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ABSTRACT

This thesis is concerned with the solution of a canonical example of ill-conditioned

system called Hilbert Systems of Linear Equations (HSLE’s) via the solution of

an equivalent/transformed HSLE’s which are well-conditioned. A matrix is first

constructed from that of the given ill-conditioned system. Then, an adequate

right-hand side is computed to make up the instance of an equivalent system.

Formulae and algorithms for computing an instance of this equivalent HSLE and

solving it will be given and illustrated. Analysis is made between the original

Hilbert system and its equivalent/transformed system. Under original Hilbert

system comparison is made between unperturbed and perturbed Hilbert system

and under the equivalent/transformed Hilbert system comparison is made be-

tween unperturbed and perturbed transformed Hilbert system. The results es-

tablished the fact that well conditioned solutions are more accurate and reliable

than ill conditioned solutions due to their error margins and condition numbers.
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Chapter 1

INTRODUCTION

1.1 Background

Numerical stability is a desirable property of numerical algorithms. The precise

definition of stability depends on the context, but it is derived from the accuracy

of the algorithm. Sometimes a single calculation can be achieved in several ways,

all of which are algebraically equivalent in terms of ideal real or complex num-

bers, but in practice when performed on digital computers yield different results.

Some calculations might damp out approximation errors that occur; others might

magnify such errors. Calculations that can be proven not to magnify approxima-

tion errors are called numerically stable. One of the common tasks of numerical

analysis is to try to select algorithms which are robust - that is to say, have good

numerical stability among other desirable properties.

An opposite phenomenon is instability. Typically, algorithms would ap-

proach the right solution in the limit, if there were no round-off or truncation

errors, but depending on the specific computational method, errors can be mag-

nified, instead of damped, causing the error to grow exponentially.

There are three central concepts in the analysis of numerical techniques

and these are Convergence (whether the method approximates the solution), Or-

der (how well it approximates the solution) and Stability (whether errors are

damped out). The latter is the underpinning of this academic work.

One of the fundamental problems in many scientific and engineering ap-

plications is to solve an algebraic linear system Ax = b for the unknown vector

x when the coefficient matrix A and right-hand side vector b are known. Such

systems arise naturally in various applications and one of the most popular tech-
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niques for solving such systems is the Gaussian elimination method (also known

as row reduction) which is a numerical algorithm for solving systems of linear

equations. The approach is designed to solve a general set of n equations and n

unknowns.

Two separate issues of stability in terms of accuracy in solving linear

systems namely pivoting and condition number are studied in this thesis. The

first, pivoting is a method that ensures that Gaussian elimination proceeds as

accurately as possible; this can either be partial or complete pivoting. There

are two pitfalls of the Gaussian elimination method namely: round-off errors

(attributed to how computers store numbers as a finite strings of binary floating

digits by truncating digits) and division by zero. Gaussian elimination can involve

hundreds of arithmetic computations with the use of a digital computer, each of

which can produce rounding error. When floating point arithmetic is used (In

computing, floating point describes a method of representing an approximation

of a real number in a way that can support a wide range of values. The numbers

are, in general, represented approximately to a fixed number of significant digits,

the mantissa and scaled using an exponent. The base for the scaling is normally

2, 10 or 16. The typical number that can be represented exactly is of the form:

±M ∗ 10k where k is an integer and the mantissa M satisfies the inequality 0.1 ≤

M < 1. Wikipedia (2014). Such large row multipliers tend to propagate rounding

error. This type of error propagation can be lessened by appropriate row and or

column interchanges that produce smaller multipliers by the use of partial and

complete pivoting techniques.

It is well known that even for a nonsingular and well conditioned input

matrix,Gaussian elimination fails in numerical computations with rounding errors

as soon as it encounters a vanishing or nearly vanishing leading entry. In practice

users avoid such encounters by applying pivoting strategies; partial and complete

pivoting, that is an appropriate row and column interchanges, however, these

takes its toll: pivoting usually degrades the performance. It interrupts the stream
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of arithmetic operations with foreign operations of comparison, involves book-

keeping, compromises data locality, increases communication overhead and data

dependence, and tends to destroy matrix structure. Pan et al. (2013).

In this thesis however, the efficacy of Gaussian elimination with no piv-

oting will be used to compute the solutions of Hilbert linear equations which

will be transformed into an improved systems that are better conditioned using

a direct method called the general approach algorithm. Gaussian elimination

with no pivoting is used because ill conditioned systems are extremely sensitive

to numerical errors and as such pivoting is not much of a help. In fact, Gaussian

elimination with no pivoting is considered to be a stable method in practice.

Another facet of stability of an algorithm is that which gives the exact

answer to a problem that is near to the original problem. Such algorithm is said to

be backward stable. Algorithms that are not backward stable will tend to amplify

roundoff errors present in the original data and make it inaccurate and instable.

As a result, the solution produced by an algorithm that is not backward stable will

not necessarily be the solution to a problem that is close to the original problem.

Gaussian elimination with partial pivoting is said to be backward stable. If A is

symmetric and positive definite, then Gaussian elimination without pivoting is

also backward stable. Olson (2009).

The second, condition number, is a measure of how bad a matrix is.

In other words it is the sensitivity of the solution with respect to errors in the

data and it determines the loss in precision due to roundoff errors in Gaussian

elimination and can be used to estimate the accuracy of results obtained from

matrix inversion and linear equation solution. Ill condition means the solution

of a system is unstable with respect to small changes in data and well condition

also means the solution of a system is stable with respect to small changes in

the data. If the condition number is close to one, the matrix is well conditioned

which means its inverse can be computed with good accuracy. If the condition

number is large, then the matrix is said to be ill-conditioned. Practically, such

3



a matrix is almost singular, and the computation of its inverse, or solution of a

linear system of equations is prone to large numerical errors and the remedy is to

resort to iterative techniques to avoid error. A matrix that is not invertible has

the condition number equal to infinity.

Every problem that we try to solve is based on an expression of some

form or another. To have confidence in the solution it is important to know that

the expression is well conditioned, so that we would not get completely different

results from slight changes in the input. If it is well-conditioned, a small change

in the coefficient matrix or a small change in the right hand side results in a

small change in the solution vector and if it is ill-conditioned a small change in

the coefficient matrix or a small change in the right hand side results in a large

change in the solution vector. The exact cutoff between well- and ill-conditioned

depends on the context of the problem and the uses of the results.

The interest of an algorithm is the same as for an expression: it is de-

sirable to have small changes in the input to only produce small changes in the

output. An algorithm or numerical process is called stable if this is true and

it is called unstable if large changes in the output are produced. Analyzing an

algorithm for stability is more complicated than determining the condition of an

expression, even if the algorithm simply evaluates the expression. This is because

an algorithm consists of many basic calculations and each one must be analyzed

and, due to roundoff error, it is necessary to consider the possibility of small

errors being introduced in every computed value.

As Well-and Ill-conditioned refers to the problem; Stable/Unstable refer

to an algorithm or the numerical process. If a problem is well-conditioned then

there is a stable way to solve it and if the problem is ill-conditioned then it is

difficult to solve it in a stable way. The difficulty has to be negotiated. Ill-

conditioned systems of linear equations are notoriously difficult to solve to any

useful accuracy. Their matrices are characterized by large condition numbers.

Mixing roundoff-error with an unstable process is a recipe for disaster. With
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exact arithmetic (no roundoff-error), stability is not a concern. Hence, even

when a problem is well-conditioned, solving it with an unstable algorithm, the

obtained results will be meaningless. (Farooq and Salhi, 2011).

1.1.1 Problem Statement

Hilbert systems are ill conditioned which have large condition numbers and are

very sensitive to small changes in input data, resulting in a large change in the

solution vector. Thus their solutions are unreliable, unstable and cannot be

trusted to any degree of accuracy and to have any level of confidence in their

solutions it is necessary to reduce the ill conditioned by solving an equivalent

system in order to obtain a relatively stable and an improved solution closer to

the exact solution.

1.2 Objectives of the study

1. To convert ill condition Hilbert system to an improved system.

2. To compute the solution of ill conditioned Hilbert system via the solution

of an equivalent improved system.

3. To compare the relative stability and reliability of the ill conditioned Hilbert

system and the improved system.

1.3 Methodology

Two methods are normally used for solving linear systems computationally namely

direct and iterative methods. The direct methods consist of a finite number of

steps that all must be performed for any given method before the solution is ob-

tained. The basic idea behind all the direct methods is first to reduce the linear

system Ax = b to an equivalent triangular systems by finding triangular factors

of the matrix A and then to solve the triangular system, which is much easier to
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solve than the original problem. Some examples of the direct methods include

the following: Gaussian elimination, QR factorization, Cholesky factorization.

