
i

MODELLING THE MAXIMUM REVENUE FROM THE REPAIRS OF CARS OF AN

AUTO WORKSHOP IN GHANA

By

JOHN ESSUMAN (Bsc. Mechanical Engineering)

A Thesis Submitted to the Department of Mathematics, Kwame Nkrumah University of Science

and Technology, Kumasi, in partial fulfillment of the requirement for the degree of

Master of Science

Industrial Maths

 Institute of Distance Learning

May, 2012

i

DECLARATION

I hereby declare that this submission is my own work towards the Msc and that, to the best of my

knowledge; it contains no material previously published by another person or materials, which

have been accepted for the award of any other degree of the University, except where the

acknowledgement has been made in the text.

John Essuman (PG3012609)

Student Name & ID No. Signature Date

Certified by:

Mr. K.F. Darkwah ………………………………….

Supervisor‟s Name. Signature Date

Certified by:

Mr. K.F. Darkwah ………………………………….

Head of Department‟s Name. Signature Date

ii

ABSTRACT

Manual selection approaches in the repairs of cars are usually inadequate and cannot provide the

best solution for a company to maximize revenue; hence a tremendous effort has been spent for

improving operational productivity through effective and efficient means of selections.

This research develops a procedure of using a simple knapsack model to solve the problem of

selecting and scheduling cars due for repairs in an auto workshop environment. This is a direct

application of a Knapsack problem to an industrial problem of selection and scheduling.

This thesis considers the application of the classical 0-1 knapsack problem with a single

constraint to the selection of some cars which has to be repaired within a given time. Our

objective of selecting these cars is to maximize income from the associated labour charges

earned from the repairs of the cars.

Our focus is to use a simple scientific approach of Dynamic Programming that can solve the

classical 0-1 knapsack problem above.

iii

TABLE OF CONTENTS

DECLARATION…………………………………………………………………………….(i)

ABSTRACT…………………………………………………………………………………(ii)

TABLE OF CONTENTS…………………………………………………………………...(iii)

LIST OF TABLES…………………………………………………………………………. (v)

LIST OF FIGURES…………………………………………………………………………(v)

DEDICATION…………………………………………………………………………… ..(vi)

ACKNOWLEDGEMENT………………………… …………………………………… (vii)

CHAPTER 1…...…………………………………………………………………………….(1)

1.0 Introduction……………………………………………………………………………...(1)

1.1 Background of study...(1)

1.2 Problem statement...(4)

1.3 Objective...(5)

1.4 Methodology...(5)

1.5 Justification...(5)

1.6 Organization of Thesis..(6)

CHAPTER 2…...…………………………………………………………………………....(7)

LITERATURE REVIEW...(7)

CHAPTER 3………………………………………………………………………………. (21)

METHODOLOGY

3.1 Types of Knapsack Problems...(21)

3.2 Single Knapsack Problems.. (21)

3.2.1 The Single 0-1 knapsack problem.. (22)

iv

3.2.2 The Bounded knapsack problem..(22)

3.3 Multiple Knapsack problems..(23)

3.3.1 0-1 Multiple Knapsack problems...(23)

3.4 Methods for solving Knapsack Problems...(24)

3.4.1 Branch and Bound Method..(24)

3.4.2 Dynamic Programming Method..(35)

CHAPTER 4…….……………………………………………………………....................(38)

DATA COLLECTION AND ANALYSIS

4.1 Data Collection..(38)

4.2 Formulation of Problem Instance..(41)

4.3 Algorithm..(43)

4.4 Computation Procedure...(44)

4.5 Results...(45)

4.6 Discussions..(46)

CHAPTER 5…...………………………………………………………………………….(49)

CONCLUSIONS AND RECOMMENDATIONS..(49)

5.1 Conclusions...(49)

5.2 Recommendations...(50)

v

REFERENCES………………………………………………………………..................(51)

APPENDIX A……………………………………………………………………………(54)

APPENDIX B……………………………………………………………………………(57)

APPENDIX C……………………………………………………………………………(60)

APPENDIX D……………………………………………………………………………(63)

APPENDIX E……………………………………………………………………………(66)

APPENDIX F……………………………………………………………………………(69)

APPENDIX G……………………………………………………………………………(73)

APPENDIX H……………………………………………………………………………(77)

List of Tables

(a) Table 3.1: Example of Dynamic programming approach……………………….(36)

(b) Table 3.2: Results for maximum cost (Ai,k) ... (37)

(c) Table 3.3: Results for the set of items selected (Li,k).. (37)

(d) Table 4.1:Workshop Labour charges and repair time... (39)

(e) Table 4.2: Average number of cars to repair in a month.......................................(40)

(f) Table 4.7: Total revenue generated by Random selection method……………... (47)

(g) Table 4.8: Total revenue generated by Scientific approach…………………... .. (47)

(h) Table 4.3: Optimal Solutions for the various iterative stages of Volvo brand......(66)

(i) Table 4.4: Optimal Solutions for the various iterative stages of Audi brand........(69)

(j) Table 4.5: Optimal Solutions for the various iterative stages of VW brand......... (73)

(k) Table 4.6: Optimal Solutions for the various iterative stages of Skoda brand......(77)

List of Figures

(a) Figure 3.1: Decision tree of Horowitz-Sahni Algorithm for example 3.1…….…(28)

(b) Figure 3.2: Decision tree of Martello-Toth Algorithm for example 3.1…….. ….(34)

vi

DEDICATION

I dedicate this thesis to God Almighty my creator and my God. He has guided me and given me

strength throughout this work. May His name which is above all names be praised forever.

I also dedicate this thesis to my entire family for their prayers and encouragement.

vii

ACKNOWLEDGEMENT

I give thanks to the Almighty God for giving me the opportunity, wisdom and guidance for

undertaking this programme and completing it with this thesis.

I would like to express my sincere appreciation to my supervisor Mr. K.F. Darkwah of the

Department of Mathematics, K.N.U.S.T, Kumasi for his step by step guidance and support

throughout this study. It was indeed a privilege for me to receive his tremendous inputs.

Special thanks to my wife Mrs. Naa Adei Essuman for her patience and support, and also sincere

thanks to my children, Esther and David for their understanding and encouragement.

God Bless you all.

1

CHAPTER 1

1.0 INTRODUCTION

There is a maxim in the automobile industry which says that: „the first car is sold by the

salesman but all subsequent ones are sold by good after-sales service.‟ This shows an absolute

necessity to recognize the Auto workshop as an important unit in the Auto industry because it

can be used to promote sales of cars and also customer loyalty. Customers who become delighted

as a result of good after-sale service have the highest probability of remaining loyal to the

company that served them.

Motor vehicles are now regarded as necessities in most developed nations. The number of cars,

vans, trucks, and buses in the world now averages at least one for every 12 human beings.

The situation is not too different from what pertains in Ghana. Cars and bikes no longer fall

under the category of luxurious items in Ghana; rather they have now become the basic

necessities of life. Ghanaians have realized that they all require safe vehicles to commute and

make their day-to-day travelling easier. We all have our dreams and to own a personal vehicle is

everyone‟s dream. To buy a vehicle is a dream of several people and the ones who have been

successful in achieving these dreams ensure that they maintain their vehicle in the best possible

way.

1.1 BACKGROUND OF STUDY

The Automobile industry in Ghana continues to experience an unforeseen boom. Thanks to the

buoyant economic condition, today almost every decently earning Ghanaian dreams of owning a

car. Again, due to the investor-friendly climate in the country and the adequate legislation to

2

promote and protect businesses to thrive in the country, many investors, both foreign and local,

have taken advantage of the situation to open businesses and the Automobile sector is not an

exception.

Between the period 1980 and 1990, one could hardly see automobile companies scattered around

the country. There were only a few like Toyota Ghana, Japan Motors, Auto Parts and probably

CFAO among others. The situation is now different. Today, the industry has seen tremendous

growth resulting in individuals importing vehicles both brand new and second hand from Europe

for sale in Ghana. Almost along, every highway and major road is a garage displaying different

models of vehicles for sale. The fascinating thing about the industry is that some of the players

have gone the extra mile to liaise with the banks to provide credit facility for their prospective

buyers.

Currently, Ghana can boast of about 20 automobile companies that sell brand new cars and over

1000 garages that sell slightly used cars (home second-hand cars) in the country. Those engaged

in the sale of the second-hand vehicles continue to increase day in day out churning out moderate

prices to enable customers to purchase from them. Competition in the industry has become

keener and keener, while dealers continue to devise means of attracting customers to buy their

vehicles. One of the means that auto companies can use to attract customers is reducing

throughput times in their after-sale service departments. (Automobile Industry in Ghana, Daily

Graphic, Page 18, Wednesday, November 24, 2010)

Normally the associated decisions involve the assignment of tasks to resources and finding the

processing order of jobs on each resource in order to achieve in advance, a specific goal(s) of a

company.

3

In general after sale service activity, managers analyze the capacity of their outfit and customer

demand, and then develop a servicing schedule to assign spare parts and tools to jobs to be

carried out.

The after-sales service activities in recent times are acknowledged as a significant source of

revenue, profit and competitive advantage in most Auto workshops in Ghana. Managers of Auto

workshop therefore have the fundamental obligation to ensure the most efficient deployment of

the monetary investment allocated to the running of their workshops. If this basic framework is

adhered to, then managers of Auto workshops can be able to maximize the total net present value

of all revenues accrued from all the jobs (i.e. repairs and servicing) that are carried out in their

workshops.

One of the processes that can be used to achieve the above goal is an effective allocation model

based on monetary issues. Therefore an efficient and effective allocation process can enable

Auto workshops to allocate their limited resources (repair time) to jobs (repairs and servicing)

over a specified period of time.

Premier Technik Motors Ltd is an auto workshop located at South Industrial Area, Accra in

Ghana. It was incorporated on 25
th

 March 2009, starting business in the same month. The

workshop services Vw, Audi, Skoda and Volvo brands of vehicles. It has Auto-robot jig,

Spraying Booth and Oven, Hydraulic and Electric workshop lifts, a spare parts store and a

workshop floor. It has a team of technicians for the four different brands of Vehicles they repair.

Some of these technicians have had training with Volkswagen and Skoda companies in Germany

and Czech Republic respectively. This team has thorough knowledge of repairs and hands on

experience with respect to these types of vehicles (i.e. Vw, Audi, Skoda and Volvo). The

4

customer profile of this workshop includes Ssnit,Cocoa Research Institute of Ghana, Cocobod,

Seed Production Unit Of Cocobod, Trust Bank, Canadian High Commission, Netherlands

Embassy, Valco Trust Fund, InterContinental Bank, Labadi Beach Resort and Elmina Beach

Resort.

1.2 PROBLEM STATEMENT

In Ghana, most auto workshops of recognized car dealers such as Toyota Ghana Ltd, Mechanical

Lloyd, Honda Place, Stallion motors and other car garages, have a general time resource

allocation problem in their workshops. In these workshops, a single resource (repair time for

cars) is assigned to a number of options (cars to be repaired) with the objective of maximizing

the total returns. Most of the time, total returns from this single resource (repair time for cars) is

not maximized because managers of these workshops use their own discretion instead of a

scientific approach to do the resource allocation.

Premier Technik Motors carries out 10 different types of repair jobs in their workshop. The car

types they repair are: Volvo, Audi, Volkswagen and Skoda. The four technician teams that work

in the workshop are Volvo team, Audi team, VW team and Skoda team. Each of these technician

teams of the workshop has a maximum available labour time of 176 hours (22 working days) as

a team to work in their respective department. All the different type of cars have their repair time

and associated labour charges respectively. On the average, the job scheduler receives a certain

number of cars due for repairs per month from corporate organizations and individuals.

Management of this Auto workshop has been using the manual selection approach to assign

resources (repair time) to jobs (repair of cars) which in these modern times is inadequate and not

scientific. Our research work is to find a selection approach that can determine how many cars

5

the workshop can repair (i.e., Vw, Skoda, Audi and Volvo) in order to maximize total returns

every month .

The problem above conforms to a knapsack-type problem in which a set of entities are given,

each having an associated value and size, and it is desired to select one or more disjoint subset so

that the sum of the sizes in each subset does not equals or exceed a given bound (total labour

time for the month) and the sum of the selected values (labour charges) is maximized.

1.3 OBJECTIVES

The objectives are:

(1) To model the maximum revenue accrued from the repairs of cars as a knapsack

problem.

(2) To solve the knapsack problem using Dynamic Programming.

1.4 METHODOLOGY

In order to achieve the objective above, various types of knapsack problems and some of the well

known algorithms for solving them would be discussed. Finally we will apply the Dynamic

Programming algorithm for knapsack to solve our problem. Data on car repair time schedule

with its associated labour charges for the period 2010/2011 year which is used in this study was

collected from the workshop of Premier Technik Motors. Literature from the KNUST, Science

College Library and the Internet were used to enhance this thesis.

1.5 JUSTIFICATION

Fast delivery of a good after-sale service of cars is very crucial to customers in Ghana because it

enables them to use their repaired cars to meet other production requirements in their day to day

6

activities. Installing a quality service or repairs to a faulty car by a workshop generates customer

loyalty which also translates into profit making. Delays in car repairs can be minimized if the

selection of which car to repair first or last can be sorted out by a good selection approach. Most

workshops do not have a well structured system that selects cars that are due for repairs based on

the best possible use of resources which also results in maximum total returns. Hence, this is the

reason for solving this problem as a knapsack problem.

1.6 ORGANIZATION OF THESIS

Chapter 1 consists of the problem of scheduling the different repair types of cars in the workshop

of Premier Technik motors workshop, methodology and justification for the use of knapsack

problems application to solve the car repairs selection problem.

Chapter 2 consists of literature review on knapsack problems applications and its proposed

solution methods.

Chapter 3 consists of the methodology for solving our problem. Included in this chapter will be

the evaluation of various types of knapsack problems and some of the well known algorithms for

solving them.

Chapter 4 consists of the data collection and analysis of the actual data of type of car, repair time

and labour charges from Premier Technik Motor‟s workshop.

Chapter 5 consists of the conclusion and recommendation.

7

CHAPTER 2

LITERATURE REVIEW

Many practical repair scheduling problems can be represented by a set of entities, each having

an associated value, from which, one or more subsets has to be selected in such a way that the

sum of the values of the selected entities is maximized with respect to certain conditions. These

problems are classified as knapsack problems since they call the situation of a traveler having to

fill up his knapsack by selecting from among various possible objects that can give him/her the

maximum comfort. This concept has been used to model many industrial applications such as

cargo loading and advertisement selection in a broadcasting firm. In this chapter, a literature

review on the knapsack problems and its applications is presented.

Knapsack problems have been intensively studied because they arise as sub problems in various

integer programming problems and may represent many practical scenarios. The most typical

applications are in capital budgeting and industrial production. Various capital budgeting models

have been studied by Weingartner (1963, 1968), Weingartner and Ness (1967), Cord (1964) and

Kaplan (1966). Among industrial applications, the classical studies a cargo loading problem

(Bellman and Dreyfus, 1962) and on cutting stock problems, Gillmore and Gomory (1963; 1965;

and 1966) is worth mentioning. More detailed reviews of applications can be found in salkin

(1975) and Martello and Toth (1987).

