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Abstract

In order to reap the full benefits of massive MIMO, the Base Station (BS) anten-

nas must be significantly large to converge to favorable propagation condition or

attain convergence (the state where the effect of noise and fast fading vanishes).

However, increasing BS antennas results in closely spaced antenna elements which

inadvertently leads to the detrimental effects of Spatial Correlation (SC) and that

can affect the convergence of Massive MIMO System. So far, research works on

Convergence have been investigated using Correlation-based Stochastic (CBSCM)

channel models, which does not reflect accurate massive MIMO channel. This

channel model does not take into consideration channel parameters such as the

Pathloss, power delay profile as well as the characteristics of the antenna ar-

ray needed for the practical massive MIMO system implementation. Therefore

analysis of massive MIMO convergence regarding the Geometry-Based Stochastic

Channel model (GBSCM), which reflects real practical massive MIMO channel

and the effects of SC is needed. In this thesis, the convergence of massive MIMO

based on GBSCM is studied. The effect of 3D SC of uniform rectangular and

cylindrical array (URA and CA) based on the Maximum Power of Arrival (MPA)

is incorporated. In the analysis, the Diagonal Dominance and Mean Absolute

Deviation convergence metrics, were considered to study the effects of the SC

on the asymptotic behavior of the channel matrix. The results support exist-

ing development that, increase in azimuth and elevation spreads of the angular

distributions of arrival and antenna element spacing reduces the SC and thereby

increases convergence rate of massive MIMO. Results also show poor performance

for the Laplacian and Von Misses distributions in GBSCM, even for higher AS

and ES, and angular spreads. Further it was realized that, in GBSCM, the con-

vergence of massive MIMO was sensitive to antenna array topology regarding

Gaussian and Student’s t-distributions. This contradicts previously established

results that convergence is insensitive to antenna topology in CBSCM.
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Chapter 1

Introduction

1.1 Research Background and Significance

1.1.1 Fifth Generation and Massive MIMO Technology

Multiple-input multiple-output (MIMO) is a novel method that utilizes multi-

ple transmitters and receivers to send more information to users [1–3]. This

technology has become increasingly popular among researchers in the wireless

communications industry. This is because MIMO technology offers several bene-

fits such as enhanced spectrum efficiency and improved network throughput [3,4].

This technology, also known as the multi-antenna system, finds its origins in an-

tenna diversity, whose history dates back as far back in the 1920s [1]. In recent

years, the MIMO technology has become popular due to its major achievements

such as reduction in bit error rate, higher throughput as well as higher quality of

service [5–8].

The underlying concept of the multi-antenna system technology is the principle

of channel diversity, where the receiver is provided with various versions of the

same transmitted signal in order to stabilize the channel as a result of the un-

stable wireless fading channel [9]. This technique improves the MIMO channel

capacity and minimizes degradation in the bit error rate [10]. In urban environ-

ments, where the possibility of achieving line-of-sight is challenging, and the issue

of interference due to abundance RF/microwave system is mostly high, MIMO

technology has proven to be an ideal and efficient solution for communication to

provide the bandwidth requirements that recent audio, data system, and video

require. The robustness of MIMO techniques against channel fading and inter-

ference makes it strong to minimize the effect of lost or dropped data packets as
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well as enabling high data rates [8]. Recently, studies have shown that transmit-

ting multiple signals employing MIMO techniques in the same frequency channel

increases spectral efficiency. [11,12]. In contrast to traditional single-input single-

output schemes, other studies also show that the capacity of the MIMO system

with nTX and nRX transmitting and receiving antennas respectively, can scale lin-

early by the factor of min(nTX , nRX) without utilizing extra transmitting power

and channel bandwidth [5,12,13]. Foschini in [6] demonstrated this and general-

ized the upper bound channel capacity for the multi-antenna system in b/s /Hz

as shown in equation (1.1),

CMIMO = log2[det(I +
SNR

nTX
H.HH)] (1.1)

where the channel matrix is denoted by H and the transmitted signal is composed

of nTX statistically independent equal power components each with a Gaussian

distribution. I is defined as the nTX × nRX identity matrix and HH is the Her-

mitian matrix. The important clarification of equation (1.1) is that in a multi-

antenna system, the channel capacity can be enhanced by an increase in the

number of transmitting and receiving antennas, or more precisely, by increas-

ing the number of uncorrelated sub-channels [14]. Research conducted in this

area shows that the MIMO system capability can possibly scale linearly with the

minimum transmit (TX) and receive (RX) antennas for channel matrices with

independent and identically distributed (i.i.d) components [5,13]. Initially, these

systems were intended to support antenna configurations that can only adapt in

the azimuth. The future generation of mobile communications standards such as

3GPP and LTE-Advanced is aimed at supporting even greater data rate transmis-

sions, which has stirred increasing interest among researchers in improving system

efficiency through the use of adaptive electronic beam control over both azimuth

and elevation dimensions [15]. The important effect of elevation on system per-

formance has already been proved by several measurement campaigns [15]. The

reason for this can be ascribed to its capacity to allow various strategies such as
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user-specific elevation beamforming and 3D cell splitting.

To cope with the unprecedented growth and projected exponential increase in vol-

ume of wireless data traffic in the near future, there has been significant amount

of research for the development of a potential next generation wireless system

technology [15–18]. This has brought about the development of the fifth Gen-

eration (5G) wireless system. The 5G wireless system technology is expected to

include an aggregate of data-rate increase, from Fourth Generation (4G) wireless

systems, of three orders of magnitude with peak data rates in the order of tens

of Gbps [19]. Seamless connectivity as well as very low latency has also been

earmarked as one of the benefits of the 5G wireless system [20].

The 5G technology includes key requirements such as massive connectivity, ul-

tra low latency and high data rates. This has prompted candidate technologies

to be proposed and investigated and among these proposed technologies are the

massive MIMO and small cell technology [18–20]. Massive MIMO, also known as

large-scale antenna systems, technology is a novel and paradigm shift, envisioned

to achieve significant wireless system enhancements for 5G [21–23], combined

with improvements in area spectral efficiency, using small cell technology [24,25].

The fundamental idea of employing massive MIMO is to take advantage of all

the advantages of the conventional MIMO, but on a much more larger scale.

Massive MIMO uses antenna arrays with approximately hundred antennas to si-

multaneously serve many dozen user terminals in the same time and frequency

resource [22].

1.1.2 Antenna Arrays and Spatial Correlation

Antenna arrays are becoming progressively significant in the design of wireless

communication networks principally because of its use in the exploitation of spa-

tial properties to enhance MIMO channel capacity and large diversity [26]. One

benefit of antenna array is the ability to change its radiation pattern in response

to different excitation of its elements (both current phases and current magni-
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tudes) [26]. This offers the opportunity to achieve a specific array pattern from

the antenna array without altering the physical properties of the array. They can

also provide diversity gain in the multipath reception [21].

With the deployment of the massive MIMO technology, various antenna array

topologies have been proposed. Among them is the one-dimensional Uniform

Linear Array (ULA), where the antenna array elements are arranged along a

straight line as illustrated in Figure 1.1. The Uniform Circular Array (UCA)

is illustrated in Figure 1.2. In the planar arrays, the position of the antenna

elements lies in the xy-plane [26], or the position of the antenna elements are

indicated by two variables representing polar or Cartesian coordinates such as

the Uniform Rectangular Array (URA) and the Cylindrical Array (CA) shown

in Figures 1.3 and 1.4, respectively. In Figure 1.5 the antenna elements of the

URA lie in the azimuth and the zenith domains (zy-plane). This represents the

large-scale form of the URA for future MIMO communications [21].The physical

position of the elements must, in many instances, conform to the shape and the

curved surface on which they are mounted. Examples of these are arrays mounted

on aircraft, missiles, or submarines. These are referred to as non-planar arrays

or conformal arrays [27]. The most commonly used geometries are the CA shown

in Figure 1.4 and the URA shown in Figures 1.3 and 1.4 [26].

Both CA and URA antenna topologies are considered in this study.

Figure 1.1: Geometry of the ULA, where d is the separation between the antenna
elements, θ and φ are the elevation and the azimuth angles, respectively.
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Figure 1.2: Geometry of the UCA, where r denotes the radius of the antenna
array and Φs = 2π(s− 1)/N defines the angular position of the s elements.

Figure 1.3: Geometry of the URA, where the antenna elements are parallel to
the x and y-axis, (i.e. azimuth and elevation)

Figure 1.4: Geometry of the CA, ρ is the radius of the cylinder, where
dzwavelengths is the distance between the first and the second UCA in the z
direction.
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Figure 1.5: Geometry of the URA where the antenna elements are parallel to the
azimuth and the zenith domains.

The antenna array configuration directly affects the channel character-

istics which enhances the efficiency of massive MIMO [27]. The objective of

massive MIMO is to employ as many antennas at the BS to exploit the channel’s

multi-path through diversity [22], as this is achieved by using large antenna ar-

rays. However, with an increasing antenna elements in a close physical space to

achieve higher transmission rate, a considerable amount of diversity results in two

main effects. These include the spatial correlation (SC) and the mutual coupling

(MC). The SC is as a result of the closeness of antenna elements as signal sources

while the MC is as a result of the closeness of antenna elements as electrical

components [28]. SC and MC reduces the multiplexing gains of massive MIMO

thereby reducing the performance [29]. In order to prevent the detrimental effects

of spatial correlation, antenna element separation of more than half wavelength

is required [29,30].

1.1.3 Favorable Propagation and Convergence

Further motivating the increase in research of massive MIMO systems are the

additional beneficial channel properties which arise when operating with large

numbers of transmitter antennas (TX). These properties arise as a result of ran-

dom matrix theory asymptotics [31].

