
DYNAMIC BANDWIDTH UTILIZATION IN SOFTWARE DEFINED-BASED

CAMPUS NETWORKS

A CASE STUDY OF THE KWAME NKRUMAH UNIVERSITY OF SCIENCE AND

TECHNOLOGY

By

Kobby Asare Obeng

(BSc. Telecommunication Engineering)

A thesis submitted to the Department of Telecommunications Engineering, Kwame

Nkrumah University of Science and Technology, Kumasi in partial fulfilment of the

requirements for the degree of,

MPhil. Telecommunication Engineering

NOVEMBER 2019

ii

DECLARATION

I hereby declare that this study was carried out by me and that to the best of my knowledge

and belief, it has not been presented anywhere for the award of a degree and that where use is

made of other related work, due acknowledgment is made in the thesis.

Kobby Asare Obeng ………………………… …………………

Student (20517989) Signature Date

Certified by:

Dr. James Dzisi Gadze ………………………… …………………

Supervisor Signature Date

Certified by:

Ing. Dr. Abdul-Rahman Ahmed ………………………… …………………

Head of Department Signature Date

iii

ACKNOWLEDGEMENT

All thanks and praise be to God Almighty whose grace and mercy have brought me this far.

Every step of the way in this journey has been his orchestration and I am grateful. I would

like to express my profound gratitude to my research supervisor Dr. J.D Gadze for his critical

input in shaping this work into what is has become. A big thank you goes to Mr. Justice

Owusu Agyeman who contributed immensely to this work. I am highly indebted to Dr. Eliel

Keelson and Mr. Courage Logah of the Department of Computer Engineering KNUST and

UITS respectively. Their advice and consistent commentary at every phase of the work were

very useful. I also appreciate the support of Dr. Omari Sasu of the Department of

Mathematics and Professor Lydia Apori Nkansah Dean of the Faculty of Law and their

families. I wish to thank all the members of staff in the Department of Telecommunications

Engineering for their immense support. A special thank you goes to my parents Dr.

Emmanuel Obeng Apori and Mrs. Elizabeth Apori for all the financial and spiritual support

given to me from birth even until now. My sincere gratitude to my brothers Kweku and

Emmanuel Obeng. God bless Mrs. Emelia Turkson for her encouragement, direction and

help. Thank you to Rev. Dr. Joseph Baah Obeng and Pastor Mrs. Adwoa Afrakoma Baah

Obeng and their family who have been a strong pillar of support for the past ten years. To

Mrs. Roseline Brown who literally pushed me to pursue my admission for this program when

I had given up, I say God bless you and the family. A big thank you also goes to all pastors

and members of Harvest Chapel International KNUST and Danyame. You are the best family

ever. To all the Sunday School Teachers in Fountain Gate Chapel this is the fruit of your

tireless labors of love.

iv

DEDICATION

This thesis is dedicated to three great mentors who have shaped my perspective in life. Mrs.

Priscilla Yakung, Mrs. Akweley Laryea and Pastor Jeffery Amoasah.

v

ABSTRACT

The efficient utilization of bandwidth in campus networks is a major traffic engineering issue.

It requires a complete knowledge of the underlying physical network architecture as well a

means to automate or reactively and proactively program the network. The static nature of

traditional network creates a hurdle that must be overcome to achieve the above. The

Software Defined Network architecture proposes a novel way to automate, program and

dynamically configure computer networks. This work uses the VMware virtualization

software and the GNS3 network emulator to convert a traditional campus network into a

Software Defined-based campus network. A data plane made up of software-based replicas of

network devices is designed and configured to connect to a controller software. A network

application scheme is implemented by leveraging the Hierarchical Token Bucket Queuing

Discipline which automatically programs bandwidth allocation at the data plane through the

controller based on traffic demands. The functionality of the architecture is tested by carrying

out a number of parallel-connections to simulate changing traffic patterns. This is done using

the Iperf Application. The results show the conversion of a traditional campus network into a

Software Defined-based campus network. It also depicts the complete emulation of the entire

Software Defined-based campus network. At the data plane of the emulated network, devices

are able to forward packets to one another with the most active port forwarding about 9,000

packets. The controller obtains a global of all 11-network devices in the emulated network.

The latency between the controller and the software defined switches at the data plane ranges

between 50 and 62.5 milliseconds. The throughput between the controller and the software

defined switches at the plane ranges between 2 and 9 Mbps. Application Plane to Control

Plane communication in the emulated network is executed in an average of 30 milliseconds

and bandwidth utilization occurs in a minimum of 11seconds and peaks at 27.5 seconds. It

however becomes steady at 17 seconds as traffic patterns vary.

vi

TABLE OF CONTENTS

DECLARATION ... ii

ABSTRACT.. iii

LIST OF FIGURES .. x

CHAPTER ONE ... 1

INTRODUCTION ... 1

1.1 BACKGROUND OF THE STUDY .. 1

1.2. RESEARCH PROBLEM.. 4

1.3 MOTIVATION ... 5

1.4 RESEARCH OBEJCTIVES .. 7

1.5 SIGNIFICANCE AND CONTRIBUTIONS .. 8

1.6 ORGANISATION OF THESIS ... 8

CHAPTER TWO .. 10

LITERATURE REVIEW ... 10

2.0 INTRODUCTION ... 10

2.1 GENERAL OVERVIEW OF SOFTWARE DEFINED NETWORKING 10

2.2 THE DATA PLANE ... 15

2.3 THE CONTROL PLANE .. 18

2.4 THE APPLICATION PLANE ... 20

2.5 THE SOUTHBOUND INTERFACE ... 22

2.6 THE NORTHBOUND INTERFACE .. 25

2.6.1 The Rest Architecture ... 26

2.6.2 Netconf .. 27

2.6.3 Restconf ... 28

2.7 NETWORK VIRTUALIZATION ... 28

2.8 TRAFFIC ENGINEERING IN SOFTWARE DEFINED NETWORKS 31

2.9 THE HIERARCHICAL TOKEN BUCKET QUEUING DISCIPLINE 32

2.10 RELATED RESEARCH IN SOFTWARE DEFINED NETWORKING 34

2.11 SOFTWARE DEFINED NETWORKING IN THE ENTERPRISE NETWORK 34

2.11.1 Load Balancing And Firewall Implementations In Software Defined Networks 34

2.11.2 Bandwidth On Demand And Quality Of Service Implementations In Software

Defined Networks .. 37

2.11.3 Vlan Configuration In Software Defined Networks ... 38

vii

2.11.4 Traffic Classification In SDN-Based Wireless Lans .. 39

2.11.5 Traffic Management And Measurement In Software Defined Networks 40

2.11.6 Management Of Network Resources And Data Flow In Software Defined

Networks ... 40

2.11.7 Routing In Software Defined Networks .. 40

2.11.8 Utilization Of QoS And Routing In Software Defined Networks 41

2.11.9 Queue Scheduling In Software Defined Networks .. 41

2.11.10 Network Management And Performance Monitoring In Software Defined

Networks.. 42

2.12 SOFTWARE DEFINED NETWORKING IN CARRIER NETWORKS. 42

2.12.1 On Demand Bandwidth-Based Pricing In Software Defined Networking 43

2.12.2 Software Defined Networking For Satellite Networks... 43

2.12.3 Software Defined Networking For Iot Networks ... 44

2.12.4 Software Defined Networking For Fifth Generation Networks 45

2.13 CONCLUSION ... 47

CHAPTER THREE .. 48

METHODOLOGY AND THEORECTICAL BACKGROUND 48

3.0 INTRODUCTION ... 48

3.1 SOFTWARE-DEFINED BASED CAMPUS NETWORK ... 48

3.1.1 Conversion Of A Traditional Campus Network Into An Sdn-Based Campus

Network .. 50

3.1.2 Emulation Of Knust Sdn-Based Campus Network .. 54

3.2 OPTIMAL DYNAMIC BANDWIDTH SHARING SCHEME 57

3.2.1 The Hierarchical Token Bucket Queuing Discipline ... 58

3.2.2 Bandwidth Borrowing .. 60

3.2.3 Classification, Policing And Scheduling Of Packets In Htb Queuing Discipline 62

3.3 DEVELOPMENT OF THE BANDWIDTH ON DEMAND TESTBED 64

3.4 COMMUNICATION BETWEEN THE PLANES OF THE PROPOSED SDN

ARCHITECTURE .. 66

3.6 THEORECTICAL BASIS FOR THE COMMUNICATION BETWEEN THE

PLANES OF A SOFTWARE DEFINED NETWORK ARCHITECTURE 68

3.6.1 Analysis Of The Control Cycle For A Software Defined Network 69

3.7 CONCLUSION ... 71

viii

CHAPTER FOUR ... 72

RESULTS AND DISCUSSIONS .. 72

4.0 INTRODUCTION ... 72

4.1 RESULTS FOR THE CONVERSION OF A TRADITIONAL CAMPUS NETWORK

INTO A SOFTWARE DEFINED-BASED CAMPUS NETWORK 73

4.2 EXPERIMENTAL SET UP FOR DATA PLANE DEVICE COMMUNICATION........ 76

4.2.1 Results And Analysis Of Data Plane Communication ... 77

4.2.1.1 Ping Trace Statisics ... 77

4.2.1.2 Openvswitch Port Statistics ... 78

4.3 EXPERIMENTAL SETUP FOR RESULT DATA PLANE-CONTROL PLANE

COMMUNICATION .. 79

4.3.1 Results And Analysis Of Data Plane-Control Plane Communication 80

4.3.1.1 Control Plane Global View .. 80

4.3.1.2 Southbound Interface Statistics .. 82

4.3.1.3 Openvswitch To Controller Latency (Openvswitch 1).. 82

4.3.1.5 Openvswitch To Controller Throughput (Openvswitch 1) .. 84

4.3.1.6 Openvswitch To Controller Throughput (Openvswitch 4) .. 84

4.4 EXPERIMENTAL SETUP FOR RESULT CONTROL PLANE-APPLICATION

PLANE COMMUNICATION ... 85

4.4.1.1 Flow Statistics For Openvswitch 1 ... 86

4.4.1.2 Flow Statistics For Openvswitch 4 ... 87

4.4.2 Results And Analysis For The Implementation Of The Bandwidth Utilization

Scheme ... 88

4.4.2.1 Latency Per Thread Group ... 89

4.4.2.2 Bandwidth Change Per Thread Group .. 90

4.3.2.3 Bandwidth Change Per Thread Group Per Time .. 91

4.5 CONCLUSION ... 92

CHAPTER FIVE... 93

CONCLUSION AND RECOMMENDATIONS .. 93

5.2 RECOMMENDATIONS ... 95

REFERENCES .. 96

APPENDICES ... 106

APPENDIX A ... 109

ix

A.1 Code For Queue Creation ... 109

A.2 Code For Connection To Opendaylight Controller .. 114

A.3 Code For Realtime Analysis Of Bandwidth Utilization Application 121

x

LIST OF FIGURES

Figure 1.2 The Software Defined Networking Architecture ... 6

Figure 2.1 Typical router architecture .. 11

Figure 2.2 Traditional Network Architecture. .. 12

Figure 2.3 Software Defined Networking Architecture. ... 13

Figure 2.4 Traditional Network Architecture vs SDN network architecture 14

Figure 2.5 Virtual SDN switch anatomy .. 16

Figure 2.6 Physical SDN switch anatomy .. 16

Figure 2.9 The OpenDaylight Architecture .. 20

Figure 2.10 A typical flow table .. 22

Figure 2.11 OpenFlow Capable Switch ... 23

Figure 2.12 Types of Messages in OpenFlow .. 24

Figure 2. 15 Application Programming Interface. .. 25

Figure 2.16 XML element in a REST API ... 27

The Description layer uses descriptions such as REST charts to describe possible

representations. ... 27

Figure 2.17 The Rest Chart Figure 2.16 XML element in a REST API 27

Figure 2.18 NETCONF protocol layers ... 28

Figure 2.19 RESTCONF protocol stack... 28

Figure 2.20 Network Virtualization ... 29

Figure 2.21 A Typical Mininet Topology .. 30

Figure 2.22 GNS3 topology created using the GNS3 GUI running in VMware 31

Figure 2.23 HTB class structure and borrowing ... 33

Figure 2.24 Hierarchical Token Bucket Queuing Discipline Operation 34

Figure 2.25 OpenSatNet architecture by Fei et al ... 44

Figure 2.26 CORAL-SDN for IoT ... 45

Figure 2.27 SoftAir Architecture for 5G Networks .. 46

Figure 2.28 NFV implementation of SoftAir Architecture. .. 46

Figure 3.1 A Typical Campus Network ... 49

Figure 3.2 Software Defined Network Architecture. .. 50

Figure 3.4 Generic SDN-based Campus Network Source: Author’s Construct 2019 51

Figure 3.6 Proposed KNUST Campus Based Software Defined Network Source: Author’s

Construct 2019 .. 53

xi

Figure 3.6 Traditional KNUST Campus Network Source: UITS, KNUST 54

Figure 3. 7 Graphical User Interface Implementation of Infrastructure and Control layers in

GNS3 and VMware. .. 56

Figure 3.8 Controller Interface Installation .. 57

Figure 3.9 HTB class structure and borrowing ... 59

Figure 3.10 Hierarchical Token Bucket Queuing Discipline Operation Source: Author’s

Construct 2019 .. 60

Figure 3.11 Sample HTB class hierarchy for KNUST SDN-based campus network............ 61

Figure 3.12 Implementation of Bandwidth on Demand Application 65

Figure 3.13 Communication between the planes of an SDN architecture 67

Figure 3.14 A Typical OpenVswitch and Controller Cycle in a Software Defined Network . 69

Figure 4.1 Traditional Campus Network .. 73

Figure 4.2 Generic Software Defined-based campus network .. 74

Figure 4.3 Schematic of Software Defined-based campus network for KNUST 75

Figure 4.4 Graphical User Interface Implementation of Software Defined-based LAN for

KNUST ... 76

4.2 EXPERIMENTAL SET UP FOR DATA PLANE DEVICE COMMUNICATION........ 76

Figure 4.6 Ping Trace Statistics ... 78

Figure 4.7 Open vSwitch Port Statistics... 79

Figure 4.8 Graphical User Implementation used in GNS3 for obtaining metrices for data

plane-control plane communication. .. 80

Figure 4.9 Global View of Implemented Campus Network.. 81

Figure 4.10 Latency between OpenVswitch 1 and Controller .. 83

Figure 4.11 Latency between OpenVswitch 4 and Controller .. 83

Figure 4.12 Throughput between OpenVswitch 1 and Controller... 84

Figure 4.13 Throughput between OpenVswitch 4 and Controller... 85

Figure 4.14 Flow Statistics for OpenVswitch 1.. 87

Figure 4.15 Flow Statistics for OpenVswitch 4.. 88

Figure 4.16 Round Trip per Thread Group .. 89

Figure 4 17 Bandwidth Change per Thread Group ... 90

Figure 4. 18 Bandwidth change per thread group per time. .. 92

Figure 1.1 http://www.excitingip.net/27/a-basic-enterprise-lan-network-architecture-block-

diagram-and-components/ ... 106

xii

Figure 1.2 The Future of Networking and the Past of Protocols by Scott Shenker et al 106

Figure 2.1 What is Switching Fabric? - Definition from Techopedia,” Techopedia.com.

[Online]. Available: https://www.techopedia.com/definition/16015/switching-fabric.