The family of Knapsack Problems all requires a subset of some given items to be chosen such

that the corresponding profits sum is maximized without exceeding the capacity of the

knapsack(s). Different types of Knapsack Problems occur, depending on the distribution of the

items and knapsacks: In the 0-1Knapsack Problem each item may be chosen at most once, while

8

in the Bounded Knapsack Problem we have a bounded amount of each item type. The Multiple-

choice Knapsack Problem occurs when the items should be chosen from disjoint classes and, if

several knapsacks are to be filled simultaneously, we get the Multiple Knapsack Problem. The

most general form is the Multi-constrained Knapsack Problem, which basically is a general

Integer Programming (IP) Problem with positive coefficients.

Pisinger (1999) presented an algorithm for knapsack problem where the enumerated core size is

minimal and the computational effort for sorting and reduction were also limited according to

hierarchy. The algorithm is based on a dynamic programming approach, where the core size is

extended by need and the sorting and reduction is performed in a similar “lazy” way.

Computational experiments are presented for several commonly occurring types of data

instances. Experience from these tests indicates that the presented approach outperforms any

known algorithm for knapsack problem, having very stable solution times.

Martello and Toth (1988) presented a new algorithm for the optimal solution of the 0-1 knapsack

problems, which is particularly effective for large-size problems. T he algorithm is based on

determination of an appropriate small subset of items and the solution of the corresponding “core

problem”. From this, they derived a heuristic solution for the original problem which, with high

probability, can be proved to be optimal. The algorithm incorporates a new method of

computation of upper bounds and efficient implementations of reduction procedures. They also

reported computational experiments on small-size and large-size random problems, comparing

the proposed code with all those available in the literature.

Munapo (2008) presented an approach that enhances the performance of the branch and bound

algorithm for the knapsack model. This is achieved by generating and adding new objective

9

function and constraint to knapsack model, which is single constrained. The branch and bound

algorithm is then applied and the total numbers of sub-problems are reduced

Bazgan et al. (2007) presented an approach, based on dynamic programming, for solving the 0-1

multi-objective knapsack problem. The main idea of the approach relies on the use of several

complementary dominance relations to discard partial solutions that cannot lead to new non-

dominated criterion vectors. This way, they obtained an efficient method that outperforms the

existing methods both in terms of CPU time and size of solved instances. Extensive numerical

experiments on the various types of instances were reported. A comparison with other exact

methods was also performed.

Ferreira (1995) presented parallel algorithms for solving a knapsack problem of size n on PRAM

and distributed memory machines. The algorithms were efficient in the sense that they achieved

optimal speed up with regard to the best known solution to this problem. Morever, they matched

the best current time/memory/processors tradeoffs, while requiring less memory and processors.

Since the PRAM is considered mainly as a theoretical model and we want to produce practical

algorithms for the knapsack problem, its solution in distributed memory machines is also studied.

Glickman and Allison, (1973) considered the problem of choosing among the technologies

available for irrigation by tubewell to obtain an investment plan which maximizes the net

agricultural benefits from the proposed project in a developing country. Cost and benefit

relationships were derived and incorporated into a mathematical model which is solved using a

modification of the dynamic programming procedure for solving the knapsack problem. The

optimal schedule was seen to favour small capacity wells, drilled by indigenous methods, with

supplementary water distribution systems.

10

Huttler and Mastrolilli (2006) addressed the classical knapsack problem and a variant in which

an upper bound is imposed on the number of items that can be selected. They showed that

appropriate combinations of rounding techniques yielded novel and more powerful ways of

rounding. Morever, they presented a linear-storage polynomial time approximation scheme

(PTAS) and a fully polynomial time approximation scheme (FPTAS) that compute an

approximate solution of any fixed accuracy, in linear time. These linear complexity bounds give

a substantial improvement of the best previously known polynomial bounds.

Gomes da Silva et al. (2007) dealt with the problem of inaccuracy of the solutions generated by

meta-heuristic approaches for combinatorial optimization bi-criteria (0-1)-knapsack problems. A

hybrid approach which combines systematic and heuristic searches was proposed to reduce that

inaccuracy in the context of a scatter search method. The components of this method were used

to determine regions in the decision space to be systematically searched. Comparisons with small

and medium size instances solved by exact methods were presented. Large size instances were

also considered and the quality of the approximation was evaluated by taking into account the

proximity to the upper frontier, devised by the linear relaxation and the diversity of the solutions.

Comparisons with other two well known meta-heuristics were also performed. The results

showed the effectiveness of the proposed approach for both small/medium and large size

instances.

Rinnooy et al. (1993) proposed a class of generalized greedy algorithms for the solution of multi-

knapsack problem. Items are selected according to decreasing ratios of their profit and a

weighted sum of their requirement coefficients. The solution obtained depended on the choice of

the weights. A geometrical representation of the method was given and the relation to the dual of

the linear programming relaxation of multi-knapsack is exploited. They investigated the

11

complexity of computing a set of weights that gives the maximum greedy solution value. Finally,

the heuristics were subjected to both a worst case and a probabilistic performance analysis.

Figuera et al. (2009) presented a generic labeling algorithm for finding all non-dominated

outcomes of the multiple objective integer knapsack problem (MOIKP). The algorithm is based

on solving the multiple objective shortest path problem on an underlying network. Algorithms

for constructing four network models, all representing the MOIKP, were also presented. Each

network is composed of layers and each network algorithm, working forward layer by layer

identifies the set of all permanent non-dominated labels for each layer. The effectiveness of the

algorithms is supported with numerical results obtained for randomly generated problems for up

to seven objectives while exact algorithms reported in the literature solve the multiple objective

binary knapsack problem with up to three objectives. Extensions of the approach to other classes

of problems including binary variables, bounded variables, multiple constraints and time-

dependent objective functions are possible.

Majority of algorithms for solving knapsack problems typically use implicit enumeration

approaches. Different bounds based on the remaining capacity of the knapsack and items not yet

included at certain iteration have been proposed for use in these algorithms. Similar methods

may be used for a nested knapsack problem as long as there is an established procedure for

testing whether an item inserted into a knapsack at one stage can also be inserted at the following

stages. Given n different items and a knapsack of capacity, Caceres and Nishibe (2005)

algorithm solves the 0-1 knapsack problem using O (nWp) local computation time with O(p)

communication rounds. Using dynamic programming, their algorithm solves locally pieces of the

knapsack problem in each processor and uses a wave front approach in order to solve the whole

12

problem. The algorithm was implemented in a Beowulf and the obtained times showed good

speed-up and scalability.

The binary knapsack problem is a combinatorial optimization problem in which a subset of a

given set of elements needs to be chosen in order to maximize profit, given a budget constraint.

Das (2003) used a stochastic version of the problem in which the budget is random. They

proposed two different formulations of this problem, based on different ways of handling

infeasibility and proposed an exact algorithm and a local search-based heuristic to solve the

problems represented by these formulations. The results were presented from some

computational experiments.

The knapsack problem is believed to be one of the “easier”-hard problems. Not only can it be

solved in pseudo-polynomial time but also decades of algorithmic improvements have made it

possible to solve nearly all standard instances from the literature. Pisinger (2005) gave an

overview of all recent exact solution approaches and to show that the knapsack problem is still

hard to solve for these algorithms for a variety of new test problems. These problems are

constructed either by using standard benchmark instances with larger coefficients or by

introducing new classes of instances for which most upper bounds perform badly. The first group

of problems challenges the dynamic programming algorithms while the other groups of problems

are focused towards branch and bound algorithms. Numerous computational experiments with all

recent state-of-the-art codes are used to show that knapsack problem (KP) is still difficult to

solve for a wide number of problems. One could say that the previous benchmark tests were

limited to a few highly structured instances, which do not show the full characteristics of

knapsack problems.

13

The 0-1 knapsack problem is well known and it appears in many real domains with practical

importance. The problem is NP-complete. The multi-objective 0-1 knapsack problem is a

generalization of the 0-1 knapsack problem in which many knapsacks are considered. Many

algorithms have been proposed in the past four decades for both single and multi-objective

knapsack problem. A new evolutionary algorithm for solving multi-objective 0-1 knapsack

problem was proposed by Groan (2003). This algorithm used a ξ-dominance relation for direct

comparison of two solutions. Some numerical experiments are realized using the best and recent

algorithms proposed for this problem. Experimental results showed that the new proposed

algorithm outperforms the existing evolutionary approaches for this problem.

Puchinger (2006) presented a newly developed core concept for the multidimensional knapsack

problem (MKP) which is an extension of the classical concept for the one-dimensional case. The

core for the multidimensional problem is defined in dependence of a chosen efficiency function

of the items, since no single obvious efficiency measure is available for MKP. An empirical

study on the cores of widely-used benchmark instances is presented, as well as experiments with

different approximate core sizes. Furthermore, they described a memetic algorithm and a

relaxation guided variable neighborhood search for the MKP, which are applied the original and

to the core problems. The experimental results show that given a fixed run-time, the different

meta-heuristics as well as a general purpose integer linear programming solver yield better

solution when applied to approximate core problems of fixed size

Fontanari (1995) investigated the dependence of the multi-knapsack objective function on the

knapsack capacities and on the number of capacity constraints P, in the case when all N objects

are assigned the same profit value and the weights are uniformly distributed over the unit

interval. A rigorous upper bound to the optimal profit is obtained, employing the annealed

14

approximation and then, compared with the exact value obtained through the Langrangian

relaxation method. The analysis is restricted to the regime where N goes to infinity and P

remains finite.

Benisch et al. (2005) examined the problem of choosing discriminatory prices for customers with

probabilistic valuations and a seller with indistinguishable copies of goods. They showed that

under certain assumptions this problem can be reduced to the continuous knapsack problem

(CKP). They presented a new fast epsilon-optimal algorithm for solving CKP instances with

asymmetric concave reward functions. They also showed that their algorithm can be extended

beyond the CKP setting to handle pricing problems with overlapping goods (e.g goods with

common components or common resource requirements), rather than indistinguishable goods.

They provided a framework for learning distributions over customer valuations from historical

data that are accurate and compatible with their CKP algorithm. They validated their techniques

with experiments on pricing instances derived from the Trading Agent Competition in Supply

Chain Management (TAC SCM). Their results confirmed that their algorithm converges to an

epsilon-optimal solution more quickly in practice than an adaptation of a previously proposed

greedy heuristic.

Pendharkar et al. (2005) described an information technology capital budgeting (ITCB) problem

and showed that the ITCB problem can be modeled as a 0-1 knapsack optimization problem and

proposed two different simulated annealing (SA) heuristic solution procedures to solve the ITCB

problem. Using several simulations, they empirically compared the performance of two SA

heuristic procedures with the performance of two well-known ranking methods for capital

budgeting. Their results indicated that the information technology (IT) investments selected

15

using the SA heuristics have higher after-tax profits than the IT investments selected using the

two ranking methods.

The bounded Knapsack Problem (BKP) is a generalization of the 0-1 Knapsack Problem where a

bounded amount of each item type is available. Currently, the most efficient algorithm for BKP

transforms the data instance to an equivalent 0-1 Knapsack Problem, which is solved efficiently

through a specialized algorithm. Pisinger (1996) proposed a specialized algorithm that solves an

expanding core problem through dynamic programming such that the number of enumerated

item types is minimal. Sorting and reduction is done by need, resulting in very little effort for the

preprocessing. Compared to other algorithms for BKP, the presented algorithm uses tighter

reductions and enumerates considerably less item types. Computational experiments are

presented, showing that the presented algorithm outperforms all previously published algorithms

for BKP.

The multidimensional 0-1 knapsack problem, defined as a knapsack with multiple resource

constraints, is well known to be much more difficult than the single constraint version. Freville

and Plateau (2004) designed an efficient preprocessing procedure for large-scale instances. The

algorithm provides sharp lower and upper bounds on the optimal value and also a tighter

equivalent representation by reducing the continuos feasible set and by eliminating constraints

and variables. This scheme was shown to be very effective through a lot of computational

experiments with test problems of the literature and large-scale randomly generated instances.

The knapsack sharing problem (KSP) is formulated as an extension to the ordinary knapsack

problem. The KSP is NP-hard. Yamada et al. (1998) presented a branch-and-bound algorithm

and a binary search algorithm to solve this problem to optimality. These algorithms are

16

implemented and computational experiments are carried out to analyse the behavior of the

developed algorithms. As a result, they found that the binary search algorithm solves KSPs with

up to 20 000 variables in less than a minute in their computing environment.

The objective of the multi-dimensional knapsack problem (MKP) is to find a subset of items

with maximum value that satisfies a number of knapsack constraints. Solution methods for MKP,

both heuristic and exact, have been researched for several decades. Fleszar and Hindi (2009)

introduced several fast and effective heuristics for MKP that are based on solving the LP

relaxation of the problem. Improving procedures were proposed to strengthen the results of these

heuristics. Additionally, the heuristics were run with appropriate deterministic or randomly

generated constraints imposed on the linear relaxation that allow generating a number of good

solutions. All algorithms were tested experimentally on a widely used set of benchmark problem

instances to show that they compared favourably with the best-performing heuristics available in

the literature.

Transportation programming, a process of selecting projects for funding given budget and other

constraints, is becoming more complex. Zhong and Young (2009) described the use of an integer

programming tool, Multiple Choice Knapsack Problem (MCKP) to provide optimal solutions to

transportation programming problems in cases where alternative versions of projects are under

consideration. Optimization methods for use in the transportation programming process were

compared and then the process of building and solving the optimization problems discussed. The

concepts about the use of MCKP were presented and a real world transportation programming

example at various budget levels were provided. They illustrated how the use of MCKP

addresses the modern complexities and provides timely solutions in transportation programming

practice.

17

Jurait et al. (2006) focused on ways to find proportions of the mixture of heuristics which would

lead to better performance of the algorithm. New results were compared with earlier research and

some other constructive heuristics. The performance of the corresponding algoritms was

experimentally compared for homogeneous and heterogeneous instances. Proposed

improvements allow achieving better filling ratio without increasing the computational

complexity of the algorithm.

Lin and Yao (2001) investigated knapsack problems in which all of the weight coefficients are

fuzzy numbers. The work was based on the assumption that each weight coefficient is imprecise

due to the use of decimal truncation or rough estimation of the coefficients by the decision

maker. To deal with this kind of imprecise data, fuzzy sets provide a powerful tool to model and

solve this problem. Their work was intended to extend the original knapsack problem into a more

generalized problem that would be useful in practical situations. As a result, their study showed

that the fuzzy knapsack problem is an extension of the crisp knapsack problem and that the crisp

knapsack problem is a special case of the fuzzy knapsack problem.

Zhang and Ong (2004) proposed a simple and useful method, the core of which is an efficient

LP-based heuristic for solving bi-objective 0-1 knapsack problems. Extensive computational

experiments showed that the proposed method is able to generate a good approximation to the

non dominated set very efficiently. They also suggested three qualitative criteria to evaluate such

an approximation. In addition, the method can be extended to other problems having properties

similar to the knapsack problem.