Considering an uplink of a single-cell system where K represents single-antenna
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user terminals and M represent antennas at the BS. If the K terminals simul-

taneously transmit the K symbols x1, ..., xK , where E[|xk|2] = 1, then received

vector at the BS is given by

y =
√
ρGx + w (1.2)

where x = [x1, ..., xK ]T , G = [g1, ..., gK ], gk ∈ CMx1 is the channel vector between

the BS and kth terminal, and the noise vector is defined as w. ρ is the transmit

signal to noise ratio (SNR). The channel vector gk models the effects of large-scale

fading and small-scale fading. The channel matrix, G is defined by,

G = HD
1
2
β (1.3)

where H is the M ×K matrix which models the small-scale Rayleigh fading and

spatial correlation, and Dβ is a diagonal matrix modeling large-scale effects.

As the number of antennas at the BS becomes significantly large, (i.e. M →

∞), the channel vectors between the kth terminal and the BS become mutually

orthogonal, thereby canceling the effect of noise and large scale fading [23]. This

condition is known as favorable propagation [32].

Favorable propagation is defined as the mutual orthogonality among the vector-

valued channels to the terminals. It is one of the main characteristics of the radio

channel used in massive MIMO [32]. Another salutary effect of using a large

number of antennas at the BS eliminates the effects of uncorrelated receiver noise

and fast fading [23]. The transmissions from terminals within one’s own cell do

not also interfere [23]. Random components also tend to be deterministic and

matrix computations can be done much easier [23]. Linear processing methods

can also attain optimum efficiency, with a simple linear detector like the matched

filter, more explicitly on the uplink [26].

For favorable propagation to occur, the channel vectors gk, k = 1, ..., K, should

be pair-wisely orthogonal. To be precise, the channel offers favorable propagation
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if

gHi gj =

 0, i, j = 1, ..., K, i 6= j

||gk||2 6= 0 k = 1, ..., K.
(1.4)

In practice, equation (1.4) will never be satisfied exactly, but it can be approx-

imately achieved [32]. In this case, the channel is said to offer approximately

favorable propagation [32]. Also, considering some assumptions of the propaga-

tion environment, when M grows large and k 6= j, it holds that

1

M
gHk gj → 0,M →∞ (1.5)

For this case, the channel offers asymptotically favorable propagation [32]

The favorable propagation situation in equation (1.4) does not only offer optimum

efficiency with linear processing, but also reflects the most desirable situation for

maximizing the data rate [33].

In a nutshell, favorable propagation cannot only improve the performance, but

also simplify the massive MIMO system’s algorithm design. The interuser or

intercell interference can also be alleviated by the orthogonality, which helps to

improve the capacity of the system [34]. The scheduling gain fast fading is also

mitigated, which simplifies the scheduling scheme [34].

Convergence is the rate at which a massive MIMO system will achieve favorable

propagation. Convergence enables us to know whether the massive MIMO chan-

nel achieves favorable propagation as a function of the system [35].

The convergence of massive MIMO systems to favorable propagation is measured

using two key metrics defined as the Mean Absolute Deviation (MAD) and the

Diagonal dominance (DD) [33–35]. From equation (1.4) and (1.5),

1

M
GTG∗ =

D1/2HTH∗D1/2

M
→ Dβ (1.6)

As illustrated in equation (1.6), the channel can be said to have favorable propa-

gation as the channel matrix approaches a diagonal matrix. The diagonal domi-
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nance is therefore defined in [35] as the rate at which the sum of diagonal elements

grow faster than the off-diagonals.

Also, from equation (1.6), it can be deduced that

1

M
HTH→ I (1.7)

Equation (1.7) also illustrates that as M increases, HTH∗/M approaches the

identity matrix, I. The Mean Absolute Deviation as defined in [35] is used to

find the deviation of the channel matrix away from I.

1.1.4 Massive MIMO Channel Models

The performance of massive MIMO systems is usually evaluated using two main

channel models. They are the Correlation-Based Stochastic Channel Model (CB-

SCM) and the Geometry-Based Stochastic Channel Model (GBSCM) [21].

CBSCMs are used for analyzing the theoretical performance of MIMO wireless

communication systems. Examples of CBSCMs includes the Rayleigh Fading

channel model, Rician Channel model and the Kronecker channel model [27].

Oftentimes, CBSCMs are not used for practical massive MIMO performance eval-

uation because they do not model large scale propagation characteristics as well

as antenna parameters, which are needed for practical MIMO systems evalua-

tion [27]. As a result, CBSCMs do not give an accurate reflection of massive

MIMO system performances. Equation (1.8) shows an example of a CBSCM,

(i.e. Kronecker channel model)

H = R
1/2
t HiidR

1/2
r (1.8)

where H represents the channel matrix, Rt and Rr denote the transmit and re-

ceive spatial correlation, respectively. Hiid represents the i.i.d. or uncorrelated

channel matrix.

GBSCMs, on the other hand, accurately reflect the realistic channel properties of
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wireless communication systems and are better suited for massive MIMO channel

modeling performance [27]. GBSCMs include channel parameters that are useful

for evaluating practical massive MIMO systems. GBSCMs can be further classi-

fied as 2D and 3D channel models.

The 2D channel model employs linear antenna arrays at the BS and it is capable

of adapting in the azimuth domain only while the 3D channel model employs an-

tenna arrays such as rectangular, cylindrical and spherical antenna arrays at the

BS. 3D channel models are capable of adaptation in both azimuth and elevation

domains [21]. The large scale propagation of 3D massive MIMO channel models

include the Shadow Fading (SF), the Delay Spread (DS), the Azimuth of Arrival

and Departure angles (AoA and AoD, respectively), as well as the Elevation of

Arrival and Departure (EoA and EoD, respectively) [27]. An example of the

3D channel model based on WINNER+ and 3GPP is shown in equation (1.9)

from [36,37],

[Hs,u] =
N∑
n=1

αn
√
gt(φn, θn, θtilt)

√
gr(ϕn, ϑn)x[ar(ϕn, ϑn)]ux[at(φn, θn)]s (1.9)

where s = 1, ..., NBS, u = 1, ..., NMS, αn denotes the complex amplitude of the

path, assumed to be a random variable. (φn, θn) are defined as the azimuth and

elevation angles of departure (AoD), respectively. (ϕn, ϑn) represents the azimuth

and elevation angles of arrival(AoAs) of the nth path respectively.

1.2 Statement of Problem

So far, research done on the analysis of the convergence of massive MIMO sys-

tems to favorable propagation have examined the convergence properties using

the CBSCM, which does not reflect the realistic practical performance of massive

MIMO systems.

Moreover, the impact of the different antenna array topologies proposed for the

massive MIMO technology on the convergence of massive MIMO to favorable
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propagation have received little amount of research, and has also not been exam-

ined in practical channels. There has not also been adequate research done on

the impact of varying the separation between the antenna elements, the angular

spreads of the distribution of angles of arrival, as well as the azimuth and ele-

vation spreads on the convergence, for different antenna array topologies. Even

though research has shown that increasing the standard deviation of the distri-

bution of angles of arrivals reduces the correlation among the antenna elements,

its impact on the convergence performance has received little attention.

1.3 Aims and Objectives

1.3.1 General Objective

To investigate the rate of convergence of user channels to favorable massive MIMO

propagation employing different antenna array topologies using a 3D GBSCM in

different angular distributions based on the MPA concept.

1.3.2 Specific Objectives

1. Modify the WINNER+ and 3GPP channel which follows a GBSM and

present a new channel realization when the transmitter is URA and CA.

2. Use SC expressions of URA and CA regarding Laplacian, Gaussian, Von

Misses and Student’s -t distributions based on the Maximum Power of Ar-

rival to study its impact on the convergence of massive MIMO to favorable

propagation.

3. Analyze the convergence using the Mean Absolute Deviation (MAD) and

the Diagonal Dominance (DD).

4. Compare results to previously established results.
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1.4 Methodology

1. Use MATLAB to compute and derive the spatial correlation coefficients for

four different angular distributions (i.e Gaussian, Laplacian, Student’s -t

and Von Misses), and for each of the antenna array topology.

2. Use MATLAB to compute and generate the channel parameters for model-

ing the 3D Geomtery-based stochastic Channel Model.

3. Use MATLAB to evaluate the convergence metrics i.e. the Mean Absolute

Deviation (MAD) and Diagonal Dominance (DD) for the 3G Geometry-

Based channel model.

4. Employ the MAD and the DD to analyze and compare the performance in

both correlated-based and geometry-based stochastic channel models.

1.5 Contents and Innovations of the Thesis

This work presents a standardized guideline of evaluating the convergence for

URA and CA antenna topologies to massive MIMO favorable propagation under

different angular distributions and thereby eliminates the need for separate gener-

ation of expressions for specific angular distributions. The work also presents the

convergence performance in a practical 3D massive MIMO system, which gives a

more accurate reflection of the performance.

1.6 Outline of the Thesis

The thesis is composed of six main chapters and it is organized as follows: Fol-

lowing the Introduction,

• Chapter 2 presents both the Literature review as well a theoretical review

for this study. The literature review is in two segments. The first part
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presents a review of literature on spatial correlation models and the second

part of the literature review presents related works on convergence of mas-

sive MIMO systems. In the theoretical review, Key aspects of the study

including the MPA concept are reviewed more in details.

• Chapter 3 presents the 3D massive MIMO channel model based on the

MPA for the URA and CA antenna array topologies. The chapter then

outlines the generation of the 3D massive MIMO channel parameters. In

this chapter, the MPA concept is used to derive the SC characterization for

different angular distributions of massive MIMO.

• Chapter 4 discusses the Massive MIMO system performance in both correlated-

based and geometry-based stochastic channel model, for the two antenna

array topologies. This chapter is then concluded with a performance com-

parison between the two different channels models as well as a comparison

between the two different antenna arrays.

