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ABSTRACT 

Manual selection approaches in the repairs of cars are usually inadequate and cannot provide the 

best solution for a company to maximize revenue; hence a tremendous effort has been spent for 

improving operational productivity through effective and efficient means of selections. 

This research develops a procedure of using a simple knapsack model to solve the problem of 

selecting and scheduling cars due for repairs in an auto workshop environment. This is a direct 

application of a Knapsack problem to an industrial problem of selection and scheduling. 

This thesis considers the application of the classical 0-1 knapsack problem with a single 

constraint to the selection of some cars which has to be repaired within a given time. Our 

objective of selecting these cars is to maximize income from the associated labour charges 

earned from the repairs of the cars. 

Our focus is to use a simple scientific approach of Dynamic Programming that can solve the 

classical 0-1 knapsack problem above.  
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CHAPTER 1 

1.0 INTRODUCTION  

There is a maxim in the automobile industry which says that: „the first car is sold by the 

salesman but all subsequent ones are sold by good after-sales service.‟ This shows an absolute 

necessity to recognize the Auto workshop as an important unit in the Auto industry because it 

can be used to promote sales of cars and also customer loyalty. Customers who become delighted 

as a result of good after-sale service have the highest probability of remaining loyal to the 

company that served them.  

Motor vehicles are now regarded as necessities in most developed nations. The number of cars, 

vans, trucks, and buses in the world now averages at least one for every 12 human beings. 

The situation is not too different from what pertains in Ghana. Cars and bikes no longer fall 

under the category of luxurious items in Ghana; rather they have now become the basic 

necessities of life. Ghanaians have realized that they all require safe vehicles to commute and 

make their day-to-day travelling easier. We all have our dreams and to own a personal vehicle is 

everyone‟s dream. To buy a vehicle is a dream of several people and the ones who have been 

successful in achieving these dreams ensure that they maintain their vehicle in the best possible 

way. 

1.1 BACKGROUND OF STUDY 

The Automobile industry in Ghana continues to experience an unforeseen boom. Thanks to the 

buoyant economic condition, today almost every decently earning Ghanaian dreams of owning a 

car. Again, due to the investor-friendly climate in the country and the adequate legislation to 
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promote and protect businesses to thrive in the country, many investors, both foreign and local, 

have taken advantage of the situation to open businesses and the Automobile sector is not an 

exception. 

Between the period 1980 and 1990, one could hardly see automobile companies scattered around 

the country. There were only a few like Toyota Ghana, Japan Motors, Auto Parts and probably 

CFAO among others. The situation is now different. Today, the industry has seen tremendous 

growth resulting in individuals importing vehicles both brand new and second hand from Europe 

for sale in Ghana. Almost along, every highway and major road is a garage displaying different 

models of vehicles for sale. The fascinating thing about the industry is that some of the players 

have gone the extra mile to liaise with the banks to provide credit facility for their prospective 

buyers. 

Currently, Ghana can boast of about 20 automobile companies that sell brand new cars and over 

1000 garages that sell slightly used cars (home second-hand cars) in the country. Those engaged 

in the sale of the second-hand vehicles continue to increase day in day out churning out moderate 

prices to enable customers to purchase from them. Competition in the industry has become 

keener and keener, while dealers continue to devise means of attracting customers to buy their 

vehicles. One of the means that auto companies can use to attract customers is reducing 

throughput times in their after-sale service departments. (Automobile Industry in Ghana, Daily 

Graphic, Page 18, Wednesday, November 24, 2010) 

Normally the associated decisions involve the assignment of tasks to resources and finding the 

processing order of jobs on each resource in order to achieve in advance, a specific goal(s) of a 

company. 
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In general after sale service activity, managers analyze the capacity of their outfit and customer 

demand, and then develop a servicing schedule to assign spare parts and tools to jobs to be 

carried out. 

The after-sales service activities in recent times are acknowledged as a significant source of 

revenue, profit and competitive advantage in most Auto workshops in Ghana. Managers of Auto 

workshop therefore have the fundamental obligation to ensure the most efficient deployment of 

the monetary investment allocated to the running of their workshops. If this basic framework is 

adhered to, then managers of Auto workshops can be able to maximize the total net present value 

of all revenues accrued from all the jobs (i.e. repairs and servicing) that are carried out in their 

workshops. 

One of the processes that can be used to achieve the above goal is an effective allocation model 

based on monetary issues. Therefore an efficient and effective allocation process can enable 

Auto workshops to allocate their limited resources (repair time) to jobs (repairs and servicing) 

over a specified period of time. 

Premier Technik Motors Ltd is an auto workshop located at South Industrial Area, Accra in 

Ghana. It was incorporated on 25
th

 March 2009, starting business in the same month. The 

workshop services Vw, Audi, Skoda and Volvo brands of vehicles. It has Auto-robot jig, 

Spraying Booth and Oven, Hydraulic and Electric workshop lifts, a spare parts store and a 

workshop floor. It has a team of technicians for the four different brands of Vehicles they repair. 

Some of these technicians have had training with Volkswagen and Skoda companies in Germany 

and Czech Republic respectively. This team has thorough knowledge of repairs and hands on 

experience with respect to these types of vehicles (i.e. Vw, Audi, Skoda and Volvo). The 
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customer profile of this workshop includes Ssnit,Cocoa Research Institute of Ghana, Cocobod, 

Seed Production Unit Of Cocobod, Trust Bank, Canadian High Commission, Netherlands 

Embassy, Valco Trust Fund, InterContinental Bank, Labadi Beach Resort and Elmina Beach 

Resort. 

1.2 PROBLEM STATEMENT 

In Ghana, most auto workshops of recognized car dealers such as Toyota Ghana Ltd, Mechanical 

Lloyd, Honda Place, Stallion motors and other car garages, have a general time resource 

allocation problem in their workshops. In these workshops, a single resource (repair time for 

cars) is assigned to a number of options (cars to be repaired) with the objective of maximizing 

the total returns. Most of the time, total returns from this single resource (repair time for cars) is 

not maximized because managers of these workshops use their own discretion instead of a 

scientific approach to do the resource allocation. 

Premier Technik Motors carries out 10 different types of repair jobs in their workshop. The car 

types they repair are: Volvo, Audi, Volkswagen and Skoda. The four technician teams that work 

in the workshop are Volvo team, Audi team, VW team and Skoda team. Each of these technician 

teams of the workshop has a maximum available labour time of 176 hours ( 22 working days) as 

a team to work in their respective department. All the different type of cars have their repair time 

and associated labour charges respectively. On the average, the job scheduler receives a certain 

number of cars due for repairs per month from corporate organizations and individuals. 

Management of this Auto workshop has been using the manual selection approach to assign 

resources (repair time) to jobs (repair of cars) which in these modern times is inadequate and not 

scientific. Our research work is to find a selection approach that can determine how many cars 
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the workshop can repair ( i.e., Vw, Skoda, Audi and Volvo)  in order to maximize total returns 

every month . 

The problem above conforms to a knapsack-type problem in which a set of entities are given, 

each having an associated value and size, and it is desired to select one or more disjoint subset so 

that the sum of the sizes in each subset does not equals or exceed a given bound (total labour 

time for the month) and the sum of the selected values (labour charges) is maximized. 

1.3 OBJECTIVES 

The objectives are: 

(1) To model the maximum revenue accrued from the repairs of cars as a knapsack 

problem.  

(2) To solve the knapsack problem using Dynamic Programming. 

1.4 METHODOLOGY 

In order to achieve the objective above, various types of knapsack problems and some of the well 

known algorithms for solving them would be discussed. Finally we will apply the Dynamic 

Programming algorithm for knapsack to solve our problem. Data on car repair time schedule 

with its associated labour charges for the period 2010/2011 year which is used in this study was 

collected from the workshop of Premier Technik Motors. Literature from the KNUST, Science 

College Library and the Internet were used to enhance this thesis.  

1.5 JUSTIFICATION 

Fast delivery of a good after-sale service of cars is very crucial to customers in Ghana because it 

enables them to use their repaired cars to meet other production requirements in their day to day 
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activities. Installing a quality service or repairs to a faulty car by a workshop generates customer 

loyalty which also translates into profit making.  Delays in car repairs can be minimized if the 

selection of which car to repair first or last can be sorted out by a good selection approach. Most 

workshops do not have a well structured system that selects cars that are due for repairs based on 

the best possible use of resources which also results in maximum total returns. Hence, this is the 

reason for solving this problem as a knapsack problem. 

1.6 ORGANIZATION OF THESIS 

Chapter 1 consists of the problem of scheduling the different repair types of cars in the workshop 

of Premier Technik motors workshop, methodology and justification for the use of knapsack 

problems application to solve the car repairs selection problem. 

Chapter 2 consists of literature review on knapsack problems applications and its proposed 

solution methods. 

Chapter 3 consists of the methodology for solving our problem. Included in this chapter will be 

the evaluation of various types of knapsack problems and some of the well known algorithms for 

solving them. 

Chapter 4 consists of the data collection and analysis of the actual data of type of car, repair time 

and labour charges from Premier Technik Motor‟s workshop. 

Chapter 5 consists of the conclusion and recommendation. 
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CHAPTER 2 

LITERATURE REVIEW 

Many practical  repair scheduling  problems can be represented by a set of entities, each having 

an associated value, from which, one or more subsets has to be selected in such a way that the 

sum of the values of the selected entities is maximized with respect to certain conditions. These 

problems are classified as knapsack problems since they call the situation of a traveler having to 

fill up his knapsack by selecting from among various possible objects that can give him/her the 

maximum comfort. This concept has been used to model many industrial applications such as 

cargo loading and advertisement selection in a broadcasting firm. In this chapter, a literature 

review on the knapsack problems and its applications is presented. 

Knapsack problems have been intensively studied because they arise as sub problems in various 

integer programming problems and may represent many practical scenarios. The most typical 

applications are in capital budgeting and industrial production. Various capital budgeting models 

have been studied by Weingartner (1963, 1968), Weingartner and Ness (1967), Cord (1964) and 

Kaplan (1966). Among industrial applications, the classical studies a cargo loading problem 

(Bellman and Dreyfus, 1962) and on cutting stock problems, Gillmore and Gomory (1963; 1965; 

and 1966) is worth mentioning. More detailed reviews of applications can be found in salkin 

(1975) and Martello and Toth ( 1987). 

The family of Knapsack Problems all requires a subset of some given items to be chosen such 

that the corresponding profits sum is maximized without exceeding the capacity of the 

knapsack(s). Different types of Knapsack Problems occur, depending on the distribution of the 

items and knapsacks: In the 0-1Knapsack Problem each item may be chosen at most once, while 
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in the Bounded Knapsack Problem we have a bounded amount of each item type. The Multiple-

choice Knapsack Problem occurs when the items should be chosen from disjoint classes and, if 

several knapsacks are to be filled simultaneously, we get the Multiple Knapsack Problem. The 

most general form is the Multi-constrained Knapsack Problem, which basically is a general 

Integer Programming (IP) Problem with positive coefficients. 

Pisinger (1999) presented an algorithm for knapsack problem where the enumerated core size is 

minimal and the computational effort for sorting and reduction were also limited according to 

hierarchy. The algorithm is based on a dynamic programming approach, where the core size is 

extended by need and the sorting and reduction is performed in a similar “lazy” way. 

Computational experiments are presented for several commonly occurring types of data 

instances. Experience from these tests indicates that the presented approach outperforms any 

known algorithm for knapsack problem, having very stable solution times. 

Martello and Toth (1988) presented a new algorithm for the optimal solution of the 0-1 knapsack 

problems, which is particularly effective for large-size problems. T he algorithm is based on 

determination of an appropriate small subset of items and the solution of the corresponding “core 

problem”. From this, they derived a heuristic solution for the original problem which, with high 

probability, can be proved to be optimal. The algorithm incorporates a new method of 

computation of upper bounds and efficient implementations of reduction procedures. They also 

reported computational experiments on small-size and large-size random problems, comparing 

the proposed code with all those available in the literature. 

Munapo (2008) presented an approach that enhances the performance of the branch and bound 

algorithm for the knapsack model. This is achieved by generating and adding new objective 
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function and constraint to knapsack model, which is single constrained. The branch and bound 

algorithm is then applied and the total numbers of sub-problems are reduced 

Bazgan et al. (2007) presented an approach, based on dynamic programming, for solving the 0-1 

multi-objective knapsack problem. The main idea of the approach relies on the use of several 

complementary dominance relations to discard partial solutions that cannot lead to new non-

dominated criterion vectors. This way, they obtained an efficient method that outperforms the 

existing methods both in terms of CPU time and size of solved instances. Extensive numerical 

experiments on the various types of instances were reported. A comparison with other exact 

methods was also performed. 

Ferreira (1995) presented parallel algorithms for solving a knapsack problem of size n on PRAM 

and distributed memory machines. The algorithms were efficient in the sense that they achieved 

optimal speed up with regard to the best known solution to this problem. Morever, they matched 

the best current time/memory/processors tradeoffs, while requiring less memory and processors. 

Since the PRAM is considered mainly as a theoretical model and we want to produce practical 

algorithms for the knapsack problem, its solution in distributed memory machines is also studied. 

Glickman and Allison, (1973) considered the problem of choosing among the technologies 

available for irrigation by tubewell to obtain an investment plan which maximizes the net 

agricultural benefits from the proposed project in a developing country. Cost and benefit 

relationships were derived and incorporated into a mathematical model which is solved using a 

modification of the dynamic programming procedure for solving the knapsack problem. The 

optimal schedule was seen to favour small capacity wells, drilled by indigenous methods, with 

supplementary water distribution systems. 
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Huttler and Mastrolilli (2006) addressed the classical knapsack problem and a variant in which 

an upper bound is imposed on the number of items that can be selected. They showed that 

appropriate combinations of rounding techniques yielded novel and more powerful ways of 

rounding. Morever, they presented a linear-storage polynomial time approximation scheme 

(PTAS) and a fully polynomial time approximation scheme (FPTAS) that compute an 

approximate solution of any fixed accuracy, in linear time. These linear complexity bounds give 

a substantial improvement of the best previously known polynomial bounds. 

