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ABSTRACT 

The efficient utilization of bandwidth in campus networks is a major traffic engineering issue. 

It requires a complete knowledge of the underlying physical network architecture as well a 

means to automate or reactively and proactively program the network. The static nature of 

traditional network creates a hurdle that must be overcome to achieve the above.  The 

Software Defined Network architecture proposes a novel way to automate, program and 

dynamically configure computer networks. This work uses the VMware virtualization 

software and the GNS3 network emulator to convert a traditional campus network into a 

Software Defined-based campus network. A data plane made up of software-based replicas of 

network devices is designed and configured to connect to a controller software. A network 

application scheme is implemented by leveraging the Hierarchical Token Bucket Queuing 

Discipline which automatically programs bandwidth allocation at the data plane through the 

controller based on traffic demands. The functionality of the architecture is tested by carrying 

out a number of parallel-connections to simulate changing traffic patterns. This is done using 

the Iperf Application. The results show the conversion of a traditional campus network into a 

Software Defined-based campus network. It also depicts the complete emulation of the entire 

Software Defined-based campus network. At the data plane of the emulated network, devices 

are able to forward packets to one another with the most active port forwarding about 9,000 

packets. The controller obtains a global of all 11-network devices in the emulated network. 

The latency between the controller and the software defined switches at the data plane ranges 

between 50 and 62.5 milliseconds. The throughput between the controller and the software 

defined switches at the plane ranges between 2 and 9 Mbps. Application Plane to Control 

Plane communication in the emulated network is executed in an average of 30 milliseconds 

and bandwidth utilization occurs in a minimum of 11seconds and peaks at 27.5 seconds. It 

however becomes steady at 17 seconds as traffic patterns vary. 
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CHAPTER ONE 

INTRODUCTION 

1.1 BACKGROUND OF THE STUDY 

Network Technology is currently going through a third major shift. The first was the shift 

from circuit switching to packet switching. This involved the use of the packet as the main 

means of transmitting a message from one device to another. The second was the shift from 

the hard-wired to the wireless means of switching which saw the introduction of Wi-Fi 

technology, 3G,4G and 5G technologies. 

The third revolution in network technology has to do with a shift from the hardware-based 

mode of networking to a software-based mode of networking [1] This transition is taking 

place because of the limitations that exist in current networks. 

 
Figure 1.1 A typical enterprise network.  
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Figure 1.1 represents a typical enterprise network that is responsible for providing different 

technological services such as IP video conferencing, video surveillance, printing, scanning 

and internet browsing for various users. It provides these services through a set of network 

devices such as switches which facilitate communication between various users on different 

parts of the network. 

Existing computer networks like Figure 1.1 have a number of limitations. 

These include network provisioning complexity, tightly managed network functions, 

technology specific connections and purpose-built hardware which carry out each network 

function. Such an environment could also consist of multivendor equipment manufacturers 

with their own means of orchestrating and controlling specific equipment. Current networks 

are also limited by the fact that the applications which run on the devices in the network are 

programmed to suit current network needs [2]. 

Network Provisioning Complexity occurs mainly due to the difficulty involved in preparing 

and equipping existing networks when there is the need to add new devices or configure new 

services. Such tasks require a very good understanding of the state of the existing network 

and a proper anticipation of the effects of any change on the state of the network. This is a 

difficult process which requires days or weeks of planning to properly execute. As a result, 

network provisioning in current networks happens at off-peak hours to forestall any shutdown 

and unanticipated changes. 

The control logic of most devices in existing networks consists of many protocols which are 

responsible for carrying out forwarding of packets. Also, with all of these protocols and 

algorithms running at the same time on the same devices, there is a propensity for them to 

freeze out and reboot causing frequent down times which affect communication. In order to 

change any network function, the existing protocol will have to be manually deleted and the 
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new change effected by manual configuration on every device in the network. This creates a 

situation where the management of these protocols becomes very difficult. 

The connections between devices in current networks are technology specific. Two devices in 

a typical current network would have to run on software manufactured by the same vendor in 

order to work together effectively. This poses a problem especially where there is the need to 

integrate services from different providers who run different proprietary technologies. Also, 

network engineers would require knowledge of a vast range of technologies in order to 

manage a network if it consists of many different equipment running on different 

technologies. This problem leads to issues with service orchestration. This arises from the 

fact that multiple equipment vendors have their own predefined policies for coordinating the 

systems that run in their equipment. There are thus various means of coordinating the 

configuration of the services provided by different equipment vendors in one network 

environment which poses problems for network engineers. 

Network functions such as switching, routing and intrusion detection in current networks are 

typically implemented in different equipment. Thus, it is not too strange to find routers, 

switches, firewalls and load balancers in different portions of the design of current networks.  

As the network gets larger the topology becomes more complex due to the need for more 

planning and configuration. This creates problems with implementation, troubleshooting and 

fault isolation. 

The applications that run on the back of current networks are designed in tandem with 

predefined network functions. This means that the applications and how they function are 

inflexible and cannot be altered if the underlying network function changes. 
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The above issues occur primarily because the decision-making and the forwarding functions 

of devices used in existing computer networks are implemented in a distributed fashioned. 

Each router, switch or firewall has independent control and forwarding functions 

implemented in them. In a network that has 50 routers, each of them will have to be 

configured to facilitate control and forwarding independently. All of these issues make 

existing computer networks static and inflexible. 

1.2. RESEARCH PROBLEM 

The Kwame Nkrumah University of Science and Technology plays hosts to a campus 

enterprise network [3]. The campus network is split up into two main parts; the faculty 

portion consisting of all the colleges and the residential portion consisting of halls of 

residence and the residences of the university’s workers. Both portions of the University’s 

network have a fixed bandwidth allocation to facilitate networkwide communication. This 

static assignment of bandwidth for communication creates a problem. Majority of students 

and lecturers find themselves in the faculty area in the day. During this period, traffic 

volumes at that portion of the network increases affecting network performance. This is seen 

in difficulty to browse the web, download content or stream resources for teaching and 

learning. The reverse is seen in the evening as the concentration of traffic shifts to the halls of 

residence. The devices that make up the Local Area Network of the school do not have the 

ability to dynamically prioritize and utilize the allocated bandwidth to facilitate 

communication in the network. In as much as there can be a manual reconfiguration of these 

devices it would require systematic planning, addition of new nodes, constant analysis of 

traffic and vast knowledge from technical experts. The reiteration of such processes every 

single day would be tiring and costly. Without recourse to increasing resources or 

overhauling existing infrastructure a way must be found to efficiently use the bandwidth 

already allocated in a dynamic need-based manner to ensure optimal performance. This 
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situation provides an opportunity for the proposal of a new architecture that will utilize the 

already existing bandwidth at both portions of the network based on the numbers of students, 

lecturers and staff members who are accessing the network at any place at any point in time. 

1.3 MOTIVATION 

Software Defined Networking presents an approach to solve the major limitations that plague 

existing campus networks. It seeks to provide a programmable open scale approach to 

designing, building and managing networks. 

Through the principle of plane separation, it provides a centralized view of distributed 

network states. 

The Software Defined Networking architecture consists of two planes. These are the control 

and data planes. The control plane has a central intelligent agent called a controller that 

implements the logical, decision-making aspects of a network through programmed network 

policies. The Data Plane consists of programmable OpenFlow switches that facilitate 

communication between the controller and network devices. 

A unified and global view of networks as envisaged by the SDN paradigm creates a powerful 

centralized platform for efficiently managing networks. 

A centralized, self-provisioning network will have the ability to implement changes without 

the need for the tortuous planning and anticipation that is needed in carrying out provisioning 

in current networks. Automating of network protocols provides an easier way to configure, 

run and change the protocols that make the network devices function. It provides a way to 

dynamically configure network protocols on a needs-based approach.  
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Adopting a programmable approach to networking means that functions such as routing, 

switching and firewalling can be implemented in few devices eliminating the need to buy 

specific devices for specific network functions. 

Traffic Engineering is one major aspect of networking in which Software Defined 

Networking architecture and principles can be applied. Traffic Engineering basically seeks to 

manage the flow of traffic within a network by taking stock of the topology and changing 

traffic patterns in order to prevent network resources from being constrained. 

Increasing volumes of traffic in networks places a strain on bandwidth which is one of the 

most important resources in a network. Software Defined Networking proposes a way of 

efficiently utilizing bandwidth by using the controller to dynamically allocate capacity on a 

needs-based basis. The proposition seeks to use the controller’s knowledge of the 

characteristics of the links in the network topology to respond to changes in traffic volumes 

in various portions of the network by prioritizing the bandwidth required for traffic flow in 

the network. [4] 

 
Figure 1.2 The Software Defined Networking Architecture  
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This work seeks to propose the Software Defined Networking approach to dynamically 

utilize the bandwidth allocated to campus network, by using the Local Area Network of the 

Kwame Nkrumah University of Science and Technology as a case study.  

1.4 RESEARCH OBEJCTIVES 

Goal  

To develop a dynamic approach to bandwidth utilization in a campus network using the 

concepts of Software Defined Networking and the Hierarchical Token Bucket Queuing 

Discipline. 

Specific Objectives  

1. Evaluate the existing network infrastructure of a campus network (KNUST)  

2. Convert the traditional network infrastructure of KNUST into a Software Defined- 

based campus network and emulate the separation of the control and data plane 

functions. 

3. Demonstrate the forwarding of packets at the data plane of the Software Defined-

based campus network. 

4. Demonstrate that communication occurs between the control and data planes of the 

Software Defined-based campus network. 

5. Develop a scheme that can dynamically utilize bandwidth within the Software 

Defined-based campus network 
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1.5 SIGNIFICANCE AND CONTRIBUTIONS 

This works seeks to leverage the virtual emulation tools GSN3 and VMware as the basis for 

designing and testing functional parts of the Software Defined Networking Architecture.  

This work would present a real-world working prototype that can be used as the foundation 

for evolving the existing Local Area Network Infrastructure of a campus network (KNUST) 

into a software based one. 

This work would demonstrate how the OpenVswitch leverages the Hierarchical Token 

Bucket Queuing Discipline as a theoretical basis for dynamic bandwidth utilization in campus 

networks. 

1.6 ORGANISATION OF THESIS 

This work is organised into five main sections 

• Chapter 1 provides a general introduction and motivation for this work. It also 

presents the research problem, goal and specific objectives as well as a proposal of the tools 

to be used to obtain results 

• Chapter 2 is a review of relevant works with respect to the history of networks and the 

need for Software Defined Networking. It also takes a look at various aspect of the Software 

Defined Networking architecture and reviews the implementations of Software Defined 

Networking in enterprise and carrier networks. 

• Chapter 3 discusses the methodology and theory used in dynamic bandwidth 

utilization in a Software Defined Network Architecture. 

• Chapter 4 discusses the results obtained from the implementation of the dynamic 

approach to bandwidth utilization. 
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• Chapter 5 takes a look at the conclusions that can be drawn from the work. It also 

takes a look at further work which can be done within the context of Software Defined 

Network Architectures. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.0 INTRODUCTION 

This chapter presents a review of works related to Software Defined Networking. The 

Chapter is divided into three main sections. The first section reviews the need for the 

Software Defined Networking paradigm and introduces the components of the SDN 

architecture. The second section describes into detail the various parts of the SDN 

architecture by taking into consideration the devices and protocols which make up each layer 

of the architecture. It also delves into network virtualization which is the enabler for the 

design of Software Defined Networks and the concept of Traffic Engineering in SDNs. The 

third section of this work is a review of research into how the SDN architecture and design 

principles can be applied to enterprise and carrier networks. 

2.1 GENERAL OVERVIEW OF SOFTWARE DEFINED NETWORKING 

For decades, computer networks have been built on an interconnection of network devices 

such as routers, switches, firewalls and end-user equipment like the personal computers, 

printers and IP phones.  These devices are the foundation of enterprise and carrier networks. 

A typical network device like a router device consists of a hardware portion and a software 

portion. 
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Figure 2.1 Typical router architecture 

The hardware portion known as the data plane, consists of input ports which are linked to 

output ports via a switching fabric. The switching fabric usually makes use of shared memory 

and data buffers [5] to move data from source to destination port. 

The software portion of the router consists of a routing processor which implements routing, 

refreshes, routing tables and keep information about connected links. It also is responsible for 

populating the router’s forwarding table.  

Thus, both hardware and software functions are tightly baked into a typical network device.  

In a traditional computer network as seen in Figure 2.1[6], the network element is the one-

stop site for all control, management and user data. 
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Figure 2.2 Traditional Network Architecture.  

Even though the traditional network architecture has facilitated the rise of the information 

age, the fundamental basis for its design poses a number of issues which have drawn the 

attention of researchers and industry players. 

In [7], protocol complexity, challenging and error-prone network management, performance 

tuning and internet ossification have been described as problems that exist in traditional 

networks. Internet Ossification refers to the extreme difficulty of the internet to evolve in 

terms of the hardware, rules and efficiency due to its relatively static nature. 