• Chapter 5 concludes the thesis with key contributions and possible future

research directions.
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Chapter 2

Literature Review and Concept of Maximum

Power of Arrival

2.1 Massive MIMO

Massive MIMO system technology is primarily known for the exploitation of the

spatial domain such that sufficiently diverse channel vectors can be obtained

between each TX antenna and RX antenna pair [21,22]. The number of indepen-

dent channels between the antenna pairs is known as the multiplexing gain [21].

This multiplexing gain is equal to minimum number of the TX and RX anten-

nas. Since the capacity of the system scales proportionally to the multiplexing

gain [17], MIMO technology has been well studied over the past two decades and

has now been labeled as one of the key technologies in current wireless system

deployments [19].

2.1.1 System Model

For the general system model of the massive MIMO, a Multi-user MIMO (MU-

MIMO) is considered, where a total of M transmitting antennas (TX) serves

simultaneously K number of users. Let J represent the number of antennas on

the downlink in a single time/frequency resource [38].

The J x 1 received vector, y, for an arbitrary user can therefore be defined by

equation (2.1),

y =
√
ρHx + v (2.1)

where H is the channel matrix of the J x M channel, x is the M x 1 precoded

vector of data symbols s, which is dependent on the type of precoder used at the
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transmitter. v is the J x 1 i.i.d. additive white Gaussian noise (AWGN) vector

with CN (0,1) entries. ρ denotes the received SNR at the user [35].

2.2 Channel Models

As mentioned in section 1.1.4 of this thesis, the two distinct channel models are

primarily used for evaluating the efficiency of massive MIMO systems, which are

the Correlation-based Stochastic Channel Model (CBSCM) and the Geometry-

based Stochastic Channel Model (GBSCM). While the GBSCMs reflect the real-

istic characteristics of the channel, the CBSCMs are limited for practical massive

MIMO system. Table 2.1 presents a summary of the current channel models used.

Table 2.1: Channel Models of Massive MIMO

Method of Modeling Category Property

CBSCM
i.i.d. Rayleigh Fading
channel model

The fast fading elements are
i.i.d. complex Gaussian variables.

The correlation channel
model

Contains correlation between
transmit and / or receive antennas.

GBSCM
2D channel model

Propagates beams in the 2D
plane, such as the linear array.

3D channel model
Propagates beams in the 3D
plane, such as rectangular,
cylindrical and spherical array.

2.2.1 Correlation-Based Channel Models

Generally, the analysis assumes that user equipment (UEs) uses single antennas,

taking into account the complexity and space of low carrier terminal equipment

[3]. In the analysis of CBSCMs, UEs using single antennas are employed and

this can easily be extended to the case where the UE uses multiple antennas.

CBSCMs are further streamlined into three distinct channel models according

to the fast fading matrix, namely the i.i.d. Rayleigh fading channel model, the

correlation channel model and the [27] mutual coupling channel model. The three

models of channels are discussed in detail as follows.
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i.i.d. Rayleigh Fading channel model

This channel model is commonly used in massive MIMO systems for theoretical

assessment. In this model, it is assumed that there is no correlation between

transmitting antennas or receiver antennas and mutual connection [37]. The ele-

ments of the fast-fading matrix denoted as H = [h1,h2, ...,hK ] are i.i.d. Gaussian

random variables, thereby hn,k ∼ CN (0, 1)(n = 1, 2, ..., N ; k = 1, 2, ..., K).

Rayleigh fading channel can also be used to model rich scattering environments

such as those at microwave bands and the non-line-of-sight (NLOS)/diffuse com-

ponent of a Rician fading channel [29]. It is the simplest channel model and

allows closed form analysis in many applications [27].

Correlation channel model

The correlation channel model represents the antenna correlation induced by

inadequate antenna spacing and scattering surroundings and is thus used to assess

the efficiency of huge MIMO systems [37]. Each UE’s fast fading vector can be

obtained by multiplying the correlation matrix by a standard complex Gaussian

vector [27]. This is illustrated in equation (2.2)

hk = Rkvk, k = 1, 2, ..., K (2.2)

where the steering matrix, defined as Rk ∈ CNxDk contains Dk steering vectors

with different angles of arrival (AoAs) for the kth UE and vk ∼ CN (0, 1D)

When linear array is employed at the eNB, the steering matrix Rk can be written

as

Rk =
1

Dk

[a(θk,2), a(θk,2), ..., a(θk,D)], (2.3)

where θk,i is the ith AoA of the kth UE. The steering vector, a(θk,1) ∈ CNx1 is

given as

a(θk,1) = [1, e(j2πd/λ)sinθk,i , ..., e(j2π(N−1)d/λ)sinθk,i ]T , (2.4)
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Where d defines the wavelength of the carrier between the adjacent antennas and

λ. The steering vector can be achieved in the event of the rectangular antenna

array, as demonstrated in equation (2.5) as

a(θk,i, θk,i) = vec{[1, e(j2πd/λ)sinθk,i , ..., e(j2π(N−1)d/λ)sinθk,i ]T}⊗

vec{[1, e(j2πd/λ)sinθk,i , ..., e(j2π(N−1)d/λ)sinθk,i ]} (2.5)

where θk,i and θk,i represents the azimuth of arrival (AoA) and elevation of arrival

(EoA) respectively and vec{.} denotes the vectorization matrix.

This correlation channel model introduces the AoAs that can be used to dif-

ferentiate different UE and improve channel estimation accuracy [39]. The UE

channels can be almost segregated by angle data when the UE is situated at dis-

tinct orientations, thereby alleviating the contamination of the pilot. It is also

useful in the analysis of intercell or inter-user interference and in the development

of UEs scheduling or cell cooperation to alleviate interference [39].

Mutual coupling channel model

Since the number of antennas in the massive MIMO system increases to a large

scale, due to the limited space of the antenna array, the mutual impedance must

also be taken into account. [40]. In addition, to reflect the realistic channel model,

the load impedance and antenna impedances should also be characterized. The

kth UE channel vector can be written as shown in equation(2.6) taking both

impedances and correlation into account [41],

hk = ZRkvk, k = 1, 2, ..., K, (2.6)

where Z ∈ CNxN represents the mutual coupling matrix and Rk ∈ CNxD denotes

the steering matrix containing Dk steering vectors of the receiver antenna array,

and vk ∼ CN (0, 1). According to [40, 41], the mutual coupling matrix can be
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expressed as

Z = (ZA + ZL)(Γ + ZLI)−1 (2.7)

with

Γ =



ZA ZM 0 ... 0

ZM ZA ZM ... 0

0 ZM ZA ... 0

. . . . .

. . . . .

. . . . .

0 0 ... ZM ZA



(2.8)

where ZM , ZA and ZL represent the mutual impedances, antenna impedances

and the load impedances respectively. In this case, only between the adjacent

antennas, which can be seen from the nonzero ZM , are the mutual impedances

considered. The matrix of transmission correlation can therefore be written as

shown in equation (2.9) as The transmission correlation matrix is therefore rep-

resented as shown in equation (2.9) [29],

ΣN = E[HHH ] = KZRRHZH (2.9)

where R = [R1,R2, ...,RK ]. As the UE is geometrically distributed, it is as-

sumed that the received correlation matrix to be IK which evaluates H as H ∼

CN (0,ΣN ⊗ IK).

One advantage that the mutual coupling channel model brings about is that, as

compared to the correlation and Rayleigh channel models, it is practical and more

suitable for massive MIMO. It is also useful in evaluating the impacts of antenna

spacing on the efficiency of huge MIMO devices, which is important in the setup

of antenna arrays, particularly sparse antenna arrays [27].
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2.2.2 Geometry-Based Channel Model

GBSCMs can be categorized into two different types: 2D and 3D channel mod-

els [21].

The tilt angle is generally held constant with the use of the Uniform Linear Array

(ULA) used at the eNB and the 2D channel model is exactly enough to evalu-

ate the efficiency of the massive MIMO scheme. However, if the eNB uses 3D

antenna arrays such as the spherical array, rectangular array or the cylindrical

array configurations, the 3D channel model that considers both the elevation and

the azimuth should be used for evaluation [37]. The 3GPP channel model is

standardized for frequencies below 6 GHz and can be used to model urban micro,

urban macro as well as suburban macro cells, both for 3D indoor/outdoor sce-

narios [43]. Due to the complexity in generating the channel model parameters

and the fact that it is based on extensive measurement campaigns, carried out

by the 3GPP, the channel model is typically only used for detailed simulation

purposes [42, 43].

However, if the eNB uses 3D antenna arrays such as the spherical array, rect-

angular array or cylindrical antenna array configurations, the 3D channel model

that considers both the elevation and the azimuth should be used for evalua-

tion. [44–46]. The properties are useful in decorating the channels for different

UE types, thus providing a favorable channel [47,48]. However, they increase the

trouble for the massive MIMO scheme to set up the channel model. Like [49–51],

it is also possible to observe the non-stationary phenomenon by measuring the

linear 128-antenna array in a semi-urban region. [52].

The generation of channel parameters for the 3D massive MIMO channel model is

outlined in detail in [53–55] based on WINNER+ 3GPP. The 3D channel model’s

primary parameters include shadow fading (SF), delay spread (DS), the K factor,

both AoA, azimuth starting angles (AoD), EoA, and starting elevation angles

(EoD), particularly the EoA and EoD [51,55]. The 3GPP Release 12 (R12), de-

fined three different environment scenarios which include the urban microcell with
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high UE density (3D-UMi), urban macrocell with high UE density (3D-UMa),

and the urban macrocell with one high-rise per sector and 300m intersite The 3D

MIMO channel’s large-scale propagation comprises of both Pathloss and shadow

fading. Taking into account the various propagation environments [54], the path

loss model can be classified as outdoor or outdoor-to-indoor (O2I) models.