Gomes da Silva et al. (2007) dealt with the problem of inaccuracy of the solutions generated by 

meta-heuristic approaches for combinatorial optimization bi-criteria (0-1)-knapsack problems. A 

hybrid approach which combines systematic and heuristic searches was proposed to reduce that 

inaccuracy in the context of a scatter search method. The components of this method were used 

to determine regions in the decision space to be systematically searched. Comparisons with small 

and medium size instances solved by exact methods were presented. Large size instances were 

also considered and the quality of the approximation was evaluated by taking into account the 

proximity to the upper frontier, devised by the linear relaxation and the diversity of the solutions. 

Comparisons with other two well known meta-heuristics were also performed. The results 

showed the effectiveness of the proposed approach for both small/medium and large size 

instances. 

Rinnooy et al. (1993) proposed a class of generalized greedy algorithms for the solution of multi-

knapsack problem. Items are selected according to decreasing ratios of their profit and a 

weighted sum of their requirement coefficients. The solution obtained depended on the choice of 

the weights. A geometrical representation of the method was given and the relation to the dual of 

the linear programming relaxation of multi-knapsack is exploited. They investigated the 
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complexity of computing a set of weights that gives the maximum greedy solution value. Finally, 

the heuristics were subjected to both a worst case and a probabilistic performance analysis. 

Figuera et al. (2009) presented a generic labeling algorithm for finding all non-dominated 

outcomes of the multiple objective integer knapsack problem (MOIKP). The algorithm is based 

on solving the multiple objective shortest path problem on an underlying network. Algorithms 

for constructing four network models, all representing the MOIKP, were also presented. Each 

network is composed of layers and each network algorithm, working forward layer by layer 

identifies the set of all permanent non-dominated labels for each layer. The effectiveness of the 

algorithms is supported with numerical results obtained for randomly generated problems for up 

to seven objectives while exact algorithms reported in the literature solve the multiple objective 

binary knapsack problem with up to three objectives. Extensions of the approach to other classes 

of problems including binary variables, bounded variables, multiple constraints and time-

dependent objective functions are possible. 

Majority of algorithms for solving knapsack problems typically use implicit enumeration 

approaches. Different bounds based on the remaining capacity of the knapsack and items not yet 

included at certain iteration have been proposed for use in these algorithms. Similar methods 

may be used for a nested knapsack problem as long as there is an established procedure for 

testing whether an item inserted into a knapsack at one stage can also be inserted at the following 

stages. Given n different items and a knapsack of capacity, Caceres and Nishibe (2005) 

algorithm solves the 0-1 knapsack problem using O (nWp) local computation time with O(p) 

communication rounds. Using dynamic programming, their algorithm solves locally pieces of the 

knapsack problem in each processor and uses a wave front approach in order to solve the whole 
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problem. The algorithm was implemented in a Beowulf and the obtained times showed good 

speed-up and scalability. 

The binary knapsack problem is a combinatorial optimization problem in which a subset of a 

given set of elements needs to be chosen in order to maximize profit, given a budget constraint. 

Das (2003) used a stochastic version of the problem in which the budget is random. They 

proposed two different formulations of this problem, based on different ways of handling 

infeasibility and proposed an exact algorithm and a local search-based heuristic to solve the 

problems represented by these formulations. The results were presented from some 

computational experiments. 

The knapsack problem is believed to be one of the “easier”-hard problems. Not only can it be 

solved in pseudo-polynomial time but also decades of algorithmic improvements have made it 

possible to solve nearly all standard instances from the literature. Pisinger (2005) gave an 

overview of all recent exact solution approaches and to show that the knapsack problem is still 

hard to solve for these algorithms for a variety of new test problems. These problems are 

constructed either by using standard benchmark instances with larger coefficients or by 

introducing new classes of instances for which most upper bounds perform badly. The first group 

of problems challenges the dynamic programming algorithms while the other groups of problems 

are focused towards branch and bound algorithms. Numerous computational experiments with all 

recent state-of-the-art codes are used to show that knapsack problem (KP) is still difficult to 

solve for a wide number of problems. One could say that the previous benchmark tests were 

limited to a few highly structured instances, which do not show the full characteristics of 

knapsack problems. 
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The 0-1 knapsack problem is well known and it appears in many real domains with practical 

importance. The problem is NP-complete. The multi-objective 0-1 knapsack problem is a 

generalization of the 0-1 knapsack problem in which many knapsacks are considered. Many 

algorithms have been proposed in the past four decades for both single and multi-objective 

knapsack problem. A new evolutionary algorithm for solving multi-objective 0-1 knapsack 

problem was proposed by Groan (2003). This algorithm used a ξ-dominance relation for direct 

comparison of two solutions. Some numerical experiments are realized using the best and recent 

algorithms proposed for this problem. Experimental results showed that the new proposed 

algorithm outperforms the existing evolutionary approaches for this problem. 

Puchinger (2006) presented a newly developed core concept for the multidimensional knapsack 

problem (MKP) which is an extension of the classical concept for the one-dimensional case. The 

core for the multidimensional problem is defined in dependence of a chosen efficiency function 

of the items, since no single obvious efficiency measure is available for MKP. An empirical 

study on the cores of widely-used benchmark instances is presented, as well as experiments with 

different approximate core sizes. Furthermore, they described a memetic algorithm and a 

relaxation guided variable neighborhood search for the MKP, which are applied the original and 

to the core problems. The experimental results show that given a fixed run-time, the different 

meta-heuristics as well as a general purpose integer linear programming solver yield better 

solution when applied to approximate core problems of fixed size 

Fontanari (1995) investigated the dependence of the multi-knapsack objective function on the 

knapsack capacities and on the number of capacity constraints P, in the case when all N objects 

are assigned the same profit value and the weights are uniformly distributed over the unit 

interval. A rigorous upper bound to the optimal profit is obtained, employing the annealed 
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approximation and then, compared with the exact value obtained through the Langrangian 

relaxation method. The analysis is restricted to the regime where N goes to infinity and P 

remains finite. 

Benisch et al. (2005) examined the problem of choosing discriminatory prices for customers with 

probabilistic valuations and a seller with indistinguishable copies of goods. They showed that 

under certain assumptions this problem can be reduced to the continuous knapsack problem 

(CKP). They presented a new fast epsilon-optimal algorithm for solving CKP instances with 

asymmetric concave reward functions. They also showed that their algorithm can be extended 

beyond the CKP setting to handle pricing problems with overlapping goods (e.g goods with 

common components or common resource requirements), rather than indistinguishable goods. 

They provided a framework for learning distributions over customer valuations from historical 

data that are accurate and compatible with their CKP algorithm. They validated their techniques 

with experiments on pricing instances derived from the Trading Agent Competition in Supply 

Chain Management (TAC SCM). Their results confirmed that their algorithm converges to an 

epsilon-optimal solution more quickly in practice than an adaptation of a previously proposed 

greedy heuristic. 

Pendharkar et al. (2005) described an information technology capital budgeting (ITCB) problem 

and showed that the ITCB problem can be modeled as a 0-1 knapsack optimization problem and 

proposed two different simulated annealing (SA) heuristic solution procedures to solve the ITCB 

problem. Using several simulations, they empirically compared the performance of two SA 

heuristic procedures with the performance of two well-known ranking methods for capital 

budgeting. Their results indicated that the information technology (IT) investments selected 
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using the SA heuristics have higher after-tax profits than the IT investments selected using the 

two ranking methods. 

The bounded Knapsack Problem (BKP) is a generalization of the 0-1 Knapsack Problem where a 

bounded amount of each item type is available. Currently, the most efficient algorithm for BKP 

transforms the data instance to an equivalent 0-1 Knapsack Problem, which is solved efficiently 

through a specialized algorithm. Pisinger (1996) proposed a specialized algorithm that solves an 

expanding core problem through dynamic programming such that the number of enumerated 

item types is minimal. Sorting and reduction is done by need, resulting in very little effort for the 

preprocessing. Compared to other algorithms for BKP, the presented algorithm uses tighter 

reductions and enumerates considerably less item types. Computational experiments are 

presented, showing that the presented algorithm outperforms all previously published algorithms 

for BKP. 

The multidimensional 0-1 knapsack problem, defined as a knapsack with multiple resource 

constraints, is well known to be much more difficult than the single constraint version. Freville 

and Plateau (2004) designed an efficient preprocessing procedure for large-scale instances. The 

algorithm provides sharp lower and upper bounds on the optimal value and also a tighter 

equivalent representation by reducing the continuos feasible set and by eliminating constraints 

and variables. This scheme was shown to be very effective through a lot of computational 

experiments with test problems of the literature and large-scale randomly generated instances. 

The knapsack sharing problem (KSP) is formulated as an extension to the ordinary knapsack 

problem. The KSP is NP-hard. Yamada et al. (1998) presented a branch-and-bound algorithm 

and a binary search algorithm to solve this problem to optimality. These algorithms are 
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implemented and computational experiments are carried out to analyse the behavior of the 

developed algorithms. As a result, they found that the binary search algorithm solves KSPs with 

up to 20 000 variables in less than a minute in their computing environment. 

The objective of the multi-dimensional knapsack problem (MKP) is to find a subset of items 

with maximum value that satisfies a number of knapsack constraints. Solution methods for MKP, 

both heuristic and exact, have been researched for several decades. Fleszar and Hindi (2009) 

introduced several fast and effective heuristics for MKP that are based on solving the LP 

relaxation of the problem. Improving procedures were proposed to strengthen the results of these 

heuristics. Additionally, the heuristics were run with appropriate deterministic or randomly 

generated constraints imposed on the linear relaxation that allow generating a number of good 

solutions. All algorithms were tested experimentally on a widely used set of benchmark problem 

instances to show that they compared favourably with the best-performing heuristics available in 

the literature. 

Transportation programming, a process of selecting projects for funding given budget and other 

constraints, is becoming more complex. Zhong and Young (2009) described the use of an integer 

programming tool, Multiple Choice Knapsack Problem (MCKP) to provide optimal solutions to 

transportation programming problems in cases where alternative versions of projects are under 

consideration. Optimization methods for use in the transportation programming process were 

compared and then the process of building and solving the optimization problems discussed. The 

concepts about the use of MCKP were presented and a real world transportation programming 

example at various budget levels were provided. They illustrated how the use of MCKP 

addresses the modern complexities and provides timely solutions in transportation programming 

practice. 
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Jurait et al. (2006) focused on ways to find proportions of the mixture of heuristics which would 

lead to better performance of the algorithm. New results were compared with earlier research and 

some other constructive heuristics. The performance of the corresponding algoritms was 

experimentally compared for homogeneous and heterogeneous instances. Proposed 

improvements allow achieving better filling ratio without increasing the computational 

complexity of the algorithm. 

Lin and Yao (2001) investigated knapsack problems in which all of the weight coefficients are 

fuzzy numbers. The work was based on the assumption that each weight coefficient is imprecise 

due to the use of decimal truncation or rough estimation of the coefficients by the decision 

maker. To deal with this kind of imprecise data, fuzzy sets provide a powerful tool to model and 

solve this problem. Their work was intended to extend the original knapsack problem into a more 

generalized problem that would be useful in practical situations. As a result, their study showed 

that the fuzzy knapsack problem is an extension of the crisp knapsack problem and that the crisp 

knapsack problem is a special case of the fuzzy knapsack problem. 

Zhang and Ong (2004) proposed a simple and useful method, the core of which is an efficient 

LP-based heuristic for solving bi-objective 0-1 knapsack problems. Extensive computational 

experiments showed that the proposed method is able to generate a good approximation to the 

non dominated set very efficiently. They also suggested three qualitative criteria to evaluate such 

an approximation. In addition, the method can be extended to other problems having properties 

similar to the knapsack problem. 

A promising solution approach called Meta-RaPS was presented by Moraga et al. (2005) for the 

0-1 Multidimensional Knapsack Problem (0-1 MKP). Meta-RaPS construct feasible solutions  
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at each iteration through the utilization of a priority rule used in a randomized fashion. Four 

different greedy priority rules are implemented within Meta-RaPS and compared. These rules 

differ in the way the corresponding pseudo-utility ratios for ranking variables are computed. In 

addition, two simple local search techniques within Meta-RaPS‟ improvement stage are 

implemented. The Meta-RaPS approach is tested on several established test sets and the solution 

values are compared to both the optimal values and the results of other 0-1 MKP solution 

techniques. The Meta-RaPS approach outperformed many other solution methodologies in terms 

of differences from the optimal value and the number of optimal solutions obtained. The 

advantage of the Meta-RaPS approach is that it is easy to understand and easy to implement and 

it achieved good results. 

Florios et al. (2009) solved instances of the multi-objective multi-constraint (or 

multidimensional) knapsack problem (MOMCKP) from the literature with three objective 

functions and three constraints. They used exact as well as approximate algorithms. The exact 

algorithm is a properly modified version of the multi-criteria branch and bound (MCBB) 

algorithm which is further customized by suitable heuristics. Three branching heuristics and a 

more general purpose composite branching and construction heuristics were devised. 

Furthermore, the same problems are solved using standard multi-objective evolutionary 

algorithms (MOEA) namely the SPEA2 and the NSGAII. The results from the exact case show 

that the branching heuristics greatly improve the performance of the MCBB algorithm, which 

becomes faster than the adaptive ξ-constraint. Regarding the performance of the MOEA 

algorithms in the specific problems, SPEA2 outperforms NSGAII in the degree of approximation 

of the Pareto front as measured by the coverage metric (especially for the largest instance). 
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Abboud et al. (1997) presented an interactive procedure for the multi-objective multidimensional 

0-1 knapsack problem that takes into consideration the incorporation of fuzzy goals of the 

decision maker, that is easy to use since it requires from the decision maker to handle only one 

parameter, namely, the aspiration level of each objective and that is fast and can treat our 

problem as a usual 0-1 knapsack problem using already available software called the primal 

effective gradient method, it is used primarily to solve the large scale cases. To get some 

statistics on the behavior of the algorithm, a number of randomly generated simulations of 

problems was solved. From their numerical experience, it is possible to conclude that their 

proposed method is worthwhile alternative to existing methods from a practical point of view. 

Akinc (2006) addressed the formulation and solution of a variation of the classical binary 

knapsack problem. The variation that was addressed is termed the “Fixed-Charge Knapsack 

Problem” in which sub-sets of variables (activities) are associated with fixed costs. These costs 

represented certain set-ups and preparations required for the associated sub-set of activities to be 

scheduled. Several potential real world applications as well as problem generalizations were 

discussed. The efficient solution of the problem is facilitated by a standard branch and bound 

algorithm based on a non-iterative polynomial algorithm to solve the LP relaxation, various 

heuristic procedures to obtain good candidate solutions by adjusting the LP solution and 

powerful rules to peg the variables. Computational experience shows that the suggested branch 

and bound algorithm shows excellent potential in the solution of a wide variety of large fixed 

charge knapsack problems. 

