptomatic patients that are amicrofilaremic: a subset
of individuals that have so far been neglected but are of
special interest since these patients represent a dead end
in terms of parasite transmission. Therefore, we were
interested in determining whether the absence of MF was
associated with distinct immunological profiles and
observed that indeed responses in MF+ patients were
dampened. From the viewpoint of the helminth such
overall suppression of immune responses may facilitate MF
transmission. Latent individuals however, presented ele-
vated filarial specific responses and extrapolating these
findings to the host provides novel insight into possible
protective mechanisms which either actively hinders the
release of MF from worms or their travel to the periphery.
Further research into these aspects may broaden the range
of strategies currently employed to reduce transmission
and in turn eliminate bancroftian filariasis.

Microfilariae Dampen Host Responses
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was determined by detecting movement of adult worms using the

Pulse Wave Doppler mode and all infected patients harbored at

least one detectable worm nest (Filarial Dance Sign, FDS) [4].

Dilation of lymphatics and lymphatic vessels at the position of the

worm nest and the maximum dilation of a lymphatic vessel

(without worms) in the supratesticular area were measured in all

participants (n = 181). The latter parameter was then evaluated

using the following grading system: no dilation = stage 0; minimal

dilation (,0.2 cm) = stage 1; mild dilation (0.21–0.5 cm) = stage 2;

moderate dilation (0.51–1.0 cm) = stage 3 and severe dilation

(.1.1 cm) = stage 4 [38].

Antigens and antibodies
A soluble antigenic extract of Brugia malyi (B.m.) was prepared from

adult worms that developed in Mongolian jirds (Meriones unguiculatus)

as published earlier [41]. Recombinant full-length Plasmodium

falciparum Merozoite Surface Protein 1 (MSP-1) was prepared as

previously described [42]. LPS (Serratia marescens) was obtained from

Sigma-Aldrich (Munich, Germany). B.m. and MSP-1 were tested for

their endotoxin levels using the kinetic Limulus amoebocyte lysate

assay (Charles River, Charleston, SC), the final endotoxin levels in

soluble B.m. extract or MSP-1 were ,0.16EU/ml or ,0.05EU/ml

respectively. Anti-CD3 and anti-CD28 antibodies were purchased

from eBiosciences (Frankfurt, Germany). Secondary antibodies for

IgG1-4 were obtained from Sigma-Aldrich, whereas that for IgE was

purchased from Southern Biotech (Birmingham, USA).

PBMC preparation
Venous blood was collected into EDTA-filled monovettes. Blood

was transported at 4–8uC from field stations to the local laboratory

where PBMCs were directly isolated. In brief, 7 ml of blood was

transferred into Ficoll containing Leucosep tubes (Greiner Bio-One,

Frickenhausen, Germany) and centrifuged for 20 min at 8006g at

room temperature. Plasma layers were removed and frozen until

further use. Cell suspensions were then washed twice with sterile

PBS (8 min at 400g at room temperature and re-suspended in

RPMI 1640 medium (PAA, Linz, Austria), supplemented with 10%

FCS (PAA) and 50 mg/ml of gentamicin (PAA), before counting

with trypan blue (Sigma-Aldrich, Munich, Germany).

In vitro cell cultures
For re-stimulation, 26105 PBMCs/well were plated into 96-well

plates (U-shaped, Greiner Bio-One). PBMCs were left either

unstimulated or stimulated in triplicates with the following stimuli:

B.m. extract (5 mg/ml), anti-CD3/anti-CD28 (10 mg/ml and

2.5 mg/ml, respectively), MSP-1 (0.25 mg/ml), or LPS (50 ng/

ml). Cultures were incubated for 72 hours at 37uC in 5% CO2.

Supernatants were collected and frozen until further use.

Determination of Th-like profiles
Culture supernatants from stimulated PBMCs were thawed on ice

and analyzed for the content of IL-4, IL-5, IL-6, IL-10, IL-13, IL-17,

IFN-c, TGF-b and TNF using R&D Duo set ELISA (R&D Systems,

Wiesbaden-Nordenstadt, Germany) according to the manufacturer’s

instructions. In brief, ELISA plates (Greiner Bio-One) were coated

with 50 ml capture antibody per well overnight. The plates were

blocked for 1 hour with 1% BSA in PBS and subsequently incubated

for 2 hours with 50 ml/well supernatants or standards. Plates were

incubated for 2 hours with 50 ml/well of detection antibody.