2.3 Maximum Power of Arrival of Distributions

The Maximum Power of Arrival can be defined as follows: If the real distribution

of power as a function of u = sinξ is given by p(u) and the phase gradient of the

incident wave is proportional to u, where ξ represents phase angle of the incident

wave, then the maximum power is relative to distribution of true power and this

is given in equation (2.17) as

Pmax =

∫
u

p(u)du (2.10)

Having defined the MPA of distribution of AoA in equation (2.18) the concept

is extended to determine the MPA distributions for the Student’s t-distribution,

Laplacian, Gaussian, Von Mises and arbitrary Q- power cosine distributions.

2.3.1 Maximum Power of Laplacian Distribution

The field measurement data shows, as illustrated in [67], that the angle-of-arrival

(AOA) distribution in general has a shape resembling a Laplacian and Gaussian

distribution. The Laplacian distribution is given as

Plap(ζ) = Cle
−a|αl−ζ| − π + αl ≤ ζπ + αl (2.11)

where Cl = a/2(1− eaπ) is the normalizing constant, ξ is the phase angle and a

represents the decay factor which varies inversely to the angle of the spread and

α1 defines the central AoA. The maximum power of arrival can thus be express
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as

P lap
max =

∫
Cle
−a|σl−ξ|dξ = (1/a)Cle

−a|α1−ζ| (2.12)

2.3.2 Maximum Power of Gaussian Distribution

As illustrated for the Laplacian distribution, the Gaussian distribution is ex-

pressed as

Pgauss(ζ) =
κ

σ
√

2π
e−(ζ−αa)2/2σ2

, −π + αa ≤ ζπ + αa (2.13)

where σ and αa are defined as the standard deviation and mean direction of

arrival of the distribution respectively. And

κ =
1

(efrc(π/σ
√

2)
(2.14)

is the normalization factor which makes Pgauss(ζ) a physical density function.

And

erf(x) =
2

x

∫ x

0

et
2

dt (2.15)

is the error function. It is worth noting that κ is equivalent to unity when the

angular spread is small. The maximum power is given by

P gauss
max (ζ) =

κ

σ
√

2π

∫
e−(ζ−αa)2/2σ2

dζ =
κσ

σ
√

2π(ζ − αa)

∫
e−(ζ−αa)2/2σ2

dζ (2.16)

2.3.3 Maximum Power of Von Misses Distribution

The Von Misses model was first presented in 1918 to model the contrasts be-

tween the theoretical measured atomic weights by German physicists Richard

Von Misses [68]. For a unit vector of dimension, the Von Misses probability

density function is given as

Pp(x;µκ) = Cp(κ)eκµ
T x (2.17)
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where T signifies the matrix transposition operator, mean direction is represented

by µ. The κ defines the accumulation of the distribution and Cp is a normalizing

constant given as

Cp(κ) =
κp/(2−1)

(2π)p/2Ip(2−1)(κ)
(2.18)

in which Iv denotes the modified Bessel function of the first order and kind, v.

In an urban environment where the angle of arrival ζ component results from the

multipath propagation, the Von Misses distribution is expressed as

Pmax
von (ζ) =

1

2πIo(κ)
eκcos(ζ−ζm), −π + ζm ≤ π + ζm (2.19)

where ζm is the mean direction of a set of directional components which ranges

in the interval [0, π]

2.3.4 Maximum Power of Student’s t-distribution

The Student’s t-distribution can be defined as the distribution of u = sinζ. The

probability density function (pdf) of this distribution in the u− space is expressed

as [63]

Pstd(u) =
1

2

µ2

µ2 + (u2 + (u− u)2)3/2
(2.20)

where µ denotes the measure of angular spread and ζ is the angle of arrival.

Applying the MPA concept,

P std
max(ζ) =

1

2µ

∫
cosζ

(1 +m2sin2ζ)3/2
dζ (2.21)

2.4 Review of related works on Spatial Correla-

tion models

In [59], researchers have shown that 3D MIMO enables the efficient utilization

of the spatial resources. Without adequate modeling and planning of channel
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characteristics using elevation, however, all these benefits can not be achieved.

Unlike the two-dimensional (2D) spatial correlation of antenna arrays, the 3D

SC of antenna arrays allows elevation spread into the 3D channel model and an-

tenna configuration to access and use all the degrees of flexibility the channel

offers [60]. This is because the real world nature of transmission in 3D MIMO

requires both azimuth and elevation spreads to enhance spectrum efficiency and

improve network throughput completely. It is an existing fact that the 3D SC

between antenna positions on array geometry is a function joint distribution of

the azimuth and the elevations spreads of the incident wave [61, 62]. Given this,

it is not an overstatement for one to conclude that the variations in the parame-

ters of angular distribution will influence the 3D SC between antenna positions.

However, the classic work done by Andersen and Pedersen in [63] has led to the

emergence of several characterizations of 3D SC using uniform angle-of-arrival

(AOA) probability density function (pdf). Researchers in [64] considered the

uniform AOA to derive the spatial fading correlation models for ULA, UCA and

URA compact MIMO receivers. Authors indicated that the proposed SC models

were useful in determining the covariance matrix at both the transmitter and

receiver for performance evaluation. Moreover, authors examined the impacts of

the angular parameters associated with azimuth spread (AS), mean elevation of

arrival (MEOA), elevation spread (ES) and the mean azimuth of arrival (MAOA)

on MIMO performance. The analytical expression assumed uniform AOA and is

expressed as a function of azimuth and elevation angles of arrival as well as the

polarization states of the wave. The results obtained could be used to determine

the SC matrix on both sides of the transmitter and receiver in multiple-input-

multiple-output systems. In [65], approximate SC expressions of ULA and UCA

using cluster channel models MIMO have been derived. Further, authors demon-

strated the possibility of avoiding numerical integrals and compare parametric

and non-parametric channel models. They also demonstrated that the suggested

model fits perfectly with current low-angle spread parametric models. As already
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stated, field measurement information indicates that the AOA distribution gen-

erally has a shape that looks like a Laplacian and Gaussian distribution [66, 67].

Therefore, authors in [62, 65] have derived the 3D SC of antenna arrays using

Laplacian and Gaussian distributions useful for MIMO performance evaluation.

In [67], authors derived a SC expression of UCA using the Laplacian distribution.

Using computer simulations authors obtained a perfect match between theoret-

ical and simulation results. The correlation between antenna elements reduced

as the separation increased. Moreover, using Gaussian angle and spatial distri-

butions the SC functions of ULA and UCA were derived in [62] for assessment

of MIMO performance. Other researchers have also proposed the Von Mises and

arbitrary Q- power cosine distributions [68,69] that was first introduced to model

the non-isotropic propagation mechanism. Using a different method such as the

spherical harmonic expansion (SHE) of planewaves, an expression for the SC for

the uniform AOA pdf was presented in [70]. Researchers in [71] have also shown

on accounts of large-scale transmitters such as the cylindrical array (CA) that

the spatial correlation matrix can be expressed in zenith and azimuth directions

as the Kronecker product of each correlation matrix. Following this develop-

ment, approximate antenna architecture expressions for SC were developed using

Fourier transforms to investigate correlated channel convergence properties.

2.5 Review of related works on Convergence

Authors in [35] looked at the convergence characteristics of huge MIMO schemes

by examining the amount of antennas needed for huge MIMO benefits. This work

analyzed the convergence properties using a Rayleigh fading channel model.

In this work, three convergence metrics were defined as follows; Mean Absolute

Deviation (MAD), Eigenvalue Ratio (λ ratio) and Diagonal Dominance (DD).

These metrics were evaluated based on a number of scenarios; In the first scenario,

K is fixed as M → ∞ and in the second scenario, K
M

= α−1, K → ∞, α is fixed.

This work demonstrated that the λ ratio converges to 1 when M is excess of 104 as
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K is fixed at 10 and 50. The work further illustrated that difference of the Mean

Absolute Deviation (MAD) of HTH∗vsM away from the identity matrix, I quickly

approaches zero for M number of antennas in excess of 500. This work further

concluded that, the channel matrix becomes increasingly diagonal dominant for

fixed number of users, K but became less diagonal dominant as both K and

M were allowed to increase. Approximate expressions of the spatial correlations

of Cylindrical Array (CA) and Uniform Rectangular Arrays (URA) were also

derived from researchers in [72] using measured angle departure distributions

(AoD) for both zenith and azimuth. This work further examined the convergence

of the antenna arrays using the Rayleigh fading channel model and the Kronecker

correlation model. Different results are obtained between the correlated scenarios

of antenna arrays and i.i.d. situations. Corresponding to the outcome in [72], the

i.i.d scenario declines to zero faster than the correlated scenarios with a quicker

convergence rate at larger α for an increase of K. This happens only in the

uncorrelated channel when the value of W approaches IK . In the correlation

scenario, the effect of correlation alter the values of W thus the values are not

close to IK . It is then not unexpected that the outcome of the correlation scenario

will converge. In addition, [72] concluded that while the massive MIMO show

convergence for a large antenna numbers for the i.i.d. channels, the desirable

massive MIMO properties are degraded by the presence of spatial correlation.

2.6 Motivation

The focus in all the above has been on studying the convergence of massive

MIMO in CBSCM. Little has been done on the effect of antenna parameters

and SC on convergence in both CBSCM and GBSCM regarding different angular

distributions. There is therefore the need to investigate the effect of increasing the

azimuth (AS) and elevation (ES) spreads of the angular distributions of arrival

and antenna element spacing on the rate of convergence of massive MIMO for

both CBSCM and GBSCM.
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Chapter 3

Methodology

Chapter three discusses the system model and the channel models of the proposed

massive MIMO system. It also introduces the MPA concept as it is implemented

for massive MIMO performance to achieve the 3D SC expressions of both the

Uniform Rectangular Array (URA) and the Cylindrical Array (CA). The chapter

also presents the MPA of AOA distributions for the Student’s t-distribution,

Laplacian, Gaussian, and Von Mises distributions.