Other problems faced by traditional networks include vendor dependence, the rise of cloud 

computing services and the advent of the big data movement which encompasses the Internet 

of Things, Artificial Intelligent and Machine Learning Technologies. 

Software Defined Networking is a new paradigm in computer networks which seeks to make 

enterprise and carrier networks programmable, highly automated and easily controllable [8]. 
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In [9], the authors describe a Software Defined Network as a network that carries out two 

main functions. Firstly, it separates the control plane from the data plane. Secondly, it allows 

multiple data plane devices to be controlled by a single software program. 

The proponents of Software Defined Networking proposed an architecture based on the 

overall vision of a Software Defined Network. This new architecture consists of three 

interdependent planes. These are the data or infrastructure plane, the control plane and the 

application plane. 

From Figure 2.3, the data and control plane interact via instructions while the control and 

application plane interact via a well-defined application programming interface. This creates 

an environment in which the underlying network infrastructure can be controlled, 

programmed and automated in response to alternating traffic demands placed on it.  High-

level functions such as routing, security and traffic engineering are written as computer 

programs and implemented on devices in the data plane through the controller. 

 
Figure 2.3 Software Defined Networking Architecture.  
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This new architecture is a clear departure from that of traditional networks.  Software 

Defined Networking places a priority on centralized network control instead of the distributed 

approach used in traditional networks. 

 
Figure 2.4 Traditional Network Architecture vs SDN network architecture  

Centralized control is based on the idea that the various components of architecture work 

hand in hand to ensure that the network is fully functional.  

The next section of this chapter takes a look at the redefined network architecture elements, 

their functions and how they coordinate to achieve network programmability, automation and 

control. 
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2.2 THE DATA PLANE 

The data plane is the part of the Software Defined Networking architecture that consists of 

network devices. In describing the data plane, the proponents of the architecture envision a 

vendor neutral platform with network devices from different manufacturers. 

The data plane of a Software Defined Network is primarily responsible for carrying out the 

transfer of a packet from the input interface to the output interface. 

The key principle underlying the redefined data plane is device simplification [10]. 

A critical part of the data plane is a network device called a Software Defined Networking 

Device. 

An SDN device is composed of an API for communication with the controller, an abstraction 

layer, and a packet-processing function [11]. It can be a virtual switch or a physical switch. In 

the case of a virtual switch, the packet-processing function is carried out by a packet 

processing software [11]. In the case of a physical switch, the packet-processing function is 

embodied in hardware 11]. 

Figures 2.5 and 2.6 show a virtual and physical Software Defined Networking Device. 
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Figure 2.5 Virtual SDN switch anatomy  

 
Figure 2.6 Physical SDN switch anatomy  

In the hardware implementation, a software defined networking device includes forwarding 

table responsible for routing and switching. [11] 

The advent of Software Defined Networking has seen a sharp rise in the production of a 

number of Software Defined Networking switches or devices. The Open vSwitch [12] 

manufactured by Nicira and Big Switch [13]   are common examples of such software 
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defined networking switches. Other Software Defined Networking switches include the 

Arista 7500R Series [14] from Arista Networks and the NFX Series [15] from Juniper. From 

[16], exposing Open vSwitch control abstractions allows both bare-metal and virtualized 

hosting environments to be managed using the same mechanism for automated network 

control. This clearly shows that the software platform for the Open vSwitch can be 

implemented on any physical or virtual switch once its control abstractions are obtained. 

Figure 2.7 below shows the anatomy of an Open vSwitch. It consists of a server and a 

switching daemon which are interconnected and linked to an operating system that provides 

the platform for control. The above components form the hypervisor platform. A number of 

virtual machines can run on top of the hypervisor. 

Figure 2.7 Open vSwitch Anatomy  
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2.3 THE CONTROL PLANE 

At the heart of the Software Defined Network is the control plane. The control plane is made 

up of a controller. The controller keeps track of all devices in the network. It carries out 

policy decisions and controls all the devices in the data plane. 

Also, the controller makes all traffic forwarding decisions and updates SDN-capable network 

switches in the data plane according to a defined network policy. It is responsible for 

changing the network rules into actual packet forwarding rules. The network controller 

establishes a connection to each OpenFlow-capable switch through the OpenFlow protocol 

[17]. 

A typical controller has two interfaces. There is an interface between the controller and a 

software defined networking device and an interface between the controller and the 

application plane. 

The interface between the Controller and a software defined networking device is known as 

the Southbound Interface or the Southbound API. The interface between the Controller and 

the application plane is known as the Northbound Interface or the Northbound API.  

 
Figure 2.8 SDN Controller Anatomy  
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The modules portion of the controller anatomy consists of blocks that implement the 

controller’s core functionality. These include the discovery and topology module, the device 

manager module, the topology and statistics module and the flow module. Common Software 

Defined Network controllers include the OpenDaylight Controller [18], the ONOS Controller 

[19], the POX Controller [20], the Ryu Controller [21] and the Floodlight Controller [22]. 

The OpenDaylight Controller is an Open source platform that provides centralized, 

programmatic control as well as network device monitoring using open protocols [23]. From 

[24], OpenDaylight is a Java Virtual Machine software and can be run from any operating 

system and hardware as long as it supports Java. It uses tools such as maven, a backend 

framework called OSGI, java interfaces and REST APIs to implement the Software Defined 

Networking Concept of a Controller. 

In OpenDaylight, there are some dynamically pluggable modules, responsible for performing 

network tasks, which are contained in the controller itself but it is also possible to insert other 

services and extensions for enhanced SDN functionality. [25] 

The OpenDaylight Carbon release shows its place within the overall Software Defined 

Networking Architecture.  These include the data plane element layer, the Southbound 

interface and protocol plugin layer, the Controller Platform Services/ Applications layer and 

the Northbound API (Orchestrators and Applications). 

The Southbound Interfaces and Protocol plugins layer consists of protocols such as OVSDB, 

PCEP, IoThttp/CoAP and LACP. The Service Abstraction Layer supports multiple protocols 

on the Southbound Interface while providing consistent services for modules and the 

application plane.[23]. The Controller platform itself consists of three key blocks including 

Base Network Function, Enhanced Network Services and Network Abstractions. Each of 
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these blocks contains distinct protocols that enable the controller to effectively manage the 

underlying network infrastructure. The OpenDaylight Controller uses the REST, 

RESTCONF, NETCONF/AMQP Application interfaces to communicate with any set of 

independent Network Applications and its Graphical User Interface. The Graphical User 

Interface of the OpenDaylight is called the DLUX [25] or the NEXTUI [25]. 

 
Figure 2.9 The OpenDaylight Architecture  

2.4 THE APPLICATION PLANE 

A computer network application is a software application that uses the Internet or other 

network hardware to perform useful functions [26]. 

There are two types of computer network applications. These are Pure Network Applications 

and Standalone Network Applications. A Pure Network Application is an application created 

to be used in a computer network to transfer data from one end user to another. A Standalone 

Network Application is an application that runs on a single end user computer. These include 

applications such as word processors, database management systems, presentation graphics 
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and spreadsheets. A standalone network application can function even when the computer is 

offline. 

A Software Defined Network application is an application that manages network policies that 

are programmed on the network devices By utilizing an Application Programming 

Interface(API),the application is able to configure the network policies as flows to route 

packets through the best path between two endpoints, balance traffic loads across multiple 

paths or destined to a set of endpoints, react to changes in the network topology such as link 

failures and the addition of new devices and paths, and to redirect traffic for purposes of 

inspection, authentication, segregation, and similar security-related tasks [11]. 

SDN applications are free, open source flexible, responsive and agile centralised set of 

control logic that take decisions such as what to do with packets in a Software Defined 

Network [27]. Based on an abstraction of the network state, management applications can be 

written to satisfy all the control requirements that may exist in a network while new 

applications can also be written in the face of new network requirements [28]. 

There two types of applications that can be developed in the Application Plane of a Software 

Defined Network Architecture. These are reactive applications and proactive applications.  

Reactive SDN applications are programs which modify the devices at the data plane of the 

Software Defined Network based on the incoming packets that have been forwarded to it 

from the switches in the network. 

Proactive SDN applications are programs which modify the Software Defined Network at the 

data plane of the Software Defined Network by setting flows proactively on the switches in 

the data plane. They only respond to changes in the network that require some type of 

reconfiguration. 
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2.5 THE SOUTHBOUND INTERFACE 

The Southbound Interface is the communication interface between a software defined 

network device and the controller in an SDN architecture.  

The OpenFlow protocol is the main communication protocol that runs on the Southbound 

Interface and is described in [8] as the first standard communications interface between the 

data and control planes. 

Prior to Open Network Foundation’s creation in 2011, the OpenFlow specification was 

defined and managed by a group of individuals meeting at Stanford University [29]. 

There have been four variants of the OpenFlow protocol till date. These are OpenFlow 

versions 1.1, 1.2, 1.3 and 1.4. A Software Defined network device that is capable of running 

the OpenFlow protocol is called an OpenFlow switch. 

An OpenFlow switch has an OpenFlow channel to the external controller. Using the 

OpenFlow protocol, the controller can add, update, and delete flow entries in flow tables, 

both reactively and proactively [30]. 

An OpenFlow switch has a flow table. A typical flow table is shown below. 

 
Figure 2.10 A typical flow table  
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Figure 2.11 OpenFlow Capable Switch  

There are three fundamental paths associated with the packets that arrive on the input port of 

OpenFlow capable switch as shown in Figure 2.11.  In Path A, the arriving packet is destined 

for the output of a local port, in Path B, the packet is destined to be dropped, while in Path C, 

it is destined to be passed to the Controller. These paths are taken based on the instructions 

implemented by the packet matching function which is a unique feature of the OpenFlow 

protocol. 

The OpenFlow protocols uses an OpenFlow port. These ports generally make use of 

scheduling algorithms that allow different quality of service (QoS) levels to be defined for 

different types of packets. OpenFlow embraces this concept and permits a flow to be mapped 

to an already defined queue at an output port [11]. 
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The messaging between the controller and switch is transmitted over a secure channel. This 

secure channel is implemented via an initial TLS connection over TCP [7]. Each message 

between controller and switch starts with the OpenFlow header which specifies the 

OpenFlow version number, the message type, the length of the message, and the transaction 

ID of the message [11]. 

OpenFlow messages fall into three general categories as shown below. 

 
Figure 2.12 Types of Messages in OpenFlow  
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2.6 THE NORTHBOUND INTERFACE 

The Northbound Interface is the communications interface between the Controller the 

Software Defined Network Application. This communication is facilitated by a variety of 

Application Programming Interfaces. 

An Application Programming Interface is a set of routines, protocols, and tools for building 

software applications which specifies how software components should interact [31]. 

A typical application programming interface uses a client-server model to send and receive 

requests to a software application residing on the client. 

 
Figure 2. 15 Application Programming Interface. 

In the OpenDaylight controller, the typical application programming interfaces used are 

REST, RESTCONF, NETCONF and AMQP. 
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2.6.1 The Rest Architecture 

 REST, or REpresentational State Transfer, is an architectural style for providing standards 

between computer systems that make it easier for systems to communicate with each other. 

REST-compliant systems, often called RESTful systems, are characterized by statelessness 

and their ability to separate client and server concerns [32]. Adopting REST for the SDN 

northbound API offers decentralized management of dynamic resources by relying on 

connections between resources to discover and manage them as a whole [33]. It also allows 

network elements to be dynamically configured and reconfigured in a distributed fashion. 

Additionally, REST can provide service-based compositions using various programming 

languages on different platforms [33]. A RESTful API is an application program interface 

(API) that uses HTTP requests to GET, PUT, POST and DELETE data based on the REST 

architecture [34]. 

In case of SDN, the REST API can be used to program network devices like switches, routers 

and NAT devices [35]. A typical REST API has five main layers. These are Connections, 

Communications, Identification, Representation and Description. The Connections layer 

consists of links between the resources implemented in any programming languages and 

running on any devices. The communications layer uses methods or protocols such as HTTP 

to communicate with resources. Uniform Resource Identifiers are used by the API to identify 

resources at the Identification layer. The Representation layer uses hypertext language like 

XML to represent information from the COMMUNICATIONs.  Figure 2.16 is an XML 

element showing a URI in the line 2 and the http protocol in line 3. 
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Figure 2.16 XML element in a REST API  

The Description layer uses descriptions such as REST charts to describe possible 

representations. 