On the other hand, iterative methods are based on computing a sequence

of approximations to the solution x, and a user can stop whenever a certain de-

sired accuracy is obtained or a certain number of iterations are completed. The

iterative methods are used primarily for large and sparse systems. Some of the

iterative methods include the following: Jacorbi method, Gauss-Seidel method,

Successive over-relaxation method, Conjugate gradient method and General Min-

imal Residual method.

This thesis is a theoretical academic work and the matrix used for the

analysis is a well-known ill conditioned matrix called the Hilbert matrix which is

a square matrix n× n with entries being the unit fractions and it is characterize

by large condition numbers. Gaussian elimination with no pivoting is considered

as a stable method in practice and this motivates me to use it. A new system

is constructed from the Hilbert matrix with a suitable right hand side, and it

is expected that this transformed Hilbert system would have a better condition

number and its result more accurate due to its relatively small error margin.

In the quest to achieve the objectives of this work, numerous research

works, papers and articles both published and unpublished have been extensively

scrutinize and the pertinent literatures drawn from it.

1.4 Justification of Work

The justifications and benefits of this thesis are amongst the following:

1. This study will help university lecturers to use the concept and approaches

in the teaching of numerical errors.

2. It will serve as an introductory step for university students to develop in-

terest in working at the topic.

3. It will also serve as a curricular material in which recommendations can be
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made to enhance and broaden the horizons of teaching and learning of the

research topic.

4. It will serve as a base or a reference material for other concerned students

and researches to dive into the problem for onward suggestions and recom-

mendations.

1.5 Thesis Organization

The thesis is organized into five chapters; each chapter is distinct from the other.

Chapter one is the introduction of the study that comprise the following: In-

troduction, Problem statement, Objectives of the study, Methodology employed,

Justification and thesis organization. Chapter two is the literature review that

outlines the body of published work concerned with this particular thesis and in

the quest to achieve the objectives of this work, numerous research works, papers

and articles have been extensively scrutinize and the pertinent literatures have

been reviewed. Chapter three is the methodology in which some theories about

the thesis are presented in a methodical and organized manner. The fourth chap-

ter concentrates on the analysis and discussions of the findings of the study. The

final and fifth chapter is the conclusion and recommendation which is made up

of summing up of all the points and a statement of opinion or decisions reached

about the thesis.
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Chapter 2

LITERATURE REVIEW

2.1 Literature Review

In the quest to achieve the objectives of this work, numerous research works,

papers and articles have been extensively scrutinize and the pertinent literatures

have been reviewed as follows:

Pan and Qian (2012) explains that a random matrix is likely to be well

conditioned, and motivated by this well known property they employ random ma-

trix multipliers to advance some fundamental matrix computations. This includes

numerical stabilization of Gaussian elimination with no pivoting as well as block

Gaussian elimination, approximation of the leading and trailing singular spaces

of an ill conditioned matrix, associated with its largest and smallest singular val-

ues, respectively, and approximation of this matrix by low-rank matrices, with

further extensions to Tensor Train approximation and the computation of the nu-

merical rank of a matrix. The authors also formally support the efficiency of the

proposed techniques where they employ Gaussian random multipliers, but their

extensive tests have consistently produced the same outcome where instead they

used sparse and structured random multipliers, defined by much fewer random

parameters compared to the number of their entries.

Pan et al. (2013) proved that standard Gaussian random multipliers are

expected to stabilize numerically both Gaussian elimination with no pivoting and

block Gaussian elimination. The authors also explained that Gaussian elimina-

tion fails in numerical computations with rounding errors as soon as it encounters

a vanishing or nearly vanishing leading (that is north- western) entry and they

avoided such encounters by applying Gaussian elimination with partial pivot-
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ing and has some limited formal but ample empirical support. Their tests show

similar results where the authors applied circulant random multipliers instead of

Gaussian ones.

Higham and Higham (1989) looked at how growth factor plays an impor-

tant role in the error analysis of Gaussian elimination. The authors put forward

that it is a fact when partial pivoting or complete pivoting is used the growth

factor is usually small, but it can be large. The examples of large growth usually

quoted involve contrived matrices that are unlikely to occur in practice. They

present real and complex n x n matrices arising from practical applications that,

for any pivoting strategy, yield growth factors bounded below by n/2 and n, re-

spectively. These matrices enable the authors to improve the known lower bounds

on the largest possible growth factor in the case of complete pivoting. For partial

pivoting, the authors classify the set of real matrices for which the growth factor

is 2n−1. Finally, they show that large element growth does not necessarily lead

to a large backward error in the solution of a particular linear system, and they

commented on the practical implications of this result.

Higham (2009) explored the works done by Wilkinson who put Gaussian

elimination on a sound numerical footing in the 1960’s when he showed that with

partial pivoting the method is stable in the sense of yielding a small backward

error . He also derived bounds proportional to the condition number κ(A) for

the forward error ‖ x − x̂ ‖, where x̂ is the computer solution to Ax = b. More

recent work has furthered the understanding of Gaussian Elimination, largely

through the use component wise rather than norm wise analysis. The author of

this paper surveyed what is known about the accuracy of Gaussian Elimination in

both the forward and the backward error senses. Particular topics include: classes

of matrix for which it is advantages not to pivot; how to estimate or compute

the backward error; iterative refinement in single precision; and how to compute

efficiently a bound on the forward error.
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Skeel (1980) depicts that Gaussian elimination with pivoting is a stable

algorithm for solving linear systems of equations in the sense that the computed

solution exactly satisfies a linear system whose coefficient matrix differs slightly

in norm from the given matrix. For this reason it is often thought that iterative

refinement is not worthwhile unless either the data are known with great accuracy

or one wishes to detect ill-conditioning. The author further explains that because

of scaling problems, Gaussian elimination with pivoting is not always as accurate

as one might reasonably expect. It is shown that stability is possible if an ap-

propriate implicit scaling of the rows and/or columns is used with the pivoting.

Unfortunately the proper scaling requires estimates of the solution components.

It is shown that the effects of improper scaling can be eliminated by performing

iterative refinement even if the residuals are not accumulated in double precision.

Therefore, iterative refinement would be worthwhile for problems that may not be

scaled properly for Gaussian elimination. The computational cost is often small,

but this is not always true due to the necessity of storing the original matrix.

Mead et al. (2001) introduced variant form of Gaussian elimination with

partial pivoting which is achieved by adding the pivot row to the kth row at step

k,. In their paper it is shown that the growth factor of this partial pivoting

algorithm is bounded above by µn < 3n−1, as compared to 2n−1 for the standard

partial pivoting. This bound µn, close to 3n−2 is attainable for a class of near-

singular matrices. Moreover, for the same matrices the growth factor is small

under partial pivoting.

Trefethen and Schreiber (1990) posit that Gaussian elimination with par-

tial pivoting is unstable in the worst case: the growth factor can be as large as

2n − 1, where n is the matrix dimension, resulting in a loss of n bits of pre-

cision. It is proposed that an average-case analysis can help explain why it is

nevertheless stable in practice. The results presented begin with the observation

that for many distributions of matrices, the matrix elements after the first few

steps of elimination are approximately normally distributed. From here, with the
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aid of estimates from extreme value statistics, reasonably accurate predictions

of the average magnitudes of elements, pivots, multipliers, and growth factors

are derived. For various distributions of matrices with dimensions n ≤ 1024,

the average growth factor (normalized by the standard deviation of the initial

matrix elements) is within a few percent of n2/3 for partial pivoting and approxi-

mately n1/2 for complete pivoting. The average maximum element of the residual

with both kinds of pivoting appears to be of magnitude O(n), as compared with

O(n1/2) for QR factorization. The experiments and analysis presented show that

small multipliers alone are not enough to explain the average-case stability of

Gaussian elimination; it is also important that the correction introduced in the

remaining matrix at each elimination step is of rank 1. Because of this low-rank

property, the signs of the elements and multipliers in Gaussian elimination are

not independent, but are interrelated in such a way as to retard growth. By

contrast, alternative pivoting strategies involving high-rank corrections are some-

times unstable even though the multipliers are small.