3.1 System Model

In this thesis, a massive MIMO system employing several numbers of antennas,

M serving simultaneously single-antenna users, K is considered. Time division

duplex (TDD) mode is regarded with uplink pilots allowing downlink channel

estimation by the transmitter. The K terminals receive a K x 1 vector as defined

in equation (3.1) on the downlink (where TDD is assumed).

xf =
√
ρfGT sf + wf (3.1)

where ρf denotes the transmit SNR, [.]T represents matrix transpose and sf

defines an M x 1 precoded vector of data symbols. wf represent a K x 1 noise

vector with an i.i.d. CN (0,1). The M x K channel matrix, G, is represented by

G = HD
1
2
β (3.2)

where H is a M x K channel matrix that accounts for the small-scale Rayleigh

fading and the spatial correlation effect and Dβ defines the diagonal matrix mod-
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eling large-scale effects. The Dβ diagonal components are depicted by a K x

1vector, β, representing the βj link gains. This is represented by

D = diag[β1, β2, ..., βK ] (3.3)

The correlation also improves as the number of antennas rises in massive MIMO.

In this thesis, the analysis considered only the transmitter’s spatial correlation.

Therefore, the correlated channel, defined as H models the transmit spatial corre-

lation, Rt and Hiid which represents the independent and identically distributed

(i.i.d.) channel matrix. This is illustrated in equation (3.4)

H = HiidR
1/2
t (3.4)

3.2 Channel Model and Antenna Configuration

In this section, the antenna configuration of 3GPP standards and WINNER+

model used for the MIMO channel modeling for this study is presented. The

section also presents a link between the base station (BS) and the mobile sta-

tion (MS). For this thesis, the WINNER+ and 3GPP standards were considered

because research has recognized that a substantial energy component is radiated

in the elevation domain. [52]. The description of the propagation route in the

azimuth domain does not therefore only improve the efficiency [27]. Elevation

and azimuth angles at the BS are denoted by θn and φn respectively. That of

the MS is represented by ϑn and ϕn respectively. The BS is modeled as URA or

UCA.

The effective channel between the BS antenna port and the MS antenna port is

provided in accordance with 3GPP standards as

[Hs,u] =
N∑
n=1

αn
√
gt(φn, θn, θtilt)

√
gr(ϕn, ϑn)× [ar(ϕn, ϑn)]u × [at(φn, θn)]s (3.5)
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where s = 1, ..., NBS, u = 1, ..., NMS, αn is defined as the complex amplitude of

the path, assumed to be a random variable. (φn, θn) represent the azimuth and

elevation angles of departure (AoD), respectively. (ϕn, ϑn) are the azimuth and

elevation angles of arrival(AoAs) of the nth path respectively. One advantage

of the 3D channel model in equation (3.7) is the introduction of θtilt the down-

tilt angle of the antenna. This is because keeping the elevation angle of the

antenna boresight to be fixed does not exploit the channel’s degrees of freedom

in the elevation. [36]. The dynamic adjustment of the downtilt angles can open

up numerous potentials for the 3D beamforming which can lead to substantial

performance improvements [43]. The vectors at(φ, θ) and ar(ϕ, ϑ) are the array

response of the BS and MS, respectively. Their entries are expressed as,

[at(φ, θ)]s = exp(iψt.xs) (3.6)

[ar(ϕ, ϑ)]u = exp(iψr.xu) (3.7)

where xs and xu denotes the location vectors of the sth and uth transmit (TX)

and receive (RX) antennas, respectively. ψt and ψr represent the transmit and

receive wave vectors, where ψ = kv, with k = 2π
λ

, and λ is the wavelength which

signifies the direction of wave propagation. According to [38]

gt(φn, θn, θtilt) ≈ gt, H(φn)gt, V (θn, θtilt) (3.8)

where gt, H(φn) and gt, V (θn, θtilt) are the vertical and horizontal antenna patterns

at the transmitter and are approximated in dB as

gt, H(φ) = −12(
φ

φ3dB

)2dB (3.9)

gt, V (θ, θtilt) = −12(
θ − θtilt
θ3dB

)2dB (3.10)
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where θ3dB illustrates the vertical and horizontal 3dB beamwidths, respectively.Also,

the individual MS radiation pattern, gr, ϕ, ϑ, is taken as 0 dB because the MS

does not generally favor any direction.

3.2.1 Generation of 3D massive MIMO channel model for

Cylindrical Array

The configuration for the CA can be obtained by wrapping a URA around a

virtual cylinder as depicted in Figure 1.5. The CA is therefore modeled in the

analysis as an A-element ULA (Figure 1.1) in the direction of z (zenith domain)

and B-element in the direction of x, y (azimuth domain). The location vector of

the sth transmit (Tx) can be obtained by knowing the position of mth UCA in

the direction of z and the angular position of the nth element on the mth UCA in

the x, y plane where m = 1, ...,M represents the total number of UCA elements in

the direction of z and n = 1, ..., N denotes the total number of antenna elements

on each UCA. Provided that the CA antenna array dimension is l = 4λ, the

cylinder radius and UCA can be defined as ρ = 4λ/l. If dz = 4λ/M wavelengths

represents the distance between the first and second UCA in the z direction,

then the third and the subsequent position of the UCA will be 4λ(m − 1)/M

wavelengths. As illustrated in [26], the angular position of the nth element of the

mth UCA on the x, y plane is ϕs = 2π(n− 1)/N and the location vector can be

represented as vt.xs = cos(φ − ϕs)sinθ. In considering the assumptions above,

the array response of the sth BS antenna port of CA using Eq. (26) is given by

[ar(ϕn, ϑn)]u = exp(ik(u− 1)drsinϕsinϑ) (3.11)

LTE antenna ports are considered at the MS to support different transmission

modes described in [42]. Each antenna port behaves like a single antenna with

this configuration, since its elements carry the same identical signal. The array

response of the uth MS antenna port in connection with the 3-D channel model
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can be expressed as [62]

[ar(ϕn, ϑn)]u = exp(ik(u− 1)drsinϕsinϑ) (3.12)

The resultant 3-D channel realization between the sth TX antenna port of CA

and the single antenna RX port is derived as

[Hs,u]CA =
N∑
n=1

αn
√
gt(φn, θn, θtilt)exp(ikρ(4λ(m− 1)/M)cos(φn − ϕs)sinθn)

×
√
gr(ϕn, ϑn)exp(ik(u− 1)drsinϕsinϑ) (3.13)

where k represents the wave number and dr is the separation between the RX

antenna ports.

3.2.2 Generation of 3D massive MIMO channel model for

Uniform Rectangular Array

In the URA analysis, the response of the sth BS antenna port of the URA antenna

can be expressed in the scalars z and y - axes as

[at(φn, θn)]s = exp(ikzcos(φn − γs)sinθn) (3.14)

where the location vector of sth element of URA at the BS is expressed as

vt.xs = cos(φn − γs)sinθ (3.15)

Moreover, the parameters z and γs are also defined in this thesis as follows,

z =
√

(z2x + z2y) (3.16)

zx = 2πdx(n−m)/λ (3.17)

30



zy = 2πdy(n−m)/λand (3.18)

γs = tan−1(zx/zy) (3.19)

Considering the array response of the LTE antenna ports representing the MS

ports defined in equation(3.16), The resultant 3D MIMO channel realization be-

tween sth transmit (TX) antenna port of URA and the uth receive(RX) port is

then given by

[Hs,u]URA =
N∑
n=1

αn
√
gt(φn, θn, θtilt)exp(ikzcos(φn − γs)sinθn)

×
√
gr(ϕn, ϑn)exp(ik(u− 1)drsinϕsinϑ) (3.20)

3.3 Generation of parameters for the 3D chan-

nel Model

3.3.1 Generation of Channel Coefficients

In the generation of the channel coefficients, the 2D channel model developed

by the 3GPP was extended to a 3D channel model to include the effect of the

elevation plane and antenna boresight. The signal obtained at the MS comprises

of the transmitted signal’s N time-delayed multipath replicas. The N paths are

defined by the power and delay and are selected randomly according to the pro-

cedure of channel generation. Each path consists of M sub-paths. The channel

modeling method for generating channel parameters for the 3D channel model is

based on the MIMO spatial channel model for the 3GPP Technical Specification

Group Radio Access Network (3GPP TR 25.996 version 15.0.0) [42].
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3.3.2 Application Environment

To efficiently analyze the performance of massive MIMO systems utilizing the

GBSCM, this section presents details of the application environment of the WIN-

NER+ and the 3GPP standard employed. This study considered Urban Macro

(3D-UMa) as the application environment. However, it has similar features as

Urban Micro (3D-UMi) [32]. The two situations are considered to be densely

populated concerning the buildings. It may be accepted that there is a more

random distribution of the building blocks while the height of the building are

generally distributed between four and eight floors. This is approximately 1.5

meters to 22.5 meters according to the WINNER+ and 3GPP standards in [42].

In the case of 3D-UMa, the base station height of twenty-five (25m) is presumed

to be well above the heights of the neighboring buildings so that the central prop-

agation mechanism for indoor and outdoor user equipment (UE) diffracts over

the rooftop. On 3D-UMi accounts, the BS height of 10m is assumed to fit below

the height of surrounding buildings. Hence, the signal strength received at the

UE incorporates commitments from the rooftop as well as the building propaga-

tion mechanisms. Figure 3.2 presents the WINNER + and 3GPP features for 3D

Channel model.
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Figure 3.1: 3D Channel Model

3.4 Expressions of the Spatial Correlation based

on MPA for Uniform Rectangular Array and

Cylindrical Array

Having defined the MPA of distribution of AoA in section 2.4, the concept

is extended to determine the MPA of offset distributions for the Student’s t-

distribution, Laplacian, Gaussian and Von Misses distributions.