Thereafter, plates were incubated in the dark with 50 ml/well

Streptavidin-horseradish-peroxidase for 20 minutes. Finally, 50 ml/

well substrate solution containing TMB [tetramethylbenzidine],

(Sigma-Aldrich) were added to the plates and after 30 minutes the

reaction was stopped with 25 ml/well 2N H2SO4 (Sigma-Aldrich). All

steps were fulfilled at room temperature. The plates were measured

using the SpectraMAX ELISA reader (Molecular Devices, Sunyvale,

USA with wavelength correction (450 nm and 570 nm). Data were

analyzed with SOFTmax Pro 3.0 software.

Analysis of immunoglobulins
Plasma from study participants was investigated for immuno-

globulins (total IgG, IgG1, IgG2, IgG3, IgG4 and IgE) using the

Cytometric Bead Assay Flex Set (Becton Dickinson, Heidelberg,

Germany). Plasma was diluted in RPMI 1640 medium (IgG total,

1:100,000, IgG1, 1:100,000, IgG2-4, 1:20,000, IgE, 1:2,000) and

according to the manufacturer’s instructions incubated with the

appropriate amount of beads for one hour at room temperature.

Afterwards, samples were washed with 500 ml washing buffer for

five minutes at 4006 g and then incubated for two hours in the

dark with their appropriate detection antibody. In the last step,

samples were washed, re-suspended and solved in 200 ml washing

buffer and analyzed by flow cytometry using the FACS-Canto I

(BD). Data were analyzed using FCAP-Array software and BD

FACSArray Bioanalyzer.

Assessment of antigen-specific IgE and IgG subclasses
Individual plasma samples were analyzed for levels of antigen-

specific IgE and IgG1-4. In brief, 96-well polysorb plates (Nunc,

Roskilde, Denmark) were coated overnight at 4uC with 50 ml/well

of 5 mg/ml B.m. extract in PBS (pH 9.6). Plates were washed three

times in 0.05% Tween/PBS (pH 7.2), once in PBS alone and

blocked with 200 ml/well of 1% BSA/PBS for two hours at room

temperature. After an additional washing step, 50 ml/well of diluted

plasma was added in triplicates (1:500 for specific IgG1-4 and 1:20

for specific IgE) and incubated overnight at 4uC. After washing,

50 ml/well of the biotinylated secondary antibodies were added for

two hours at room temperature, IgG1 (1:1,000), IgG2 (1:15,000),

IgG3 (1:4,000), IgG4 (1:15,000); IgE (1:1,000). Following the next

wash, 50 ml/well streptavidin-peroxidase (Roche Diagnostics,

Mannheim, Germany; 1:5,000) was incubated for 45 minutes.

After the final wash, 50 ml/well of substrate solution containing

TMB (tetramethylbenzidine, Sigma-Aldrich, Munich, Germany)

were used and the reaction was stopped with 25 ml/well 2N H2SO4.

The plates were measured as mentioned above. Pooled plasma from

ten patients was used for the generation of calibration curves and

assigned arbitrary units for the specific anti-filarial antibodies. In

plasma from healthy European donors helminth-specific IgG1-4

and IgE were not detectable (data not shown).

Statistical analysis
Statistical analyses were performed using the software SPSS

version 19 (SPSS Schweiz Ag, Zurich, Switzerland), the PRISM 5

programme (GraphPad Software, Inc., La Jolla, USA) and SAS

version 9.2 (SAS Institute Inc. Cary, NC, USA). To compare the

three groups a Kruskal-Wallis-test was performed and, if

significant, followed by Mann-Whitney–U test for the comparison

of two groups. P values of 0.05 or less were considered significant.

Where indicated the Cochran-Armitage test was used to determine

a trend. In addition, data were assessed using a generalized linear

model analysis using age as a covariate.

