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ABSTRACT 

Education is input to eradicate poverty in the recent civilization and this cannot be 

overemphasized and however, the financial outlay required to provide this very 

important service is far from being enough as a lot of schools are under trees. In this 

thesis, we consider the problem of allocating resource at the Sekyere central District 

Assembly, Nsuta-Ashanti with the aim of minimizing unnecessary lapses during budget 

allocation for resources by the assembly. The problem was formulated as an Integer 

Linear Programming (ILP) problem using the available data from the District Assembly. 

This problem was solved with the Branch and- Bound of Method of solving Integer 

Linear Programming (ILP). It was found that the out of the ten different locations 

considered and budget of Three Hundred and Sixty Thousand Ghana Cedis, the optimal 

number of classroom to be built was fifteen (15) representing a 3-unit classroom and two 

6-unit classroom buildings at three different locations within the District at a minimum 

budget of Three Hundred and Seventeen Thousand Ghana Cedis (GH¢ 317,000) 

respectively. We concluded that the Knapsack problem for selecting required sites in 

critical situations such as construction of school buildings was useful and it can be 

applied to any situation where allocation of funds in the sector of educational 

development becomes a serious setback. Scientific modeling of allocating resources was 

recommended as it can be used to reduce financial loss in budget allocations. 
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CHAPTER ONE 

1.0 INTRODUCTION 

It is a universal truth that education is key to eradicating poverty in the modern society 

and this cannot be overemphasized. In a developing country like Ghana education will 

help citizens to acquire the needed skills and knowledge. The skill and knowledge 

acquired will make the citizens functionally literate and productive to facilitate poverty 

alleviation and promote the rapid socio-economic growth. The government of Ghana 

embarked on the Basic Education Sector Improvement Program and more popular the 

Free Compulsory and Universal Basic Education Program (BESIP/FCUBE), which was 

aimed at providing every child of school-going age with good basic education.  

However, the financial outlay required to provide this very important service is far from 

being enough as a lot of schools are under trees. Ghana Education Trust fund was 

established in September 2000 by the government in providing educational finance 

supplementation particularly at the basic and secondary level where there exists an 

urgent need to provide adequate classroom infrastructure for our rapidly growing in-

school population. (http://www.getfund.gov.gh). The limited funds allocated to the 

various Metropolitan, Municipal and District Assemblies should be efficiently used.  

The problem that frequently arises in resource allocation where there are financial 

constraints can be considered as a knapsack problem. This study seeks to provide a 

scientific way of allocating funds in the building of unit classroom that will ensure it 

optimality using linear integer programming with Sekyere Central District as a case 

study. 
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1.1 BACKGROUND OF STUDY 

Education is a fundamental human right for all children and this right may not be 

realized in Ghana if strategic measures are not put in place to ensure adequate 

infrastructure provision to schools, especially in rural communities. School 

infrastructure is everything from electricity, toilets, safe buildings, tables, chairs, 

libraries, computer rooms, safe classrooms, sports fields, laboratories for science 

experiments, running water and fencing. It is vital when we consider the fact that school 

infrastructure or resources, impact on how well teachers are able to teach and learners 

are able to learn. Learners attending schools with better infrastructure tend to perform 

better than learners who come from schools under trees. Meanwhile, the poor state of 

school infrastructure was evident in the number of public schools under trees. Lack of 

appropriate infrastructure for KinderGartens (KGs), poorly ventilated classrooms, poor 

lighting in classrooms and lack of sanitary facilities for boys and girls among others. It is 

expected that all stakeholders particularly Civil Society, government, District, municipal 

and metropolitans assemblies ensure that funds provided are put into proper use.  Most 

of the newly created district lacked school infrastructure that will ensure smooth 

teaching and learning process.  

The government allocated funds for putting up unit classrooms in these newly created 

districts. This calls for a scientific way or method that will help in the allocation of the 

provided fund in the Sekyere district in putting up schools in the community. The district 

has allocated some fund to build unit classroom and must decide on which of these 

communities to put up the structures. Modern society, with advanced technology  

usually needs to make best possible decisions, which example involve the best possible 
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use of resources or funds allocated to the educational sector to minimize production or 

guarantee full benefit of all.  

With the standard linear programming problem, the assumption that choice variables are 

infinitely divisible (can be any real number) is unrealistic in many settings. Integer 

programming problems are typically much harder to solve than linear programming 

problems and there are no fundamental theoretical results like Duality or Computational 

algorithms like the Simplex algorithm to help one to understand and solve the problems. 

This sad realization has made the study of integer programming problems goes in two 

directions. First, people study specialized model. These problems can be solved as linear 

programming problems (that is, adding the integer constraints does not change the 

solution). In many cases, they can be solved more efficiently than general linear 

programming problems using new algorithms. Second, people introduce general 

algorithms. These algorithms are not as computationally efficient as the simplex 

algorithm, but can be formulated generally. 

Integer programs are beneficial because, if one can solve them, then one is guaranteed to 

obtain the best solution. However, this guarantee of optimality has a computational 

tradeoff, and integer programs currently may require exponential times to solve. The 

computational problems are so extreme that many integer programs cannot be solved, 

even using supercomputers (Geir, 1997). 

 The knapsack problem has been studied for more than a century, with early works 

dating as far back as 1897 for the reason that their direct application to problems arises 

in industries and also for their contribution to the solution methods for integer 

programming problems. Quite a lot of exact algorithms based on branch and bound, 
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dynamic programming and heuristics have been proposed to solve the Knapsack 

Problems. 

  

1.2 PROBLEM STATEMENT 

The future of nation depends on the type of quality education. Education cannot be 

reliable when there are limited educational infrastructures. This hinders the progress 

fighting illiteracy inn such nations. This has been a problem faced by the Sekyere central 

district since it inception as a newly created district. However, putting up sufficient 

school buildings within the district will help fight the high rate of illiteracy. Therefore, 

there is the need to put up maximum number of unit classrooms at affected towns at 

minimum cost within the district.    

The thesis seeks to use Knapsack Problem (KP) to help solve this problem. The 

knapsack problem is an all-purpose resource allocation problem in which a single 

resource is assigned to a number of alternatives with the objective of maximizing the 

total return. The problem is a distribution of effort problem that has a linear objective 

function and a single constraint. 

  

1.3 OBJECTIVES  

The objectives of the study are: 

(i) to model a real-life problem in developing sites for unit classroom as a 0-1 

knapsack   problem, and propose branch-and-bound algorithm. 

(ii)  to determine the maximum number of unit classrooms required to be built on 

selected sites. 
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1.4 JUSTIFICATION OF THE STUDY 

Funds are provided to the various Metropolitan, Municipal and District Assemblies 

within the country to carry out needed developmental projects. Most times, the 

Assemblies have to generate funds to initiate project from available revenues. Since the 

funds made available to undertake project are in limited supply there is the need to put it 

into judiciously to realize it maximum benefit.   Needed attention should therefore be 

given to areas like educational, health and other social projects. Without any adequate 

scientific method of selecting from numerous to undertake, the maximum returns from 

these may not be achieved. Several factors about projects to be undertaken are 

considered especially location and cost. A number of practical problems can be 

formulated for example the simple capital budgeting problem of choosing which project 

constraint on total cost. The Branch and Bound method can be applied to model such 

managerial and industrial situations.    

 

1.5 METHODOLOGY 

The study seeks to use the branch and bound method in finding an appropriate solution 

to the formulated knapsack problem of the number of sites that will give a maximum 

unit classroom at a minimum cost. Knapsack Problems are among the simplest integer 

programming problems which are NP-hard. The classical 0-1 Knapsack Problem arises 

when there is one knapsack and one item of each type.  The this study the knapsack 

Problem was formulated as   selecting from a  ten site for the construction of unit 

classrooms given a specified amount of budgeted money. The set of unit classroom 

selected with maximum room should have a minimum cost  out of the lot and not 
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exciding the budget. All of this will be achieved by using software called quantitative 

management which helps in solving and analyzing.  

 

1.6 SCOPE OF THE STUDY 

This study is within the confines of the Sekyere Central District with Nsuta as its capital 

in the Ashanti Region. We believed that since its newly created district there is the need 

to improve the educational infrastructure to meet the increasing population. The study is 

however limited to the data on sites accessed from the budget office of the district 

assembly. 

  

1.7 LIMITATIONS OF THE STUDY 

There are a several factors, which limit this study to some level of accuracy. One factor 

which limits this study is the access to required information from the office of the 

Sekyere Central District Assembly. Another factor to be considered is the time span 

which this research is to be carried. A continuous study has to be made thoroughly 

before an accurate and perfect could be achieved. 

 

1.8 ORGANIZATION OF THE STUDY 

The study is organized into five chapters. In chapter one, we presented the background, 

problem statement, objective, justification, methodology and limitation of the study. In 

chapter two, relevant literature in the field of Knapsack problems and it variants will be 

discussed. In chapter three, the branch-and-bound algorithm would be introduced and 

explained. Chapter four provides a computational study the branch-and-bound algorithm 



7 

 

applied to knapsack instances. Chapter five concludes this thesis with additional 

comments on branch-an-bound algorithm. 

 

1.9 SUMMARY  

Integer programming, which is an important class of mathematical programming 

problems, is a useful tool for modeling and optimizing real-life problems. The knapsack 

problem is a form of integer programming problem that has only one constraint and can 

be used to strengthen cutting planes for general integer programs. The Knapsack 

Problems are widely used in financial decision making, and very interesting from the 

perspective of computer science since they are NP-complete. These essentials make the 

studies of Knapsack Problems and their algorithms an extremely important area of 

research. This thesis seeks to model a real-life problem in site growth for development 

projects as a 0-1 knapsack problem, and propose branch-and-bound algorithm for 

solving the problem.  

In the next chapter, we shall put forward adequate and relevant literature on Knapsack 

Problem and its variants. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.0 INTRODUCTION 

This chapter presents a review of relevant literatures on Knapsack Problem and its 

applications. The Knapsack Problem is a problem in combinatorial optimization. Given 

the set of items, each with a weight and value, determine the number of each item to 

include in a collection so that the total weight is less than or equal to a given limit and 

the total value is as large as possible. The problem often arises in resource allocation 

where there are financial constraints.  

 

2.1 RELEVANT LITERATURES 

Knapsack problems are a classical combinatorial problem used to model many industrial 

situations. Faced with uncertainty on the model parameters, robustness analysis is an 

appropriate approach to find reliable solutions. Kalai  and Vanderpooten (2006) 

considered the robust knapsack problem using a max-min criterion, and proposed a new 

robustness approach, called lexicographic α-robustness. The authors showed that the 

complexity of the lexicographic α-robust problem does not increase compared with the 

max-min version and presented a pseudo-polynomial algorithm in the case of a bounded 

number of scenarios. 

The Multidimensional Knapsack Problem (MKP) is a well-known, strongly NP-hard 

problem and one of the most challenging problems in the class of the knapsack 

problems. In the last few years, it has been a favorite playground for meta-heuristics, but 

very few contributions have appeared on exact methods.  
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Renata  and Grazia (2009) offered an exact approach based on the optimal solution of 

sub-problems limited to a subset of variables. Each sub-problem is faced through a 

recursive variable-fixing process that continues until the number of variables decreases 

below a given threshold (restricted core problem). The solution space of the restricted 

core problem is split into subspaces, each containing solutions of a given cardinality. 

Each subspace is then explored with a branch-and-bound algorithm. Pruning conditions 

are introduced to improve the efficiency of the branch-and-bound routine.  

Knapsack problems with setups find their application in many concrete industrial and 

financial problems. Moreover, they also arise as sub-problems in a Dantzig-Wolfe 

decomposition approach to more complex combinatorial optimization problems, where 

they need to be solved repeatedly and efficiently.  

Micheal et al., (2009) considered the multiple-class integer knapsack problem with 

setups. Items are partitioned into classes whose use imply a setup cost and associated 

capacity consumption. Item weights are assumed to be a multiple of their class weight. 

The total weight of selected items and setups is bounded. The objective is to maximize 

the difference between the profits of selected items and the fixed costs incurred for 

setting-up classes. A special case is the bounded integer knapsack problem with setups 

where each class holds a single item and its continuous version where a fraction of an 

item can be selected while incurring a full setup. The authors showed the extent to which 

classical results for the knapsack problem can be generalized to these variants with 

setups. In particular, an extension of the branch-and-bound algorithm of Horowitz and 

Sahni (1974) is developed for problems with positive setup costs.  
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The Quadratic Knapsack Problem (QKP) calls for maximizing a quadratic objective 

function subject to a knapsack constraint, where all coefficients are assumed to be 

nonnegative and all variables are binary. The problem has applications in location and 

hydrology, and generalizes the problem of checking whether a graph contains a clique of 

a given size. Alberto et al., (2007) proposed an exact branch-and-bound algorithm for 

Quadratic Knapsack Problem (QKP), where upper bounds are computed by considering 

a Lagrangian relaxation that is solvable through a number of (continuous) knapsack 

problems. Suboptimal Lagrangian multipliers are derived by using sub-gradient 

optimization and provide a convenient reformulation of the problem. The authors also 

discussed the relationship between our relaxation and other relaxations. Heuristics, 

reductions, and branching schemes were described. In particular, the processing of each 

node of the branching tree is quite fast: Their approach does not update the Lagrangian 

multipliers, and use suitable data structures to compute an upper bound in linear 

expected time in the number of variables. The authors reported exact solution of 

instances with up to four hundred (400) binary variables, i.e., significantly larger than 

those solvable by the previous approaches. The key point of this improvement is that the 

upper bounds we obtain are typically within 1% of the optimum, but can still be derived 

effectively. The authors showed that their algorithm is capable of solving reasonable-

size Max Clique instances.  

The Knapsack Problems are among the simplest integer programs which are NP-hard. 

Problems in this class are typically concerned with selecting from a set of given items, 

each with a specified weight and value, a subset of items whose weight sum does not 

exceed a prescribed capacity and whose value is maximum. The specific problem that 
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arises depends on the number of knapsacks (single or multiple) to be filled and on the 

number of available items of each type (bounded or unbounded). Because of their wide 

range of applicability, knapsack problems have known a large number of variations such 

as: single and multiple-constrained knapsacks, knapsacks with disjunctive constraints, 

multidimensional knapsacks, multiple choice knapsacks, single and multiple objective 

knapsacks, integer, linear, non-linear knapsacks, deterministic and stochastic knapsacks, 

knapsacks with convex / concave objective functions, etc.  

Several exact algorithms based on branch and bound, dynamic programming and 

heuristics have been proposed to solve the Knapsack Problems. The classical 0-1 

Knapsack Problem arises when there is one knapsack and one item of each type. 

Knapsack Problems have been intensively studied over the past forty (40) years because 

of their direct application to problems arising in industry (for example, cargo loading, 

cutting stock, and budgeting) and also for their contribution to the solution methods for 

integer programming problems. 

 Oppong (2009) presented the application of classical 0-1 knapsack problem with a 

single constraint to selection of television advertisements at critical periods such as 

Prime time News, news adjacencies, Break in News and peak times. The Television 

(TV) stations have to schedule programmes interspersed with adverts or commercials 

which are the main sources of income of broadcasting stations. The goal in scheduling 

commercials is to achieve wider audience satisfaction and making maximum income 

from the commercials or adverts. The author approach is flexible and can incorporate the 

use of the knapsack for Profit maximization in the TV adverts selection problem, and 
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focused on using a simple heuristic scheme (Simple flip) for the solution of knapsack 

problems.  