Foster (1994) probe that even though Gaussian elimination with partial

pivoting is very widely used, n × n matrices can be constructed where the error

growth in the algorithm is proportional to 2n−1. Thus for moderate or large n,

in theory, there is a potential for disastrous error growth. However, the author

posits that prior to 1993 no reports of such an example in a practical application

had appeared in the literature. Examples are presented that arise naturally from

integral and differential equations and that lead to disastrous error growth in

Gaussian elimination with partial pivoting. The author further presented a class

of practical examples where the growth factors do grow exponentially. Volterra

integral equations are considered and the growth factors of their matrices are

closer to the theoretical limit and the results are apply to boundary value problem.

Quadrature method is also used to numerically solve certain Volterra integral

equations where large growth factors resulted.
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Foster (1997) further indicates that Gaussian elimination is among the

most widely used tools in scientific computing and Gaussian elimination with

partial pivoting requires only O(n2) comparisons beyond the work required in

Gaussian elimination with no pivoting but can, in principle, have error growth

that is exponential in the matrix size n. Gaussian elimination with complete

pivoting, on the other hand, cannot have exponential error growth but requires

O(n2) comparisons beyond the work required by Gaussian elimination with no

pivoting. Numerical experiments is conducted and it did suggest that Gaussian

elimination with rook pivoting is between partial pivoting and complete pivoting

in terms of efficiency and accuracy. In the paper it is proven that rook pivoting

cannot have exponential error growth. The author introduce a combination of

partial pivoting and rook pivoting and call it Gaussian elimination with partial

rook pivoting and it is proven that partial rook pivoting cannot have exponential

error growth and the numerical experiments showing that on a serial computer the

run times for rook pivoting are almost always close to those of partial pivoting

and the run times for partial rook pivoting appear to be the same as those of

partial pivoting.

Cortes and Pena (2006) examine and compare several definitions of growth

factors for Gaussian elimination some new pivoting strategies, intermediate be-

tween partial pivoting and rook pivoting, are introduced. For random matrices,

an approximation of the average normalized growth factor associated with sev-

eral pivoting strategies is computed and analyzed. A stationary behavior of the

expected growth factors of the new pivoting strategies is observed. Bounds for

the growth factors of these pivoting strategies are provided. It is also shown that

partial pivoting by columns produces small growth factors for matrices appearing

in practical observations and for which the growth factors produced by partial

pivoting are very large.

Yeung and Chan (1997) explicate the numerical instability of Gaussian

elimination is proportional to the size of the L and U factors that it produces. The
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worst-case bounds are well known. For the case without pivoting, breakdowns can

occur and it is not possible to provide a priori bounds for L and U . For the partial

pivoting case, the worst-case bound is O(2m), where m is the size of the system.

Yet these worst-case bounds are seldom achieved, and in particular Gaussian

elimination with partial pivoting is extremely stable in practice. Surprisingly,

there has been relatively little theoretical study of the average case behavior.

The purpose of our paper is to provide a probabilistic analysis of the case without

pivoting. The distribution we use for the entries of A is the normal distribution

with mean 0 and unit variance. We first derive the distributions of the entries

of L and U . Based on this, we prove that the probability of the occurrence of

a pivot less than ε in magnitude is O(ε). We also prove that the probabilities

Prob(‖ U ‖∞ / ‖ A ‖∞> m2.5) and Prob(‖ L ‖∞> m3) decay algebraically to

zero as m tends to infinity. Numerical experiments are presented to support the

theoretical results.

Sankar (2004) presented a smoothed analysis of Gaussian elimination,

both with partial pivoting and without pivoting. Two matrices namely A and B

were used where A is any matrix and B be a slight random perturbation of A.

The author proved that it is unlikely that B has large condition number. Using

this result, the author also proved it is unlikely that B has large growth factor

under Gaussian elimination without pivoting. By combining these results, the

author bounded the smoothed precision needed to perform Gaussian elimination

without pivoting. The results improve the average-case analysis of Gaussian

elimination without pivoting performed by Yeung and Chan. The result was

extended on the growth factor to the case of partial pivoting, and present the

first analysis of partial pivoting that gives a sub-exponential bound on the growth

factor. In particular, it is showed that if the random perturbation is Gaussian

with a variance, then the growth factor is bounded with very high probability.

Higham (2011) explains that the standard method for solving systems

of linear equations, Gaussian elimination (GE) is one of the most important and
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ubiquitous numerical algorithms. However, its successful use relies on under-

standing its numerical stability properties and how to organize its computations

for efficient execution on modern computers. Higham gives an overview of GE,

ranging from theory to computation. He explains why GE computes an LU factor-

ization and the various benefits of this matrix factorization viewpoint. Pivoting

strategies for ensuring numerical stability are described. Special properties of GE

for certain classes of structured matrices are summarized. How to implement GE

in a way that efficiently exploits the hierarchical memories of modern computers

is discussed. He also describe block LU factorization, corresponding to the use of

pivot blocks instead of pivot elements, and explain how iterative refinement can

be used to improve a solution computed by GE.

Ballard et al. (2005) posit that high performance for numerical linear al-

gebra often comes at the expense of stability. Computing the LU decomposition

of a matrix via Gaussian Elimination can be organized so that the computation

involves regular and efficient data access. However, maintaining numerical sta-

bility via partial pivoting involves row interchanges that lead to inefficient data

access patterns. To optimize communication efficiency throughout the memory

hierarchy the authors confront two seemingly contradictory requirements: partial

pivoting is efficient with column-major layout, whereas a block-recursive layout is

optimal for the rest of the computation. The authors resolve this by introducing a

shape morphing procedure that dynamically matches the layout to the computa-

tion throughout the algorithm, and show that Gaussian Elimination with partial

pivoting can be performed in a communication efficient and cache-oblivious way.

The technique extends to QR decomposition, where computing Householder vec-

tors prefers a different data layout than the rest of the computation.

Khabou (2013) focuses on a widely used linear algebra kernel to solve

linear systems, that is the LU decomposition. Usually, to perform such a com-

putation one uses the Gaussian elimination with partial pivoting (GEPP). The

backward stability of GEPP depends on a quantity which is referred to as the
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growth factor, it is known that in general GEPP leads to modest element growth

in practice. However its parallel version does not attain the communication lower

bounds. To improve the upper bound of the growth factor, the author study

a new pivoting strategy based on strong rank revealing QR factorization and

develop a new block algorithm for the LU factorization. This algorithm has a

smaller growth factor upper bound compared to Gaussian elimination with partial

pivoting. The strong rank revealing pivoting is then combined with tournament

pivoting strategy to produce a communication avoiding LU factorization that is

more stable. Also two recursive algorithms were studied based on the commu-

nication avoiding LU algorithm, which are more suitable for architectures with

multiple levels of parallelism. For an accurate and realistic cost analysis of these

hierarchical algorithms, a hierarchical parallel performance model that takes into

account processor and network hierarchies.

Uhling (1992), determined a scaling for the linear system Ax = b through

the two equations D(AF )y = Db, y = F−1x. When scaling is implemented along

with partial pivoting (PP) to solve Ax = b by Gaussian elimination (GE), it is well

known that certain ordered pairs (D, F) produce better computed solutions than

those obtained in the absence of scaling, while others produce worse solutions.

The two most common explanations of this fact are (D,F ) modifies (magnifies or

reduces) the classical condition number of A, and (D,F ) modifies the magnitudes

of the elements of A. In latter case, if a scaling yields entries of approximately the

same magnitude, it is called an equilibration. Where the underlying hyperplane

geometry of both the sweep out phase and the back-substitution phase of GE is

used to achieve a new level of understanding. Uhling presented what we believe

to be a better explanation of how scaling or equilibration influences PP in the

selection of pivot equations, a process critical to both phases of GE.

Dekker et al. (1994) explained that the solution of linear systems contin-

ues to play an important role in scientific computing. The problems to be solved

often are of very large size, so that solving them requires large computer resources.
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To solve these problems, at least supercomputers with large shared memory or

massive parallel computer systems with distributed memory are needed. Dekker

et al. (1994) gave a survey of research on parallel implementation of various direct

methods to solve dense linear systems. In particular they considered: Gaussian

elimination, Gauss-Jordan elimination and a variant due to Huard (1979), and

an algorithm due to Enright (1978)Enright (1978), designed in relation to solv-

ing (stiff) ODES, such that stepsize and other method parameters can easily be

varied. Some theoretical results are mentioned, including a new result on error

analysis of Huard’s algorithm. Moreover, practical considerations and results of

experiments on supercomputers and on a distributed-memory computer system

are presented.