[Accessed: 24-Jun-2019 .. 106

Figure 2.2 Source: NDI Communications-Training and Education 106

Figure 2.3 The Future of Networking and the Past of Protocols by Scott Shenker et al 106

Figure 2.4 https://www.researchgate.net/A novel industrial control architecture based on

Software-Defined Network ... 106

Figure 2.5 P. Göransson and C. Black, Software defined networks: a comprehensive

approach. Amsterdam Boston Heidelberg London: Elsevier, Morgan Kaufmann, Morgan

Kaufmann is an imprint of Elsevier, 2014 ... 106

Figure 2.7 online.fliphtml5.com .. 106

Figure 2.8 P. Göransson and C. Black, Software defined networks: a comprehensive

approach. Amsterdam Boston Heidelberg London: Elsevier, Morgan Kaufmann, Morgan

Kaufmann is an imprint of Elsevier, 2014 ... 106

Figure 2.9 Charles Eckel, OpenDaylight-Network-Programmability................................. 107

Figure 2.10 P. Göransson and C. Black, Software defined networks: a comprehensive

approach. Amsterdam Boston Heidelberg London: Elsevier, Morgan Kaufmann, Morgan

Kaufmann is an imprint of Elsevier, 2014 ... 107

Figure 2.11 P. Göransson and C. Black, Software defined networks: a comprehensive

approach. Amsterdam Boston Heidelberg London: Elsevier, Morgan Kaufmann, Morgan

Kaufmann is an imprint of Elsevier, 2014 ... 107

Figure 2.12 P. Göransson and C. Black, Software defined networks: a comprehensive

approach. Amsterdam Boston Heidelberg London: Elsevier, Morgan Kaufmann, Morgan

Kaufmann is an imprint of Elsevier, 2014 ... 107

Figure 2.16 Source: W. Zhou, L. Li, M. Luo, and W. Chou, “REST API Design Patterns for

SDN Northbound AP .. 107

Figure 2.17 W. Zhou, L. Li, M. Luo, and W. Chou, “REST API Design Patterns for SDN

Northbound ... 107

Figure 2.18 A. E. Maslov, S. L. Katuntsev, and A. A. Maliavko, “Study and implementation

of authentication mechanism by RADIUS-server in switches and routers using NETCONF

protocol ... 107

xiii

Figure 2.19 YANG, NETCONF, RESTCONF What is this all about and how is it used for

multi-layer networks.pdf ... 107

Figure 2.20 https://www.cisco.com ... 107

Figure 3.1 http://www.excitingip.net/27/a-basic-enterprise-lan-network-architecture-block-

diagram-and-components/ ... 108

Figure 3.2 The Future of Networking and the Past of Protocols by Scott Shenker et al 108

Figure 3.3 The Future of Networking and the Past of Protocols by Scott Shenker et al 108

1

CHAPTER ONE

INTRODUCTION

1.1 BACKGROUND OF THE STUDY

Network Technology is currently going through a third major shift. The first was the shift

from circuit switching to packet switching. This involved the use of the packet as the main

means of transmitting a message from one device to another. The second was the shift from

the hard-wired to the wireless means of switching which saw the introduction of Wi-Fi

technology, 3G,4G and 5G technologies.

The third revolution in network technology has to do with a shift from the hardware-based

mode of networking to a software-based mode of networking [1] This transition is taking

place because of the limitations that exist in current networks.

Figure 1.1 A typical enterprise network.

2

Figure 1.1 represents a typical enterprise network that is responsible for providing different

technological services such as IP video conferencing, video surveillance, printing, scanning

and internet browsing for various users. It provides these services through a set of network

devices such as switches which facilitate communication between various users on different

parts of the network.

Existing computer networks like Figure 1.1 have a number of limitations.

These include network provisioning complexity, tightly managed network functions,

technology specific connections and purpose-built hardware which carry out each network

function. Such an environment could also consist of multivendor equipment manufacturers

with their own means of orchestrating and controlling specific equipment. Current networks

are also limited by the fact that the applications which run on the devices in the network are

programmed to suit current network needs [2].

Network Provisioning Complexity occurs mainly due to the difficulty involved in preparing

and equipping existing networks when there is the need to add new devices or configure new

services. Such tasks require a very good understanding of the state of the existing network

and a proper anticipation of the effects of any change on the state of the network. This is a

difficult process which requires days or weeks of planning to properly execute. As a result,

network provisioning in current networks happens at off-peak hours to forestall any shutdown

and unanticipated changes.

The control logic of most devices in existing networks consists of many protocols which are

responsible for carrying out forwarding of packets. Also, with all of these protocols and

algorithms running at the same time on the same devices, there is a propensity for them to

freeze out and reboot causing frequent down times which affect communication. In order to

change any network function, the existing protocol will have to be manually deleted and the

3

new change effected by manual configuration on every device in the network. This creates a

situation where the management of these protocols becomes very difficult.

The connections between devices in current networks are technology specific. Two devices in

a typical current network would have to run on software manufactured by the same vendor in

order to work together effectively. This poses a problem especially where there is the need to

integrate services from different providers who run different proprietary technologies. Also,

network engineers would require knowledge of a vast range of technologies in order to

manage a network if it consists of many different equipment running on different

technologies. This problem leads to issues with service orchestration. This arises from the

fact that multiple equipment vendors have their own predefined policies for coordinating the

systems that run in their equipment. There are thus various means of coordinating the

configuration of the services provided by different equipment vendors in one network

environment which poses problems for network engineers.

Network functions such as switching, routing and intrusion detection in current networks are

typically implemented in different equipment. Thus, it is not too strange to find routers,

switches, firewalls and load balancers in different portions of the design of current networks.

As the network gets larger the topology becomes more complex due to the need for more

planning and configuration. This creates problems with implementation, troubleshooting and

fault isolation.

The applications that run on the back of current networks are designed in tandem with

predefined network functions. This means that the applications and how they function are

inflexible and cannot be altered if the underlying network function changes.

4

The above issues occur primarily because the decision-making and the forwarding functions

of devices used in existing computer networks are implemented in a distributed fashioned.

Each router, switch or firewall has independent control and forwarding functions

implemented in them. In a network that has 50 routers, each of them will have to be

configured to facilitate control and forwarding independently. All of these issues make

existing computer networks static and inflexible.

1.2. RESEARCH PROBLEM

The Kwame Nkrumah University of Science and Technology plays hosts to a campus

enterprise network [3]. The campus network is split up into two main parts; the faculty

portion consisting of all the colleges and the residential portion consisting of halls of

residence and the residences of the university’s workers. Both portions of the University’s

network have a fixed bandwidth allocation to facilitate networkwide communication. This

static assignment of bandwidth for communication creates a problem. Majority of students

and lecturers find themselves in the faculty area in the day. During this period, traffic

volumes at that portion of the network increases affecting network performance. This is seen

in difficulty to browse the web, download content or stream resources for teaching and

learning. The reverse is seen in the evening as the concentration of traffic shifts to the halls of

residence. The devices that make up the Local Area Network of the school do not have the

ability to dynamically prioritize and utilize the allocated bandwidth to facilitate

communication in the network. In as much as there can be a manual reconfiguration of these

devices it would require systematic planning, addition of new nodes, constant analysis of

traffic and vast knowledge from technical experts. The reiteration of such processes every

single day would be tiring and costly. Without recourse to increasing resources or

overhauling existing infrastructure a way must be found to efficiently use the bandwidth

already allocated in a dynamic need-based manner to ensure optimal performance. This

5

situation provides an opportunity for the proposal of a new architecture that will utilize the

already existing bandwidth at both portions of the network based on the numbers of students,

lecturers and staff members who are accessing the network at any place at any point in time.

1.3 MOTIVATION

Software Defined Networking presents an approach to solve the major limitations that plague

existing campus networks. It seeks to provide a programmable open scale approach to

designing, building and managing networks.

Through the principle of plane separation, it provides a centralized view of distributed

network states.

The Software Defined Networking architecture consists of two planes. These are the control

and data planes. The control plane has a central intelligent agent called a controller that

implements the logical, decision-making aspects of a network through programmed network

policies. The Data Plane consists of programmable OpenFlow switches that facilitate

communication between the controller and network devices.

A unified and global view of networks as envisaged by the SDN paradigm creates a powerful

centralized platform for efficiently managing networks.

A centralized, self-provisioning network will have the ability to implement changes without

the need for the tortuous planning and anticipation that is needed in carrying out provisioning

in current networks. Automating of network protocols provides an easier way to configure,

run and change the protocols that make the network devices function. It provides a way to

dynamically configure network protocols on a needs-based approach.

6

Adopting a programmable approach to networking means that functions such as routing,

switching and firewalling can be implemented in few devices eliminating the need to buy

specific devices for specific network functions.

Traffic Engineering is one major aspect of networking in which Software Defined

Networking architecture and principles can be applied. Traffic Engineering basically seeks to

manage the flow of traffic within a network by taking stock of the topology and changing

traffic patterns in order to prevent network resources from being constrained.

Increasing volumes of traffic in networks places a strain on bandwidth which is one of the

most important resources in a network. Software Defined Networking proposes a way of

efficiently utilizing bandwidth by using the controller to dynamically allocate capacity on a

needs-based basis. The proposition seeks to use the controller’s knowledge of the

characteristics of the links in the network topology to respond to changes in traffic volumes

in various portions of the network by prioritizing the bandwidth required for traffic flow in

the network. [4]

Figure 1.2 The Software Defined Networking Architecture

7

This work seeks to propose the Software Defined Networking approach to dynamically

utilize the bandwidth allocated to campus network, by using the Local Area Network of the

Kwame Nkrumah University of Science and Technology as a case study.

1.4 RESEARCH OBEJCTIVES

Goal

To develop a dynamic approach to bandwidth utilization in a campus network using the

concepts of Software Defined Networking and the Hierarchical Token Bucket Queuing

Discipline.

Specific Objectives

1. Evaluate the existing network infrastructure of a campus network (KNUST)

2. Convert the traditional network infrastructure of KNUST into a Software Defined-

based campus network and emulate the separation of the control and data plane

functions.

3. Demonstrate the forwarding of packets at the data plane of the Software Defined-

based campus network.

4. Demonstrate that communication occurs between the control and data planes of the

Software Defined-based campus network.

5. Develop a scheme that can dynamically utilize bandwidth within the Software

Defined-based campus network

8

1.5 SIGNIFICANCE AND CONTRIBUTIONS

This works seeks to leverage the virtual emulation tools GSN3 and VMware as the basis for

designing and testing functional parts of the Software Defined Networking Architecture.

This work would present a real-world working prototype that can be used as the foundation

for evolving the existing Local Area Network Infrastructure of a campus network (KNUST)

into a software based one.

This work would demonstrate how the OpenVswitch leverages the Hierarchical Token

Bucket Queuing Discipline as a theoretical basis for dynamic bandwidth utilization in campus

networks.

1.6 ORGANISATION OF THESIS

This work is organised into five main sections

• Chapter 1 provides a general introduction and motivation for this work. It also

presents the research problem, goal and specific objectives as well as a proposal of the tools

to be used to obtain results

• Chapter 2 is a review of relevant works with respect to the history of networks and the

need for Software Defined Networking. It also takes a look at various aspect of the Software

Defined Networking architecture and reviews the implementations of Software Defined

Networking in enterprise and carrier networks.

• Chapter 3 discusses the methodology and theory used in dynamic bandwidth

utilization in a Software Defined Network Architecture.

• Chapter 4 discusses the results obtained from the implementation of the dynamic

approach to bandwidth utilization.

9

• Chapter 5 takes a look at the conclusions that can be drawn from the work. It also

takes a look at further work which can be done within the context of Software Defined

Network Architectures.

10

CHAPTER TWO

LITERATURE REVIEW

2.0 INTRODUCTION

This chapter presents a review of works related to Software Defined Networking. The

Chapter is divided into three main sections. The first section reviews the need for the

Software Defined Networking paradigm and introduces the components of the SDN

architecture. The second section describes into detail the various parts of the SDN

architecture by taking into consideration the devices and protocols which make up each layer

of the architecture. It also delves into network virtualization which is the enabler for the

design of Software Defined Networks and the concept of Traffic Engineering in SDNs. The

third section of this work is a review of research into how the SDN architecture and design

principles can be applied to enterprise and carrier networks.

2.1 GENERAL OVERVIEW OF SOFTWARE DEFINED NETWORKING

For decades, computer networks have been built on an interconnection of network devices

such as routers, switches, firewalls and end-user equipment like the personal computers,

printers and IP phones. These devices are the foundation of enterprise and carrier networks.

A typical network device like a router device consists of a hardware portion and a software

portion.

11

Figure 2.1 Typical router architecture

The hardware portion known as the data plane, consists of input ports which are linked to

output ports via a switching fabric. The switching fabric usually makes use of shared memory

and data buffers [5] to move data from source to destination port.

The software portion of the router consists of a routing processor which implements routing,

refreshes, routing tables and keep information about connected links. It also is responsible for

populating the router’s forwarding table.

Thus, both hardware and software functions are tightly baked into a typical network device.

In a traditional computer network as seen in Figure 2.1[6], the network element is the one-

stop site for all control, management and user data.

12

Figure 2.2 Traditional Network Architecture.

Even though the traditional network architecture has facilitated the rise of the information

age, the fundamental basis for its design poses a number of issues which have drawn the

attention of researchers and industry players.

In [7], protocol complexity, challenging and error-prone network management, performance

tuning and internet ossification have been described as problems that exist in traditional

networks. Internet Ossification refers to the extreme difficulty of the internet to evolve in

terms of the hardware, rules and efficiency due to its relatively static nature.

Other problems faced by traditional networks include vendor dependence, the rise of cloud

computing services and the advent of the big data movement which encompasses the Internet

of Things, Artificial Intelligent and Machine Learning Technologies.

Software Defined Networking is a new paradigm in computer networks which seeks to make

enterprise and carrier networks programmable, highly automated and easily controllable [8].

13

In [9], the authors describe a Software Defined Network as a network that carries out two

main functions. Firstly, it separates the control plane from the data plane. Secondly, it allows

multiple data plane devices to be controlled by a single software program.

The proponents of Software Defined Networking proposed an architecture based on the

overall vision of a Software Defined Network. This new architecture consists of three

interdependent planes. These are the data or infrastructure plane, the control plane and the

application plane.

From Figure 2.3, the data and control plane interact via instructions while the control and

application plane interact via a well-defined application programming interface. This creates

an environment in which the underlying network infrastructure can be controlled,

programmed and automated in response to alternating traffic demands placed on it. High-

level functions such as routing, security and traffic engineering are written as computer

programs and implemented on devices in the data plane through the controller.

Figure 2.3 Software Defined Networking Architecture.

14

This new architecture is a clear departure from that of traditional networks. Software

Defined Networking places a priority on centralized network control instead of the distributed

approach used in traditional networks.

Figure 2.4 Traditional Network Architecture vs SDN network architecture

Centralized control is based on the idea that the various components of architecture work

hand in hand to ensure that the network is fully functional.

The next section of this chapter takes a look at the redefined network architecture elements,

their functions and how they coordinate to achieve network programmability, automation and

control.

15

2.2 THE DATA PLANE

The data plane is the part of the Software Defined Networking architecture that consists of

network devices. In describing the data plane, the proponents of the architecture envision a

vendor neutral platform with network devices from different manufacturers.

The data plane of a Software Defined Network is primarily responsible for carrying out the

transfer of a packet from the input interface to the output interface.

The key principle underlying the redefined data plane is device simplification [10].

A critical part of the data plane is a network device called a Software Defined Networking

Device.

An SDN device is composed of an API for communication with the controller, an abstraction

layer, and a packet-processing function [11]. It can be a virtual switch or a physical switch. In

the case of a virtual switch, the packet-processing function is carried out by a packet

processing software [11]. In the case of a physical switch, the packet-processing function is

embodied in hardware 11].

Figures 2.5 and 2.6 show a virtual and physical Software Defined Networking Device.

16

Figure 2.5 Virtual SDN switch anatomy

Figure 2.6 Physical SDN switch anatomy

In the hardware implementation, a software defined networking device includes forwarding

table responsible for routing and switching. [11]

The advent of Software Defined Networking has seen a sharp rise in the production of a

number of Software Defined Networking switches or devices. The Open vSwitch [12]

manufactured by Nicira and Big Switch [13] are common examples of such software

17

defined networking switches. Other Software Defined Networking switches include the

Arista 7500R Series [14] from Arista Networks and the NFX Series [15] from Juniper. From

[16], exposing Open vSwitch control abstractions allows both bare-metal and virtualized

hosting environments to be managed using the same mechanism for automated network

control. This clearly shows that the software platform for the Open vSwitch can be

implemented on any physical or virtual switch once its control abstractions are obtained.

Figure 2.7 below shows the anatomy of an Open vSwitch. It consists of a server and a

switching daemon which are interconnected and linked to an operating system that provides

the platform for control. The above components form the hypervisor platform. A number of

virtual machines can run on top of the hypervisor.

Figure 2.7 Open vSwitch Anatomy

18

2.3 THE CONTROL PLANE

At the heart of the Software Defined Network is the control plane. The control plane is made

up of a controller. The controller keeps track of all devices in the network. It carries out

policy decisions and controls all the devices in the data plane.

Also, the controller makes all traffic forwarding decisions and updates SDN-capable network

switches in the data plane according to a defined network policy. It is responsible for

changing the network rules into actual packet forwarding rules. The network controller

establishes a connection to each OpenFlow-capable switch through the OpenFlow protocol

[17].

A typical controller has two interfaces. There is an interface between the controller and a

software defined networking device and an interface between the controller and the

application plane.

The interface between the Controller and a software defined networking device is known as

the Southbound Interface or the Southbound API. The interface between the Controller and

the application plane is known as the Northbound Interface or the Northbound API.