The collapsing knapsack problem is a generalization of the ordinary knapsack problem, 

where the knapsack capacity is a non-increasing function of the number of items 

included. Whereas previous methods on the topic have applied quite involved 

techniques, Ulrich et al., (1995) presented and analyze two rather simple approaches: 

One approach that was based on the reduction to a standard knapsack problem, and 

another approach that was based on a simple dynamic programming recursion. Both 

algorithms have pseudo-polynomial solution times, guaranteeing reasonable solution 

times for moderate coefficient sizes. Computational experiments are provided to expose 

the efficiency of the two approaches compared to previous algorithms 

Kosuch and Lisser (2009) studied a particular version of the stochastic knapsack 

problem with normally distributed weights: the two-stage stochastic knapsack problem. 

Contrary to the single-stage knapsack problem, items can be added to or removed from 

the knapsack at the moment the actual weights become known (second stage). In 

addition, a chance-constraint is introduced in the first stage in order to restrict the 

percentage of cases where the items chosen lead to an overload in the second stage. 

According to the authors, there is no method known to exactly evaluate the objective 

function for a given first-stage solution, and therefore proposed methods to calculate the 

upper and lower bounds. These bounds are used in a branch-and-bound framework in 

order to search the first-stage solution space. Special interest was given to the case 

where the items have similar weight means. Numerical results are presented and 

analyzed. 
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Stefanie (2010) presented an Ant Colony Optimization algorithm for the Two-Stage 

Knapsack problem with discretely distributed weights and capacity, using a meta-

heuristic approach. Two heuristic utility measures were proposed and compared. 

Moreover, the author introduced the novel idea of non-utility measures in order to obtain 

a criterion for the construction termination. The author argued why for the proposed 

measures it is more efficient to place pheromone on arcs instead of vertices or edges of 

the complete search graph. Numerical tests show that the author‟s algorithm is able to 

produce, in much shorter computing time, solutions of similar quality than CPLEX after 

2h. Moreover, with increasing number of scenarios the percentage of runs where his 

algorithm is able to produce better solutions than CPLEX (after 2h) increases. 

Mattfeld and Kopfer (2003) described terminal operations for the vehicle transshipment 

hub in Bremerhaven as a knapsack and have derived an integral decision model for 

manpower planning and inventory control. The authors proposed a hierarchical 

separation of the integral model into sub models and can develop integer programming 

algorithm to solve the arising sub problems. 

In bus transit operations planning process, the important components are network route 

design, setting timetables, scheduling vehicles, assignment of drivers, and maintenance 

scheduling.  

Haghani and Shafahi (2002) presented integer programming model to design daily 

inspection and maintenance schedules for the buses that are due for inspection so as to 

minimize the interruptions in the daily bus operating schedule, and maximize the 

utilization of the maintenance facilities. 

The setting of timetables and bus routing or scheduling are essential to an intercity bus 

carrier‟s profitability, its level of service, and its competitive capacity in the market. Yan 
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and Chen (2002) developed a model that help Taiwanese intercity bus carriers in 

timetable settings and bus routing or scheduling. The model employs multiple time-

space networks that can formulate bus movements and passenger flows and manage the 

interrelationships between passenger trip demands and bus trip suppliers to produce the 

best timetables and bus routes or schedules. 

Higgins et al., (1996) described the development and use of integer programming model 

to optimize train schedules on single-line rail corridors. The model has been developed 

with two major applications in mind: as a decision support tool for train dispatchers to 

schedule trains in real time in an optimal way and as a planning tool to evaluate the 

impact of timetable changes, as well as railroad infrastructure changes. The model was 

developed based on a real-life problem. 

Ghoseiri et al., (2004) developed an optimization model for the passenger train-

scheduling problem on a railroad network, which includes single, and multiple tracks, as 

well as multiple platforms with defferent train capacities. 

Claessens et al., (1998) considered the problem of cost optimal railway line allocation 

for passenger trains for the Dutch railway system. A mathematical programming model 

was developed, which minimized the operating costs subject to service constraints and 

capacity requirements. The model optimized on lines, line types, routes, frequencies, and 

train lengths. First, the line allocation model was formulated as an integer nonlinear 

programming model. The model was then transformed into an integer linear 

programming model with binary decision variables. The model was solved and applied 

to a sub network of the Dutch railway system for which it showed a substantial cost 

reduction.  
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The deterministic knapsack problem is a well known and well studied NP-hard 

combinatorial optimization problem. It consists of filling a knapsack with items out of a 

given set such that the weight capacity of the knapsack is respected and the total reward 

maximized. In the deterministic problem, all parameters (item weights, rewards, 

knapsack capacity) are known (deterministic). In the stochastic counterpart, some (or all) 

of these parameters are assumed to be random, i.e. not known at the moment the 

decision has to be made.  

Stefanie et al., (2010) studied the stochastic knapsack problem with expectation 

constraint. The item weights are assumed to be independently normally distributed. The 

authors solved the relaxed version of this problem using a stochastic gradient algorithm 

in order to provide upper bounds for a branch-and-bound framework. Two approaches to 

estimate the needed gradients are applied, one based on Integration by Parts and one 

using Finite Differences. Finite Differences is a robust and simple approach with 

efficient results despite the fact that the estimated gradients are biased; meanwhile 

Integration by Parts is based upon a more theoretical analysis and permits to enlarge the 

field of applications. 

Stefanie et al., (2009) proposed a mixed integer bi-level problem having a probabilistic 

knapsack constraint in the first level. The problem formulation is mainly motivated by 

practical pricing and service provision problems as it can be interpreted as a model for 

the interaction between a service provider and clients. The authors assumed the 

probability space to be discrete which allows us to reformulate the problem as a 

deterministic equivalent bi-level problem. Via a reformulation as linear bi-level 

problem, we obtain a quadratic optimization problem, the so called Global Linear 

Complementarity Problem. Based on this quadratic problem, the authors finally 
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proposed a procedure to compute upper bounds on the initial problem by using a 

Lagrangian relaxation and an iterative linear min-max scheme. 

The Knapsack Problem (KP) and its Multidimensional version (MKP) are basic 

problems in combinatorial optimization. Thibaut and Jacques (2010) presented the 

multiobjective extension (MOKP and MOMKP), for which the aim is to obtain or to 

approximate the set of efficient solutions. In a first step, the authors classified and 

described briefly the existing works that are essentially based on the use of meta-

heuristics. In a second step, the authors proposed the adaptation of the two-phase Pareto 

local search (2PPLS) to the resolution of the MOMKP. With this aim, the authors used a 

Very-Large Scale Neighborhood (VLSN) in the second phase of the method that is the 

Pareto local search. The authors compared their results to state-of-the-art results and 

showed that they obtained results never reached before by heuristics, for the biobjective 

instances. Finally they considered the extension to three-objective instances. 

Eleni and Nicos (2010) presented a new exact tree-search procedure for solving two-

dimensional knapsack problems in which a number of small rectangular pieces, each of 

a given size and value, are required to be cut from a large rectangular stock plate. The 

objective is to maximize the value of pieces cut or minimize the wastage. The authors 

considered the case where there are a maximum number of times that a piece may be 

used in a cutting pattern. The algorithm limits the size of the tree search by using a 

bound derived from a Langrangean relaxation of a 0–1 integer programming formulation 

of the problem. Sub-gradient optimization is used to optimize this bound. Reduction 

tests derived from both the original problem and the Lagrangean relaxation produce 

substantial computational gains. The computational performance of the algorithm 
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indicates that it is an effective procedure capable of solving optimally practical two-

dimensional cutting problems of medium size. 

Lawler (1997) presented fully polynomial approximation algorithms for which knapsack 

problems are presented. These algorithms are based on ideas of Ibarra and Kim, with 

modifications which yield better time and space bounds, and also tend to improve the 

practicality of the procedures. Among the principal improvements are the introduction of 

a more efficient method of scaling and the use of a median-finding routine to eliminate 

sorting. The 0-1 knapsack problem, for n items and accuracy ε > 0, is solved in (n log 

(1/ε) + 1/ε4) time and 0(n + 1/ε3) space. The time bound is reduced to 0(n + 1/ε3) for the 

"unbounded" knapsack problem. For the "subset-sum" problem, 0 (n + 1/ε3) times and 0 

(n + 1/ε2) spaces, or 0(n + 1/ε2 log (1/ε)) time and space, are achieved. The "multiple 

choice" problem, with m equivalence classes, is solved in 0(nm2/ε) time and space. 

Lawler (1997) presented fully polynomial approximation algorithms for which knapsack 

problems are presented. These algorithms are based on ideas of Ibarra and Kim, with 

modifications which yield better time and space bounds, and also tend to improve the 

practicality of the procedures. Among the principal improvements are the introduction of 

a more efficient method of scaling and the use of a median-finding routine to eliminate 

sorting. The 0-1 knapsack problem, for n items and accuracy ε > 0, is solved in (n log 

(1/ε) + 1/ε4) time and 0(n + 1/ε3) space. The time bound is reduced to 0(n + 1/ε3) for the 

"unbounded" knapsack problem. For the "subset-sum" problem, 0 (n + 1/ε3) times and 0 

(n + 1/ε2) spaces, or 0(n + 1/ε2 log (1/ε)) time and space, are achieved. The "multiple 

choice" problem, with m equivalence classes, is solved in 0(nm2/ε) time and space. 
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The 0-1 knapsack problem is a linear integer-programming problem with a single 

constraint and binary variables. The knapsack problem with an inequality constraint has 

been widely studied, and several efficient algorithms have been published. 

Balasubramanian and Sanjiv (1988) considered the equality-constraint knapsack 

problem, which has received relatively little attention. The authors described a branch-

and-bound algorithm for this problem, and present computational experience with up to 

10,000 variables. An important feature of this algorithm is a least-lower-bound 

discipline for candidate problem selection. 

Esther et al., (1993) studied a variety of geometric versions of the classical knapsack 

problem. In particular, the authors considered the following fence enclosure problem: 

given a set S of n points in the plane with values vi  > 0, we wish to enclose a subset of 

the points with a fence (a simple closed curve) in order to maximize the value  of the 

enclosure. The value of the enclosure is defined to be the sum of the values of the 

enclosed points minus the cost of the fence. The authors considered various versions of 

the problem, such as allowing S to consist of points and/or simple polygons. Other 

versions of the problems are obtained by restricting the total amount of fence available 

and also allowing the enclosure to consist of at most M connected components. When 

there is an upper bound on the length of fence available, we show that the problem is 

NP-complete. We also provide polynomial-time algorithms for many versions of the 

fence problem when an unrestricted amount of fence is available. 

Volgenant and Zoon (1990) presented a multidimensional 0-1 knapsack problem using 

heuristic, based on Lagrange multipliers, that also enables the determination of an upper 

bound to the optimal criterion value. This heuristic is extended in two ways: (i) in each 

step, not one, but more multiplier values are computed simultaneously, and (ii) at the 
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end the upper bound is sharpened by changing some multiplier values. From a 

comparison using a large series of different test problems, the extensions appear to yield 

an improvement, on average, at the cost of only a modest amount of extra computing 

time. 

The binary knapsack problem is a combinatorial optimization problem in which a subset 

of a given set of elements needs to be chosen in order to maximize profit, given a budget 

constraint. Das and Ghosh (2003) studied a stochastic version of the problem in which 

the budget is random. The authors proposed two different formulations of this problem, 

based on different ways of handling infeasibility, and propose an exact algorithm and a 

local search-based heuristic to solve the problems represented by these formulations. 

The authors also presented the results from some computational experiments. 

Goyal and Ravi (2009) presented a stochastic knapsack problem where each item has a 

known profit but a random size. The goal is to select a profit maximizing set of items 

such that the probability of the total size of selected items exceeding the knapsack size is 

at most a given threshold. The authors presented PTAS for the case when each item size 

is normally distributed and independent of other items. They also presented a parametric 

LP formulation and show that it is a good approximation of the chance-constrained 

stochastic knapsack problem. Furthermore, they gave a polynomial time algorithm to 

round any fractional solution of the parametric LP to obtain an integral solution whose 

profit is within (1+∈)-factor of the objective value of the fractional solution for any 

∈> 0. 

The dominant traffic on the Internet has changed from text and graphics based Web 

content to more information-rich streaming media content, such as audio and video. 

With the dramatic increase of network bandwidth and the advancement of technologies 
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on media authoring, encoding, and distribution, media traffic on the Internet has 

increased explosively and now accounts for the majority of traffic volume. Modern 

Internet streaming services have utilized various techniques to improve the quality of 

streaming media delivery. Proxy server is one of the main solutions used to improve 

Internet QoS, especially for the QoS of streaming media. 

Replacement algorithm optimization is the core of caching model research. However, 

existing techniques for caching text and image resources are not appropriate for the 

rapidly growing number of continuous media streams. Based on the concept of hit ratio, 

Lei Shi et al., (2010) presented a 0-1 knapsack problem that set up a hit ratio model of 

proxy cache, by use of which a proxy cache policy is presented. As compared with the 

classical dynamic streaming scheduling strategies, the proposed algorithm is shown that 

it can make full use of space of proxy cache, and also get a higher hit ratio. 

The knapsack problem is known to be a typical NP-complete problem, which has 2
n
 

possible solutions to search over. Thus a task for solving the knapsack problem can be 

accomplished in 2
n
 trials if an exhaustive search is applied. In the past decade, much 

effort has been devoted in order to reduce the computation time of this problem instead 

of exhaustive search. Karnin (1984), proposed a brilliant parallel algorithm, which needs 

O(2
n/6

) processors to solve the knapsack problem in O(2
n/2

) time; that is, the cost of 

Karnin's parallel algorithm is O(2
2n/3

). 

Lou and Chang (1997) proposed a fast search technique to improve Karnin's parallel 

algorithm by reducing the search time complexity of Karnin's parallel algorithm to be O 

(2
n/3

) under the same O(2
n/6

) processors available. Thus, the cost of the proposed parallel 

algorithm is O (2
n/2

). Furthermore, the authors extended their technique to the case that 

the number of available processors is P = O (2
x
), where x ≥ 1. From the analytical 
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results, the saw that their search technique is indeed superior to the previously proposed 

methods. They do believe their proposed parallel algorithm is pragmatically feasible at 

the moment when multiprocessor systems become more and more popular. 

During last few decades, Knapsack problem has been studied through different 

approaches, according to the theoretical development of combinatorial optimization.  

Garg and Sunanda (2009) studied the evolutionary algorithm for 0/1 knapsack problem. 

A new objective function evaluation operator was proposed which employed adaptive 

repair function named as repair and elitism operator to achieve optimal results in place 

of problem specific knowledge or domain specific operator like penalty operator (which 

are still being used).  Additional features had also been incorporated which allowed the 

algorithm to perform more consistently on a larger set of problem instances. Their study 

also focused on the change in behavior of outputs generated on varying the crossover 

and mutation rates. New algorithm exhibited a significant reduction in number of 

function evaluations required for problems investigated. 

Srisuwannapa and Charnsethikul (2007) presented a variant of the unbounded knapsack 

problem (UKP) into which the processing time of each item is also put and considered, 

referred as MMPTUKP. The MMPTUKP is a decision problem of allocating amount of 

n items, such that the maximum processing time of the selected items is minimized and 

the total profit is gained as at least as determined without exceeding capacity of 

knapsack. In this study, we proposed a new exact algorithm for this problem, called 

MMPTUKP algorithm. This pseudo polynomial time algorithm solves the bounded 

knapsack problem (BKP) sequentially with the updated bounds until reaching an optimal 

solution. The authors presented computational experience with various data instances 
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randomly generated to validate their ideas and demonstrate the efficiency of the 

proposed algorithm. 