Yeung (2004) considered Gaussian elimination without pivoting applied

to complex Gaussian matrices X ∗ ∗∗. Yeung studied some independence prop-

erties of the elements of the LU factors of X. Based on this, Yeung derived the

probability distributions for all the L and U elements and obtain bounds for the

probabilities of the occurrence of small pivots and large growth factors. Numerical

experiments are presented to support the theoretical results and discussions are

made to relate the results to the crucial practical problems of numerical stability

of GE.

Xue et al. (2000) presented a new algorithm to directly solve the linear

algebraic system Ax = b, where A is an n × n coefficient matrix which may

be singular or ill-conditioned. By writing the system as an expanded matrix

A
′

= [A
...b

...E], where E is an n × n unitary matrix, one can transform A into

a unitary matrix through the row-transformations with complete pivoting and

proper zeroing, It is shown that the algorithm can provide a solution in the non-

null subspace of the solution space, if matrix A is singular. The criteria for curing

ill-conditions are related to the numerical precision of computers. Numerical

examples demonstrate the power of the new algorithm.

Castel et al. (1998) studied non-stationary multi splitting algorithms for
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the solution of linear systems. Convergence of these algorithms is analyzed when

the coefficient matrix of the linear system is hermitian positive definite. Asyn-

chronous versions of these algorithms are considered and their convergence inves-

tigated.

Choi (2006) explained that CG, MINRES, and SYMMLQ are Krylov sub-

space methods for solving large symmetric systems of linear equations. According

to this write CG (the conjugate-gradient method) is reliable on positive-definite

systems, while MINRES and SYMMLQ are designed for indefinite systems. When

these methods are applied to an inconsistent system (that is, a singular symmet-

ric least-squares problem), CG could break down and SYMMLQ solution could

explode, while MINRES would give a leastsquares solution but not necessarily the

minimum-length solution (often called the pseudoinverse solution). This under-

standing motivates the author to design a MINRES-like algorithm to compute

minimum-length solutions to singular symmetric systems. MINRES uses QR

factors of the tridiagonal matrix from the Lanczos process (where R is upper-

tridiagonal). Our algorithm uses a QLP decomposition (where rotations on the

right reduce R to lower-tridiagonal form), and so we call it MINRES-QLP. On

singular or nonsingular systems, MINRES-QLP can give more accurate solutions

than MINRES or SYMMLQ. The author also derived preconditioned MINRES-

QLP, new stopping rules, and better estimates of the solution and residual norms,

the matrix norm and condition number. For a singular matrix of arbitrary shape,

the author observe that null vectors can be obtained by solving least-squares prob-

lems involving the transpose of the matrix. For sparse rectangular matrices, this

suggests an application of the iterative solver LSQR. In the square case, MINRES,

MINRES-QLP, or LSQR are applicable. Results are given for solving homoge-

neous systems, computing the stationary probability vector for Markov Chain

models, and finding null vectors for sparse systems arising in helioseismology.

Grcar (2011) explained that when modern computers (digital, electronic,

and programmable) were being invented, John von Neumann and Herman Gold-

17



stine wrote a paper to illustrate the mathematical analyses that they believed

would be needed to use the new machines effectively and to guide the develop-

ment of still faster computers. Their foresight and the congruence of historical

events made their work the first modern paper in numerical analysis. Von Neu-

mann once remarked that to found a mathematical theory one had to prove

the first theorem, which he and Goldstine did for the accuracy of mechanized

Gaussian elimination but their paper was about more than that. Von Neumann

and Goldstine described what they surmized would be the significant questions

once computers became available for computational science, and they suggested

enduring ways to answer them.

Li and Demmel (2004) they propose several techniques as alternatives

to partial pivoting to stabilise sparse Gaussian eliminition. From numerical ex-

periment they demonstrated that for a wide range of problems the new method

is as stable as partial pivoting. The main advantage of the new method over

partial pivoting is that it permits a priori determination of data structures and

communication pattern for Gaussian elimination, which makes it more scalable

on distributed memory achines. Based on this a priori knowledge, the authors

deessif]gn higly parallel algoritms for both sparse Gaussian elimination and tri-

angular solve and they showed that they are suitables for large scale distributes

memory machines.

Parlett and Landis (2004) outlines new methods for scaling square, non-

negative matrices to doubly stochastic form are described. A generalized version

of the convergence theorem of Sinkhorn and Knopp (1967) is proved and applied

to show convergence for these new methods. Their tests indicate that one of the

new methods has significantly better average and worst-case behavior than the

Sinkhorn-Knopp method; for one of the 3 X 3 examples of Marshall and Olkin

(1968), SK requires 130 times as many operations as the new algorithm to achieve

row and column sums 1± 10−5

Vecharynski (2006) in his thesis considered three crucial problems of nu-
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merical linear algebra: solution of a linear system, an eigenvalue, and a singular

value problem. The author focus on the solution methods which are iterative by

their nature, matrix-free, preconditioned and require a fixed amount of compu-

tational work per iteration. In particular, this manuscript aims to contribute to

the areas of research related to the convergence theory of the restarted Krylov

subspace minimal residual methods, preconditioning for symmetric indefinite lin-

ear systems, approximation of interior eigenpairs of symmetric operators, and

preconditioned singular value computations. The author first considered solv-

ing non-Hermitian linear systems with the restarted generalized minimal residual

method (GMRES). The author proved that the cycleconvergence of the method

applied to a system of linear equations with a normal (preconditioned) coefficient

matrix is sublinear. In the general case, however, it is shown that any admissi-

ble cycle-convergence behavior is possible for the restarted GMRES at a number

of initial cycles, moreover the spectrum of the coefficient matrix alone does not

determine this cycle-convergence. Next we shift our attention to iterative meth-

ods for solving symmetric indefinite systems of linear equations with symmetric

positive definite preconditioners. The author also described a hierarchy of such

methods, from a stationary iteration to the optimal Krylov subspace precondi-

tioned minimal residual method, and suggest a preconditioning strategy based

on an approximation of the inverse of the absolute value of the coefficient matrix

(absolute value preconditioners). We present an example of a simple (geometric)

multigrid absolute value preconditioner for the symmetric model problem of the

discretized real Helmholtz (shifted Laplacian) equation in two spatial dimensions

with a relatively low wavenumber.

Poole and Neal (1991) explains the algorithm known as Gaussian elim-

ination (GE) is fully understood in an exact-arithmetic environment. But in

the finite-precision environment of computers, a full understanding of GE has

been somewhat elusive. Heretofore, the analysis of this popular and important

algorithm has been primarily from a numerical perspective. This paper seeks to
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analyze GE from a geometric perspective, and by so doing, confirm the classical

numerical analysis and demonstrate a new level of understanding through the

Euclidean geometry of GE.

Poole and Neal (2002) also looked at the linear systemAx = b, of the

ordered pair (D,F ) of nonsingular diagonal matrices determine a scaling of the

system through the two equations D(AF )y = Db, y = F−1x. When scaling is

implemented along with partial pivoting (PP ) to solve Ax = b by Gaussian

elimination (GE), it is well known that certain ordered pairs (D,F ) produce

better computed solutions than those obtained in the absence of scaling, while

others produce worse solutions. The two most common explanations of this fact

are that (D,F ) modifies (magnifies or reduces) the classical condition number

of A, and (D,F ) modifies the magnitudes of the elements of A. In the latter,

if a scaling yields entries of approximately the same magnitude, it is called an

equilibration. Here, the underlying hyperplane geometry of both the sweepout

phase and the back-substitution phase of GE is used to achieve a new level of

understanding. The authors presented what is believed to be a better explanation

of how scaling or equilibration influences PP in the selection of pivot equations,

a process critical to both phases of GE.

Poole and Neal (2000) based on their past work tittled Geometric Analy-

sis of Gaussian elimination (GE), a new pivoting strategy, Rook’s pivoting (RP ),

is introduced which encourages stability in the back-substitution phase of GE

while controlling the growth of round-off error during the sweep-out. Earlier

works has previously showed that RP, as with complete pivoting, cannot have

exponential growth error. Empirical evidence presented in this work showed that

RP produces computed solutions with consistently greater accuracy than partial

pivoting. That is, Rook’s pivoting is, on average, more accurate than partial

pivoting, with comparable costs. Moreover, the overhead to implement Rook’s

pivoting in a scalar or serial environment is only about three times the over-

head to implement partial pivoting. The theoretical proof establishing this fact
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is presented, and is empirically confirmed in this paper and supported in Foster

(1997)

Li et al. (2013) explained that the Higham matrix is a complex symmetric

matrix A = B+iC, where both B and C are real, symmetric and positive definite

and i =
√
−1 is the imaginary unit. According to the authors, for any Higham

matrix A, Ikramov et al showed that the growth factor in Gaussian elimination

is less than 3. In this paper, based on the previous results, a new bound of the

growth factor is obtained by using the maximum of the condition numbers of

matrices B and C for the generalized Higham matrix A, which strengthens this

bound to 2 and proves the Higham conjecture.