Figure 2.8 SDN Controller Anatomy

19

The modules portion of the controller anatomy consists of blocks that implement the

controller’s core functionality. These include the discovery and topology module, the device

manager module, the topology and statistics module and the flow module. Common Software

Defined Network controllers include the OpenDaylight Controller [18], the ONOS Controller

[19], the POX Controller [20], the Ryu Controller [21] and the Floodlight Controller [22].

The OpenDaylight Controller is an Open source platform that provides centralized,

programmatic control as well as network device monitoring using open protocols [23]. From

[24], OpenDaylight is a Java Virtual Machine software and can be run from any operating

system and hardware as long as it supports Java. It uses tools such as maven, a backend

framework called OSGI, java interfaces and REST APIs to implement the Software Defined

Networking Concept of a Controller.

In OpenDaylight, there are some dynamically pluggable modules, responsible for performing

network tasks, which are contained in the controller itself but it is also possible to insert other

services and extensions for enhanced SDN functionality. [25]

The OpenDaylight Carbon release shows its place within the overall Software Defined

Networking Architecture. These include the data plane element layer, the Southbound

interface and protocol plugin layer, the Controller Platform Services/ Applications layer and

the Northbound API (Orchestrators and Applications).

The Southbound Interfaces and Protocol plugins layer consists of protocols such as OVSDB,

PCEP, IoThttp/CoAP and LACP. The Service Abstraction Layer supports multiple protocols

on the Southbound Interface while providing consistent services for modules and the

application plane.[23]. The Controller platform itself consists of three key blocks including

Base Network Function, Enhanced Network Services and Network Abstractions. Each of

20

these blocks contains distinct protocols that enable the controller to effectively manage the

underlying network infrastructure. The OpenDaylight Controller uses the REST,

RESTCONF, NETCONF/AMQP Application interfaces to communicate with any set of

independent Network Applications and its Graphical User Interface. The Graphical User

Interface of the OpenDaylight is called the DLUX [25] or the NEXTUI [25].

Figure 2.9 The OpenDaylight Architecture

2.4 THE APPLICATION PLANE

A computer network application is a software application that uses the Internet or other

network hardware to perform useful functions [26].

There are two types of computer network applications. These are Pure Network Applications

and Standalone Network Applications. A Pure Network Application is an application created

to be used in a computer network to transfer data from one end user to another. A Standalone

Network Application is an application that runs on a single end user computer. These include

applications such as word processors, database management systems, presentation graphics

21

and spreadsheets. A standalone network application can function even when the computer is

offline.

A Software Defined Network application is an application that manages network policies that

are programmed on the network devices By utilizing an Application Programming

Interface(API),the application is able to configure the network policies as flows to route

packets through the best path between two endpoints, balance traffic loads across multiple

paths or destined to a set of endpoints, react to changes in the network topology such as link

failures and the addition of new devices and paths, and to redirect traffic for purposes of

inspection, authentication, segregation, and similar security-related tasks [11].

SDN applications are free, open source flexible, responsive and agile centralised set of

control logic that take decisions such as what to do with packets in a Software Defined

Network [27]. Based on an abstraction of the network state, management applications can be

written to satisfy all the control requirements that may exist in a network while new

applications can also be written in the face of new network requirements [28].

There two types of applications that can be developed in the Application Plane of a Software

Defined Network Architecture. These are reactive applications and proactive applications.

Reactive SDN applications are programs which modify the devices at the data plane of the

Software Defined Network based on the incoming packets that have been forwarded to it

from the switches in the network.

Proactive SDN applications are programs which modify the Software Defined Network at the

data plane of the Software Defined Network by setting flows proactively on the switches in

the data plane. They only respond to changes in the network that require some type of

reconfiguration.

22

2.5 THE SOUTHBOUND INTERFACE

The Southbound Interface is the communication interface between a software defined

network device and the controller in an SDN architecture.

The OpenFlow protocol is the main communication protocol that runs on the Southbound

Interface and is described in [8] as the first standard communications interface between the

data and control planes.

Prior to Open Network Foundation’s creation in 2011, the OpenFlow specification was

defined and managed by a group of individuals meeting at Stanford University [29].

There have been four variants of the OpenFlow protocol till date. These are OpenFlow

versions 1.1, 1.2, 1.3 and 1.4. A Software Defined network device that is capable of running

the OpenFlow protocol is called an OpenFlow switch.

An OpenFlow switch has an OpenFlow channel to the external controller. Using the

OpenFlow protocol, the controller can add, update, and delete flow entries in flow tables,

both reactively and proactively [30].

An OpenFlow switch has a flow table. A typical flow table is shown below.

Figure 2.10 A typical flow table

23

Figure 2.11 OpenFlow Capable Switch

There are three fundamental paths associated with the packets that arrive on the input port of

OpenFlow capable switch as shown in Figure 2.11. In Path A, the arriving packet is destined

for the output of a local port, in Path B, the packet is destined to be dropped, while in Path C,

it is destined to be passed to the Controller. These paths are taken based on the instructions

implemented by the packet matching function which is a unique feature of the OpenFlow

protocol.

The OpenFlow protocols uses an OpenFlow port. These ports generally make use of

scheduling algorithms that allow different quality of service (QoS) levels to be defined for

different types of packets. OpenFlow embraces this concept and permits a flow to be mapped

to an already defined queue at an output port [11].

24

The messaging between the controller and switch is transmitted over a secure channel. This

secure channel is implemented via an initial TLS connection over TCP [7]. Each message

between controller and switch starts with the OpenFlow header which specifies the

OpenFlow version number, the message type, the length of the message, and the transaction

ID of the message [11].

OpenFlow messages fall into three general categories as shown below.

Figure 2.12 Types of Messages in OpenFlow

25

2.6 THE NORTHBOUND INTERFACE

The Northbound Interface is the communications interface between the Controller the

Software Defined Network Application. This communication is facilitated by a variety of

Application Programming Interfaces.

An Application Programming Interface is a set of routines, protocols, and tools for building

software applications which specifies how software components should interact [31].

A typical application programming interface uses a client-server model to send and receive

requests to a software application residing on the client.

Figure 2. 15 Application Programming Interface.

In the OpenDaylight controller, the typical application programming interfaces used are

REST, RESTCONF, NETCONF and AMQP.

26

2.6.1 The Rest Architecture

 REST, or REpresentational State Transfer, is an architectural style for providing standards

between computer systems that make it easier for systems to communicate with each other.

REST-compliant systems, often called RESTful systems, are characterized by statelessness

and their ability to separate client and server concerns [32]. Adopting REST for the SDN

northbound API offers decentralized management of dynamic resources by relying on

connections between resources to discover and manage them as a whole [33]. It also allows

network elements to be dynamically configured and reconfigured in a distributed fashion.

Additionally, REST can provide service-based compositions using various programming

languages on different platforms [33]. A RESTful API is an application program interface

(API) that uses HTTP requests to GET, PUT, POST and DELETE data based on the REST

architecture [34].

In case of SDN, the REST API can be used to program network devices like switches, routers

and NAT devices [35]. A typical REST API has five main layers. These are Connections,

Communications, Identification, Representation and Description. The Connections layer

consists of links between the resources implemented in any programming languages and

running on any devices. The communications layer uses methods or protocols such as HTTP

to communicate with resources. Uniform Resource Identifiers are used by the API to identify

resources at the Identification layer. The Representation layer uses hypertext language like

XML to represent information from the COMMUNICATIONs. Figure 2.16 is an XML

element showing a URI in the line 2 and the http protocol in line 3.

27

Figure 2.16 XML element in a REST API

The Description layer uses descriptions such as REST charts to describe possible

representations.

Figure 2.17 The Rest Chart Figure 2.16 XML element in a REST API

2.6.2 Netconf

NETCONF defines a network device management mechanism by setting or changing the

current state of a network equipment using a technology called Remote Procedure Call that

allows programs to make procedure calls or functions from a different address space. These

commands are encoded in XML and sent to the network device using Secure Shell protocol

[36]. The NETCONF protocol has four layers namely content, operations, messages and

secure transport layers as shown in Figure 2.18 below.

28

Figure 2.18 NETCONF protocol layers

2.6.3 Restconf

RESTCONF is an IETF management protocol that uses an HTTP API to provide an

additional simplified interface for the NETCONF protocol.[37]

Figure 2.19 RESTCONF protocol stack.

2.7 NETWORK VIRTUALIZATION

Network Virtualization is the process of combining hardware and software network resources

and network functionality into a single, software-based administrative entity. This software-

based administrative entity is called a virtual network. Network virtualization helps network

operators divide physical computing resources to ensure efficient use of computer resources.

In the networking field, physical equipment can be abstracted as a resource pool from which

virtual entities are created and redundancy assured. In the computing field, virtual machines

(VMs) are created on the resource pool and their backups are set to physically distributed

locations; these correspond to slices and protection in the networking field [38]. Network

virtualization provides an effective means of creating software-based replicas of hardware

devices by using physical network infrastructure. Network virtualization be used to create

29

multiple virtual networks above a shared physical network, each of which can be deployed

and managed independently [39]. Network virtualization is viewed as a solution to the

rigidity and inflexibility of the current internet architecture. There are two main forms

network virtualization. These are external virtualization and internal virtualization.

External virtualization refers to the means of putting together many networks, or various parts

of networks, into a virtual unit. Internal virtualization refers to the provision of network-like

functionality to the software containers on a single system.

Figure 2.20 Network Virtualization

In the field of Software Defined Networking, researchers have to design virtual networks in

order to test the functional parts of the Software Defined Networking architecture. Such

virtual networks usually depict the data plane devices, connections to the controller and an

application utilizing the REST API. One common tool used in creating SDN networks is

Mininet. Mininet is a network emulator which is used for research in SDN. Mininet hosts run

standard Linux network software, and its switches support OpenFlow for highly flexible

30

custom routing and Software-Defined Networking [40]. Figure 2.21 shows a typical network

topology created using Mininet and visualized in the MiniEdit graphical user interface.

Figure 2.21 A Typical Mininet Topology

The most significant limitation of Mininet is that it cannot work efficiently at high loads

because it has one default scheduler that multiplexes CPU resources [41]. Also Mininet is not

capable of prototyping large-scale networks having many nodes. Other Software Defined

Networking emulators include IMUNES [42], ESTINET [43] and EMULAB [44]. In this

work, the GNS3 Virtual Machine [45] and VMware Workstation 14[46] are used to carry out

the emulation of the entire Software Defined Networking Architecture. The choice of these

two tools stem from the fact that they can be used to carry out nested virtualization. Nested

virtualization is the ability of a virtualization tool to replicate different operating systems with

the same tool. Nested virtualization provides the ability to test Software Defined

Networking’s proposition of vendor neutrality, openness and device simplification. In

addition to the above, the GNS3 Virtual Machine makes use of a graphical interface that

facilitates the design, configuration and testing of a virtual network.

31

Figure 2.22 GNS3 topology created using the GNS3 GUI running in VMware

2.8 TRAFFIC ENGINEERING IN SOFTWARE DEFINED NETWORKS

Software Defined Networking proposes an easier way to carry out traffic engineering in

enterprise and carrier networks. Traffic Engineering aims to provide efficient use of network

resources based on the traffic in a network usually involving measurement, modelling,

characterization and control of IP traffic [47]. The framework for traffic engineering in SDN

includes two parts: traffic measurement and traffic management. Traffic measurement mainly

studies how to monitor, measure and acquire information about the current state of a

Software Defined Network [48]. In the SDN-paradigm, an SDN controller can be used for

Traffic Engineering to improve network utilization, reduce packet loss and delay when the

entire network consists of OpenFlow and traditional network devices [49]. Bandwidth

Utilization in Software Defined Networks would require the implementation of a Traffic

Engineering network application. Based on SDN, dynamic bandwidth adjustment can be

efficiently implemented for improving the flexibility of resource allocation and resource

utilization by monitoring the bandwidth value an end-to-end (E2E) service actually uses,

32

monitoring how much bandwidth of a transport channel is actually used by end-to-end

services and knowing which transport links the end-to-end service is carried across [50].

Based on the above statements, various queuing disciplines can be implemented as network

applications to carry out bandwidth adjustment in a Software Defined Network. One such

queuing discipline is the Hierarchical Token Bucket Queuing Discipline.

2.9 THE HIERARCHICAL TOKEN BUCKET QUEUING DISCIPLINE

A queuing discipline is a resource sharing mechanism that governs how packets are buffered

while waiting to be transmitted. The Hierarchical Token Bucket Queuing Discipline (HTB) is

a class-based queue discipline that controls the use of bandwidth on a given output link and

implements efficient resource allocation. It uses the concept of multilevel token buckets to

allow for efficient dynamic control of the egress bandwidth on a given link. HTB is made up

of three class types known as root, inner and leaf classes. The HTB traffic shaper has the

ability to carry out bandwidth sharing in a network.

The Hierarchical Token Bucket (HTB) classification is used for traffic control [51]. It is used

to guarantee bandwidth to classes, allows engineers to define upper limits to inter-class

sharing and allows the prioritization of classes[52]. The root class represents the minimum

and maximum amount of bandwidth (guaranteed bandwidth) that is set for communication

between network devices. Any form of service request that occurs in a network is allocated

bandwidth borrowed from the root class. The bandwidth for such communication is

represented by an interior class. Each amount of bandwidth that is shared from an interior

class is termed as a leaf class.

HTB allows cross-device bandwidth sharing and control-borrowing [53]. This approach is

well suited in scenarios where a user has a fixed amount of bandwidth and each application is

33

allocated a guaranteed bandwidth, with the possibility of specifying how much bandwidth

can be borrowed [54]. Every class has an associated Ceiling Rate (CR) and Rate (R). The CR

specifies the highest amount of bandwidth that a class can use while R represents the lowest

amount of bandwidth the class can use. When one class requires bandwidth greater than R, it

borrows bandwidth from its parent class until CR is reached, when this class reaches CR, the

packets are queued until new tokens are available in the token-bucket [54].

Figure 2.23 HTB class structure and borrowing

The Hierarchical Token Bucket Queuing Discipline uses tokens and buckets to dynamically

share bandwidth. Traffic shaping is performed by the Token Bucket Filter. The Token Bucket

Filter implementation in Linux has two filters, each with its own buckets. In order to be

transmitted to the receiver, a packet must be able to pass both the filters. A packet being sent

from a transmitter to a receiver passes through both filters. The second filter typically allows

packets to flow out of it faster in order to limit the speed of burst traffic. When implemented

in a Software Defined Network device, the HTB goes through four phases namely

classifying, policing, scheduling and borrowing. The figure below shows the algorithm for

the operation of HTB.

34

Figure 2.24 Hierarchical Token Bucket Queuing Discipline Operation

2.10 RELATED RESEARCH IN SOFTWARE DEFINED NETWORKING

There has been a vast amount of research into the implementation of Software Defined

Networking concepts in the Enterprise and Carrier Networks. The main issues in enterprise

networks are security, load balancing, Quality of Service configurations, bandwidth

management and traffic control. Some work has also gone into the application of Software

Defined Networks in optical and satellite networks. This section takes a look at related

research in the above fields with respect to the tools used for emulation and the metrics used

when carrying out research into Software Defined Networking concepts.

2.11 SOFTWARE DEFINED NETWORKING IN THE ENTERPRISE NETWORK

The reviewed works in this section represent research carried out on the application of

Software Defined Networking in Enterprise and Data Centre Networks.

2.11.1 Load Balancing And Firewall Implementations In Software Defined Networks

In [55], S. Bhelekar et al from the Sardar Patel Institute of Technology in India present a

dynamic load balancing strategy in Software Defined Networking. They took into account the

35

number of active connections to a set of individualized servers and the shortest path taken

from a specific client to a specific server in order to avoid congestion. The authors used the

Mininet Emulation Tool and VirtualBox Software to simulate a fat tree topology of a modern

data centre network at the data plane. The data plane topology consisted of ten OpenFlow

capable switches and eight host devices. At the control plane, the OpenDaylight controller

used RESTCONF APIs to communicate with an application plane implementation of

Dijkstra’s algorithm and least connections. The dynamic nature of the Software Defined

Network is seen in the load balancer’s ability to determine the least path to a server at certain

specific points in time. At time t=60 seconds, host 2 has the least number of connections and

is selected as the server of choice hence avoiding congestion.

One key network functionality that can be implemented in the application plane of a Software

Defined Network is security. N. Zope et al in [56] of Usha Mittal Institute of Technology,

Mumbai, India took a look at replacing a physical switch in a network by virtual switches and

the development of a firewall and load balancing application in a Software Defined Network.