A promising solution approach called Meta-RaPS was presented by Moraga et al. (2005) for the

0-1 Multidimensional Knapsack Problem (0-1 MKP). Meta-RaPS construct feasible solutions

18

at each iteration through the utilization of a priority rule used in a randomized fashion. Four

different greedy priority rules are implemented within Meta-RaPS and compared. These rules

differ in the way the corresponding pseudo-utility ratios for ranking variables are computed. In

addition, two simple local search techniques within Meta-RaPS‟ improvement stage are

implemented. The Meta-RaPS approach is tested on several established test sets and the solution

values are compared to both the optimal values and the results of other 0-1 MKP solution

techniques. The Meta-RaPS approach outperformed many other solution methodologies in terms

of differences from the optimal value and the number of optimal solutions obtained. The

advantage of the Meta-RaPS approach is that it is easy to understand and easy to implement and

it achieved good results.

Florios et al. (2009) solved instances of the multi-objective multi-constraint (or

multidimensional) knapsack problem (MOMCKP) from the literature with three objective

functions and three constraints. They used exact as well as approximate algorithms. The exact

algorithm is a properly modified version of the multi-criteria branch and bound (MCBB)

algorithm which is further customized by suitable heuristics. Three branching heuristics and a

more general purpose composite branching and construction heuristics were devised.

Furthermore, the same problems are solved using standard multi-objective evolutionary

algorithms (MOEA) namely the SPEA2 and the NSGAII. The results from the exact case show

that the branching heuristics greatly improve the performance of the MCBB algorithm, which

becomes faster than the adaptive ξ-constraint. Regarding the performance of the MOEA

algorithms in the specific problems, SPEA2 outperforms NSGAII in the degree of approximation

of the Pareto front as measured by the coverage metric (especially for the largest instance).

19

Abboud et al. (1997) presented an interactive procedure for the multi-objective multidimensional

0-1 knapsack problem that takes into consideration the incorporation of fuzzy goals of the

decision maker, that is easy to use since it requires from the decision maker to handle only one

parameter, namely, the aspiration level of each objective and that is fast and can treat our

problem as a usual 0-1 knapsack problem using already available software called the primal

effective gradient method, it is used primarily to solve the large scale cases. To get some

statistics on the behavior of the algorithm, a number of randomly generated simulations of

problems was solved. From their numerical experience, it is possible to conclude that their

proposed method is worthwhile alternative to existing methods from a practical point of view.

Akinc (2006) addressed the formulation and solution of a variation of the classical binary

knapsack problem. The variation that was addressed is termed the “Fixed-Charge Knapsack

Problem” in which sub-sets of variables (activities) are associated with fixed costs. These costs

represented certain set-ups and preparations required for the associated sub-set of activities to be

scheduled. Several potential real world applications as well as problem generalizations were

discussed. The efficient solution of the problem is facilitated by a standard branch and bound

algorithm based on a non-iterative polynomial algorithm to solve the LP relaxation, various

heuristic procedures to obtain good candidate solutions by adjusting the LP solution and

powerful rules to peg the variables. Computational experience shows that the suggested branch

and bound algorithm shows excellent potential in the solution of a wide variety of large fixed

charge knapsack problems.

Aissi et al. (2007) investigated for the first time in literature, the approximation of min-max

(regret) versions of classical problems like shortest path, minimum spanning tree and knapsack.

For a constant number of scenarios, they established fully polynomial-time approximation

20

schemes for the min-max versions of these problems using relationships between multi-objective

and min-max optimization. Using dynamic programming and classical trimming techniques, they

constructed a fully polynomial-time approximation scheme for min-max regret shortest path.

They also established a fully polynomial-time approximation scheme for min-max regret

spanning tree and proved that min-max regret knapsack was not at all approximable. For a non-

constant number of scenarios case, min-max regret versions of polynomial-time problems

become strongly NP-hard, non-approximability results were provided for min-max (regret)

versions of shortest path and spanning tree.

Jan et al. (2006) considered web content adaptation with a bandwidth constraint for server-based

adaptive web systems. The problem can be stated as follows: Given a web page P consisting of n

components items d1 , d2 . . ., dn and each of the component items di having Ji versions di1 , di2 , .

. . , diJ for each component item di select one of its versions to compose the web page such that

the fidelity function is maximized subject to the bandwidth constraint. They formulated this

problem as a linear multi-choice knapsack problem (LMCKP) and transformed the LMCKP into

a knapsack problem (KP) and then presented a dynamic programming method to solve the KP. A

numerical example illustrated the method and showed its effectiveness.

Devyaterikova et al. (2009) presented discrete production planning problem which may be

formulated as the multidimensional knapsack problem is considered, while resource quantities of

the problem are supposed to be given as intervals. An approach for solving this problem based

on using its relaxation set is suggested. Some L-class enumeration algorithms for the problem are

described. Results of computational experiments were presented.

21

CHAPTER 3

METHODOLOGY

The knapsack problem is a general resource allocation problem in which a single resource is

assigned to a number of alternatives with the objective of maximizing the total return. The

knapsack problem seeks to optimize a set of yes/no decisions subject to a single non-negative

constraint. The families of Knapsack Problems all require a subset of some given items to be

chosen such that the corresponding profit sum is maximized without exceeding the capacity of

the knapsack.

3.1 TYPES OF KNAPSACK PROBLEMS

 Different types of Knapsack Problems occur, depending on the distribution of the items and

knapsacks: In the 0-1Knapsack Problem each item may be chosen at most once, while in the

Bounded Knapsack Problem we have a bounded amount of each item type. The Multiple-choice

Knapsack Problem occurs when the items should be chosen from disjoint classes and, if several

knapsacks are to be filled simultaneously, we get the Multiple Knapsack Problem. The most

general form is the Multi-constrained Knapsack Problem, which basically is a general Integer

Programming (IP) Problem with positive coefficients.

3.2 SINGLE KNAPSACK PROBLEMS

There is one container (or knapsack) that must be filled with optimal subset of items. The

capacity of such a container will be denoted by c.

Some of the problems under single knapsack are:

(i) 0-1 knapsack problem

(ii) Bounded knapsack problem

22

 3.2.1 THE SINGLE 0-1 KNAPSACK PROBLEM

Consider the classical 0-1 knapsack problem (KP) where a subset of n given items has to be

packed in a knapsack of capacity c. Each item has a profit pj and a weight wj and the problem is

to select a subset of the items whose total weight does not exceed c and whose total profit is a

maximum.

We assume, without loss of generality, that all input data are positive integers. Introducing the

binary decision variables xj, with xj = 1 if item j is selected and xj =0 otherwise, we get the

integer linear programming (ILP) model:

Maximize z = pj

n

j=1
xj

Subject to wj

n

j=1
xj ≤ c

xj ∈ {0,1}, j = 1,…,n

Where all data are positive integers

3.2.2 THE BOUNDED KNAPSACK PROBLEM

The bounded knapsack problem (BKP) is:

 Given n item types and a knapsack, with

pj = profit of an item of type j;

wj = weight of an item of type j;

bj = upper bound on the availability of an items of type j;

c = capacity of the knapsack,

23

Select a number xj (j = 1,…,n) of items of each type so as to

We assume, without loss of generality, that all input data are positive integers. Introducing the

binary decision variables xj, with xj = 1 if item j is selected and xj =0 otherwise, we get the

integer linear programming (ILP) model:

 Maximize z = pj

n

j=1
xj

Subject to wj

n

j=1
xj ≤ c

 0 ≤ xj ≤ bj and integer, j ∈ N = 1,…,n

Where xj is bounded non negative number.

3.3 MULTIPLE KNAPSACK PROBLEMS

In this kind of problems, there are more than one container available which must be filled with

optimal subset of items. We will give consideration to the 0-1 Multiple Knapsack problem

3.3.1 0-1 MULTIPLE KNAPSACK PROBLEMS

The 0-1 Multiple Knapsack Problem (MKP) is defined as follows:

 Given a set of n items and a set of m knapsacks (m≤ n), with

 pj = profit of item j;

 wj = weight of item j;

 ci= capacity of knapsack i,

Select m disjoint subsets of items so that the total profit of the selected items is a maximum and

each subset can be assigned to a different knapsack whose capacity is no less than the total

weight of items in the subset. Thus,

24

Maximize z = pj

n

j=1
xij

m

i=1

Subject to wj

n

j=1
xij ≤ ci

 xij

n

j=1
 ≤ 1 where i ∈ M = 1, … , m , j ∈ N = 1, … , n ,

 xij ∈ {0,1} Where xij =
1, if item j is assigned to knapsack i;
0, if otherwise

3.4 METHODS FOR SOLVING KNAPSACK PROBLEMS

The 0-1 knapsack problems can be solved by two basic exact methods known as branch-and-

bound and dynamic programming methods. However, large scale problems could be solved by

the use of meta-heuristics such as Simulated annealing, Genetic algorithm, Variable

neighborhood search and Tabu search.

3.4.1 BRANCH AND BOUND METHOD

Branch and bound is a general algorithm for finding optimal solutions of various optimization

problems, especially in discrete and combinatorial optimization. It consists of a systematic

enumeration of all candidate solutions, where large subsets of fruitless candidates are discarded

by using upper and lower estimated bounds of the quantity being optimized.

BRANCH-AND-BOUND ALGORITHMS FOR KNAPSACK

The first branch-and-bound approach to the exact solution of KP was presented by Kolesar

(1967). His algorithm consists of a highest-first binary branching scheme.

The large computer memory and time requirements of the Kolesar algorithm were greatly

reduced by the Greenberg and Hegerich (1970) approach, differing in two main respects:

(a) at each mode, the continuous relaxation of the induced sub problem is solved and the

corresponding critical items ŝ is selected to generate the two descendent nodes (by

imposing Xŝ = 0 on (Xŝ = 1);

25

(b) the search continues from the node associated with the exclusion of item ŝ

(condition Xŝ = 0).

When the continuous relaxation has an all-integer solution, the search is resumed from the last

node generated by imposing Xŝ = 1, i.e. the algorithm is of depth – first type.

Horowitz and Sahni (1997) (and independently, Ahrens and Finke (1975)) derived from the

previous scheme a depth-first algorithm in which;

(a) selection of the branching variable Xj is the same as in Kolesar;

(b) the search continues from the node associated with the insertion of item j (condition Xj =

1), i.e. following a greedy strategy.

The Horowitz – Sahni algorithm is the most effective, structured and easy to implement and has

constituted the basis for several improvements, including that of Martello – Toth algorithm

(Martello and Toth, 1977), which is generally considered highly effective.

The Horowitz – Sahni Algorithm

Assume that the items are sorted. A forward move consists of inserting the largest set of new

consecutive items into the current solution. A backtracking move consists of removing the last

inserted item from the current solution. Whenever a forward move is exhausted, the upper

bound U1 corresponding to the current solution is computed and compared with the best solution

so far, in order to check whether further forward moves could lead to a better one; if so, a new

forward move is performed, otherwise a backtracking follows. When the last item has been

considered, the current solution is complete and possible updating of the best solution so far

occurs. The algorithm stops when no further backtracking can be performed. In the following

description of the algorithm we use these notations.

 n = number of items

 xj = current solution;

 Pj = profit of item j;

 wj = weight of item j;

 C = capacity of the knapsack;

 Z = current solution value (= pj

n

j=1
xj)

 C = current residual capacity (= C - wj

n

j=1
xj)

26

 xj = best solution so far;

 Z = value of the best solution so far (= pj

n

j=1
xj)

The Algorithm (this is for KP)

Input: n, C, (Pj), (wj);

Output: Z; (xj);

Begin

1. [Initialize]

Z: = 0;

Z : = 0;

C : = C;

pn+1: = 0;

wn+1:= + ∞;

j: = 1

2. [Compute upper bound U1]

find r = min {i: wk > C i
k=j };

U: = pk
r−1
k=j + [C − wk)r−1

k=j
 pr

 wr
 ;

If Z ≥ Z + U then go to 5;

3. [Perform a forward step]

while wj ≤ C do

 begin

 C := C - wj;

 Z := Z + Pj

 xj : = 1

 j : = j + 2

 end

if j ≤ n then

 begin

 xj = 0

 j = j + 1

27

 end

if j < n then go to 2;

if j = n then go to 3;

4. [Update the best solution so far]

 if Z > Z then

 begin

 Z: = Z ;

 for k: = 1 to n do xk : = xk

 end

j: = n;

if xn = 1 then

 begin

 C : = C + wn ;

 Z := Z - pn ;

 xn := 0

end

5. [Backtracking]

 find i= max {k < j: xk = 1};

 if no such i then return to 4;

 𝐶 : = 𝐶 + wi;

 Z ∶ = Z − pi;

 xi ∶ = 0;

 j: = i + 1;

 go to 2

end

Example 3.1 Consider the instance of KP defined by n = 7;

 (pj) = (70, 20, 39, 37, 7, 5, 10);

 (wj) = (31, 10, 20, 19, 4, 3, 6);

 C = 50

28

By applying the above algorithm, we would have the decision tree of Figure 3.1 below.

Figure 3.1 : Decision tree of Horowitz-Sahni algorithm for example 3.1.

0
𝑧 = z= 0
𝑐 =50

𝑢 = 107

𝑥 1=1

𝑥 1=0

14 2

15 3

16 4 20

10 5 17

8 6 11 13 18

9 7 12 19

𝑥 2=1

𝑧 = 70
𝑐 = 19

21 1

𝑥 2=0

𝑢 = 97

𝑥 3=0

𝑥 3=0

𝑢 = 37

𝑥 4=0

𝑥 4=1

𝑥 4=0

𝑢 = 17 𝑢 = 37

𝑢 = 22
𝑢 = 15 𝑧 =107

𝑐 =0

𝑥 5=1

𝑥 5=0

𝑥 5=0

𝑢 = 15 𝑢 = 0

𝑥 6=0

𝑥 6=0

𝑥 6= 1

𝑥 6= 0

𝑥 6= 1

𝑢 = 0

𝑢 = 10 𝑢 = 8

𝑧 = 95
𝑐 = 6

𝑧 = 102
𝑐 = 2

𝑥 7 = 0

𝑥 7 = 1

𝑥 7 = 0

𝑥 7 = 0

𝑧 = 105
𝑐 = 0

𝑧 = 102

𝑧 = 107

X = (1, 1, 0, 0, 1, 1, 0) X = (1, 1, 0, 0, 0, 1, 1) X = (1, 0, 0, 1,0,0, 0)

𝑧 = 97
𝑐 = 5

29

The optimal solution of this example from the decision tree of Horowitz and Sahni algorithm is

X=(1,0,0,1,0,0,0) with a value of 107 .

The Martello – Toth algorithm

Their method differs from that of Horowitz and Sahni (1974) in the following main respect (we

use the notations introduced in the previous method).