Lipshitz et al. (2004) in their paper explained that matrix multiplica-

tion is a fundamental kernel of many high performance and scientific computing

applications. The authors disclosed that most parallel implementations use clas-

sical O(n3) matrix multiplication, even though there exist Strassen - like matrix

multiplication algorithms that have lower arithmetic complexity, as the classical

ones perform better in practice. The authors also obtained a new parallel al-

gorithm that is based on Strassen’s fast matrix multiplication (SPAA 12) that

minimizes communication: it communicates asymptotically less than all classical

and all previous Strassen - based algorithms, and it attains corresponding lower

bounds. It is also the first parallel-Strassen algorithm that exhibits perfect strong

scaling. In this paper, the authors showed that the new algorithm is also faster

in practice. The authors benchmark and compare the performance of our new

algorithm to previous algorithms on Franklin (Cray XT4), Hopper (Cray XE6),

and Intrepid (IBM BG/P). They also demonstrate significant speedups over pre-

vious algorithms both for large matrices and for small matrices on large numbers

of processors. Moreover, the writers model and analyze the performance of the

algorithm, and predict its performance on future exascale platforms.

Thorson (2001) discussed two FORTRAN routines in his paper. The

FORTRAN routines can be used to solve banded linear systems. The routines
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use a Gaussian elimination algorithm tailored to the specific case of a banded

matrix. Instead of the n3/3 multiplies required to reduce a full matrix, a banded

matrix can be reduced in about nm2/4 multiplies, where n is the dimension of the

matrix and m is its bandwidth. Only the nonzero diagonals of the matrix need to

be stored. Algorithm 2 does no pivoting. Algorithm 3 performs partial pivoting.

Partial pivoting is inherently stable than no pivoting al all, though the difference

in the output between the two algorithms is probably negligible for regular wave

equation operators. The algorithm listings contain all relevant documentation for

their use.

Dumas et al. (2013) posit that Gaussian elimination with full pivoting

generates a PLUQ matrix decomposition. Depending on the strategy used in the

search for pivots, the permutation matrices can reveal some information about

the row or the column rank profiles of the matrix. The authors proposed a new

pivoting strategy that makes it possible to recover at the same time both row and

column rank profiles of the input matrix and of any of its leading sub-matrices.

We propose a rank-sensitive and quad-recursive algorithm that computes the

latter PLUQ triangular decomposition of an m×n matrix of rank r in O(mnrω−2)

field operations, with ω the exponent of matrix multiplication. Compared to the

LEU decomposition by Malashonock, sharing a similar recursive structure, its

time complexity is rank sensitive and has a lower leading constant. Over a word

size finite field, this algorithm also improves the practical efficiency of previously

known implementations.
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Chapter 3

METHODOLOGY

3.1 Various forms of errors

For any system of linear equations, the question of the types of errors in a solu-

tion obtained by a numerical method is not readily answered. There are three

main sources of errors in numerical computation: rounding, data uncertainty, and

truncation.

Rounding errors are an unavoidable consequence of working in finite pre-

cision arithmetic. Numerical methods for solving systems of linear equations in-

volve large numbers of arithmetic operations. For example, the Gauss elimination

according to Atkinson (1993), involves (n3 + 3n2−n)/3 multiplications/divisions

and (2n3 + 3n2 − 5n)/6 additions/subtractions in the case of a system with n

unknowns. Since round-off errors are propagated at each step of an algorithm,

the growth of round-off errors can be such that, when n is large, a solution differs

greatly from the true one.

Uncertainty in the data is always a possibility when we are solving practical prob-

lems. It may arise in several ways: from errors of measurement or estimation for

example engineering and economical data, from errors in storing the data on the

computer (rounding errors-tiny) and from the result of errors (big or small) in

an earlier computation if the data is itself the solution to another problem. The

effects of errors in the data are generally easier to understand than the effects

of rounding errors committed during a computation, because data errors can be

analyzed using perturbation theory for the problem at hand, while intermediate

rounding errors require an analysis specific to the given method.

Analyzing truncation errors, or discretization errors, is one of the major tasks
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of the numerical analyst. Many standard numerical methods (for example, the

trapezium rule for quadrature, Euler’s method for differential equations, and

Newton’s method for nonlinear equations) can be derived by taking finitely many

terms of a Taylor series. The terms omitted constitute the truncation error, and

for many methods the size of this error depends on a parameter (often called

h), the step-size, whose appropriate value is a compromise between obtaining a

small error and a fast computation. However, some sources of errors are indicated

below:

Errors in the coefficients and constants - in many practical cases, the coefficients

of the variables, and also the constants on the right-hand sides of the equations

are obtained from observations of experiments or from other numerical calcula-

tions. They will have errors; and therefore, once the solution of a system has

been found, it too will contain errors.

3.2 System of Equations

A system of linear equations (or linear system) is a collection of linear equations

involving the same set of variables considered collectively, rather than individually

and a solution to a linear system is an assignment of numbers to the variables such

that all the equations are simultaneously satisfied. Matrix algebra is used to solve

a system of simultaneous linear equations. For many mathematical procedures

such as the solution to a set of nonlinear equations, interpolation, integration,

and differential equations, the solutions reduce to a set of simultaneous linear

equations.

3.2.1 Coefficient Matrix of Systems of Equations

The coefficient matrix refers to a matrix consisting of the coefficients of the vari-

ables in a set of linear equations. In general, a system with m linear equations

and n unknowns can be written as:
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a11x1 + a12x2 + · · ·+ a1nxn = c1

a21x1 + a22x2 + · · ·+ a2nxn = c2

...

am1x1 + am2x2 + · · ·+ amnxn = cm

where x1, x2, · · · , xn are the unknowns and the numbers a11, a12, · · · , amn are the

coefficients of the system. The coefficient matrix is a m × n matrix with the

coefficient aij as the (ij)th entry:

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn


can be rewritten in the matrix form as:



a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn





x1

x2

...

xn


=



c1

c2

...

cm


This is denoted by [A], [X] and [C] respectively, the system of equation

is [A][X] = [C], where [A] is called the coefficient matrix, [C] is called the right

hand side vector and [X] is called the solution vector.

Alternatively, [A][X] = [C] systems of equations are written in the augmented

form as:

[
A | C

]
=



a11 a12 · · · a1n
... c1

a21 a22 · · · a2n
... c2

· · · · · · · · · · · · ...

am1 am2 · · · amn
... cn


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3.3 Consistent and Inconsistent Systems of Equa-

tions

A system of equations [A][X] = [C] is consistent if there is a solution, and it is

inconsistent if there is no solution. However, a consistent system of equations

does not mean a unique solution, that is, a consistent system of equations may

have a unique solution or infinite solutions.

Figure 1.2 [Consistent and Inconsistent system of equations]

3.4 Rank of Matrices

The rank of a matrix is defined as the order of the largest square sub-matrix

whose determinant is not zero. If A is n× n matrix and det(A) 6= 0, the largest

square sub-matrix possible is of order n and that is [A] itself therefore the rank

of [A] is of order n conversely if det(A) = 0, the rank of [A]< n other square sub

matrices of [A] are explored and the rank is the order of the matrix that gives

det(A) = 0. Also given that A is m× n matrix, the rank of [A] is at most order

m since there are no square sub-matrices of order n so square sub-matrices of [A]

of order m is explored; if any of these square sub-matrices have determinant not

equal to zero, then the rank is m. For example, given that:
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[A]=


a11 a12 a13

a21 a22 a23

a31 a32 a33


[A] is a 3×3 matrix and the largest square sub-matrix is [A] itself. If det(A) 6= 0,

the rank of [A] is of order 3; conversely if det(A) = 0, obviously the rank of [A]< 3

and if the determinant of the next square sub-matrix which is a 2×2 matrix 6= 0,

therefore the rank is of order 2.

Also given that:

[A]=


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34


[A] is 3×4 matrix and since there are no square sub-matrices of order 4 as [A] is

a 3×4 matrix, the rank of [A] is at most 3. So the next square sub-matrices of

[A] is explored which is a 3×3; if these square sub-matrix have determinant not

equal to zero, then the rank is 3.