Aissi et al. (2007) investigated for the first time in literature, the approximation of min-max 

(regret) versions of classical problems like shortest path, minimum spanning tree and knapsack. 

For a constant number of scenarios, they established fully polynomial-time approximation 
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schemes for the min-max versions of these problems using relationships between multi-objective 

and min-max optimization. Using dynamic programming and classical trimming techniques, they 

constructed a fully polynomial-time approximation scheme for min-max regret shortest path. 

They also established a fully polynomial-time approximation scheme for min-max regret 

spanning tree and proved that min-max regret knapsack was not at all approximable. For a non-

constant number of scenarios case, min-max regret versions of polynomial-time problems 

become strongly NP-hard, non-approximability results were provided for min-max (regret) 

versions of shortest path and spanning tree. 

Jan et al. (2006) considered web content adaptation with a bandwidth constraint for server-based 

adaptive web systems. The problem can be stated as follows: Given a web page P consisting of n 

components items d1 , d2 .  .  ., dn and each of the component items di having Ji versions di1 , di2 , . 

. . , diJ  for each component item di select one of its versions to compose the web page such that 

the fidelity function is maximized subject to the bandwidth constraint. They formulated this 

problem as a linear multi-choice knapsack problem (LMCKP) and transformed the LMCKP into 

a knapsack problem (KP) and then presented a dynamic programming method to solve the KP. A 

numerical example illustrated the method and showed its effectiveness. 

Devyaterikova et al. (2009) presented discrete production planning problem which may be 

formulated as the multidimensional knapsack problem is considered, while resource quantities of 

the problem are supposed to be given as intervals. An approach for solving this problem based 

on using its relaxation set is suggested. Some L-class enumeration algorithms for the problem are 

described. Results of computational experiments were presented. 
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CHAPTER 3 

METHODOLOGY 

The knapsack problem is a general resource allocation problem in which a single resource is 

assigned to a number of alternatives with the objective of maximizing the total return. The 

knapsack problem seeks to optimize a set of yes/no decisions subject to a single non-negative 

constraint. The families of Knapsack Problems all require a subset of some given items to be 

chosen such that the corresponding profit sum is maximized without exceeding the capacity of 

the knapsack. 

3.1 TYPES OF KNAPSACK PROBLEMS 

 Different types of Knapsack Problems occur, depending on the distribution of the items and 

knapsacks: In the 0-1Knapsack Problem each item may be chosen at most once, while in the 

Bounded Knapsack Problem we have a bounded amount of each item type. The Multiple-choice 

Knapsack Problem occurs when the items should be chosen from disjoint classes and, if several 

knapsacks are to be filled simultaneously, we get the Multiple Knapsack Problem. The most 

general form is the Multi-constrained Knapsack Problem, which basically is a general Integer 

Programming (IP) Problem with positive coefficients. 

3.2 SINGLE KNAPSACK PROBLEMS 

There is one container (or knapsack) that must be filled with optimal subset of items. The 

capacity of such a container will be denoted by c. 

Some of the problems under single knapsack are: 

(i) 0-1 knapsack problem 

(ii) Bounded knapsack problem 
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 3.2.1 THE SINGLE 0-1 KNAPSACK PROBLEM 

Consider the classical 0-1 knapsack problem (KP) where a subset of n given items has to be 

packed in a knapsack of capacity c. Each item has a profit pj and a weight wj and the problem is 

to select a subset of the items whose total weight does not exceed c and whose total profit is a 

maximum. 

We assume, without loss of generality, that all input data are positive integers. Introducing the 

binary decision variables xj, with xj = 1 if item j is selected and xj =0 otherwise, we get the 

integer linear programming (ILP) model: 

Maximize     z =    pj

n

j=1
xj   

Subject to        wj

n

j=1
xj   ≤  c  

xj ∈ {0,1}, j = 1,…,n 

Where all data are positive integers 

3.2.2 THE BOUNDED KNAPSACK PROBLEM 

The bounded knapsack problem (BKP) is: 

 Given n item types and a knapsack, with 

pj = profit of an item of type j; 

wj = weight of an item of type j; 

bj = upper bound on the availability of an items of type j; 

c = capacity of the knapsack, 
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Select a number xj ( j = 1,…,n) of items of each type so as to 

We assume, without loss of generality, that all input data are positive integers. Introducing the 

binary decision variables xj, with xj = 1 if item j is selected and xj =0 otherwise, we get the 

integer linear programming (ILP) model: 

  Maximize     z =    pj

n

j=1
xj   

Subject to        wj

n

j=1
xj   ≤  c  

                     0 ≤  xj  ≤  bj  and integer,   j ∈ N = 1,…,n 

Where xj  is bounded non negative number. 

3.3 MULTIPLE KNAPSACK PROBLEMS 

In this kind of problems, there are more than one container available which must be filled with 

optimal subset of items. We will give consideration to the 0-1 Multiple Knapsack problem 

3.3.1   0-1 MULTIPLE KNAPSACK PROBLEMS 

The 0-1 Multiple Knapsack Problem (MKP) is defined as follows: 

 Given a set of n items and a set of m knapsacks (m≤ n), with  

                        pj = profit of item j; 

                        wj = weight of item j; 

                        ci= capacity of knapsack i, 

Select m disjoint subsets of items so that the total profit of the selected items is a maximum and 

each subset can be assigned to a different knapsack whose capacity is no less than the total 

weight of items in the subset. Thus, 
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Maximize     z =    pj

n

j=1
xij

m

i=1

   

Subject to        wj

n

j=1
xij   ≤    ci 

                      xij

n

j=1
 ≤  1      where i ∈ M =  1, … , m  , j ∈ N =  1, … , n ,  

                          xij ∈ {0,1}              Where   xij  =  
1,  if item j is assigned to knapsack i;
0, if otherwise

  

3.4 METHODS FOR SOLVING KNAPSACK PROBLEMS 

The 0-1 knapsack problems can be solved by two basic exact methods known as branch-and-

bound and dynamic programming methods. However, large scale problems could be solved by 

the use of meta-heuristics such as Simulated annealing, Genetic algorithm, Variable 

neighborhood search and Tabu search. 

3.4.1 BRANCH AND BOUND METHOD 

Branch and bound is a general algorithm for finding optimal solutions of various optimization 

problems, especially in discrete and combinatorial optimization. It consists of a systematic 

enumeration of all candidate solutions, where large subsets of fruitless candidates are discarded 

by using upper and lower estimated bounds of the quantity being optimized. 

BRANCH-AND-BOUND ALGORITHMS FOR KNAPSACK 

The first branch-and-bound approach to the exact solution of KP was presented by Kolesar 

(1967).  His algorithm consists of a highest-first binary branching scheme. 

The large computer memory and time requirements of the Kolesar algorithm were greatly 

reduced by the Greenberg and Hegerich (1970) approach, differing in two main respects: 

(a) at each mode, the continuous relaxation of the induced sub problem is solved and the 

corresponding critical items ŝ is selected to generate the two descendent nodes (by 

imposing Xŝ = 0 on (Xŝ = 1); 
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(b) the search continues from the node associated with the exclusion of item ŝ  

(condition Xŝ = 0). 

When the continuous relaxation has an all-integer solution, the search is resumed from the last 

node generated by imposing Xŝ = 1, i.e. the algorithm is of depth – first type.   

Horowitz and Sahni (1997) ( and independently, Ahrens and Finke (1975) ) derived from the 

previous scheme a depth-first algorithm in which; 

(a)  selection of the branching variable Xj is the same as in Kolesar; 

(b) the search continues from the node associated with the insertion of item j (condition Xj = 

1), i.e. following a greedy strategy. 

The Horowitz – Sahni algorithm is the most effective, structured and easy to implement and has 

constituted the basis for several improvements, including that of Martello – Toth algorithm 

(Martello and Toth, 1977), which is generally considered highly effective.   

The Horowitz – Sahni Algorithm  

Assume that the items are sorted.  A forward move consists of inserting the largest set of new 

consecutive items into the current solution.  A backtracking move consists of removing the last 

inserted item from the current solution.  Whenever a forward move is exhausted, the upper 

bound U1 corresponding to the current solution is computed and compared with the best solution 

so far, in order to check whether further forward moves could lead to a better one; if so, a new 

forward move is performed, otherwise a backtracking follows.  When the last item has been 

considered, the current solution is complete and possible updating of the best solution so far 

occurs.  The algorithm stops when no further backtracking can be performed.  In the following 

description of the algorithm we use these notations. 

            n          = number of items 

 xj  = current solution; 

            Pj = profit of item j; 

            wj = weight of item j; 

            C = capacity of the knapsack; 

 Z   = current solution value (=   pj

n

j=1
xj  ) 

 C  = current residual capacity (= C -    wj

n

j=1
xj ) 
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 xj = best solution so far; 

 Z = value of the best solution so far (=   pj

n

j=1
xj ) 

The Algorithm ( this is for KP ) 

Input: n, C, (Pj), (wj); 

Output: Z; (xj); 

Begin  

1. [Initialize] 

Z: = 0; 

Z : = 0; 

C : = C; 

pn+1: = 0; 

wn+1:= + ∞; 

j: = 1 

2. [Compute upper bound U1] 

find r = min {i:    wk  >  C i
k=j }; 

U: =    pk
r−1
k=j + [ C −    wk)r−1 

k=j
  pr

  wr
 ; 

If Z ≥  Z  + U then go to 5; 

3. [Perform a forward step] 

while wj  ≤  C    do 

     begin  

                C   := C  - wj; 

                 Z := Z + Pj 

                 xj  : = 1 

                  j : = j + 2  

      end 

if  j ≤ n  then 

     begin 

             xj   = 0 

              j = j + 1 
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     end  

if  j < n  then go to 2; 

if  j = n  then go to 3; 

4. [Update the best solution so far] 

         if  Z  >  Z   then  

         begin  

            Z: = Z ; 

             for k: = 1 to n do xk : =  xk   

         end 

j: = n; 

if xn = 1 then  

     begin  

       C   : = C  +   wn ; 

        Z  := Z  -   pn ;  

     xn   := 0 

end  

5. [Backtracking] 

 find i= max {k < j: xk  = 1}; 

 if no such i then return to 4; 

   𝐶 : = 𝐶  +   wi; 

     Z   ∶ =  Z  −   pi; 

      xi ∶ = 0; 

         j: = i + 1; 

        go to 2 

end  

 

Example 3.1  Consider the instance of KP defined by n = 7; 

          (  pj  ) = (70, 20, 39, 37, 7, 5, 10);  

          (  wj  ) = (31, 10, 20, 19, 4, 3, 6);     

             C = 50 
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By applying the above algorithm, we would have the decision tree of Figure 3.1 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

Figure 3.1 :   Decision tree of Horowitz-Sahni algorithm for example  3.1. 
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The optimal solution of this example from the decision tree of Horowitz and Sahni algorithm is 

X=(1,0,0,1,0,0,0) with a value of 107 . 

 

The Martello – Toth algorithm  

Their method differs from that of Horowitz and Sahni (1974) in the following main respect (we 

use the notations introduced in the previous method). 

(a) Upper bound U2 is used instead of U1 

(b) The forward move associated with the selection of the j
th 

item is split into two phases: 

building of a new current solution and saving of the current solution.  In the first phase, 

the largest set Nj of consecutive items which can be inserted into the current solution 

starting from the j
th

 is defined, and the upper bound corresponding to the insertion of the 

jth item is computed.  If this bound is less than or equal to the value of the best solution 

so far, a backtracking move immediately follows.  If it is greater, the second phase, that 

is, insertion of the items of set Nj into the current solution is performed only if the value 

of such new solution does not represent the maximum which can be obtained by inserting 

the jth item.  Otherwise, the best solution so far is changed, but the current solution is not 

updated, so that unnecessary backtrackings on the items in Nj are avoided. 

(c) A particular forward procedure, based on dominance criteria, is performed whenever, 

before a backtracking move on the i
th

 item, the residual capacity C  does not allow 

insertion into the current solution of any item following the ith.  The procedure is based 

on the following consideration; 

 The current solution could be improved only if the i
th

 item is replaced by an item having 

greater profit and a weight small enough to allow its insertion, or by at least two items 

having global weight not greater than Wi + C . By this approach it is generally possible to 

eliminate most of the unnecessary nodes generated at the lowest levels of the decision – 

tree. 

(d) The upper bounds associated with the nodes of the decision-tree are computed through a 

parametric technique based on the storing of information related to the current solution.  

Supposing the current solution has been built by inserting all the items from the j
th 

to the 

r
th

: then, when performing a backtracking on one of these items (say the i
th

, j ≤ i < r), if 

no insertion occurred for the items preceding the j
th

, it is possible to insert at least items   
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i + 1, … r into the new current solution.  To this end, we store in r i; p iand w i the 

quantities r+1,  Pk  r
k=i  and  wk  ,r

k=i  respectively, for i = j, …,r, and in r  the value r – 1 

(used for subsequent updating).  Below is the detailed description of the algorithm. 