Ronghua et al., (2006) presented a new multiobjective optimization (MO) algorithm to 

solve 0/1 knapsack problems using the immune Clonal principle. This algorithm is 

termed Immune Clonal MO Algorithm (ICMOA). In ICMOA, the antibody population is 

split into the population of the non-dominated antibodies and that of the dominated anti-

bodied. Meanwhile, the non-dominated antibodies are allowed to survive and to clone. A 

metric of Coverage of Two Sets is adopted for the problems. This quantitative metric is 

used for testing the convergence to the Pareto-optimal front. Simulation results on the 

0/1 knapsack problems show that ICMOA, in most problems, is able to find much better 

spread of solutions and better convergence near the true Pareto-optimal front compared 

with SPEA, NSGA, NPGA and VEGA. 

Deniz et al., (2010) studied maximization of revenue in the dynamic and stochastic 

knapsack problem where a given capacity needs to be allocated by a given deadline to 

sequentially arriving agents. Each agent is described by a two-dimensional type that 

reflects his capacity requirement and his willingness to pay per unit of capacity. Types 

are private information. The authors first characterize implementable policies. The 

authors solved the revenue maximization problem for the special case where there is 

private information about per-unit values, but capacity needs are observable. After that 

they derived two sets of additional conditions on the joint distribution of values and 

weights under which the revenue maximizing policy for the case with observable 

weights is implementable, and thus optimal also for the case with two-dimensional 

private information. In particular, they investigated the role of concave continuation 

revenues for implementation. We also construct a simple policy for which per-unit 
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prices vary with requested weight but not with time, and prove that it is asymptotically 

revenue maximizing when available capacity/ time to the deadline both go to infinity. 

This highlights the importance of nonlinear as opposed to dynamic pricing. 

Computational grids are distributed systems composed of heterogeneous computing 

resources, which are distributed geographically and administratively. These highly 

scalable systems are designed to meet the large computational demands of many users 

from scientific and business orientations. However, there are problems related to the 

allocation of the computing resources which compose of a grid. Van dester et al., (2008) 

studied the design of a Pan-Canadian grid. The design exploits the maturing stability of 

grid deployment toolkits, and introduces novel services for efficiently allocating the grid 

resources. The changes faced by this grid deployment motivate further exploration in 

optimizing grid resource allocations. By applying this model to the grid allocation 

option, it is possible to quantify the relative merits of the various possible scheduling 

decisions. Using this model, the allocation problem was formulated as a knapsack 

problem. Formulation in this manner allows for rapid solution times and results in nearly 

optimal allocations. 

Zhang et al., (2004), saw exponential growth in the area of web applications, especially, 

e-commerce and web-services. One of the most important qualities of service metric for 

web applications is the response time for the user. Web application normally has a multi-

tier architecture and a request might have to traverse through all the tiers before 

finishing its processing. Therefore, a request‟s total response time is the sum of response 

time at all the tiers. Since the expected response time at any tier depends upon the 

number of servers allocated to this tier, many different configurations (number of servers 

allocated to each tier) can give the same quality of service guarantee in terms of total 
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response time. Naturally, one would like to find the configuration, which minimizes the 

total system cost and satisfies the total response time guarantee. 

The strike-force asset allocation problem consists of grouping strike force assets into 

packages and assigning these packages to targets and defensive assets in a way that 

maximizes the strike force potential. Chi-Wei, et al., (2001) modeled this problem as 

integer programming formulation, and proposed a branch and bound algorithm to solve 

it. 

Sung-Ho (1998) presented a technique for obtaining strategies to allocate rooms to 

customers belonging to various market segments, considering time dependent demand 

forecasts and a fixed hotel capacity. This technique explicitly accounts for group and 

multi-night reservation requests in an efficient and effective manner. This is 

accomplished by combining an optimal discrete-dynamic model for handling single-

night reservation requests, bases on a static integer programming model, developed to 

handle multi-night reservation requests. 

Allocation of resources under uncertainty is a very common problem in many real-life 

scenarios. Employers have to decide whether or not to hire candidates, not knowing 

whether future candidates will be stronger or more desirable. Machines need to decide 

whether to accept jobs without knowledge of the importance or profitability of future 

jobs. Consulting companies must decide which jobs to take on, not knowing the revenue 

and resources associated with potential future requests. More recently, online auctions 

have proved to be a very important resource allocation problem. Advertising auctions in 

particular provide the main source of monetization for a variety of internet services 

including search engines, blogs, and social networking sites. Additionally, they are the 

main source of customer acquisition for a wide array of small online business, of the 



25 

 

networked world. In bidding for the right to appear on a web page (such as a search 

engine), advertisers have to trade off between large numbers of parameters, including 

keywords and viewer attributes. In this scenario, an advertiser may be able to estimate 

accurately the bid required to win a particular auction, and benefit either in direct 

revenue or name recognition to be gained, but may not know about the trade off for 

future auctions. All of these problems involve an online scenario, where an algorithm 

has to make decisions on whether to accept an offer, based solely on the required 

resource investment (or weight) and projected value of the current offer, with the total 

weight of all selected offer not exceeding a given budget. When the weights are uniform 

and equal to the weight constraint, the problems above reduces to the famous secretary 

problem which was first introduced by Dynkin (Dynkin, 1963). Moshe et al., (2008), 

studied this model as a knapsack problem. 

Kleinberg (2009) presented a model for the multiple-choice secretary problem in which 

k elements need to be selected and the goal is to maximize the combined value (sum) of 

the selected elements. 

Babaioff et al., (2007) studied the matriod secretary problem in which the elements of a 

weighted matriod arrive in a random order. As each element is observed, the algorithm 

makes an irrevocable decision to choose it or skip it, with the constraint that the chosen 

elements must constitute an independent set. The objective is to maximize the combined 

weight of the chosen elements. The authors proposed an integer programming algorithm 

for this problem. 

Aggarwal and Hartline (2006) designed truthful auctions which are revenue competitive 

when the auctioneer is constrained to choose agents with private values and publicly 

known weights that fit into a knapsack. 
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Boryczka (2006) presented a new optimization algorithm based on ant colony metaphor 

and a new approach for the Multiple Knapsack Problem. The MKP is the problem of 

assigning a subset of n items to m distinct knapsacks, such that the total profit sum of the 

selected items is maxi mized, without exceeding the capacity of each of the knap sacks. 

The problem has several difficulties in adaptation as well as the trail representation of 

the solutions of MKP or a dynamically changed heuristic function applied in this 

approach. Presented results showed the power of the ACO approach for solving this type 

of subset problems. 

The Multiple-Choice Multi-Dimension Knapsack Problem (MMKP) is a variant of the 

0-1 knapsack problem, an NP-Hard problem. Due to its high computational complexity, 

algorithms for exact solution of the MMKPs are not suitable for most real-time decision-

making applications, such as quality adaptation and admission control for interactive 

multimedia systems, or service level agreement (SLA) management in 

telecommunication networks. 

Shahadat et al., (2002) presented a heuristic for finding near-optimal solutions of the 

MMKP, with reduced computational complexity, and are suitable for real-time 

applications. Based on Toyoda‟s concept of aggregate resource, the heuristic employs an 

iterative improvement procedure using savings in aggregate resource and value per unit 

of extra aggregate resource. Experimental results suggest that this heuristic finds 

solutions which are close to the optimal (within 6% of the optimal value), and that it out-

performs Moser‟s heuristic for the MMKP in both solution quality and execution time. 

Speeding up knapsack problem, one of the NP complete problems, which could be used 

to design public-key cryptosystems, was presented by Lu and Feng (2004) using 

quantum algorithm. How to use Grover's quantum searching algorithm to speed up the 
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knapsack problem was presented based on computational complexity theory. 

Comparisons of quantum searching algorithm with Shor's factoring algorithm were 

delivered and the factors that affected the performance of quantum algorithms were 

discussed from group theory point of view. The future of the quantum algorithms was 

also augmented in the later. 

An instance of the geometric knapsack problem occurs in air lift loading where a set of 

cargo must be chosen to pack in a given fleet of aircraft. Chocolaad (1998) presented a 

new heuristic to solve this problem in a reasonable amount of time with a higher quality 

solution then previously reported in literature. The author also reported a new tabu 

search heuristic to solve geometric knapsack problems. He then employed a novel 

heuristics in a Master and slave relationship, where the knapsack heuristic selects a set 

of cargo and the packing heuristic determines if that set is feasible. The search 

incorporates learning mechanisms that react to cycles and thus is robust over a large set 

of problem sizes. The new knapsack and packing heuristics compare favorably with the 

best reported efforts in the literature. Additionally, the author proposed the JAVA 

language to be an effective language for implementing the heuristics. The search is then 

used in a real world problem of determining how much cargo can be packed with a 

given fleet of aircraft. 

Knapsack problem has been widely studied in computer science for years. There exist 

several variants of the problem, with zero-one maximum knapsack in one dimension 

being the simplest one. 

Islam (2009) studied several existing approximation algorithms for the minimization 

version of the problem and propose a scaling based fully polynomial time approximation 

scheme for the minimum knapsack problem. The author compared the performance of 
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this algorithm with existing algorithms. His    experiments show that, the proposed 

algorithm runs fast and has a good performance ratio in practice. He also conducts 

extensive experiments on the data provided by Canadian Pacific Logistics Solutions 

during the MITACS internship program. The author proposed a scaling based 

varepsilon-approximation scheme for the multidimensional (d -dimensional) minimum 

knapsack problem and compares its performance with a generalization of a greedy 

algorithm for minimum knapsack in d dimensions. His experiments show that the 

varepsilon-approximation scheme exhibits good performance ratio in practice. 

Maya and Dipti (2011) presented a research project on using Genetic Algorithms (GAs) 

to solve the 0-1 Knapsack Problem (KP). The Knapsack Problem is an example of a 

combinatorial optimization problem, which seeks to maximize the benefit of objects in a 

knapsack without exceeding its capacity. The author‟s research contains three sections: 

brief description of the basic idea and elements of the GAs, definition of the Knapsack 

Problem, and implementation of the 0-1 Knapsack Problem using GAs. The main focus 

of the research was on the implementation of the algorithm for solving the problem. In 

the program, he implemented two selection functions, roulette-wheel and group 

selection. The results from both of them differed depending on whether to use elitism or 

not. Elitism significantly improved the performance of the roulette-wheel function. 

Moreover, the author tested the program with different crossover ratios and single and 

double crossover points but the results given were not that different. 

Maya and Dipti (2005) studied several algorithm design paradigms applied to a single 

problem – the 0/1 Knapsack Problem. The Knapsack problem is a combinatorial 

optimization problem where one has to maximize the benefit of objects in a knapsack 

without exceeding its capacity. It is an NP-complete problem and as such an exact 
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solution for a large input is practically impossible to obtain. The main goal of the studies 

was to present a comparative study of the brute force, dynamic programming, memory 

functions, branch and bound, greedy, and genetic algorithms. The study discussed the 

complexity of each algorithm in terms of time and memory requirements, and in terms 

of required programming efforts. The author‟s experimental results showed that the most 

promising approaches are dynamic programming and genetic algorithms. The study 

examines in more details the specifics and the limitations of these two paradigms. 

Yunhong and Victor (2008) modeled a budget constrained keyword bidding in 

sponsored search auctions as a stochastic multiple-choice knapsack problem (S-MCKP) 

and proposed a new algorithm to solve SMCKP and the corresponding bidding 

optimization problem. the authors  algorithm selects items online based on a threshold 

function which can be built/updated using historical data. Their algorithm achieved 

about 99% performance compared to the offline optimum when applied to a real bidding 

dataset. With synthetic dataset, its performance ratio against the offline optimum 

converges to one empirically with increasing number of periods. 

The Multiple Knapsack Problem (MKP) is a NP-hard combinatorial optimization 

problem in many real-word applications. An algorithm with the behaviors of preying, 

following and swarming of artificial fish for searching optimal solution was proposed by 

Ma Xuan (2009). With regard to the problem that infeasible solutions are largely 

produced in the process of initializing individuals and implementing the behaviors of 

artificial fish due to the multiple constraints, which undermines the algorithm 

performance, an adjusting operator based on heuristic rule was designed to ensure all the 

individuals in the feasible solution areas. Computational results show that the algorithm 
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can quickly find optimal solution. The proposed algorithm can also be applied to other 

constrained combinatorial optimization problems. 

Rajeev and Ramesh (1992) presented a new greedy heuristic for the integer knapsack 

problem. The proposed heuristic selects items in non-increasing order of their maximum 

possible contribution to the solution value given the available knapsack capacity at each 

step. The lower bound on the performance ratio for this “total-value” greedy heuristic is 

shown to dominate the corresponding lower bound for the density-ordered greedy 

heuristic. 

George (1995) studied the average-case behavior of the Zero–One Knapsack problem, 

as well as an on-line version. The authors allowed the capacity of the knapsack to grow 

proportionally to the number of items, so that the optimum solution tends to be Θ (n). 

Under fairly general conditions on the distribution, they obtained a description of the 

expected value of the optimum offline solution which is accurate up to terms which are o 

(1). The authors then considered a simple greedy method for the on-line problem, which 

is called Online Greedy and is allowed to use knowledge of the distribution, and shown 

that the solution obtained by this algorithm differs from the true optimum by an average 

of Θ(log n); in fact, and can determine the multiplicative constant hidden by the Θ-

notation. Thus on average the cost of being forced to give answers on-line is quite small 

compared to the optimum solution. 

The constrained compartmentalized knapsack problem is an extension of the classical 

integer constrained knapsack problem which can be stated as the following hypothetical 

situation: a climber must load his/her knapsack with a number of items. For each item a 

weight, a utility value and an upper bound are given. However, the items are of different 

classes (food, medicine, utensils, etc.) and they have to be loaded in separate 
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compartments inside the knapsack (each compartment is itself a knapsack to be loaded 

by items from the same class). The compartments have flexible capacities which are 

lower and upper bounded. Each compartment has a fixed cost to be included inside the 

knapsack that depends on the class of items chosen to load it and, in addition, each new 

compartment introduces a fixed loss of capacity of the original knapsack. The 

constrained compartmentalized knapsack problem consists of determining suitable 

capacities of each compartment and how these compartments should be loaded, such that 

the total items inside all compartments does not exceed the upper bound given. The 

objective is to maximize the total utility value minus the cost of the compartments. This 

kind of problem arises in practice, such as in the cutting of steel or paper reels. Doprado 

and Nereu (2007) modeled the problem as an integer non-linear optimization problem 

for which some heuristic methods are designed. Finally, computational experiments 

were given to analyze the methods. 

Balachandar and Kannan presented a heuristic to solve the 0/1 multi-constrained 

knapsack problem (0/1 MKP) which is NP-hard. In this heuristic the dominance property 

of the constraints is exploited to reduce the search space to find near optimal solutions of 

0/1 MKP. This heuristic was tested for ten (10) benchmark problems of sizes up to one 

hundred and five (105) and for seven classical problems of sizes up to five hundred 

(500), taken from the literature and the results were compared with optimum solutions. 