3.4.1 Spatial Correlation Based on Maximum Power of

Laplacian Distribution

ρ[(n,m),(m,q)] =
8π

Zsinθ
P lap
max(ζ)sin(Zsinθ) (3.21)

where P lap
max is the maximum power of the Laplacian distribution evaluated in

equation (2.19). Therefore the MPA for Laplacian distribution is defined as

ρ[(n,m),(m,q)] =
8π

Zasinθ
Cle
−a|α1−θsin(γ+φ)|sin(Zsinθ) (3.22)

3.4.2 Spatial Correlation Based on Maximum Power of

Gaussian Distribution

ρ[(n,m), (m, q)] =
8π

Zsinθ
P gau
max(ζ)sin(Zsinθ) (3.23)

where P gauss
max is the maximum power of the Gaussian distribution evaluated in

equation (2.23). Therefore the MPA for Laplacian distribution is defined as

ρ[(n,m),(m,q)] =
8π

Zsinθ
× κσ√

2π(θsin(γ + φ)− αa)
e−(θsin(γ+φ)−αa)2/2σ2

sin(Zsinθ)

(3.24)
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3.4.3 Spatial Correlation Based on Maximum Power of

Von Misses Distribution

ρ[(n,m), (m, q)] =
8π

Zsinθ
P von
max(ζ)sin(Zsinθ) (3.25)

where P von
max is the maximum power of the Von Misses distribution evaluated in

equation (2.26). Therefore the MPA for Laplacian distribution is defined as

ρ[(n,m),(m,q)] =
8

Z2I0(κ)sinθ
sin(θsin(γ + φ)− ζm)eκcos(θsin(γ+φ)−ζm)sin(Zsinθ)

(3.26)

3.4.4 Spatial Correlation Based on Maximum Power of

Student’s t-distribution

ρ[(n,m), (m, q)] =
8π

Zsinθ
P std
max(ζ)sin(Zsinθ) (3.27)

where P std
max is the maximum power of the Von Misses distribution evaluated in

equation (2.28) Therefore the MPA for Laplacian distribution is defined as

ρ[(n,m),(m,q)] =
4π

Zµsinθ
(
sin(θsin(γ + φ))

2
(1 +m2sin2(θsin(γ + φ)))sin(Zsinθ)

(3.28)

3.5 Matlab Simulation

MATLAB (Matrix Laboratory), a numeric computing programming language,

was implemented and used for the generation of the channel parameters as well

as the computation of the convergence metrics.

In the simulation, the Urban Micro Environment parameters were considered as

shown in Table (3.2).
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Table 3.1: Angular parameters used for modeling [42]

Parameter Description

ΦBS Array orientation of BS antenna
θBS Direction of azimuth AoD LoS

between the MS and BS
φBS Direction of elevation AoD LoS

between the MS and BS
δn,AoD nth path AoD for (n = 1, ..., N)

with respect to the LoS AoD θ0.
4n,m,AoD Offset of mth subpath (m = 1, ...,M)

for the nth path
with respect to δn,AoD .

θn,m,AoA Absolute azimuth AoD of the nth
(m = 1, ...,M) subpath for the nth path
at the BS with respect to BS broadside.

φn,m,AoA Absolute elevation AoD of the nth
(m = 1, ...,M) subpath for the nth path
at the BS with respect to BS broadside.

ΦMS Orientation of MS antenna.
θMS The azimuth angle between the BS-MS

LoS and the broadside of the MS.
φMS The elevation angle between the BS-MS

LoS and the broadside of the MS.
δn,AoA AoA for nth (n = 1, ..., N) path, with

respect to the LOS AoA θ0,MS .
4n,m,AoA Offset of the mth (m = 1, ...,M)

subpath for the nth path
with respect to δn,AoA.

θn,m,AoA Absolute azimuth AoA denoting the mth
(m = 1, ...,M) subpath for the nth
path at the MS with respect to the

broadside of the BS
φn,m,AoA Absolute elevation AoA denoting the mth

(m = 1, ...,M) subpath for the nth
path at the MS with respect to

the broadside of the BS
v vector of MS velocity.
θv Velocity vector angle with respect to the

broadside of MS: θv = arg(v)
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Table 3.2: 3GPP Environment Parameters [42]

Channel Scenario Urban Macro Environment

Number of Paths(N) 6
Number of sub-paths (M) per path 20

Mean AS at BS E(σAS = 15◦)
AS at BS as a log-normal RV µAS = 1.18

σAS = 10(εASx+ µAS), x ∼ η(0, 1) εAS = 0.210
rAS = σAoD

σAS
1.3

Mean ES at BS E(σES = 8◦)
ES at BS as a log-normal RV µES = 0.810

σES = 10(εESx+ µES), x ∼ η(0, 1) εES = 0.34
rES = σAoD

σES
1.3

Per-path AS at BS (Fixed) 2◦

BS per-path AoD Distribution η(0, σ2
A0D) where σAoD = rASσAS

Mean AS and ES at MS E(σAS,MS) = 68◦

Per-path AS and ES at MS (fixed) 35◦

MS Per-path AoA Distribution η(0, σ2
AoA(PR))

Delay spread as a log-normal RV µDS = −6.18
σDS = 10(εDSx+ µDS), x ∼ η(0, 1) εDS = 0.18

Mean total RMS Delay Spread E(σDS) = 0.65µs
rDS =

σdelays
σDS

1.7

Log normal shadowing standard deviation, σSF 8dB
Pathloss model in (dB), d in meters 34.5 + 35log10(d)

Tilt Angle 90◦
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Chapter 4

Results and Discussions

This section provides the outcomes of the MATLAB simulation results of the con-

vergence performance for the correlation and geometry-based stochastic channel

models. Analysis is shown for both the URA and CA antenna topology.

4.1 Convergence

From equations (1.6) and (1.7), a convergence channel matrix is defined as W

and this is represented by

W =
1

M
HTH∗ (4.1)

In evaluating the convergence, a deviation matrix denoted as E is defined, which

represents the deviation of W from the identity matrix, I, i.e. E = W− I. The

Mean Absolute Deviation (MAD) and the Diagonal Dominance (DD) are defined

in equation (4.2) and (4.3) as

MAD(E) =
1

K2

K∑
i=1,j=1

|Eij| (4.2)

DD =

∑K
i=1 Wii∑K

i=1

∑K
j=1,j 6=i |Wij|

(4.3)

Two convergence scenarios are considered. In the first scenario, the number of

users, K is kept constant as the transmit antennas, M →∞ while in the second

scenario, K is varied alongside with M . In the performance evaluation, different

parameters were varied to investigate its impact on the massive MIMO system

convergence. These parameters include;

1. The distance, dx, referring to the spacing of antenna array elements on the
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x−plane and dy, which denotes the spacing of antenna array elements on

the y−plane.

2. Measure of the spreads of angular distributions of arrival, i.e. the Standard deviation,

σ (Gaussian), the decay factor, α (Laplacian), the angular spread, µ (Stu-

dent’s -T) and the accumulation of the distribution, κ (Von Misses).

3. The azimuth spread (AS) and the elevation spread (ES) represented as θ

and φ respectively.

4.2 Convergence Analysis using URA Antenna

Topology

4.2.1 Analysis using CBSCM

The Rayleigh fading channel model, (H = R
1
2
t Hiid) was used for all the simu-

lations. For the spatial correlation characterization, the SC based on MPA was

used. The Mean Absolute Deviation (MAD) and the Diagonal Dominance (DD)

was used to evaluate the convergence performance. Each convergence metric is

evaluated and averaged over 20 channel realizations. The number of users, K is

kept constant at K = 20. The azimuth and elevation angles, θ and φ respectively

is varied between 15◦ and 60◦ each. The antenna spacing, d is varied between

0.1λ and 1λ. For the measure of spreads, σ and α are varied between 3 and

10, κ is varied between 4 and 8, and µ is varied between 0.1 and 0.9. Conver-

gence performance is analyzed between the distributions and compared. For the

comparison of the spreads angular distributions of arrival and the azimuth and

elevation spreads, the correlation factor between the antennas is kept at 0.2λ.

Computing for the Mean Absolute Deviation (MAD)

In Figure 4.1, AS and ES are varied for both Gaussian and Laplacian distributions

for M increasing. The two distributions clearly demonstrate that the convergence
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increases as M antennas increases. The rate of convergence increases proportion-

ally as the azimuth and elevation angles increases. However, from Figure 4.2,

convergence occurs faster for the student t-distribution with higher AS and ES.

Figure 4.1: Comparing the MAD(E) vs M between gaussian and laplacian dis-
tributions with d = 0.2λ, σ = 3, α = 3 and K = 20 for varying angles of θ and
φ.

Figure 4.2: Comparing the MAD(E) vs M between von misses and student’s -t
distributions with d = 0.2λ, κ = 8, µ = 0.9 and K = 20 being fixed for varying
angles of θ and φ.

From Figures 4.3 and 4.4, it is obvious considering all distributions that the

convergence increases proportionally to antenna element spacing, d. This is as a
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result of the decrease in the correlation as the distances between antenna elements

increases. Also, channel matrices with correlation above 0.5λ showed faster con-

vergence rate. These results therefore supports the existing developments that

for massive MIMO channels to be uncorrelated, it requires antenna spacing of at

least λ/2 wavelengths.