Results

Clinical evaluation of lymphatic filariasis patients shows
an increased number of worm nests in MF+ individuals

Our study cohort comprised of 159 W. bancrofti-infected male

patients and 22 endemic normal volunteers (EN) from 25 villages

Microfilariae Dampen Host Responses
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in Ghana. Amongst the infected individuals, 92 were micro-

filaremic (MF+) and 67 amicrofilaremic (MF2) and the age

distribution within the groups was similar (Figure S1). Patients

were selected, as part of a larger treatment study, on the basis of

adult worms (FDS+) and CFA+ (Table 1). Patients recruited to the

study were negative for lymphedema (LE). Within the MF+ and

MF2 groups no significant differences could be observed in lymph

dilation measurements monitored at worm nest locations

(Figure 1A). MF+ patients did however possess significantly more

scrotal worm nests when compared to MF2 patients (Figure 1B),

which was confirmed using the Cochran-Armitage trend test

(p,0.001). Although there was a slight positive correlation

between the number of worm nests and the amount of circulating

microfilaria (Spearman r = 0.32, p,0.001), there was no correla-

tion with either the age of the individual or the villages in which

they were residing. With regards to CFA, we also found a positive

correlation (r = 0.68, p,0.001) between the concentration of CFA

and MF. Whereas Figure 1A illustrates the local lymph dilation

around the detected worm nests, Figure 1C depicts the maximal

detectable lymph dilation within the whole scrotal tissue, including

the area of the spermatic cord which is not necessarily co-localized

with the position of worm nests. Here, there was no significant

difference between the two W. bancrofti-infected groups. In EN,

maximal dilation of scrotal lymphatic vessels was also assessed and

they displayed lymph dilation between grades 0 and 2 (Figure 1C).

Participants had participated in MDA with an average of two

rounds anti-filarial therapy (IVM and ALB), the most recent round

being $10 months before start of the study (Table 1). Previous

studies have documented that following such therapy MF reappear

in 77% of infected patients after 12 months [43]. Thus, we

conclude that our asymptomatic amicrofilaremic participants

presented latent infection.

Filarial-specific IL-5 responses are elevated in latently
infected individuals

Although much is known about the immunological differences

between asymptomatic MF+ patients and those with chronic

pathology, little is known about the differences in antigen-specific

responses of asymptomatic patent and latent individuals. To address

the immunological profile of MF+ and MF2 patients, PBMCs were

isolated from infected individuals and EN and stimulated with anti-

CD3/anti-CD28, B.m. extract, MSP-1 and LPS for three days.

Th2-like profiles were determined on levels of IL-5 (Figure 2A–D),

IL-13 (Figure 2E–H) and IL-4 (data not shown) in the supernatant.

IL-5 and IL-13 are typical hallmarks for helminth infections and

Figures 2A and E show that upon unspecific T cell activation, both

groups of infected individuals and EN produced similar levels of

these cytokines. With regards to filarial-specific responses, PBMCs

of MF2 patients made significantly more IL-5 than MF+ individuals

(Figure 2B), whereas EN hardly responded to this antigen at all. As

shown earlier by Limaye et al. [44], when correlating antigen-

specific IL-5 production with the percentage of blood-derived

eosinophils, no significant differences could be observed for either

infected group (data not shown). IL-13 was strongly produced by all

infected individuals with no significant differences between MF+

and MF2 groups. When compared to EN however, both infected

groups produced significantly higher levels of IL-13 (Figure 2F). In

response to MSP-1 and LPS, we could not detect any significant

differences between the two infection groups (Figures 2 C, D, G and

H). IL-4 production was not detected in any of the stimulations (data

not shown).

Amicrofilaremic patients present elevated IL-17
responses

To observe whether there were any diversities in the Th1- and

Th17-like profiles of microfilaremic and amicrofilaremic patients

Figure 1. Active circulation of MF is associated with the number of worm nests. Using ultrasound, infected individuals were examined for
(A) the lymph dilation around the worm nests and (B) for the amount of worm nests (FDS). In addition, patients were also examined for (C) the
maximum degree of their supratesticular lymph dilation, presented as a staging system. Box whisker plots in (A) show median, interquartile ranges
and outliers of individually tested patients. Bars in (B) and (C) show the number of individuals and their correlating amount of worm nests or lymph
dilation respectively. Data in (B) were tested for significance with the Cochran-Armitage trend test (p,0.001).
doi:10.1371/journal.pntd.0001611.g001

Table 1. Characteristics of study population.