The work seeks to demonstrate that most of the firewalls in traditional computer networks

can be replaced by software firewalls. Using the Floodlight controller and the REST API, a

set of firewall rules were constructed and pushed to an independent physical network

consisting of an Open vSwitch and two hosts. The firewall module is capable of pushing

flows containing the firewall rules to the hosts to either block or allow traffic.

D. Satasiya and Raviya Rupal D [57] from the University of Pune, India carried out an

analysis of a Software Defined Network implementation of a firewall designed by Karamjeet

Kaur et al [58] who created topology including the POX controller, 6 OpenFlow switches

and 5 hosts. Karamjeet Kaur et al built a learning switch application and firewall application

which restricted or allowed the traffic by proactively placing rules into the network based on

36

key network parameters such as the IP address. into an OpenFlow switch-based source MAC

address, destination MAC address (Layer 2), source IP address, destination IP address (Layer

3), network protocol, destination port (Layer 4). Results show the firewall was able to block

access to the whole network. It also allowed web access to one host in a scenario where all

other communications were on going. In addition to the above, after firewall implantation

latency got increased which implied that the firewall introduced overheads, throughput got

reduced which means unwanted traffic was reduced. D. Satasiya and Raviya Rupal D [57] are

of the view that lack of authentication and authorization, fraudulent rule insertion and lack of

access control and availability are drawbacks to the implementation in [58]. They propose an

SDN architecture which implements a stateful firewall capable of analysing security threats at

all levels of the SDN architecture.

A stateful firewall implementation was carried out by [59] P. Krongbaramee and Y. Somchit

from Chiang Mai University in Thailand. The research focused on the use of the Open

vSwitch to configure a stateful firewall using a TCP three-way handshake. The Mininet

emulation tool was used with virtual server in the Digital Ocean Cloud. An analysis of the

results shows that the average connection time of host in the stateful firewall is 20.06

milliseconds while the average connection time of host in the stateless firewall is 18.05

milliseconds. The stateful firewall increases the time for each connection for only about 2.01

milliseconds or about 11.14% longer. This is attributed to the SDN switch having to update

rules when denying or permitting the connection of an external host to the network. The

authors believe that performance would be faster when using with a hardware based SDN

switch.

37

2.11.2 Bandwidth On Demand And Quality Of Service Implementations In Software

Defined Networks

To exploit the capabilities of Software Defined Networking when implementing a Bandwidth

on Demand service, A. Mendiola et al [60] proposed a framework called DynPaC, which they

believe is able to provide efficient switching services based on bandwidth and vlan

utilization. They used two Software Defined Networks in two different research labs located

in Cambridge and Belgrade to create a multidomain network architecture. Each of the

networks run based on the ONOS controller. In the emulation, a client based at the

Cambridge campus tries to request two Bandwidth on Demand services from the server

located in Belgrade using a portal developed on the DynPaC framework which resides on an

intermediary network in Spain. DynPaC calculates the optimal intra-domain path taking into

account the amount of bandwidth needed, the VLAN of the service and the service which has

already been requested. The authors were able to prove that Bandwidth-on-Demand service

provisioning is possible. This includes intra-domain bandwidth provisioning, limiting of

traffic rate based on QoS requirements, link failure reactivity and automatic installation of

backup paths.

Quality of Service in Software Defined Networks has gained attention over the past few

years, A. O. Adedayo and B. Twala,[61] from University of Johannesburg carried out research

into the use of Quality of Service configurations to control network bandwidth, latency and

throughput. They leveraged the Mininet emulation tool to create a two-host topology at the

data plane connected to an Open vSwitch. The Ryu controller was used as the centralized

controller and Hierarchical Token Bucket Queuing discipline was used to ensure each queue

in the QoS settings had a number of resources allocated to them. The authors used three

scenarios to check for the use of traffic policing on the ports on the switch. They used the

IntServ classification to assign bandwidth to certain services DiffServ classification to assign

38

bandwidth to certain services. The results show that the use of DiffServ classification

facilitates the scalability of QoS in the network. Also, the IntServ classification is capable of

assigning bandwidth to different queues representing different classes of traffic with different

priorities. The traffic policing scenario is also able to limit traffic to 10Mbps, while dropping

traffic that exceeds 10Mbps.

 F. Volpato et al [62] proposed a network application (Autonomic QoS Broker) and a

controller module that implements the OpenVswitch Database Management Protocol

(OVSDB). These two components used to provide QoS management based on the

prioritization of queues in an SDN environment. The Autonomic QoS Broker is a resource

and QoS provisioning application that was designed based on the MAPE-K control loop

functionality. It was implemented to carry out analysis, planning, execution and monitoring

of network resources and works in conjunction with a QoS configuration module. The

module performs the configuration of switch’s QoS resources and the management of

forwarding rules. The Mininet emulator, Open vSwitch (OVS) (version 2.5.0) and the

Floodlight controller were used to carry out the experiment. The Broker improved flows

throughput and packet loss rates. Flows in the same network path had the same latency

values. A change in path caused an increase in latency values.

2.11.3 Vlan Configuration In Software Defined Networks

The concept of Virtual Local Area Network configuration in Software Defined Networks was

explored in [63] by Van-Giang Nguyen and Young-Han Kim in Seoul, Korea. The authors

designed and implemented an application for easily managing and flexibly troubleshooting

the VLANs in an SDN architecture. They used an all OpenFlow data plane connected to the

Floodlight Controller on the control plane. They developed a REST API-based module in the

Floodlight controller to create static vlans in the underlying data plane. Two hosts in the vlan

39

10 network were able to reach each other. The authors also went further to set up a hybrid

testbed consisting of an OpenFlow switch connected to an HP switch. Two hosts were

connected to the HP switch and one host is connected to the OpenFlow switch. The REST

API-based module was able to create vlans in the hybrid testbed as well. They also carried

out an implementation of a dynamic vlan application based on the Mininet in out-of-band

control mode. They used Floodlight controller in the same Mininet host. The results of the

above showed that the time for sending packets and installing the flow modifications were

independent of the type of topology. The latency on the switch and the controller were also

very similar.

2.11.4 Traffic Classification In SDN-Based Wireless LANS

An investigation into the operability of Software Defined Networking in wireless local area

networks was carried out by A. Amelyanovich et al[64]. The work proposed a solution to the

control traffic in wireless local area networks using a simulated version model of the St.

Petersburg State University of Telecommunications network. The work sought to prove end-

to-end quality of service support using traffic classification and priority-based queuing. The

emulation was carried out using a two-switch-two wireless access point topology in Mininet.

The OpenDaylight controller was used to facilitate the flow of different streams configured

from the two Open vSwitches to the two hosts. The results showed that classification of

traffic based on Differentiated Services Code Point (DSCP) values in the IP-headers of

packets is possible in wireless networks. It reduces the number of simultaneously operating

wireless devices. As A result, the effect of interference is also reduced. Another significant

observation is the change in traffic priority with respect to applications which are sensitive to

delay. Also, the work showed that the most frequent interval between messages was in the

range from 100 μs to 1 ms. This shows that the controller responded to changes in the

network.

40

2.11.5 Traffic Management And Measurement In Software Defined Networks

Z. Shu et al[48] from China and South Korea, propose a framework responsible for

monitoring and analysing real-time network traffic as a prerequisite for traffic management.

The authors designed the framework in a hybrid IP/SDN network consisting of two SDN

capable switches and a single controller. The proposed framework utilizes the Link Layer

Discovery Protocol (LLDP) implemented in an SDN capable switch to gain a complete view

of the network while measuring the number of flows generated as the network elements

communicate.

2.11.6 Management Of Network Resources And Data Flow In Software Defined

Networks

In [65], M. S. Olimjonovich from the Tashkent University of Information Technologies used

the Mininet simulator, a topology consisting of 5 switches and 10 host in the Python language

to carry out a research on management of network resources in SDNs. Specialized language

modules were developed for the hardware switches using Python programming. These

software modules were remotely managed through an encrypted SSH-channel. He designed a

REST API to increase the amount of unused resources of the networks allowing

approximately a 30% increase in network management efficiency.

2.11.7 Routing In Software Defined Networks

A key factor in any enterprise network is routing. S. Kaur et al [27] designed a static router

application in the Mininet emulator consisting of three hosts, an Open vSwitch and the POX

controller. The router application was built in the POX controller. Using ping utility and

elinks web browser the functionality of the application was tested. The authors used round

trip time as metric. They created 3 different file sizes and checked how long it took to make

http requests to them. Results showed that as the size of files increases, the round-trip time of

41

the application also increases. A Layer 3 learning application which was also designed

provided the same result but the round-trip time of the router application was less when

compared to Layer 3 learning application.

2.11.8 Utilization Of Qos And Routing In Software Defined Networks

S.-C. Lin et al[66] from the Georgia Institute of Technology proposed a framework for

optimizing QoS and Routing in Software Defined Networks. They used tenant isolation,

prioritization and flow allocation in a multitenant network for utilization. They designed

network and switch hypervisors to isolate and prioritize tenants to create fine-grained

isolation in the network. A dynamic flow allocation was also proposed in their work to enable

optimal flow route selection. They also designed an adaptive feedback management tool to

combine virtualization and flow allocation. These three implementations were carried out

using algorithms. In analysing the results, it was seen that the network and switch hypervisors

were able to isolate three tenant networks in three subnets. The results show that feedback

tool was able to maintain the number of shared links at a constant value. It was able to

optimize route selection and wisely utilize link capacity for future flows. It was also capable

of providing bandwidth for future flows.

2.11.9 Queue Scheduling In Software Defined Networks

Umadevi et al.[67] proposed a scheduling algorithm for controlling the incoming data traffic

in a Software Defined Network in an effective manner. The simulation was carried out using

the OpenFlow package in OMNeT++. The authors constructed a multi-level switching queue.

Multiple queues were maintained with varying priority levels. Analysis of the results shows

that in case of a normal First Come, First Serve (FCFS) queue, bits are received by the queue

only after the 1350 breakpoint. In the multilevel queue, packets were serviced even as the

queue size decreases below 1350. Also, the packet drop count value was as high as 1600 in

42

case of a normal FCFS queue. In the multilevel priority queue, packets enter different levels

of queues thereby minimizing traffic in a single queue. The number of packets dropped in the

case of multilevel queues was as low as 0.

2.11.10 Network Management And Performance Monitoring In Software Defined

Networks

Based on four objectives, Veena et al[68] from PES University in India proposed a way to

manage and monitor a network using Software Defined Networking. The work was centred

around optimizing the Mininet emulation tool in order to create custom topologies, collecting

and preserving historical data from a controller for analysis, the reduction of layer 2

broadcast traffic in data centres and the introduction of Cross Layer Utilization algorithms for

better resource utilization in Data Centres. They designed an Abstraction layer between the

infrastructure and application planes. Also, Pseudo MAC addresses were used to reduce the

ARP broadcast traffic in the emulated data centre. The enhancement of the Mininet

Emulation tool, enabled the researchers specify the different link parameters such as

bandwidth and latency using a simple text script. They were also able to create varied

network topologies to test their ideas and new protocols.

2.12 SOFTWARE DEFINED NETWORKING IN CARRIER NETWORKS.

Although relatively new, research is being carried out into the application of Software

Defined Networking to carrier networks. The section below discusses the application of

Software Defined Networking architecture to switched backhaul, IoT, satellite and 5G

networks.

43

2.12.1 On Demand Bandwidth-Based Pricing In Software Defined Networking

Gu et al [69] from Japan designed an application for on-demand bandwidth pricing using the

Software Defined Network Architecture. The application was based on a Stackelberg game

constructed to analyse the competitive communication between an ISP and a home network.

A pricing strategy was determined using the Nash equilibrium solution of the Stackelberg

game. Using the pricing strategy, network subscribers can decide the bandwidth to be

reserved in an on-demand basis. The research was carried out using an SDN enabled carrier

network consisting of an SDN-enabled backhaul, a Controller, OpenFlow switches, a

Controller API and a data plane consisting of wireless access points. The simulation was

carried out using MATLAB R2016a. All applications were modelled using a Mathematical

Network Model Simulation. Results show that during off-peak, mid-peak, and peak time, the

payoff of network subscribers is improved by 388.9%, 134.6%, and 19.8% respectively. The

payoff of ISP is improved by 98.5%, 47%, and 7%, respectively. Results show that the

optimal price increases with the increase of traffic load. Also, with the increase of traffic

load, a large portion of surplus goes to ISP.

2.12.2 Software Defined Networking For Satellite Networks

A Chinese group Fei et al [70] in 2017 led research into the implementation of Software

Defined Networking in satellite networks. They propose OpenSatNet, a platform for software

defined satellite networking research. OpenSatNet uses lightweight OSlevel virtualization,

including network namespaces and virtual network devices to emulate a realistic satellite

network. It also implemented a user-friendly graphical user interface (GUI). The component

of the OpenSatNet are an osndaemon, osn-gui and Scenario Designer. Authors adopted Open

vSwitch (OVS) and Floodlight as switch namespace and controller namespace respectively.

OpenSatNet uses the Scenario Designer to configure the emulated networks. It manages the

location of satellite nodes, configures link parameters and manages the coverage of satellites.

44

The Link Configuration module configured topology and link parameters dynamically during

the emulation. The Scenario Designer was developed by using reports exported from popular

satellite emulators. The OSN-GUI controls the daemon through an API based on sockets.

Figure 2.25 OpenSatNet architecture by Fei et al

2.12.3 Software Defined Networking For IoT Networks

In [71], T. Theodorou and L. Mamatas, from the University of Macedonia Greece stake a

claim for Software Defined Networking in Internet of Things Networks. Using a Wireless

Senor Node Network (WSN) at the data plane, they demonstrate CORAL-SDN, an SDN

solution which uses intelligent centralized control mechanisms to dynamically change the

protocol functionalities of Wireless Sensor Nodes. It supports flexibility to the challenging

requirements of the Wireless Sensor Nodes while allowing for architectural scalability. The

architecture was tested using two tests beds implemented in Ghent and Macedonia.

Researchers were able to utilize a configuration manager to choose a type of topology control

through algorithms for node advertisement and flow establishment. The centralized

intelligent network manager was able to configure routes, setup wireless operating channels

and antenna channel check rate. Different data sizes and data transmission frequencies can

45

also be applied using the right protocols. The results show that software defined networking

principles can improve control in IoT networks while providing efficient solutions.

Figure 2.26 CORAL-SDN for IoT

2.12.4 Software Defined Networking For Fifth Generation Networks

Researchers from Georgia Institute of Technology in [72] I. F. Akyildiz et al proposed

SoftAir, an SDN architecture for 5G cellular systems. The SoftAir architecture is a consists of

three planes. Its data plane is made up of a Software Defined Network Radio Access

Network, Software Defined Baseband Servers and A Software Defined Core Network. The

control plane consists of a network controller. Management applications make up the

Application plane. The authors employ Network Functions Virtualization to expand the SDN

architecture for the 5G network. By using three network management tools namely mobility-

aware control traffic balancing, resource-efficient network virtualization, and a distributed/

collaborative traffic classifier, authors were able to provide for scalability of the network

architecture. In conclusion the researchers state that Wireless SDNs provide cellular networks

46

with the needed flexibility to evolve and adapt according to the ever-changing network

context for 5G cellular systems.

Figure 2.27 SoftAir Architecture for 5G Networks

Figure 2.28 NFV implementation of SoftAir Architecture.

47

2.13 CONCLUSION

This chapter reviewed the concept of Software Defined Networking by introducing and

describing its architecture in detail. It also took a look at the protocols and the devices that

make up the SDN architecture. Network Virtualization and Traffic Engineering were also

reviewed. The last part of this chapter was a review of scholarly work carried out in the field

of Software Defined Networking

48

CHAPTER THREE

METHODOLOGY AND THEORECTICAL BACKGROUND

3.0 INTRODUCTION

In this chapter, the methodology used in converting a typical traditional Campus Network

into a Software Defined Campus network is discussed. The chapter also takes a look at the

methodology and theory employed in the development of a dynamic bandwidth utilization

scheme in a Software-Defined-based Campus network.

The chapter is divided into three main sections. The first section describes the process of

converting a traditional campus network into a software-defined campus network. This

conversion involves mapping of network elements and the reproduction of the mapped

elements using an appropriate emulation tool. The second section presents the theoretical

background used in the development of an optimal dynamic bandwidth shaping scheme using

the Hierarchical Token Bucket Queuing Discipline.

The third section discusses the development of a Software testbed that implements optimal

dynamic bandwidth sharing in an SDN campus network. It also takes a look at the theoretical

basis for the communications that occur within a Software Defined-based network.