Space and computational complexity of solving 0/1 MKP using this approach were also 

presented. The encouraging results especially for relatively large size test problems 

indicate that this heuristic can successfully be used for finding good solutions for highly 

constrained NP-hard problems. 
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Elhedhli (2005) considered a class of nonlinear knapsack problems with applications in 

service systems design and facility location problems with congestion. They provided 

two linearization and their respective solution approaches. The first is solved directly 

using a commercial solver. The second is a piecewise linearization that is solved by a 

cutting plane method. 

Florios et al., (2009) solved instances of the multi-objective multi-constraint (or multi-

dimensional) knapsack problem (MOMCKP) from the literature, with three objective 

functions and three constraints. They used exact as well as approximate algorithms. The 

exact algorithm is a properly modified version of the multi-criteria branch and bound 

(MCBB) algorithm, which is further customized by suitable heuristics. Three branching 

heuristics and a more general purpose composite branching and construction heuristic 

were devised. Furthermore, the same problems are solved using standard multi-objective 

evolutionary algorithms (MOEA), namely, the SPEA2 and the NSGAII. The results 

from the exact case show that the branching heuristics greatly improve the performance 

of the MCBB algorithm, which becomes faster than the adaptive ε -constraint. 

Regarding the performance of the MOEA algorithms in the specific problems, SPEA2 

outperforms NSGAII in the degree of approximation of the Pareto front, as measured by 

the coverage metric (especially for the largest instance). 

 

Harper et al., (2001) presented a genetic algorithm as an aid for project assignment. The 

assignment problem illustrated concerns the allocation of projects to students. Students 

have to choose from a list of possible projects, indicating their preferred choices in 

advance. Inevitably, some of the more popular projects become „over-subscribed‟ and 

assignment becomes a complex problem. The developed algorithm has compared well to 
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an optimal integer programming approach. One clear advantage of the genetic algorithm 

is that, by its very nature, we are able to produce a number of feasible project 

assignments, thus facilitating discussion on the merits of various allocations and 

supporting multi-objective decision making. 

Witzgall (1975) presented a problem which arises in telecommunications when a 

number of sites for satellite stations have to be selected, such that the global traffic 

between these stations is maximized and a budget constraint is respected. This problem 

appears to be a QKP. Similar models arise when considering the location of airports, 

railway stations or freight handling terminals. 

Johnson et al (1993) considered the graph version of the Quadratic Knapsack Problem. 

After linearization of the objective function, the model is solved by a branch-and-cut 

system in which tree inequalities and star inequalities are used to tighten the 

formulation. 

Figuera et al., (2009) presented a generic labeling algorithm for finding all non-

dominated outcomes of the multiple objective integer knapsack problem (MOIKP). The 

algorithm is based on solving the multiple objective shortest path problem on an 

underlying network. Algorithms for constructing four network models, all representing 

the MOIKP, were also presented. Each network is composed of layers and each network 

algorithm, working forward layer by layer, identifies the set of all permanent non-

dominated labels for each layer. The effectiveness of the algorithms is supported with 

numerical results obtained for randomly generated problems for up to seven objectives 

while exact algorithms reported in the literature solve the multiple objective binary 

knapsack problem with up to three objectives. Extensions of the approach to other 
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classes of problems including binary variables, bounded variables, multiple constraints, 

and time-dependent objective functions are possible. 

Balev et al., (2008) presented a preprocessing procedure for the 0–1 multidimensional 

knapsack problem. First, a non-increasing sequence of upper bounds was generated by 

solving LP-relaxations. Then, a non-decreasing sequence of lower bounds is built using 

dynamic programming. The comparison of the two sequences allowed either to prove 

that the best feasible solution obtained is optimal, or to fix a subset of variables to their 

optimal values. In addition, a heuristic solution was obtained. Computational 

experiments with a set of large-scale instances show the efficiency of their reduction 

scheme. Particularly, it was shown that their approach allowed the reduction of the CPU 

time of a leading commercial software. 

Devyaterikova et al., (2009) presented discrete production planning problem which may 

be formulated as the multidimensional knapsack problem is considered, while resource 

quantities of the problem are supposed to be given as intervals. An approach for solving 

this problem based on using its relaxation set is suggested. Some L-class enumeration 

algorithms for the problem are described. Results of computational experiments were 

presented. 

 

2.3 SUMMARY 

In this chapter, we reviewed relevant and adequate literature on Knapsack Problems. 

The next chapter presents the research methodology of the study. 
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CHAPTER THREE 

METHODOLOGY 

3.0 INTRODUCTION 

The fundamental theory of Linear Programming with regards to its definition and 

formulation, component, objectives and the method of analysis of the current data to 

arrive at the objective will be discussed in this chapter. 

 

3.1 PROFILE OF THE SEKYERE CENTRAL DISTRICT  

The Sekyere Central District with Nsuta as its capital is geographically located within 

longitude 0.05
o
 and 1.30

o
 W and latitudes 6.55

o
 and 7.30

o
N in the Ashanti Region of 

Ghana. It was created by the former President, J.A Kufuor which was inaugurated on the 

29th of February 2008. It covers a total land area of about 1,564sq. km. Have about 105 

settlements with about 70% being rural.  

The district is generally low lying and gradually rising through rolling hills stretching 

southward towards Nsuta. The highest point is 2400m whilst the lowest is 135m above 

mean sea level. It is fairly drained by several streams and rivers like Afram, Sene, 

Sasebonso, and Kyirimfa. The Sekyere Central district appears to be doing well in 

education, despite the numerous problems of the educational sub-sector. Effort should 

therefore be made to put up more school buildings to enhance the basic education and to 

make education the basic right for all children.The Sekyere Central district is having 

limited number of school buildings since it is among the newly created district in the 
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Ashanti Region of Ghana. This has really made it difficult for populace within its rural 

location to have access to basic education. The lack of school buildings within the 

district could lead to severe dropouts in the school attendance in the district.   

Even though the District Assembly has been able to construct a number of schools 

infrastructures in the district a lot needs to be done in that area of infrastructure and 

Classroom. More schools infrastructures have to be built in the district especially in the 

rural areas because most rural areas in the district do not have good road access to the 

towns to have a taste of education in proper school buildings. Moreover, few of the 

schools need to be given additional facilities to meet the increase in enrollment. The 

most problematic area is the basic education level. 

 

3.2 LINEAR PROGRAMMING 

Linear programming is a mathematical method for determining a way to achieve the best 

outcome (such as maximum profit or lowest cost) in a given mathematical model for 

some list of requirements represented as linear relationships. Linear programming is a 

specific case of mathematical programming (mathematical optimization). 

More formally, linear programming is a technique for the optimization of 

a linear objective function, subject to linear equality and linear inequality constraints. 

Its feasible region is a convex polyhedron, which is a set defined as the intersection of 

finitely many half spaces, each of which is defined by a linear inequality. Its objective 

function is a real-valued affine function defined on this polyhedron. A linear 

http://en.wikipedia.org/wiki/Mathematical_model
http://en.wikipedia.org/wiki/Mathematical_optimization
http://en.wikipedia.org/wiki/Mathematical_optimization
http://en.wikipedia.org/wiki/Linear
http://en.wikipedia.org/wiki/Objective_function
http://en.wikipedia.org/wiki/Linear_equality
http://en.wikipedia.org/wiki/Linear_inequality
http://en.wikipedia.org/wiki/Constraint_(mathematics)
http://en.wikipedia.org/wiki/Feasible_region
http://en.wikipedia.org/wiki/Convex_polyhedron
http://en.wikipedia.org/wiki/Half-space_(geometry)
http://en.wikipedia.org/wiki/Real_number
http://en.wikipedia.org/wiki/Affine_function
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programming algorithm finds a point in the polyhedron where this function has the 

smallest (or largest) value if such a point exists. 

Linear programs are problems that can be expressed in canonical form: 

maximize cTx 

subject to Ax ≤ b 

and x > 0, where x represents the vector of variables (to be 

determined), c and b are vectors of (known) coefficients, A is a (known) matrix of 

coefficients, and .  T  is the matrix transpose. The expression to be maximized or 

minimized is called the objective function (c
T
x in this case). The inequalities Ax ≤ b is 

the constraints which specify a convex polytope over which the objective function is to 

be optimized. In this context, two vectors are comparable when they have the same 

dimensions. If every entry in the first is less-than or equal-to the corresponding entry in 

the second then we can say the first vector is less-than or equal-to the second vector. 

 

 3.3 TERMINOLOGIES IN LINEAR PROGRAMMING 

Every linear model consists of a set of decision variable which represents the decisions 

to be made. This is in contrast to a problem data, which are values that are either given 

or can be simply calculated from what is given. 

 

 

 

 

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Canonical_form
http://en.wikipedia.org/wiki/Vector_space
http://en.wikipedia.org/wiki/Matrix_(mathematics)
http://en.wikipedia.org/wiki/Matrix_transpose
http://en.wikipedia.org/wiki/Convex_polytope
http://en.wikipedia.org/wiki/Comparability
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3.3.1 DECISION VARIABLES 

Decision variables describe the quantities that the decision makers would like to 

determine. They are the unknowns of a mathematical programming model. Typically, it 

optimum values with an optimization method can be determined. In a general model, 

decision variables are given algebraic designations such as, 𝑥1, 𝑥2, 𝑥3, …… . 𝑥𝑛 . The 

number of decision variables is n, and 𝑥𝑗   is the name of the jth variable. In a specific 

situation, it is often convenient to use other names such as 𝑥𝑖𝑗  or 𝑦𝑘  or𝑧 𝑖, 𝑗 . An 

assignment of values to all variables in a problem is called a solution.  

 

3.3.2 OBJECTIVE FUNCTION 

The objective function evaluates some quantitative criterion of immediate importance 

such as cost, profit, utility, or yield. The general linear objective function can be written 

as 

𝑧 = 𝑐1𝑥1 + 𝑐2𝑥2 + ⋯ + 𝑐𝑛𝑥𝑛 =  𝑐𝑗𝑥𝑗

𝑛

𝑗 =1

 

Here 𝑐𝑗  is the coefficient of the jth decision variable. The criterion selected can be either 

maximized or minimized.  

3.3.3 CONSTRAINTS 

A constraint is an inequality or equality defining limitations on decisions. Constraints 

arise from a variety of sources such as limited resources, contractual obligations, or 

physical laws. In general, an LP is said to have m linear constraints that can be stated as 
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 𝑎𝑖𝑗 𝑥𝑗

𝑛

𝑗 =1

 
≤
=
≥

  𝑏𝑖 , 𝑓𝑜𝑟 1 = ⋯𝑚 

One of the three relations shown in the large brackets must be chosen for each 

constraint. The number 𝑎𝑖𝑗  is called a "technological coefficient," and the number 𝑏𝑖  is 

called the "right-side" value of the ith constraint. Strict inequalities (<, >, and ) are not 

permitted. When formulating a model, it is good practice to give a name to each 

constraint that reflects its purpose.  

3.3.4 SIMPLE UPPER BOUND 

Associated with each variable, 𝑥𝑗   may be a specified quantity, 𝑢𝑗 , that limits its value 

from above; 

𝑥𝑗 ≤ 𝑢𝑗 , 𝑓𝑜𝑟 𝑗 = 1 … . 𝑛 

When a simple upper is not specified for a variable, the variable is said to be unbounded 

from above.  

3.3.5 NON-NEGATIVITY RESTRICTIONS 

In most practical problems the variables are required to be nonnegative; 

𝑥𝑗 ≥ 0, 𝑓𝑜𝑟 𝑗 = 1 …𝑛 
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This special kind of constraint is called a non-negativity restriction. Sometimes variables 

are required to be non-positive or, in fact, may be unrestricted (allowing any real value). 

 

3.3.6 COMPLETE LINEAR PROGRAMMING MODEL 

Combining the aforementioned components into a single statement gives: 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑜𝑟 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑧 =  𝑐𝑗𝑥𝑗

𝑛

𝑗 =1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝑎𝑖𝑗 𝑥𝑗  
≤
=
≥

  𝑏𝑖 , 𝑓𝑜𝑟 𝑖 = 1 …𝑚

𝑛

𝑗 =1

 

0 ≤ 𝑥𝑗 ≤ 𝑢𝑗  𝑓𝑜𝑟 𝑗 = 1 …𝑛 

The constraints, including non-negativity and simple upper bounds, define the feasible 

region of a problem. 

 

3.3.7 PARAMETERS 

The collection of coefficients  𝑐𝑗 , 𝑎𝑖𝑗 , 𝑏𝑖 , 𝑢𝑗   for all values of the indices i and j are 

called the parameters of the model. For the model to be completely determined all 

parameter values must be known. 
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3.4 BASIC ASSUMPTIONS OF LINEAR PROGRAMMING 

 For a problem to be realistically represented as a linear program, the following 

assumptions should hold: 

(i) The constraints and objective function are linear. 

(a) This requires that the value of the objective function and the response of 

each resource expressed by the constraints are proportional to the level of 

each activity expressed in the variables. 

(b) Linearity also requires that the effects of the value of each variable on the 

values of the objective function and the constraints are additive. In other 

words, there can be no interactions between the effects of different 

activities; i.e., the level of activity X1 should not affect the costs or 

benefits associated with the level of activity X2. 

(ii) Divisibility: the values of decision variables can be fractions. Sometimes these 

values only make sense if they are integers; then we need an extension of linear 

programming called integer programming. 

(iii)Certainty: the model assumes that the responses to the values of the variables are 

exactly equal to the responses represented by the coefficients. 

(iv) Data:  formulating a linear program to solve a problem assumes that data are 

available to specify the problem. 
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3.5 FUNDAMENTAL THEOREM OF LINEAR PROGRAMMING 

The fundamental theorem of linear programming, in a weak formulation, states that 

the maxima and minima of a linear function over a convex polygonal region occur at the 

region's corners. Further, if an extreme value occurs at two corners, then it must also 

occur everywhere on the line segment between them. 

 

3.6 IMPORTANCE OF LINEAR PROGRAMMING 

(i) Solve the business problems: with linear programming, business problem can 

be solved easily. It is much benefited for increase the profit or decreases the cost 

of business. 

(ii) Select best advertising media: with linear programming, best advertising media 

among a numbers of media can be selected. 

(iii)Solve the diet problems: with linear programming, diet problems can be solved 

with minimum cost. It is very useful for hospitals .There are different elements 

like vitamins, proteins, carbohydrates etc. You can select best quantity of them 

with minimum cost. 

(iv) Use in solving staffing problems: with linear programming, the number of staff 

needed in hospitals, mines, hotels and other type of business can be solved. 

 

3.7 SIMPLEX METHOD 

The simplex method is a method for solving problems in linear programming invented 

by George Dantzig in 1947. The method tests adjacent vertices of the feasible set in 

sequence so that at each new vertex the objective function improves or is unchanged. 

http://en.wikipedia.org/wiki/Maxima_and_minima
http://en.wikipedia.org/wiki/Linear_function
http://en.wikipedia.org/wiki/Convex_polygon
http://en.wikipedia.org/wiki/Line_segment
http://mathworld.wolfram.com/LinearProgramming.html
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The simplex method is very efficient in practice, generally taking 2m to 3m iterations at 

most (where  is the number of equality constraints), and converging in expected 

polynomial for certain distributions of random inputs. However, its worst-case 

complexity is exponential, as can be demonstrated with carefully constructed examples. 

Different types of methods for solving linear programming problems are interior point 

methods, whose complexity is polynomial for both average and worst case. 

These methods construct a sequence of strictly feasible points that converges to the 

solution. 