MF+ (92) MF2 (67) EN (22)

age 34.68 (18–50) 34.61 (18–50) 32.50 (19–45)

FDS positive positive negative

CFA positive positive negative

Rounds of ivermectin 2.17 2.09 n.d.

Number of scrotal worm
nests

1.80 1.28 0

m-mode average (cm) 0.41 0.36 0

MF count (MF/ml) 979.16 (1–7,590) 0 0

Age: mean (range); rounds of ivermectin: mean; Number of scrotal worm nests:
mean; m-mode: mean; MF count: mean (range).
doi:10.1371/journal.pntd.0001611.t001

Microfilariae Dampen Host Responses
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we also measured the secreted levels of IFN-c (Figure 3A–D) and

IL-17 (Figure 3E–H). PBMC from only a limited number of

patients secreted these cytokines upon re-stimulation with B.m.

extract (Figures 3B and F). Similarly, few responders were also

observed upon stimulation with MSP-1 (Figures 3C and G) and

LPS (Figures 3D and H). Indeed, only MF2 patients responded to

MSP-1 in terms of IL-17 production. These responders did not

correlate with those patients that had a subclinical plasmodial

infection. Albeit only in a small portion of the study cohort (19/

181), further statistical analysis revealed that these subclinical

malaria patients did not differ in any of their responses when

compared to the malaria negative patients. Interestingly, when

compared to patently infected patients and EN, the MF2 group

also showed significantly elevated IL-17 responses upon anti-

CD3/anti-CD28 stimulation (Figure 3E). Although non-signifi-

cant, after stimulation with anti-CD3/anti-CD28 the median IFN-

c response of MF+ patients was lower than either of the other two

groups (Figure 3A). These results indicate that neither infected

group displayed a dominant filarial-specific Th1-like response.

Filarial-specific IL-10 is enhanced in latently infected
individuals

Next, using the readout of IL-10 production we analyzed the

regulatory responses of these patients. We found that in our

patient cohort, all IL-10 responses from MF+ patients were lower

than those from MF2 patients irrespective of the applied stimulus.

These included the responses to malaria peptide (Figure 4C) and

LPS (Figure 4D) which were significantly lower when compared to

responses from EN and MF2 patients. These data imply that MF

are able to immunomodulate responses to other parasitic antigens

such as those derived from malaria species as well as to a bacterial

stimulus. Due to the high background production of TGF-b, no

differences could be determined within the different groups,

irrespective of antigen stimulus (data not shown). Finally, we

observed a general down regulation of IL-6 release from PBMCs

in the microfilaremic group when compared to uninfected

individuals and this was irrespective to the applied stimulus

(Figures 4E–H). In the case of T cell activation we also detected a

significant suppression of IL-6 release from PBMCs of patently

infected individuals (Figure 4E), again demonstrating down-

regulated responses in these individuals.

Microfilaremic individuals show dampened TNF
responses

Next, stimulated PBMCs were investigated for their TNF

production since during filariasis this cytokine has been shown to

be a feature of acute infection [45]. Strikingly, after stimulation

with anti-CD3/anti-CD28, B.m. extract, MSP-1 or LPS we found

significantly suppressed TNF responses from MF+ patients when

compared to either EN or the latent infected group (Figure 5A, B,

C and D). These data highlight that by dampening TNF

responses, whether adaptive or innate, there is a potential benefit

for the helminth since reduced responses to MF would enhance

the chances for transmission. In association, the higher levels of

TNF in latent individuals may indicate a possible mechanism in

suppressing MF release or even rapid destruction of MF.

Quantitative assessment of IgG and IgE levels
Alongside IL-5, elevated levels of IgE are a hallmark of helminth

infection [33]. Therefore, we measured the concentrations of total

IgE and IgG subclasses in the plasma of all study participants and

uninfected volunteers (Figures 6 A–E). Microfilaremic patients had

Figure 2. Patent infection alters filarial-specific Th2-like responses. Isolated PBMCs (26105/well) from endemic controls (EN) or filarial-
infected MF+ or MF2 patients were stimulated with either anti-CD3/anti-CD28 (10 mg/ml/2.5 mg/ml; A and E), Brugia malayi extract (B.m., 5 mg/ml; B
and F), MSP-1 0.25 mg/ml; C and G) or LPS (50 ng/ml; D and H) for 72 hours. Thereafter, levels of IL-5 (A–D) or IL-13 (E–H) were measured in the culture
supernatants via ELISA. Graphs show box whiskers with median, interquartile ranges and outliers after background subtraction. Statistical
significances between the indicated groups were obtained after Kruskal-Wallis and Mann-Whitney-U tests.
doi:10.1371/journal.pntd.0001611.g002