THE ALGORITHM  

Input: n, C, (Pj), (wj); 

Output: Z; (xj); 

begin  

1. [Initialize] 

Z: = 0; 

Z  : = 0; 

C : = C; 

Pn+1: = 0; 

wn+1: = + ∞; 

for k: = 1 to n do xk ∶= 0; 

compute the upper bound U = U2 in the optimal solution value; 

w 1: = 0; 

p 1: = 0; 

r 1: = 0; 

r ∶ = n; 

 for  k: = n to 1  do compute  mk = min {wi: i > k};  

 j: = 1; 

2. [build a new current solution] 

while wj > C     do  

       if Z ≥ Z   + [𝐶  Pj+1/ wj+1 ] then go to 5 else j:=j+1; 

find r = min {i : w j +     wk  >  C i
k=r j

 }; 

P
'
: = p j +     pk

r−1
k= r j

;  

w
'
: = w j +     wk

r−1
k= r j 

;  

If r ≤ n then U:= max ([c − w′ ) 
  pr+1

  wr+1
], [   pr −    wr −  c − w′ 

  pr−1

  wr−1
 ),  

else U: = 0; 

if  Z ≥ Z + P
'
 + U then go to 5; 
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if  U = 0, then go to 4; 

3.  [save the current solution] 

C : = C  – w
'
; 

Z ≥ Z + P
'
  

for k: = j to r – 1 do        xk ∶ = 1 

w j : =  w′  

p j: =  P′ ; 

r j : = r; 

for k: = j + 1 to r – 1 do  

    begin  

        w k     ∶=  w k−1 − wk−1 ; 

          p k    ∶=  p k−1 − pk−1  

          r k    : = r 

end  

for k: = r to r  do  

     begin  

           w k   ∶= 0; 

           p k    ∶ = 0   

             r k  ∶= k 

end  

r ∶ = r − 1; 

j: = r + 1; 

if  C  ≥  mj−1  then go to 2; 

if Z ≥  Z   then go to 5; 

P′ ∶ = 0 

4. [Update the best solution so far] 

            Z ≥ Z + P
' 
; 

for k: = 1 to j – 1 do xk : =  xk  

for k: = j to r - 1 do  xk : =  1 

for k: = r to n do  xk : =  0; 
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if Z = U  then return; 

5. [Backtracking] 

find i = max {k < j:  xk =1}; 

 if no such i then return to 4; 

C : = C  + wi; 

  Z  = Z – pi
 
; 

xi ∶=0 

j: = i + 1; 

            if  C − wi  ≥ mi  then go to 2; 

 j: = i; 

 h: = i; 

6. [try to replace item i with item h] 

  h: = h + 1 

  if Z ≥  Z  + [C 
ph

wh
] then go to 5; 

  if wh  = wi  then go to 6 

  if wh  > wi  then  

      begin  

         if wh  > C  or Z ≥  Z +  ph  then go to 6; 

         Z: = Z  + ph ; 

         for k: = 1 to n do xk : =  xk ; 

          xh= 1; 

       if Z = U  then return; 

        i: = h; 

        go to 6 

     end 

else  

    begin  

                 if  C − wh  < mh  then go to 6; 

        C   ∶=  C − wh ; 

        Z   : = Z  + ph ; 
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        xh ≔ 1; 

        j : = h + 1; 

       w h   ∶= wh ; 

         p h   ∶= ph ; 

         r h    ∶= h + 1; 

        for k: = h + 1 to r  do 

             begin  

                   w k  ∶= 0; 

                    p k  ∶= 0; 

                    r k   ∶= k; 

            end  

     r ∶ = h; 

       go to 2 

   end  

end 

 

Applying the above example 3.1 to this algorithm gives the decision – tree of Figure 3.2. 
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Figure 3.2 :   Decision tree of Martello-Toth algorithm.  
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The optimal solution of this example from the decision tree of Martello and Toth algorithm is 

X=(1,0,0,1,0,0,0) with a value of 107 . 

 

3.4.2   Dynamic Programming Method 

Dynamic programming is a method for solving optimization problems. The idea is to compute 

the solutions to the sub problems once and store the solutions in a table, so that they can be 

reused later. 

The idea of developing Dynamic programming Algorithm is as follows 

Step 1: Structure: Characterize the structure of an optimal solution 

            Decompose the problems into smaller problems, and find a relation between the structure  

            of the optimal solution of the original problem and the solutions of the smaller problems 

Step 2: Principle of Optimality: Recursively define the value of an optimal solution. 

             Express the solution of the original problem in terms of optimal solutions for smaller  

             problems. 

Step 3: Bottom-up computation: Compute the value of an optimal solution in a bottom-up  

            fashion by using a table structure. 

Step 4: Construction of optimal solution: Construct an optimal solution from computed  

             information. 

 

Dynamic programming algorithm for Knapsacks 

Ai,k: = optimum value (cost) 

Li,k: = set of indices {i} for which xi = 1 when Ai,k is attained  

Require: Positive integers wi, ci, and k for 1 ≤ i ≤ n 

Final solution: A, L 

for k: = 0 to K do  

      Ai,k: = 0 

      Li,k: = { } 

end for 
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 for i: = 0 to n do  

     Ai,0 = 0 

     Li,0: = { } 

     for k: = 1 to K do  

          if wi ≤ k then  

          if ci + Ai-1,k- wi , > Ai-1,k then  

             Ai,k: = ci + Ai-1,k- wi 

            Li,k: = Li-1,k- wi ∪{i} 

        else 

              Ai,k: = Ai-1,k 

              Li,k: = Li-1,k  

        end if 

        else 

            Ai,k: = Ai-1,k 

            Li,k: = Li-1,k  

        end if 

     end for 

end for 

A: = An,k 

L: = Ln,k 

 

Example 3.2   consider the example illustrated in Table 3.1 below 

It consists of five different items with their corresponding weights and costs 

Table 3.1: Example of Dynamic programming approach 

Item (i ) 1 2 3 4 5 

Weight (wi ) 1 1 3 2 2 

Cost (ci ) 6 11 17 3 9 

Capacity of knapsack (K) =5 

In this example we are to find the best set of items selection which will give a maximum cost. 

Applying the above dynamic programming algorithm, the results are shown in Table 3.2 and 

Table 3.3 
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Table 3.2  ( Results for  maximum cost (Ai,k ) ) 

i              k 0 1 2 3 4 5 

0 0 0 0 0 0 0 

1 0 6 6 6 6 6 

2 0 11 17 17 17 17 

3 0 11 17 17 28 34 

4 0 11 17 17 28 34 

5 0 11 17 20 28 34 

 

Table 3.3 ( Results for the set of items selected ( Li,k ) ) 

i              k 0 1 2 3 4 5 

0 {} {} {} {} {} {} 

1 {} {1} {1} {1} {1} {1} 

2 {} {2} {1,2} {1,2} {1,2} {1,2} 

3 {} {2} {1,2} {1,2} {2,3} {1,2,3} 

4 {} {2} {1,2} {1,2} {2,3} {1,2,3} 

5 {} {2} {1,2} {2,5} {2,3} {1,2,3} 

 

From the above, the optimum solution is L5, 5 = {1, 2, 3} with the maximum cost A5, 5= 34  

L5, 5 = {1, 2, 3} which is located in Table 3.3 gives the best selection with a corresponding value 

of  { c1+ c2+ c3} =  { 6+ 11+ 17} =  {34} from the third row of Table 3.1, even though L3, 5 = {1, 

2, 3} and  L4, 5 = {1, 2, 3} also gave a maximum cost of 34, the backtracking algorithm broke the 

arithmetic ties arbitrarily  hence the maximum cost stored in Table 3.2 will be  A5, 5= 34 and that 

will be the final output. 
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CHAPTER 4 

DATA COLLECTION AND ANALYSIS 

4.1 DATA COLLECTION 

Our research work is to find a selection approach that can determine the number of cars the 

workshop can repair ( i.e., VW, SKODA, AUDI and VOLVO) in order to maximize revenue 

every month.  

Premier Technik Motors carries out 10 different types of car repair jobs on each of the four 

brands of car in their workshop. The repair types (Ri) are: Periodic service, Brake repairs, 

Steering repairs, Engine repairs, Gearbox repairs, Electrical repairs, Suspension repairs, Body 

works, Upholstery works and Air-condition repairs. The maximum labour time available for each 

technician team of the workshop each month to work on these 10 different types of repair jobs 

for their customers is 176 hours. All the repair types have their repair time and associated labour 

charges respectively. Repair time for Volvo, Audi, Vw and Skoda are shown in column 3, 

column 4, column 5 and column 6 respectively in Table 4.1. Labour charges for Volvo, Audi, 

Vw and Skoda are shown in column 7, column 8, column 9 and column 10 respectively in Table 

4.1 
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Table 4.1 below gives the details of their repair schedule. 

Table 4.1: Workshop Labour charges and repair time  

Repair 

No. 

Repair 

type 

 Repair time ( hrs )   Labour charge ( GH¢ )  

 

Volvo  

 

Audi   Vw  

 

Skoda   Volvo   Audi   Vw  

 

Skoda  

1 R1 

     

3.00  

    

2.00  

   

2.00  

    

2.00  

   

65.00  

    

30.00  

    

45.00  
     

33.00  

2 R2 

     

5.00  

    

4.00  

   

4.00  

    

4.00  

 

180.00  

  

100.00  

    

90.00  
   

180.00  

3 R3 

     

8.00  

    

6.00  

   

5.00  

    

6.00  

 

220.00  

  

120.00  

  

120.00  
   

110.00  

4 R4 

   

22.00  

  

18.00  

 

16.00  

  

18.00  

 

300.00  

  

220.00  

  

110.00  
   

300.00  

5 R5 

   

12.00  

  

10.00  

   

6.00  

  

10.00  

 

300.00  

  

200.00  

  

180.00  
   

300.00  

6 R6 

     

3.00  

    

8.00  

   

6.00  

    

5.00  

 

120.00  

  

150.00  

    

75.00  
     

80.00  

7 R7 

     

8.00  

    

7.00  

   

8.00  

    

8.00  

 

210.00  

  

180.00  

  

200.00  
   

105.00  

8 R8 

   

40.00  

  

30.00  

 

24.00  

  

24.00  

 

600.00  

  

450.00  

  

400.00  
   

495.00  

9 R9 

   

16.00  

  

10.00  

   

8.00  

  

10.00  

 

240.00  

  

160.00  

  

160.00  
   

120.00  

10 R10 

   

10.00  

    

8.00  

 

12.00  

  

10.00  

 

260.00  

  

240.00  

  

260.00  
   

173.00  

 

In a month, the job scheduler receives an average of 92 work orders (cars due for repairs for all 

the four car brands) from corporate organizations and individuals. 

Out of the 92 work orders, 19 are Volvo cars which require a total time of 245 hours to repair, 22 

are Audi cars which require a total time of 220 hours to repair, 24 are Vw cars which require a 

total time of 205 hours to repair and 27 are Skoda cars which require a total time of 233 hours to 

repair. The total repair time for the car brands is computed by summing the repair time of all the 

repair types in column 7, column 8, column 9 and column 10 in Table 4.2 respectively. The total 

number of cars to repair for each car brand is computed by summing the number of cars in 
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column 3, column 4, column 5 and column 6 in Table 4.2 respectively. The values in columns 

7,8,9 and 10 in Table 4.2 were obtained by multiplying the values of columns 3,4,5 and 6 in 

Table 4.2 by the corresponding values in columns 3,4,5 and 6 in Table 4.1. 

The details of Table 4.2 is shown below. 

Table 4.2: Average number of cars to repair in a month 

Repair No. 

Repair 

type 

Number of cars to repair   Total Repair time ( hrs )  

 

Volvo  

 

Audi  

 

Vw   Skoda   Volvo   Audi   Vw   Skoda  

1 R1 2 4 3 4 

     

6.00        8.00        6.00  
        

8.00  

2 R2 1 1 4 1 

     

5.00        4.00      16.00  
        

4.00  

3 R3 1 2 1 2 

     

8.00      12.00        5.00       12.00  

4 R4 2 3 2 1 

   

44.00      54.00      32.00       18.00  

5 R5 3 2 1 3 

   

36.00      20.00        6.00       30.00  

6 R6 2 1 2 3 

     

6.00        8.00      12.00       15.00  

7 R7 3 4 3 6 

   

24.00      28.00      24.00       48.00  

8 R8 2 2 2 2 

   

80.00      60.00      48.00       48.00  

9 R9 1 1 4 2 

   

16.00      10.00      32.00       20.00  

10 R10 2 2 2 3 

   

20.00      16.00      24.00       30.00  

 
TOTAL 19 22 24 27 245.00    220.00    205.00     233.00  

 

 

 

         The problem here is to select the repair type of each car brand in such a way that the labour 

charges will be maximized in the workshop without exceeding the available time of 176 hours 

allocated for each technician team for the month. 

R1  →   Periodic service  
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R2  →   Brake repairs  

R3  →   Steering repairs  

R4  →   Engine repairs  

R5  →   Gearbox repairs  

R6  →   Electrical repairs  

R7  →   Suspension repairs  

R8  →   Body works  

R9  →   Upholstery work  

R10  →   Air-condition   

 

4.2 FORMULATION OF PROBLEM INSTANCE 

By comparing this to the knapsack model, the capacity of the bag is the time limit. The items to 

be considered are the different car repair types, the weight of each item is the repair time and the 

value of the item is the cost of repair type or Labour charge. 

The problem is then modeled as: 

Maximize :  V =  Vixi
n
i=1  

Subject to         Tixi
n
i=1  ≤ T 

                         xi  ∈  {0,1} , i= 1,…, n 

Where V = Total Labour charge 

            Vi  = Labour charge of each car repair type 

             xi = Number of each car repair type 

             Ti = Time of each car repair type 

            T = Total available time (resource limit) 

 

The coefficients of the objective functions below for Volvo, Audi, Vw and Skoda respectively 

can be obtained by using the Labour charges in Table 4.1. 
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The coefficients of the constraints below for Volvo, Audi, Vw and Skoda respectively can be 

obtained by using the Repair time in Table 4.1. 