3.1 SOFTWARE-DEFINED BASED CAMPUS NETWORK

In this section the method used in converting a traditional campus network into a software-

defined-based campus network is discussed. A typical campus network is made up of three

levels consisting of a core switching level, a distribution switching level and an edge

switching level as shown in Figure 3.1. The core switch is the direct point of connection of

the entire network to the internet, the traditional telephone network and other external

networks. The distribution switches create redundant paths from the core switch to the edge

49

switches. The edge switches represent the access portion of the network to which end users

and end user equipment are connected. These switches have both the data plane and control

plane functionalities baked into them as shown in Figure 3.2

Figure 3.1 A Typical Campus Network

In an SDN-based campus network, switches are made programmable and are of three levels.

The three groups of switches in the traditional network are combined to form the data plane.

The main function of the devices in the data plane is to forward packets. The control plane

functions are moved into a centralized Controller. The controller uses the OpenFlow protocol

to obtain the individual characteristics of the devices and links that make up the infrastructure

layer and leverages this knowledge to manage the network centrally as shown in Figure 3.2

The interface between the Control and Data planes is the Southbound Interface (SBI).

The Application Plane which consists of applications that are used to implement routing,

security and traffic engineering policies within the network via an Application Programming

50

Interface. This interface which exists between the Application Plane and the Control Plane is

called the Northbound Interface (NBI).

Figure 3.2 Software Defined Network Architecture.

3.1.1 Conversion Of A Traditional Campus Network Into An Sdn-Based Campus

Network

The first task in this thesis is to map the current KNUST Campus network into an SDN-based

campus network based on the architecture in Figure 3.2 as shown in Figure 3.3 below

Figure 3.3 Traditional Network Architecture vs SDN Architecture

51

First the Traditional Network in Figure3.1 is mapped into the SDN architecture in Figure 3.2

The core switch is replaced by an OpenVswitch which is a layer 3 routing switch which is

capable of carrying out both switching and routing functions. The three distribution switches

are replaced by three OpenVswitches. The five edge switches were replaced by six network

devices (either routers or switches) which are connected to end users and the other equipment

that form the access portion of the network. The OpenVswitches and network devices were

connected to a Control Software to form the data plane or infrastructure layer. The Control

Software was connected to a set of network applications which would facilitate configuration

of the infrastructure layer thus creating the Northbound Interface.The resulting network

architecture form the conversion is as shown in Figure 3.4

Figure 3.4 Generic SDN-based Campus Network Source: Author’s Construct 2019

The KNUST Campus network is divided into two portions. Portion 1 services the six colleges

and the Institute of Distance Learning (IDL). Portion 2 serves the residential area which is

divided into Residential 1 and Residential 2.

52

Based on the conversion described above, a similar Software Defined Networking Model was

developed for the conversion of the KNUST network into a Software Defined Network.

The following process was used:

Five OpenVswitches were used to represent a collapsed core and distribution switches since

an OpenVswitch is a layer 3 switch, it is capable of carrying out the functions of both a core

switch and distribution switch. The five OpenVswitches are proposed based on the locations

of the six colleges, the Institute of Distance Learning Centre (IDL) and the Residential part of

the campus. The six colleges of the university were represented by six network devices each

given an IP address. The residential portion of the network was also represented using two

network devices. The KNUST campus network has access to the internet via two Internet

Service Providers (ISPs). Two network devices were used in representing these.

The five OpenVswitches were connected to the OpenDaylight Controller to form the

Southbound Interface (SBI). The OpenDaylight Controller was connected to an application

that would dynamically configure and optimize bandwidth in the underlying network through

an Application Programming Interface (API). This forms the Northbound Interface. (NBI)

The schematic diagram of the proposed KNUST SDN campus network is shown in Figure

3.5 following the above mapping process.

53

Figure 3.6 Proposed KNUST Campus Based Software Defined Network Source: Author’s

Construct 2019

54

Figure 3.6 Traditional KNUST Campus Network Source: UITS, KNUST

3.1.2 Emulation of Knust SDN-Based Campus Network

In order to test the workability of the proposed KNUST SDN-based Campus Network, the

devices in Figure 3.5 and their functionalities are reproduced in a software for analysis. This

software reproduction was done using the VMware Workstation 14 Software and the GNS3

Virtual Machine.

VMware Workstation 14 is a software that is used to design virtual networks by creating

software-based replicas of real network devices such as routers and switches and the links

that connect them. This tool provides an environment for designing virtual networks. Thus,

the Infrastructure and Control and Application layers of Figure 3.5 are implemented using the

VMware Workstation 14 Software.

55

The KNUST Campus network is divided into two portions. Portion 1 services the six colleges

and the Institute of Distance Learning (IDL). Portion 2 serves the residential area which is

divided into Residential 1 and Residential 2.

Software-based replicas of the Cisco c3600 switching platform was used to reproduce the six

Colleges, the IDL and two Residential portions of the network in the GNS3 Virtual Machine.

This was done by importing the software platform of the switches into the GNS3 Virtual

Machine and configuring them to operate within the VMware Workstation 14 Software.

Each of the Cisco c3600 switches was given an IP address from the 192.168.x.x/24 block.

The OpenVswitches that make up the combined distribution and core network were added to

the network by importing a Docker Container version of the OpenVswitch switching

platform. The management interfaces of each of the OpenVswitches were configured with an

IP address obtained from a DHCP pool created in VMware Workstation using the

192.168.198.x/24 addressing block.

56

Figure 3. 7 Graphical User Interface Implementation of Infrastructure and Control layers

in GNS3 and VMware.

The OpenDaylight Controller Software is downloaded from the OpenDaylight website,

imported into VMware Workstation 14 as an Open Virtual Appliance file and configured

with an IP address from the 192.168.198.x/24 pool similar to those of the OpenVswitches.

The Open Virtual Appliance file runs an Ubuntu Operating System which contains the carbon

edition of the OpenDaylight controller in a zip file. The zip file was extracted and the

controller started by running the karaf file stored in the .bin directory of the Ubuntu

Operating System

The Figure 3.7 below shows the fully installed controller which is described as Connection to

Remote Controller in Figure 3.6.

57

Figure 3.8 Controller Interface Installation

3.2 OPTIMAL DYNAMIC BANDWIDTH SHARING SCHEME

The faculty and residential portions of the traditional KNUST network have a fixed

bandwidth allocation to facilitate internal and external communication. This static assignment

of bandwidth for communication creates a problem. Majority of students and lecturers find

themselves in the faculty area during the day. During this period, traffic volumes at the

faculty portion of the network increases. This affects network performance. This is seen in

difficulty to browse the web, download content or stream resources for teaching and learning.

The reverse is seen in the evening as the concentration of traffic shifts to the halls of

residence.

A Software Defined Network architecture promises flexibility and programmability in

managing computer networks. The proposed SDN-based KNUST network can thus be

programmed to dynamically borrow bandwidth from portions of the network where there is

unused bandwidth the traffic demands or requirements in the network. The proposed dynamic

58

bandwidth sharing technique is based on the theory of the Hierarchical Token Bucket

Queuing Discipline

3.2.1 The Hierarchical Token Bucket Queuing Discipline

The Hierarchical Token Bucket Queuing Discipline (HTB) is a class-based queue discipline

that controls the use of bandwidth on a given output link and implements efficient resource

allocation. It uses the concept of multilevel token buckets to allow for efficient dynamic

control of the egress bandwidth on a given link. HTB is based on hierarchical classes and is

made up of three class types known as root, inner and leaf classes. The root class represents

the minimum and maximum amount of bandwidth (guaranteed bandwidth) that is set for

communication between network devices. Any form of service request that occurs between a

client and server connected to a particular network device is allocated bandwidth borrowed

from the root class. The bandwidth for such communication is represented by an interior

class. Each amount of bandwidth that is shared from an interior class is termed as a leaf class.

Placing traffic into classes is termed as Classification.

59

Figure 3.9 HTB class structure and borrowing

Once traffic has been classified, the Hierarchical Token Bucket Queuing Discipline uses the

concept of tokens and buckets to schedule and shape traffic by utilizing a classless queuing

discipline called the Token Bucket Filter. The Token Bucket filter uses two filters. A packet

being sent from a transmitter to a receiver passes through both filters. The second filter

typically allows packets to flow out of it faster in order to limit the speed of burst traffic.

From Figure 3.9, specific requests made to an OpenVswitch running the HTB queuing

discipline will go through four phases. These phases are classifying, policing, scheduling and

borrowing.

The borrowing of bandwidth is a function of Traffic Policing. In traffic policing the

bandwidth is limited to applications based on the class that they belong to.

qdisc

root class

inner
class

leaf class leaf class

inner
class

inner
class

root class root class

60

Figure 3.10 Hierarchical Token Bucket Queuing Discipline Operation Source: Author’s

Construct 2019

3.2.2 Bandwidth Borrowing

Figure 3.10 below demonstrates an adaption of HTB to the Software Defined-based campus

network.

The KNUST Campus link which connects the entire university to the internet is divided into

two portions. One portion of the link goes to the faculty and the other portion of the link goes

to the residential area. In adapting the HTB for the KNUST Campus an instance is considered

where there is the need to allocate 500 Mbps to the College of Engineering (CoE) during the

day due to high traffic demand and 200 Mbps to the residential portion during the day due to

lower traffic demand.

61

The 500 Mbps allocated to the College of Engineering (CoE) needs to be subdivided into

100Mbps for the wired access to the office of lecturers and 400 Mbps for the wireless

connections used by students. Any unused bandwidth from the 100 Mbps allocated to the

lecturers’ offices should be given to the wireless connection for students and vice-versa. If

the total traffic requested at the College of Engineering (CoE) does not exceed 500 Mbps, the

excess will be given to the residential portion. Using the theoretical explanation of HTB

given earlier, the 500Mbps allocated for the College of Engineering CoE is the root class. It

represents the Ceil Rate for all communication in the College of Engineering. The 400 Mbps

and the 100 Mbps represent the inner classes for the College of Engineering (CoE). These

values represent the Assured Data Rates for both the wired and wireless connections to the

College of Engineering. This policy of quantifying bandwidth in such a hierarchy is

implemented in a configuration policy using variable sized arrays to accommodate any

changes in the preconfigured bandwidth guarantees.

Figure 3.11 Sample HTB class hierarchy for KNUST SDN-based campus network

From Deterministic Network Calculus borrowing of bandwidth as described can be modelled

using arrival and service curves.

62

The Borrowing Phase

In the HTB model the number of bits in a flow in a period (0, t) is

() min((), () ()c aR t R t R t B t 
 (3.1)

where Ra(t) is assured data rate (minimum threshold) and Rc(t) is ceil data rate (maximum

threshold). In a leaf class, if data rate R(t) exceeds assured data rate Ra(t) and less than ceil

data rate Rc(t), then this leaf class would borrow bandwidth from its parent class. Parent class

could also borrow bandwidth from its parent too. If a parent class has more than one child

class and all of them run out of bandwidth, parent would distribute its resource based on child

class’s priority(P), quantum(Q) and list of backlogged or queued packets in the FIFO

queue(D). The equation below represents the model used for bandwidth borrowing.

 (3.2)

3.2.3 Classification, Policing and Scheduling Of Packets In HTB Queuing Discipline

From Deterministic Network Calculus, the classification, policing and scheduling of packets

can be modelled using arrival and service curves

The Classifying Phase

Based on root, leaf and interior classes scenario used earlier, incoming requests from the

SDN-based campus network will have a service curve given by

 (3.3)

where c is the delay and maxl
 is the maximum length of the arriving packet.

63

If the incoming request to the network has an arrival curve of , then after classifying the

arrival curve will be given by

max() 1{ 0)t l t  
. (3.4)

The Policing Phase

The classified incoming request is then policed based on the HTB QoS setting. Policing is

carried out based on the root class minimum value.

Policing function makes sure that a flow does not exceed guaranteed service. Excess traffic

may be dropped or sent to best effort path. Policing devices always buffer flows and leaks in

the guaranteed rate. A packetized shaper is a shaper that forms its output packets has a data

rate r. Output flow of a policing device implemented in the HTB Queuing Discipline is

,

_
()policing T

t d
t kv k

T





    
   (3.5)

where k is the rate of data flow, ,Tv  is a stair function and

is defined by

t T

T

 
 
  T is the interval and _ d is the packet delay and

x


   is the floor of

x.

For example, if the amount of traffic at College of Engineering exceeds the minimum value

assigned to the root class, the policing criteria changes. For a packetized model, the output

flow in such a case is

_
()policing

t d k R
t k if t t B

T T t


  

    
  otherwise

 (3.6)

64

Also

 (3.7)

where R is the number of bits seen in a flow of packets and B is queue length which buffers

traffic burst.

The Scheduling Phase

In the HTB Queuing Discipline, the Scheduling Phase only occurs with packets that are in the

leaf class. The leaky bucket model has a Service Curve of

 (3.8)

In the HTB model the number of bits in a flow in a period (0, t) is

() min((), () ()c aR t R t R t B t 
 (3.9)

 where Ra(t) is assured data rate (minimum threshold) and Rc(t) is ceil data rate (maximum

threshold) The HTB FIFO Queue that uses a time varying leaky bucket model has Service

Curve of

 (3.10)

3.3 DEVELOPMENT OF THE BANDWIDTH ON DEMAND TESTBED

The Bandwidth on Demand Testbed was designed to carry out bandwidth utilization within

the Software Defined-based campus network. It was designed and implemented using a

Python Program that coordinates with the QoS Configuration for optimizing Bandwidth

allocated to links, the OpenDaylight Controller and the OpenVswitch Database.

65

The Bandwidth on Demand Application uses a python program that runs a Main Process.

This Main Process uses web sockets to facilitate TCP connections between three sub-process.

It coordinates connections to the script containing the QoS definition for the Bandwidth on

Demand, the OpenDaylight Controller and the OpenVswitch Database.

Figure 3.12 Implementation of Bandwidth on Demand Application

The QoS configuration code that was used is displayed below

QoS CONFIGURATION CODE

def createQ (interface, minB, maxB):

return "ovs-vsctl set port {0} qos=@newqos -- --id=@newqos create qos type=linux-htb

other-config:max-rate={2} queues:1=@q1 queues:2=@q2 -- --id=@q1 create queue other-

config:min-rate={1} other-config:max-rate={2} -- --id=@q2 create queue other-config:min-

rate={1} other-config:max-rate={2}".format(interface, minB, maxB)

The API that was used by the main process to coordinate all three sub-processes is displayed

below

66

API CALL URL:

def url(url):

return 'http://{0}:8181/restconf{1}'.format(ip, url)

def creds():

return ('admin', 'admin')

def nodes ():

try:

a = requests.get (url('/operational/opendaylight-inventory: nodes/'), auth=creds())

return json.dumps(a.json())

except:

return json.dumps({})

def uploadFlow(s, d):

url = "http://{0}:8181/nodes/node/openflow:1/table/0/flow/iperf".format(ip)

The term highlighted opendaylight-inventory: nodes represents the five OpenVswitches that

are connected to the OpenDaylight Controller.

3.4 COMMUNICATION BETWEEN THE PLANES OF THE PROPOSED SDN

ARCHITECTURE

In the Software Defined-based campus network, the OpenDaylight Controller acts as a

network operating system and controls the Software Defined Networking capable network

devices (OpenVswitches) in a central way. It uses the Southbound Interface Protocol called

67

OpenFlow version 1.3 and Northbound Application Interface called REST to facilitate

communication between the Infrastructure, Control and Data Planes.

Figure 3.12 below shows the communication that occurs in a Generic Software Defined

Network architecture

Figure 3.13 Communication between the planes of an SDN architecture

The scenario below is used to further explain the communication shown in Figure 3.13.

Link between S1(College of Engineering) and S2(IDL) is slow. Users connecting to both

switches cannot browse or download content. OpenFlow Port Status message notifies the

OpenDaylight Controller via the management interface of S1 The OpenDaylight controller

receives OpenFlow message and updates link capacity info. The QoS configuration code has

previously registered in the Bandwidth on the Demand Application to be called whenever

link capacity has to be changed. It is called.

The OpenFlow Protocol which has already accessed network graph info, link state info in the

controller and communicates it to the app running HTB.

68

The testbed running HTB interacts with flow-table-computation component in the

OpenDaylight SDN controller, which computes the instructions needed to dynamically

configure bandwidth are sent to S1 and S2. Controller uses the OpenFlow Protocol to send

the instructions to switches S1 and S2 to update their link-capacity information.