(a) Upper bound U2 is used instead of U1

(b) The forward move associated with the selection of the j
th

item is split into two phases:

building of a new current solution and saving of the current solution. In the first phase,

the largest set Nj of consecutive items which can be inserted into the current solution

starting from the j
th

 is defined, and the upper bound corresponding to the insertion of the

jth item is computed. If this bound is less than or equal to the value of the best solution

so far, a backtracking move immediately follows. If it is greater, the second phase, that

is, insertion of the items of set Nj into the current solution is performed only if the value

of such new solution does not represent the maximum which can be obtained by inserting

the jth item. Otherwise, the best solution so far is changed, but the current solution is not

updated, so that unnecessary backtrackings on the items in Nj are avoided.

(c) A particular forward procedure, based on dominance criteria, is performed whenever,

before a backtracking move on the i
th

 item, the residual capacity C does not allow

insertion into the current solution of any item following the ith. The procedure is based

on the following consideration;

 The current solution could be improved only if the i
th

 item is replaced by an item having

greater profit and a weight small enough to allow its insertion, or by at least two items

having global weight not greater than Wi + C . By this approach it is generally possible to

eliminate most of the unnecessary nodes generated at the lowest levels of the decision –

tree.

(d) The upper bounds associated with the nodes of the decision-tree are computed through a

parametric technique based on the storing of information related to the current solution.

Supposing the current solution has been built by inserting all the items from the j
th

to the

r
th

: then, when performing a backtracking on one of these items (say the i
th

, j ≤ i < r), if

no insertion occurred for the items preceding the j
th

, it is possible to insert at least items

30

i + 1, … r into the new current solution. To this end, we store in r i; p iand w i the

quantities r+1, Pk r
k=i and wk ,r

k=i respectively, for i = j, …,r, and in r the value r – 1

(used for subsequent updating). Below is the detailed description of the algorithm.

THE ALGORITHM

Input: n, C, (Pj), (wj);

Output: Z; (xj);

begin

1. [Initialize]

Z: = 0;

Z : = 0;

C : = C;

Pn+1: = 0;

wn+1: = + ∞;

for k: = 1 to n do xk ∶= 0;

compute the upper bound U = U2 in the optimal solution value;

w 1: = 0;

p 1: = 0;

r 1: = 0;

r ∶ = n;

 for k: = n to 1 do compute mk = min {wi: i > k};

 j: = 1;

2. [build a new current solution]

while wj > C do

 if Z ≥ Z + [𝐶 Pj+1/ wj+1] then go to 5 else j:=j+1;

find r = min {i : w j + wk > C i
k=r j

 };

P
'
: = p j + pk

r−1
k= r j

;

w
'
: = w j + wk

r−1
k= r j

;

If r ≤ n then U:= max ([c − w′)
 pr+1

 wr+1
], [pr − wr − c − w′

 pr−1

 wr−1
),

else U: = 0;

if Z ≥ Z + P
'
 + U then go to 5;

31

if U = 0, then go to 4;

3. [save the current solution]

C : = C – w
'
;

Z ≥ Z + P
'

for k: = j to r – 1 do xk ∶ = 1

w j : = w′

p j: = P′ ;

r j : = r;

for k: = j + 1 to r – 1 do

 begin

 w k ∶= w k−1 − wk−1 ;

 p k ∶= p k−1 − pk−1

 r k : = r

end

for k: = r to r do

 begin

 w k ∶= 0;

 p k ∶ = 0

 r k ∶= k

end

r ∶ = r − 1;

j: = r + 1;

if C ≥ mj−1 then go to 2;

if Z ≥ Z then go to 5;

P′ ∶ = 0

4. [Update the best solution so far]

 Z ≥ Z + P
'
;

for k: = 1 to j – 1 do xk : = xk

for k: = j to r - 1 do xk : = 1

for k: = r to n do xk : = 0;

32

if Z = U then return;

5. [Backtracking]

find i = max {k < j: xk =1};

 if no such i then return to 4;

C : = C + wi;

 Z = Z – pi

;

xi ∶=0

j: = i + 1;

 if C − wi ≥ mi then go to 2;

 j: = i;

 h: = i;

6. [try to replace item i with item h]

 h: = h + 1

 if Z ≥ Z + [C
ph

wh
] then go to 5;

 if wh = wi then go to 6

 if wh > wi then

 begin

 if wh > C or Z ≥ Z + ph then go to 6;

 Z: = Z + ph ;

 for k: = 1 to n do xk : = xk ;

 xh= 1;

 if Z = U then return;

 i: = h;

 go to 6

 end

else

 begin

 if C − wh < mh then go to 6;

 C ∶= C − wh ;

 Z : = Z + ph ;

33

 xh ≔ 1;

 j : = h + 1;

 w h ∶= wh ;

 p h ∶= ph ;

 r h ∶= h + 1;

 for k: = h + 1 to r do

 begin

 w k ∶= 0;

 p k ∶= 0;

 r k ∶= k;

 end

 r ∶ = h;

 go to 2

 end

end

Applying the above example 3.1 to this algorithm gives the decision – tree of Figure 3.2.

34

 X = (1, 1, 0, 0, 1, 0, 0)

Z=107

107

Z=105

10510

5

𝑧 = z= 0
𝑐 =50

𝑝1 = 0
𝑢=107

𝑧 =90
𝑐 =9

𝑧 =70
𝑐 =19

Z =97
𝑐 = 5

𝑝1 = 37
𝑢= 0

𝑝1 = 12
𝑢 = 3

𝑝1= 15
𝑢= 0

𝑥 1=1

𝑥 2=1

𝑥 3=0

𝑥 4=0

𝑥 2 = 0

𝑥 5= 0

𝑥 5= 1

𝑥 6= 0

𝑥 6= 1

𝑥 7 = 0

0

5

2

1

4

3

Z=102

1z111

102

X = (1, 0, 0, 1,0,0, 0)

X = (1, 1, 0, 0, 0, 1, 1)

X = (1, 1, 0, 0, 1, 1, 0)

𝑤7 > 𝑐

Figure 3.2 : Decision tree of Martello-Toth algorithm.

35

The optimal solution of this example from the decision tree of Martello and Toth algorithm is

X=(1,0,0,1,0,0,0) with a value of 107 .

3.4.2 Dynamic Programming Method

Dynamic programming is a method for solving optimization problems. The idea is to compute

the solutions to the sub problems once and store the solutions in a table, so that they can be

reused later.

The idea of developing Dynamic programming Algorithm is as follows

Step 1: Structure: Characterize the structure of an optimal solution

 Decompose the problems into smaller problems, and find a relation between the structure

 of the optimal solution of the original problem and the solutions of the smaller problems

Step 2: Principle of Optimality: Recursively define the value of an optimal solution.

 Express the solution of the original problem in terms of optimal solutions for smaller

 problems.

Step 3: Bottom-up computation: Compute the value of an optimal solution in a bottom-up

 fashion by using a table structure.

Step 4: Construction of optimal solution: Construct an optimal solution from computed

 information.

Dynamic programming algorithm for Knapsacks

Ai,k: = optimum value (cost)

Li,k: = set of indices {i} for which xi = 1 when Ai,k is attained

Require: Positive integers wi, ci, and k for 1 ≤ i ≤ n

Final solution: A, L

for k: = 0 to K do

 Ai,k: = 0

 Li,k: = { }

end for

36

 for i: = 0 to n do

 Ai,0 = 0

 Li,0: = { }

 for k: = 1 to K do

 if wi ≤ k then

 if ci + Ai-1,k- wi , > Ai-1,k then

 Ai,k: = ci + Ai-1,k- wi

 Li,k: = Li-1,k- wi ∪{i}

 else

 Ai,k: = Ai-1,k

 Li,k: = Li-1,k

 end if

 else

 Ai,k: = Ai-1,k

 Li,k: = Li-1,k

 end if

 end for

end for

A: = An,k

L: = Ln,k

Example 3.2 consider the example illustrated in Table 3.1 below

It consists of five different items with their corresponding weights and costs

Table 3.1: Example of Dynamic programming approach

Item (i) 1 2 3 4 5

Weight (wi) 1 1 3 2 2

Cost (ci) 6 11 17 3 9

Capacity of knapsack (K) =5

In this example we are to find the best set of items selection which will give a maximum cost.

Applying the above dynamic programming algorithm, the results are shown in Table 3.2 and

Table 3.3

37

Table 3.2 (Results for maximum cost (Ai,k))

i k 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 6 6 6 6 6

2 0 11 17 17 17 17

3 0 11 17 17 28 34

4 0 11 17 17 28 34

5 0 11 17 20 28 34

Table 3.3 (Results for the set of items selected (Li,k))

i k 0 1 2 3 4 5

0 {} {} {} {} {} {}

1 {} {1} {1} {1} {1} {1}

2 {} {2} {1,2} {1,2} {1,2} {1,2}

3 {} {2} {1,2} {1,2} {2,3} {1,2,3}

4 {} {2} {1,2} {1,2} {2,3} {1,2,3}

5 {} {2} {1,2} {2,5} {2,3} {1,2,3}

From the above, the optimum solution is L5, 5 = {1, 2, 3} with the maximum cost A5, 5= 34

L5, 5 = {1, 2, 3} which is located in Table 3.3 gives the best selection with a corresponding value

of { c1+ c2+ c3} = { 6+ 11+ 17} = {34} from the third row of Table 3.1, even though L3, 5 = {1,

2, 3} and L4, 5 = {1, 2, 3} also gave a maximum cost of 34, the backtracking algorithm broke the

arithmetic ties arbitrarily hence the maximum cost stored in Table 3.2 will be A5, 5= 34 and that

will be the final output.

38

CHAPTER 4

DATA COLLECTION AND ANALYSIS

4.1 DATA COLLECTION

Our research work is to find a selection approach that can determine the number of cars the

workshop can repair (i.e., VW, SKODA, AUDI and VOLVO) in order to maximize revenue

every month.

Premier Technik Motors carries out 10 different types of car repair jobs on each of the four

brands of car in their workshop. The repair types (Ri) are: Periodic service, Brake repairs,

Steering repairs, Engine repairs, Gearbox repairs, Electrical repairs, Suspension repairs, Body

works, Upholstery works and Air-condition repairs. The maximum labour time available for each

technician team of the workshop each month to work on these 10 different types of repair jobs

for their customers is 176 hours. All the repair types have their repair time and associated labour

charges respectively. Repair time for Volvo, Audi, Vw and Skoda are shown in column 3,

column 4, column 5 and column 6 respectively in Table 4.1. Labour charges for Volvo, Audi,

Vw and Skoda are shown in column 7, column 8, column 9 and column 10 respectively in Table

4.1

39

Table 4.1 below gives the details of their repair schedule.

Table 4.1: Workshop Labour charges and repair time

Repair

No.

Repair

type

 Repair time (hrs) Labour charge (GH¢)

Volvo

Audi Vw

Skoda Volvo Audi Vw

Skoda

1 R1

3.00

2.00

2.00

2.00

65.00

30.00

45.00

33.00

2 R2

5.00

4.00

4.00

4.00

180.00

100.00

90.00

180.00

3 R3

8.00

6.00

5.00

6.00

220.00

120.00

120.00

110.00

4 R4

22.00

18.00

16.00

18.00

300.00

220.00

110.00

300.00

5 R5

12.00

10.00

6.00

10.00

300.00

200.00

180.00

300.00

6 R6

3.00

8.00

6.00

5.00

120.00

150.00

75.00

80.00

7 R7

8.00

7.00

8.00

8.00

210.00

180.00

200.00

105.00

8 R8

40.00

30.00

24.00

24.00

600.00

450.00

400.00

495.00

9 R9

16.00

10.00

8.00

10.00

240.00

160.00

160.00

120.00

10 R10

10.00

8.00

12.00

10.00

260.00

240.00

260.00

173.00

In a month, the job scheduler receives an average of 92 work orders (cars due for repairs for all

the four car brands) from corporate organizations and individuals.

Out of the 92 work orders, 19 are Volvo cars which require a total time of 245 hours to repair, 22

are Audi cars which require a total time of 220 hours to repair, 24 are Vw cars which require a

total time of 205 hours to repair and 27 are Skoda cars which require a total time of 233 hours to

repair. The total repair time for the car brands is computed by summing the repair time of all the

repair types in column 7, column 8, column 9 and column 10 in Table 4.2 respectively. The total

number of cars to repair for each car brand is computed by summing the number of cars in

40

column 3, column 4, column 5 and column 6 in Table 4.2 respectively. The values in columns

7,8,9 and 10 in Table 4.2 were obtained by multiplying the values of columns 3,4,5 and 6 in

Table 4.2 by the corresponding values in columns 3,4,5 and 6 in Table 4.1.

The details of Table 4.2 is shown below.

Table 4.2: Average number of cars to repair in a month

Repair No.

Repair

type

Number of cars to repair Total Repair time (hrs)

Volvo

Audi

Vw Skoda Volvo Audi Vw Skoda

1 R1 2 4 3 4

6.00 8.00 6.00

8.00

2 R2 1 1 4 1

5.00 4.00 16.00

4.00

3 R3 1 2 1 2

8.00 12.00 5.00 12.00

4 R4 2 3 2 1

44.00 54.00 32.00 18.00

5 R5 3 2 1 3

36.00 20.00 6.00 30.00

6 R6 2 1 2 3

6.00 8.00 12.00 15.00

7 R7 3 4 3 6

24.00 28.00 24.00 48.00

8 R8 2 2 2 2

80.00 60.00 48.00 48.00

9 R9 1 1 4 2

16.00 10.00 32.00 20.00

10 R10 2 2 2 3

20.00 16.00 24.00 30.00

TOTAL 19 22 24 27 245.00 220.00 205.00 233.00

 The problem here is to select the repair type of each car brand in such a way that the labour

charges will be maximized in the workshop without exceeding the available time of 176 hours

allocated for each technician team for the month.

R1 → Periodic service

41

R2 → Brake repairs

R3 → Steering repairs

R4 → Engine repairs

R5 → Gearbox repairs

R6 → Electrical repairs

R7 → Suspension repairs

R8 → Body works

R9 → Upholstery work

R10 → Air-condition

4.2 FORMULATION OF PROBLEM INSTANCE

By comparing this to the knapsack model, the capacity of the bag is the time limit. The items to

be considered are the different car repair types, the weight of each item is the repair time and the

value of the item is the cost of repair type or Labour charge.

The problem is then modeled as:

Maximize : V = Vixi
n
i=1

Subject to Tixi
n
i=1 ≤ T

 xi ∈ {0,1} , i= 1,…, n

Where V = Total Labour charge

 Vi = Labour charge of each car repair type

 xi = Number of each car repair type

 Ti = Time of each car repair type

 T = Total available time (resource limit)

The coefficients of the objective functions below for Volvo, Audi, Vw and Skoda respectively

can be obtained by using the Labour charges in Table 4.1.

42

The coefficients of the constraints below for Volvo, Audi, Vw and Skoda respectively can be

obtained by using the Repair time in Table 4.1.