 
Figure 2.17 The Rest Chart Figure 2.16 XML element in a REST API 

2.6.2 Netconf 

NETCONF defines a network device management mechanism by setting or changing the 

current state of a network equipment using a technology called Remote Procedure Call that 

allows programs to make procedure calls or functions from a different address space. These 

commands are encoded in XML and sent to the network device using Secure Shell protocol 

[36]. The NETCONF protocol has four layers namely content, operations, messages and 

secure transport layers as shown in Figure 2.18 below. 
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Figure 2.18 NETCONF protocol layers   

2.6.3 Restconf 

RESTCONF is an IETF management protocol that uses an HTTP API to provide an 

additional simplified interface for the NETCONF protocol.[37] 

 
Figure 2.19 RESTCONF protocol stack.  

2.7 NETWORK VIRTUALIZATION 

Network Virtualization is the process of combining hardware and software network resources 

and network functionality into a single, software-based administrative entity. This software-

based administrative entity is called a virtual network.  Network virtualization helps network 

operators divide physical computing resources to ensure efficient use of computer resources. 

In the networking field, physical equipment can be abstracted as a resource pool from which 

virtual entities are created and redundancy assured. In the computing field, virtual machines 

(VMs) are created on the resource pool and their backups are set to physically distributed 

locations; these correspond to slices and protection in the networking field [38]. Network 

virtualization provides an effective means of creating software-based replicas of hardware 

devices by using physical network infrastructure. Network virtualization be used to create 
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multiple virtual networks above a shared physical network, each of which can be deployed 

and managed independently [39]. Network virtualization is viewed as a solution to the 

rigidity and inflexibility of the current internet architecture. There are two main forms 

network virtualization. These are external virtualization and internal virtualization. 

External virtualization refers to the means of putting together many networks, or various parts 

of networks, into a virtual unit. Internal virtualization refers to the provision of network-like 

functionality to the software containers on a single system. 

 
Figure 2.20 Network Virtualization   

In the field of Software Defined Networking, researchers have to design virtual networks in 

order to test the functional parts of the Software Defined Networking architecture. Such 

virtual networks usually depict the data plane devices, connections to the controller and an 

application utilizing the REST API. One common tool used in creating SDN networks is 

Mininet. Mininet is a network emulator which is used for research in SDN. Mininet hosts run 

standard Linux network software, and its switches support OpenFlow for highly flexible 
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custom routing and Software-Defined Networking [40]. Figure 2.21 shows a typical network 

topology created using Mininet and visualized in the MiniEdit graphical user interface. 

 
Figure 2.21 A Typical Mininet Topology 

The most significant limitation of Mininet is that it cannot work efficiently at high loads 

because it has one default scheduler that multiplexes CPU resources [41]. Also Mininet is not 

capable of prototyping large-scale networks having many nodes. Other Software Defined 

Networking emulators include IMUNES [42], ESTINET [43] and EMULAB [44]. In this 

work, the GNS3 Virtual Machine [45] and VMware Workstation 14[46] are used to carry out 

the emulation of the entire Software Defined Networking Architecture. The choice of these 

two tools stem from the fact that they can be used to carry out nested virtualization. Nested 

virtualization is the ability of a virtualization tool to replicate different operating systems with 

the same tool. Nested virtualization provides the ability to test Software Defined 

Networking’s proposition of vendor neutrality, openness and device simplification. In 

addition to the above, the GNS3 Virtual Machine makes use of a graphical interface that 

facilitates the design, configuration and testing of a virtual network. 
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Figure 2.22 GNS3 topology created using the GNS3 GUI running in VMware 

2.8 TRAFFIC ENGINEERING IN SOFTWARE DEFINED NETWORKS 

Software Defined Networking proposes an easier way to carry out traffic engineering in 

enterprise and carrier networks. Traffic Engineering aims to provide efficient use of network 

resources based on the traffic in a network usually involving measurement, modelling, 

characterization and control of IP traffic [47]. The framework for traffic engineering in SDN 

includes two parts: traffic measurement and traffic management. Traffic measurement mainly 

studies how to monitor, measure and acquire information about the current state of a 

Software Defined Network [48]. In the SDN-paradigm, an SDN controller can be used for 

Traffic Engineering to improve network utilization, reduce packet loss and delay when the 

entire network consists of OpenFlow and traditional network devices [49]. Bandwidth 

Utilization in Software Defined Networks would require the implementation of a Traffic 

Engineering network application. Based on SDN, dynamic bandwidth adjustment can be 

efficiently implemented for improving the flexibility of resource allocation and resource 

utilization by monitoring the bandwidth value an end-to-end (E2E) service actually uses, 
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monitoring how much bandwidth of a transport channel is actually used by end-to-end 

services and knowing which transport links the end-to-end service is carried across [50]. 

Based on the above statements, various queuing disciplines can be implemented as network 

applications to carry out bandwidth adjustment in a Software Defined Network. One such 

queuing discipline is the Hierarchical Token Bucket Queuing Discipline.  

2.9 THE HIERARCHICAL TOKEN BUCKET QUEUING DISCIPLINE 

A queuing discipline is a resource sharing mechanism that governs how packets are buffered 

while waiting to be transmitted. The Hierarchical Token Bucket Queuing Discipline (HTB) is 

a class-based queue discipline that controls the use of bandwidth on a given output link and 

implements efficient resource allocation. It uses the concept of multilevel token buckets to 

allow for efficient dynamic control of the egress bandwidth on a given link. HTB is made up 

of three class types known as root, inner and leaf classes. The HTB traffic shaper has the 

ability to carry out bandwidth sharing in a network.  

The Hierarchical Token Bucket (HTB) classification is used for traffic control [51]. It is used 

to guarantee bandwidth to classes, allows engineers to define upper limits to inter-class 

sharing and allows the prioritization of classes[52]. The root class represents the minimum 

and maximum amount of bandwidth (guaranteed bandwidth) that is set for communication 

between network devices. Any form of service request that occurs in a network is allocated 

bandwidth borrowed from the root class. The bandwidth for such communication is 

represented by an interior class. Each amount of bandwidth that is shared from an interior 

class is termed as a leaf class. 

HTB allows cross-device bandwidth sharing and control-borrowing [53]. This approach is 

well suited in scenarios where a user has a fixed amount of bandwidth and each application is 
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allocated a guaranteed bandwidth, with the possibility of specifying how much bandwidth 

can be borrowed [54]. Every class has an associated Ceiling Rate (CR) and Rate (R). The CR 

specifies the highest amount of bandwidth that a class can use while R represents the lowest 

amount of bandwidth the class can use. When one class requires bandwidth greater than R, it 

borrows bandwidth from its parent class until CR is reached, when this class reaches CR, the 

packets are queued until new tokens are available in the token-bucket [54]. 

 
Figure 2.23 HTB class structure and borrowing 

The Hierarchical Token Bucket Queuing Discipline uses tokens and buckets to dynamically 

share bandwidth. Traffic shaping is performed by the Token Bucket Filter. The Token Bucket 

Filter implementation in Linux has two filters, each with its own buckets. In order to be 

transmitted to the receiver, a packet must be able to pass both the filters. A packet being sent 

from a transmitter to a receiver passes through both filters. The second filter typically allows 

packets to flow out of it faster in order to limit the speed of burst traffic. When implemented 

in a Software Defined Network device, the HTB goes through four phases namely 

classifying, policing, scheduling and borrowing. The figure below shows the algorithm for 

the operation of HTB. 
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Figure 2.24 Hierarchical Token Bucket Queuing Discipline Operation  

2.10 RELATED RESEARCH IN SOFTWARE DEFINED NETWORKING 

There has been a vast amount of research into the implementation of Software Defined 

Networking concepts in the Enterprise and Carrier Networks. The main issues in enterprise 

networks are security, load balancing, Quality of Service configurations, bandwidth 

management and traffic control. Some work has also gone into the application of Software 

Defined Networks in optical and satellite networks. This section takes a look at related 

research in the above fields with respect to the tools used for emulation and the metrics used 

when carrying out research into Software Defined Networking concepts. 

2.11 SOFTWARE DEFINED NETWORKING IN THE ENTERPRISE NETWORK 

The reviewed works in this section represent research carried out on the application of 

Software Defined Networking in Enterprise and Data Centre Networks. 

2.11.1 Load Balancing And Firewall Implementations In Software Defined Networks 

In [55], S. Bhelekar et al from the Sardar Patel Institute of Technology in India present a 

dynamic load balancing strategy in Software Defined Networking. They took into account the 
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number of active connections to a set of individualized servers and the shortest path taken 

from a specific client to a specific server in order to avoid congestion. The authors used the 

Mininet Emulation Tool and VirtualBox Software to simulate a fat tree topology of a modern 

data centre network at the data plane. The data plane topology consisted of ten OpenFlow 

capable switches and eight host devices. At the control plane, the OpenDaylight controller 

used RESTCONF APIs to communicate with an application plane implementation of 

Dijkstra’s algorithm and least connections. The dynamic nature of the Software Defined 

Network is seen in the load balancer’s ability to determine the least path to a server at certain 

specific points in time. At time t=60 seconds, host 2 has the least number of connections and 

is selected as the server of choice hence avoiding congestion. 

One key network functionality that can be implemented in the application plane of a Software 

Defined Network is security. N. Zope et al in [56] of Usha Mittal Institute of Technology, 

Mumbai, India took a look at replacing a physical switch in a network by virtual switches and 

the development of a firewall and load balancing application in a Software Defined Network. 

The work seeks to demonstrate that most of the firewalls in traditional computer networks 

can be replaced by software firewalls. Using the Floodlight controller and the REST API, a 

set of firewall rules were constructed and pushed to an independent physical network 

consisting of an Open vSwitch and two hosts. The firewall module is capable of pushing 

flows containing the firewall rules to the hosts to either block or allow traffic. 

D. Satasiya and Raviya Rupal D [57] from the University of Pune, India carried out an 

analysis of a Software Defined Network implementation of a firewall designed by Karamjeet 

Kaur et al [58] who created topology including the POX controller, 6 OpenFlow switches 

and 5 hosts. Karamjeet Kaur et al built a learning switch application and firewall application 

which restricted or allowed the traffic by proactively placing rules into the network based on 
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key network parameters such as the IP address. into an OpenFlow switch-based source MAC 

address, destination MAC address (Layer 2), source IP address, destination IP address (Layer 

3), network protocol, destination port (Layer 4). Results show the firewall was able to block 

access to the whole network. It also allowed web access to one host in a scenario where all 

other communications were on going. In addition to the above, after firewall implantation 

latency got increased which implied that the firewall introduced overheads, throughput got 

reduced which means unwanted traffic was reduced. D. Satasiya and Raviya Rupal D [57] are 

of the view that lack of authentication and authorization, fraudulent rule insertion and lack of 

access control and availability are drawbacks to the implementation in [58]. They propose an 

SDN architecture which implements a stateful firewall capable of analysing security threats at 

all levels of the SDN architecture. 

A stateful firewall implementation was carried out by [59] P. Krongbaramee and Y. Somchit 

from Chiang Mai University in Thailand. The research focused on the use of the Open 

vSwitch to configure a stateful firewall using a TCP three-way handshake. The Mininet 

emulation tool was used with virtual server in the Digital Ocean Cloud. An analysis of the 

results shows that the average connection time of host in the stateful firewall is 20.06 

milliseconds while the average connection time of host in the stateless firewall is 18.05 

milliseconds. The stateful firewall increases the time for each connection for only about 2.01 

milliseconds or about 11.14% longer. This is attributed to the SDN switch having to update 

rules when denying or permitting the connection of an external host to the network. The 

authors believe that performance would be faster when using with a hardware based SDN 

switch. 
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2.11.2 Bandwidth On Demand And Quality Of Service Implementations In Software 

Defined Networks 

To exploit the capabilities of Software Defined Networking when implementing a Bandwidth 

on Demand service, A. Mendiola et al [60] proposed a framework called DynPaC, which they 

believe is able to provide efficient switching services based on bandwidth and vlan 

utilization. They used two Software Defined Networks in two different research labs located 

in Cambridge and Belgrade to create a multidomain network architecture. Each of the 

networks run based on the ONOS controller. In the emulation, a client based at the 

Cambridge campus tries to request two Bandwidth on Demand services from the server 

located in Belgrade using a portal developed on the DynPaC framework which resides on an 

intermediary network in Spain. DynPaC calculates the optimal intra-domain path taking into 

account the amount of bandwidth needed, the VLAN of the service and the service which has 

already been requested. The authors were able to prove that Bandwidth-on-Demand service 

provisioning is possible. This includes intra-domain bandwidth provisioning, limiting of 

traffic rate based on QoS requirements, link failure reactivity and automatic installation of 

backup paths. 