Microfilariae Dampen Host Responses

www.plosntds.org 5 April 2012 | Volume 6 | Issue 4 | e1611



Figure 3. Latent infected patients show elevated IL-17 but not Th1-like responses. Isolated PBMCs (26105/well) from endemic controls
(EN) or MF+ or MF2 patients suffering from LF were stimulated with either anti-CD3/anti-CD28 (10 mg/ml/2.5 mg/ml; A and E), Brugia malayi extract
(B.m. 5 mg/ml; B and F), MSP-1 (0.25 mg/ml; C and G) or LPS (50 ng/ml; D and H) for 72 hours. Thereafter, levels of IFN-c (A–D) or IL-17 (E–H) were
measured in the culture supernatants via ELISA. Graphs show box whiskers with median, interquartile ranges and outliers after background
subtraction. Statistical significances between the indicated groups were obtained after Kruskal-Wallis and Mann-Whitney-U tests.
doi:10.1371/journal.pntd.0001611.g003

Figure 4. Regulatory responses are enhanced in latently infected individuals. Isolated PBMCs from endemic controls (EN) or patients
infected with W. bancrofti were stimulated with anti-CD3/anti-CD28 (10 mg/ml/2.5 mg/ml; A, E), Brugia malayi extract (5 mg/ml, B, F), MSP-1 (0.25 mg/
ml; C, G) or LPS (50 ng/ml, D, H) for 72 hours. Thereafter, culture supernatant was tested via ELISA for cytokine release of IL-10 and IL-6. Graphs show
box whiskers with median, interquartile ranges and outliers after background subtraction. Statistical significances between the indicated groups were
obtained after Kruskal-Wallis and Mann-Whitney-U tests.
doi:10.1371/journal.pntd.0001611.g004
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significantly more IgE when compared to EN (Figure 6A).

Interestingly, these levels were also more pronounced when

compared to the latent infected group (Figure 6A). With regards to

the IgG subclasses, no differences in levels of total IgG1 and IgG3

could be observed between individuals in any of the study groups

(Figure 6B and D). However, both patient groups showed a

significant reduction of IgG2 when compared to EN (Figure 6C).

Although no differences in the levels of IgG4 could be observed

Figure 5. Circulating microfilariae dampen release of TNF. Isolated PBMCs from endemic controls (EN) or patients suffering from LF were
stimulated with anti-CD3/anti-CD28 (10 mg/ml/2.5 mg/ml; A), Brugia malayi extract (5 mg/ml; B), LPS (50 ng/ml; C) or with MSP-1 (0.25 mg/ml; D) for
72 hours. Thereafter, culture supernatant was tested via ELISA for cytokine release of TNF. Graphs show box whiskers with median, interquartile
ranges and outliers after background subtraction. Statistical significances between the indicated groups were obtained after Kruskal-Wallis and
Mann-Whitney-U tests.
doi:10.1371/journal.pntd.0001611.g005

Figure 6. Patently infected individuals present elevated levels of total IgE. Plasma from all three groups was analyzed for the production of
total IgG1 (A), IgG2 (B), IgG3 (C), IgG4 (D) and IgE (E) with the Cytometric Bead Array. (F) shows the ratio of IgG4 and IgE. Graphs show box whiskers
with median, interquartile ranges and outliers. Statistical significances between the indicated groups were obtained after Kruskal-Wallis and Mann-
Whitney-U tests.
doi:10.1371/journal.pntd.0001611.g006
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between the different cohorts (Figure 6E) the ratio of IgG4 and IgE

was significantly reduced in the microfilaremic group when

compared to MF2 and EN individuals (Figure 6F).