Thus, using the values in Table 4.1 and Table 4.2 and re-arranging the number of cars to repair in

Table 4.2 in increasing order, the problem of the four (4) different car types would be formulated

as follows ;

Volvo

Maximize V = 180(x1) + 220(x2) + 240(x3) + 65(x4+ x5) + 300(x6+ x7) + 120(x8+ x9) + 600(x10+

x11) + 260(x12+ x13) + 300(x14+ x15+ x16) + 210(x17+ x18+ x19)

Subject to 5(x1) + 8(x2) + 16(x3) + 3(x4+ x5) + 22(x6+ x7) + 3(x8+ x9) + 40(x10+ x11) +

260(x12+ x13) + 10(x14+ x15+ x16) + 8(x17+ x18+ x19) ≤ 176

Audi

Maximize V = 100(x1) + 150(x2) + 160(x3) + 120(x4+ x5) + 200(x6+ x7) + 450(x8+ x9) +

240(x10+ x11) + 220(x12+ x13+ x14) + 30 (x15+ x16+ x17+ x18) + 180(x19+ x20+ x21+ x22)

Subject to 4(x1) + 8(x2) + 10(x3) + 6(x4+ x5) + 10(x6+ x7) + 30(x8+ x9) + 8(x10+ x11) + 18(x12+

x13+ x14) + 2 (x15+ x16+ x17+ x18) + 7(x19+ x20+ x21+ x22) ≤ 176

Vw

Maximize V = 120(x1) + 180(x2) + 110(x3+ x4) + 75(x6+ x7) + 400(x7+ x8) + 260(x9+ x10) +

45(x11+ x12+ x13) + 200(x14+ x15+ x16) + 90(x17+ x18+ x19+ x20) + 160(x21+ x22+ x23+ x24)

Subject to 5(x1) + 6(x2) + 16(x3+ x4) + 6(x6+ x7) + 24(x7+ x8) + 12(x9+ x10) + 2(x11+ x12+ x13) +

8(x14+ x15+ x16) + 4(x17+ x18+ x19+ x20) + 8(x21+ x22+ x23+ x24) ≤ 176

Skoda

Maximize V = 180(x1) + 300(x2) + 110(x3+ x4) + 495(x5+ x6) + 120(x7+ x8) + 300(x9+ x10+ x11)

+ 80(x12+ x13+ x14) + 173(x15+ x16+ x17) + 33(x18+ x19+ x20+ x21) + 105(x22+ x23+ x24 x25+ x26+ x27)

Subject to 4(x1) + 18(x2) + 6(x3+ x4) + 24(x5+ x6) + 10(x7+ x8) + 10(x9+ x10+ x11) + 5(x12+ x13+

x14) + 10(x15+ x16+ x17) + 2(x18+ x19+ x20+ x21) + 8(x22+ x23+ x24 x25+ x26+ x27) ≤ 176

43

4.3 ALGORITHM

To carry out the iterative computation of the above model, we apply the Dynamic programming

algorithm as shown below:

Notation

Let VC : =The current solution

 TC : = The current weight

 VBS: = The best feasible value

 TBS: = The best feasible weight

 TKN = Available resource (Time) = z = 176 hours

 a= Repair 1

 b= Repair 2

 c= Repair 3

 d= Repair 4

 e= Repair 5

 f= Repair 6

 g= Repair 7

 h= Repair 8

 i= Repair 9

 j= Repair 10

(1) [Initialization]

TKN:= z

 TC : = 0

 VC : = 0

 TBS : = 0

 VBS : = 0

(2) [Perform Computations]

for a= 0, maximum of a

 for b = 0, maximum of b

 for c = 0, maximum of c

 for d = 0, maximum of d

44

 for e = 0, maximum of e

 for f = 0, maximum of f

 for g = 0, maximum of g

 for h = 0, maximum of h

 for i = 0, maximum of i

 for j = 0, maximum of j

(a) Solve the following

 VC = j* Vj + i* Vi + h*Vh + g* Vg + f* Vf + e* Ve + d*Vd + c* Vc + b*Vb + a* Va

 TC = j* Tj + i* Ti + h*Th + g* Tg + f* Tf + e* Te + d*Td + c* Tc + b*Tb + a* Ta

(b) Check for feasibility

 While TC < TKN and VBS < VC

 VBS= VC

 TBS = TC

 end

 end

(3) [Output]

 Report {a, b, c, d, e, f, g, h, i, j}, VBS , and TBS

end for

4.4 COMPUTATION PROCEDURE

We code the dynamic programming algorithm in Fortran 90 language. A PC with a Pentium III

700 Mhz. processor is used to perform the computations. The Fortran 90 code is shown in

Appendix A.

The simple feature of the software allows the data to be fixed into the code. Finally, the software

displays the final optimal solution for the data received. The computational iterative values for

the various optimal solutions for the four brands of car were as follows:

The number of iterations generated by the Volvo data was 7722.

The number iterations generated by the Audi data was 12929.

The number of iterations generated by the VW data was 25445.

The number of iterations generated by the Skoda data was 34654.

45

By application of the Bottom-up computation, the repair order for each of the cars was re-

arranged in increasing order as follows:

Volvo: { R2, R3, R9, R1, R4, R6, R8, R10, R5, R7}→{1,1,1,2,2,2,2,2,3,3}

Audi : { R2, R6, R9, R3, R5, R8, R10, R4, R1, R7}→{1,1,1,2,2,2,2,3,4,4}

VW : { R3, R5, R4, R6, R8, R10, R1, R7, R2, R9}→{1,1,2,2,2,2,3,3,4,4}

Skoda: { R2, R4, R3, R8, R9, R5, R6, R10, R1, R7}→{1,1,2,2,2,3,3,3,4,6}

The summarized results of the optimal solutions for the various iterative stages of the four brands

of cars are shown below.

4.5 RESULTS

The various feasible combinations of repair types to be selected for the Volvo car brand in order

to achieve optimal solutions for the various iterative stages are shown in Table 4.3 in Appendix

E.

At the end of the 7722
th

 iterative stage, the algorithm displayed the best solution as GH¢ 3770

and a best time of 176 hours for the selection of {1,1,0,0,0,1,2,2,3,3} for a month.

The above solution started from iteration 5900 in the table.

Items beyond {1,1,0,0,0,1,2,2,3,3} will give TBS > TKN which will violate the resource limit of

176 hours, hence the algorithm is completed and displays an optimal value of GH¢ 3770 as the

maximum revenue that can be generated from the cars selected.

Audi

The various feasible combinations of repair types to be selected for the Audi car brand in order

to achieve optimal solutions for the various iterative stages are shown in Table 4.4 in Appendix

F.

46

At the end of the 12929
th

 iterative stage, the algorithm displayed the best solution as GH¢ 3370

and a best time of 176 hours for the selection of {1, 1, 1, 2, 2, 2, 2, 1, 0, 4} for a month.

Items beyond {1, 1, 1, 2, 2, 2, 2, 1, 0, 4} will give TBS > TKN which will violate the resource

limit of 176 hours, hence the algorithm is completed and displays an optimal value of GH¢ 3370

as the maximum revenue that can be generated from the cars selected.

Vw

At the end of the 25445
th

 iterative stage, the algorithm displayed the best solution as GH¢3505

and a best time of 173 hours for the selection of {1, 1, 0, 2, 2, 2, 3, 3, 4, 4} for a month.

The above solution started at iteration 21400 in the table.

Items beyond {1, 1, 0, 2, 2, 2, 3, 3, 4, 4} will give TBS > TKN which will violate the resource

limit of 173hours, hence the algorithm is completed and displays an optimal value of GH¢3505

as the maximum revenue that can be generated from the cars selected.

Skoda

The various feasible combinations of repair types to be selected for the Vw car brand in order to

achieve optimal solutions for the various iterative stages are shown in Table 4.5 in Appendix G.

At the end of the 34654
th

 iterative stage, the algorithm displayed the best solution as GH¢ 3611

and a best time of 176 hours for the selection of {1,1,2,2,0,3,2,3,4,2} for a month.

The above solution started at iteration 34000 in the table.

47

Items beyond {1,1,2,2,0,3,2,3,4,2} will give TBS > TKN which will violate the resource limit of

176 hours, hence the algorithm is completed and displays an optimal value of GH¢ 3611 as the

maximum revenue that can be generated from the cars selected.

4.6 DISCUSSIONS

Our scientific approach generates an initial solution and other feasible solutions for the problem

and then selects the optimal solution. The optimal solution gives the solution string, the weight

and the value.

From the above summarized results, we would like to compare our scientific approach results

with the random selection method currently employed by the workshop.

Table 4.7 (Total revenue generated by Random selection method)

Brand of

car

Number of

cars Repair types

Number of

cars

Repair

time

Optimal

value

received Randomly selected selected (hrs) (GH¢)

Volvo 19 {1,1,0,0,2,1,2,0,1,3} 11 176 3250

Audi 22 {1,1,1,1,0,2,2,3,2,2} 15 176 2990

VW 24 {1,1,2,2,2,2,3,3,2,1} 19 173 3065

Skoda 27 {0,1,1,2,1,3,2,3,4,2} 19 176 3441

Total 92 64 12746

Table 4.8 (Total revenue generated by Scientific approach)

Brand of

car

Number of

cars Repair types

Number of

cars

Repair

time

Optimal

value

received Knapsack selection selected (hrs) (GH¢)

Volvo 19 {1,1,0,0,0,1,2,2,3,3} 13 176 3770

Audi 22 {1,1,1,2,2,2,2,1,0,4} 16 176 3370

VW 24 {1,1,0,2,2,2,3,3,4,4} 22 173 3505

Skoda 27 {1,1,2,2,0,3,2,3,4,2} 20 176 3611

Total 92 71 14256

From table 4.7, the total labour charges for all the four brands of car amounted to GH¢12,746.00

and the number of cars selected was 64 out of the 92 received by the workshop.

From table 4.8, the total labour charges for all the four brands of car also amounted to

GH¢14,256.00 and the number of cars selected by knapsack was 71 out of the 92 received by the

workshop for the different types of repairs.

48

The number of cars selected is the summation of the number of repair types selected as shown in

columns 3 and 4 from Table 4.8.

The repair types selected by the knapsack are as follows:

Volvo: { R2, R3, R6, R8, R10, R5, R7}→{1,1,1, 2,2,3,3}

Audi : { R2, R6, R9, R3, R5, R8, R10, R4, R7}→{1,1,1,2,2,2,2,3,1,4}

VW : { R3, R5, R6, R8, R10, R1, R7, R2, R9}→{1,1,2,2,2,3,3,4,4}

Skoda: { R2, R4, R3, R8, R5, R6, R10, R1, R7}→{1,1,2,2,3,2,3,4, 2}

These figures shown by our scientific approach are higher as compared with the results of the

random selection method used by the workshop Job scheduler.

Hence our approach is the best out of the two and as a result the old revenue would increase by

an amount of GH¢1,510.00 per month and the intake of cars can also increase from 64 to 71 as

shown in the two tables above.

From the various optimal solutions tables, that is Table 4.3, Table 4.4 and Table 4.6, some

solutions were generated at 176 hours but these were not selected by the program. This was

because their optimal values were less than that of the solutions selected finally by the program.

The program was to output the best or maximum optimal values at a best time.

49

CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

This thesis seeks to solve a real life problem of an Auto firm known as Premier Technik

Motors in Ghana by modeling their problem as a 0-1 knapsack problem. Our first

objective was to model this real life problem of maximization as a knapsack problem; this

was modeled using the data collected as shown in Chapter 4.

Our second objective was to solve the knapsack problem using Dynamic programming

and Fortran 90. At the end of the various computations, it was discovered that the

solution that gave the most desirable maximum value was our scientific approach. This

means that for a maximum value to be achieved every month (on the average), the

number of cars to be selected and their repair types are 13 volvos with repair types R2,

R3, R6, R8, R10, R5 and R7 , 16 Audi‟s with repair types R2, R6, R9, R3, R5, R8, R10, R4 and

R7, 22 Vws with repair types R3, R5, R6, R8, R10, R1, R7, R2 and R9 and finally 20 Skodas

with repair types R2, R4, R3, R8, R5, R6, R10, R1 and R7 .

The other findings were that, the use of this scientific approach is transparent as

compared with the random selection. From this approach, an amount of GH¢ 14,256.00

would be obtained from the selection of 71 cars from the four brands of car according to

the type of repairs. However, the random selection method used by the company also

yields a maximum value of GH¢ 12,746.00 with the selection of 64 cars. Hence, higher

returns can be achieved by this workshop by the use of this scientific approach.

Secondly, this approach can select the optimal number of cars to be repaired for each

month whenever there is an over-booking as a result of high demand of service from

50

customers. This can help the company to reschedule some of the cars whose problems are

not too serious and urgent to be repaired or they can sublet them to other workshops.

5.2 Recommendations

In order to achieve the most desirable maximum revenue from the repairs of cars in their

workshop, we recommend that Premier Technik Motors should adopt this knapsack

problem model approach which is more scientific and transparent to determine the

number of cars that must be selected from each of the four types of cars whenever they

encounter time constraint problems.

Service managers and workshop managers of other automobile companies in Ghana can

also benefit from this proposed scientific approach for selecting the right cars at the right

time to be repaired in their workshops in order to maximize revenue within the maximum

working hours.

Finally, this approach from our research can be applied to problems that can be modeled

as a 0/1 knapsack problem.

51

REFERENCES

1. African Journal of Mathematics and Computer Science Research Vol. 4(4), pp. 170-176,

April 2011 ISSN 2006-9731

2. Akinc, U. (2006). Approximate and exact algorithms for the fixed-charge knapsack

problem at www.sciencedirect.com

3. Amponsah, S.K and Darkwah, K.F.(2009). Lecture notes on Operational Research,

Kwame Nkrumah University of Science and Technology, Kumasi-GHANA.

4. Balev,S., Yanev, N., Freville, A. and Andonov, R. (2008). A dynamic programming

based reduction procedure for the multidimensional 0-1 knapsack problem.

5. Beasley, J.E. and Chu, P.C. (1996). A genetic Algorithm for the set covering problem.

Eur.J. Operations Research. 94: 392-404

6. Captivo , E.M., Climaco, J., Figueira, J., Martins, E. and Santos, J.L. (2003). Solving

bicriteria 0-1 knapsack problems using a labeling algorithm.

7. Chang, J.T., Meade,N., Beasley, J.E. and Sharaiha, Y.M.(2000). Heuristics for cardinality

constrained portfolio optimization. Comp. Operations.Research. 27:1271-1302

8. Chu, P.C and Beasley, J.E.(1998b). Constraint handling in genetic algorithm: the set

partitioning problem. Journal Heuristics 4:323-357

9. Figueira, J.R., Tavares, G., Wiecek, M.M. (2009). Labelling algorithms for multiple

objective integer knapsack problems.