Quality of Service in Software Defined Networks has gained attention over the past few 

years, A. O. Adedayo and B. Twala,[61] from University of Johannesburg carried out research 

into the use of Quality of Service configurations to control network bandwidth, latency and 

throughput. They leveraged the Mininet emulation tool to create a two-host topology at the 

data plane connected to an Open vSwitch. The Ryu controller was used as the centralized 

controller and Hierarchical Token Bucket Queuing discipline was used to ensure each queue 

in the QoS settings had a number of resources allocated to them. The authors used three 

scenarios to check for the use of traffic policing on the ports on the switch. They used the 

IntServ classification to assign bandwidth to certain services DiffServ classification to assign 
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bandwidth to certain services. The results show that the use of DiffServ classification 

facilitates the scalability of QoS in the network. Also, the IntServ classification is capable of 

assigning bandwidth to different queues representing different classes of traffic with different 

priorities. The traffic policing scenario is also able to limit traffic to 10Mbps, while dropping 

traffic that exceeds 10Mbps. 

 F. Volpato et al [62] proposed a network application (Autonomic QoS Broker) and a 

controller module that implements the OpenVswitch Database Management Protocol 

(OVSDB). These two components used to provide QoS management based on the 

prioritization of queues in an SDN environment. The Autonomic QoS Broker is a resource 

and QoS provisioning application that was designed based on the MAPE-K control loop 

functionality. It was implemented to carry out analysis, planning, execution and monitoring 

of network resources and works in conjunction with a QoS configuration module. The 

module performs the configuration of switch’s QoS resources and the management of 

forwarding rules. The Mininet emulator, Open vSwitch (OVS) (version 2.5.0) and the 

Floodlight controller were used to carry out the experiment. The Broker improved flows 

throughput and packet loss rates. Flows in the same network path had the same latency 

values. A change in path caused an increase in latency values. 

2.11.3 Vlan Configuration In Software Defined Networks 

The concept of Virtual Local Area Network configuration in Software Defined Networks was 

explored in [63] by Van-Giang Nguyen and Young-Han Kim in Seoul, Korea. The authors 

designed and implemented an application for easily managing and flexibly troubleshooting 

the VLANs in an SDN architecture. They used an all OpenFlow data plane connected to the 

Floodlight Controller on the control plane. They developed a REST API-based module in the 

Floodlight controller to create static vlans in the underlying data plane. Two hosts in the vlan 
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10 network were able to reach each other. The authors also went further to set up a hybrid 

testbed consisting of an OpenFlow switch connected to an HP switch. Two hosts were 

connected to the HP switch and one host is connected to the OpenFlow switch. The REST 

API-based module was able to create vlans in the hybrid testbed as well. They also carried 

out an implementation of a dynamic vlan application based on the Mininet in out-of-band 

control mode. They used Floodlight controller in the same Mininet host. The results of the 

above showed that the time for sending packets and installing the flow modifications were 

independent of the type of topology. The latency on the switch and the controller were also 

very similar. 

2.11.4 Traffic Classification In SDN-Based Wireless LANS 

An investigation into the operability of Software Defined Networking in wireless local area 

networks was carried out by A. Amelyanovich et al[64]. The work proposed a solution to the 

control traffic in wireless local area networks using a simulated version model of the St. 

Petersburg State University of Telecommunications network. The work sought to prove end-

to-end quality of service support using traffic classification and priority-based queuing. The 

emulation was carried out using a two-switch-two wireless access point topology in Mininet. 

The OpenDaylight controller was used to facilitate the flow of different streams configured 

from the two Open vSwitches to the two hosts. The results showed that classification of 

traffic based on Differentiated Services Code Point (DSCP) values in the IP-headers of 

packets is possible in wireless networks. It reduces the number of simultaneously operating 

wireless devices. As A result, the effect of interference is also reduced. Another significant 

observation is the change in traffic priority with respect to applications which are sensitive to 

delay. Also,  the work showed that the most frequent interval between messages was in the 

range from 100 μs to 1 ms. This shows that the controller responded to changes in the 

network. 
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2.11.5 Traffic Management And Measurement In Software Defined Networks 

Z. Shu et al[48] from China and South Korea, propose a framework responsible for 

monitoring and analysing real-time network traffic as a prerequisite for traffic management. 

The authors designed the framework in a hybrid IP/SDN network consisting of two SDN 

capable switches and a single controller. The proposed framework utilizes the Link Layer 

Discovery Protocol (LLDP) implemented in an SDN capable switch to gain a complete view 

of the network while measuring the number of flows generated as the network elements 

communicate.  

2.11.6 Management Of Network Resources And Data Flow In Software Defined 

Networks 

In [65], M. S. Olimjonovich from the Tashkent University of Information Technologies used 

the Mininet simulator, a topology consisting of 5 switches and 10 host in the Python language 

to carry out a research on management of network resources in SDNs. Specialized language 

modules were developed for the hardware switches using Python programming. These 

software modules were remotely managed through an encrypted SSH-channel. He designed a 

REST API to increase the amount of unused resources of the networks allowing 

approximately a 30% increase in network management efficiency. 

2.11.7 Routing In Software Defined Networks 

A key factor in any enterprise network is routing.  S. Kaur et al [27] designed a static router 

application in the Mininet emulator consisting of three hosts, an Open vSwitch and the POX 

controller. The router application was built in the POX controller. Using ping utility and 

elinks web browser the functionality of the application was tested. The authors used round 

trip time as metric. They created 3 different file sizes and checked how long it took to make 

http requests to them. Results showed that as the size of files increases, the round-trip time of 
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the application also increases. A Layer 3 learning application which was also designed 

provided the same result but the round-trip time of the router application was less when 

compared to Layer 3 learning application. 

2.11.8 Utilization Of Qos And Routing In Software Defined Networks 

S.-C. Lin et al[66] from the Georgia Institute of Technology proposed a framework for 

optimizing QoS and Routing in Software Defined Networks. They used tenant isolation, 

prioritization and flow allocation in a multitenant network for utilization. They designed 

network and switch hypervisors to isolate and prioritize tenants to create fine-grained 

isolation in the network. A dynamic flow allocation was also proposed in their work to enable 

optimal flow route selection. They also designed an adaptive feedback management tool to 

combine virtualization and flow allocation. These three implementations were carried out 

using algorithms. In analysing the results, it was seen that the network and switch hypervisors 

were able to isolate three tenant networks in three subnets. The results show that feedback 

tool was able to maintain the number of shared links at a constant value. It was able to 

optimize route selection and wisely utilize link capacity for future flows. It was also capable 

of providing bandwidth for future flows.  

2.11.9 Queue Scheduling In Software Defined Networks 

Umadevi et al.[67] proposed a scheduling algorithm for controlling the incoming data traffic 

in a Software Defined Network in an effective manner. The simulation was carried out using 

the OpenFlow package in OMNeT++. The authors constructed a multi-level switching queue. 

Multiple queues were maintained with varying priority levels. Analysis of the results shows 

that in case of a normal First Come, First Serve (FCFS) queue, bits are received by the queue 

only after the 1350 breakpoint.  In the multilevel queue, packets were serviced even as the 

queue size decreases below 1350. Also, the packet drop count value was as high as 1600 in 
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case of a normal FCFS queue. In the multilevel priority queue, packets enter different levels 

of queues thereby minimizing traffic in a single queue. The number of packets dropped in the 

case of multilevel queues was as low as 0.  

2.11.10 Network Management And Performance Monitoring In Software Defined 

Networks 

Based on four objectives, Veena et al[68] from PES University in India proposed a way to 

manage and monitor a network using Software Defined Networking. The work was centred 

around optimizing the Mininet emulation tool in order to create custom topologies, collecting 

and preserving historical data from a controller for analysis, the reduction of layer 2 

broadcast traffic in data centres and the introduction of Cross Layer Utilization algorithms for 

better resource utilization in Data Centres. They designed an Abstraction layer between the 

infrastructure and application planes. Also, Pseudo MAC addresses were used to reduce the 

ARP broadcast traffic in the emulated data centre. The enhancement of the Mininet 

Emulation tool, enabled the researchers specify the different link parameters such as 

bandwidth and latency using a simple text script. They were also able to create varied 

network topologies to test their ideas and new protocols. 

2.12 SOFTWARE DEFINED NETWORKING IN CARRIER NETWORKS. 

Although relatively new, research is being carried out into the application of Software 

Defined Networking to carrier networks. The section below discusses the application of 

Software Defined Networking architecture to switched backhaul, IoT, satellite and 5G 

networks. 
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2.12.1 On Demand Bandwidth-Based Pricing In Software Defined Networking 

Gu et al [69] from Japan designed an application for on-demand bandwidth pricing using the 

Software Defined Network Architecture. The application was based on a Stackelberg game 

constructed to analyse the competitive communication between an ISP and a home network. 

A pricing strategy was determined using the Nash equilibrium solution of the Stackelberg 

game. Using the pricing strategy, network subscribers can decide the bandwidth to be 

reserved in an on-demand basis. The research was carried out using an SDN enabled carrier 

network consisting of an SDN-enabled backhaul, a Controller, OpenFlow switches, a 

Controller API and a data plane consisting of wireless access points. The simulation was 

carried out using MATLAB R2016a. All applications were modelled using a Mathematical 

Network Model Simulation. Results show that during off-peak, mid-peak, and peak time, the 

payoff of network subscribers is improved by 388.9%, 134.6%, and 19.8% respectively. The 

payoff of ISP is improved by 98.5%, 47%, and 7%, respectively. Results show that the 

optimal price increases with the increase of traffic load. Also, with the increase of traffic 

load, a large portion of surplus goes to ISP. 

2.12.2 Software Defined Networking For Satellite Networks 

A Chinese group Fei et al [70] in 2017 led research into the implementation of Software 

Defined Networking in satellite networks. They propose OpenSatNet, a platform for software 

defined satellite networking research. OpenSatNet uses lightweight OSlevel virtualization, 

including network namespaces and virtual network devices to emulate a realistic satellite 

network. It also implemented  a user-friendly graphical user interface (GUI). The component 

of the OpenSatNet are an osndaemon, osn-gui and Scenario Designer. Authors adopted Open 

vSwitch (OVS) and Floodlight as switch namespace and controller namespace respectively. 

OpenSatNet uses the Scenario Designer to configure the emulated networks. It manages the 

location of satellite nodes, configures link parameters and manages the coverage of satellites. 
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The Link Configuration module configured topology and link parameters dynamically during 

the emulation. The Scenario Designer was developed by using reports exported from popular 

satellite emulators.  The OSN-GUI controls the daemon through an API based on sockets. 

 
Figure 2.25 OpenSatNet architecture by Fei et al 

2.12.3 Software Defined Networking For IoT Networks 

In [71], T. Theodorou and L. Mamatas, from the University of Macedonia Greece stake a 

claim for Software Defined Networking in Internet of Things Networks. Using a Wireless 

Senor Node Network (WSN) at the data plane, they demonstrate CORAL-SDN, an SDN 

solution which uses intelligent centralized control mechanisms to dynamically change the 

protocol functionalities of Wireless Sensor Nodes. It supports flexibility to the challenging 

requirements of the Wireless Sensor Nodes while allowing for architectural scalability. The 

architecture was tested using two tests beds implemented in Ghent and Macedonia. 

Researchers were able to utilize a configuration manager to choose a type of topology control 

through algorithms for node advertisement and flow establishment. The centralized 

intelligent network manager was able to configure routes, setup wireless operating channels 

and antenna channel check rate. Different data sizes and data transmission frequencies can 
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also be applied using the right protocols. The results show that software defined networking 

principles can improve control in IoT networks while providing efficient solutions. 

 
Figure 2.26 CORAL-SDN for IoT  

2.12.4 Software Defined Networking For Fifth Generation Networks 

Researchers from Georgia Institute of Technology in [72] I. F. Akyildiz et al proposed 

SoftAir, an SDN architecture for 5G cellular systems. The SoftAir architecture is a consists of 

three planes. Its data plane is made up of a Software Defined Network Radio Access 

Network, Software Defined Baseband Servers and A Software Defined Core Network. The 

control plane consists of a network controller. Management applications make up the 

Application plane. The authors employ Network Functions Virtualization to expand the SDN 

architecture for the 5G network. By using three network management tools namely mobility-

aware control traffic balancing, resource-efficient network virtualization, and a distributed/ 

collaborative traffic classifier, authors were able to provide for scalability of the network 

architecture. In conclusion the researchers state that Wireless SDNs provide cellular networks 
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with the needed flexibility to evolve and adapt according to the ever-changing network 

context for 5G cellular systems. 

 
Figure 2.27 SoftAir Architecture for 5G Networks 

 
Figure 2.28 NFV implementation of SoftAir Architecture. 



47 

2.13 CONCLUSION 

This chapter reviewed the concept of Software Defined Networking by introducing and 

describing its architecture in detail. It also took a look at the protocols and the devices that 

make up the SDN architecture. Network Virtualization and Traffic Engineering were also 

reviewed. The last part of this chapter was a review of scholarly work carried out in the field 

of Software Defined Networking 
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CHAPTER THREE 

METHODOLOGY AND THEORECTICAL BACKGROUND 

3.0 INTRODUCTION 

In this chapter, the methodology used in converting a typical traditional Campus Network 

into a Software Defined Campus network is discussed. The chapter also takes a look at the 

methodology and theory employed in the development of a dynamic bandwidth utilization 

scheme in a Software-Defined-based Campus network. 