The latter method solves an unconstrained minimization problem in n dimensions by 

maintaining each iteration n+ 1 point that defines a simplex. At each iteration, this 

simplex is updated by applying certain transformations to it so that “rolls downhill” until 

it finds a minimum. In brief, the simplex method passes from vertex to vertex on the 

boundary of the feasible polyhedron, repeatedly increasing the objective function until 

either an optimal solution is found, or it is established that no solution exists. In 

principle, the time required might be an exponential function of the number of variables, 

and this can happen in some contrived cases. In practice, however, the method is highly 

efficient, typically requiring a number of steps which is just a small multiple of the 

number of variables. Linear programs in thousands or even millions of variables are 

routinely solved using the simplex method on modern computers. Efficient, highly 

sophisticated implementations are available in the form of computer software packages. 

 

3.8 SUMMARY OF THE SIMPLEX METHOD 

A.  Add slack variables to change the constraints into equations and write all variables to 

the left of the equal sign and constants to the right. 

http://mathworld.wolfram.com/LinearProgramming.html
http://mathworld.wolfram.com/InteriorPointMethod.html
http://mathworld.wolfram.com/InteriorPointMethod.html


44 

 

B.  Write the objective function with all nonzero terms to the left of the equal sign and 

zero to the right. The variable to be maximized must be positive. 

C.  Set up the initial simplex tableau by creating an augmented matrix from the 

equations, placing the equation for the objective function last. 

D.  Determine a pivot element and use matrix row operations to convert the column 

containing the pivot element into a unit column. 

E.  If negative elements still exist in the bottom row, repeat Step 4.  If all elements in the 

bottom row are positive, the process has been completed. 

F.  When the final matrix has been obtained, determine the final basic solution.  This 

will give the maximum value for the objective function and the values of the variables 

where this maximum occurs. 

 

3.9 SIMPLEX ALGORITHM 

The simplex algorithm is a method of solving linear programming problems. It‟s used to 

reach a goal while also having constraints. Since this is mathematics, it deals with 

numbers and the formulas just use add, subtract and multiply (which is why it is called 

linear programming). 

 

3.10 THE INITIAL TABLEAU 

In order to apply the simplex method to a maximum problem required the conversion to 

equations by using slack variables. 

(i) Convert the inequalities to equations by adding a slack variable to the left side to give 

the slack equations: 
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𝑎𝑥1 + 𝑏𝑥2 ≤ 𝐸
𝑐𝑥1 + 𝑑𝑥2 ≤ 𝐹

  

The slack equations are  

 
𝑎𝑥1 + 𝑏𝑥2 + 𝑠1 = 𝐸
𝑐𝑥1 + 𝑑𝑥2 + 𝑠2 = 𝐹

  

where s1 and s2 are the slack variables and are nonnegative and a, b, c, d, E and F 

denote any real number. 

(ii) We are now ready to set up the matrix which represents the initial simplex tableau. 

(a). the objective row is always the bottom row 

(b). the slack equations form all the other rows 

(c). the symbol for each variable appears above the column where its coefficients appear. 

(d). the notation BV stands for basic variables. These are the variables that have only 0's 

and 

1's in the column. The others are called non-basic variables. 

(e). the notation RHS stands for the right-hand side of the equal sign in the slack 

equations. 

 

3.11 DATA MODELING 

Several algorithms are available to solve knapsack problems, based on dynamic 

programming approach, branch and bound approach or hybridizations of both 

approaches. 
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3.11.1 DYNAMIC PROGRAMMING 

In terms of mathematical optimization, dynamic programming usually refers to 

simplifying a decision by breaking it down into a sequence of decision steps over time. 

This is done by defining a sequence of value functions V1, V2, ..., Vn, with an 

argument y representing the state of the system at times i from 1 to n. The definition 

of Vn(y) is the value obtained in state y at the last time n. The values Vi at earlier 

times i = n −1, n − 2, ..., 2, 1 can be found by working backwards, using 

a recursive relationship called the Bellman equation. For i = 2, ..., n, Vi−1 at any state y is 

calculated from Vi by maximizing a simple function (usually the sum) of the gain from 

decision i − 1 and the function Vi at the new state of the system if this decision is made. 

Since Vi has already been calculated for the needed states, the above operation 

yields Vi−1 for those states. Finally, V1 at the initial state of the system is the value of the 

optimal solution. The optimal values of the decision variables can be recovered, one by 

one, by tracking back the calculations already performed. 

 

3.11.2 KNAPSACK PROBLEM 

The knapsack problem is one of the most studied problems in combinatorial 

optimization, with many real-life applications. For this reason, many special cases and 

generalizations have been examined. 

Common to all versions are a set of 𝑛 items, with each item 1 ≤ 𝑗 ≤ 𝑛 having an 

associated profit 𝑝𝑗  and weight 𝑤𝑗 . The objective is to pick some of the items, with 

maximal total profit, while obeying that the maximum total weight of the chosen items 

http://en.wikipedia.org/wiki/Mathematical_optimization
http://en.wikipedia.org/wiki/State_variable
http://en.wikipedia.org/wiki/Recursion
http://en.wikipedia.org/wiki/Bellman_equation
http://en.wikipedia.org/wiki/Knapsack_problem
http://en.wikipedia.org/wiki/Combinatorial_optimization
http://en.wikipedia.org/wiki/Combinatorial_optimization
http://en.wikipedia.org/wiki/Combinatorial_optimization
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must not exceed 𝑊. Generally, these coefficients are scaled to become integers, and they 

are almost always assumed to be positive. 

The knapsack problem in its most basic form: 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒  𝑝𝑗𝑥𝑗

𝑛

𝑗 =1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝑤𝑗𝑥𝑗 ≤ 𝑊

𝑛

𝑗 =1

, 𝑥𝑗 ∈  0, 1 ∀𝑗 ∈  1, … . , 𝑛  

Knapsack problems appear in real-world decision-making processes in a wide variety of 

fields, such as finding the least wasteful way to cut raw materials, selection of capital 

investments and financial portfolios, selection of assets for asset-backed securitization, 

and generating keys for the Merkle–Hellman knapsack cryptosystem. 

One early application of knapsack algorithms was in the construction and scoring of 

tests in which the test-takers have a choice as to which questions they answer. For small 

examples it is a fairly simple process to provide the test-takers with such a choice. For 

example, if an exam contains 12 questions each worth 10 points, the test-taker need only 

answer 10 questions to achieve a maximum possible score of 100 points. However, on 

tests with a heterogeneous distribution of point values, that is, different questions are 

worth different point values, it is more difficult to provide choices. Feuerman and Weiss 

proposed a system in which students are given a heterogeneous test with a total of 125 

possible points. The students are asked to answer all of the questions to the best of their 

abilities. Of the possible subsets of problems whose total point values add up to 100, a 

http://en.wikipedia.org/wiki/Capital_investment
http://en.wikipedia.org/wiki/Capital_investment
http://en.wikipedia.org/wiki/Financial_portfolio
http://en.wikipedia.org/wiki/Asset-backed_securitization
http://en.wikipedia.org/wiki/Merkle%E2%80%93Hellman_knapsack_cryptosystem
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knapsack algorithm would determine which subset gives each student the highest 

possible score. 

 

3.12 TYPES OF KNAPSACK PROBLEM 

3.12.1 MULTI-OBJECTIVE KNAPSACK PROBLEM 

This variation changes the goal of the individual filling the knapsack. Instead of one 

objective, such as maximizing the monetary profit, the objective could have several 

dimensions. For example there could be environmental or social concerns as well as 

economic goals. Problems frequently addressed include portfolio and transportation 

logistics optimizations   

There are many heuristics for solving this variant, including the Ant Colony 

Optimization algorithm.  

As a concrete example, suppose you ran a cruise ship. You have to decide how many 

famous comedians to hire. This boat can handle more than one ton of passengers and the 

entertainers must weigh less than 1000 𝑙𝑏𝑠. Each comedian has a weight, brings in 

business based on their popularity and asks for a specific salary. In this example you 

have multiple objectives. You want, of course, to maximize the popularity of your 

entertainers while minimizing their salaries. Also, you want to have as many entertainers 

as possible. 

 

 

 

http://en.wikipedia.org/wiki/Ant_colony_optimization_algorithms
http://en.wikipedia.org/wiki/Ant_colony_optimization_algorithms
http://en.wikipedia.org/wiki/Ant_colony_optimization_algorithms
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3.12.2 SUBSET-SUM KNAPSACK PROBLEM 

The subset-sum problem is given a set of 𝑛 items and a knapsack, with  

𝑤𝑗 = 𝑤𝑒𝑖𝑔𝑕𝑡 𝑜𝑓 𝑖𝑡𝑒𝑚 𝑗;  

𝑐 = 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑡𝑕𝑒 𝑘𝑛𝑎𝑝𝑠𝑎𝑐𝑘, 

select a subset of the items whose total weight is closet to, without exceeding the total 

capacity of the Knapsack, 𝑐. That is; 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑧 =  𝑤𝑗 𝑥𝑗

𝑛

𝑗 =1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝑤𝑗𝑥𝑗 ≤ 𝑐𝑛
𝑗 =1   

 

𝑥𝑗 = 0 or 1,         𝑗 ∈ 𝑁 =  1, ……………… , 𝑛  

where 𝑥𝑗 =  
1        𝑖𝑓 𝑖𝑡𝑒𝑚 𝑗 𝑖𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑
0 𝑖𝑓 𝑖𝑡𝑒𝑚 𝑗 𝑖𝑠 𝑛𝑜𝑡 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑

  

 

3.12.3 THE CHANGE-MAKING PROBLEM 

The change-making problem can be interpreted as that of a cashier having to assemble a 

given change, c, using the least number of coins of specified values 𝑤𝑗 (𝑗 = 1, ……… , 𝑛) 

in the case where, for each value, an unlimited number of coins is available. The change-

making problem can be viewed as an unbounded knapsack problem in which 𝑝𝑗 = −1 

for all j and, in the capacity constraint, strict equality is imposed. 
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3.12.4 CUTTING-STOCK PROBLEM 

The cutting-stock problem is an optimization problem, or more specifically, an integer 

linear programming problem. It arises from many applications in industry. 

The standard formulation for the cutting-stock problem (but not the only one) starts with 

a list of m orders, each requiring qj, j = 1,...,m pieces. A list of all possible combinations 

of cuts (often called "patterns"), associating with each pattern a positive integer 

variable xi representing how many times each pattern is to be used is constructed. The 

linear integer program is then: 

Maximize  𝑐𝑖𝑥𝑖
𝑛
𝑖=1  

Subject to  𝑎𝑖𝑗 𝑥𝑖 ≥ 𝑞𝑗
𝑛
𝑖=1   ∀𝑗 = 1, … , 𝑚 

and 𝑥𝑖 ≥ 0, 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 

where aij is the number of times order j appears in pattern i and ci is the cost (often the 

waste) of pattern i. The precise nature of the quantity constraints can lead to subtly 

different mathematical characteristics. The above formulation's quantity constraints 

are minimum constraints (at least the given amount of each order must be produced, but 

possibly more). When ci=1 the objective minimises the number of utilised master items 

and, if the constraint for the quantity to be produced is replaced by equality, it is called 

the bin packing problem. The most general formulation has two-sided constraints (and in 

this case a minimum-waste solution may consume more than the minimum number of 

master items): 

𝑞𝑗 ≤  𝑎𝑖𝑗 𝑥𝑖 ≤ 𝑄𝑗
𝑛
𝑖=1 ,   ∀𝑗 = 1, …𝑚  

http://en.wikipedia.org/wiki/Optimization_(mathematics)
http://en.wikipedia.org/wiki/Integer_linear_programming
http://en.wikipedia.org/wiki/Integer_linear_programming
http://en.wikipedia.org/wiki/Integer_linear_programming
http://en.wikipedia.org/wiki/Bin_packing_problem
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This formulation applies not just to one-dimensional problems. Many variations are 

possible, including one where the objective is not to minimise the waste, but to 

maximise the total value of the produced items, allowing each order to have a different 

value. 

In general, the number of possible patterns grows exponentially as a function of m, the 

number of orders. As the number of orders increases, it may therefore become 

impractical to enumerate the possible cutting patterns. 

 

3.12.5 MULTIPLE KNAPSACK PROBLEMS 

This variation is similar to the Bin Packing Problem. It differs from the Bin Packing 

Problem that a subset of items can be selected, whereas, in the Bin Packing Problem, all 

items have to be packed to certain bins. The concept is that there are multiple knapsacks. 

This may seem a trivial change, but it is not equivalent to adding to the capacity of the 

initial knapsack. This variation is used in many loading and scheduling problems in 

Operations Research and has a Polynomial Time Approximation Scheme (PTAS). 

 

3.12.6 THE QUADRATIC KNAPSACK PROBLEM 

The binary quadratic knapsack problem (QKP) is formally defined as follows: assume 

that n items are given where item j has a positive integer weight w j . In addition, 

an n × n  nonnegative integer matrix P = { p i j } , where p j j  is the profit achieved if 

item j is selected and p i j+ p j i  is a profit achieved if both items i and j are selected 

for i< j  i s  g iv e n .  The Quadratic Knapsack Problem calls for selecting an item subset 

http://en.wikipedia.org/wiki/Bin_packing_problem
http://en.wikipedia.org/wiki/Polynomial-time_approximation_scheme
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whose overall weight does not exceed a given knapsack capacity c, so as to maximize 

the overall profit. For notational convenience, let N≔ { 1 , … , n }  denote the item set. 

By introducing a binary variable x j to indicate whether item j is selected, the problem 

may be formulated: 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒   𝑝𝑖𝑗 𝑥𝑖𝑥𝑗

𝑗 ∈𝑁𝑖∈𝑁

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝑤𝑗𝑥𝑗 ≤ 𝑐 ≤,𝑗 ∈𝑁              𝑥𝑗 ∈  0, 1 , 𝑗 ∈ 𝑁 

Without loss of generality it is assumed that 𝑚𝑎𝑥𝑗∈𝑁  𝑤𝑗 ≤ 𝑐 <  𝑗 ∈ 𝑁𝑤𝑗  and that the 

profit matrix is symmetric,(that is,𝑝𝑖𝑗 = 𝑝𝑗𝑖 for all 𝑗 > 𝑖. 

 

3.12.7 UNBOUNDED KNAPSACK PROBLEM 

The unbounded knapsack problem (UKP) places no upper bound on the number of 

copies of each kind of item and can be formulated as 

 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒  𝑣𝑖𝑥𝑖

𝑛

𝑖=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝑤𝑖𝑥𝑖 ≤ 𝑊, 𝑥𝑖 ∈  0, 1, … . , 𝑐𝑖 

𝑛

𝑖=1

 

except for that the only restriction on 𝒙𝒊 is that it is a non-negative integer. 

If all weights  𝑤1 , … . . , 𝑤𝑛 , 𝑊  are nonnegative integers, the knapsack problem can be 

solved in pseudo-polynomial time using dynamic programming. The following describes 

a dynamic programming solution for the unbounded knapsack problem. 

http://en.wikipedia.org/wiki/Pseudo-polynomial_time
http://en.wikipedia.org/wiki/Dynamic_programming
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To simplify things, assume all weights are strictly positive  𝑤𝑖 > 0 . The objective is to 

maximize total value subject to the constraint that total weight is less than or equal to 𝑊. 