10. Gilmore, P.C. and Gomory, R.E. (1963). “A Linear Programming Approach to the

cutting Stock problem II” Operations Research., 11:863-888

11. Gilmore, P.C. and Gomory, R.E. (1965). “Multi-Stage Cutting Stock problems of Two

and More Dimensions”. Operations Research., 13, 94-120

http://www.sciencedirect.com/

52

12. Gilmore, P.C. and Gomory, R.E.(1966). “The theory and Computation of Knapsack

Functions”. Operations Research., 14:1045-1074

13. Greenbrg,H. and Hagerich, R.L.(1970). “ A branch Search Algorithm for Knapsack

Problem”. Manage Sci., 16:327-332

14. Ingargiola, G.P. and Korsh, J.F.A. (1973). “Reduction Algorithm for Zero-One Single

Knapsack Problems” Manage. Sci., 20, 460-463

15. Kaplan, S.(1996). “ Solution of the Lorie-savage and similar Integer Programming

Problems by the Generalized Lagrange Multiplier Method”, Operations Research., 14,

1130-1136

16. Kostas, F.,Mavrotas, G. and Diakoulaki,D.(2009). Solving multiobjective, multiconstraint

knapsack problems using mathematical programming and evolutionary algorithms.

17. Martello, S., Pisinger, D. and Toth, P. (2000). New trends in exact algorithms for the 0-1

knapsack problem.

18. Martello,S. and Toth,P. Knapsack Problems, Algorithms and Computer Implementations.

19. Martin,B.(2004). Combinatorial Aspects of Yield Management, a Reinforcement

Learning Approach. Retrieved from http://www.brunomartin.org/YM.html

20. Munapo,E.(2008). “The efficiency enhanced branch and bound algorithm for the

knapsack model” Adv.Appl. Math. Anal. ISSN 0973-5313, 3(1): 81-89

21. Pendharkar, P.C. and Rodger, J.A.(2006). Information Technology Capital Budgeting

(ITCB) problem. Int.Trans. Operation Research. 13:333-351

22. Pferschy, U., Pisinger, D. and Woeginger, G.J. (1997). Simple but efficient approaches

for the collapsing knapsack problem at www.sciencedirect.com

23. Pisinger, D. (1995). An expanding-core algorithm for the exact 0-1 knapsack problem

http://www.brunomartin.org/YM.html
http://www.sciencedirect.com/

53

24. Realff M.J., Kvam, P.H. and Taylor, W.E.(1999) Combined analytical and empirical

learning framework for branch and bound algorithms: the knapsack problem at

www.sciencedirect.com

25. Research Journal of Information Technology 3(1): 49-54, 2011, S.K Amponsah, ISSN:

2041-3114

26. Taniguchi, F., Yamada, T. and Kataoka, S. (2008). Heuristic and exact algorithms for the

max-min optimization of the multi-scenario knapsack problem.

27. Yamada, T., Futakawa, M. and Kataoka,S. (1998). Some exact algorithms for the

knapsack sharing problem at www.sciencedirect.com

http://www.sciencedirect.com/
http://www.sciencedirect.com/

54

APPENDIX A

Program Knapsack_volvo

IMPLICIT NONE

Real∷ TotalWeight

Integer∷ Max R2, Max R3, Max R9 Max R1, Max R4, Max R6, Max R8, Max R10, Max R5, Max R7,

MaxValue = 0

Integer∷ a, b, c, d, e, f, g, h, i, j, n (10)

Type Bounty

 Integer∷ Val

 Real∷ Wht

End Type Bounty

Type (Bounty) ∷ R2, R3, R9, R1, R4, R6, R8, R10, R5, R7, Sack, Current

R2 = Bounty (5, 180)

R3 = Bounty (8, 220)

R9 = Bounty (16, 240)

R1 = Bounty (3, 65)

R4 = Bounty (22, 300)

R6 = Bounty (3, 120)

R8 = Bounty (40, 600)

R10 = Bounty (10, 260)

R5 = Bounty (12, 300)

R7 = Bounty (8, 210)

55

Sack = Bounty (0, 176)

Max R2 = 1, Max R3 = 1, Max R9 = 1, Max R1 = 2, Max R4 = 2, Max R6 = 2, Max R8 = 2,

Max R10 = 2, Max R5 = 3, Max R7 = 3

Do a = 0, MaxR2

 Do b = 0, MaxR3

 Do c = 0, MaxR9

 Do d = 0, MaxR1

 Do e = 0, MaxR4

 Do f = 0, MaxR6

 Do g = 0, MaxR8

 Do h = 0, MaxR10

 Do i = 0, MaxR5

 Do j = 0, MaxR7

Current% Val = j* R7% Val + i* R5% Val + h* R10% Val + g* R8% Val + f* R6% Val + e* R4%

Val + d* R1% Val + c* R9% Val + b* R3% Val + a* R2% Val

Current% Wht = j* R7% Wht + i* R5% Wht + h* R10% Wht + g* R8% Wht + f* R6% Wht + e*

R4% Wht + d* R1% Wht + c* R9% Wht + b* R3% Wht + a* R2% Wht

If (Current% Wht < Sack% Wht) Then

 If (MaxValue < Current% Val) Then

 MaxValue = Current% Val

 TotalWeight = Current% Wht

 n (1) = a, n (2) = b, n (3) = c, n(4) = d, n (5) = e, n (6) = f, n (7) = g, n(8) = h, n (9) = i, n (10) = j

56

 End If

End If

 End Do

 End Do

 End Do

End Do

WRITE (*, “(A, I0) “) “Optimum Value achievable is “, MaxValue

WRITE (*, “(10(A, I0), A)”) “This is achieved by “, n(1), “R2”, n(2), “R3”, n(3), “R9”, n(4),

“R1,” n(5), “R4”, n(6), “R6” n(7), “R8”, n(8), “R10” n(9), “R5 and”, n(10), “R7”

WRITE (*, “(A, F6.2, A, F6.2)”) “The Optimum Weight is”, TotalWeight

End Program Knapsack

57

APPENDIX B

Program Knapsack_Audi

IMPLICIT NONE

Real∷ TotalWeight

Integer∷ Max R2, Max R6, Max R9 Max R3, Max R5, Max R8, Max R10, Max R4, Max R1, Max R7,

MaxValue = 0

Integer∷ a, b, c, d, e, f, g, h, i, j, n (10)

Type Bounty

 Integer∷ Val

 Real∷ Wht

End Type Bounty

Type (Bounty) ∷ R2, R6, R9, R3, R5, R8, R10, R4, R1, R7, Sack, Current

R2 = Bounty (4, 100)

R6 = Bounty (8, 150)

R9 = Bounty (10, 160)

R3 = Bounty (6, 120)

R5 = Bounty (10, 200)

R8 = Bounty (30, 450)

R10 = Bounty (8, 240)

R4 = Bounty (18, 220)

R1 = Bounty (2, 30)

R7 = Bounty (7, 180)

58

Sack = Bounty (0, 176)

Max R2 = 1, Max R6 = 1, Max R9 = 1, Max R3 = 2, Max R5 = 2, Max R8 = 2, Max R10 = 2,

Max R4 = 3, Max R1 = 4, Max R7 = 4

Do a = 0, MaxR2

 Do b = 0, MaxR6

 Do c = 0, MaxR9

 Do d = 0, MaxR3

 Do e = 0, MaxR5

 Do f = 0, MaxR8

 Do g = 0, MaxR10

 Do h = 0, MaxR4

 Do i = 0, MaxR1

 Do j = 0, MaxR7

Current% Val = j* R7% Val + i* R1% Val + h* R4% Val + g* R10% Val + f* R8% Val + e* R5%

Val + d* R3% Val + c* R9% Val + b* R6% Val + a* R2% Val

Current% Wht = j* R7% Wht + i* R1% Wht + h* R4% Wht + g* R10% Wht + f* R8% Wht + e*

R5% Wht + d* R3% Wht + c* R9% Wht + b* R6% Wht + a* R2% Wht

If (Current% Wht < Sack% Wht) Then

 If (MaxValue < Current% Val) Then

 MaxValue = Current% Val

 TotalWeight = Current% Wht

 n (1) = a, n (2) = b, n (3) = c, n(4) = d, n (5) = e, n (6) = f, n (7) = g, n(8) = h, n (9) = i, n (10) = j

59

 End If

End If

 End Do

 End Do

 End Do

End Do

WRITE (*, “(A, I0) “) “Optimum Value achievable is “, MaxValue

WRITE (*, “(10(A, I0), A)”) “This is achieved by “, n(1), “R2”, n(2), “R6”, n(3), “R9”, n(4),

“R3,” n(5), “R5”, n(6), “R8” n(7), “R10”, n(8), “R4” n(9), “R1 and”, n(10), “R7”

WRITE (*, “(A, F6.2, A, F6.2)”) “The Optimum Weight is”, TotalWeight

End Program Knapsack

60

APPENDIX C

Program Knapsack_vw

IMPLICIT NONE

Real∷ TotalWeight

Integer∷ Max R3, Max R5, Max R4 Max R6, Max R8, Max R10, Max R1, Max R7, Max R2, Max R9,

MaxValue = 0

Integer∷ a, b, c, d, e, f, g, h, i, j, n (10)

Type Bounty

 Integer∷ Val

 Real∷ Wht

End Type Bounty

Type (Bounty) ∷ R3, R5, R4, R6, R8, R10, R1, R7, R2, R9, Sack, Current

R3 = Bounty (5, 120)

R5 = Bounty (6, 180)

R4 = Bounty (16, 110)

R6 = Bounty (6, 75)

R8 = Bounty (24, 400)

R10 = Bounty (12, 260)

R1 = Bounty (2, 45)

R7 = Bounty (8, 200)

R2 = Bounty (4, 90)

R9 = Bounty (8, 160)

61

Sack = Bounty (0, 176)

Max R3 = 1, Max R5 = 1, Max R4 = 2, Max R6 = 2, Max R8 = 2, Max R10 = 2, Max R1 = 3,

Max R7 = 3, Max R2 = 4, Max R9 = 4

Do a = 0, MaxR3

 Do b = 0, MaxR5

 Do c = 0, MaxR4

 Do d = 0, MaxR6

 Do e = 0, MaxR8

 Do f = 0, MaxR10

 Do g = 0, MaxR1

 Do h = 0, MaxR7

 Do i = 0, MaxR2

 Do j = 0, MaxR9

Current% Val = j* R9% Val + i* R2% Val + h* R7% Val + g* R1% Val + f* R10% Val + e* R8%

Val + d* R6% Val + c* R4% Val + b* R5% Val + a* R3% Val

Current% Wht = j* R9% Wht + i* R2% Wht + h* R7% Wht + g* R1% Wht + f* R10% Wht + e*

R8% Wht + d* R6% Wht + c* R4% Wht + b* R5% Wht + a* R3% Wht

If (Current% Wht < Sack% Wht) Then

 If (MaxValue < Current% Val) Then

 MaxValue = Current% Val

 TotalWeight = Current% Wht

 n (1) = a, n (2) = b, n (3) = c, n(4) = d, n (5) = e, n (6) = f, n (7) = g, n(8) = h, n (9) = i, n (10) = j

62

 End If

End If

 End Do

 End Do

 End Do

End Do

WRITE (*, “(A, I0) “) “Optimum Value achievable is “, MaxValue

WRITE (*, “(10(A, I0), A)”) “This is achieved by “, n(1), “R3”, n(2), “R5”, n(3), “R4”, n(4),

“R6,” n(5), “R8”, n(6), “R10” n(7), “R1”, n(8), “R7” n(9), “R2 and”, n(10), “R9”

WRITE (*, “(A, F6.2, A, F6.2)”) “The Optimum Weight is”, TotalWeight

End Program Knapsack

63

APPENDIX D

Program Knapsack_skoda

IMPLICIT NONE

Real∷ TotalWeight

Integer∷ Max R2, Max R4, Max R3 Max R8, Max R9, Max R5, Max R6, Max R10, Max R1, Max R7,

MaxValue = 0

Integer∷ a, b, c, d, e, f, g, h, i, j, n (10)

Type Bounty

 Integer∷ Val

 Real∷ Wht

End Type Bounty

Type (Bounty) ∷ R2, R4, R3, R8, R9, R5, R6, R10, R1, R7, Sack, Current

R2 = Bounty (4, 180)

R4 = Bounty (18, 300)

R3 = Bounty (6, 110)

R8 = Bounty (24, 495)

R9 = Bounty (10, 120)

R5 = Bounty (10, 300)

R6 = Bounty (5, 80)

R10 = Bounty (10, 173)

R1 = Bounty (2, 33)

R7 = Bounty (8, 105)

64

Sack = Bounty (0, 176)

Max R2 = 1, Max R4 = 1, Max R3 = 2, Max R8 = 2, Max R9 = 2, Max R5 = 3, Max R6 = 3,

Max R10 = 3, Max R1 = 4, Max R7 = 6

Do a = 0, MaxR2

 Do b = 0, MaxR4

 Do c = 0, MaxR3

 Do d = 0, MaxR8

 Do e = 0, MaxR9

 Do f = 0, MaxR5

 Do g = 0, MaxR6

 Do h = 0, MaxR10

 Do i = 0, MaxR1

 Do j = 0, MaxR7

Current% Val = j* R7% Val + i* R1% Val + h* R10% Val + g* R6% Val + f* R5% Val + e* R9%

Val + d* R8% Val + c* R3% Val + b* R4% Val + a* R2% Val

Current% Wht = j* R7% Wht + i* R1% Wht + h* R10% Wht + g* R6% Wht + f* R5% Wht + e*

R9% Wht + d* R8% Wht + c* R3% Wht + b* R4% Wht + a* R2% Wht

If (Current% Wht < Sack% Wht) Then

 If (MaxValue < Current% Val) Then

 MaxValue = Current% Val

 TotalWeight = Current% Wht

 n (1) = a, n (2) = b, n (3) = c, n(4) = d, n (5) = e, n (6) = f, n (7) = g, n(8) = h, n (9) = i, n (10) = j

65

 End If

End If

 End Do

 End Do

 End Do

End Do

WRITE (*, “(A, I0) “) “Optimum Value achievable is “, MaxValue

WRITE (*, “(10(A, I0), A)”) “This is achieved by “, n(1), “R2”, n(2), “R4”, n(3), “R3”, n(4),

“R8,” n(5), “R9”, n(6), “R5” n(7), “R6”, n(8), “R10” n(9), “R1 and”, n(10), “R7”

WRITE (*, “(A, F6.2, A, F6.2)”) “The Optimum Weight is”, TotalWeight

End Program Knapsack

66

APPENDIX E

Table 4.3: Optimal Solutions of Volvo cars for the various iterative stages

Iteration Item
 selected Optimal weight (hrs) Optimal value (GH¢)