Alternatively, the rank of a matrix can be obtained by transforming the

coefficient matrix A into an echelon form either reduced form or unreduced form

R by counting the number of nonzero rows or the number of pivots or leading

coefficients in the echelon form in R. In fact, the pivot columns (i.e. the columns

with pivots in them) are linearly independent. Elementary row operations can

be use to reduce A to echelon form.

The concept of rank can be used to determine if a system is either con-

sistent or inconsistent, a system of equations [A][X] = [C] is consistent if the

rank of A is equal to the rank of the augmented matrix [A
...C] and a system of

equations [A][X] = [C] is inconsistent if the rank of A is less than the rank of the

augmented matrix [A
...C]. For instance a system of equations [A][X] = [C],

a11 a12 a13

a21 a22 a23

a31 a32 a33



x11

x21

x31

=


c11

c21

c31


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in which det(A) = α 6= 0, then rank(A)=3;

The augmented matrix is [B]=


a11 a12 a13

...c11

a21 a22 a23
...c21

a31 a32 a33
...c31

 Since there are no square

sub-matrices of order 4 as [B] is a 3×4 matrix, the rank of the augmented [B]

is at most 3. So square sub-matrices of the augmented matrix [B] of order 3 is

explored to see if any of these have determinants not equal to zero, then the rank

is 3. For example, a square sub-matrix of the augmented matrix [B] is

[D]=


a11 a12 a13

a21 a22 a23

a31 a32 a33

 has det(D) = β 6= 0

Hence the rank of the augmented matrix [B] is 3. Since [A]= [D] , the rank of [A]

is 3. Since the rank of the augmented matrix [B] equals the rank of the coefficient

matrix [A], the system of equations is consistent.

On the contrary, if all of the square sub-matrices of the augmented matrix have

determinant equal to zero, other square sub-matrices of order n − 1 is explored

to find their determinants. That is if

[D]=


a11 a12 a13

a21 a22 a23

a31 a32 a33

 det(D) = 0,

[E]=


a12 a13

...c11

a22 a23
...c21

a32 a33
...c31

 det(E)=0,

[F]=


a11 a12

...c11

a21 a22
...c21

a31 a32
...c31

 det(F )=0

and
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[G]=


a11 a12

...c11

a21 a13
...c23

a33 a32
...c31

 det(G)=0

All the square sub-matrices of order 3×3 of the augmented matrix [B] have a

zero determinant. So the rank of the augmented matrix [B] is obviously less

than 3. The other square sub-matrices of order n − 1 is explored to find their

determinants and if the determinant of any of the 2×2 square sub-matrices of the

augmented matrix [B] is not equal to zero, then the rank of the augmented matrix

[B] is 2. For example some of the possible 2×2 sub-matrices of the augmented

matrix [B] are

b11 b12

b21 b22

,

b11 b13

b21 b22

,

b11 b12

b31 b32

,

b11 b13

b31 b33

 etc. So the rank

of the augmented matrix [B] is 2 and if the rank of the coefficient matrix [A] is

also 2, hence, rank of the coefficient matrix [A] equals the rank of the augmented

matrix [B]. So the system of equations [A][X] = [C] is consistent otherwise it is

inconsistent.

Furthermore, for a consistent system, [A][X] = [C] . If the rank of the

coefficient matrix [A] is same as the number of unknowns, then the solution is

unique; if the rank of the coefficient matrix [A] is less than the number of un-

knowns, then infinite solutions exist. If there are more equations than unknowns

in [A][X] = [C], does not mean the system is inconsistent it depends on the rank

of the augmented matrix [A
...C] and the rank of [A] and if the rank of (A) equals

the number of unknowns, the solution is not only consistent but also unique; on

the contrary if the rank of [A] < the number of unknowns, infinite solutions exist.

If the system has a single unique solution, the system can be basically

solved with direct or iterative methods. When the system has no solution, only

an approximate solution can be estimated, usually by formulating a least squares

problem and when the system has infinitely many solutions this occurs for rank-

deficient problems or under-determined problems. In spite of infinitely many

solutions, a good approximation to the true solution can be obtained if some a

priori knowledge about the nature of the true solution is accessible. The addi-
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Figure 1.3 Flow chart of conditions for consistent and inconsistent
system of equations

tional constraints are usually concerned with a degree of sparsity or smoothness

of the true solution.

3.5 Nullity of Matrices

Suppose A is an m× n matrix and R is a reduced echelon form of A given as :

[A]=


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34



[R]=


1 a12 a13 a14

0 1 a23 a24

0 0 0 0


the number of free variables or entries of Ax = b is the nullity of A. Since

the number of nonzero rows is 2 i.e. there are two (2) pivots, therefore the

Rank(A) = 2 and the Nullity = 4 − 2 = 2. The relationship between Rank(A)

and Nullity(A) is given as:

Rank(A) +Nullity= number of columns in A
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i.e. n = Rank(A) + Nullity(A). The Rank(A) counts the pivot variables, the

Nullity(A) counts the free variables, and the number of columns corresponds to

the total number of variables for the coefficient matrix A.

Suppose A is an n× n matrix. A is an invertible and nonsingular if and

only if Rank(A) = n

3.6 Specific Types of Linear Systems

The behavior of a linear system is determined by the relationship between the

number of equations and the number of unknowns

3.6.1 Homogeneous Systems

A system of linear equations is called homogeneous if the right hand side is

the zero vector. This system actually has a number of solutions, but there is

one obvious one, called the trivial solution. A vector is called trivial if all its

coordinates are 0, i. e. if it is the zero vector. In Linear Algebra we are not

interested in only finding one solution to a system of linear equations but all

possible solutions. In particular, homogeneous systems of equations are very

important in that whether or not there is any non-trivial solution, i. e. whether

there is any solution other than the trivial one.

A system of linear equations of the form:

a11x1 + a12x2 + · · ·+ a1nxn = 0

a21x1 + a22x2 + · · ·+ a2nxn = 0

...

am1x1 + am2x2 + · · ·+ amnxn = 0

is called homogeneous systems. It is always consistent satisfied by the solution

x1 = x2 = · · · = xn = 0. This solution is called the trivial solution.
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3.6.2 Underdetermined Systems

An underdetermined system is a system of linear equations in which there are

more unknowns (variables, n ) than constraints (equations, m) i.e. a linear sys-

tem of equations that has fewer equations than variables. For example, a system

with two equations and three unknowns is underdetermined. That is, an under-

determined linear system has the form:

Am×nxn×1 = bm×1

where A is a matrix with m rows and n columns and as such m < n. An under-

determined system might be consistent or inconsistent and it never has a unique

solution but can have infinitely many solutions this is because an underdetermined

system must have at least one free variable. Therefore, an underdetermined sys-

tem which is consistent must have an infinite number of solutions. The rank of

underdetermine system is less than or equal to the number of unknowns n.

If Ax = b with A a matrix that has fewer rows than columns, this implies that

the solutions, if they exist, will not be unique. Two ways to see this:

Method 1 If Ax = b is solved by reducing A into echelon form, you will find that

not every column in the echelon form can have a pivot. Therefore, when you write

down the general solution, there will be free variables, leading to an infinite num-

ber of solutions. Method 2 Since A has fewer rows than columns, then A is an

m×n matrix with m < n. Then rank(A) ≤ n , and since rank(A)+nullity(A)= n

, then nullity(A) = n− rank(A) ≥ n−m > 0 . Therefore the null space of A has

dimension greater than 0 , so if xp is a particular solution to the equation, then

any vector of the form xp + h is also a solution for any h ∈ Nul(A), and there

are infinitely many choices for h.

3.6.3 Overdetermined Systems

A linear system of equations in which there are more constraints (equations, m)

than unknowns (variables, n) i.e. any system of linear equations having more
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equations than variables. For example, a system with three equations and only

two variables is overdetermined. That is, an overdetermined linear system has

the form:

Am×nxn×1 = bm×1

where A is a matrix with m rows, n columns and as such m > n. The reason

why more equations than unknowns arise in such problems is that repeated mea-

surements are taken to minimize errors. This produces an overdetermined and

often inconsistent system of linear equations. In general, overdetermined systems

have no solution. In some cases, linear least squares may be used to find an

approximate solution.