Then for each 𝑤 ≤ 𝑊, define 𝑚 𝑤  to be the maximum value that can be attained with 

total weight less than or equal to 𝑤. Then 𝑚 𝑊  is the solution to the problem. 

Observe that 𝑚 𝑤  has the following properties: 

(𝑖)𝑚 0 = 0, which is the sum of zero items and it is the summation of the empty 

set. 

(𝑖𝑖)𝑚 𝑤 = max𝑤 𝑖≤𝑤 𝑣𝑖 + 𝑚 𝑤 − 𝑤𝑖  , where 𝑣𝑖  is the value of the 𝑖 − 𝑡𝑕 kind of 

item. 

Here the maximum of the empty set is taken to be zero. Tabulating the results from 

𝑚 0   up through 𝑚 𝑊  gives the solution. Since the calculation of each 𝑚 𝑤  involves 

examining 𝑛 items, and there are 𝑊 values of 𝑚 𝑤   to calculate, the running time of the 

dynamic programming solution is 𝑂 𝑛𝑊 . Dividing 𝑤1, 𝑤2 , … . . , 𝑤𝑛 , 𝑊  by 

their greatest common divisoris an obvious way to improve the running time. 

The 𝑂 𝑛𝑊  complexity does not contradict the fact that the knapsack problem is NP-

complete, since 𝑊, unlike 𝑛, is not polynomial in the length of the input to the problem. 

The length of the 𝑊 input to the problem is proportional to the number of bits 

in 𝑊, log 𝑊, not to 𝑊 itself. 

3.12.8 BOUNDED KNAPSACK PROBLEM 

The Bounded Knapsack Problem removes the restriction that there is only one of each 

item, but restricts the number 𝑥𝑖  of copies of each kind of item to an integer value 𝑐𝑖 . 

http://en.wikipedia.org/wiki/Greatest_common_divisor
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/NP-complete
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Mathematically the bounded knapsack problem can be formulated as: 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒  𝑣𝑖𝑥𝑖

𝑛

𝑖=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝑤𝑖𝑥𝑖 ≤ 𝑊

𝑛

𝑖=1

, 𝑥𝑖 ∈  0, 1, … , 𝑐𝑖  

3.12.9 0-1 KNAPSACK PROBLEM 

The most common problem being solved is the 0-1 knapsack problem, which restricts 

the number 𝑥𝑖  of copies of each kind of item to zero or one. 

Mathematically the 0-1-knapsack problem can be formulated as: 

Let there be 𝑛 items, 𝑥1 to 𝑥𝑛where 𝑥𝑖  has a value 𝑣𝑖and weight 𝑤𝑖 . The maximum 

weight that the bag can carry is 𝑊. It is common to assume that all values and weights 

are nonnegative. To simplify the representation, it is assume that the items are listed in 

increasing order of weight. 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒  𝑣𝑖𝑥𝑖

𝑛

𝑖=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝑤𝑖𝑥𝑖 ≤ 𝑊,

𝑛

𝑖=1

 𝑥𝑖 ∈  0, 1  
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Maximize the sum of the values of the items in the knapsack so that the sum of the 

weights must be less than the knapsack's capacity. 

A similar dynamic programming solution for the 0-1 knapsack problem also runs 

in pseudo-polynomial time. Assume 𝑤1 , 𝑤2 , … , 𝑤𝑛 , 𝑊  are strictly positive integers. 

Define 𝑚 𝑖, 𝑤  to be the maximum value that can be attained with weight less than or 

equal to 𝑤 using items up to 𝑖. 

 Thus 𝑚 𝑖, 𝑤  can be defined recursively as follows: 

 𝑖 𝑚 𝑖, 𝑤 = 𝑚 𝑖 − 1, 𝑤  if 𝑤𝑖 > 𝑤 (the new item is greater than the existing weight 

limit). 

 𝑖𝑖 𝑚 𝑖, 𝑤 = max 𝑚 𝑖 − 1, 𝑤 , 𝑚 𝑖 − 1, 𝑤 − 𝑤𝑖 + 𝑣𝑖  if 𝑤𝑖 ≤ 𝑤. 

The solution can then be found by calculating 𝑚 𝑛, 𝑊 . To do this efficiently we can use 

a table to store preceding computations. 

 

3.13 GENETIC ALGORITHM 

A genetic algorithm (GA) is a search heuristic that mimics the process of 

natural evolution. This heuristic is routinely used to generate useful solutions 

to optimization and search problems. Genetic algorithms belong to the larger class 

of evolutionary algorithms (EA), which generate solutions to optimization problems 

using techniques inspired by natural evolution, such as inheritance, mutation, selection, 

and crossover. 

http://en.wikipedia.org/wiki/Pseudo-polynomial_time
http://en.wikipedia.org/wiki/Search_algorithm
http://en.wikipedia.org/wiki/Heuristic_(computer_science)
http://en.wikipedia.org/wiki/Evolution
http://en.wikipedia.org/wiki/Optimization_(mathematics)
http://en.wikipedia.org/wiki/Search_algorithm
http://en.wikipedia.org/wiki/Problem
http://en.wikipedia.org/wiki/Evolutionary_algorithm
http://en.wikipedia.org/wiki/Heredity
http://en.wikipedia.org/wiki/Mutation_(genetic_algorithm)
http://en.wikipedia.org/wiki/Selection_(genetic_algorithm)
http://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
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Genetic algorithms find application in bioinformatics, phylogenetics, computational 

science, engineering, economics, chemistry, manufacturing, mathematics, physics, phar

macometrics and other fields. 

In a genetic algorithm, a population of candidate solutions (called individuals, creatures, 

or phenotypes) to an optimization problem is evolved toward better solutions. Each 

candidate solution has a set of properties (its chromosomes or genotype) which can be 

mutated and altered; traditionally, solutions are represented in binary as strings of 0s and 

1s, but other encodings are also possible.  The evolution usually starts from a population 

of randomly generated individuals and is an iterative process, with the population in 

each iteration called a generation. In each generation, the fitness of every individual in 

the population is evaluated; the fitness is usually the value of the objective function in 

the optimization problem being solved. The more fit individuals are stochastically 

selected from the current population, and each individual's genome is modified 

(recombined and possibly randomly mutated) to form a new generation. The new 

generation of candidate solutions is then used in the next iteration of the algorithm. 

Commonly, the algorithm terminates when either a maximum number of generations has 

been produced, or a satisfactory fitness level has been reached for the population. 

A typical genetic algorithm requires: 

(i) a genetic representation of the solution domain, 

(ii) a fitness function to evaluate the solution domain. 

A standard representation of each candidate solution is as an array of bits. Arrays of 

other types and structures can be used in essentially the same way. The main property 

http://en.wikipedia.org/wiki/Bioinformatics
http://en.wikipedia.org/wiki/Phylogenetics
http://en.wikipedia.org/wiki/Computational_science
http://en.wikipedia.org/wiki/Computational_science
http://en.wikipedia.org/wiki/Computational_science
http://en.wikipedia.org/wiki/Engineering
http://en.wikipedia.org/wiki/Economics
http://en.wikipedia.org/wiki/Chemistry
http://en.wikipedia.org/wiki/Manufacturing
http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Physics
http://en.wikipedia.org/wiki/Pharmacometrics
http://en.wikipedia.org/wiki/Pharmacometrics
http://en.wikipedia.org/wiki/Pharmacometrics
http://en.wikipedia.org/wiki/Population
http://en.wikipedia.org/wiki/Candidate_solution
http://en.wikipedia.org/wiki/Phenotype
http://en.wikipedia.org/wiki/Chromosome
http://en.wikipedia.org/wiki/Genotype
http://en.wikipedia.org/wiki/Iteration
http://en.wikipedia.org/wiki/Fitness_(biology)
http://en.wikipedia.org/wiki/Stochastics
http://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Genetic_representation
http://en.wikipedia.org/wiki/Fitness_function
http://en.wikipedia.org/wiki/Bit_array
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that makes these genetic representations convenient is that their parts are easily aligned 

due to their fixed size, which facilitates simple crossover operations. Variable length 

representations may also be used, but crossover implementation is more complex in this 

case. Tree-like representations are explored in genetic programming and graph-form 

representations are explored in evolutionary programming; a mix of both linear 

chromosomes and trees is explored in gene expression programming. 

 

3.14 DUALITY AND INTEGER PROGRAMMING 

3.14.1 DUALITY 

Subsequent to any given linear programming problem, called the Primal Problem, there 

is another linear programming problem called the Dual Problem. Since a given linear 

programming problem can be stated in several forms (standard form, canonical form, 

general form etc), it follows that the form of the dual problem will depend on the form 

of the primal problem. 

Dual's General LP i.e. converting a primal to a dual or the reverse. 

(i). Multiply the objective function by -1 and change \max" to \min" or \min" to \max". 

(ii). Multiply an inequality constraint by -1 to change the direction of the inequality. 

(iii). Replace an equality constraint 

 𝑎𝑖𝑗 𝑥𝑗 = 𝑏

𝑛

𝑗 =1

 

with two inequality constraints 

 𝑎𝑖𝑗 𝑥𝑗 ≤ 𝑏𝑖
𝑛
𝑗 =1   

http://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
http://en.wikipedia.org/wiki/Genetic_programming
http://en.wikipedia.org/wiki/Evolutionary_programming
http://en.wikipedia.org/wiki/Gene_expression_programming
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− 𝑎𝑖𝑗 𝑥𝑗 = −𝑏

𝑛

𝑗 =1

 

(iv). Replace a variable that is non-positive with a variable that is its negative. 

For example, if 𝑥𝑗  is specified to be non-positive by 𝑥𝑗 ≤ 0 , replace every occurrence of 

𝑥𝑗  with −𝑥 𝑗 and require−𝑥 𝑗 ≥ 0 

(v). Replace a variable that is unrestricted in sign with the difference of two non-

negative variables. For example, if 𝑥𝑗  is unrestricted (sometimes called free), replace 

every occurrence of  𝑥𝑗  with 𝑥𝑗
+ − 𝑥𝑗

− require that 𝑥𝑗
+ − 𝑥𝑗

− be nonnegative variables. 

Using these transformations, every Linear Programming (LP) can be converted into an 

equivalent one in standard form. In this case equivalent means that an optimal solution 

to the original problem can be obtained from an optimal solution to the new problem.  

 

3.14.2 INTEGER PROGRAMMING 

Integer Linear Program is a linear program with the additional requirement that some or 

all of the decision variables must be integer. An integer linear program is said to be an 

all-integer linear program if all of the variables are required to be integer. 

When the phrase “integer” is dropped from a model, it will be left with a two-variable 

linear program. The linear program that results from dropping the integer requirements 

for decision variables is referred to as LP Relaxation of the Integer Linear Program. 

An integer linear programming in which some but not all of the decision variables are 

required to be integer is called a mixed-integer program. When some or all the integer 

variables are only permitted to assume the values zero and one, then we have binary or 
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0-1 integer linear program. Capital budgeting and bank location problems are 

applications of 0-1 integer linear program. 

 

3.15 METHODS FOR SOLVING LINEAR INTEGER PROGRAMMING 

OPTIMIZATION (LIP) PROBLEMS 

The advance of precise optimization methods for LIP optimization problems during the 

last five decades had been very triumphant.  At least, there are three different approaches 

for solving integer programming problems, although they are commonly combined into 

“hybrid” solution procedures in computational practice, which are considered briery as 

follows. 

(i) Cutting planes algorithms based on polyhedral combinatorics. 

(ii) Enumerative approaches and Branch and Bound, Branch and Cut and Branch 

and Price methods. 

(iii) Relaxation and decomposition techniques. 

Cutting Plane algorithms based on polyhedral combinatorics. 

The fundamental idea of polyhedral combinatorics is to replace the constraint set of an 

integer programming problem by an alternative convexification of the feasible points 

and extreme rays of the problem. Both the size and the complexity of the problems 

solved have been increased considerably when polyhedral theory was applied to 

numerical problem solving. 

The general cutting plane approach relaxes initially the integrality restrictions on the 

variables and solves the resulting linear program over the constraint system. 

In case the linear program is unbounded or infeasible, the same is suitable for the integer 

program. In case the solution to the linear program is integer, this is the optimal solution 
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to the integer program. When the linear program has a not integer optimal solution, then 

a facet-identification problem has to be solved. 

Here the objective is to find a linear inequality that “cuts off” the fractional linear 

programming solution while assuring that all feasible integer points satisfy the 

inequality, that is, an inequality that “separates” the fractional point from the 

polyhedron. The terminating conditions for this algorithm are as follows; 

(i). an integer solution is found (the LIP problem is successfully solved). 

(ii). the linear program is infeasible and therefore the integer problem is infeasible. 

(iii). No cut is identified by the facet-identification procedures either because a full 

description of the facial structure is not known, or because the facet-identification 

procedures are inexact, that is, there is no possibility for algorithmically generating cuts 

of a known form. 

In case the cutting plane procedure is terminated because of the third possibility, then, in 

general, the search process has “tightened” the linear programming formulation so that 

the resulting linear programming solution value is much closer to the integer solution 

value. Another strategy for cutting-plane algorithms is to maintain integrality and dual 

feasibility and then to use cuts to obtain primal feasibility. 

Enumerative approaches 

These approaches are known under different names. The most popular of them are 

Branch and Bound, implicit enumeration and divide and conquer. The explicit 

enumeration is the simplest approach to solving a pure integer programming problem by 

means of enumeration of all possibilities, which are finite in number. 

However, due to the “combinatorial explosion” of number of these possibilities resulting 

from the parameter “size", only instances having relative small size could be solved by 
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such an approach within a reasonable computational time limit. Sometimes many 

possibilities can be implicitly eliminated by domination or feasibility arguments. Besides 

straight forward or implicit enumeration, the most commonly used enumerative 

approach is called Branch and Bound (B&B), where the “branching” refers to the 

enumeration part of the solution technique and “bounding” refers to the fathoming of 

possible solutions by comparison to a known upper or lower bound on the solution 

value. A variety of strategies that have been used within the general Branch and Bound 

framework are being described as follows; 

Branch and Cut 

The bounds obtained from the LP-relaxations are often weak, which may cause standard 

B&B algorithms to fail in practice. It is therefore of crucial importance to tighten the 

formulation of the problem to be solved. The idea of dynamically adding the cutting 

planes to the problem is one way of obtaining stronger bounds. Combining cutting plane 

algorithm with B&B results in a very powerful class of Branch and Cut (B&C) 

algorithms. The idea is to generate cutting planes throughout the B&B tree of a standard 

B&B algorithm, in order to get tight bounds at each node. The B&C algorithm consists 

of following major components: 

(a). Automatic reformulation procedures. 

(b). Heuristics which provide “good” feasible integer solutions. 

(c). Cutting plane procedures which tighten the linear programming relaxation to the 

linear integer problem under consideration. 

These components are embedded into a tree-search framework as in the B&B approach 

to integer programming; whenever possible, there is used a fourth component: 
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(d). the procedure permanently fixes variables (by reduced cost implications and logical 

implications) and does comparable conditional fixing throughout the search-tree. 

These four components are combined so as to guarantee optimality of the solution 

obtained at the end of the calculation. 

The increasing empirical evidence indicates that both pure and mixed integer 

programming problems can be solved to proven optimality in economically feasible 

computation times by methods based on the polyhedral structure of integer programs. 