Figure 4.3: Comparing the MAD(E) vs M between gaussian and laplacian dis-
tributions for varied antenna element spacing, d with θ and φ fixed at 60◦ each,
and σ = 3 and α = 3

Figure 4.4: Comparing the MAD(E) vs M between von misses and student’
t-distributions for varied antenna element spacing, d with θ and φ fixed at 60◦

each, and κ = 8 and µ = 0.9
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Figures 4.5 and 4.6 show the impact of the measures of the spreads i.e. (σ, α, µ

and κ) on the convergence. In Figure 4.6, it can be observed that the convergence

increases at a rate proportional to the increase in the angular κ and µ. However

in Figure 4.5, changing σ and α did not show any sensitivity to the convergence

for M ≥ 40. This occurs due to the decrease in the spatial correlation as the

number of antennas increases irrespective of the change in values of σ and α.

Figure 4.5: Comparing the MAD(E) vs M between gaussian and laplacian dis-
tributions for angular spreads, σ and α with θ and φ fixed at 60◦ each, and
d = 0.2λ

Figure 4.6: Comparing the MAD(E) vs M between von missess and student’s
t-distributions for angular spreads, κ and µ with θ and φ fixed at 60◦ each, and
d = 0.2λ
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Computing for Diagonal Dominance

Figures 4.7 - 4.12 illustrates the Diagonal Dominance of W as M grow large. The

number of users is set at K = 10. While for an i.i.d. or uncorrelated channel

where W becomes increasingly diagonal as the sum of elements in the diagonal

grow faster than the fixed number of elements in the off-diagonals, the diagonal

dominance converges quickly to zero for the correlated channels as M increases.

Figures 4.7 and 4.8 show a change in the rate of change in the convergence as the

elevation and azimuth angles vary. A similar trend is realized in varying antenna

element spacing as depicted in Figures 4.9 and 4.10 and also that of varying

spreads of the distribution as illustrated in Figures 4.11 and 4.12.

Figure 4.7: Comparing the DD vs M between gaussian and laplacian distribu-
tions with d = 0.2λ, σ = 3, α = 3 for varying angles of θ and φ.
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Figure 4.8: Comparing the DD vs M between von misses and student’s -t distri-
butions with d = 0.2λ, κ = 8, µ = 0.9 for varying angles of θ and φ.

Figure 4.9: Comparing the DD vs M between gaussian and laplacian distribu-
tions for varied antenna element spacing, d with θ and φ fixed at 60◦ each, and
σ = 3 and α = 3
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Figure 4.10: Comparing the DD vs M between von misses and student’ t-
distributions for varied antenna element spacing, d with θ and φ fixed at 60◦

each, and κ = 8 and µ = 0.9

Figure 4.11: Comparing the DD vs M between gaussian and laplacian distribu-
tions for angular spreads, σ and α with θ and φ fixed at 60◦ each, and d = 0.2λ
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Figure 4.12: Comparing the DD vs M between von missess and student’s t-
distributions for angular spreads, κ and µ with θ and φ fixed at 60◦ each, and
d = 0.2λ

In summary, the simulation results demonstrated that the increase in the elevation

and azimuth angles both contributed to increase of the convergence performance

in the correlation-based channel model. The convergence also showed better

performance for antenna spacing of 0.5λ for all the different distributions.

4.2.2 Analysis using GBSCM

In this section, the 3D channel matrix, [Hs,u] which reflects practical massive

MIMO system analysis is used for all the simulations. Each convergence metric

is evaluated and averaged over 10 channel realizations.

Just as in the case of the CBSCM, the number of users, K is kept constant

at K = 20. The azimuth and elevation angles, θ and φ respectively, is varied

between 15◦ and 60◦ each. The antenna spacing, d is varied between 0.1λ and

1λ. For the measure of spreads, σ and α are varied between 3 and 10, κ is varied

between 4 and 8, and µ is varied between 0.1 and 0.9.
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Computing for the Mean Absolute Deviation (MAD)

In computing the Mean Absolute deviation of [Hs,u] from I, the simulation results

of the 3D geometry-based channel demonstrates that the convergence increases

at a rate proportional to the azimuth and elevation angles, the antenna element

spacing and the angular spreads of distributions for Student’s t and Gaussian

distributions as depicted in Figures 4.13 - 4.18. However, the Laplacian and Von

Misses distributions showed poor convergence performance, even for AS and ES

increasing with increasing spreads of the distributions. The poor performance of

the Laplacian and Von Misses distribution was due to the high values of spatial

correlation coefficients registered, as the number of antenna elements increased.

Figure 4.13: Comparing the MAD(E) vs M between gaussian and laplacian
distributions with d = 0.2λ, σ = 3, α = 3 for varying angles of θ and φ.
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Figure 4.14: Comparing the MAD(E) vs M between von misses and student’s -t
distributions with d = 0.2λ, κ = 8, µ = 0.9 for varying angles of θ and φ.

Figure 4.15: Comparing the MAD(E) vs M between gaussian and laplacian
distributions for varied antenna element spacing, d with θ and φ fixed at 60◦

each, and σ = 3 and α = 3
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Figure 4.16: Comparing the MAD(E) vs M between von misses and student’
t-distributions for varied antenna element spacing, d with θ and φ fixed at 60◦

each, and κ = 8 and µ = 0.9

Figure 4.17: Comparing the MAD(E) vs M between gaussian and laplacian
distributions for angular spreads, σ and α with θ and φ fixed at 60◦ each, and
d = 0.2λ
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Figure 4.18: Comparing the MAD(E) vs M between von missess and student’s
t-distributions for angular spreads, κ and µ with θ and φ fixed at 60◦ each, and
d = 0.2λ

Computing for the Diagonal Dominance (DD)

Unlike in the case of the CBSCM, the diagonal dominance becomes increasingly

diagonal with K being fixed as M grows large. From Figures 4.19 - 4.24, the diag-

onal dominance deteriorates proportionally to the azimuth and elevation angles,

angular spreads and the antenna spacing for Gaussian and Student’s -t distribu-

tions. The diagonal dominance however converges to zero quickly as M increases

for the Laplacian and Von Misses distributions.
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Figure 4.19: Comparing the DD vs M between gaussian and laplacian distri-
butions with d = 0.2λ, σ = 3, α = 3 and K = 20 for varying angles of θ and
φ.

Figure 4.20: Comparing the DD vs M between von misses and student’s -t
distributions with d = 0.2λ, κ = 8, µ = 0.9 and K = 20 being fixed for varying
angles of θ and φ.
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Figure 4.21: Comparing the DD vs M between gaussian and laplacian distribu-
tions for varied antenna element spacing, d with θ and φ fixed at 60◦ each, and
σ = 3 and α = 3

Figure 4.22: Comparing the DD vs M between von misses and student’ t-
distributions for varied antenna element spacing, d with θ and φ fixed at 60◦

each, and κ = 8 and µ = 0.9
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Figure 4.23: Comparing the DD vs M between gaussian and laplacian distribu-
tions for angular spreads, σ and α with θ and φ fixed at 60◦ each, and d = 0.2λ

Figure 4.24: Comparing the DD vs M between von missess and student’s t-
distributions for angular spreads, κ and µ with θ and φ fixed at 60◦ each, and
d = 0.2λ

Computing for MAD as both K and M increases

In this section, the number of users K is made to increase as M also grow large.

From Figures 4.25 - 4.26, it was observed that as K approaches closely to M ,

the convergence performance deviates, for smaller antenna spacing, d. However,
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the convergence is better as the antenna spacing increases (i.e. λ/2 wavelengths),

even while K approaches M closely. This is realized for the different angular

distributions.

Figure 4.25: MAD vs M for K increasing with α and σ remaining constant whilst
varying the θ and φ.

Figure 4.26: MAD vs M for K increasing with κ, µ, θ and φ remaining constant
whilst varying the antenna element spacing, d.

In Analyzing the simulation results of the convergence for the URA topology, it

is realized that the channel begins to exhibit convergence for antenna numbers,

M in excess of more than 200 antennas. Results for the Laplacian and Von
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Misses distributions however do not show good performances for the analysis of

the convergence in the geometry-based channel model.

4.3 Convergence Analysis Using CA Antenna

Topology

This section presents the simulation results for CA antenna topology.

4.3.1 Analysis using CBSCM

Just as was presented for the case of the URA antenna topology, the same analysis

is done for the case of the CA antenna topology.

Computing for the Mean Absolute Deviation (MAD)

Unlike the URA antenna topology where the channel began to show convergence

for antenna numbers in excess of about 200, in the case of the CA antenna

topology, the system begins to exhibit convergence at M ≥ 100. In Figures 4.27 -

4.32, the results support the existing development that the convergence increases

proportionally to the spreads of the angular distributions, the antenna element

spacing and the azimuth and elevation angles (ES and AS respectively).
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Figure 4.27: Comparing the MAD(E) vs M between gaussian and laplacian
distributions with d = 0.2λ, σ = 3, α = 3 and K = 20 for varying angles of θ and
φ.

Figure 4.28: Comparing the MAD(E) vs M between von misses and student’s
-t distributions with d = 0.2λ, κ = 8, µ = 0.9 and K = 20 being fixed for varying
angles of θ and φ.
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Figure 4.29: Comparing the MAD(E) vs M between gaussian and laplacian
distributions for varied antenna element spacing, d with θ and φ fixed at 60◦

each, and σ = 3 and α = 3

Figure 4.30: Comparing the MAD(E) vs M between von misses and student’
t-distributions for varied antenna element spacing, d with θ and φ fixed at 60◦

each, and κ = 8 and µ = 0.9

56



Figure 4.31: Comparing the MAD(E) vs M between gaussian and laplacian
distributions for angular spreads, σ and α with θ and φ fixed at 60◦ each, and
d = 0.2λ

Figure 4.32: Comparing the MAD(E) vs M between von missess and student’s
t-distributions for angular spreads, κ and µ with θ and φ fixed at 60◦ each, and
d = 0.2λ
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Computing for the Diagonal Dominance (DD)

In the case of the diagonal dominance, the convergence channel quickly converges

to small non-zero values as a result of the correlation. From Figures 4.33 - 4.38,

it can be seen that the channel showed different performance for varying θ and

φ, d and the angular spreads of the angular distributions. This is due to the

fact that θ, φ, d and the spreads of the distributions are all functions of the

spatial correlation. Therefore, change in these parameters influence the spatial

correlation of the massive MIMO channel which in turn affects the convergence.