The chapter is divided into three main sections. The first section describes the process of 

converting a traditional campus network into a software-defined campus network. This 

conversion involves mapping of network elements and the reproduction of the mapped 

elements using an appropriate emulation tool. The second section presents the theoretical 

background used in the development of an optimal dynamic bandwidth shaping scheme using 

the Hierarchical Token Bucket Queuing Discipline. 

The third section discusses the development of a Software testbed that implements optimal 

dynamic bandwidth sharing in an SDN campus network. It also takes a look at the theoretical 

basis for the communications that occur within a Software Defined-based network. 

3.1 SOFTWARE-DEFINED BASED CAMPUS NETWORK 

In this section the method used in converting a traditional campus network into a software-

defined-based campus network is discussed. A typical campus network is made up of three 

levels consisting of a core switching level, a distribution switching level and an edge 

switching level as shown in Figure 3.1. The core switch is the direct point of connection of 

the entire network to the internet, the traditional telephone network and other external 

networks. The distribution switches create redundant paths from the core switch to the edge 
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switches. The edge switches represent the access portion of the network to which end users 

and end user equipment are connected. These switches have both the data plane and control 

plane functionalities baked into them as shown in Figure 3.2 

 
Figure 3.1 A Typical Campus Network  

In an SDN-based campus network, switches are made programmable and are of three levels. 

The three groups of switches in the traditional network are combined to form the data plane. 

The main function of the devices in the data plane is to forward packets. The control plane 

functions are moved into a centralized Controller. The controller uses the OpenFlow protocol 

to obtain the individual characteristics of the devices and links that make up the infrastructure 

layer and leverages this knowledge to manage the network centrally as shown in Figure 3.2 

The interface between the Control and Data planes is the Southbound Interface (SBI). 

The Application Plane which consists of applications that are used to implement routing, 

security and traffic engineering policies within the network via an Application Programming 
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Interface. This interface which exists between the Application Plane and the Control Plane is 

called the Northbound Interface (NBI). 

 
Figure 3.2 Software Defined Network Architecture.  

3.1.1 Conversion Of A Traditional Campus Network Into An Sdn-Based Campus 

Network 

The first task in this thesis is to map the current KNUST Campus network into an SDN-based 

campus network based on the architecture in Figure 3.2 as shown in Figure 3.3 below 

 
Figure 3.3 Traditional Network Architecture vs SDN Architecture 
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First the Traditional Network in Figure3.1 is mapped into the SDN architecture in Figure 3.2  

The core switch is replaced by an OpenVswitch which is a layer 3 routing switch which is 

capable of carrying out both switching and routing functions. The three distribution switches 

are replaced by three OpenVswitches. The five edge switches were replaced by six network 

devices (either routers or switches) which are connected to end users and the other equipment 

that form the access portion of the network. The OpenVswitches and network devices were 

connected to a Control Software to form the data plane or infrastructure layer. The Control 

Software was connected to a set of network applications which would facilitate configuration 

of the infrastructure layer thus creating the Northbound Interface.The resulting network 

architecture form the conversion is as shown in Figure 3.4 

 
Figure 3.4 Generic SDN-based Campus Network Source: Author’s Construct 2019 

The KNUST Campus network is divided into two portions. Portion 1 services the six colleges 

and the Institute of Distance Learning (IDL). Portion 2 serves the residential area which is 

divided into Residential 1 and Residential 2. 
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Based on the conversion described above, a similar Software Defined Networking Model was 

developed for the conversion of the KNUST network into a Software Defined Network. 

The following process was used: 

Five OpenVswitches were used to represent a collapsed core and distribution switches since 

an OpenVswitch is a layer 3 switch, it is capable of carrying out the functions of both a core 

switch and distribution switch. The five OpenVswitches are proposed based on the locations 

of the six colleges, the Institute of Distance Learning Centre (IDL) and the Residential part of 

the campus. The six colleges of the university were represented by six network devices each 

given an IP address. The residential portion of the network was also represented using two 

network devices. The KNUST campus network has access to the internet via two Internet 

Service Providers (ISPs). Two network devices were used in representing these. 

The five OpenVswitches were connected to the OpenDaylight Controller to form the 

Southbound Interface (SBI). The OpenDaylight Controller was connected to an application 

that would dynamically configure and optimize bandwidth in the underlying network through 

an Application Programming Interface (API). This forms the Northbound Interface. (NBI) 

The schematic diagram of the proposed KNUST SDN campus network is shown in Figure 

3.5 following the above mapping process. 
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Figure 3.6 Proposed KNUST Campus Based Software Defined Network Source: Author’s 

Construct 2019 
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Figure 3.6 Traditional KNUST Campus Network Source: UITS, KNUST 

3.1.2 Emulation of Knust SDN-Based Campus Network 

In order to test the workability of the proposed KNUST SDN-based Campus Network, the 

devices in Figure 3.5 and their functionalities are reproduced in a software for analysis. This 

software reproduction was done using the VMware Workstation 14 Software and the GNS3 

Virtual Machine. 

VMware Workstation 14 is a software that is used to design virtual networks by creating 

software-based replicas of real network devices such as routers and switches and the links 

that connect them. This tool provides an environment for designing virtual networks. Thus, 

the Infrastructure and Control and Application layers of Figure 3.5 are implemented using the 

VMware Workstation 14 Software.  
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The KNUST Campus network is divided into two portions. Portion 1 services the six colleges 

and the Institute of Distance Learning (IDL). Portion 2 serves the residential area which is 

divided into Residential 1 and Residential 2. 

Software-based replicas of the Cisco c3600 switching platform was used to reproduce the six 

Colleges, the IDL and two Residential portions of the network in the GNS3 Virtual Machine. 

This was done by importing the software platform of the switches into the GNS3 Virtual 

Machine and configuring them to operate within the VMware Workstation 14 Software. 

Each of the Cisco c3600 switches was given an IP address from the 192.168.x.x/24 block. 

The OpenVswitches that make up the combined distribution and core network were added to 

the network by importing a Docker Container version of the OpenVswitch switching 

platform. The management interfaces of each of the OpenVswitches were configured with an 

IP address obtained from a DHCP pool created in VMware Workstation using the 

192.168.198.x/24 addressing block. 
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Figure 3. 7 Graphical User Interface Implementation of Infrastructure and Control layers 

in GNS3 and VMware. 

The OpenDaylight Controller Software is downloaded from the OpenDaylight website, 

imported into VMware Workstation 14 as an Open Virtual Appliance file and configured 

with an IP address from the 192.168.198.x/24 pool similar to those of the OpenVswitches. 

The Open Virtual Appliance file runs an Ubuntu Operating System which contains the carbon 

edition of the OpenDaylight controller in a zip file. The zip file was extracted and the 

controller started by running the karaf file stored in the .bin directory of the Ubuntu 

Operating System 

The Figure 3.7 below shows the fully installed controller which is described as Connection to 

Remote Controller in Figure 3.6. 
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Figure 3.8 Controller Interface Installation  

3.2 OPTIMAL DYNAMIC BANDWIDTH SHARING SCHEME 

The faculty and residential portions of the traditional KNUST network have a fixed 

bandwidth allocation to facilitate internal and external communication. This static assignment 

of bandwidth for communication creates a problem. Majority of students and lecturers find 

themselves in the faculty area during the day. During this period, traffic volumes at the 

faculty portion of the network increases. This affects network performance. This is seen in 

difficulty to browse the web, download content or stream resources for teaching and learning. 

The reverse is seen in the evening as the concentration of traffic shifts to the halls of 

residence. 

A Software Defined Network architecture promises flexibility and programmability in 

managing computer networks. The proposed SDN-based KNUST network can thus be 

programmed to dynamically borrow bandwidth from portions of the network where there is 

unused bandwidth the traffic demands or requirements in the network. The proposed dynamic 
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bandwidth sharing technique is based on the theory of the Hierarchical Token Bucket 

Queuing Discipline  

3.2.1 The Hierarchical Token Bucket Queuing Discipline 

The Hierarchical Token Bucket Queuing Discipline (HTB) is a class-based queue discipline 

that controls the use of bandwidth on a given output link and implements efficient resource 

allocation. It uses the concept of multilevel token buckets to allow for efficient dynamic 

control of the egress bandwidth on a given link. HTB is based on hierarchical classes and is 

made up of three class types known as root, inner and leaf classes. The root class represents 

the minimum and maximum amount of bandwidth (guaranteed bandwidth) that is set for 

communication between network devices. Any form of service request that occurs between a 

client and server connected to a particular network device is allocated bandwidth borrowed 

from the root class. The bandwidth for such communication is represented by an interior 

class. Each amount of bandwidth that is shared from an interior class is termed as a leaf class. 

Placing traffic into classes is termed as Classification. 
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Figure 3.9 HTB class structure and borrowing 

Once traffic has been classified, the Hierarchical Token Bucket Queuing Discipline uses the 

concept of tokens and buckets to schedule and shape traffic by utilizing a classless queuing 

discipline called the Token Bucket Filter. The Token Bucket filter uses two filters. A packet 

being sent from a transmitter to a receiver passes through both filters. The second filter 

typically allows packets to flow out of it faster in order to limit the speed of burst traffic. 

From Figure 3.9, specific requests made to an OpenVswitch running the HTB queuing 

discipline will go through four phases. These phases are classifying, policing, scheduling and 

borrowing. 

The borrowing of bandwidth is a function of Traffic Policing. In traffic policing the 

bandwidth is limited to applications based on the class that they belong to. 
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Figure 3.10 Hierarchical Token Bucket Queuing Discipline Operation Source: Author’s 

Construct 2019 

3.2.2 Bandwidth Borrowing 

Figure 3.10 below demonstrates an adaption of HTB to the Software Defined-based campus 

network. 

The KNUST Campus link which connects the entire university to the internet is divided into 

two portions. One portion of the link goes to the faculty and the other portion of the link goes 

to the residential area. In adapting the HTB for the KNUST Campus an instance is considered 

where there is the need to allocate 500 Mbps to the College of Engineering (CoE) during the 

day due to high traffic demand and 200 Mbps to the residential portion during the day due to 

lower traffic demand.  



61 

The 500 Mbps allocated to the College of Engineering (CoE) needs to be subdivided into 

100Mbps for the wired access to the office of lecturers and 400 Mbps for the wireless 

connections used by students. Any unused bandwidth from the 100 Mbps allocated to the 

lecturers’ offices should be given to the wireless connection for students and vice-versa. If 

the total traffic requested at the College of Engineering (CoE) does not exceed 500 Mbps, the 

excess will be given to the residential portion. Using the theoretical explanation of HTB 

given earlier, the 500Mbps allocated for the College of Engineering CoE is the root class. It 

represents the Ceil Rate for all communication in the College of Engineering. The 400 Mbps 

and the 100 Mbps represent the inner classes for the College of Engineering (CoE). These 

values represent the Assured Data Rates for both the wired and wireless connections to the 

College of Engineering. This policy of quantifying bandwidth in such a hierarchy is 

implemented in a configuration policy using variable sized arrays to accommodate any 

changes in the preconfigured bandwidth guarantees. 

 
Figure 3.11  Sample HTB class hierarchy for KNUST SDN-based campus network  

From Deterministic Network Calculus borrowing of bandwidth as described can be modelled 

using arrival and service curves. 
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The Borrowing Phase 

In the HTB model the number of bits in a flow in a period (0, t) is 

( ) min( ( ), ( ) ( )c aR t R t R t B t 
                                                                           (3.1) 

where Ra(t) is assured data rate (minimum threshold) and Rc(t) is ceil data rate (maximum 

threshold). In a leaf class, if data rate R(t) exceeds assured data rate Ra(t) and less than ceil 

data rate Rc(t), then this leaf class would borrow bandwidth from its parent class. Parent class 

could also borrow bandwidth from its parent too. If a parent class has more than one child 

class and all of them run out of bandwidth, parent would distribute its resource based on child 

class’s priority(P), quantum(Q) and list of backlogged or queued packets in the FIFO 

queue(D). The equation below represents the model used for bandwidth borrowing.  

                        (3.2) 

3.2.3 Classification, Policing and Scheduling Of Packets In HTB Queuing Discipline 

From Deterministic Network Calculus, the classification, policing and scheduling of packets 

can be modelled using arrival and service curves 

The Classifying Phase 

Based on root, leaf and interior classes scenario used earlier, incoming requests from the 

SDN-based campus network will have a service curve given by 

      

                                                                                     (3.3) 

where c  is the delay and maxl
 is the maximum length of the arriving packet.  
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If the incoming request to the network has an arrival curve of  , then after classifying the 

arrival curve will be given by  

max( ) 1{ 0)t l t  
.                                                                                                           (3.4) 

The Policing Phase 

The classified incoming request is then policed based on the HTB QoS setting. Policing is 

carried out based on the root class minimum value. 