3.6.4 Square Systems

A linear system of equations in which the number of constraints (equations, m) is

equal to the number of unknowns (variables, n) i.e. any system of linear equations

having the same number of equations and variables. For example, a system with

three equations and three variables is a square system. That is, a square linear

system has the form:

Am×nxn×1 = bm×1

where A is a matrix with m rows, n columns and as such m = n and usually,

a system with the same number of equations and unknowns has a single unique

solution. An m by n consistent system of equations will have a unique solution if

and only if the nullity of the coefficient matrix is zero. The set of linear equations

that are considered in this thesis is said to be a square matrix. A typical and a

well-known example of an ill conditioned linear matrix called the Hilbert matrix

is taken into consideration.
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3.7 Condition of the linear system

Condition is the technical term used to describe how sensitive the solution is to

changes in the coefficient matrix or the right hand side. In practice, the input

data A and b may be contaminated by error. This error may be experimental,

may come from the process of discretization, and so on. In order to estimate the

accuracy of the computed solution, the error in the data should be taken into ac-

count. Problems whose solutions may change drastically even with small changes

in the input data are said to be ill-conditioned. Ill conditioning is independent of

the algorithms used to solve the problems.

3.8 Measures of errors

Perturbations in the data change the solution of the linear system and as such

we need to understand how to measure the size of vectors and of matrices. This

leads to vector norms and matrix norms. Matrix and vector norms are denoted

by the same symbol ‖ · ‖, however vector-norms and matrix-norms are computed

very differently. Thus, before computing a norm we need to examine carefully

whether it is applied to a vector or to a matrix. It should be clear from the

context which norm, a vector-norm or a matrix-norm, is used.

3.8.1 Vector norms

A vector norm on Rn is a function

‖ · ‖ : Rn −→ R

x −→‖ x ‖

which for all x, yERn and αER satisfies

1. ‖ x ‖≥ 0, ‖ x ‖= 0⇐⇒ x = 0.
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2. ‖ αx ‖=| α |‖ x ‖

3. ‖ x+ y ‖≤‖ x ‖ + ‖ y ‖, (triangle inequality)

The most frequently used vector norms on Rn are 2-norm, p-norm and ∞-norm

given as ‖ x ‖2= (
∑n

i=1 x
2
i )

1/2, ‖ x ‖p= (
∑n

i=1 | x2
i |)1/p and ‖ x∞ ‖= max | xi |

respectively.

3.8.2 Matrix norms

A matrix norm on Rm×n is a function

‖ · ‖ : Rm×n −→ R

A −→‖ A ‖

which for all A, B ERm×n and αER satisfies

1. ‖ A ‖≥ 0, ‖ A ‖= 0⇐⇒ x = 0.(zero matrix)

2. ‖ αA ‖=| α |‖ A ‖

3. ‖ A+B ‖≤‖ A ‖ + ‖ B ‖, (triangle inequality)

For any AERm×n, BERn×k and xERn

‖ Ax ‖p≤‖ A ‖p‖ x ‖p (compatibility of matrix and vector norms)

and

‖ AB ‖p≤‖ A ‖p‖ B ‖p (sub-multiplicativity of matrix norms)

The most common matrix norms are the maximum column norm, maximum row

norm and the spectral norm which are given as ‖ A1 ‖= max
∑m

i=1 | aij |, ‖ A1 ‖=

max
∑m

i=1 | aij | and ‖ A2 ‖=
√
λmax(ATA) respectively. Where λmax(ATA) is

the largest eigen value of (ATA).

Condition number of an invertible square matrix depends on the norm of a matrix.
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The norm of a matrix is a simple unique scalar number which measures the size

of errors in the coefficient matrix A of linear systems.

3.8.3 Effect of the perturbation of RHS

Let [A][X] = [C]

if [C] is changed to [C
′
], [X] will change to [X

′
]

such that

[A][X
′
] = [C

′
]

Denoting change in [C] and [X] matrices as [∆C] and [∆X], respectively

[∆C] = [C
′
]− [C]

[∆X] = [X
′
]− [X]

then

[A](X + ∆X) = [C] + [∆C]

Expanding the above expression

[A][X] + [A][∆X] = [C] + [∆C]

[A][∆X] = [∆C] since [A][X] = [C]

Applying the theorem of norms, that the norm of multiplied matrices is less than

the multiplication of the individual norms of the matrices,

‖ ∆X ‖≤‖ A−1 ‖‖ ∆C ‖ (3.1)

and

‖ C ‖≤‖ A ‖‖ X ‖ (3.2)

Multiplying the two equations together

‖ ∆X ‖‖ C ‖≤‖ A−1 ‖‖ ∆C ‖‖ A ‖‖ X ‖
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Dividing both sides by

‖ X ‖ and ‖ C ‖

‖ ∆X ‖‖ C ‖
‖ X ‖‖ C ‖

≤ ‖ A ‖‖ A
−1 ‖‖ ∆C ‖‖ X ‖
‖ X ‖‖ C ‖

∴
‖ ∆X ‖
‖ X ‖

≤‖ A ‖‖ A−1 ‖ ‖ ∆C ‖
‖ C ‖

3.8.4 Effect of the perturbation of coefficient matrix

Let [A][X] = [C]

if [A] is changed to [A
′
], [X] will change to [X

′
]

such that

[A
′
][X

′
] = [C]

⇒ [A][X] = [A
′
][X

′
]

Denoting change in [A] and [X] matrices as [∆A] and [∆X], respectively

[∆A] = [A
′
]− [A]

[∆X] = [X
′
]− [X]

then

[A][X] = ([A] + [∆A])([X] + [∆X])

Expanding the above expression

[A][X] = [A][X] + [A][∆X] + [∆A][X] + [∆A][∆X]

Grouping like terms

[A][X]− [A][X] = [A][∆X] + [∆A]([X] + [∆X])

[0] = [A][∆X] + [∆A]([X] + [∆X])

−[A][∆X] = [∆A]([X] + [∆X])[∆X]

[∆X] = −[A]−1[∆A]([X] + [∆X])

37



Applying the theorem of norms, that the norm of multiplied matrices is less than

the multiplication of the individual norms of the matrices,

‖ ∆X ‖≤‖ A−1 ‖‖ ∆A ‖‖ X + ∆X ‖

Multiplying both sides by ‖ A ‖

‖ A ‖‖ ∆X ‖≤‖ A ‖‖ A−1 ‖‖ ∆A ‖‖ X + ∆X ‖

Dividing both sides by

‖ A ‖ and ‖ X + ∆X ‖

‖ A ‖‖ ∆X ‖
‖ A ‖‖ X + ∆X ‖

≤ ‖ A ‖‖ A
−1 ‖‖ ∆A ‖‖ X + ∆X ‖
‖ A ‖‖ X + ∆X ‖

∴
‖ ∆X ‖

‖ X + ∆X ‖
≤‖ A ‖‖ A−1 ‖ ‖ ∆A ‖

‖ A ‖

3.8.5 Condition number

Condition number of a function with respect to an argument measures how much

the output value of the function can change for a small change in the input

argument. This is used to measure how sensitive a function is to changes or

errors in the input, and how much error in the output results from an error in the

input. The condition number of a square and nonsingular matrix A is defined as

κ(A) =‖ A ‖‖ A−1 ‖

Properties

• κ(A) ≥ 1 for all A

• A is a well-conditioned if κ(A) is small (close to 1): the relative error in x

is not much larger than the relative error in b

• A is badly or ill-conditioned if κ(A) is large: the relative error in x can be

much larger than the relative error in b
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3.8.6 Ill Condition Systems

A square matrix A is ill-conditioned if it is invertible but can become non-

invertible (singular) if some of its entries are changed ever so slightly. The con-

dition number of A is a measure of how ill-conditioned A is and can be found

using A and A−1. The bigger the condition number is the more ill-conditioned A

is. Solving linear systems whose coefficient matrices are ill-conditioned is tricky

because even a small change in the data (e.g., the right-hand side vector) can

lead to radically different answers.

When the solution is highly sensitive to the values of the coefficient ma-

trix A or the righthand side constant vector b, the equations are called to be

ill-conditioned. Ill-conditioned systems pose particular problems where the co-

efficients or constants are estimated from experimental results or from a math-

ematical model. Therefore, we cannot rely on the solutions coming out of an

ill-conditioned system. The problem is then how do we know when a system of

linear equations is ill-conditioned. To do that we have to first define vector and

matrix norms.

There may be two ways of identifying if a matrix is ill conditioned.