Figure 4.33: Comparing the DD vs M between gaussian and laplacian distribu-
tions with d = 0.2λ, σ = 3, α = 3 for varying angles of θ and φ.
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Figure 4.34: Comparing the DD vs M between von misses and student’s -t
distributions with d = 0.2λ, κ = 8, µ = 0.9 for varying angles of θ and φ.

Figure 4.35: Comparing the DD vs M between gaussian and laplacian distribu-
tions for varied antenna element spacing, d with θ and φ fixed at 60◦ each, and
σ = 3 and α = 3
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Figure 4.36: Comparing the DD vs M between von misses and student’ t-
distributions for varied antenna element spacing, d with θ and φ fixed at 60◦

each, and κ = 8 and µ = 0.9

Figure 4.37: Comparing the DD vs M between gaussian and laplacian distribu-
tions for angular spreads, σ and α with θ and φ fixed at 60◦ each, and d = 0.2λ

60



Figure 4.38: Comparing the DD(E) vs M between von missess and student’s
t-distributions for angular spreads, κ and µ with θ and φ fixed at 60◦ each, and
d = 0.2λ

4.3.2 Analysis using GBSCM

As was done for the case of the URA antenna topology, the 3D channel matrix,

[Hs,u] which reflects practical massive MIMO system analysis is used for all the

simulations for this section.

Computing for the Mean Absolute Deviation (MAD)

In the analysis of the MAD for the GBSCM channel models, the channel con-

vergence occurs for M ≥ 60. From the results, it can be observed for most cases

that the change in d, θ, φ and the spreads of the angular distributions (σ, κ, µ

and α) does not show sensitivity to the convergence for approximately M ≥ 80.
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Figure 4.39: Comparing the MAD(E) vs M between gaussian and laplacian
distributions with d = 0.2λ, σ = 3, α = 3 and K = 20 for varying angles of θ and
φ.

Figure 4.40: Comparing the MAD(E) vs M between von misses and student’s
-t distributions with d = 0.2λ, κ = 8, µ = 0.9 and K = 20 being fixed for varying
angles of θ and φ.
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Figure 4.41: Comparing the MAD(E) vs M between gaussian and laplacian
distributions for varied antenna element spacing, d with θ and φ fixed at 60◦

each, and σ = 3 and α = 3

Figure 4.42: Comparing the MAD(E) vs M between von misses and student’
t-distributions for varied antenna element spacing, d with θ and φ fixed at 60◦

each, and κ = 8 and µ = 0.9

63



Figure 4.43: Comparing the MAD(E) vs M between gaussian and laplacian
distributions for angular spreads, σ and α with θ and φ fixed at 60◦ each, and
d = 0.2λ

Figure 4.44: Comparing the MAD(E) vs M between von missess and student’s
t-distributions for angular spreads, κ and µ with θ and φ fixed at 60◦ each, and
d = 0.2λ

Computing for the Diagonal Dominance (DD)

In computing the diagonal dominance, the channel convergence deteriorates to

zero as the number of antennas, M increases. However, the results demonstrates

clearly the effect of varying the performance parameters on the convergence.
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Figure 4.45: Comparing the DD vs M between gaussian and laplacian distri-
butions with d = 0.2λ, σ = 3, α = 3 and K = 20 for varying angles of θ and
φ.

Figure 4.46: Comparing the DD vs M between von misses and student’s -t
distributions with d = 0.2λ, κ = 8, µ = 0.9 and K = 20 being fixed for varying
angles of θ and φ.
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Figure 4.47: Comparing the DD vs M between gaussian and laplacian distribu-
tions for varied antenna element spacing, d with θ and φ fixed at 60◦ each, and
σ = 3 and α = 3

Figure 4.48: Comparing the DD vs M between von misses and student’ t-
distributions for varied antenna element spacing, d with θ and φ fixed at 60◦

each, and κ = 8 and µ = 0.9
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Figure 4.49: Comparing the DD vs M between gaussian and laplacian distribu-
tions for angular spreads, σ and α with θ and φ fixed at 60◦ each, and d = 0.2λ

Figure 4.50: Comparing the DD vs M between von missess and student’s t-
distributions for angular spreads, κ and µ with θ and φ fixed at 60◦ each, and
d = 0.2λ

Computing for MAD as both K and M increases

From Figures 4.51 and 4.52, results demonstrate that the channel convergence

deviates from favorable propagation as the number of users, K approach the

number of antennas, M . However, the convergence was better for increasing d

just as similar results were realized for the case of the URA antenna topology.
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Figure 4.51: MAD vs M for K increasing with α, σ, θ and φ remaining constant
whilst varying the distance bewteen antenna elements, d.

Figure 4.52: MAD vs M for K increasing with κ, µ, θ and φ remaining constant
whilst varying the distance between antenna elements, d.

4.4 Analysis of URA antenna

From the results of the URA antenna, it can be observed that convergence rate

increases as the AS and ES, antenna element spacing and the spread of the

angular distributions increases, for the Gaussian and Student’s -t distributions.
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However, in the Von Misses and Laplacian distributions, poor convergence per-

formances were recorded for analysis using the GBSCM. This poor performance

can be attributed to the high spatial correlation coefficients registered, as the

number of antenna elements increased. Therefore, increasing the AS and ES, the

spacing between antenna elements, as well as the spreads of the distribution did

not significantly reduce the spatial correlation thereby affecting the convergence

performance.

4.5 Analysis of CA antenna

Unlike that of the URA, simulation results of the CA antenna show good con-

vergence performance for all the various distributions used in the analysis. This

can be attributed to the difference in antenna element arrangement and array

topology used. Hence, relatively lower values of spatial correlation were regis-

tered for all the different distributions of arrivals used. It observed that the rate

of convergence increases as both θ and φ increases. This is as a result of the

decrease in the spatial correlation as both θ and φ values increases. Also, increas-

ing the spreads of the distribution, σ, α, µ and κ reduces the spatial correlation

between the antenna elements, thereby increasing the convergence rate even as

the number of antennas increases.
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Chapter 5

Conclusion and Recommendations

5.1 Conclusion

In this thesis, the spatial correlation (SC) of large-scale antenna array topolo-

gies (Uniform rectangular array and Cylindrical Array) was derived based on the

Maximum Power of Arrival (MPA) concept. The MPA concept presents an exact

and precise approach of generalizing the SC expression of antenna arrays for dif-

ferent angular distributions. This therefore reduces the need to generate distinct

SC expressions of specific antenna array regarding different angular distributions.

The Convergence was examined for both the 3D Geometry-Based Stochastic

Channel Model (GBSCM) based on 3GPP and WINNER+, and the Correlation-

Based Stochastic Channel Model (CBSCM) for each of the antenna arrays (URA

and CA). While the Correlation-Based Stochastic Channel Model is used for theo-

retical analysis of wireless communication channels, the Geometry-Based Stochas-

tic Channel Model (GBSCM) on the other hand reflects the real practical massive

MIMO Channel. For this work, four different distributions of angle of arrivals

were used which includes the Laplacian, Von Misses, Gaussian and Student’s t-

distributions. The effect of the SC on convergence were analyzed in each of the

distributions as the increase in azimuth (AS) and elevation (ES) spreads of the

angular distributions of arrival and antenna elements spacing were varied.

Results support existing developments that increasing the antenna element spac-

ing reduces the correlation thereby increasing the rate at which massive MIMO

systems converge to favorable propagation. Results also demonstrate that in-

creasing the azimuth and elevation spreads of the angle of arrivals of the various

distributions decreases the correlation and thereby increases the rate of conver-
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gence. However, the Laplacian and Von Misses distributions showed poor perfor-

mances in the geometry-based stochastic channel model.

Again, in the analysis of both the uniform rectangular array (URA) and the cylin-

drical array (CA), the convergence was sensitive to the different array antenna

topologies regarding the 3D geometry-based stochastic channel model.

5.2 Future Work

For this thesis, two antenna array topologies were used, which includes the uni-

form rectangular antenna array and the cylindrical antenna array, to study the

effects of the SC on convergence of massive MIMO to favorable propagation. This

work can be further extended to include analysis for other antenna array topolo-

gies such as the spherical antenna array. Again, this thesis did not take into

account the effects of the mutual coupling that will form between the antenna el-

ements on the convergence of massive MIMO systems. Mutual coupling between

antennas can be modeled between (ideal) dipole antenna elements. In general,

mutual coupling between two antenna elements can be interpreted as the voltage

produced at the terminal of one antenna element as a result of a current being

induced on the other antenna element [58]. Works have demonstrated that the

Mutual Coupling (MC) influences the resultant spatial correlation and system

performance, especially for close inter-element antenna spacing.

To have a more precise performance characterization of the 3D massive MIMO

system, the mutual coupling effect, Z between the transmitter and receiver an-

tenna pairs must be considered in future work for the convergence analysis to

reflect real practical performance.

5.3 Challenges

The MATLAB simulation for the generation of the channel parameters took rela-

tively very long computational time due to the large matrix dimensions generated.
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Also, the MATLAB computation for M ≥ 200 number of antennas took relatively

very long and often resulted in system crashes, as the dimensions of the matrices

computed grew large.
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