Policing function makes sure that a flow does not exceed guaranteed service. Excess traffic 

may be dropped or sent to best effort path. Policing devices always buffer flows and leaks in 

the guaranteed rate. A packetized shaper is a shaper that forms its output packets has a data 

rate r. Output flow of a policing device implemented in the HTB Queuing Discipline is  

,

_
( )policing T

t d
t kv k

T





    
                                                (3.5) 

where k is the rate of data flow, ,Tv   is a stair function and 

is defined by 

t T

T

 
 
    T is the interval and _ d  is the packet delay and 

x


    is the floor of 

x. 

For example, if the amount of traffic at College of Engineering exceeds the minimum value 

assigned to the root class, the policing criteria changes. For a packetized model, the output 

flow in such a case is 

_
( )policing

t d k R
t k if t t B

T T t


  

    
                 otherwise 

                                                    (3.6)                                                                   
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Also         

                                                                                   (3.7) 

where R is the number of bits seen in a flow of packets and B is queue length which buffers 

traffic burst. 

The Scheduling Phase 

In the HTB Queuing Discipline, the Scheduling Phase only occurs with packets that are in the 

leaf class. The leaky bucket model has a Service Curve of  

                                  (3.8) 

In the HTB model the number of bits in a flow in a period (0, t) is 

( ) min( ( ), ( ) ( )c aR t R t R t B t 
                                                                                     (3.9) 

 where Ra(t) is assured data rate (minimum threshold) and Rc(t) is ceil data rate (maximum 

threshold) The HTB FIFO Queue that uses a time varying leaky bucket model has Service 

Curve of  

   

                                         (3.10) 

3.3 DEVELOPMENT OF THE BANDWIDTH ON DEMAND TESTBED 

The Bandwidth on Demand Testbed was designed to carry out bandwidth utilization within 

the Software Defined-based campus network. It was designed and implemented using a 

Python Program that coordinates with the QoS Configuration for optimizing Bandwidth 

allocated to links, the OpenDaylight Controller and the OpenVswitch Database. 
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The Bandwidth on Demand Application uses a python program that runs a Main Process. 

This Main Process uses web sockets to facilitate TCP connections between three sub-process. 

It coordinates connections to the script containing the QoS definition for the Bandwidth on 

Demand, the OpenDaylight Controller and the OpenVswitch Database. 

 
Figure 3.12 Implementation of Bandwidth on Demand Application 

The QoS configuration code that was used is displayed below 

QoS CONFIGURATION CODE 

def createQ (interface, minB, maxB): 

return "ovs-vsctl set port {0} qos=@newqos -- --id=@newqos create qos type=linux-htb 

other-config:max-rate={2} queues:1=@q1 queues:2=@q2 -- --id=@q1 create queue other-

config:min-rate={1} other-config:max-rate={2} -- --id=@q2 create queue other-config:min-

rate={1} other-config:max-rate={2}".format(interface, minB, maxB) 

The API that was used by the main process to coordinate all three sub-processes is displayed 

below 



66 

API CALL URL: 

def url(url): 

return 'http://{0}:8181/restconf{1}'.format(ip, url) 

 

def creds(): 

return ('admin', 'admin') 

 

def nodes (): 

try: 

a = requests.get (url('/operational/opendaylight-inventory: nodes/'), auth=creds()) 

return json.dumps(a.json()) 

except: 

return json.dumps({}) 

 

def uploadFlow(s, d): 

url = "http://{0}:8181/nodes/node/openflow:1/table/0/flow/iperf".format(ip) 

The term highlighted opendaylight-inventory: nodes represents the five OpenVswitches that 

are connected to the OpenDaylight Controller. 

3.4 COMMUNICATION BETWEEN THE PLANES OF THE PROPOSED SDN 

ARCHITECTURE  

In the Software Defined-based campus network, the OpenDaylight Controller acts as a 

network operating system and controls the Software Defined Networking capable network 

devices (OpenVswitches) in a central way. It uses the Southbound Interface Protocol called 
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OpenFlow version 1.3 and Northbound Application Interface called REST to facilitate 

communication between the Infrastructure, Control and Data Planes. 

Figure 3.12 below shows the communication that occurs in a Generic Software Defined 

Network architecture 

 
Figure 3.13 Communication between the planes of an SDN architecture 

The scenario below is used to further explain the communication shown in Figure 3.13. 

Link between S1(College of Engineering) and S2(IDL) is slow. Users connecting to both 

switches cannot browse or download content. OpenFlow Port Status message notifies the 

OpenDaylight Controller via the management interface of S1 The OpenDaylight controller 

receives OpenFlow message and updates link capacity info. The QoS configuration code has 

previously registered in the Bandwidth on the Demand Application to be called whenever 

link capacity has to be changed.  It is called. 

The OpenFlow Protocol which has already accessed network graph info, link state info in the 

controller and communicates it to the app running HTB. 
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The testbed running HTB interacts with flow-table-computation component in the 

OpenDaylight SDN controller, which computes the instructions needed to dynamically 

configure bandwidth are sent to S1 and S2. Controller uses the OpenFlow Protocol to send 

the instructions to switches S1 and S2 to update their link-capacity information. 

After reproducing the functionalities of components found in the various planes of the 

Software Defined Network based campus network architecture an analysis was carried out to 

figure out if the following could take place based on the communication stated above. These 

are Control Plane-Application Plane Communication (NBI Communication), Control Plane-

Data Plane Communication (SBI Communication) and Data Plane Device communication. 

The results of the analyses are presented in Chapter 4. 

3.6 THEORECTICAL BASIS FOR THE COMMUNICATION BETWEEN THE 

PLANES OF A SOFTWARE DEFINED NETWORK ARCHITECTURE 

The scenario used to explain the communication that occur between the various planes of the 

Software Defined-based campus network Architecture in Figure 3.13, can be modelled based 

on Deterministic Network Calculus by taking into account the control cycle that occurs 

between the Data Plane, the OpenDaylight Controller and the Bandwidth on Demand 

Testbed. 

The QoS setting which is triggered at the application layer of the architecture as shown in 

Figure 3.12, is used determine a minimum and maximum threshold of bandwidth for 

communication between a particular OpenVswitch and a client at the faculty or residential 

portion of the campus network (KNUST LAN). A control cycle is evoked based on the 

trigger. 
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Figure 3.14 A Typical OpenVswitch and Controller Cycle in a Software Defined Network  

The OpenVswitch is a switching platform that serves as the interface between the Data plane 

and the Control plane. It consists of a forwarding engine that is used to forward packets after 

the HTB discipline has been implemented 

Below is a theoretical analysis of the maximum and minimum resource demand by an 

event(packet) stream on the OpenVswitch connected to S1(College of Engineering) using 

Nodes Concatenation Theorem. 

For a guaranteed service flow (root class definition),  

( )switch classifing policing shapingt    
                                                                                 (3.11) 

where  is the service curve for the switch,  is the service curve from 

classification of packets, is the service curve model for policing of classified packets 

and  is the service curve model for scheduling of packets. 

3.6.1 Analysis of The Control Cycle for A Software Defined Network 

Steps 1 to 6 in Figure 3.13, show the communication between the Infrastructure, Controller 

and Network Layer. Such a communication is termed as a control cycle. 
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Nodes Concatenation Theorem can be used to analyze the maximum and minimum resource 

demand by the various components in a Software Defined Network Architecture. 

Software Defined Networking facilitates the abstraction of the control portion of the network 

devices in the Infrastructure layer to the Open Daylight Controller. The behavior of the 

Controller is given by its Control Service Cycle which is given by         

      

                                                                (3.12) 

where is service  curve of controller, β2τ_link is service curve of link between 

controller and switch while its propagation and transmission delay given by τ_link. 

When a QoS Queue defined by the Bandwidth on Demand App with a specific priority is 

traverses the network in a packet stream, the packet stream(flow) is given a numbered 

priority. The arriving curve of such a flow is given by   if it is placed in a high 

priority queue. A lower priority flow with arriving curve as   goes through lower 

priority queue. 

The service curve for a high priority queue is given by . The service curve of a 

lower priority queue is                

(3.13) 

When a high priority flow destined for S1(College of Engineering) is created after the HTB 

QoS is triggered without a flow table, the service curve is given by 

_ _ _link ctl opendaylight openVswitch link      
                                                                 (3.14) 



71 

Service curve for a lower priority queue under the same condition is given by  

_ _ _ _link ctl opendaylight openvswitch higher priority link



 
                                                (3.15) 

After a flow table is created for the high priority flow in the above scenario, the service curve 

is given by  

_ _link openvswitch link     
                                                                                          (3.16) 

Service curve for a lower priority queue after a flow table is created is given by 

_ _ _link openvswitch higher priority link



 
                                                                        (3.17) 

3.7 CONCLUSION 

This chapter has explained the theory and methodology used in converting a typical 

traditional Campus Network into a Software-Defined Campus network are discussed. The 

chapter has also taken a look at theory and methodology employed in the development of an 

application that dynamically optimizes link bandwidth with a Software-Defined Campus 

Network. 

Deterministic Network Calculus was used to define arrival and service curve models for the 

communication between the various planes of the Software Defined-based campus network. 

Network Concatenation Theorem was also used in defining the service curve models for the 

control cycle that takes place in the various planes of the Software Defined-based campus 

network. 
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CHAPTER FOUR 

RESULTS AND DISCUSSIONS 

4.0 INTRODUCTION 

This chapter presents the results obtained from the implementation of a Software Defined -

based campus network. 

The chapter is divided into four main sections. The first section is a presentation of results of 

the conversion and of a traditional campus network into a Software Defined-based campus 

network. It also states the results of the emulation of the Software Defined-based campus 

network using the Kwame Nkrumah University LAN as a case study. The second section is a 

presentation and an analysis of the results obtained from communication between devices at 

the Data Plane Device of the Software Defined-based campus network.  The third section 

takes a look at the results and analysis of the communication that occurs between the Control 

Plane and Data Plane of the proposed network. The final section is a presentation of the 

results and analysis of the communication that occurs between the Control Plane and the 

Application Plane based on a scheme that dynamically utilizes bandwidth within the Software 

Defined-based campus network 

In each of these sections the experimental setup that was used is briefly described followed 

by a presentation and discussion of the results obtained. 
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4.1 RESULTS FOR THE CONVERSION OF A TRADITIONAL CAMPUS 

NETWORK INTO A SOFTWARE DEFINED-BASED CAMPUS NETWORK 

Figure 4.1 below shows a traditional campus network. 

 
Figure 4.1 Traditional Campus Network  

The Figure below shows the result of the conversion of Figure 4.1 into a generic Software 

Defined-based campus network. Comparing Figure 4. 1 and Figure 4. 2, the core switch is 

replaced by an OpenVswitch which is a layer 3 routing switch.  The three distribution 

switches are replaced by three OpenVswitches. The five edge switches are replaced by  six 

network devices(either routers or switches) which are connected to end users and the other 

equipment that form the access portion of the network. The OpenVswitches and network 

devices are connected to a Control Software to form the data plane or infrastructure layer. 

The Control Software is connected to a set of network applications which would facilitate 

configuration of the infrastructure layer thus creating the Northbound Interface. 
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Figure 4.2 Generic Software Defined-based campus network  

 

The Local Area Network of the Kwame Nkrumah University of Science and Technology is 

subdivided into a faculty portion and a residential portion. The faculty portion is made up of 

six colleges and the Institute of Distance Learning. The residential portion is made up of 

students’ residential halls and the homes of university staff. 

The Kwame Nkrumah University of Science and Technology LAN is mapped into a Software 

Defined-based campus network. The result from the mapping shows five OpenVswitches 

which form the collapsed distribution and core network, the six colleges of the university and 

the Institute of Distance Learning and the residential portion of the network and the two 

Internet Service Providers (ISPs) which provide access to the internet. 

It also shows the five OpenVswitches connected to the OpenDaylight Controller to form the 

Southbound Interface (SBI) as well as the connection between the OpenDaylight Controller 
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and an application that would dynamically configure and optimize bandwidth in the 

underlying network through an Application Programming Interface (API). This forms the 

Northbound Interface. (NBI) 

The schematic diagram below shows the Software Defined-based campus network of the 

Kwame Nkrumah University of Science and Technology LAN. 

 
Figure 4.3 Schematic of Software Defined-based campus network for KNUST  
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Figure 4.4 shows the emulation of the schematic in Figure 4. 3 using the GNS3 VM and the 

VMware Workstation 14 software. It depicts the network devices in the data plane and a 

connection to a remote controller proving that data plane and control plane functionality have 

been separated. 