After reproducing the functionalities of components found in the various planes of the

Software Defined Network based campus network architecture an analysis was carried out to

figure out if the following could take place based on the communication stated above. These

are Control Plane-Application Plane Communication (NBI Communication), Control Plane-

Data Plane Communication (SBI Communication) and Data Plane Device communication.

The results of the analyses are presented in Chapter 4.

3.6 THEORECTICAL BASIS FOR THE COMMUNICATION BETWEEN THE

PLANES OF A SOFTWARE DEFINED NETWORK ARCHITECTURE

The scenario used to explain the communication that occur between the various planes of the

Software Defined-based campus network Architecture in Figure 3.13, can be modelled based

on Deterministic Network Calculus by taking into account the control cycle that occurs

between the Data Plane, the OpenDaylight Controller and the Bandwidth on Demand

Testbed.

The QoS setting which is triggered at the application layer of the architecture as shown in

Figure 3.12, is used determine a minimum and maximum threshold of bandwidth for

communication between a particular OpenVswitch and a client at the faculty or residential

portion of the campus network (KNUST LAN). A control cycle is evoked based on the

trigger.

69

Figure 3.14 A Typical OpenVswitch and Controller Cycle in a Software Defined Network

The OpenVswitch is a switching platform that serves as the interface between the Data plane

and the Control plane. It consists of a forwarding engine that is used to forward packets after

the HTB discipline has been implemented

Below is a theoretical analysis of the maximum and minimum resource demand by an

event(packet) stream on the OpenVswitch connected to S1(College of Engineering) using

Nodes Concatenation Theorem.

For a guaranteed service flow (root class definition),

()switch classifing policing shapingt    
 (3.11)

where is the service curve for the switch, is the service curve from

classification of packets, is the service curve model for policing of classified packets

and is the service curve model for scheduling of packets.

3.6.1 Analysis of The Control Cycle for A Software Defined Network

Steps 1 to 6 in Figure 3.13, show the communication between the Infrastructure, Controller

and Network Layer. Such a communication is termed as a control cycle.

70

Nodes Concatenation Theorem can be used to analyze the maximum and minimum resource

demand by the various components in a Software Defined Network Architecture.

Software Defined Networking facilitates the abstraction of the control portion of the network

devices in the Infrastructure layer to the Open Daylight Controller. The behavior of the

Controller is given by its Control Service Cycle which is given by

 (3.12)

where is service curve of controller, β2τ_link is service curve of link between

controller and switch while its propagation and transmission delay given by τ_link.

When a QoS Queue defined by the Bandwidth on Demand App with a specific priority is

traverses the network in a packet stream, the packet stream(flow) is given a numbered

priority. The arriving curve of such a flow is given by if it is placed in a high

priority queue. A lower priority flow with arriving curve as goes through lower

priority queue.

The service curve for a high priority queue is given by . The service curve of a

lower priority queue is

(3.13)

When a high priority flow destined for S1(College of Engineering) is created after the HTB

QoS is triggered without a flow table, the service curve is given by

_ _ _link ctl opendaylight openVswitch link      
 (3.14)

71

Service curve for a lower priority queue under the same condition is given by

_ _ _ _link ctl opendaylight openvswitch higher priority link



 
          (3.15)

After a flow table is created for the high priority flow in the above scenario, the service curve

is given by

_ _link openvswitch link     
 (3.16)

Service curve for a lower priority queue after a flow table is created is given by

_ _ _link openvswitch higher priority link



 
         (3.17)

3.7 CONCLUSION

This chapter has explained the theory and methodology used in converting a typical

traditional Campus Network into a Software-Defined Campus network are discussed. The

chapter has also taken a look at theory and methodology employed in the development of an

application that dynamically optimizes link bandwidth with a Software-Defined Campus

Network.

Deterministic Network Calculus was used to define arrival and service curve models for the

communication between the various planes of the Software Defined-based campus network.

Network Concatenation Theorem was also used in defining the service curve models for the

control cycle that takes place in the various planes of the Software Defined-based campus

network.

72

CHAPTER FOUR

RESULTS AND DISCUSSIONS

4.0 INTRODUCTION

This chapter presents the results obtained from the implementation of a Software Defined -

based campus network.

The chapter is divided into four main sections. The first section is a presentation of results of

the conversion and of a traditional campus network into a Software Defined-based campus

network. It also states the results of the emulation of the Software Defined-based campus

network using the Kwame Nkrumah University LAN as a case study. The second section is a

presentation and an analysis of the results obtained from communication between devices at

the Data Plane Device of the Software Defined-based campus network. The third section

takes a look at the results and analysis of the communication that occurs between the Control

Plane and Data Plane of the proposed network. The final section is a presentation of the

results and analysis of the communication that occurs between the Control Plane and the

Application Plane based on a scheme that dynamically utilizes bandwidth within the Software

Defined-based campus network

In each of these sections the experimental setup that was used is briefly described followed

by a presentation and discussion of the results obtained.

73

4.1 RESULTS FOR THE CONVERSION OF A TRADITIONAL CAMPUS

NETWORK INTO A SOFTWARE DEFINED-BASED CAMPUS NETWORK

Figure 4.1 below shows a traditional campus network.

Figure 4.1 Traditional Campus Network

The Figure below shows the result of the conversion of Figure 4.1 into a generic Software

Defined-based campus network. Comparing Figure 4. 1 and Figure 4. 2, the core switch is

replaced by an OpenVswitch which is a layer 3 routing switch. The three distribution

switches are replaced by three OpenVswitches. The five edge switches are replaced by six

network devices(either routers or switches) which are connected to end users and the other

equipment that form the access portion of the network. The OpenVswitches and network

devices are connected to a Control Software to form the data plane or infrastructure layer.

The Control Software is connected to a set of network applications which would facilitate

configuration of the infrastructure layer thus creating the Northbound Interface.

74

Figure 4.2 Generic Software Defined-based campus network

The Local Area Network of the Kwame Nkrumah University of Science and Technology is

subdivided into a faculty portion and a residential portion. The faculty portion is made up of

six colleges and the Institute of Distance Learning. The residential portion is made up of

students’ residential halls and the homes of university staff.

The Kwame Nkrumah University of Science and Technology LAN is mapped into a Software

Defined-based campus network. The result from the mapping shows five OpenVswitches

which form the collapsed distribution and core network, the six colleges of the university and

the Institute of Distance Learning and the residential portion of the network and the two

Internet Service Providers (ISPs) which provide access to the internet.

It also shows the five OpenVswitches connected to the OpenDaylight Controller to form the

Southbound Interface (SBI) as well as the connection between the OpenDaylight Controller

75

and an application that would dynamically configure and optimize bandwidth in the

underlying network through an Application Programming Interface (API). This forms the

Northbound Interface. (NBI)

The schematic diagram below shows the Software Defined-based campus network of the

Kwame Nkrumah University of Science and Technology LAN.

Figure 4.3 Schematic of Software Defined-based campus network for KNUST

76

Figure 4.4 shows the emulation of the schematic in Figure 4. 3 using the GNS3 VM and the

VMware Workstation 14 software. It depicts the network devices in the data plane and a

connection to a remote controller proving that data plane and control plane functionality have

been separated.

Figure 4.4 Graphical User Interface Implementation of Software Defined-based LAN for

KNUST

4.2 EXPERIMENTAL SET UP FOR DATA PLANE DEVICE COMMUNICATION

In order to validate forwarding between the network devices at the data plane of the emulated

campus network, ICMP echoes are sent from the network device labelled IDL to the network

device labelled CoE as highlighted using the red arrow in Figure 4. 5

77

Figure 4.5 Ping Trace from IDL to CoE

4.2.1 Results And Analysis Of Data Plane Communication

The results from the ping trace carried out from IDL to CoE devices are discussed below.

4.2.1.1 Ping Trace Statisics

In order to check the forwarding of packets from one host to another, the Internet Control

Message Protocol was used to carry out a ping trace from one host (192.168.100.2

representing IDL) to another host (192.168.80.2 representing the College of Engineering).

From the figure below, the ping trace request shows a reply from the College Engineering

host. This proves that forwarding of packets has been achieved.

78

Figure 4.6 Ping Trace Statistics

4.2.1.2 Openvswitch Port Statistics

In Figure 4.5, the green coloured portion on the OpenVswitches shows the active ports. These

ports are capable of forwarding and receiving packets. The active ports of OpenVswitch 1

were queried to validate the above proposition.

 Figure 4.7 shows the port statistics of the active ports of OpenVswitch 1. There is 0

transmission packet drop on all ports of the switch except Port 0.

Port 2 transmits the highest number of 3,455 packets and Port 0 has the highest number of

9,493 packets. This represents the number of packets transmitted from the Controller to the

OpenVswitch.

Port 8 which is the port that connects OpenVswitch 1 to OpenVswitch 4 has 733 transmitted

packets and 1522 received packets from the ping trace carried out and displayed in Figure 3.

79

Figure 4.7 Open vSwitch Port Statistics

4.3 EXPERIMENTAL SETUP FOR RESULT DATA PLANE-CONTROL PLANE

COMMUNICATION

In order to obtain the metrices from the communication between the data plane and the

control plane, the Iperf tool was used. It has the ability to create data streams to measure the

throughput and round-trip time between the two ends in one or both directions.

Below is the Graphical User Implementation used in GNS3 for obtaining the metrices for the

data plane-control plane communication.

Two desktop devices running the Ubuntu Operating System were connected to OpenVswitch

1 representing IDL and OpenVswitch 4 representing the College of Engineering.

The desktop representing the College of Engineering is the client and is used in generating

streams of packets in the form of a set of parallel threads to the desktop representing IDL

which is the server.

The client generates an iterated number of parallel threads starting from 2 threads to 18

threads to the server with the root QoS class set at a minimum of 1 Mbps and maximum of 9

Mbps at the Application Layer.

80

The Wireshark Packet Analyzer was used in obtaining the results for this section.

Figure 4.8 Graphical User Implementation used in GNS3 for obtaining metrices for data

plane-control plane communication.

4.3.1 Results and Analysis of Data Plane-Control Plane Communication

The results and analysis of the communication between the devices at the data plane and the

OpenDaylight Controller are presented in this section.

4.3.1.1 Control Plane Global View

The Controller has to have a full knowledge of all the devices and links in the infrastructure

layer or data plane in order to automate and orchestrate network configurations. This full

knowledge is called the Global View.

There is a direct correlation between Figure 4.9 and Figure 4.8 There are 5 OpenVswitches

and 11 network devices in both.

Also, a node with IP address 192.168.90.2 representing Residential 1 portion of the network

is clearly seen. The correlation between both figures shows that the Controller has obtained a

global view of the underlying infrastructure layer

81

Figure 4.9 Global View of Implemented Campus Network

82

4.3.1.2 Southbound Interface Statistics

The results in the next set of figures show the communication between the Controller and

OpenVswitch1 and the Controller and OpenVswitch 4 during the Iperf test using an

implementation of the QoS Configuration in the Bandwidth on Demand Application

These include OpenVswitch to Controller Latency, OpenVswitch to Controller Throughput

and OpenVswitch Flow Statistics.

4.3.1.3 Openvswitch To Controller Latency (Openvswitch 1)

Round trip time (RTT) is the propagation time for sending and receiving a packet in a

communication network.[73]. Round trip time is the latency from the OpenVswitch to the

Controller and vice-versa plus the processing time

 The latency between the switch and the controller becomes steady at 62.5 milliseconds as the

traffic generation simulation is carried out. This is the result of the service curve emanating

from the control cycle that occurs between the controller and the switch. This was discussed

in Chapter 3. It peaks at 1.5 seconds after 400 seconds of the simulation.

83

Figure 4.10 Latency between OpenVswitch 1 and Controller

4.3.1.4 OpenVswitch to Controller Latency (OpenVswitch 4)

The latency between OpenVswitch 4 and the Controller also becomes steady at 50

milliseconds during the traffic simulation. It peaks at 2.1 seconds during the 80th second of

the simulation as per the service cycle between the switch and the controller.

Figure 4.11 Latency between OpenVswitch 4 and Controller

84

There is a clear correlation in the average and peak values of the roundtrip measured from

both Open vSwitches.

4.3.1.5 OpenVswitch To Controller Throughput (Openvswitch 1)

This metric measures the amount of data moved successfully from OpenVswitch 1 to the

Controller in a given time period, and typically measured in megabits per second (Mbps)

[74].

There is a steady flow of 2Mbps of data from the OpenVswitch to the Controller. The peak

throughput is 8Mbps

Figure 4.12 Throughput between OpenVswitch 1 and Controller

4.3.1.6 Openvswitch To Controller Throughput (Openvswitch 4)

This metric measures the amount of data moved successfully from OpenVswitch 4 to the

Controller in a given time period, and typically measured in megabits per second (Mbps)[75]

85

For OpenVswitch 4, the throughput peaks at 18Mbps in the 120th second of the traffic

simulation due to the increasing number of parallel requests being made by the host directly

attached it. It has an average of 9Mbps during the simulation period.

Figure 4.13 Throughput between OpenVswitch 4 and Controller

Results in Figure 4.12 and Figure 4.13 show that the peak throughput is a two-fold increment

of the average throughput.

4.4 EXPERIMENTAL SETUP FOR CONTROL PLANE-APPLICATION PLANE

COMMUNICATION

In order to obtain the metrices from the communication between the application plane and the

control plane, the Iperf tool was used. An Iperf test produces a report of the bandwidth,

packet loss and other parameters using timestamps.

Figure 4.8 is used to carry out the experimental set up for the control plane-application plane

communication

86

The desktop representing the College of Engineering is the client and is used in generating

streams of packets in the form of a set of parallel threads to the desktop representing IDL

which is the server.

The client generates an iterated number of parallel threads starting from 2 threads to 18

threads to the server with the root QoS class set at a minimum of 1 Mbps and maximum of 9

Mbps.

The following metrics are measured and graphed as the iterations go on. These are

OpenVswitch Flow Statistics, Latency per Thread or Packet Group, Bandwidth Change per

Thread or Packet Group and Bandwidth Change per Thread or Packet Group per Time

4.4.1 RESULTS AND ANALYSIS OF CONTROL PLANE-APPLICATION PLANE

COMMUNICATION

The results and analysis of the communication between the devices at the control plane and

the OpenDaylight Controller are presented in this section.

4.4.1.1 Flow Statistics for Openvswitch 1

Figure 4.14 details 7 axis points showing the characteristics of 7 flows picked from

OpenVswitch 1.

On axis point 4, the flow has a priority of 2 with 98,480 packets in the flow. The flow stays in

the network for 5739 seconds.

On axis 7 for example the flow has a priority of 100 with 2,304 packets in the flow stays in

the network for 2304 seconds. These results stem from data transferred between the

application and the switch after the bandwidth change has been triggered for the duration of

the simulation.

87

Figure 4.14 Flow Statistics for OpenVswitch 1

4.4.1.2 Flow Statistics For Openvswitch 4

The figure below details 12 axis points showing the characteristics of 12 flows picked from

OpenVswitch 4.

On axis point 11, the flow has a priority of 2 with 62,375 packets in the flow. The flow stays

in the network for 5739 seconds.

On axis 2 for example the flow has a priority of 100 with 3,623 packets in the flow stays in

the network for 6168 seconds.

88

There is a correlation between the durations of the flows for priority 2 in both OpenVswitch 1

and OpenVswitch 4 at 5739 seconds in both cases.

Figure 4.15 Flow Statistics for OpenVswitch 4

4.4.2 Results and Analysis For The Implementation Of The Bandwidth Utilization

Scheme

The results show a record of the Iperf tool running on the client device representing the

College of Engineering connected to OpenVswitch 4 after the triggering of the QoS

Configuration setting in the Bandwidth on Demand Application via an API call. These results

are based on the service curve model for a Software Defined Network derived from the Node

Concatenation Theorem.

An iteration of parallel connections was used to model a number of requests that are made

from the iperf client to the iperf server.

These include Latency per Thread Group, Bandwidth Change per Thread Group and

Bandwidth Change per Thread Group per Time

89

4.4.2.1 Latency Per Thread Group

For every parallel thread, a number of ICMP echo messages are sent from the client at the

College of Engineering and the server at IDL.

The round-trip time value shows the time for the movement of requests from the

Infrastructure layer through the Control layer and to the Bandwidth on Demand Application

layer and back.