Branch and Price 

The philosophy of Branch and Price (B&P) is similar to the one of Branch and 

Cut. Indeed, the pricing and the cutting are procedures for tightening the LP relaxation 

of the problem. In Branch and Price, the concept of column generation is combined with 

a Branch and Bound algorithm. The simplex algorithm arises at the origin from the 

column generation concept, where only variables with negative reduced costs are 

allowed to enter the basis at each iteration. Given an LP model with a huge number of 

variables, possibly depending exponentially on the instance size, it would be efficient to 

consider only the variables potentially improving the objective function. The main idea 

of column generation is to efficiently determine a variable with negative reduced costs to 

enter the basis, add it to the problem, resolve it and iteratively repeat this process until 

no variable with negative reduced costs exists any more. 

In general, the method is often used for obtaining LP/LIP models with an exponential 

number of variables, which provide tighter bounds than the original compact LP/LIP 

pair. Since column generation is an algorithm for solving LPs, it has to be combined 

with another method in order to solve LIPs to optimality. 
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The B&P algorithm is the result of combining column generation with B&B problems. 

Routing and scheduling are the most suitable areas for application of Branch and Price 

methods. 

From a theoretical point of view, B&C and B&P are closely related, since column 

generation in the primal problem corresponds to cut generation in the dual and vice-

versa. Furthermore, B&C and B&P can be combined in the so called Branch and Cut 

and Price algorithms, where both cuts and variables are dynamically generated. 

Relaxation and Decomposition Method 

There are three wide spread approaches for relaxation of the general LIP problem, which 

are designed to find an upper bound of the optimal value for the maximizing LIP 

problem: Linear Programming (LP) relaxation, Combinatorial relaxation  and 

Lagrangian relaxation. The first two approaches extend the feasible domain without any 

change in the objective function of the problem. The third approach provides another 

maximizing objective function, which has the same or greater value in a fixed feasible 

domain. 

The LP relaxation for the Integer Programming model is obtained by dropping the 

integrality constraints on the variables. For realization of the combinatorial relaxation 

there are at least two approaches exploiting the combinatorial structure of the problem. 

The first approach is based on the concept of valuated matroids, introduced by Dress and 

Wenzel. The other approach, which is called the structural approach, utilizes algorithms 

to compute an upper bound on the objective function and is often based on a graph-

theoretic method. 

Considering LP relaxation, it was mentioned that relaxing the integrality restriction is 

one approach to solution of linear integer programming problems. But, this is not the 
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only approach to relaxing the problem. The idea of dropping constraints can be 

embedded into a more general framework, called Lagrangian relaxation. This is an 

alternative approach, where a set of “complicating” constraints is included into the 

objective function in a Lagrangian fashion (with fixed multipliers that are iteratively 

changed). The complicating constraints are removed from the constraint set. In this way 

the resulting sub-problem could be solved considerably easier. 

To realize a Lagrangian relaxation it is necessary that the structure of the problem being 

solved is clear in order to relax then the constraints that are “complicating”. 

A related approach which attempts to strengthen the bounds of Lagrangian relaxation is 

called Lagrangian decomposition. This approach consists of isolating sets of constraints. 

In this way are obtained separately, easy problems to solve over each of the subsets. The 

dimension of the problem is increased by creating linking variables which link the 

subsets. All Lagrangian approaches are problem dependent. There is developed no 

general theory applicable to say, in arbitrary zero-one or LIP problems underlying 

polyhedral structure of these problems. Thus, in order to use this approach, one must be 

able to both identify specific mathematical structures inherent in the problem and then 

study the polyhedron associated with that structure. 

 

3.16 BRANCH AND BOUND 

The basic concept underlying the branch-and-bound technique is to divide and conquer. 

The process contains dividing (branching) original large problem into smaller sub 

problems and bounding the best solution in the subsets.  

The steps are;  
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(i)  Solve the problem without integer restrictions,  

(ii)  If the solution is integer , then this must be the solution to integer problem,  

(iii) If these variables are not integer valued, the feasible region is divided by adding 

constraints restricting the value of one of the variables that was not integer 

valued,  

(iv) Bounds on the value of the objective function are found and used to help 

determine which sub-problems can be eliminated and when the optimal solution 

has been found,  

(v) If a solution is not optimal, a new sub-problem is selected and branching 

continues.  

Branch and bound (BB or B&B) is a general algorithm for finding optimal solutions of 

various optimization problems, especially in discrete and combinatorial optimization. A 

Branch-and-Bound algorithm consists of a systematic enumeration of all admissible 

solutions, where large subsets of fruitless candidates are discarded en masse, by using 

upper and lower estimated bounds of the quantity being optimized. 

 

3.17 GENERAL DESCRIPTION OF BRANCH AND BOUND 

In order to facilitate a concrete description, it is assumed that the goal is to find 

the minimum value of a function  𝑥 , where 𝑥 ranges over some set 𝑆 of 

admissible solutions (the search space or feasible region). The maximum value of 

𝑓 𝑥  can be found by finding the minimum of  𝑥 = −𝑓 𝑥 . For instance, 𝑆 could be 

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Optimization_(mathematics)
http://en.wikipedia.org/wiki/Search_space
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the set of all possible trip schedules for a plane flight, and 𝑓 𝑥  could be the expected 

revenue for schedule 𝑥.) 

A Branch-and-Bound procedure requires two tools. The first one is a splitting procedure 

that, given a set 𝑆 of candidates, returns two or more smaller sets 𝑆1 , 𝑆2 , …  whose union 

covers𝑆. Make a note of the fact that, the minimum of 𝑓 𝑥  over 𝑆 is min 𝑣1, 𝑣2, …  , 

where each 𝑣𝑖  is the minimum of 𝑓 𝑥  within 𝑆𝑖 . This step is called branching, since its 

recursive application defines a tree structure (the search tree) whose nodes are the 

subsets of 𝑆. 

The second tool is a procedure that computes upper and lower bounds for the minimum 

value of 𝑓(𝑥) within a given subset of 𝑆. This step is called bounding. 

The key idea of the Branch and Bound algorithm is: if the lower bound for some tree 

node (set of candidates) 𝐴 is greater than the upper bound for some other node 𝐵, then 𝐴 

may be safely discarded from the search. This step is called pruning, and is usually 

implemented by maintaining a global variable 𝑚 (shared among all nodes of the tree) 

that records the minimum upper bound seen among all sub regions examined so far. Any 

node whose lower bound is greater than 𝑚 can be discarded. 

The recursion stops when the current candidate set 𝑆 is reduced to a single element, or 

when the upper bound for set 𝑆 matches the lower bound. Either way, any element 

of 𝑆 will be a minimum of the function within 𝑆. 

For the purpose of this research, the Branch and Bound knapsack would be employed in 

solving the problem. 

 

http://en.wikipedia.org/wiki/Tree_structure
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3.18  SENSITIVITY ANALYSIS 

A technique used to determine how different values of an independent variable will 

impact a particular dependent variable under a given set of assumptions. This technique 

is used within specific boundaries that will depend on one or more input variables. 

 The Sensitivity analysis is intended to study the effect of changes in the parameters of 

the Linear Programming (LP) model on the optimal solution. Such analysis is regarded 

as an integral part of the (extended) solution of any LP problem. The sensitivity analysis 

gives the model a lively characteristic that allows the analyst to study the manners of the 

optimal solution as a result of making changes in the model's parameters. The decisive 

objective of the analysis is to obtain information about possible new optimum solutions 

(related to changes in the parameters) with minimal additional computations. 

Sensitivity Problem 1: How much change is allowed in the objective function 

coefficients? 

Changes in the objective function coefficients can affect only the slope of the straight 

line representing it. The optimum corner point of a given solution space depends totally 

on the slope of the objective function. 

 

Sensitivity Problem 2: How much is the worth of a resource unit? 

The problem deals with the study of the sensitivity of the optimum solution to changes 

in the right-hand side of the constraints. If the constraints represent a limited resource, 

the problem reduces to studying the effect of changing the accessibility of the resource. 

The precise goal of this sensitivity problem is to settle on the effect of changes in the 

right-hand side of constraints on the optimum objective value. In core, the results are 
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given as preset ranges of the right-hand side within which the objective optimum value 

will change (increase or decrease) at a given steady rate. 
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CHAPTER FOUR 

DATA COLLECTION AND ANALYSIS 

4.0  INTRODUCTION 

The study area for this research is the Sekyere Central District Assembly. The Assembly 

is responsible for most development projects in the District. Budget is being proposed by 

the Assembly concerning projects within certain period of time. 

Consideration is given to a computational lesson of the branch and Bound algorithm 

applied to Knapsack problem in this chapter. 

Reflection is given to a 0-1 Knapsack Problem where 𝑛 ⊂ 𝑁 such that   ≤ 𝑏𝑛
𝑖=1 , where 

each item has a profit or cost 𝑐𝑖  and a weight 𝑤𝑖 . The task is to choose a subset of items 

whose total weight does not exceed the Knapsack capacity 𝑏, and whose total profit is 

the maximum.   

Generally, it assumed that all input data are positive integers. With the knowledge of the 

binary decision variable 𝑥𝑖  with 𝑥𝑖 = 1, if item 𝑖 is selected, and 𝑥𝑖 = 0, if not, an 

integer linear programming is obtained: 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑍 =  𝑐𝑖𝑥𝑖

𝑛

𝑖=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝑤𝑖𝑥𝑖 ≤ 𝑏𝑛
𝑖=1 , where 𝑥 ∈  0, 1 𝑁 , 𝑖 ∈ 𝑍+. 

𝑤𝑖 < 𝑏 for 𝑖 ∈ 𝑍+ may be assumed to make sure that each item measured fits into the 

Knapsack, and that  𝑐𝑖 > 𝑏𝑛
𝑖=1  to avoid insignificant solution. 

The Knapsack problem becomes applicable in real life situations at the Sekyere Central 

District Assembly in selecting of communities for a unit classroom building in the 

District.  The Assembly intends to optimize the land capacity allocated for the Unit 
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classroom within the District so that the District gets the best usage of land at a minimal 

cost. 

Several lands at different locations have been considered for the construction of the Unit 

classroom within the District but a suitable land needs to be developed to pave way for 

the construction of the Building. Though the lands have been allocated already but the 

Knapsack problem becomes useful in getting the optimal land for the construction of the 

Unit classroom block.  

 

4.1  DATA COLLECTION AND ANALYSIS 

The analysis will be centered on data available at the Budget office of the Sekyere 

Central District Assembly with Nsuta as the District capital in the Ashanti Region.  

In an effort to develop the educational infrastructure in the District, the Assembly 

proposed a budget of 𝐺𝐻¢360,000.00 for the development of lands and the construction 

of Unit classroom buildings. These buildings are to be constructed at ten different towns 

within the district, whose estimated capacities in terms of the number of unit classrooms 

and development cost are given in the table 4.1.  The respective towns to be considered 

within the District are Kwaman, Nsuta, Beposo, Bonkuro, Kurowe, Appiah Kurom, 

Kyekyebon, Asasebonso, Jeduakoo and Atwea,  
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Table 4.1: Respective towns with their Budget allocations 

Towns Capacity (unit classroom) Cost (GH¢ 1000) 

Kwaman 3 74 

Nsuta 6 150 

Beposo 9 210 

Bonkuro 3 62 

Kurowe 3 92 

Appiah Kurom 6 130 

Kyekyebon 3 84 

Asasebonso 6 125 

Jeduako 3 68 

Atwea 6 134 

 

A unit classroom is made up of the number of study rooms, an office, a store, staff 

common room and a toilet facility. The type of unit classroom to be built in each town 

was based on the population, existing educational infrastructures. All three unit 

classrooms are for JHS, six unit classroom is for the lower and upper primary schools, 

and the nine unit classroom is for both primary and JHS. The difference in the cost for 

the same unit classroom was due to different construction works to be done on the 

various lands. Appendix 1 provides the breakdown of the budget of associated cost for 

each unit classroom for the various locations.  

The dilemma here is to choose suitable locations in such a way that the optimal capacity 

would be attained without exceeding the budget allocated for project. 
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With a link to the Knapsack Problem model, the holding capacity of the resource 

maximum value is the Assembly‟s budget. The various items to be measured are the 

different sites (lands) that can be developed for the project, the weight of any item is the 

cost of developing and construction of the project and the value of each item is the 

capacity of each site. 

The problem can therefore be modeled as:  

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐶 =  𝑐𝑖𝑥𝑖

𝑛

𝑖=1

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝑤𝑖𝑥𝑖 ≤ 𝑊

𝑛

𝑖=1

,     𝑥𝑖 ∈  0, 1 𝑁 ,   𝑖 = 1, …… , 𝑛 

Where; 

𝐶 = Total capacity 

𝑐𝑖 = Capacity of each item or site 

𝑥𝑖 = Number  of sites developed 

𝑤𝑖 = Cost of developing  a site 

𝑊 = Total budget for the development  (resource limit ) 

Thus, 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐶 = 3𝑋1 + 6𝑋2 + 9𝑋3 + 3𝑋4 + 3𝑋5 + 6𝑋6 + 3𝑋7 + 6𝑋8 + 3𝑋9 + 6𝑋10  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 74𝑋1 + 150𝑋2 + 210𝑋3 + 62𝑋4 + 92𝑋5 + 130𝑋6 + 84𝑋7 + 125𝑋8 + 68𝑋9

+ 134𝑋10 ≤ 360  

A Branch and Bound algorithm model is applied to carry out the computation of the 

model. The items to be considered are seven (which means 𝑛 = 10) consisting of 

Kwaman, Nsuta, Beposo, Bonkuro, Kurowe, Appiah Kurom, Kyekyebon, Asasebonso, 

Jeduakoo and Atwea. 
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The weights of each item are 𝑤1 = 74, 𝑤2 = 150, 𝑤3 = 210, 𝑤4 = 62, 𝑤5 = 92, 𝑤6 =

130, 𝑤7 = 84, 𝑤8 = 125, 𝑤9 = 68, 𝑤10 = 134 whiles the values of each item are 𝑋1 =

3, 𝑋2 = 6, 𝑋3 = 9, 𝑋4 = 3, 𝑋5 = 3, 𝑋6 = 6, 𝑋7 = 3, 𝑋8 = 6, 𝑋9 = 3, 𝑋10 = 6 and the 

maximum available budget fund 𝑊 = 360. 

Note: For locations 

X1: Kwaman  X6: Appiahkurom 

X2: Nsuta   X7: Kyekyebon 

X3: Beposo  X8: Asasebonso 

X4: Bonkuro  X9: Jeduako 

X5: Kurowe  X10: Atwea 

 

4.2  RESULTS OF THE ANALYSIS 

Results of the analysis in obtaining maximum number of unit classroom buildings at 

selected location in the district are shown in the tables below. The tables provide a 

breakdown of the associated cost in building the unit classroom. The optimal selection 

of unit classrooms yielded three hundred and seventeen thousand Ghana Cedis 

(GH¢317,000). The amount is able to construct a one 3-unit classroom building at 

Bonkuro and two 6-unit classroom building at Appiah Kurom and asasebonso 

respectively. Thus the total number of classroom to be built out of budget is 15. This 

means that out of the total budget of Three Hundred and Sixty Thousand Ghana Cedis 

(GH¢ 360,000) which was proposed by the Assembly, an excess amount of Forty Three 

Thousand Ghana Cedis (GH¢ 43,000) was left. This excess amount can be used to 

undertake other project in the District. Different budget is allocated for the construction 
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of a 6-unit classroom at appiahkurom and Asasebonso owing to their site location and 

kind of construction works to undertake. The budget allocated for the different locations 

that was not selected can be found in the Appendices. 
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Tables for selected locations for the construction of unit classrooms 

Table 4.2: Breakdown of Budget allocation for 3-unit classroom at Bonkuro 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Item 

 

Description 

Bonkuro 

Amount 

GH¢ 

 Construction of 1 no. 3 unit classroom with office, store, 

toilet facility and staff common room 

 

A Preliminaries 1,250 

B Excavation and Earthworks 19,382 

C Concrete Works 5,362 

D Block works 3,016 

E Roofing to summary 2,383 

F Carpentry Works 8,235 

G Joinery/Walling 293 

H Metal works 7,215 

I Plastering works /floor 3,142 

J Painting/decoration 2,900 

K External works 4,212 

L Construction of ramps 150 

M Electrical works 3,189 

N Additional Amount  1,271 

 Total 62,000 
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The maximum amount required constructing a 3-unit classroom building at Bonkuro is 

sixty two thousand Ghana Cedis. This is the amount allocated to construct the 3-unit 

classroom building with an office, a store, staff common room and toilet facilities. 