 
Figure 4.4 Graphical User Interface Implementation of Software Defined-based LAN for 

KNUST 

4.2 EXPERIMENTAL SET UP FOR DATA PLANE DEVICE COMMUNICATION 

In order to validate forwarding between the network devices at the data plane of the emulated 

campus network, ICMP echoes are sent from the network device labelled IDL to the network 

device labelled CoE as highlighted using the red arrow in Figure 4. 5 
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Figure 4.5 Ping Trace from IDL to CoE 

4.2.1 Results And Analysis Of Data Plane Communication 

The results from the ping trace carried out from IDL to CoE devices are discussed below. 

4.2.1.1 Ping Trace Statisics 

In order to check the forwarding of packets from one host to another, the Internet Control 

Message Protocol was used to carry out a ping trace from one host (192.168.100.2 

representing IDL) to another host (192.168.80.2 representing the College of Engineering). 

From the figure below, the ping trace request shows a reply from the College Engineering 

host. This proves that forwarding of packets has been achieved. 
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Figure 4.6 Ping Trace Statistics 

4.2.1.2 Openvswitch Port Statistics 

In Figure 4.5, the green coloured portion on the OpenVswitches shows the active ports. These 

ports are capable of forwarding and receiving packets. The active ports of OpenVswitch 1 

were queried to validate the above proposition. 

 Figure 4.7 shows the port statistics of the active ports of OpenVswitch 1. There is 0 

transmission packet drop on all ports of the switch except Port 0. 

Port 2 transmits the highest number of 3,455 packets and Port 0 has the highest number of 

9,493 packets. This represents the number of packets transmitted from the Controller to the 

OpenVswitch. 

Port 8 which is the port that connects OpenVswitch 1 to OpenVswitch 4 has 733 transmitted 

packets and 1522 received packets from the ping trace carried out and displayed in Figure 3. 
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Figure 4.7 Open vSwitch Port Statistics 

4.3 EXPERIMENTAL SETUP FOR RESULT DATA PLANE-CONTROL PLANE 

COMMUNICATION 

In order to obtain the metrices from the communication between the data plane and the 

control plane, the Iperf tool was used. It has the ability to create data streams to measure the 

throughput and round-trip time between the two ends in one or both directions.  

Below is the Graphical User Implementation used in GNS3 for obtaining the metrices for the 

data plane-control plane communication. 

Two desktop devices running the Ubuntu Operating System were connected to OpenVswitch 

1 representing IDL and OpenVswitch 4 representing the College of Engineering. 

The desktop representing the College of Engineering is the client and is used in generating 

streams of packets in the form of a set of parallel threads to the desktop representing IDL 

which is the server. 

The client generates an iterated number of parallel threads starting from 2 threads to 18 

threads to the server with the root QoS class set at a minimum of 1 Mbps and maximum of 9 

Mbps at the Application Layer. 
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The Wireshark Packet Analyzer was used in obtaining the results for this section. 

 
Figure 4.8 Graphical User Implementation used in GNS3 for obtaining metrices for data 

plane-control plane communication. 

4.3.1 Results and Analysis of Data Plane-Control Plane Communication 

The results and analysis of the communication between the devices at the data plane and the 

OpenDaylight Controller are presented in this section. 

4.3.1.1 Control Plane Global View  

The Controller has to have a full knowledge of all the devices and links in the infrastructure 

layer or data plane in order to automate and orchestrate network configurations. This full 

knowledge is called the Global View. 

There is a direct correlation between Figure 4.9 and Figure 4.8 There are 5 OpenVswitches 

and 11 network devices in both. 

Also, a node with IP address 192.168.90.2 representing Residential 1 portion of the network 

is clearly seen. The correlation between both figures shows that the Controller has obtained a 

global view of the underlying infrastructure layer 
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Figure 4.9 Global View of Implemented Campus Network 
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4.3.1.2 Southbound Interface Statistics 

The results in the next set of figures show the communication between the Controller and 

OpenVswitch1 and the Controller and OpenVswitch 4 during the Iperf test using an 

implementation of the QoS Configuration in the Bandwidth on Demand Application 

These include OpenVswitch to Controller Latency, OpenVswitch to Controller Throughput 

and OpenVswitch Flow Statistics. 

4.3.1.3 Openvswitch To Controller Latency (Openvswitch 1) 

Round trip time (RTT) is the propagation time for sending and receiving a packet in a 

communication network.[73]. Round trip time is the latency from the OpenVswitch to the 

Controller and vice-versa plus the processing time 

 The latency between the switch and the controller becomes steady at 62.5 milliseconds as the 

traffic generation simulation is carried out. This is the result of the service curve emanating 

from the control cycle that occurs between the controller and the switch. This was discussed 

in Chapter 3.  It peaks at 1.5 seconds after 400 seconds of the simulation. 
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Figure 4.10 Latency between OpenVswitch 1 and Controller 

4.3.1.4 OpenVswitch to Controller Latency (OpenVswitch 4) 

The latency between OpenVswitch 4 and the Controller also becomes steady at 50 

milliseconds during the traffic simulation. It peaks at 2.1 seconds during the 80th second of 

the simulation as per the service cycle between the switch and the controller. 

 
Figure 4.11 Latency between OpenVswitch 4 and Controller 
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There is a clear correlation in the average and peak values of the roundtrip measured from 

both Open vSwitches. 

4.3.1.5 OpenVswitch To Controller Throughput (Openvswitch 1) 

This metric measures the amount of data moved successfully from OpenVswitch 1 to the 

Controller in a given time period, and typically measured in megabits per second (Mbps) 

[74]. 

There is a steady flow of 2Mbps of data from the OpenVswitch to the Controller. The peak 

throughput is 8Mbps 

 
Figure 4.12 Throughput between OpenVswitch 1 and Controller 

4.3.1.6 Openvswitch To Controller Throughput (Openvswitch 4) 

This metric measures the amount of data moved successfully from OpenVswitch 4 to the 

Controller in a given time period, and typically measured in megabits per second (Mbps)[75] 
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For OpenVswitch 4, the throughput peaks at 18Mbps in the 120th second of the traffic 

simulation due to the increasing number of parallel requests being made by the host directly 

attached it. It has an average of 9Mbps during the simulation period. 

 
Figure 4.13 Throughput between OpenVswitch 4 and Controller 

Results in Figure 4.12 and Figure 4.13 show that the peak throughput is a two-fold increment 

of the average throughput. 

4.4 EXPERIMENTAL SETUP FOR CONTROL PLANE-APPLICATION PLANE 

COMMUNICATION 

In order to obtain the metrices from the communication between the application plane and the 

control plane, the Iperf tool was used. An Iperf test produces a report of the bandwidth, 

packet loss and other parameters using timestamps. 

Figure 4.8 is used to carry out the experimental set up for the control plane-application plane 

communication 
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The desktop representing the College of Engineering is the client and is used in generating 

streams of packets in the form of a set of parallel threads to the desktop representing IDL 

which is the server. 

The client generates an iterated number of parallel threads starting from 2 threads to 18 

threads to the server with the root QoS class set at a minimum of 1 Mbps and maximum of 9 

Mbps. 

The following metrics are measured and graphed as the iterations go on. These are 

OpenVswitch Flow Statistics, Latency per Thread or Packet Group, Bandwidth Change per 

Thread or Packet Group and Bandwidth Change per Thread or Packet Group per Time 

4.4.1 RESULTS AND ANALYSIS OF CONTROL PLANE-APPLICATION PLANE 

COMMUNICATION 

The results and analysis of the communication between the devices at the control plane and 

the OpenDaylight Controller are presented in this section. 

4.4.1.1 Flow Statistics for Openvswitch 1 

Figure 4.14 details 7 axis points showing the characteristics of 7 flows picked from 

OpenVswitch 1. 

On axis point 4, the flow has a priority of 2 with 98,480 packets in the flow. The flow stays in 

the network for 5739 seconds. 

On axis 7 for example the flow has a priority of 100 with 2,304 packets in the flow stays in 

the network for 2304 seconds. These results stem from data transferred between the 

application and the switch after the bandwidth change has been triggered for the duration of 

the simulation. 
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Figure 4.14 Flow Statistics for OpenVswitch 1 

4.4.1.2 Flow Statistics For Openvswitch 4 

The figure below details 12 axis points showing the characteristics of 12 flows picked from 

OpenVswitch 4. 

On axis point 11, the flow has a priority of 2 with 62,375 packets in the flow. The flow stays 

in the network for 5739 seconds. 

On axis 2 for example the flow has a priority of 100 with 3,623 packets in the flow stays in 

the network for 6168 seconds. 
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There is a correlation between the durations of the flows for priority 2 in both OpenVswitch 1 

and OpenVswitch 4 at 5739 seconds in both cases.  

 
Figure 4.15 Flow Statistics for OpenVswitch 4 

4.4.2 Results and Analysis For The Implementation Of The Bandwidth Utilization 

Scheme  

The results show a record of the Iperf tool running on the client device representing the 

College of Engineering connected to OpenVswitch 4 after the triggering of the QoS 

Configuration setting in the Bandwidth on Demand Application via an API call. These results 

are based on the service curve model for a Software Defined Network derived from the Node 

Concatenation Theorem. 

An iteration of parallel connections was used to model a number of requests that are made 

from the iperf client to the iperf server. 

These include Latency per Thread Group, Bandwidth Change per Thread Group and 

Bandwidth Change per Thread Group per Time 
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4.4.2.1 Latency Per Thread Group 

For every parallel thread, a number of ICMP echo messages are sent from the client at the 

College of Engineering and the server at IDL. 

The round-trip time value shows the time for the movement of requests from the 

Infrastructure layer through the Control layer and to the Bandwidth on Demand Application 

layer and back. 

From the graph in Figure 4.16 the 5 ping trace attempts represent 5 parallel requests from the 

client to the server, responses are received in both directions in a total of 39 milliseconds. The 

highest round-trip time of 141 milliseconds is received during 7 ping trace attempts. On the 

average the round-trip time lies in the range of 20 to 40 milliseconds for a vast majority of the 

attempts. This value shows a good control cycle time of the Campus Based Software Defined 

Network model for the Kwame Nkrumah University of Science and Technology as compared 

to 1000ms in the work done by F. Volpato et al [62] 

 
Figure 4.16 Round Trip per Thread Group 
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4.4.2.2 Bandwidth Change Per Thread Group 

This metric shows the dynamic change of bandwidth based on the QoS Configuration setting 

which has the root class set to 1Mbps minimum and 9Mbps maximum.  

Based on classifying, policing, scheduling and borrowing mechanisms, bandwidth is changed 

dynamically per the parallel thread iteration. 

In the figure below, a total of 4Mbps is allocated for the 10-parallel thread iperf request. 

There is a steady rise in allocated bandwidth from the 1thread iteration to the 18-thread 

iteration peaking at about 7.8 Mbps for the 18th thread. This clearly shows that bandwidth is 

borrowed from the root class to an inner class and is shared equally in a leaf class for every 

single thread iteration satisfying the QoS Configuration definition. 

 
Figure 4 17 Bandwidth Change per Thread Group 
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4.3.2.3 Bandwidth Change Per Thread Group Per Time 

This metric shows the amount of time taken for the QoS setting to dynamically change the 

bandwidth for the thread-based iteration. 

The graph above shows that for 10 parallel connections 4 Mbps is allocated in 17 seconds. It 

takes 17 seconds to allocate a leaf class for each of the 10 parallel connections. 

This allocation peaks at a value of 4.3 Mbps in 27.5 seconds for 13 parallel connections. The 

graph however takes a downward trend from this peak value of 27.5 seconds. The amount of 

time for the dynamic allocation to take place reduces steady and tapers to 17 seconds for the 

18-thread iteration.  

This implies that after 27.5 seconds, the Software Defined-based campus network 

dynamically adapts to the QoS configuration changes as the thread iterations increase. The 

controller dynamically adapts to the changing conditions in the network and carries out the 

bandwidth changes in a shorter space of time. 



92 

 
__________   Bandwidth (Mbps) 

__________   Duration(seconds) 

Figure 4. 18 Bandwidth change per thread group per time. 

4.5 CONCLUSION 

In this chapter, a presentation and analysis of the results obtained from the conversion and 

emulation of a traditional campus network into a Software Defined campus-based one. 

The results show the behaviour of packets based on Data Plane Device COMMUNICATION, 

Control Plane-Data Plane Communication (SBI Communication) and Control Plane-

Application Plane Communication (NBI Communication). 
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 

This thesis focused on the design and implementation of a dynamic bandwidth scheme in a 

Software Defined-based campus network as means a of resolving the issue of static 

bandwidth configuration. The Local Area Network of the Kwame Nkrumah University of 

Science and Technology was used as a case study. 

A traditional network was converted into a Software Defined-based campus network. 

Virtualization technology was used to emulate a three-tier architecture made up of network 

devices, a controller and a network application. The entire architecture was tested based on a 

three-stage process.  