Thus, using the values in Table 4.1 and Table 4.2 and re-arranging the number of cars to repair in 

Table 4.2 in increasing order, the problem of the four (4) different car types would be formulated 

as follows ; 

Volvo 

Maximize   V = 180(x1) + 220(x2) + 240(x3) + 65(x4+ x5) + 300(x6+ x7) + 120(x8+ x9) + 600(x10+ 

x11) + 260(x12+ x13) + 300(x14+ x15+ x16) + 210(x17+ x18+ x19)     

Subject to       5(x1) + 8(x2) + 16(x3) + 3(x4+ x5) + 22(x6+ x7) + 3(x8+ x9) + 40(x10+ x11) + 

260(x12+ x13) + 10(x14+ x15+ x16) + 8(x17+ x18+ x19)    ≤ 176 

Audi 

Maximize   V = 100(x1) + 150(x2) + 160(x3) + 120(x4+ x5) + 200(x6+ x7) + 450(x8+ x9) + 

240(x10+ x11) + 220(x12+ x13+ x14) + 30 (x15+ x16+ x17+ x18) + 180(x19+ x20+ x21+ x22)     

Subject to       4(x1) + 8(x2) + 10(x3) + 6(x4+ x5) + 10(x6+ x7) + 30(x8+ x9) + 8(x10+ x11) + 18(x12+ 

x13+ x14) + 2 (x15+ x16+ x17+ x18) + 7(x19+ x20+ x21+ x22)        ≤ 176 

Vw 

Maximize   V = 120(x1) + 180(x2) + 110(x3+ x4) + 75(x6+ x7) + 400(x7+ x8) + 260(x9+ x10) + 

45(x11+ x12+ x13) + 200(x14+ x15+ x16) + 90(x17+ x18+ x19+ x20) + 160(x21+ x22+ x23+ x24)     

Subject to     5(x1) + 6(x2) + 16(x3+ x4) + 6(x6+ x7) + 24(x7+ x8) + 12(x9+ x10) + 2(x11+ x12+ x13) + 

8(x14+ x15+ x16) + 4(x17+ x18+ x19+ x20) + 8(x21+ x22+ x23+ x24)        ≤ 176 

Skoda 

Maximize   V = 180(x1) + 300(x2) + 110(x3+ x4) + 495(x5+ x6) + 120(x7+ x8) + 300(x9+ x10+ x11) 

+ 80(x12+ x13+ x14) + 173(x15+ x16+ x17) + 33(x18+ x19+ x20+ x21) + 105(x22+ x23+ x24 x25+ x26+ x27)     

Subject to  4(x1) + 18(x2) + 6(x3+ x4) + 24(x5+ x6) + 10(x7+ x8) + 10(x9+ x10+ x11) + 5(x12+ x13+ 

x14) + 10(x15+ x16+ x17) + 2(x18+ x19+ x20+ x21) + 8(x22+ x23+ x24 x25+ x26+ x27)    ≤ 176 
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4.3 ALGORITHM 

To carry out the iterative computation of the above model, we apply the Dynamic programming 

algorithm as shown below: 

 

Notation 

Let VC : =The current solution 

       TC : = The current weight 

       VBS: = The best feasible value 

       TBS: = The best feasible weight 

       TKN = Available resource (Time) = z = 176 hours 

        a= Repair 1 

        b= Repair 2 

        c= Repair 3 

        d= Repair 4 

        e= Repair 5 

        f= Repair 6 

        g= Repair 7 

        h= Repair 8 

        i= Repair 9 

        j= Repair 10 

(1) [Initialization] 

TKN:= z 

           TC : = 0 

           VC : = 0 

           TBS : = 0 

           VBS : = 0 

(2) [Perform Computations] 

for a= 0, maximum of a 

    for b = 0, maximum of b 

        for c = 0, maximum of c 

             for d = 0, maximum of d 
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                  for e = 0, maximum of e 

                      for f = 0, maximum of f 

                          for g = 0, maximum of g 

                               for h = 0, maximum of h 

                                    for i = 0, maximum of i 

                                          for j = 0, maximum of j 

(a) Solve the following 

 VC = j* Vj + i* Vi + h*Vh + g* Vg + f* Vf + e* Ve + d*Vd + c* Vc + b*Vb + a* Va 

  TC = j* Tj + i* Ti + h*Th + g* Tg + f* Tf + e* Te + d*Td + c* Tc + b*Tb + a* Ta 

(b) Check for feasibility 

     While TC < TKN and  VBS < VC 

        VBS= VC 

              TBS = TC 

           end 

     end 

(3) [ Output] 

   Report {a, b, c, d, e, f, g, h, i, j},    VBS , and TBS 

end for 

4.4 COMPUTATION PROCEDURE 

We code the dynamic programming algorithm in Fortran 90 language. A PC with a Pentium III 

700 Mhz. processor is used to perform the computations. The Fortran 90 code is shown in 

Appendix A. 

The simple feature of the software allows the data to be fixed into the code. Finally, the software 

displays the final optimal solution for the data received. The computational iterative values for 

the various optimal solutions for the four brands of car were as follows:  

The number of iterations generated by the Volvo data was 7722. 

The number iterations generated by the Audi data was 12929. 

The number of iterations generated by the VW data was 25445. 

The number of iterations generated by the Skoda data was 34654. 
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By application of the Bottom-up computation, the repair order for each of the cars was re-

arranged in increasing order as follows: 

Volvo: { R2, R3, R9, R1, R4, R6, R8, R10, R5, R7}→{1,1,1,2,2,2,2,2,3,3} 

Audi  : { R2, R6, R9, R3, R5, R8, R10, R4, R1, R7}→{1,1,1,2,2,2,2,3,4,4} 

VW   : { R3, R5, R4, R6, R8, R10, R1, R7, R2, R9}→{1,1,2,2,2,2,3,3,4,4} 

Skoda: { R2, R4, R3, R8, R9, R5, R6, R10, R1, R7}→{1,1,2,2,2,3,3,3,4,6} 

The summarized results of the optimal solutions for the various iterative stages of the four brands 

of cars are shown below. 

 

4.5 RESULTS 

 

The various feasible combinations of repair types to be selected for the Volvo car brand in order 

to achieve optimal solutions for the various iterative stages are shown in Table 4.3 in Appendix 

E. 

At the end of the 7722
th

 iterative stage, the algorithm displayed the best solution as GH¢ 3770 

and a best time of 176 hours for the selection of {1,1,0,0,0,1,2,2,3,3} for a month. 

The above solution started from iteration 5900 in the table. 

Items beyond {1,1,0,0,0,1,2,2,3,3} will give TBS > TKN  which will violate the resource limit of 

176 hours, hence the algorithm is completed and displays an optimal value of GH¢ 3770 as the 

maximum revenue that can be generated from the cars selected. 

Audi 

The various feasible combinations of repair types to be selected for the Audi car brand in order 

to achieve optimal solutions for the various iterative stages are shown in Table 4.4 in Appendix 

F. 
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At the end of the 12929
th

 iterative stage, the algorithm displayed the best solution as GH¢ 3370 

and a best time of 176 hours for the selection of {1, 1, 1, 2, 2, 2, 2, 1, 0, 4} for a month. 

Items beyond {1, 1, 1, 2, 2, 2, 2, 1, 0, 4} will give TBS > TKN  which will violate the resource 

limit of 176 hours, hence the algorithm is completed and displays an optimal value of GH¢ 3370 

as the maximum revenue that can be generated from the cars selected. 

Vw 

At the end of the 25445
th

 iterative stage, the algorithm displayed the best solution as GH¢3505 

and a best time of 173 hours for the selection of {1, 1, 0, 2, 2, 2, 3, 3, 4, 4} for a month. 

The above solution started at iteration 21400 in the table. 

Items beyond {1, 1, 0, 2, 2, 2, 3, 3, 4, 4} will give TBS > TKN  which will violate the resource 

limit of 173hours, hence the algorithm is completed and displays an optimal value of GH¢3505 

as the maximum revenue that can be generated from the cars selected. 

Skoda 

The various feasible combinations of repair types to be selected for the Vw car brand in order to 

achieve optimal solutions for the various iterative stages are shown in Table 4.5 in Appendix G. 

 

At the end of the 34654
th

 iterative stage, the algorithm displayed the best solution as GH¢ 3611 

and a best time of 176 hours for the selection of {1,1,2,2,0,3,2,3,4,2} for a month. 

The above solution started at iteration 34000 in the table. 
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Items beyond {1,1,2,2,0,3,2,3,4,2}  will give TBS > TKN  which will violate the resource limit of 

176 hours, hence the algorithm is completed and displays an optimal value of GH¢ 3611 as the 

maximum revenue that can be generated from the cars selected. 

 

 

4.6 DISCUSSIONS 

 

Our scientific approach generates an initial solution and other feasible solutions for the problem 

and then selects the optimal solution. The optimal solution gives the solution string, the weight 

and the value. 

 

From the above summarized results, we would like to compare our scientific approach results 

with the random selection method currently employed by the workshop. 

 

 

Table 4.7 ( Total revenue generated by Random selection method) 

Brand of 

car 

Number of 

cars Repair types 

Number of 

cars 

Repair 

time 

Optimal 

value 

received Randomly selected selected (hrs) (GH¢) 

Volvo 19 {1,1,0,0,2,1,2,0,1,3} 11 176 3250 

Audi 22 {1,1,1,1,0,2,2,3,2,2} 15 176 2990 

VW 24 {1,1,2,2,2,2,3,3,2,1} 19 173 3065 

Skoda 27 {0,1,1,2,1,3,2,3,4,2} 19 176 3441 

Total 92   64   12746 

Table 4.8 ( Total revenue generated by Scientific approach) 

Brand of 

car 

Number of 

cars Repair types 

Number of 

cars 

Repair 

time 

Optimal 

value 

received Knapsack selection selected (hrs) (GH¢) 

Volvo 19 {1,1,0,0,0,1,2,2,3,3} 13 176 3770 

Audi 22 {1,1,1,2,2,2,2,1,0,4} 16 176 3370 

VW 24 {1,1,0,2,2,2,3,3,4,4} 22 173 3505 

Skoda 27 {1,1,2,2,0,3,2,3,4,2} 20 176 3611 

Total 92   71   14256 

 

 

From table 4.7, the total labour charges for all the four brands of car amounted to GH¢12,746.00 

and the number of cars selected was 64 out of the 92 received by the workshop. 

 

From table 4.8, the total labour charges for all the four brands of car also amounted to 

GH¢14,256.00 and the number of cars selected by knapsack was 71 out of the 92 received by the 

workshop for the different types of repairs. 
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The number of cars selected is the summation of the number of repair types selected as shown in 

columns 3 and 4 from Table 4.8. 

 

The repair types selected by the knapsack are as follows: 

 

Volvo: { R2, R3, R6, R8, R10, R5, R7}→{1,1,1, 2,2,3,3} 

Audi  : { R2, R6, R9, R3, R5, R8, R10, R4, R7}→{1,1,1,2,2,2,2,3,1,4} 

VW   : { R3, R5, R6, R8, R10, R1, R7, R2, R9}→{1,1,2,2,2,3,3,4,4} 

Skoda: { R2, R4, R3, R8, R5, R6, R10, R1, R7}→{1,1,2,2,3,2,3,4, 2} 

 

 

These figures shown by our scientific approach are higher as compared with the results of the 

random selection method used by the workshop Job scheduler. 

 

Hence our approach is the best out of the two and as a result the old revenue would increase by 

an amount of GH¢1,510.00 per month and the intake of cars can also increase from 64 to 71 as 

shown in the two tables above. 

 

From the various optimal solutions tables, that is Table 4.3, Table 4.4 and Table 4.6, some 

solutions were generated at 176 hours but these were not selected by the program. This was 

because their optimal values were less than that of the solutions selected finally by the program. 

The program was to output the best or maximum optimal values at a best time. 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

This thesis seeks to solve a real life problem of an Auto firm known as Premier Technik 

Motors in Ghana by modeling their problem as a 0-1 knapsack problem. Our first 

objective was to model this real life problem of maximization as a knapsack problem; this 

was modeled using the data collected as shown in Chapter 4. 

Our second objective was to solve the knapsack problem using Dynamic programming 

and Fortran 90. At the end of the various computations, it was discovered that the 

solution that gave the most desirable maximum value was our scientific approach. This 

means that for a maximum value to be achieved every month (on the average), the 

number of cars to be selected and their repair types  are 13 volvos with repair types R2, 

R3, R6, R8, R10, R5 and R7 , 16 Audi‟s with repair types R2, R6, R9, R3, R5, R8, R10, R4 and 

R7, 22 Vws with repair types R3, R5, R6, R8, R10, R1, R7, R2 and R9 and finally 20 Skodas 

with repair types R2, R4, R3, R8, R5, R6, R10, R1 and R7 . 

The other findings were that, the use of this scientific approach is transparent as 

compared with the random selection. From this approach, an amount of GH¢ 14,256.00 

would be obtained from the selection of 71 cars from the four brands of car according to 

the type of repairs. However, the random selection method used by the company also 

yields a maximum value of GH¢ 12,746.00 with the selection of 64 cars. Hence, higher 

returns can be achieved by this workshop by the use of this scientific approach. 

Secondly, this approach can select the optimal number of cars to be repaired for each 

month whenever there is an over-booking as a result of high demand of service from 
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customers. This can help the company to reschedule some of the cars whose problems are 

not too serious and urgent to be repaired or they can sublet them to other workshops. 

 

5.2 Recommendations 

In order to achieve the most desirable maximum revenue from the repairs of cars in their 

workshop, we recommend that Premier Technik Motors should adopt this knapsack 

problem model approach which is more scientific and transparent to determine the 

number of cars that must be selected from each of the four types of cars whenever they 

encounter time constraint problems. 

Service managers and workshop managers of other automobile companies in Ghana can 

also benefit from this proposed scientific approach for selecting the right cars at the right 

time to be repaired in their workshops in order to maximize revenue within the maximum 

working hours. 