MF+ patients display a predominant antigen-specific
IgG4 phenotype

Finally, individual patients were analyzed for their filarial-

specific IgG and IgE expression and results are displayed as ratios

of antigen-specific IgG4 to the other isotypes (Figure 7 A–D). As

expected, the control group produced only background levels of

specific filarial antibodies (Figure 7A–D). Ratios of antigen-specific

IgG4/IgE (Figure 7A), IgG4/IgG1 (Figure 7B), IgG4/IgG2

(Figure 7C) and IgG4/IgG3 (Figure 7D) in the infected groups

were all significantly higher when compared to the EN group. In

contrast to the data generated on the presence of total IgE and

IgG4 (Figure 6F), MF+ patients showed a dominant expression of

filarial-specific IgG4 (Figure 7A). Indeed, this strong IgG4

phenotype in MF+ patients was reflected in all ratios

(Figures 7A–D). Significant differences between MF+ and MF2

groups were found in the ratios of IgG4/IgE (Figure 7A), IgG4/

IgG2 (Figure 7C) and IgG4/IgG3 (Figure 7D). In summary,

patently infected individuals display a strong expression of filarial-

specific IgG4 indicating that circulating MF also influence B cell

responses.

Elevated immune responses of MF2 patients are
independent of age

Previous publications have shown that age may play a role with

regards to cytokine production during filariasis [46] and

interestingly we also found that an increase in age correlated with

increased immune responses. Of note, age distribution was equal

between the infected groups (Figure S1). Therefore, we performed

regression analysis using age as a covariate and log transformed

[log(concentration+0.5)] all data to correct for skewness [47,48].

Statistically however, this did not change our overall results, that

is, PBMCs from latently infected individuals produced more

cytokines upon re-stimulation with various stimuli and also the

results for the immunoglobulin responses stayed the same.

Moreover, upon age correction, additional significant differences

become apparent in the scenario of IL-10 production following

anti-CD3/anti-CD28 stimulation. Indeed, MF+ patients produced

significantly less IL-10 when compared to MF2 individuals

(p = 0.0047) which correlates to the statistical responses observed

with the other stimuli (Figure 4B–D). The only variable for which

we found an interaction between age and MF status was total

IgG3 secretion: here increases in age correlated with elevated

IgG3 in MF2 but less IgG3 in MF+ patients but the latter group

still had more IgG3. In addition, we also observed the effect of

removing our 12 clinical hydrocele patients and interestingly, all

statistical outcomes remained the same as shown in Figures 2–7

with the exception of TNF secretion upon B.m. specific re-

stimulation. Here however, the trend remained. These data

strengthen and confirm other studies which have revealed that it is

the parasitic status and not the clinical condition of the individual

that influences the observed immunological responses [49].

Discussion

Helminths are renowned for their ability to immunomodulate

the host’s immune system to ensure both reproduction and long-

term survival and the filarial nematodes are no exception. Several

reports have deciphered the immunological status of MF+ patients

with those presenting chronic pathology and it appears that the

balance between Th1/Th2, Treg and immunoglobulin responses,

alongside genetic factors of both the parasite and host, may define

whether the infected individual is asymptomatic or develops

lymphedema [28]. However, little has been reported about the

strength and character of immune responses elicited in asymp-

tomatic amicrofilaremic individuals, a cohort of patients which are

epidemiologically interesting since they are a dead end for the

parasite’s life cycle with regards to transmission. To address this

aspect, we studied a cohort of non-lymphedema W. bancrofti-

infected individuals since conclusive differentiation of the infection

status can now be readily achieved using various diagnostic tools

[6,7]. Our data shows that in contrast to amicrofilaremic

individuals, patients with a patent infection have suppressed

responses, which indicates that the parasite actively prevents

unwarranted reactions to the transmission stage of the parasite. In

addition, these findings indicate that latent individuals have

developed immune mechanisms to prevent the development of

microfilariae, or MF reaching the peripheral blood (which is the

normal night-time scenario in all individuals with periodic LF).

Although our patients presented no LE a small proportion had

clinical hydrocele in accordance to Mand et al., [38]. Remarkably,

the presence of hydrocele did not influence the outcome of

dampened responses in the patently infected group, indicating that

these two separate pathological outcomes can influence the

immune responses in a different manner.