1 {0,0,0,0,0,0,0,0,0,3} 24 630

100 {0,0,0,0,0,1,2,2,3,3} 163 3370

200 {0,0,0,0,0,1,2,2,3,3} 166 3490

300 {0,0,0,0,0,1,2,2,3,3} 166 3490

400 {0,0,0,1,0,0,2,0,3,3} 176 3120

500 {0,0,0,1,0,2,2,2,3,3} 169 3555

600 {0,0,0,1,0,2,2,2,3,3} 169 3555

700 {0,0,0,1,0,2,2,2,3,3} 169 3555

800 {0,0,0,2,0,2,2,2,3,3} 172 3620

900 {0,0,0,2,0,2,2,2,3,3} 172 3620

1000 {0,0,0,2,0,2,2,2,3,3} 172 3620

1100 {0,0,0,2,0,2,2,2,3,3} 172 3620

1200 {0,0,0,2,0,2,2,2,3,3} 172 3620

1300 {0,0,0,2,0,2,2,2,3,3} 172 3620

1400 {0,0,0,2,0,2,2,2,3,3} 172 3620

1500 {0,0,0,2,0,2,2,2,3,3} 172 3620

1600 {0,0,0,2,0,2,2,2,3,3} 172 3620

1700 {0,0,0,2,0,2,2,2,3,3} 172 3620

1800 {0,0,0,2,0,2,2,2,3,3} 172 3620

1900 {0,0,0,2,0,2,2,2,3,3} 172 3620

2000 {0,1,0,0,0,2,2,2,3,3} 174 3710

2100 {0,1,0,0,0,2,2,2,3,3} 174 3710

2200 {0,1,0,0,0,2,2,2,3,3} 174 3710

2300 {0,1,0,0,0,2,2,2,3,3} 174 3710

2400 {0,1,0,0,0,2,2,2,3,3} 174 3710

2500 {0,1,0,0,0,2,2,2,3,3} 174 3710

2600 {0,1,0,0,0,2,2,2,3,3} 174 3710

2700 {0,1,0,0,0,2,2,2,3,3} 174 3710

2800 {0,1,0,0,0,2,2,2,3,3} 174 3710

2900 {0,1,0,0,0,2,2,2,3,3} 174 3710

3000 {0,1,0,0,0,2,2,2,3,3} 174 3710

3100 {0,1,0,0,0,2,2,2,3,3} 174 3710

67

Iteration Items selected Optimal weight (hrs) Optimal value (GH¢)

3200 {0,1,0,0,0,2,2,2,3,3} 174 3710

3300 {0,1,0,0,0,2,2,2,3,3} 174 3710

3400 {0,1,1,1,1,2,1,2,3,3} 175 3715

3500 {0,1,1,1,1,2,1,2,3,3} 175 3715

3600 {0,1,1,1,1,2,1,2,3,3} 175 3715

3700 {0,1,1,1,1,2,1,2,3,3} 175 3715

3800 {0,1,1,1,1,2,1,2,3,3} 175 3715

3900 {0,1,1,1,1,2,1,2,3,3} 175 3715

4000 {0,1,1,1,1,2,1,2,3,3} 175 3715

4100 {0,1,1,1,1,2,1,2,3,3} 175 3715

4200 {0,1,1,1,1,2,1,2,3,3} 175 3715

4300 {1,0,0,1,0,2,2,2,3,3} 174 3735

4400 {1,0,0,1,0,2,2,2,3,3} 174 3735

4500 {1,0,0,1,0,2,2,2,3,3} 174 3735

4600 {1,0,0,1,0,2,2,2,3,3} 174 3735

4700 {1,0,0,1,0,2,2,2,3,3} 174 3735

4800 {1,0,0,1,0,2,2,2,3,3} 174 3735

4900 {1,0,0,1,0,2,2,2,3,3} 174 3735

5000 {1,0,0,1,0,2,2,2,3,3} 174 3735

5100 {1,0,0,1,0,2,2,2,3,3} 174 3735

5200 {1,0,0,1,0,2,2,2,3,3} 174 3735

5300 {1,0,0,1,0,2,2,2,3,3} 174 3735

5400 {1,0,0,1,0,2,2,2,3,3} 174 3735

5500 {1,0,0,1,0,2,2,2,3,3} 174 3735

5600 {1,0,0,1,0,2,2,2,3,3} 174 3735

5700 {1,0,1,2,1,2,1,2,3,3} 175 3740

5800 {1,0,1,2,1,2,1,2,3,3} 175 3740

5900 {1,1,0,0,0,1,2,2,3,3} 176 3770

6000 {1,1,0,0,0,1,2,2,3,3} 176 3770

6100 {1,1,0,0,0,1,2,2,3,3} 176 3770

6200 {1,1,0,0,0,1,2,2,3,3} 176 3770

6300 {1,1,0,0,0,1,2,2,3,3} 176 3770

6400 {1,1,0,0,0,1,2,2,3,3} 176 3770

6500 {1,1,0,0,0,1,2,2,3,3} 176 3770

6600 {1,1,0,0,0,1,2,2,3,3} 176 3770

68

Iteration Items selected Optimal weight (hrs) Optimal value (GH¢)

6700 {1,1,0,0,0,1,2,2,3,3} 176 3770

6800 {1,1,0,0,0,1,2,2,3,3} 176 3770

6900 {1,1,0,0,0,1,2,2,3,3} 176 3770

7000 {1,1,0,0,0,1,2,2,3,3} 176 3770

7100 {1,1,0,0,0,1,2,2,3,3} 176 3770

7200 {1,1,0,0,0,1,2,2,3,3} 176 3770

7300 {1,1,0,0,0,1,2,2,3,3} 176 3770

7400 {1,1,0,0,0,1,2,2,3,3} 176 3770

7500 {1,1,0,0,0,1,2,2,3,3} 176 3770

7600 {1,1,0,0,0,1,2,2,3,3} 176 3770

7700 {1,1,0,0,0,1,2,2,3,3} 176 3770

7722 {1,1,0,0,0,1,2,2,3,3} 176 3770

69

APPENDIX F

Table 4.4: Optimal Solutions of Audi cars for the various iterative stages

 Iteration Items selected Optimal weight (hrs) Optimal value (GH¢)

1 {0,0,0,0,0,0,0,0,0,4} 28 720

100 {0,0,0,0,0,1,1,3,4,4} 128 2190

200 {0,0,0,0,0,2,2,3,4,4} 166 2880

300 {0,0,0,0,0,2,2,3,4,4} 166 2880

400 {0,0,0,0,1,2,2,3,4,4} 176 3080

500 {0,0,0,0,1,2,2,3,4,4} 176 3080

600 {0,0,0,0,1,2,2,3,4,4} 176 3080

700 {0,0,0,0,1,2,2,3,4,4} 176 3080

800 {0,0,0,0,1,2,2,3,4,4} 176 3080

900 {0,0,0,1,1,2,2,3,1,4} 176 3110

1000 {0,0,0,1,1,2,2,3,1,4} 176 3110

1100 {0,0,0,1,2,2,2,2,4,4} 174 3180

1200 {0,0,0,1,2,2,2,2,4,4} 174 3180

1300 {0,0,0,1,2,2,2,2,4,4} 174 3180

1400 {0,0,0,1,2,2,2,2,4,4} 174 3180

1500 {0,0,0,1,2,2,2,2,4,4} 174 3180

1600 {0,0,0,1,2,2,2,2,4,4} 174 3180

1700 {0,0,0,2,2,2,2,2,2,4} 176 3240

1800 {0,0,0,2,2,2,2,2,2,4} 176 3240

1900 {0,0,0,2,2,2,2,2,2,4} 176 3240

2000 {0,0,0,2,2,2,2,2,2,4} 176 3240

2100 {0,0,0,2,2,2,2,2,2,4} 176 3240

2200 {0,0,0,2,2,2,2,2,2,4} 176 3240

2300 {0,0,0,2,2,2,2,2,2,4} 176 3240

2400 {0,0,0,2,2,2,2,2,2,4} 176 3240

2500 {0,0,0,2,2,2,2,2,2,4} 176 3240

2600 {0,0,0,2,2,2,2,2,2,4} 176 3240

2700 {0,0,0,2,2,2,2,2,2,4} 176 3240

2800 {0,0,0,2,2,2,2,2,2,4} 176 3240

2900 {0,0,0,2,2,2,2,2,2,4} 176 3240

3000 {0,0,0,2,2,2,2,2,2,4} 176 3240

3100 {0,0,0,2,2,2,2,2,2,4} 176 3240

3200 {0,0,0,2,2,2,2,2,2,4} 176 3240

3300 {0,0,0,2,2,2,2,2,2,4} 176 3240

3400 {0,0,0,2,2,2,2,2,2,4} 176 3240

70

Iteration Items selected Optimal weight (hrs) Optimal value (GH¢)

3500 {0,0,0,2,2,2,2,2,2,4} 176 3240

3600 {0,0,0,2,2,2,2,2,2,4} 176 3240

3700 {0,0,0,2,2,2,2,2,2,4} 176 3240

3800 {0,0,0,2,2,2,2,2,2,4} 176 3240

3900 {0,0,0,2,2,2,2,2,2,4} 176 3240

4000 {0,0,0,2,2,2,2,2,2,4} 176 3240

4100 {0,0,0,2,2,2,2,2,2,4} 176 3240

4200 {0,0,0,2,2,2,2,2,2,4} 176 3240

4300 {0,0,0,2,2,2,2,2,2,4} 176 3240

4400 {0,0,0,2,2,2,2,2,2,4} 176 3240

4500 {0,0,0,2,2,2,2,2,2,4} 176 3240

4600 {0,0,0,2,2,2,2,2,2,4} 176 3240

4700 {0,0,0,2,2,2,2,2,2,4} 176 3240

4800 {0,0,0,2,2,2,2,2,2,4} 176 3240

4900 {0,0,0,2,2,2,2,2,2,4} 176 3240

5000 {0,0,0,2,2,2,2,2,2,4} 176 3240

5100 {0,0,0,2,2,2,2,2,2,4} 176 3240

5200 {0,0,0,2,2,2,2,2,2,4} 176 3240

5300 {0,0,0,2,2,2,2,2,2,4} 176 3240

5400 {0,0,0,2,2,2,2,2,2,4} 176 3240

5500 {0,0,0,2,2,2,2,2,2,4} 176 3240

5600 {0,0,0,2,2,2,2,2,2,4} 176 3240

5700 {0,0,0,2,2,2,2,2,2,4} 176 3240

5800 {0,0,0,2,2,2,2,2,2,4} 176 3240

5900 {0,0,0,2,2,2,2,2,2,4} 176 3240

6000 {0,1,1,1,2,2,2,1,4,4} 174 3270

6100 {0,1,1,1,2,2,2,1,4,4} 174 3270

6200 {0,1,1,1,2,2,2,1,4,4} 174 3270

6300 {0,1,1,1,2,2,2,1,4,4} 174 3270

6400 {0,1,1,1,2,2,2,1,4,4} 174 3270

6500 {0,1,1,2,2,2,2,1,2,4} 176 3330

6600 {0,1,1,2,2,2,2,1,2,4} 176 3330

6700 {0,1,1,2,2,2,2,1,2,4} 176 3330

6800 {0,1,1,2,2,2,2,1,2,4} 176 3330

6900 {0,1,1,2,2,2,2,1,2,4} 176 3330

7000 {0,1,1,2,2,2,2,1,2,4} 176 3330

7100 {0,1,1,2,2,2,2,1,2,4} 176 3330

7200 {0,1,1,2,2,2,2,1,2,4} 176 3330

71

Iteration Items selected Optimal weight (hrs) Optimal value (GH¢)

7300 {0,1,1,2,2,2,2,1,2,4} 176 3330

7400 {0,1,1,2,2,2,2,1,2,4} 176 3330

7500 {0,1,1,2,2,2,2,1,2,4} 176 3330

7600 {0,1,1,2,2,2,2,1,2,4} 176 3330

7700 {0,1,1,2,2,2,2,1,2,4} 176 3330

7800 {0,1,1,2,2,2,2,1,2,4} 176 3330

7900 {0,1,1,2,2,2,2,1,2,4} 176 3330

8000 {0,1,1,2,2,2,2,1,2,4} 176 3330

8100 {0,1,1,2,2,2,2,1,2,4} 176 3330

8200 {0,1,1,2,2,2,2,1,2,4} 176 3330

8300 {0,1,1,2,2,2,2,1,2,4} 176 3330

8400 {0,1,1,2,2,2,2,1,2,4} 176 3330

8500 {0,1,1,2,2,2,2,1,2,4} 176 3330

8600 {0,1,1,2,2,2,2,1,2,4} 176 3330

8700 {0,1,1,2,2,2,2,1,2,4} 176 3330

8800 {0,1,1,2,2,2,2,1,2,4} 176 3330

8900 {0,1,1,2,2,2,2,1,2,4} 176 3330

9000 {0,1,1,2,2,2,2,1,2,4} 176 3330

9100 {0,1,1,2,2,2,2,1,2,4} 176 3330

9200 {0,1,1,2,2,2,2,1,2,4} 176 3330

9300 {0,1,1,2,2,2,2,1,2,4} 176 3330

9400 {0,1,1,2,2,2,2,1,2,4} 176 3330

9500 {0,1,1,2,2,2,2,1,2,4} 176 3330

9600 {0,1,1,2,2,2,2,1,2,4} 176 3330

9700 {1,0,1,2,2,2,2,1,4,4} 176 3340

9800 {1,0,1,2,2,2,2,1,4,4} 176 3340

9900 {1,0,1,2,2,2,2,1,4,4} 176 3340

10000 {1,0,1,2,2,2,2,1,4,4} 176 3340

10100 {1,0,1,2,2,2,2,1,4,4} 176 3340

10200 {1,0,1,2,2,2,2,1,4,4} 176 3340

10300 {1,0,1,2,2,2,2,1,4,4} 176 3340

10400 {1,0,1,2,2,2,2,1,4,4} 176 3340

10500 {1,0,1,2,2,2,2,1,4,4} 176 3340

10600 {1,0,1,2,2,2,2,1,4,4} 176 3340

10700 {1,0,1,2,2,2,2,1,4,4} 176 3340

10800 {1,0,1,2,2,2,2,1,4,4} 176 3340

10900 {1,0,1,2,2,2,2,1,4,4} 176 3340

11000 {1,0,1,2,2,2,2,1,4,4} 176 3340

72

Iteration Items selected Optimal weight (hrs) Optimal value (GH¢)

11100 {1,0,1,2,2,2,2,1,4,4} 176 3340

11200 {1,0,1,2,2,2,2,1,4,4} 176 3340

11300 {1,0,1,2,2,2,2,1,4,4} 176 3340

11400 {1,0,1,2,2,2,2,1,4,4} 176 3340

11500 {1,0,1,2,2,2,2,1,4,4} 176 3340

11600 {1,0,1,2,2,2,2,1,4,4} 176 3340

11700 {1,0,1,2,2,2,2,1,4,4} 176 3340

11800 {1,0,1,2,2,2,2,1,4,4} 176 3340

11900 {1,0,1,2,2,2,2,1,4,4} 176 3340

12000 {1,0,1,2,2,2,2,1,4,4} 176 3340

12100 {1,0,1,2,2,2,2,1,4,4} 176 3340

12200 {1,0,1,2,2,2,2,1,4,4} 176 3340

12300 {1,0,1,2,2,2,2,1,4,4} 176 3340

12400 {1,0,1,2,2,2,2,1,4,4} 176 3340

12500 {1,0,1,2,2,2,2,1,4,4} 176 3340

12600 {1,0,1,2,2,2,2,1,4,4} 176 3340

12700 {1,0,1,2,2,2,2,1,4,4} 176 3340

12800 {1,0,1,2,2,2,2,1,4,4} 176 3340

12900 {1,0,1,2,2,2,2,1,4,4} 176 3340

12929 {1,1,1,2,2,2,2,1,0,4} 176 3370

73

APPENDIX G

Table 4.5: Optimal Solutions of Vw cars for the various iterative stages

Iteration Items selected Optimal weight (hrs) Optimal value (GH¢)