From the graph in Figure 4.16 the 5 ping trace attempts represent 5 parallel requests from the

client to the server, responses are received in both directions in a total of 39 milliseconds. The

highest round-trip time of 141 milliseconds is received during 7 ping trace attempts. On the

average the round-trip time lies in the range of 20 to 40 milliseconds for a vast majority of the

attempts. This value shows a good control cycle time of the Campus Based Software Defined

Network model for the Kwame Nkrumah University of Science and Technology as compared

to 1000ms in the work done by F. Volpato et al [62]

Figure 4.16 Round Trip per Thread Group

90

4.4.2.2 Bandwidth Change Per Thread Group

This metric shows the dynamic change of bandwidth based on the QoS Configuration setting

which has the root class set to 1Mbps minimum and 9Mbps maximum.

Based on classifying, policing, scheduling and borrowing mechanisms, bandwidth is changed

dynamically per the parallel thread iteration.

In the figure below, a total of 4Mbps is allocated for the 10-parallel thread iperf request.

There is a steady rise in allocated bandwidth from the 1thread iteration to the 18-thread

iteration peaking at about 7.8 Mbps for the 18th thread. This clearly shows that bandwidth is

borrowed from the root class to an inner class and is shared equally in a leaf class for every

single thread iteration satisfying the QoS Configuration definition.

Figure 4 17 Bandwidth Change per Thread Group

91

4.3.2.3 Bandwidth Change Per Thread Group Per Time

This metric shows the amount of time taken for the QoS setting to dynamically change the

bandwidth for the thread-based iteration.

The graph above shows that for 10 parallel connections 4 Mbps is allocated in 17 seconds. It

takes 17 seconds to allocate a leaf class for each of the 10 parallel connections.

This allocation peaks at a value of 4.3 Mbps in 27.5 seconds for 13 parallel connections. The

graph however takes a downward trend from this peak value of 27.5 seconds. The amount of

time for the dynamic allocation to take place reduces steady and tapers to 17 seconds for the

18-thread iteration.

This implies that after 27.5 seconds, the Software Defined-based campus network

dynamically adapts to the QoS configuration changes as the thread iterations increase. The

controller dynamically adapts to the changing conditions in the network and carries out the

bandwidth changes in a shorter space of time.

92

__________ Bandwidth (Mbps)

__________ Duration(seconds)

Figure 4. 18 Bandwidth change per thread group per time.

4.5 CONCLUSION

In this chapter, a presentation and analysis of the results obtained from the conversion and

emulation of a traditional campus network into a Software Defined campus-based one.

The results show the behaviour of packets based on Data Plane Device COMMUNICATION,

Control Plane-Data Plane Communication (SBI Communication) and Control Plane-

Application Plane Communication (NBI Communication).

93

CHAPTER FIVE

CONCLUSION AND RECOMMENDATIONS

This thesis focused on the design and implementation of a dynamic bandwidth scheme in a

Software Defined-based campus network as means a of resolving the issue of static

bandwidth configuration. The Local Area Network of the Kwame Nkrumah University of

Science and Technology was used as a case study.

A traditional network was converted into a Software Defined-based campus network.

Virtualization technology was used to emulate a three-tier architecture made up of network

devices, a controller and a network application. The entire architecture was tested based on a

three-stage process.

In the first phase, the lowest tier called the data plane was tested to check for the forwarding

of packets using ICMP echo pings. The test proved successful as the ping request from the

network device named Institute of Distance Learning (IDL) received a reply from the

network device named College of Engineering. To further prove the forwarding of packets,

the ports of an SDN-capable switch called the Open vSwitch were queried. All active ports of

the switch were seen to be passing packets with the highest transmitting port being port 2

which passed 3,455 packets and the highest receiving port being port 0 which carried 9,493

packets.

In the second phase, a simulation was carried to test communication between the control

plane and the data plane using the iperf application running on two Ubuntu hosts that were

connected to two SDN-capable Open vSwitches. The latency and throughput between the

controller and two SDN-capable Open Vswitches was investigated. The latency for the SDN-

capable Open vSwitch labelled Open vSwitch 1 was an average of 62.5 milliseconds with a

94

peak of 1.5 seconds. The latency for the SDN-capable Open vSwitch labelled Open vSwitch

4 was an average of 50 milliseconds with a peak of 2.1 seconds.

The throughput of the SDN-capable Open vSwitch labelled Open vSwitch 1 was an average

of 2Mbps and a peak of 8Mbps while that of Open vSwitch 4 was 9Mbps averagely with a

peak of 18Mbps.

The third phase was a test of communication between the control plane and the application

plane using the iperf application running on two Ubuntu hosts that were connected to two

SDN-capable Open vSwitches. The number of flows on both switches were queried. Open

vSwitch 1 recorded 98,480 packets moving from the application plane. Open vSwitch 4

recorded 62,375 packets.

In this phase an iteration of parallel connections was carried out to test the concept of

bandwidth utilization based on the Hierarchical Token Bucket Theorem. These parallel

connections were called thread groups. The thread group was used to model a number of

requests that are made from the iperf client to the iperf server.

The average latency for a thread group was 20 to 40 milliseconds. A maximum threshold of

9Mbps was set for all connections. The bandwidth variation per thread group occurs from as

low as 2Mbps for 1 connection to 8Mbps for 18 connections. This variation shows borrowing

from 9Mbps cap based on the amount of traffic requests being made. Also, this bandwidth

variations based on the parallel iterations occur in 27.5 seconds during the 15
th
 iteration. As

the number of iterations increases the amount of time for the variations reduces and becomes

steady at about 17 seconds. The results of the work show that Software Defined Networking

and the Hierarchical Token Bucket Queuing Discipline can be used to facilitate dynamic

utilization of bandwidth in campus networks.

95

5.2 RECOMMENDATIONS

In this work a Software Defined-based campus network was designed and tested within a

virtual environment which emulates the software running on a set of network devices.

Dynamic bandwidth utilization was carried out using a network application. However, a

Software Defined Network has the capability of carrying out other network functions

including routing, security and the creation of virtual local area networks. Based on the

above, future work will be carried out to test whether all of these functions can be

implemented within one architecture.

96

REFERENCES

[1] G. Pujolle, “Software Networks, Wiley ISTE 2015” p. 262

[2] Software Defined Networking for the Utilities and Energy Sector: Fujitsu Network

Communications Inc 2014.

[3] Omollo, Kathleen Ludewig, “Information and Communication Technology

Infrastructure Analysis of Kwame Nkrumah University of Science and Technology

and University of Ghana 2011”

[4] https://www.networkcomputing.com/networking/new-network-management-tactic-

bandwidth-demand/592428015, [Accessed:4-Dec-2018]

[5] “What is Switching Fabric? - Definition from Techopedia,” Techopedia.com.

[Online]. Available: https://www.techopedia.com/definition/16015/switching-fabric.

[Accessed: 24-Jun-2019].

[6] Yoram Orzach, “Ch 01 --- introduction to sdn-nfv,” 15:25:52 UTC.

[7] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and T. Turletti, “A

Survey of Software-Defined Networking: Past, Present, and Future of Programmable

Networks,” IEEE Communications Surveys & Tutorials, vol. 16, no. 3, pp. 1617–

1634, 2014.

[8] “Software-Defined Networking The New Norm for Networks.pdf, ONF White Paper

April 13, 2012.”

https://www.networkcomputing.com/networking/new-network-management-tactic-bandwidth-demand/592428015
https://www.networkcomputing.com/networking/new-network-management-tactic-bandwidth-demand/592428015

97

[9] N. Feamster, J. Rexford, and E. Zegura, “The road to SDN: an intellectual history of

programmable networks,” ACM SIGCOMM Computer Communication Review, vol.

44, no. 2, pp. 87–98, Apr. 2014.

[10] Scott Shenker, “The Future of Networking, and the Past of Protocols,” p. 30.

[11] P. Göransson and C. Black, Software defined networks: a comprehensive approach.

Amsterdam Boston Heidelberg London: Elsevier, Morgan Kaufmann, Morgan

Kaufmann is an imprint of Elsevier, 2014.

[12] “OpenVswitch https://www.openvswitch.org” [Accessed:Oct-13-2018]

[13] “Introduction of Indigo Virtual Switch and Switch Light BETA,” Big Switch

Networks, Inc. [Online]. Available: https://www.bigswitch.com/topics/introduction-

of-indigo-virtual-switch-and-switch-light-beta. [Accessed: 25-Jun-2019].

[14] A. Networks, “Arista Platforms 400GbE - 100GbE - 40GbE - 25GbE - 10GbE -

Arista - Arista,” Arista Networks. [Online]. Available: https://www.arista.com/en/

products/ platforms. [Accessed: 25-Jun-2019].

[15] “NFX Series Product Comparison - Juniper Networks.” [Online]. Available:

https://www.juniper.net/us/en/products-services/sdn/nfx-

series/compare?p=NFX150,NFX250. [Accessed: 25-Jun-2019].

[16] Dean Pemberton, Andy Linton, and Sam Russell, “OpenVSwitch.” University of

Oregon.

[17] N. McKeown et al., “OpenFlow: enabling innovation in campus networks,” ACM

SIGCOMM Computer Communication Review, vol. 38, no. 2, p. 69, Mar. 2008.

98

[18 “Home - OpenDaylight.” [Online]. Available: https://www.opendaylight.org/.

[Accessed: 25-Jun-2019].

[19] “ONOS - A new carrier-grade SDN network operating system designed for high

availability, performance, scale-out.” [Online]. Available: https://onosproject.org/.

[Accessed: 25-Jun-2019].

[20] N. O. X. Repo, The POX network software platform. Contribute to noxrepo/pox

development by creating an account on GitHub. 2019.

[21] “Ryu SDN Framework.” [Online]. Available: https://osrg.github.io/ryu/. [Accessed:

25-Jun-2019].

[22] “Floodlight OpenFlow Controller -,” Project Floodlight. [Online]. Available:

http://www.projectfloodlight.org/floodlight/. [Accessed: 25-Jun-2019].

[23] S. Badotra and J. Singh, “Open Daylight as a Controller for Software Defined

Networking,” International Journal of Advanced Research in Computer Science, p. 8,

2017.

[24] “OpenDaylight User Guide,” p. 117 [Accessed:25-Jun-2019]

[25] Charles Eckel, “OpenDaylight-Network-Programmability,” p. 58, 2017.

[26] “Applications of Computer Networks,” TurboFuture. [Online]. Available:

https://turbofuture.com/computers/Network-Application. [Accessed: 25-Jun-2019].

[27] S. Kaur, K. Kaur, and V. Gupta, “Implementing Static Router based on Software

Defined Networking,” in 2016 International Conference on Computational

99

Techniques in Information and Communication Technologies (ICCTICT), New Delhi,

India, 2016, pp. 358–360.

[28] V. Gupta, K. Kaur, and S. Kaur, “Network programmability using software defined

networking,” p. 4, 2016.

[1] G. Pujolle, “Software Networks,” p. 262.

[29] J. Tourrilhes, P. Sharma, S. Banerjee, and J. Pettit, “SDN and OpenFlow Evolution: A

Standards Perspective,” Computer, vol. 47, no. 11, pp. 22–29, Nov. 2014.

[30] Open Network Foundation, “OpenFlow Switch Specification.pdf.” 25-Jun-2012.

[31] “application programming interface - Google Search.” [Online]. Available:

https://www.google.com/search?q=application+programming+interface [Accessed:

26-Jun-2019].

[32] “What is REST?,” Codecademy. [Online]. Available:

https://www.codecademy.com/articles/what-is-rest. [Accessed: 26-Jun-2019].

[33] W. Zhou, L. Li, M. Luo, and W. Chou, “REST API Design Patterns for SDN

Northbound API,” in 2014 28th International Conference on Advanced Information

Networking and Applications Workshops, BC, Canada, 2014, pp. 358–365.

[34] “What is RESTful API? - Definition from WhatIs.com.” [Online]. Available:

https://searchmicroservices.techtarget.com/definition/RESTful-API. [Accessed: 26-

Jun-2019].

https://www.google.com/search?q=application+programming+interface

100

[35] L. Li, W. Chou, W. Zhou, and M. Luo, “Design Patterns and Extensibility of REST

API for Networking Applications,” IEEE Transactions on Network and Service

Management, vol. 13, no. 1, pp. 154–167, Mar. 2016.

[36] A. E. Maslov, S. L. Katuntsev, and A. A. Maliavko, “Study and implementation of

authentication mechanism by RADIUS-server in switches and routers using

NETCONF protocol,” in 2017 18th International Conference of Young Specialists on

Micro/Nanotechnologies and Electron Devices (EDM), Erlagol (Altai Republic),

Russia, 2017, pp. 111–114.

[37] “YANG, NETCONF, RESTCONF What is this all about and how is it used for multi-

layer networks.pdf.” .

[38] T. Tanaka, “Flexible and robust optical network technologies for SDN and network

virtualization,” in 2014 12th International Conference on Optical Internet 2014

(COIN), Jeju, 2014, pp. 1–2.

[39] L. Xingtao, G. Yantao, W. Wei, Z. Sanyou, and L. Jiliang, “Network virtualization by

using software-defined networking controller based Docker,” in 2016 IEEE

Information Technology, Networking, Electronic and Automation Control

Conference, Chongqing, China, 2016, pp. 1112–1115.

[40] “Mininet http://mininet.org/overview” .

[41] R. L. S. de Oliveira, C. M. Schweitzer, A. A. Shinoda, and Ligia Rodrigues Prete,

“Using Mininet for emulation and prototyping Software-Defined Networks,” in 2014

IEEE Colombian Conference on Communications and Computing (COLCOM),

Bogota, Colombia, 2014, pp. 1–6.

101

[42] “IMUNES - IP network emulator / simulator.” [Online]. Available: http://imunes.net/.

[Accessed: 27-Jun-2019].

[43] “Home, https://www.estinet.com/ns/” EstiNet - Simulator. [Accessed: 27-Jun-2019]

[44] “Emulab - Emulab.” [Online]. Available: https://www.emulab.net/portal/frontpage.

php. [Accessed: 27-Jun-2019].

[45] “GNS3 Documentation.pdf https://docs.gns3.com”

[46] “Workstation Player : Run a Second, Isolated Operating System on a Single PC with

VMware Workstation Player,” VMware. [Online]. Available: https://www.vmware.

com/products/workstation-player.html. [Accessed: 27-Jun-2019].

[47] P. Trimintzios, G. Pavlou, and I. Andrikopoulos, “Providing Traffic Engineering

Capabilities in IP Networks Using Logical Paths p. 14.

[48] Z. Shu et al., “Traffic engineering in software-defined networking: Measurement and

management,” IEEE Access, vol. 4, pp. 3246–3256, 2016.

[49] S. Jeong, D. Lee, J. Hyun, J. Li, and J. W.-K. Hong, “Application-aware traffic

engineering in software-defined network,” in 2017 19th Asia-Pacific Network

Operations and Management Symposium (APNOMS), Seoul, 2017, pp. 315–318.

[50] Y. Zhou, B. Ramamurthy, B. Guo, and S. Huang, “Supporting Dynamic Bandwidth

Adjustment Based on Virtual Transport Link in Software-Defined IP Over Optical

Networks,” Journal of Optical Communications and Networking, vol. 10, no. 3, p.

125, Mar. 2018.

102

[51] S. Ren, Q. Feng, Y. Wang, and W. Dou, “A Service Curve of Hierarchical Token

Bucket Queue Discipline on Soft-Ware Defined Networks Based on Deterministic

Network Calculus: An Analysis and Simulation,” J. Adv. Comput. Netw, vol. 5, no. 1,

2017.

[52] D. G. Balan and D. A. Potorac, “Linux HTB queuing discipline implementations,” in

2009 First International Conference on Networked Digital Technologies, Ostrava,

2009, pp. 122–126.

[53] “HTB manual - user guide.” [Online]. Available: http://luxik.cdi.cz/~devik/qos/htb/

manual/userg.htm. [Accessed: 01-Jul-2019].

[54] T. Bhattacharjee, V. Gopal, L. N. Ngangoua, and C. Raghunath, “Traffic Light:

Network Traffic Monitoring and Allocation,” p. 9.

[55] S. Bhelekar, M. Iyer, G. Mehta, and S. Chaudhari, “Dynamic load balancing strategy

in software-defined networking,” in 2017 International Conference on Trends in

Electronics and Informatics (ICEI), Tirunelveli, 2017, pp. 875–878.

[56] N. Zope, S. Pawar, and Z. Saquib, “Firewall and load balancing as an application of

SDN,” in 2016 Conference on Advances in Signal Processing (CASP), Pune, India,

2016, pp. 354–359.

[57] D. Satasiya and Raviya Rupal D., “Analysis of Software Defined Network firewall

(SDF),” in 2016 International Conference on Wireless Communications, Signal

Processing and Networking (WiSPNET), Chennai, India, 2016, pp. 228–231.