Naturally, the dampening of not only antigen-specific responses

but those to bystander antigens would greatly enhance the

parasite’s chance of survival. Support of this hypothesis was

Figure 7. Patent infected patients produce more filarial-specific IgG4. Plasma from all participants was investigated for the presence of
helminth-specific immunoglobulins by ELISA. Plates were coated overnight with 5 mg/ml B.m. extract in PBS (pH = 9.6), incubated with patient and
control plasma overnight and analyzed for specific IgG1-4 and IgE. Presented are the ratios of antigen-specific antibodies IgG4/IgE (A), IgG4/IgG1 (B),
IgG4/IgG2 (C) and IgG4/IgG3 (D). Graphs show box whiskers with median, interquartile ranges and outliers. Statistical significances between the
indicated groups were obtained after Kruskal-Wallis and Mann-Whitney-U tests.
doi:10.1371/journal.pntd.0001611.g007
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clearly observed by the secretion of TNF, since responses of

PBMC isolated from patently infected individuals were strongly

down-regulated regardless of the stimulus. In recent years, there

have been various reports describing the involvement of TNF

during filariasis [45,50,51]. However, the majority of these studies

have investigated differences between infected and EN or between

infected and chronic pathology or between MF+ patients and those

with episodes of acute filariasis (adenolymphangitis). For example,

in studies of acute filariasis, individuals had elevated levels of TNF

in their sera when compared to MF+ patients [50]. In another

study, that compared EN with MF+ patients, TNF responses from

PBMCs of microfilaremic patients were again dampened if their

cells were stimulated with either live L3, live MF or filarial antigen,

although the latter was not significant [51]. Reduced levels of TNF

were also observed in asymptomatic patients (microfilaremia not

determined) when compared to those with chronic pathology [31].

Thus, in correlation with the findings here the presence of

circulating MF dampens TNF responses regardless of whether

these are antigen-specific, bystander or innate. Intriguingly, in vitro

studies have implicated that Wolbachia endobacteria, but not the

worm itself, can elicit TNF secretion from innate host cells in a

TLR-dependent manner [15,16]. Moreover, persistent exposure

to Wolbachia but not bacteria-free nematode extracts, drives

homologous and heterologous tolerance of macrophages to TLR

and CD40 ligands and protects against endotoxin shock in vivo

[52]. Other studies have linked TNF with promoting the

production of vascular endothelial growth factors such as

VEGF-C and VEGF-A [53,54], which reportedly contribute to

the development of lymphodema and hydrocele [20,40]. In

addition to the decreased secretion of TNF from PBMCs of

patently infected individuals we also observed suppressed IL-17

responses. Interestingly, in vitro, rIL-17 can drive TNF production

in macrophages [55] and a combination of rIL-17 and rTNF was

shown to increase the production of angiogenic factors like VEGF,

from fibroblasts [56]. Since we also observed differences in IL-6

production between MF+ and amicrofilaremic individuals and it is

well known that human IL-17 is induced by IL-6 in combination

with TGF-b [57], a hypothetical scenario begins to emerge: worm

death could promote the release of Wolbachia which in turn elicits

TNF production by triggering TLR [58]. Enhanced TNF, and

possibly IL-6, coupled to stronger IL-17 responses could instigate

the production of VEGF and promote the onset of pathology. In

association, studies revolving around the immune responses of

chronic pathology patients observed elevated levels of IL-17 and

TNF [31]. The presence of this cytokine combination in our latent

individuals may reflect a higher susceptibility to pathology

especially since a cross-sectional study has indicated that the onset

of chronic pathology is linked to amicrofilaremic status [59].

Theoretically, the normal release of MF could counterbalance this

immunological milieu circumventing unwarranted responses.

Interestingly, unlike TNF, secretion of IFN-c was not detectable

for any of the tested stimuli except direct T cell activation

(Figure 3A), which showed that microfilaremic patients produced

less IFN-c, albeit insignificantly, than latent infected individuals. In

association, other studies comparing MF+ individuals and those

presenting chronic pathology showed that there were no

significant differences in the numbers of polyclonally activated

Th1 cells [28,31]. With regards to Th2-like responses, all infected

patients produced more IL-5 and IL-13 than the EN upon co-

culture with the helminth antigen. Although a previous study was

unable to observe significant increases of IL-5 expression levels in

MF2 individuals [60], we observed elevated IL-5 responses in

amicrofilaremic patients upon filarial-specific re-stimulation.