In the first phase, the lowest tier called the data plane was tested to check for the forwarding 

of packets using ICMP echo pings. The test proved successful as the ping request from the 

network device named Institute of Distance Learning (IDL) received a reply from the 

network device named College of Engineering. To further prove the forwarding of packets, 

the ports of an SDN-capable switch called the Open vSwitch were queried. All active ports of 

the switch were seen to be passing packets with the highest transmitting port being port 2 

which passed 3,455 packets and the highest receiving port being port 0 which carried 9,493 

packets. 

In the second phase, a simulation was carried to test communication between the control 

plane and the data plane using the iperf application running on two Ubuntu hosts that were 

connected to two SDN-capable Open vSwitches. The latency and throughput between the 

controller and two SDN-capable Open Vswitches was investigated. The latency for the SDN-

capable Open vSwitch labelled Open vSwitch 1 was an average of 62.5 milliseconds with a 
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peak of 1.5 seconds. The latency for the SDN-capable Open vSwitch labelled Open vSwitch 

4 was an average of 50 milliseconds with a peak of 2.1 seconds. 

The throughput of the SDN-capable Open vSwitch labelled Open vSwitch 1 was an average 

of 2Mbps and a peak of 8Mbps while that of Open vSwitch 4 was 9Mbps averagely with a 

peak of 18Mbps. 

The third phase was a test of communication between the control plane and the application 

plane using the iperf application running on two Ubuntu hosts that were connected to two 

SDN-capable Open vSwitches. The number of flows on both switches were queried. Open 

vSwitch 1 recorded 98,480 packets moving from the application plane. Open vSwitch 4 

recorded 62,375 packets.  

In this phase an iteration of parallel connections was carried out to test the concept of 

bandwidth utilization based on the Hierarchical Token Bucket Theorem. These parallel 

connections were called thread groups. The thread group was used to model a number of 

requests that are made from the iperf client to the iperf server. 

The average latency for a thread group was 20 to 40 milliseconds. A maximum threshold of 

9Mbps was set for all connections. The bandwidth variation per thread group occurs from as 

low as 2Mbps for 1 connection to 8Mbps for 18 connections. This variation shows borrowing 

from 9Mbps cap based on the amount of traffic requests being made. Also, this bandwidth 

variations based on the parallel iterations occur in 27.5 seconds during the 15
th
 iteration. As 

the number of iterations increases the amount of time for the variations reduces and becomes 

steady at about 17 seconds.  The results of the work show that Software Defined Networking 

and the Hierarchical Token Bucket Queuing Discipline can be used to facilitate dynamic 

utilization of bandwidth in campus networks. 
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5.2 RECOMMENDATIONS 

In this work a Software Defined-based campus network was designed and tested within a 

virtual environment which emulates the software running on a set of network devices. 

Dynamic bandwidth utilization was carried out using a network application. However, a 

Software Defined Network has the capability of carrying out other network functions 

including routing, security and the creation of virtual local area networks. Based on the 

above, future work will be carried out to test whether all of these functions can be 

implemented within one architecture.  
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APPENDICES 

APPENDIX A 

Code Listings 

All the source code used in the implementation of the Bandwidth Utilization Scheme at the 

application plane of the SDN-based campus network are listed below 

A.1 Code For Queue Creation 

#!/usr/bin/python 

 """ 

 Interfaces Detector 

 """ 

  

 

 import sys 

 # adding helper function 

 sys.path.append('../SDN_Python') 

 import helper 

 import logger as d 

 import db 

 import socketio 

 import telnetlib 

 import requests 

 import time 

 # defaults 

 sio = socketio.Client() 
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 b5 = 0 

 b4 = 0 

 # default url 

 webUrl = "http://localhost:8000/" 

  

 

 try: 

     sio.connect('http://127.0.0.1:5000') 

  

 

 except KeyboardInterrupt: 

         sys.exit() 

  

 

 except: 

         sys.exit() 

  

 

 def sendData(dat): 

     d.warning(str(dat)) 

     res = requests.post(webUrl + 'obs/', data=dat) 

     d.success(str(res.text)) 

     

     # add packets rx and tx 

     res = requests.post(webUrl + 'packets/', data=dat) 
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     d.success(str(res.text)) 

  

 

 # done connecting to websocket; connect to telnet 

 @sio.on('5005') 

 def op5(data): 

     info = data['data'] 

     ip = info['ip'] 

     console = info['console'] 

     src = '192.168.80.9' 

     dst = '192.168.100.8' 

     interface = info['interface'] 

     tx = info['tx'] 

     rx = info['tx'] 

  

 

     tx = int(tx) + int(rx)  

     minB = 0 

     maxB = tx 

     ip = '192.168.198.128' 

  

 

 

     global b5 
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     # create queue 

     if b5 != maxB: 

         d.default('Creating queue: ' + str(ip) + ':' + str(console)) 

         queue = helper.createQ(interface, minB, maxB) 

         tn = telnetlib.Telnet(ip, console) 

         tn.write("ovs-vsctl -- --all destroy QoS -- --all destroy 

Queue\n".encode('ascii')) 

         tn.write((queue + "\n").encode('ascii')) 

         d.success('Queue created...: ' + str(console)) 

  

 

         # push to odl 

         helper.uploadFlow(src, dst) 

  

 

         # sending data to web app 

         webData = {'start':  str(info['start']), 'stop':  str(time.time()), 'dura-

tion':  str(time.time() - info['start']), 'old': str(b5), 'new': str(maxB), 'tx': 

str(tx), 'rx': str(tx)} 

         sendData(webData) 

          

 

 

         b5 = maxB 

     else: 
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         d.default('Not setting bandwidth: no changes detected') 

  

 

 @sio.on('5014') 

 def op4(data): 

     info = data['data'] 

     ip = info['ip'] 

     console = info['console'] 

     dst = '192.168.80.9' 

     src = '192.168.100.8' 

     interface = info['interface'] 

     tx = info['tx'] 

     rx = info['tx'] 

  

 

     tx = int(tx) + int(rx)  

     minB = 0 

     maxB = tx 

  

 

     ip = '192.168.198.128' 

      

     global b4 
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     if b4 != maxB: 

         d.default('Creating queue: ' + str(ip) + ':' + str(console)) 

         # create queue 

         queue = helper.createQ(interface, minB, maxB) 

         tn = telnetlib.Telnet(ip, console) 

         # delete existing queue 

         tn.write("ovs-vsctl -- --all destroy QoS -- --all destroy 

Queue\n".encode('ascii')) 

         tn.write((queue + "\n").encode('ascii')) 

         d.success('Queue created: ' + str(console)) 

  

 

         # push to odl 

         helper.uploadFlow(src, dst) 

     else: 

         d.default('Not setting bandwidth: no changes detected') 

 

 

 

 

 

 

A.2 Code For Connection To Opendaylight Controller 

#!/usr/bin/python 
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 """ 

 IPC 

 """ 

  

 

 import socketio 

 import eventlet 

 import pprint 

 import sys 

 import logger as d 

 import db 

  

 

 ### DEFAULTS ##### 

 sio = socketio.Server() 

 app = socketio.WSGIApp(sio, static_files={ 

     '/': {'content_type': 'text/html', 'filename': 'index.html'} 

 }) 

  

 

 ## connection defaults ### 

 @sio.on('connect') 

 def connect(sid, environ): 

     d.success('Client socket opened => ' + sid) 
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 @sio.on('disconnect') 

 def disconnect(sid): 

     d.error('Client socket closed => ' + sid) 

  

 

 ##### Event Handlers 

 @sio.on('nodes') 

 def nodes(sid, data): 

     d.success('Data received: ' + str(data)) 

     sio.emit('nodes', data) 

  

 

 @sio.on('5005') 

 def op5(sid, data): 

     d.warning('Sending data to obs: 5005') 

     sio.emit('5005', data) 

  

 

 @sio.on('5014') 

 def op4(sid, data): 

     d.warning('Sending data to obs: 5014') 

     sio.emit('5014', data) 
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 try: 

     eventlet.wsgi.server(eventlet.listen(('127.0.0.1', 5000)), app) 

 except KeyboardInterrupt: 

     sys.exit() 

 

#!/usr/bin/python 

 """ 

 Interfaces Detector 

 """ 

  

 

 import sys 

 import json 

 # adding helper function 

 sys.path.append('../SDN_Python') 

  

 

 import helper 

 import logger as d 

 import db 

 import socketio 

 import pprint 
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 from time import sleep 

 import time 

  

 

 # defaults 

 sio = socketio.Client() 

  

 

  

 

 try: 

     sio.connect('http://127.0.0.1:5000') 

  

 

 except KeyboardInterrupt: 

         sys.exit() 

 except: 

     print("No connection to server") 

     sys.exit() 

  

 

 ## getting all interfaces on openvswitches 

  

 

 def getNodes(): 
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     try: 

         data = json.loads(helper.nodes()) 

         data = data['nodes']['node'] 

          

         switches = [] 

          

         for x in data: 

    

             # checking through all nodes 

             switchData = []        

             for n in x['node-connector']: 

                 branch =  n['opendaylight-port-statistics:flow-capable-node-

connector-statistics'] 

              

                 if branch['packets']['received'] > 0: 

                     port = n['flow-node-inventory:port-number'] 

                     link = n['flow-node-inventory:current-speed'] 

                     interface = n['flow-node-inventory:name'] 

                     tx = branch['bytes']['transmitted'] 

                     rx = branch['bytes']['received'] 

                     ip = x['flow-node-inventory:ip-address'] 

                     if interface.find('eth3') != -1: 

                         if x['id'] == "openflow:38023701621572" or x['id'] == 

"openflow:60174091252288": 

                             if x['id'] == "openflow:38023701621572": 
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                                 console = 5014 

                             else: 

                                 console = 5005 

                             switchData.append({ 'port': port, 'interface': interface, 

'rx': rx, 'tx': tx, 'link': link , 'ip': ip , 'console': console, 'start': time.time() 

}) 

             if len(switchData) > 0: 

                 switches.append({ 'id': x['id'], 'data': switchData }) 

              

         # send data to be analyzed 

         d.default('Sending captured nodes to IPC') 

         sio.emit('nodes', {'data': switches}) 

  

 

     except Exception as e: 

         print(e) 

         sio.disconnect() 

         sys.exit() 

  

 

 if __name__ == "__main__": 

     while True: 

         getNodes() 

         sleep(1) 
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A.3 Code For Realtime Analysis Of Bandwidth Utilization Application  

#!/usr/bin/python 

""" 

Interfaces Detector 

""" 

 

import sys 

from prettytable import PrettyTable 

# adding helper function 

sys.path.append('../SDN_Python') 

import helper 

import logger as d 

import db 

import socketio 

import subprocess 

 

# defaults 

sio = socketio.Client() 

 

def clearScreen(): 

    subprocess.run('clear') 

 

 

############# Event Handlers #################### 
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@sio.on('nodes') 

def nodes(data): 

    clearScreen() 

    #d.warning('Data received: ' + str(data)) 

    info = data['data'] 

     

    p = PrettyTable() 

    p.field_names = ["Switches", "Interface", "Tx", "Rx", "Port Number", "IP Address", 

"Console Port"] 

     

    for x in info: 

        p.add_row([str(x['id']), x['data'][0]['interface'], str(x['data'][0]['tx']), str(x['data'][0]['rx']), 

str(x['data'][0]['port']), str(x['data'][0]['ip']), str(x['data'][0]['console'])]) 

        sio.emit(str(x['data'][0]['console']), { 'data': x['data'][0] }) 

        """ 

        if x['id'] == "openflow:60174091252288": 

            p.add_row([str(x['id']), x['data'][0]['interface'], str(x['data'][0]['tx']), 

str(x['data'][0]['rx']), str(x['data'][0]['port']), str(x['data'][0]['ip']), str(x['data'][0]['console'])]) 

        else: 

            p.add_row([str(x['id']), x['data'][3]['interface'], str(x['data'][3]['tx']), 

str(x['data'][3]['rx']), str(x['data'][3]['port']), str(x['data'][3]['ip']), str(x['data'][3]['console'])]) 

     

        """ 

    # display table 

    print(p) 
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############### ... MAIN ... ################################ 

 

if __name__   == "__main__": 

    try: 

        sio.connect('http://127.0.0.1:5000') 

 

    except KeyboardInterrupt: 

        sys.exit() 

 

    except: 

        sys.exit() 

 

 

 

 

 

#!/usr/bin/python 

  

 

 """ 

 Database module 

 """ 
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 import sqlite3 

 import os 

  

 

 prefix="dashboard_" 

  

 

 def init(): 

     conn = sqlite3.connect(os.path.dirname(os.path.realpath(__file__)) 

+'/../db.sqlite3') 

     conn.row_factory = sqlite3.Row 

     return conn 

  

 

 def getData(table): 

     conn = init() 

     cursor = conn.cursor() 

     cursor.execute("select * from {0} order by id asc".format(prefix + ta-

ble)) 

     return cursor.fetchall() 

 

 