[58] K. Kaur, K. Kumar, J. Singh, and N. S. Ghumman, “Programmable firewall using

Software Defined Networking,” p. 5, 2015.

103

[59] P. Krongbaramee and Y. Somchit, “Implementation of SDN Stateful Firewall on Data

Plane using Open vSwitch,” in 2018 15th International Joint Conference on

Computer Science and Software Engineering (JCSSE), Nakhonpathom, 2018, pp. 1–5.

[60] A. Mendiola et al., “Multi-domain bandwidth on demand service provisioning using

SDN,” in 2016 IEEE NetSoft Conference and Workshops (NetSoft), Seoul, South

Korea, 2016, pp. 353–354.

[61] A. O. Adedayo and B. Twala, “QoS functionality in software defined network,” in

2017 International Conference on Information and Communication Technology

Convergence (ICTC), Jeju, 2017, pp. 693–699.

[62] F. Volpato, M. P. Da Silva, A. L. Goncalves, and M. A. R. Dantas, “An Autonomic

QoS management architecture for Software-Defined Networking environments,” in

2017 IEEE Symposium on Computers and Communications (ISCC), Heraklion,

Greece, 2017, pp. 418–423.

[63] Van-Giang Nguyen and Young-Han Kim “SDN-Based Enterprise and Campus

Networks: A Case of VLAN Management,” Journal of Information Processing

Systems, 2015.

[64] A. Amelyanovich, M. Shpakov, A. Muthanna, M. Buinevich, and A. Vladyko,

“Centralized control of traffic flows in wireless LANs based on the SDN concept,” in

2017 Systems of Signal Synchronization, Generating and Processing in

Telecommunications (SINKHROINFO), Kazan, Russia, 2017, pp. 1–5.

[65] M. S. Olimjonovich, “Software Defined Networking: Management of network

resources and data flow,” in 2016 International Conference on Information Science

and Communications Technologies (ICISCT), Tashkent, Uzbekistan, 2016, pp. 1–3.

104

[66] S.-C. Lin, P. Wang, and M. Luo, “Jointly optimized QoS-aware virtualization and

routing in software defined networks,” Computer Networks, vol. 96, pp. 69–78, Feb.

2016.

[67] “Umadevi et al. - 2017 - Multilevel queue scheduling in software defined

networks.pdf.” .

[68] Veena S, R. P. Rustagi, and K. N. B. Murthy, “Network management and

performance monitoring using Software Defined Networks,” in 20th Annual

International Conference on Advanced Computing and Communications (ADCOM),

Bangalore, India, 2014, pp. 29–31.

[69] B. Gu, M. Dong, C. Zhang, Z. Liu, and Y. Tanaka, “Real-time pricing for on-demand

bandwidth reservation in SDN-enabled networks,” in 2017 14th IEEE Annual

Consumer Communications & Networking Conference (CCNC), Las Vegas, NV,

USA, 2017, pp. 696–699.

[70] C. Fei, B. Zhao, W. Yu, C. Wu, and J. Bao, “A research platform for software defined

satellite networks,” in 2017 16th International Conference on Optical

Communications and Networks (ICOCN), Wuzhen, 2017, pp. 1–2.

[71] T. Theodorou and L. Mamatas, “CORAL-SDN: A software-defined networking

solution for the Internet of Things,” in 2017 IEEE Conference on Network Function

Virtualization and Software Defined Networks (NFV-SDN), Berlin, 2017, pp. 1–2.

[72] I. F. Akyildiz, S.-C. Lin, and P. Wang, “Wireless software-defined networks (W-

SDNs) and network function virtualization (NFV) for 5G cellular systems: An

overview and qualitative evaluation,” Computer Networks, vol. 93, pp. 66–79, Dec.

2015.

105

[73] https://en.wikipedia.org/wiki/Round-trip_delay_time [Accessed: 28-Jun-2019]

[74] https://searchnetworking.techtarget.com/definition/throughput [Accessed: 28-Jun-

2019]

[75] https://en.wikipedia.org/wiki/Traffic_flow_(computer_networking) [Accessed: 28-

Jun-2019]

https://en.wikipedia.org/wiki/Round-trip_delay_time
https://searchnetworking.techtarget.com/definition/throughput
https://en.wikipedia.org/wiki/Traffic_flow_(computer_networking)

106

REFERENCES FOR FIGURES

Figure 1.1 http://www.excitingip.net/27/a-basic-enterprise-lan-network-architecture-block-diagram-

and-components/

Figure 1.2 The Future of Networking and the Past of Protocols by Scott Shenker et al

Figure 2.1 What is Switching Fabric? - Definition from Techopedia,” Techopedia.com.

[Online]. Available: https://www.techopedia.com/definition/16015/switching-fabric.

[Accessed: 24-Jun-2019

Figure 2.2 Source: NDI Communications-Training and Education

Figure 2.3 The Future of Networking and the Past of Protocols by Scott Shenker et al

Figure 2.4 https://www.researchgate.net/A novel industrial control architecture based on

Software-Defined Network

Figure 2.5 P. Göransson and C. Black, Software defined networks: a comprehensive

approach. Amsterdam Boston Heidelberg London: Elsevier, Morgan Kaufmann, Morgan

Kaufmann is an imprint of Elsevier, 2014

Figure 2.6 P. Göransson and C. Black, Software defined networks: a comprehensive

approach. Amsterdam Boston Heidelberg London: Elsevier, Morgan Kaufmann, Morgan

Kaufmann is an imprint of Elsevier, 2014

Figure 2.7 online.fliphtml5.com

Figure 2.8 P. Göransson and C. Black, Software defined networks: a comprehensive

approach. Amsterdam Boston Heidelberg London: Elsevier, Morgan Kaufmann, Morgan

Kaufmann is an imprint of Elsevier, 2014

http://www.excitingip.net/27/a-basic-enterprise-lan-network-architecture-block-diagram-and-components/
http://www.excitingip.net/27/a-basic-enterprise-lan-network-architecture-block-diagram-and-components/

107

Figure 2.9 Charles Eckel, OpenDaylight-Network-Programmability

Figure 2.10 P. Göransson and C. Black, Software defined networks: a comprehensive

approach. Amsterdam Boston Heidelberg London: Elsevier, Morgan Kaufmann, Morgan

Kaufmann is an imprint of Elsevier, 2014

Figure 2.11 P. Göransson and C. Black, Software defined networks: a comprehensive

approach. Amsterdam Boston Heidelberg London: Elsevier, Morgan Kaufmann, Morgan

Kaufmann is an imprint of Elsevier, 2014

Figure 2.12 P. Göransson and C. Black, Software defined networks: a comprehensive

approach. Amsterdam Boston Heidelberg London: Elsevier, Morgan Kaufmann, Morgan

Kaufmann is an imprint of Elsevier, 2014

Figure 2.16 Source: W. Zhou, L. Li, M. Luo, and W. Chou, “REST API Design Patterns for

SDN Northbound AP

Figure 2.17 W. Zhou, L. Li, M. Luo, and W. Chou, “REST API Design Patterns for SDN

Northbound

Figure 2.18 A. E. Maslov, S. L. Katuntsev, and A. A. Maliavko, “Study and implementation

of authentication mechanism by RADIUS-server in switches and routers using NETCONF

protocol

Figure 2.19 YANG, NETCONF, RESTCONF What is this all about and how is it used for

multi-layer networks.pdf

Figure 2.20 https://www.cisco.com

https://www.cisco.com/

108

Figure 3.1 http://www.excitingip.net/27/a-basic-enterprise-lan-network-architecture-block-

diagram-and-components/

Figure 3.2 The Future of Networking and the Past of Protocols by Scott Shenker et al

Figure 3.3 The Future of Networking and the Past of Protocols by Scott Shenker et al

Figure 3.14 A Service Curve of Hierarchical Token Bucket Queue Discipline on Soft-Ware

Defined Networks Based on Deterministic Network Calculus: An Analysis and Simulation by

Shuangyin Ren, Quanyou Feng, Yu Wang, and Wenhua Dou

109

APPENDICES

APPENDIX A

Code Listings

All the source code used in the implementation of the Bandwidth Utilization Scheme at the

application plane of the SDN-based campus network are listed below

A.1 Code For Queue Creation

#!/usr/bin/python

 """

 Interfaces Detector

 """

 import sys

 # adding helper function

 sys.path.append('../SDN_Python')

 import helper

 import logger as d

 import db

 import socketio

 import telnetlib

 import requests

 import time

 # defaults

 sio = socketio.Client()

110

 b5 = 0

 b4 = 0

 # default url

 webUrl = "http://localhost:8000/"

 try:

 sio.connect('http://127.0.0.1:5000')

 except KeyboardInterrupt:

 sys.exit()

 except:

 sys.exit()

 def sendData(dat):

 d.warning(str(dat))

 res = requests.post(webUrl + 'obs/', data=dat)

 d.success(str(res.text))

 # add packets rx and tx

 res = requests.post(webUrl + 'packets/', data=dat)

111

 d.success(str(res.text))

 # done connecting to websocket; connect to telnet

 @sio.on('5005')

 def op5(data):

 info = data['data']

 ip = info['ip']

 console = info['console']

 src = '192.168.80.9'

 dst = '192.168.100.8'

 interface = info['interface']

 tx = info['tx']

 rx = info['tx']

 tx = int(tx) + int(rx)

 minB = 0

 maxB = tx

 ip = '192.168.198.128'

 global b5

112

 # create queue

 if b5 != maxB:

 d.default('Creating queue: ' + str(ip) + ':' + str(console))

 queue = helper.createQ(interface, minB, maxB)

 tn = telnetlib.Telnet(ip, console)

 tn.write("ovs-vsctl -- --all destroy QoS -- --all destroy

Queue\n".encode('ascii'))

 tn.write((queue + "\n").encode('ascii'))

 d.success('Queue created...: ' + str(console))

 # push to odl

 helper.uploadFlow(src, dst)

 # sending data to web app

 webData = {'start': str(info['start']), 'stop': str(time.time()), 'dura-

tion': str(time.time() - info['start']), 'old': str(b5), 'new': str(maxB), 'tx':

str(tx), 'rx': str(tx)}

 sendData(webData)

 b5 = maxB

 else:

113

 d.default('Not setting bandwidth: no changes detected')

 @sio.on('5014')

 def op4(data):

 info = data['data']

 ip = info['ip']

 console = info['console']

 dst = '192.168.80.9'

 src = '192.168.100.8'

 interface = info['interface']

 tx = info['tx']

 rx = info['tx']

 tx = int(tx) + int(rx)

 minB = 0

 maxB = tx

 ip = '192.168.198.128'

 global b4

114

 if b4 != maxB:

 d.default('Creating queue: ' + str(ip) + ':' + str(console))

 # create queue

 queue = helper.createQ(interface, minB, maxB)

 tn = telnetlib.Telnet(ip, console)

 # delete existing queue

 tn.write("ovs-vsctl -- --all destroy QoS -- --all destroy

Queue\n".encode('ascii'))

 tn.write((queue + "\n").encode('ascii'))

 d.success('Queue created: ' + str(console))

 # push to odl

 helper.uploadFlow(src, dst)

 else:

 d.default('Not setting bandwidth: no changes detected')

A.2 Code For Connection To Opendaylight Controller

#!/usr/bin/python

115

 """

 IPC

 """

 import socketio

 import eventlet

 import pprint

 import sys

 import logger as d

 import db

 ### DEFAULTS #####

 sio = socketio.Server()

 app = socketio.WSGIApp(sio, static_files={

 '/': {'content_type': 'text/html', 'filename': 'index.html'}

 })

 ## connection defaults ###

 @sio.on('connect')

 def connect(sid, environ):

 d.success('Client socket opened => ' + sid)

116

 @sio.on('disconnect')

 def disconnect(sid):

 d.error('Client socket closed => ' + sid)

 ##### Event Handlers

 @sio.on('nodes')

 def nodes(sid, data):

 d.success('Data received: ' + str(data))

 sio.emit('nodes', data)

 @sio.on('5005')

 def op5(sid, data):

 d.warning('Sending data to obs: 5005')

 sio.emit('5005', data)

 @sio.on('5014')

 def op4(sid, data):

 d.warning('Sending data to obs: 5014')

 sio.emit('5014', data)

117

 try:

 eventlet.wsgi.server(eventlet.listen(('127.0.0.1', 5000)), app)

 except KeyboardInterrupt:

 sys.exit()

#!/usr/bin/python

 """

 Interfaces Detector

 """

 import sys

 import json

 # adding helper function

 sys.path.append('../SDN_Python')

 import helper

 import logger as d

 import db

 import socketio

 import pprint

118

 from time import sleep

 import time

 # defaults

 sio = socketio.Client()

 try:

 sio.connect('http://127.0.0.1:5000')

 except KeyboardInterrupt:

 sys.exit()

 except:

 print("No connection to server")

 sys.exit()

 ## getting all interfaces on openvswitches

 def getNodes():

119

 try:

 data = json.loads(helper.nodes())

 data = data['nodes']['node']

 switches = []

 for x in data:

 # checking through all nodes

 switchData = []

 for n in x['node-connector']:

 branch = n['opendaylight-port-statistics:flow-capable-node-

connector-statistics']

 if branch['packets']['received'] > 0:

 port = n['flow-node-inventory:port-number']

 link = n['flow-node-inventory:current-speed']

 interface = n['flow-node-inventory:name']

 tx = branch['bytes']['transmitted']

 rx = branch['bytes']['received']

 ip = x['flow-node-inventory:ip-address']

 if interface.find('eth3') != -1:

 if x['id'] == "openflow:38023701621572" or x['id'] ==

"openflow:60174091252288":

 if x['id'] == "openflow:38023701621572":

120

 console = 5014

 else:

 console = 5005

 switchData.append({ 'port': port, 'interface': interface,

'rx': rx, 'tx': tx, 'link': link , 'ip': ip , 'console': console, 'start': time.time()

})

 if len(switchData) > 0:

 switches.append({ 'id': x['id'], 'data': switchData })

 # send data to be analyzed

 d.default('Sending captured nodes to IPC')

 sio.emit('nodes', {'data': switches})

 except Exception as e:

 print(e)

 sio.disconnect()

 sys.exit()

 if __name__ == "__main__":

 while True:

 getNodes()

 sleep(1)

121

A.3 Code For Realtime Analysis Of Bandwidth Utilization Application

#!/usr/bin/python

"""

Interfaces Detector

"""

import sys

from prettytable import PrettyTable

adding helper function

sys.path.append('../SDN_Python')

import helper

import logger as d

import db

import socketio

import subprocess

defaults

sio = socketio.Client()

def clearScreen():

 subprocess.run('clear')

############# Event Handlers ####################

122

@sio.on('nodes')

def nodes(data):

 clearScreen()

 #d.warning('Data received: ' + str(data))

 info = data['data']

 p = PrettyTable()

 p.field_names = ["Switches", "Interface", "Tx", "Rx", "Port Number", "IP Address",

"Console Port"]

 for x in info:

 p.add_row([str(x['id']), x['data'][0]['interface'], str(x['data'][0]['tx']), str(x['data'][0]['rx']),

str(x['data'][0]['port']), str(x['data'][0]['ip']), str(x['data'][0]['console'])])

 sio.emit(str(x['data'][0]['console']), { 'data': x['data'][0] })

 """

 if x['id'] == "openflow:60174091252288":

 p.add_row([str(x['id']), x['data'][0]['interface'], str(x['data'][0]['tx']),

str(x['data'][0]['rx']), str(x['data'][0]['port']), str(x['data'][0]['ip']), str(x['data'][0]['console'])])

 else:

 p.add_row([str(x['id']), x['data'][3]['interface'], str(x['data'][3]['tx']),

str(x['data'][3]['rx']), str(x['data'][3]['port']), str(x['data'][3]['ip']), str(x['data'][3]['console'])])

 """

 # display table

 print(p)

123

############### ... MAIN ... ################################

if __name__ == "__main__":

 try:

 sio.connect('http://127.0.0.1:5000')

 except KeyboardInterrupt:

 sys.exit()

 except:

 sys.exit()

#!/usr/bin/python

 """

 Database module

 """

124

 import sqlite3

 import os

 prefix="dashboard_"

 def init():

 conn = sqlite3.connect(os.path.dirname(os.path.realpath(__file__))

+'/../db.sqlite3')

 conn.row_factory = sqlite3.Row

 return conn

 def getData(table):

 conn = init()

 cursor = conn.cursor()

 cursor.execute("select * from {0} order by id asc".format(prefix + ta-

ble))

 return cursor.fetchall()