Required amount needed to acquire various items in the construction of the 3-unit 

classroom have been shown in table 4.2 above.    
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Table 4.3: Breakdown of Budget allocation for 6-unit classroom at Appiahkurom 

 

 

 

  

Item 

 

Description 

Appiah Kurom 

Amount 

GH¢ 

 Construction of 1 no. 6 unit classroom with office, store, 

toilet facility and staff common room 

 

A Preliminaries 1,045 

B Excavation and Earthworks 26,321 

C Concrete Works 8,123 

D Block works 5,179 

E Roofing to summary 6,219 

F Carpentry Works 6,321 

G Joinery/Walling 16,091 

H Metal works 4,892 

I Plastering works /floor 13,010 

J Painting/decoration 3,952 

K External works 3,289 

L Construction of ramps 289 

M Electrical works 4,358 

N Additional Amount 30,911 

 Total 130,000 
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The maximum amount required constructing a 6-unit classroom building at 

Appiahkurom is One Hundred and Thirty Thousand Ghana Cedis (GH¢ 130,000). This 

amount allocated in constructing the 6-unit classroom building with an office, a store, 

staff common room and toilet facilities. Required amount needed to purchase various 

items in the construction of the 6-unit classroom have been shown in table 4.3 above. 
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Table 4.4: Breakdown of Budget allocation for 6-unit classroom at Asasebonso 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Item 

 

Description 

Asasebonso 

Amount 

GH¢ 

 Construction of 1 no. 6 unit classroom with office, store, 

toilet facility and staff common room 

 

A Preliminaries 2,089 

B Excavation and Earthworks 35,105 

C Concrete Works 11,254 

D Block works 7,925 

E Roofing to summary 8,710 

F Carpentry Works 8,590 

G Joinery/Walling 18,127 

H Metal works 510 

I Plastering works /floor 14,328 

J Painting/decoration 5,610 

K External works 6,000 

L Construction of ramps 345 

M Electrical works 4,912 

N Additional Amount 1,495 

 Total 125,000 
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The maximum amount required constructing a 6-unit classroom building at Asasebonso 

is One Hundred and Twenty Five Thousand Ghana Cedis (GH¢ 125,000). This is the 

amount allocated to construct the 6-unit classroom building with an office, a store, staff 

common room and toilet facilities by the Assembly. Required amount needed to acquire 

various items in the construction of the 3-unit classroom have been shown in table 4.2 

above. 

 

4.3 SENSITIVITY ANALYSIS ON THE WHOLE SOLUTION 

The Sensitivity Analysis is often used for integer linear programming problem than the 

Linear Programming (LP) problem. That is, a very small change in one of the 

coefficients in the constraints can cause a reasonably large change in the optimal value. 

In the case of our study, any time there is a change in any of the amount of the budget 

allocation, and then the integer linear program problem has to be resolved with slight 

variation in the coefficients before an optimal solution is chosen for implementation.  
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CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATIONS 

5.0 INTRODUCTION 

The selection of sites in construction of unit classroom buildings has been described as a 

0-1 knapsack problem. Considering a 0-1 knapsack problem as an NP hard, a Branch 

and Bound method was used to solve the problem of selecting sites for construction of 

unit classroom. 

5.1  CONCLUSION 

The research sought to use the Knapsack problem for selecting required sites in critical 

situations such as construction of school buildings. However, it can be applied to any 

situation where allocation of funds in the sector of development becomes a serious 

problem. A minimum amount of three hundred and seventeen thousand Ghana 

cedis(GH¢317,000) was obtained in construction of a one 3-unit and two 6-unit 

classroom buildings at three different locations within the district to enhance the 

educational development.  

 

5.2  RECOMMENDATIONS 

1. The use of the quantitative management software is apparent and methodical as 

compared to chance method and should be used in the allocation of funds.  

 

2. Excess amount of (GH¢43,000) can be used by the Sekyere Central District Assembly 

to initiate different developmental project. 
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APPENDICES 

Table A.1: Breakdown of Budget Allocations for Various Sites 

Ite

m 

Description X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 

A Preliminarie

s 

1,32

0 

2,68

0 

5,68

0 

1,25 1,32

0 

1,04

5 

1,32

0 

2,08

9 

132

0 

2,68

0 

B Excavation 

and 

Earthworks 

22,7

23 

44,1

00 

74,1

00 

19,3

82 

25,5

78 

26,3

21 

23,2

87 

35,1

05 

20,1

52 

46,1

09 

C Concrete 

works 

6,26

3 

12,9

70 

13,9

70 

5,36

2 

9,28

7 

8,12

3 

7,54

0 

11,2

54 

6,26

3 

9,87

0 

D Block works 5,01

6 

8,96

0 

9,96

0 

3,01

6 

7,54

6 

5,17

9 

7,54

6 

7,92

5 

5,01

6 

7,32

8 

E Roofing to 

summary 

3,38

3 

8,80

0 

9,80

0 

2,38

3 

5,62

4 

6,21

9 

5,12

9 

8,71

0 

4,21

5 

8,14

7 

F Carpentry 

works  

4,67

9 

8,59

0 

9,59

0 

8,23

5 

5,12

4 

6,32

1 

5,12

4 

8,59

0 

4,67

9 

7,32

5 

G Joinery/Wal

ling 

10,8

91 

22,9

80 

39,9

80 

7,21

5 

11,2

98 

16,0

91 

10,0

98 

18,1

27 

9,25

4 

22,9

80 

H Metal works 275 619 780 293 450 4,89

2 

379 510 275 5,21

0 

I Plastering 

work/floor 

8,16

2 

17,0

10 

18,5

00 

3,14

2 

9,25

4 

13,0

10 

8,32

1 

14,3

28 

7,10

5 

15,2

19 
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J Painting/dec

oration 

3,69

2 

5,61

0 

6,95

8 

2,90

0 

5,45

4 

3,95

2 

4,95

8 

5,61

0 

3,20

1 

4,01

7 

K External 

works 

3,00

0 

6,00

0 

7,00

0 

4,21

2 

4,12

9 

3,28

9 

4,09

2 

6,00

0 

285 4,98

7 

L Constructio

n of ramps 

150 345 566 150 350 289 350 345 180 345 

M Electrical 

works 

3,18

9 

5,88

8 

9,95

3 

3,18

9 

5,24

0 

4,35

8 

4,89

0 

4,91

2 

4,21

0 

4,32

8 

N Surplus 

Amount 

1,25

9 

5,44

8 

3,16

3 

1,27

1 

1,34

6 

30,9

11 

966 1,49

5 

1,84

5 

1,45

5 

 Total 74,0

00 

150,

000 

210,

000 

62,0

00 

92,0

00 

130,

000 

84,0

00 

125,

000 

68,0

00 

134,

000 
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Table A.2 Description of 3-unit classrooms 

Description Quantity 

Number of classrooms 3 

Staff common room 1 

Office 1 

Store 1 

Toilet (4 seater) & Washroom facility  1 

 

Table A.3: Description of 6-unit classrooms 

Description Quantity 

Number of classrooms 6 

Staff common room 1 

Office 1 

Store 1 

Toilet (4 seater) & Washroom facility 1 

 

Table A.4: Description of 9-unit classrooms 

Description Quantity 

Number of classrooms 9 

Staff common room 1 

Office 1 

Store 1 

Toilet (6 seater) & Washroom facility  1 
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Table A.5: Optimal Solutions for the various iterative stages (output from QM 

software) 

Iterati

on 

Lev

el 

Added  

Constr

aint 

Sol. 

Type 

Sol. 

Val

ue 

X

1 

X

2 

X

3 

X

4 

X

5 

X

6 

X

7 

X

8 

X

9 

X

10 

Co

st 

   Optima

l 

15 0 0 0 1 0 1 0 1 0 0 31

7 

1 7 X5<= 

0 

INTEG

ER 

15 0 0 0 1 0 1 0 1 0 0 31

7 

2 8 X6<= 

0 

Subopti

mal 

12 0 0 0 1 1 0 0 1 0 0 27

9 

3 9 X8<=0 Subopti

mal 

12 0 0 0 1 1 1 0 0 0 0 28

4 

4 10 X4<= 

0 

INTEG

ER 

15 0 0 0 0 1 1 0 1 0 0 34

7 

5 10 X5<= 

0 

INTEG

ER 

15 0 0 0 0 0 1 1 1 0 0 33

9 

6 8 X5<= 

0 

INTEG

ER 

15 0 1 0 1 0 0 0 1 0 0 33

7 

7 10 X5<= 

0 

INTEG

ER 

15 0 1 0 0 0 0 1 1 0 0 35

9 

8 9 X5<= 

0 

INTEG

ER 

15 0 1 0 1 0 1 0 0 0 0 34

2 
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9 7 X5<= 

0 

INTEG

ER 

15 1 0 0 1 0 0 1 1 0 0 34

5 

10 8 X7<= 

0 

INTEG

ER 

15 1 0 0 1 1 0 0 1 0 0 35

3 

11 10 X5<= 

0 

INTEG

ER 

15 1 1 0 0 0 0 0 1 0 0 34

9 

12 8 X5<= 

0 

INTEG

ER 

15 1 0 0 1 0 1 1 0 0 0 35

0 

13 9 X7<= 

0  

INTEG

ER 

15 1 0 0 1 1 1 0 0 0 0 35

8 

14 10 X5<= 

0 

INTEG

ER 

15 1 1 0 0 0 1 0 0 0 0 35

4 

15 10 X5<= 

0 

INTEG

ER 

15 1 0 0 0 0 1 0 1 0 0 32

9 

16 8 X5<= 

0 

INTEG

ER 

15 1 0 1 1 0 0 0 0 0 0 34

6 

17 9 X5<= 

0  

INTEG

ER 

15 0 0 1 1 0 0 1 0 0 0 35

6 

18 6 X2>= 

1 

INTEG

ER 

15 0 1 1 0 0 0 0 0 0 0 36

0 

19 10 X5<= 

0 

INTEG

ER 

15 0 0 1 0 0 1 0 0 0 0 34

0 

20 10 X5<= INTEG 15 0 0 1 0 0 0 0 1 0 0 33
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0 ER 5 

21 7 X5<= 

0 

INTEG

ER 

15 1 0 0 1 0 0 0 1 1 0 32

9 

22 8 X1<= 

0 

INTEG

ER 

15 0 0 0 1 1 0 0 1 1 0 34

7 

23 9 X8<= 

0 

Subopti

mal 

12 1 0 0 1 1 0 0 0 1 0 29

6 

24 10 X4<= 

0 

INTEG

ER 

15 1 0 0 0 1 0 0 1 1 0 35

9 

25 8 X5<= 

0 

INTEG

ER 

15 0 0 0 1 0 0 1 1 1 0 33

9 

26 10 X5<= 

0 

INTEG

ER 

15 1 0 0 0 0 0 1 1 1 0 35

1 

27 8 X5<= 

0 

INTEG

ER 

15 1 1 0 1 0 0 0 0 1 0 38

4 

28 10 X5<= 

0 

INTEG

ER 

15 0 1 0 0 0 0 0 1 1 0 34

3 

29 9 X5<= 

0 

INTEG

ER 

15 0 0 1 1 0 0 0 0 1 0 34

0 

30 10 X5<= 

0 

INTEG

ER 

15 1 0 1 0 0 0 0 0 1 0 35

2 

31 8 X5<= 

0 

INTEG

ER 

15 1 0 0 1 0 1 0 0 1 0 33

4 
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32 9 X1<= 

0 

INTEG

ER 

15 0 0 0 1 1 1 0 0 1 0 35

2 

33 9 X5<= 

0 

INTEG

ER 

15 0 0 0 1 0 1 1 0 1 0 34

4 

34 10 X5<= 

0 

INTEG

ER 

15 1 0 0 0 0 1 1 0 1 0 35

6 

35 10 X5<= 

0 

INTEG

ER 

15 0 1 0 0 0 1 0 0 1 0 34

8 

36 10 X5<= 

0 

INTEG

ER 

15 0 0 0 0 0 1 0 1 1 0 32

3 

37 8 X5<= 

0 

INTEG

ER 

15 0 0 0 1 0 0 0 1 0 1 32

1 

38 9 X8<= 

0 

Subopti

mal 

12 0 0 0 1 1 0 0 0 0 1 28

8 

39 10 X4<= 

0 

INTEG

ER 

15 0 0 0 0 1 0 0 1 0 1 35

1 

40 10 X5<= 

0 

INTEG

ER 

15 0 0 0 0 0 0 1 1 0 1 34

3 

41 9 X5<= 

0 

INTEG

ER 

15 0 1 0 1 0 0 0 0 0 1 34

6 

42 8 X5<= 

0 

INTEG

ER 

15 1 0 0 1 0 0 1 0 0 1 35

4 

43 10 X5<= INTEG 15 1 1 0 0 0 0 0 0 0 1 35
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0 ER 8 

44 10 X5<= 

0 

INTEG

ER 

15 1 0 0 0 0 0 0 1 0 1 33

3 

45 10 X5<= 

0 

INTEG

ER 

15 0 0 1 0 0 0 0 0 0 1 34

4 

46 8 X5<= 

0 

INTEG

ER 

15 1 0 0 1 0 0 0 0 1 1 33

8 

47 9 X1<= 

0 

INTEG

ER 

15 0 0 0 1 1 0 0 0 1 1 35

6 

48 9 X5<= 

0 

INTEG

ER 

15 0 0 0 1 0 0 1 0 1 1 34

8 

49 8 X1>= 

1 

INTEG

ER 

15 1 0 0 0 0 0 1 0 1 1 36

0 

50 10 X5<= 

0 

INTEG

ER 

15 0 1 0 0 0 0 0 0 1 1 35

2 

51 10 X5<= 

0 

INTEG

ER 

15 0 0 0 0 0 0 0 1 1 1 32

7 

52 9 X5<= 

0 

INTEG

ER 

15 0 0 0 1 0 1 0 0 0 1 32

6 

53 10 X4<= 

0 

INTEG

ER 

15 0 0 0 0 1 1 0 0 0 1 35

6 

54 10 X5<= 

0 

INTEG

ER 

15 0 0 0 0 0 1 1 0 0 1 34

8 
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55 10 X5<= 

0 

INTEG

ER 

15 1 0 0 0 0 1 0 0 0 1 33

8 

56 10 X5<= 

0 

INTEG

ER 

15 0 0 0 0 0 1 0 0 1 1 33

2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