Finally, this approach from our research can be applied to problems that can be modeled 

as a 0/1 knapsack problem. 
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APPENDIX A 

Program Knapsack_volvo 

IMPLICIT NONE 

Real∷ TotalWeight 

Integer∷ Max R2, Max R3, Max R9 Max R1, Max R4, Max R6, Max R8, Max R10, Max R5, Max R7, 

MaxValue = 0 

Integer∷ a, b, c, d, e, f, g, h, i, j, n (10) 

Type Bounty 

    Integer∷ Val 

    Real∷ Wht 

End Type Bounty 

Type (Bounty) ∷ R2, R3, R9, R1, R4, R6, R8, R10, R5, R7, Sack, Current 

R2 = Bounty (5, 180) 

R3 = Bounty (8, 220) 

R9 = Bounty (16, 240) 

R1 = Bounty (3, 65) 

R4 = Bounty (22, 300) 

R6 = Bounty (3, 120) 

R8 = Bounty (40, 600) 

R10 = Bounty (10, 260) 

R5 = Bounty (12, 300) 

R7 = Bounty (8, 210) 
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Sack = Bounty (0, 176) 

Max R2 = 1, Max R3 = 1, Max R9 = 1, Max R1 = 2, Max R4 = 2, Max R6 = 2, Max R8 = 2,     

Max R10 = 2, Max R5 = 3, Max R7 = 3 

Do a = 0, MaxR2 

      Do b = 0, MaxR3 

           Do c = 0, MaxR9 

              Do d = 0, MaxR1 

                    Do e = 0, MaxR4 

                        Do f = 0, MaxR6 

                           Do g = 0, MaxR8 

                              Do h = 0, MaxR10 

                                  Do i = 0, MaxR5 

                                      Do j = 0, MaxR7 

Current% Val = j* R7% Val + i* R5% Val + h* R10% Val + g* R8% Val + f* R6% Val + e* R4% 

Val + d* R1% Val + c* R9% Val + b* R3% Val + a* R2% Val 

Current% Wht = j* R7% Wht + i* R5% Wht + h* R10% Wht + g* R8% Wht + f* R6% Wht + e* 

R4% Wht + d* R1% Wht + c* R9% Wht + b* R3% Wht + a* R2% Wht 

If (Current% Wht < Sack% Wht) Then 

        If (MaxValue < Current% Val) Then 

   MaxValue = Current% Val 

 TotalWeight = Current% Wht 

         

 n (1) = a, n (2) = b, n (3) = c, n(4) = d, n (5) = e, n (6) = f, n (7) = g, n(8) = h, n (9) = i, n (10) = j 
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        End If 

End If 

   End Do 

         End Do 

     End Do 

End Do 

WRITE (*, “(A, I0) “) “Optimum Value achievable is “, MaxValue 

WRITE (*, “( 10(A, I0), A)” ) “This is achieved by “, n(1), “R2”, n(2), “R3”, n(3), “R9”, n(4), 

“R1,” n(5), “R4”, n(6), “R6” n(7), “R8”, n(8), “R10” n(9), “R5 and”, n(10), “R7” 

WRITE (*, “(A, F6.2, A, F6.2)”) “The Optimum Weight is”, TotalWeight 

End Program Knapsack 
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APPENDIX B 

Program Knapsack_Audi 

IMPLICIT NONE 

Real∷ TotalWeight 

Integer∷ Max R2, Max R6, Max R9 Max R3, Max R5, Max R8, Max R10, Max R4, Max R1, Max R7, 

MaxValue = 0 

Integer∷ a, b, c, d, e, f, g, h, i, j, n (10) 

Type Bounty 

    Integer∷ Val 

    Real∷ Wht 

End Type Bounty 

Type (Bounty) ∷ R2, R6, R9, R3, R5, R8, R10, R4, R1, R7, Sack, Current 

R2 = Bounty (4, 100) 

R6 = Bounty (8, 150) 

R9 = Bounty (10, 160) 

R3 = Bounty (6, 120) 

R5 = Bounty (10, 200) 

R8 = Bounty (30, 450) 

R10 = Bounty (8, 240) 

R4 = Bounty (18, 220) 

R1 = Bounty (2, 30) 

R7 = Bounty (7, 180) 
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Sack = Bounty (0, 176) 

Max R2 = 1, Max R6 = 1, Max R9 = 1, Max R3 = 2, Max R5 = 2, Max R8 = 2, Max R10 = 2,     

Max R4 = 3, Max R1 = 4, Max R7 = 4 

Do a = 0, MaxR2 

      Do b = 0, MaxR6 

           Do c = 0, MaxR9 

              Do d = 0, MaxR3 

                    Do e = 0, MaxR5 

                        Do f = 0, MaxR8 

                           Do g = 0, MaxR10 

                              Do h = 0, MaxR4 

                                  Do i = 0, MaxR1 

                                      Do j = 0, MaxR7 

Current% Val = j* R7% Val + i* R1% Val + h* R4% Val + g* R10% Val + f* R8% Val + e* R5% 

Val + d* R3% Val + c* R9% Val + b* R6% Val + a* R2% Val 

Current% Wht = j* R7% Wht + i* R1% Wht + h* R4% Wht + g* R10% Wht + f* R8% Wht + e* 

R5% Wht + d* R3% Wht + c* R9% Wht + b* R6% Wht + a* R2% Wht 

If (Current% Wht < Sack% Wht) Then 

        If (MaxValue < Current% Val) Then 

   MaxValue = Current% Val 

 TotalWeight = Current% Wht 

         

 n (1) = a, n (2) = b, n (3) = c, n(4) = d, n (5) = e, n (6) = f, n (7) = g, n(8) = h, n (9) = i, n (10) = j 
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        End If 

End If 

   End Do 

         End Do 

     End Do 

End Do 

WRITE (*, “(A, I0) “) “Optimum Value achievable is “, MaxValue 

WRITE (*, “( 10(A, I0), A)” ) “This is achieved by “, n(1), “R2”, n(2), “R6”, n(3), “R9”, n(4), 

“R3,” n(5), “R5”, n(6), “R8” n(7), “R10”, n(8), “R4” n(9), “R1 and”, n(10), “R7” 

WRITE (*, “(A, F6.2, A, F6.2)”) “The Optimum Weight is”, TotalWeight 

End Program Knapsack 
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APPENDIX C 

Program Knapsack_vw 

IMPLICIT NONE 

Real∷ TotalWeight 

Integer∷ Max R3, Max R5, Max R4 Max R6, Max R8, Max R10, Max R1, Max R7, Max R2, Max R9, 

MaxValue = 0 

Integer∷ a, b, c, d, e, f, g, h, i, j, n (10) 

Type Bounty 

    Integer∷ Val 

    Real∷ Wht 

End Type Bounty 

Type (Bounty) ∷ R3, R5, R4, R6, R8, R10, R1, R7, R2, R9, Sack, Current 

R3 = Bounty (5, 120) 

R5 = Bounty (6, 180) 

R4 = Bounty (16, 110) 

R6 = Bounty (6, 75) 

R8 = Bounty (24, 400) 

R10 = Bounty (12, 260) 

R1 = Bounty (2, 45) 

R7 = Bounty (8, 200) 

R2 = Bounty (4, 90) 

R9 = Bounty (8, 160) 
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Sack = Bounty (0, 176) 

Max R3 = 1, Max R5 = 1, Max R4 = 2, Max R6 = 2, Max R8 = 2, Max R10 = 2, Max R1 = 3,     

Max R7 = 3, Max R2 = 4, Max R9 = 4 

Do a = 0, MaxR3 

      Do b = 0, MaxR5 

           Do c = 0, MaxR4 

              Do d = 0, MaxR6 

                    Do e = 0, MaxR8 

                        Do f = 0, MaxR10 

                           Do g = 0, MaxR1 

                              Do h = 0, MaxR7 

                                  Do i = 0, MaxR2 

                                      Do j = 0, MaxR9 

Current% Val = j* R9% Val + i* R2% Val + h* R7% Val + g* R1% Val + f* R10% Val + e* R8% 

Val + d* R6% Val + c* R4% Val + b* R5% Val + a* R3% Val 

Current% Wht = j* R9% Wht + i* R2% Wht + h* R7% Wht + g* R1% Wht + f* R10% Wht + e* 

R8% Wht + d* R6% Wht + c* R4% Wht + b* R5% Wht + a* R3% Wht 

If (Current% Wht < Sack% Wht) Then 

        If (MaxValue < Current% Val) Then 

   MaxValue = Current% Val 

 TotalWeight = Current% Wht 

         

 n (1) = a, n (2) = b, n (3) = c, n(4) = d, n (5) = e, n (6) = f, n (7) = g, n(8) = h, n (9) = i, n (10) = j 
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        End If 

End If 

   End Do 

         End Do 

     End Do 

End Do 

WRITE (*, “(A, I0) “) “Optimum Value achievable is “, MaxValue 

WRITE (*, “( 10(A, I0), A)” ) “This is achieved by “, n(1), “R3”, n(2), “R5”, n(3), “R4”, n(4), 

“R6,” n(5), “R8”, n(6), “R10” n(7), “R1”, n(8), “R7” n(9), “R2 and”, n(10), “R9” 

WRITE (*, “(A, F6.2, A, F6.2)”) “The Optimum Weight is”, TotalWeight 

End Program Knapsack 
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APPENDIX D 

Program Knapsack_skoda 

IMPLICIT NONE 

Real∷ TotalWeight 

Integer∷ Max R2, Max R4, Max R3 Max R8, Max R9, Max R5, Max R6, Max R10, Max R1, Max R7, 

MaxValue = 0 

Integer∷ a, b, c, d, e, f, g, h, i, j, n (10) 

Type Bounty 

    Integer∷ Val 

    Real∷ Wht 

End Type Bounty 

Type (Bounty) ∷ R2, R4, R3, R8, R9, R5, R6, R10, R1, R7, Sack, Current 

R2 = Bounty (4, 180) 

R4 = Bounty (18, 300) 

R3 = Bounty (6, 110) 

R8 = Bounty (24, 495) 

R9 = Bounty (10, 120) 

R5 = Bounty (10, 300) 

R6 = Bounty (5, 80) 

R10 = Bounty (10, 173) 

R1 = Bounty (2, 33) 

R7 = Bounty (8, 105) 
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Sack = Bounty (0, 176) 

Max R2 = 1, Max R4 = 1, Max R3 = 2, Max R8 = 2, Max R9 = 2, Max R5 = 3, Max R6 = 3,     

Max R10 = 3, Max R1 = 4, Max R7 = 6 

Do a = 0, MaxR2 

      Do b = 0, MaxR4 

           Do c = 0, MaxR3 

              Do d = 0, MaxR8 

                    Do e = 0, MaxR9 

                        Do f = 0, MaxR5 

                           Do g = 0, MaxR6 

                              Do h = 0, MaxR10 

                                  Do i = 0, MaxR1 

                                      Do j = 0, MaxR7 

Current% Val = j* R7% Val + i* R1% Val + h* R10% Val + g* R6% Val + f* R5% Val + e* R9% 

Val + d* R8% Val + c* R3% Val + b* R4% Val + a* R2% Val 

Current% Wht = j* R7% Wht + i* R1% Wht + h* R10% Wht + g* R6% Wht + f* R5% Wht + e* 

R9% Wht + d* R8% Wht + c* R3% Wht + b* R4% Wht + a* R2% Wht 

If (Current% Wht < Sack% Wht) Then 

        If (MaxValue < Current% Val) Then 

   MaxValue = Current% Val 

 TotalWeight = Current% Wht 

         

 n (1) = a, n (2) = b, n (3) = c, n(4) = d, n (5) = e, n (6) = f, n (7) = g, n(8) = h, n (9) = i, n (10) = j 
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        End If 

End If 

   End Do 

         End Do 

     End Do 

End Do 

WRITE (*, “(A, I0) “) “Optimum Value achievable is “, MaxValue 

WRITE (*, “( 10(A, I0), A)” ) “This is achieved by “, n(1), “R2”, n(2), “R4”, n(3), “R3”, n(4), 

“R8,” n(5), “R9”, n(6), “R5” n(7), “R6”, n(8), “R10” n(9), “R1 and”, n(10), “R7” 

WRITE (*, “(A, F6.2, A, F6.2)”) “The Optimum Weight is”, TotalWeight 

End Program Knapsack 
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APPENDIX E 

Table 4.3: Optimal Solutions of Volvo cars for the various iterative stages 

 

Iteration Item
 selected Optimal weight (hrs) Optimal value (GH¢) 

1 {0,0,0,0,0,0,0,0,0,3} 24 630 

100 {0,0,0,0,0,1,2,2,3,3} 163 3370 

200 {0,0,0,0,0,1,2,2,3,3} 166 3490 

300 {0,0,0,0,0,1,2,2,3,3} 166 3490 

400 {0,0,0,1,0,0,2,0,3,3} 176 3120 

500 {0,0,0,1,0,2,2,2,3,3} 169 3555 

600 {0,0,0,1,0,2,2,2,3,3} 169 3555 

700 {0,0,0,1,0,2,2,2,3,3} 169 3555 

800 {0,0,0,2,0,2,2,2,3,3} 172 3620 

900 {0,0,0,2,0,2,2,2,3,3} 172 3620 

1000 {0,0,0,2,0,2,2,2,3,3} 172 3620 

1100 {0,0,0,2,0,2,2,2,3,3} 172 3620 

1200 {0,0,0,2,0,2,2,2,3,3} 172 3620 

1300 {0,0,0,2,0,2,2,2,3,3} 172 3620 

1400 {0,0,0,2,0,2,2,2,3,3} 172 3620 

1500 {0,0,0,2,0,2,2,2,3,3} 172 3620 

1600 {0,0,0,2,0,2,2,2,3,3} 172 3620 

1700 {0,0,0,2,0,2,2,2,3,3} 172 3620 

1800 {0,0,0,2,0,2,2,2,3,3} 172 3620 

1900 {0,0,0,2,0,2,2,2,3,3} 172 3620 

2000 {0,1,0,0,0,2,2,2,3,3} 174 3710 

2100 {0,1,0,0,0,2,2,2,3,3} 174 3710 

2200 {0,1,0,0,0,2,2,2,3,3} 174 3710 

2300 {0,1,0,0,0,2,2,2,3,3} 174 3710 

2400 {0,1,0,0,0,2,2,2,3,3} 174 3710 

2500 {0,1,0,0,0,2,2,2,3,3} 174 3710 

2600 {0,1,0,0,0,2,2,2,3,3} 174 3710 

2700 {0,1,0,0,0,2,2,2,3,3} 174 3710 

2800 {0,1,0,0,0,2,2,2,3,3} 174 3710 

2900 {0,1,0,0,0,2,2,2,3,3} 174 3710 

3000 {0,1,0,0,0,2,2,2,3,3} 174 3710 

3100 {0,1,0,0,0,2,2,2,3,3} 174 3710 
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Iteration Items selected Optimal weight (hrs) Optimal value (GH¢) 