1 {0,0,0,0,0,0,0,0,0,4} 32 640

200 {0,0,0,0,0,2,1,3,4,4} 98 2165

400 {0,0,0,0,1,1,3,3,4,4} 114 2395

600 {0,0,0,0,2,1,1,3,4,4} 134 2705

800 {0,0,0,0,2,2,3,3,4,4} 150 3055

1000 {0,0,0,0,2,2,3,3,4,4} 150 3055

1200 {0,0,0,0,2,2,3,3,4,4} 150 3055

1400 {0,0,0,1,2,2,2,3,4,4} 154 3085

1600 {0,0,0,1,2,2,2,3,4,4} 154 3085

1800 {0,0,0,1,2,2,2,3,4,4} 154 3085

2000 {0,0,0,2,2,2,3,3,4,4} 162 3205

2200 {0,0,0,2,2,2,3,3,4,4} 162 3205

2400 {0,0,0,2,2,2,3,3,4,4} 162 3205

2600 {0,0,0,2,2,2,3,3,4,4} 162 3205

2800 {0,0,0,2,2,2,3,3,4,4} 162 3205

3000 {0,0,0,2,2,2,3,3,4,4} 162 3205

3200 {0,0,0,2,2,2,3,3,4,4} 162 3205

3400 {0,0,1,1,2,2,3,3,4,4} 172 3240

3600 {0,0,1,1,2,2,3,3,4,4} 172 3240

3800 {0,0,1,1,2,2,3,3,4,4} 172 3240

4000 {0,0,1,1,2,2,3,3,4,4} 172 3240

4200 {0,0,1,1,2,2,3,3,4,4} 172 3240

4400 {0,0,1,1,2,2,3,3,4,4} 172 3240

4600 {0,0,1,1,2,2,3,3,4,4} 172 3240

4800 {0,0,1,1,2,2,3,3,4,4} 172 3240

5000 {0,0,1,1,2,2,3,3,4,4} 172 3240

5200 {0,0,1,1,2,2,3,3,4,4} 172 3240

5400 {0,0,1,1,2,2,3,3,4,4} 172 3240

5600 {0,0,1,1,2,2,3,3,4,4} 172 3240

5800 {0,0,1,1,2,2,3,3,4,4} 172 3240

6000 {0,0,1,1,2,2,3,3,4,4} 172 3240

6200 {0,0,1,1,2,2,3,3,4,4} 172 3240

6400 {0,0,1,1,2,2,3,3,4,4} 172 3240

6600 {0,0,1,1,2,2,3,3,4,4} 172 3240

6800 {0,0,1,1,2,2,3,3,4,4} 172 3240

74

7000 {0,0,1,1,2,2,3,3,4,4} 172 3240

7200 {0,0,1,1,2,2,3,3,4,4} 172 3240

7400 {0,0,1,1,2,2,3,3,4,4} 172 3240

7600 {0,0,1,1,2,2,3,3,4,4} 172 3240

7800 {0,1,0,1,2,2,3,3,4,4} 162 3310

8000 {0,1,0,1,2,2,3,3,4,4} 162 3310

8200 {0,1,0,1,2,2,3,3,4,4} 162 3310

8400 {0,1,0,2,2,2,3,3,4,4} 168 3385

8600 {0,1,0,2,2,2,3,3,4,4} 168 3385

8800 {0,1,0,2,2,2,3,3,4,4} 168 3385

9000 {0,1,0,2,2,2,3,3,4,4} 168 3385

9200 {0,1,0,2,2,2,3,3,4,4} 168 3385

9400 {0,1,0,2,2,2,3,3,4,4} 168 3385

9600 {0,1,0,2,2,2,3,3,4,4} 168 3385

9800 {0,1,0,2,2,2,3,3,4,4} 168 3385

10000 {0,1,0,2,2,2,3,3,4,4} 168 3385

10200 {0,1,0,2,2,2,3,3,4,4} 168 3385

10400 {0,1,0,2,2,2,3,3,4,4} 168 3385

10600 {0,1,0,2,2,2,3,3,4,4} 168 3385

10800 {0,1,0,2,2,2,3,3,4,4} 168 3385

11000 {0,1,0,2,2,2,3,3,4,4} 168 3385

11200 {0,1,0,2,2,2,3,3,4,4} 168 3385

11400 {0,1,0,2,2,2,3,3,4,4} 168 3385

11600 {0,1,0,2,2,2,3,3,4,4} 168 3385

11800 {0,1,0,2,2,2,3,3,4,4} 168 3385

12000 {0,1,0,2,2,2,3,3,4,4} 168 3385

12200 {0,1,0,2,2,2,3,3,4,4} 168 3385

12400 {0,1,0,2,2,2,3,3,4,4} 168 3385

12600 {0,1,0,2,2,2,3,3,4,4} 168 3385

12800 {0,1,0,2,2,2,3,3,4,4} 168 3385

13000 {0,1,0,2,2,2,3,3,4,4} 168 3385

13200 {0,1,0,2,2,2,3,3,4,4} 168 3385

13400 {0,1,0,2,2,2,3,3,4,4} 168 3385

13600 {0,1,0,2,2,2,3,3,4,4} 168 3385

13800 {0,1,0,2,2,2,3,3,4,4} 168 3385

14000 {0,1,0,2,2,2,3,3,4,4} 168 3385

14200 {0,1,0,2,2,2,3,3,4,4} 168 3385

14400 {0,1,0,2,2,2,3,3,4,4} 168 3385

14600 {0,1,0,2,2,2,3,3,4,4} 168 3385

75

14800 {0,1,0,2,2,2,3,3,4,4} 168 3385

15000 {0,1,0,2,2,2,3,3,4,4} 168 3385

15200 {0,1,0,2,2,2,3,3,4,4} 168 3385

15400 {0,1,0,2,2,2,3,3,4,4} 168 3385

15600 {0,1,0,2,2,2,3,3,4,4} 168 3385

15800 {0,1,0,2,2,2,3,3,4,4} 168 3385

16000 {0,1,0,2,2,2,3,3,4,4} 168 3385

16200 {0,1,0,2,2,2,3,3,4,4} 168 3385

16400 {0,1,0,2,2,2,3,3,4,4} 168 3385

16600 {0,1,0,2,2,2,3,3,4,4} 168 3385

16800 {0,1,0,2,2,2,3,3,4,4} 168 3385

17000 {0,1,0,2,2,2,3,3,4,4} 168 3385

17200 {0,1,0,2,2,2,3,3,4,4} 168 3385

17400 {0,1,0,2,2,2,3,3,4,4} 168 3385

17600 {0,1,0,2,2,2,3,3,4,4} 168 3385

17800 {0,1,0,2,2,2,3,3,4,4} 168 3385

18000 {0,1,0,2,2,2,3,3,4,4} 168 3385

18200 {0,1,0,2,2,2,3,3,4,4} 168 3385

18400 {0,1,0,2,2,2,3,3,4,4} 168 3385

18600 {0,1,0,2,2,2,3,3,4,4} 168 3385

18800 {0,1,0,2,2,2,3,3,4,4} 168 3385

19000 {0,1,0,2,2,2,3,3,4,4} 168 3385

19200 {0,1,0,2,2,2,3,3,4,4} 168 3385

19400 {0,1,0,2,2,2,3,3,4,4} 168 3385

19600 {0,1,0,2,2,2,3,3,4,4} 168 3385

19800 {0,1,0,2,2,2,3,3,4,4} 168 3385

20000 {0,1,0,2,2,2,3,3,4,4} 168 3385

20200 {0,1,0,2,2,2,3,3,4,4} 168 3385

20400 {0,1,0,2,2,2,3,3,4,4} 168 3385

20600 {1,1,0,1,2,2,3,3,4,4} 167 3430

20800 {1,1,0,1,2,2,3,3,4,4} 167 3430

21000 {1,1,0,1,2,2,3,3,4,4} 167 3430

21200 {1,1,0,2,2,2,2,3,4,4} 171 3460

21400 {1,1,0,2,2,2,3,3,4,4} 173 3505

21600 {1,1,0,2,2,2,3,3,4,4} 173 3505

21800 {1,1,0,2,2,2,3,3,4,4} 173 3505

22000 {1,1,0,2,2,2,3,3,4,4} 173 3505

22200 {1,1,0,2,2,2,3,3,4,4} 173 3505

22400 {1,1,0,2,2,2,3,3,4,4} 173 3505

76

22600 {1,1,0,2,2,2,3,3,4,4} 173 3505

22800 {1,1,0,2,2,2,3,3,4,4} 173 3505

23000 {1,1,0,2,2,2,3,3,4,4} 173 3505

23200 {1,1,0,2,2,2,3,3,4,4} 173 3505

23400 {1,1,0,2,2,2,3,3,4,4} 173 3505

23600 {1,1,0,2,2,2,3,3,4,4} 173 3505

23800 {1,1,0,2,2,2,3,3,4,4} 173 3505

24000 {1,1,0,2,2,2,3,3,4,4} 173 3505

24200 {1,1,0,2,2,2,3,3,4,4} 173 3505

24400 {1,1,0,2,2,2,3,3,4,4} 173 3505

24600 {1,1,0,2,2,2,3,3,4,4} 173 3505

24800 {1,1,0,2,2,2,3,3,4,4} 173 3505

25000 {1,1,0,2,2,2,3,3,4,4} 173 3505

25200 {1,1,0,2,2,2,3,3,4,4} 173 3505

25400 {1,1,0,2,2,2,3,3,4,4} 173 3505

25445 {1,1,0,2,2,2,3,3,4,4} 173 3505

77

APPENDIX H

Table 4.6: Optimal Solutions of Skoda cars for the various iterative stages

Iteration Items selected Optimal weight (hrs) Optimal value (GH¢)

1 {0,0,0,0,0,0,0,0,0,6} 48 630

500 {0,0,0,0,0,3,3,3,4,6} 131 2421

1000 {0,0,0,0,2,3,3,3,4,6} 151 2661

1500 {0,0,0,1,0,3,3,3,4,6} 155 2916

2000 {0,0,0,1,2,3,3,3,4,6} 175 3156

2500 {0,0,0,2,0,3,3,3,2,6} 175 3345

3000 {0,0,0,2,0,3,3,3,2,6} 175 3345

3500 {0,0,0,2,0,3,3,3,2,6} 175 3345

4000 {0,0,0,2,0,3,3,3,2,6} 175 3345

4500 {0,0,0,2,0,3,3,3,2,6} 175 3345

5000 {0,0,0,2,0,3,3,3,2,6} 175 3345

5500 {0,0,1,2,0,3,3,3,3,5} 175 3383

6000 {0,0,1,2,0,3,3,3,3,5} 175 3383

6500 {0,0,1,2,0,3,3,3,3,5} 175 3383

7000 {0,0,1,2,0,3,3,3,3,5} 175 3383

7500 {0,0,1,2,0,3,3,3,3,5} 175 3383

8000 {0,0,2,2,0,3,0,3,4,6} 176 3391

8500 {0,0,2,2,0,3,3,3,4,4} 176 3421

9000 {0,0,2,2,0,3,3,3,4,4} 176 3421

9500 {0,0,2,2,0,3,3,3,4,4} 176 3421

10000 {0,0,2,2,0,3,3,3,4,4} 176 3421

10500 {0,0,2,2,0,3,3,3,4,4} 176 3421

11000 {0,0,2,2,0,3,3,3,4,4} 176 3421

11500 {0,0,2,2,0,3,3,3,4,4} 176 3421

12000 {0,0,2,2,0,3,3,3,4,4} 176 3421

12500 {0,0,2,2,0,3,3,3,4,4} 176 3421

13000 {0,0,2,2,0,3,3,3,4,4} 176 3421

13500 {0,0,2,2,0,3,3,3,4,4} 176 3421

14000 {0,1,1,2,0,3,3,3,2,3} 175 3440

14500 {0,1,1,2,1,3,2,3,4,2} 176 3441

15000 {0,1,1,2,1,3,2,3,4,2} 176 3441

15500 {0,1,1,2,1,3,2,3,4,2} 176 3441

16000 {0,1,1,2,1,3,2,3,4,2} 176 3441

16500 {0,1,1,2,1,3,2,3,4,2} 176 3441

17000 {0,1,2,2,0,3,3,3,3,2} 175 3478

17500 {0,1,2,2,0,3,3,3,3,2} 175 3478

78

18000 {0,1,2,2,0,3,3,3,3,2} 175 3478

18500 {0,1,2,2,0,3,3,3,3,2} 175 3478

19000 {0,1,2,2,0,3,3,3,3,2} 175 3478

19500 {0,1,2,2,0,3,3,3,3,2} 175 3478

20000 {1,0,0,2,0,3,3,3,4,5} 175 3486

20500 {1,0,0,2,0,3,3,3,4,5} 175 3486

21000 {1,0,0,2,0,3,3,3,4,5} 175 3486

21500 {1,0,0,2,0,3,3,3,4,5} 175 3486

22000 {1,0,0,2,0,3,3,3,4,5} 175 3486

22500 {1,0,1,2,0,3,2,3,4,5} 176 3516

23000 {1,0,1,2,0,3,2,3,4,5} 176 3516

23500 {1,0,1,2,0,3,2,3,4,5} 176 3516

24000 {1,0,1,2,0,3,2,3,4,5} 176 3516

24500 {1,0,1,2,0,3,2,3,4,5} 176 3516

25000 {1,0,1,2,0,3,2,3,4,5} 176 3516

25500 {1,0,2,2,0,3,3,3,2,4} 176 3527

26000 {1,0,2,2,1,3,2,3,4,3} 176 3536

26500 {1,0,2,2,1,3,2,3,4,3} 176 3536

27000 {1,0,2,2,1,3,2,3,4,3} 176 3536

27500 {1,0,2,2,1,3,2,3,4,3} 176 3536

28000 {1,0,2,2,1,3,2,3,4,3} 176 3536

28500 {1,1,0,2,0,3,3,3,3,3} 175 3543

29000 {1,1,0,2,0,3,3,3,3,3} 175 3543

29500 {1,1,0,2,0,3,3,3,3,3} 175 3543

30000 {1,1,0,2,0,3,3,3,3,3} 175 3543

30500 {1,1,0,2,0,3,3,3,3,3} 175 3543

31000 {1,1,0,2,0,3,3,3,3,3} 175 3543

31500 {1,1,1,2,0,3,3,3,4,2} 175 3581

32000 {1,1,1,2,0,3,3,3,4,2} 175 3581

32500 {1,1,1,2,0,3,3,3,4,2} 175 3581

33000 {1,1,1,2,0,3,3,3,4,2} 175 3581

33500 {1,1,1,2,0,3,3,3,4,2} 175 3581

34000 {1,1,2,2,0,3,2,3,4,2} 176 3611

34500 {1,1,2,2,0,3,2,3,4,2} 176 3611

34654 {1,1,2,2,0,3,2,3,4,2} 176 3611