Interestingly, this reflects studies performed with the murine

model of filariasis which have revealed that in the absence of IL-5

infected mice present higher and longer microfilaremic burdens

when compared to wildtype strains [61]. Although we could not

confirm a negative correlation between the amount of MF and

secreted levels of IL-5, as described for Onchocerca volvulus infection

[62], we could show that microfilaremic individuals produced less

IL-5 and that MF levels were correlated to the number of worm

nests.

It is generally accepted that during filariasis, IL-10 and TGF-b
play an immunosuppressive role but the source of IL-10 remains

inconclusive [63,64,65,66]. In onchocerciasis, the presence of IL-

10 is clearly associated with a protective immunological scenario:

high IgG4, IL-10 and Treg are associated with low pathology

whereas high levels of IgE, IL-4 and eosinophilia are common in

patients with severe pathology [9,22,64,67]. In contrast to latent

individuals, we found elevated polyclonal IgE levels in MF+

individuals (Figure 6A). Such high levels of IgE may facilitate the

persistence of infection through the production of irrelevant (not

parasite Ag-specific) immunoglobulins, that saturate high affinity

IgE receptors expressed on mast cells which renders them unable

to be specifically cross-linked by parasite antigen [28]. Interest-

ingly, although filarial-specific IL-5 and IL-10 responses were

actually dampened in the presence of microfilaria, the ratio of

antigen-specific IgG4 to IgE became elevated. Since IgG4 and IgE

compete for the same binding sites, determining the ratio provides

an indication about the pathophysiological conditions, that is,

whether the antigen triggers an IgE mediated hypersensitivity

response or whether this response can be blocked by IgG4 [68].

The quantities of specific IgG4 produced in filariasis patients can

be remarkably high. In patients presenting elephantiasis, IgG4

levels are similar to those found in EN (57% and 55% of filarial-

specific IgG respectively) whereas in MF+ carriers the amount is

significantly higher (88%) [33]. Upon analyzing the ratio of

specific IgG4 to IgE and IgG subclasses, we detected a strong

dominance of IgG4 in the microfilaremic group. With regards to

IgE, this confirms a study performed by Jaoko et al. in East Africa

and interestingly, this group determined that specific antibodies

levels reflect infection status rather than chronic lymphatic disease

[49].

In summary, upon comparison with MF+ individuals, amicro-

filaremic patients display an increased profile of TNF, IL-17, IL-

10, IL-6 and filarial specific Th2-like responses. Since age has been

shown to play a role in filarial-specific immune responses, we used

regression analysis to assess the influence of age on our data. In the

majority of our stimulation scenarios, we found that an increase in

age did correlate with increased cytokine production. However,

age did not alter the overall outcome, that is, dampened responses

shown by the MF+ patients, indicating that is the infection status

which determines the immune profile. This elevated cytokine

milieu, both filarial and bystander specific, may contribute to the

induction of other immunological pathways such as VEGF which

in turn promotes overt pathology. In contrast, the immunosup-

pressive pattern in MF+ patients is complemented by the high ratio

of specific IgG4/IgE. The prevalence of IgG4 provides protection

to both host and parasite since it provides a mechanism in order to

counter-regulate high IgE and thus avoid excessive immunopa-

thology. Interestingly we saw the described difference between the

two infected groups, which did not suffer from chronic pathology,

indicating again that the presence of microfilaria seems to be

relevant to induce immunosuppression. Such tempered immune

responses would provide an environment that benefits the

transmission phase of the parasite. The findings herein provide

novel insight into the immunology of asymptomatic amicrofilare-

mic individuals, a previously neglected cohort of patients. Their
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elevated immune responses may provide the key into elucidating

alternative therapeutic treatments which would essentially block

transmission and consequently eradicate the infection.

Supporting Information

Figure S1 Equal age distribution amongst filarial-
infected individuals. Since age has been reported to play role

in filarial-induced immune responses we assessed the age

distribution amongst our infected males. No significant differences

could be observed. Further details of the patients groups can be

observed in Table 1. Symbols represent individuals with each

group MF+ (n = 92) and MF2 (n = 67).

(TIF)
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