3200 {0,1,0,0,0,2,2,2,3,3} 174 3710 

3300 {0,1,0,0,0,2,2,2,3,3} 174 3710 

3400 {0,1,1,1,1,2,1,2,3,3} 175 3715 

3500 {0,1,1,1,1,2,1,2,3,3} 175 3715 

3600 {0,1,1,1,1,2,1,2,3,3} 175 3715 

3700 {0,1,1,1,1,2,1,2,3,3} 175 3715 

3800 {0,1,1,1,1,2,1,2,3,3} 175 3715 

3900 {0,1,1,1,1,2,1,2,3,3} 175 3715 

4000 {0,1,1,1,1,2,1,2,3,3} 175 3715 

4100 {0,1,1,1,1,2,1,2,3,3} 175 3715 

4200 {0,1,1,1,1,2,1,2,3,3} 175 3715 

4300 {1,0,0,1,0,2,2,2,3,3} 174 3735 

4400 {1,0,0,1,0,2,2,2,3,3} 174 3735 

4500 {1,0,0,1,0,2,2,2,3,3} 174 3735 

4600 {1,0,0,1,0,2,2,2,3,3} 174 3735 

4700 {1,0,0,1,0,2,2,2,3,3} 174 3735 

4800 {1,0,0,1,0,2,2,2,3,3} 174 3735 

4900 {1,0,0,1,0,2,2,2,3,3} 174 3735 

5000 {1,0,0,1,0,2,2,2,3,3} 174 3735 

5100 {1,0,0,1,0,2,2,2,3,3} 174 3735 

5200 {1,0,0,1,0,2,2,2,3,3} 174 3735 

5300 {1,0,0,1,0,2,2,2,3,3} 174 3735 

5400 {1,0,0,1,0,2,2,2,3,3} 174 3735 

5500 {1,0,0,1,0,2,2,2,3,3} 174 3735 

5600 {1,0,0,1,0,2,2,2,3,3} 174 3735 

5700 {1,0,1,2,1,2,1,2,3,3} 175 3740 

5800 {1,0,1,2,1,2,1,2,3,3} 175 3740 

5900 {1,1,0,0,0,1,2,2,3,3} 176 3770 

6000 {1,1,0,0,0,1,2,2,3,3} 176 3770 

6100 {1,1,0,0,0,1,2,2,3,3} 176 3770 

6200 {1,1,0,0,0,1,2,2,3,3} 176 3770 

6300 {1,1,0,0,0,1,2,2,3,3} 176 3770 

6400 {1,1,0,0,0,1,2,2,3,3} 176 3770 

6500 {1,1,0,0,0,1,2,2,3,3} 176 3770 

6600 {1,1,0,0,0,1,2,2,3,3} 176 3770 
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Iteration Items selected Optimal weight (hrs) Optimal value (GH¢) 

6700 {1,1,0,0,0,1,2,2,3,3} 176 3770 

6800 {1,1,0,0,0,1,2,2,3,3} 176 3770 

6900 {1,1,0,0,0,1,2,2,3,3} 176 3770 

7000 {1,1,0,0,0,1,2,2,3,3} 176 3770 

7100 {1,1,0,0,0,1,2,2,3,3} 176 3770 

7200 {1,1,0,0,0,1,2,2,3,3} 176 3770 

7300 {1,1,0,0,0,1,2,2,3,3} 176 3770 

7400 {1,1,0,0,0,1,2,2,3,3} 176 3770 

7500 {1,1,0,0,0,1,2,2,3,3} 176 3770 

7600 {1,1,0,0,0,1,2,2,3,3} 176 3770 

7700 {1,1,0,0,0,1,2,2,3,3} 176 3770 

7722 {1,1,0,0,0,1,2,2,3,3} 176 3770 
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APPENDIX F 

Table 4.4: Optimal Solutions of Audi cars for the various iterative stages  

 

 Iteration Items selected Optimal weight (hrs) Optimal value (GH¢) 

1 {0,0,0,0,0,0,0,0,0,4} 28 720 

100 {0,0,0,0,0,1,1,3,4,4} 128 2190 

200 {0,0,0,0,0,2,2,3,4,4} 166 2880 

300 {0,0,0,0,0,2,2,3,4,4} 166 2880 

400 {0,0,0,0,1,2,2,3,4,4} 176 3080 

500 {0,0,0,0,1,2,2,3,4,4} 176 3080 

600 {0,0,0,0,1,2,2,3,4,4} 176 3080 

700 {0,0,0,0,1,2,2,3,4,4} 176 3080 

800 {0,0,0,0,1,2,2,3,4,4} 176 3080 

900 {0,0,0,1,1,2,2,3,1,4} 176 3110 

1000 {0,0,0,1,1,2,2,3,1,4} 176 3110 

1100 {0,0,0,1,2,2,2,2,4,4} 174 3180 

1200 {0,0,0,1,2,2,2,2,4,4} 174 3180 

1300 {0,0,0,1,2,2,2,2,4,4} 174 3180 

1400 {0,0,0,1,2,2,2,2,4,4} 174 3180 

1500 {0,0,0,1,2,2,2,2,4,4} 174 3180 

1600 {0,0,0,1,2,2,2,2,4,4} 174 3180 

1700 {0,0,0,2,2,2,2,2,2,4} 176 3240 

1800 {0,0,0,2,2,2,2,2,2,4} 176 3240 

1900 {0,0,0,2,2,2,2,2,2,4} 176 3240 

2000 {0,0,0,2,2,2,2,2,2,4} 176 3240 

2100 {0,0,0,2,2,2,2,2,2,4} 176 3240 

2200 {0,0,0,2,2,2,2,2,2,4} 176 3240 

2300 {0,0,0,2,2,2,2,2,2,4} 176 3240 

2400 {0,0,0,2,2,2,2,2,2,4} 176 3240 

2500 {0,0,0,2,2,2,2,2,2,4} 176 3240 

2600 {0,0,0,2,2,2,2,2,2,4} 176 3240 

2700 {0,0,0,2,2,2,2,2,2,4} 176 3240 

2800 {0,0,0,2,2,2,2,2,2,4} 176 3240 

2900 {0,0,0,2,2,2,2,2,2,4} 176 3240 

3000 {0,0,0,2,2,2,2,2,2,4} 176 3240 

3100 {0,0,0,2,2,2,2,2,2,4} 176 3240 

3200 {0,0,0,2,2,2,2,2,2,4} 176 3240 

3300 {0,0,0,2,2,2,2,2,2,4} 176 3240 

3400 {0,0,0,2,2,2,2,2,2,4} 176 3240 
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Iteration Items selected Optimal weight (hrs) Optimal value (GH¢) 

3500 {0,0,0,2,2,2,2,2,2,4} 176 3240 

3600 {0,0,0,2,2,2,2,2,2,4} 176 3240 

3700 {0,0,0,2,2,2,2,2,2,4} 176 3240 

3800 {0,0,0,2,2,2,2,2,2,4} 176 3240 

3900 {0,0,0,2,2,2,2,2,2,4} 176 3240 

4000 {0,0,0,2,2,2,2,2,2,4} 176 3240 

4100 {0,0,0,2,2,2,2,2,2,4} 176 3240 

4200 {0,0,0,2,2,2,2,2,2,4} 176 3240 

4300 {0,0,0,2,2,2,2,2,2,4} 176 3240 

4400 {0,0,0,2,2,2,2,2,2,4} 176 3240 

4500 {0,0,0,2,2,2,2,2,2,4} 176 3240 

4600 {0,0,0,2,2,2,2,2,2,4} 176 3240 

4700 {0,0,0,2,2,2,2,2,2,4} 176 3240 

4800 {0,0,0,2,2,2,2,2,2,4} 176 3240 

4900 {0,0,0,2,2,2,2,2,2,4} 176 3240 

5000 {0,0,0,2,2,2,2,2,2,4} 176 3240 

5100 {0,0,0,2,2,2,2,2,2,4} 176 3240 

5200 {0,0,0,2,2,2,2,2,2,4} 176 3240 

5300 {0,0,0,2,2,2,2,2,2,4} 176 3240 

5400 {0,0,0,2,2,2,2,2,2,4} 176 3240 

5500 {0,0,0,2,2,2,2,2,2,4} 176 3240 

5600 {0,0,0,2,2,2,2,2,2,4} 176 3240 

5700 {0,0,0,2,2,2,2,2,2,4} 176 3240 

5800 {0,0,0,2,2,2,2,2,2,4} 176 3240 

5900 {0,0,0,2,2,2,2,2,2,4} 176 3240 

6000 {0,1,1,1,2,2,2,1,4,4} 174 3270 

6100 {0,1,1,1,2,2,2,1,4,4} 174 3270 

6200 {0,1,1,1,2,2,2,1,4,4} 174 3270 

6300 {0,1,1,1,2,2,2,1,4,4} 174 3270 

6400 {0,1,1,1,2,2,2,1,4,4} 174 3270 

6500 {0,1,1,2,2,2,2,1,2,4} 176 3330 

6600 {0,1,1,2,2,2,2,1,2,4} 176 3330 

6700 {0,1,1,2,2,2,2,1,2,4} 176 3330 

6800 {0,1,1,2,2,2,2,1,2,4} 176 3330 

6900 {0,1,1,2,2,2,2,1,2,4} 176 3330 

7000 {0,1,1,2,2,2,2,1,2,4} 176 3330 

7100 {0,1,1,2,2,2,2,1,2,4} 176 3330 

7200 {0,1,1,2,2,2,2,1,2,4} 176 3330 
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Iteration Items selected Optimal weight (hrs) Optimal value (GH¢) 

7300 {0,1,1,2,2,2,2,1,2,4} 176 3330 

7400 {0,1,1,2,2,2,2,1,2,4} 176 3330 

7500 {0,1,1,2,2,2,2,1,2,4} 176 3330 

7600 {0,1,1,2,2,2,2,1,2,4} 176 3330 

7700 {0,1,1,2,2,2,2,1,2,4} 176 3330 

7800 {0,1,1,2,2,2,2,1,2,4} 176 3330 

7900 {0,1,1,2,2,2,2,1,2,4} 176 3330 

8000 {0,1,1,2,2,2,2,1,2,4} 176 3330 

8100 {0,1,1,2,2,2,2,1,2,4} 176 3330 

8200 {0,1,1,2,2,2,2,1,2,4} 176 3330 

8300 {0,1,1,2,2,2,2,1,2,4} 176 3330 

8400 {0,1,1,2,2,2,2,1,2,4} 176 3330 

8500 {0,1,1,2,2,2,2,1,2,4} 176 3330 

8600 {0,1,1,2,2,2,2,1,2,4} 176 3330 

8700 {0,1,1,2,2,2,2,1,2,4} 176 3330 

8800 {0,1,1,2,2,2,2,1,2,4} 176 3330 

8900 {0,1,1,2,2,2,2,1,2,4} 176 3330 

9000 {0,1,1,2,2,2,2,1,2,4} 176 3330 

9100 {0,1,1,2,2,2,2,1,2,4} 176 3330 

9200 {0,1,1,2,2,2,2,1,2,4} 176 3330 

9300 {0,1,1,2,2,2,2,1,2,4} 176 3330 

9400 {0,1,1,2,2,2,2,1,2,4} 176 3330 

9500 {0,1,1,2,2,2,2,1,2,4} 176 3330 

9600 {0,1,1,2,2,2,2,1,2,4} 176 3330 

9700 {1,0,1,2,2,2,2,1,4,4} 176 3340 

9800 {1,0,1,2,2,2,2,1,4,4} 176 3340 

9900 {1,0,1,2,2,2,2,1,4,4} 176 3340 

10000 {1,0,1,2,2,2,2,1,4,4} 176 3340 

10100 {1,0,1,2,2,2,2,1,4,4} 176 3340 

10200 {1,0,1,2,2,2,2,1,4,4} 176 3340 

10300 {1,0,1,2,2,2,2,1,4,4} 176 3340 

10400 {1,0,1,2,2,2,2,1,4,4} 176 3340 

10500 {1,0,1,2,2,2,2,1,4,4} 176 3340 

10600 {1,0,1,2,2,2,2,1,4,4} 176 3340 

10700 {1,0,1,2,2,2,2,1,4,4} 176 3340 

10800 {1,0,1,2,2,2,2,1,4,4} 176 3340 

10900 {1,0,1,2,2,2,2,1,4,4} 176 3340 

11000 {1,0,1,2,2,2,2,1,4,4} 176 3340 
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Iteration Items selected Optimal weight (hrs) Optimal value (GH¢) 

11100 {1,0,1,2,2,2,2,1,4,4} 176 3340 

11200 {1,0,1,2,2,2,2,1,4,4} 176 3340 

11300 {1,0,1,2,2,2,2,1,4,4} 176 3340 

11400 {1,0,1,2,2,2,2,1,4,4} 176 3340 

11500 {1,0,1,2,2,2,2,1,4,4} 176 3340 

11600 {1,0,1,2,2,2,2,1,4,4} 176 3340 

11700 {1,0,1,2,2,2,2,1,4,4} 176 3340 

11800 {1,0,1,2,2,2,2,1,4,4} 176 3340 

11900 {1,0,1,2,2,2,2,1,4,4} 176 3340 

12000 {1,0,1,2,2,2,2,1,4,4} 176 3340 

12100 {1,0,1,2,2,2,2,1,4,4} 176 3340 

12200 {1,0,1,2,2,2,2,1,4,4} 176 3340 

12300 {1,0,1,2,2,2,2,1,4,4} 176 3340 

12400 {1,0,1,2,2,2,2,1,4,4} 176 3340 

12500 {1,0,1,2,2,2,2,1,4,4} 176 3340 

12600 {1,0,1,2,2,2,2,1,4,4} 176 3340 

12700 {1,0,1,2,2,2,2,1,4,4} 176 3340 

12800 {1,0,1,2,2,2,2,1,4,4} 176 3340 

12900 {1,0,1,2,2,2,2,1,4,4} 176 3340 

12929 {1,1,1,2,2,2,2,1,0,4} 176 3370 
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APPENDIX G 

Table 4.5: Optimal Solutions of Vw cars for the various iterative stages  

 

 
 

Iteration Items selected Optimal weight (hrs) Optimal value (GH¢) 

1 {0,0,0,0,0,0,0,0,0,4} 32 640 

200 {0,0,0,0,0,2,1,3,4,4} 98 2165 

400 {0,0,0,0,1,1,3,3,4,4} 114 2395 

600 {0,0,0,0,2,1,1,3,4,4} 134 2705 

800 {0,0,0,0,2,2,3,3,4,4} 150 3055 

1000 {0,0,0,0,2,2,3,3,4,4} 150 3055 

1200 {0,0,0,0,2,2,3,3,4,4} 150 3055 

1400 {0,0,0,1,2,2,2,3,4,4} 154 3085 

1600 {0,0,0,1,2,2,2,3,4,4} 154 3085 

1800 {0,0,0,1,2,2,2,3,4,4} 154 3085 

2000 {0,0,0,2,2,2,3,3,4,4} 162 3205 

2200 {0,0,0,2,2,2,3,3,4,4} 162 3205 

2400 {0,0,0,2,2,2,3,3,4,4} 162 3205 

2600 {0,0,0,2,2,2,3,3,4,4} 162 3205 

2800 {0,0,0,2,2,2,3,3,4,4} 162 3205 

3000 {0,0,0,2,2,2,3,3,4,4} 162 3205 

3200 {0,0,0,2,2,2,3,3,4,4} 162 3205 

3400 {0,0,1,1,2,2,3,3,4,4} 172 3240 

3600 {0,0,1,1,2,2,3,3,4,4} 172 3240 

3800 {0,0,1,1,2,2,3,3,4,4} 172 3240 

4000 {0,0,1,1,2,2,3,3,4,4} 172 3240 

4200 {0,0,1,1,2,2,3,3,4,4} 172 3240 

4400 {0,0,1,1,2,2,3,3,4,4} 172 3240 

4600 {0,0,1,1,2,2,3,3,4,4} 172 3240 

4800 {0,0,1,1,2,2,3,3,4,4} 172 3240 

5000 {0,0,1,1,2,2,3,3,4,4} 172 3240 

5200 {0,0,1,1,2,2,3,3,4,4} 172 3240 

5400 {0,0,1,1,2,2,3,3,4,4} 172 3240 

5600 {0,0,1,1,2,2,3,3,4,4} 172 3240 

5800 {0,0,1,1,2,2,3,3,4,4} 172 3240 

6000 {0,0,1,1,2,2,3,3,4,4} 172 3240 

6200 {0,0,1,1,2,2,3,3,4,4} 172 3240 

6400 {0,0,1,1,2,2,3,3,4,4} 172 3240 

6600 {0,0,1,1,2,2,3,3,4,4} 172 3240 

6800 {0,0,1,1,2,2,3,3,4,4} 172 3240 
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7000 {0,0,1,1,2,2,3,3,4,4} 172 3240 

7200 {0,0,1,1,2,2,3,3,4,4} 172 3240 

7400 {0,0,1,1,2,2,3,3,4,4} 172 3240 

7600 {0,0,1,1,2,2,3,3,4,4} 172 3240 

7800 {0,1,0,1,2,2,3,3,4,4} 162 3310 

8000 {0,1,0,1,2,2,3,3,4,4} 162 3310 

8200 {0,1,0,1,2,2,3,3,4,4} 162 3310 

8400 {0,1,0,2,2,2,3,3,4,4} 168 3385 

8600 {0,1,0,2,2,2,3,3,4,4} 168 3385 

8800 {0,1,0,2,2,2,3,3,4,4} 168 3385 

9000 {0,1,0,2,2,2,3,3,4,4} 168 3385 

9200 {0,1,0,2,2,2,3,3,4,4} 168 3385 

9400 {0,1,0,2,2,2,3,3,4,4} 168 3385 

9600 {0,1,0,2,2,2,3,3,4,4} 168 3385 

9800 {0,1,0,2,2,2,3,3,4,4} 168 3385 

10000 {0,1,0,2,2,2,3,3,4,4} 168 3385 

10200 {0,1,0,2,2,2,3,3,4,4} 168 3385 

10400 {0,1,0,2,2,2,3,3,4,4} 168 3385 

10600 {0,1,0,2,2,2,3,3,4,4} 168 3385 

10800 {0,1,0,2,2,2,3,3,4,4} 168 3385 

11000 {0,1,0,2,2,2,3,3,4,4} 168 3385 

11200 {0,1,0,2,2,2,3,3,4,4} 168 3385 

11400 {0,1,0,2,2,2,3,3,4,4} 168 3385 

11600 {0,1,0,2,2,2,3,3,4,4} 168 3385 

11800 {0,1,0,2,2,2,3,3,4,4} 168 3385 

12000 {0,1,0,2,2,2,3,3,4,4} 168 3385 

12200 {0,1,0,2,2,2,3,3,4,4} 168 3385 

12400 {0,1,0,2,2,2,3,3,4,4} 168 3385 

12600 {0,1,0,2,2,2,3,3,4,4} 168 3385 

12800 {0,1,0,2,2,2,3,3,4,4} 168 3385 

13000 {0,1,0,2,2,2,3,3,4,4} 168 3385 

13200 {0,1,0,2,2,2,3,3,4,4} 168 3385 

13400 {0,1,0,2,2,2,3,3,4,4} 168 3385 

13600 {0,1,0,2,2,2,3,3,4,4} 168 3385 

13800 {0,1,0,2,2,2,3,3,4,4} 168 3385 

14000 {0,1,0,2,2,2,3,3,4,4} 168 3385 

14200 {0,1,0,2,2,2,3,3,4,4} 168 3385 

14400 {0,1,0,2,2,2,3,3,4,4} 168 3385 

14600 {0,1,0,2,2,2,3,3,4,4} 168 3385 
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14800 {0,1,0,2,2,2,3,3,4,4} 168 3385 

15000 {0,1,0,2,2,2,3,3,4,4} 168 3385 

15200 {0,1,0,2,2,2,3,3,4,4} 168 3385 

15400 {0,1,0,2,2,2,3,3,4,4} 168 3385 

15600 {0,1,0,2,2,2,3,3,4,4} 168 3385 

15800 {0,1,0,2,2,2,3,3,4,4} 168 3385 

16000 {0,1,0,2,2,2,3,3,4,4} 168 3385 

16200 {0,1,0,2,2,2,3,3,4,4} 168 3385 

16400 {0,1,0,2,2,2,3,3,4,4} 168 3385 

16600 {0,1,0,2,2,2,3,3,4,4} 168 3385 

16800 {0,1,0,2,2,2,3,3,4,4} 168 3385 

17000 {0,1,0,2,2,2,3,3,4,4} 168 3385 

17200 {0,1,0,2,2,2,3,3,4,4} 168 3385 

17400 {0,1,0,2,2,2,3,3,4,4} 168 3385 

17600 {0,1,0,2,2,2,3,3,4,4} 168 3385 

17800 {0,1,0,2,2,2,3,3,4,4} 168 3385 

18000 {0,1,0,2,2,2,3,3,4,4} 168 3385 

18200 {0,1,0,2,2,2,3,3,4,4} 168 3385 

18400 {0,1,0,2,2,2,3,3,4,4} 168 3385 

18600 {0,1,0,2,2,2,3,3,4,4} 168 3385 

18800 {0,1,0,2,2,2,3,3,4,4} 168 3385 

19000 {0,1,0,2,2,2,3,3,4,4} 168 3385 

19200 {0,1,0,2,2,2,3,3,4,4} 168 3385 

19400 {0,1,0,2,2,2,3,3,4,4} 168 3385 

19600 {0,1,0,2,2,2,3,3,4,4} 168 3385 

19800 {0,1,0,2,2,2,3,3,4,4} 168 3385 

20000 {0,1,0,2,2,2,3,3,4,4} 168 3385 

20200 {0,1,0,2,2,2,3,3,4,4} 168 3385 

20400 {0,1,0,2,2,2,3,3,4,4} 168 3385 

20600 {1,1,0,1,2,2,3,3,4,4} 167 3430 

20800 {1,1,0,1,2,2,3,3,4,4} 167 3430 

21000 {1,1,0,1,2,2,3,3,4,4} 167 3430 

21200 {1,1,0,2,2,2,2,3,4,4} 171 3460 

21400 {1,1,0,2,2,2,3,3,4,4} 173 3505 

21600 {1,1,0,2,2,2,3,3,4,4} 173 3505 

21800 {1,1,0,2,2,2,3,3,4,4} 173 3505 

22000 {1,1,0,2,2,2,3,3,4,4} 173 3505 

22200 {1,1,0,2,2,2,3,3,4,4} 173 3505 

22400 {1,1,0,2,2,2,3,3,4,4} 173 3505 
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22600 {1,1,0,2,2,2,3,3,4,4} 173 3505 

22800 {1,1,0,2,2,2,3,3,4,4} 173 3505 

23000 {1,1,0,2,2,2,3,3,4,4} 173 3505 

23200 {1,1,0,2,2,2,3,3,4,4} 173 3505 

23400 {1,1,0,2,2,2,3,3,4,4} 173 3505 

23600 {1,1,0,2,2,2,3,3,4,4} 173 3505 

23800 {1,1,0,2,2,2,3,3,4,4} 173 3505 

24000 {1,1,0,2,2,2,3,3,4,4} 173 3505 

24200 {1,1,0,2,2,2,3,3,4,4} 173 3505 

24400 {1,1,0,2,2,2,3,3,4,4} 173 3505 

24600 {1,1,0,2,2,2,3,3,4,4} 173 3505 

24800 {1,1,0,2,2,2,3,3,4,4} 173 3505 

25000 {1,1,0,2,2,2,3,3,4,4} 173 3505 

25200 {1,1,0,2,2,2,3,3,4,4} 173 3505 

25400 {1,1,0,2,2,2,3,3,4,4} 173 3505 

25445 {1,1,0,2,2,2,3,3,4,4} 173 3505 
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APPENDIX H 

Table 4.6: Optimal Solutions of  Skoda cars for the various iterative stages 

Iteration Items selected Optimal weight (hrs) Optimal value (GH¢) 

1 {0,0,0,0,0,0,0,0,0,6} 48 630 

500 {0,0,0,0,0,3,3,3,4,6} 131 2421 

1000 {0,0,0,0,2,3,3,3,4,6} 151 2661 

1500 {0,0,0,1,0,3,3,3,4,6} 155 2916 

2000 {0,0,0,1,2,3,3,3,4,6} 175 3156 

2500 {0,0,0,2,0,3,3,3,2,6} 175 3345 

3000 {0,0,0,2,0,3,3,3,2,6} 175 3345 

3500 {0,0,0,2,0,3,3,3,2,6} 175 3345 

4000 {0,0,0,2,0,3,3,3,2,6} 175 3345 

4500 {0,0,0,2,0,3,3,3,2,6} 175 3345 

5000 {0,0,0,2,0,3,3,3,2,6} 175 3345 

5500 {0,0,1,2,0,3,3,3,3,5} 175 3383 

6000 {0,0,1,2,0,3,3,3,3,5} 175 3383 

6500 {0,0,1,2,0,3,3,3,3,5} 175 3383 

7000 {0,0,1,2,0,3,3,3,3,5} 175 3383 

7500 {0,0,1,2,0,3,3,3,3,5} 175 3383 

8000 {0,0,2,2,0,3,0,3,4,6} 176 3391 

8500 {0,0,2,2,0,3,3,3,4,4} 176 3421 

9000 {0,0,2,2,0,3,3,3,4,4} 176 3421 

9500 {0,0,2,2,0,3,3,3,4,4} 176 3421 

10000 {0,0,2,2,0,3,3,3,4,4} 176 3421 

10500 {0,0,2,2,0,3,3,3,4,4} 176 3421 

11000 {0,0,2,2,0,3,3,3,4,4} 176 3421 

11500 {0,0,2,2,0,3,3,3,4,4} 176 3421 

12000 {0,0,2,2,0,3,3,3,4,4} 176 3421 

12500 {0,0,2,2,0,3,3,3,4,4} 176 3421 

13000 {0,0,2,2,0,3,3,3,4,4} 176 3421 

13500 {0,0,2,2,0,3,3,3,4,4} 176 3421 

14000 {0,1,1,2,0,3,3,3,2,3} 175 3440 

14500 {0,1,1,2,1,3,2,3,4,2} 176 3441 

15000 {0,1,1,2,1,3,2,3,4,2} 176 3441 

15500 {0,1,1,2,1,3,2,3,4,2} 176 3441 

16000 {0,1,1,2,1,3,2,3,4,2} 176 3441 

16500 {0,1,1,2,1,3,2,3,4,2} 176 3441 

17000 {0,1,2,2,0,3,3,3,3,2} 175 3478 

17500 {0,1,2,2,0,3,3,3,3,2} 175 3478 
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18000 {0,1,2,2,0,3,3,3,3,2} 175 3478 

18500 {0,1,2,2,0,3,3,3,3,2} 175 3478 

19000 {0,1,2,2,0,3,3,3,3,2} 175 3478 

19500 {0,1,2,2,0,3,3,3,3,2} 175 3478 

20000 {1,0,0,2,0,3,3,3,4,5} 175 3486 

20500 {1,0,0,2,0,3,3,3,4,5} 175 3486 

21000 {1,0,0,2,0,3,3,3,4,5} 175 3486 

21500 {1,0,0,2,0,3,3,3,4,5} 175 3486 

22000 {1,0,0,2,0,3,3,3,4,5} 175 3486 

22500 {1,0,1,2,0,3,2,3,4,5} 176 3516 

23000 {1,0,1,2,0,3,2,3,4,5} 176 3516 

23500 {1,0,1,2,0,3,2,3,4,5} 176 3516 

24000 {1,0,1,2,0,3,2,3,4,5} 176 3516 

24500 {1,0,1,2,0,3,2,3,4,5} 176 3516 

25000 {1,0,1,2,0,3,2,3,4,5} 176 3516 

25500 {1,0,2,2,0,3,3,3,2,4} 176 3527 

26000 {1,0,2,2,1,3,2,3,4,3} 176 3536 

26500 {1,0,2,2,1,3,2,3,4,3} 176 3536 

27000 {1,0,2,2,1,3,2,3,4,3} 176 3536 

27500 {1,0,2,2,1,3,2,3,4,3} 176 3536 

28000 {1,0,2,2,1,3,2,3,4,3} 176 3536 

28500 {1,1,0,2,0,3,3,3,3,3} 175 3543 

29000 {1,1,0,2,0,3,3,3,3,3} 175 3543 

29500 {1,1,0,2,0,3,3,3,3,3} 175 3543 

30000 {1,1,0,2,0,3,3,3,3,3} 175 3543 

30500 {1,1,0,2,0,3,3,3,3,3} 175 3543 

31000 {1,1,0,2,0,3,3,3,3,3} 175 3543 

31500 {1,1,1,2,0,3,3,3,4,2} 175 3581 

32000 {1,1,1,2,0,3,3,3,4,2} 175 3581 

32500 {1,1,1,2,0,3,3,3,4,2} 175 3581 

33000 {1,1,1,2,0,3,3,3,4,2} 175 3581 

33500 {1,1,1,2,0,3,3,3,4,2} 175 3581 

34000 {1,1,2,2,0,3,2,3,4,2} 176 3611 

34500 {1,1,2,2,0,3,2,3,4,2} 176 3611 

34654 {1,1,2,2,0,3,2,3,4,2} 176 3611 

 

 