Firstly, compute cond(A). This is relatively expensive and sometimes hard to

interpret because the value may be in an intermediate range. Secondly, one can

introduce deliberate representation of errors by slightly perturbing one or more

elements in A. Call the new matrix A′, and solve A′x′ = b. If x′ ≈ x, then there is

probably no ill conditioning. The danger here is that you might be unlucky, and

chose the wrong element to perturb. But if you try this several times with differ-

ent elements and all the solutions are about the same, then you have confidence

that the matrix is well conditioned.
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3.8.7 Well Condition Systems

For a square matrix A we can measure the sensitivity of the solution of the

linear algebraic system Ax = b with respect to changes in vector b and A is well-

conditioned if small errors in the data produce small errors in the result. The

condition number of a well condition system is always greater or equal to 1. If

it is close to one, the matrix is well conditioned which means its inverse can be

computed with good accuracy.

3.8.8 Solution Methods

Solutions methods that are normally applied to solving for the solution of sys-

tems of linear equations are two namely: direct methods and iterative methods.

In these thesis however the efficacy of some of the direct methods would be tested

namely elimination method and General approach algorithm. The simplest type

of elimination method; Gaussian elimination with no pivoting would be used, the

process is based upon the principle that, if we convert [A] to an upper triangular

matrix, we can solve for [x] by backwards substitution.

The general approach algorithm is also based upon the principle that if one equa-

tion of [A], for example the last equation is nearly similar or parallel to any one

of the other equations. We want to replace it with another one (perpendicular to

it), resulting in an equivalent system, A′x=b′

3.8.9 Adequacy of linear systems

The general relationship that exists between
‖ ∆X ‖
‖ X ‖

and
‖ ∆C ‖
‖ C ‖

is given as

‖ ∆X ‖
‖ X + ∆X ‖

≤‖ A ‖‖ A−1 ‖ ‖ ∆C ‖
‖ C ‖

(3.3)
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or between
‖ ∆X ‖
‖ X ‖

and
‖ ∆A ‖
‖ A ‖

is given as

‖ ∆X ‖
‖ X + ∆X ‖

≤‖ A ‖‖ A−1 ‖ ‖ ∆A ‖
‖ A ‖

(3.4)

Equations (3.3) and (3.4) are two inequalities showing the relative change in the

norm of the right hand side vector or the coefficient matrix which can be amplified

by as much as the condition number, ‖ A ‖‖ A−1 ‖.

Thus if the condition number is not too large, then a small pertubation in the

vector b will have little effect on the solution. On the other hand, if the condition

number is large, then even a small pertubation in b might change the solution

drastically.

The norm is related to the conditioning of the matrix and there is a general

relationship that exists between the relative change in the norm of solution vector

and the relative change in the norm of the right hand side vector. There also exist

a relationship between the relative change in the norm of solution vector and the

relative change in the norm of the coefficient matrix and this helps to identify

well-conditioned and ill conditioned system of equations and it also tells how

many significant digits we could trust in the solution of a system of simultaneous

linear equations. The condition number coupled with the machine epsilon, the

quantification of the accuracy of the solution of the linear system can be known

i.e. by knowing how many significant digits are correct in the solution vector in

order to trust the accuracy in the solution vector.

That is the relative error in a solution vector is ≤ Cond (A) × relative error in

either the right hand side or the coefficient matrix and the possible relative error

in the solution vector is ≤ Cond(A) × machine epsilon (εmach).
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3.9 Gaussian elimination

One of the most popular techniques for solving simultaneous linear equations is

the Gaussian elimination method also known as row reduction which is a numer-

ical algorithm for solving systems of linear equations. The approach is designed

to solve a general set of n equations and n unknowns and it consists of two steps

namely forward elimination of unknowns: In this step, the unknown is eliminated

in each equation starting with the first equation. This way, the equations are re-

duced to one equation and one unknown in each equation and secondly, back

substitution: In this step, starting from the last equation, each of the unknowns

is found. Gaussian elimination transforms the linear system into an upper tri-

angular form (an upper triangular matrix is a square matrix where all elements

below the diagonal are 0, and the other elements may be either zero or non-zero.),

which is easier to solve. This process, in turn, is equivalent to finding the fac-

torization A = LU , where L is a unit lower triangular matrix and U is an upper

triangular matrix. This factorization is especially useful when solving many lin-

ear systems involving the same coefficient matrix but different right-hand sides,

which occurs in various applications.

3.9.1 No pivoting

Gaussian Elimination without pivoting or Naive Gauss elimination proceeds by

successively eliminating the elements below the diagonal of the matrix of the linear

system until the matrix becomes triangular, when the solution of the system is

very easy. There are two pitfalls of the Naive Gauss elimination method namely

division by zero and round-off errors. One method of decreasing the round-off

errors would be to use more significant digits, that is, use double or quad precision

for representing the numbers. However, this would not avoid possible division by

zero errors in the Naive Gauss elimination method. To avoid division by zero as

well as reduce (not eliminate) round-off error, a way around this involves the use
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of pivots.

Solution of the system Ax=b based on LU factorization of A.

Algorithm Steps:

for k = 1 to n− 1

Find an elementary matrix Mk such that

A(k) = MkA
(k−1)

has zeros below (k, k) entry of the kth column.

Where =


L = (Mn−1Mn−2...M2M1)−1

U = Mn−1Mn−2...M2M1A

and A = LU

3.9.2 Partial pivoting

Gaussian Elimination with partial pivoting selects the pivot row to be the one

with the maximum pivot entry in absolute value from those in the leading column

of the reduced sub-matrix. The term partial in partial pivoting refers to the fact

that in each pivot search only entries in the left column of the matrix or sub-

matrix are considered. Two rows are interchanged to move the designated row

into the pivot row position. For increased numerical stability, the largest possible

pivot element is used. This requires searching in the partial column below the

pivot element. Partial pivoting is usually sufficient. To avoid division by zero,

swap the row having the zero pivot with one of the rows below it. To minimize

the effect of roundoff, the row that puts the largest pivot element on the diagonal

is always chosen. The two methods are the same, except in the beginning of

each step of forward elimination, a row switching is done based on the following

criterion. If there are n equations, then there are n-1 forward elimination steps.
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At the beginning of the k th step of forward elimination, one finds the maximum

of

|akk, |ak+1,k|, ........|ank|

then if the maximum of these values is |apk| in the pth row, k ≤ p ≤ n, then

switch rows p and k. The other steps of forward elimination are the same as the

Naive Gauss elimination method. The back substitution steps stay exactly the

same as the Naive Gauss elimination method.

Solution of the system Ax=b based on LU factorization of A.

Algorithm Steps:

for k = 1 to n− 1

Scan the entries of the kth column of the matrix Ak−1 below the row (k − 1)

identify the pivot arkk, such that | arkk |= max | atk |. Form the permutation

matrix Pk and the elementary matrix Mk such that

A(k) = MkPkA
(k−1)

has zeros below (k, k) entry of the kth column.

Where


L = P (Mn−1Pn−1Mn−2Pn−2...M2P2M1P1)−1

U = (Mn−1Pn−1Mn−2Pn−2...M2P2M1P1)−1A

P = (P1P2...Pn−2Pn−1)−1

and PA = LU

Solution of Ax=b without Explicit factorization

Algorithm Steps:

For k = 1, 2, ..., n = 1

Step 1:
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Find rk such that | ark,k |=max| aik. If ark,k = 0, stop. Otherwise, go to step 2.

Step 2:

Interchange the rows of k and rk of A and b

step 3:

Form multipliers aik ≡ mik =
−aik
akk

step 4: Update the entries of A: aij = aij +mikakj

Step 5: Update the entries of b

bj = bi +mikbk

3.9.3 Complete pivoting

Gaussian Elimination with complete pivoting exchange both rows and columns

of the matrix. Column exchange requires changing the order of the xi. For

increased numerical stability, the largest possible pivot element is used. This

requires searching in the pivot row, and in all rows below the pivot row, start-

ing the pivot column. Gaussian elimination with complete pivoting selects the

pivot entry as the maximum pivot entry from all entries in the sub-matrix. (This

complicates things because some of the unknowns are rearranged.) Two rows

and two columns are interchanged to accomplish this. Complete pivoting is less

susceptible to roundoff, but the increase in stability comes at a cost of more com-

plex programming. Unfortunately, neither complete pivoting nor partial pivoting

solves all problems of rounding error. Some systems of linear equations, called

ill-conditioned systems, are extremely sensitive to numerical errors. For such sys-

tems, pivoting is not much help. A common type of system of linear equations

that tends to be ill-conditioned is one for which the determinant of the coefficient

matrix is nearly zero.

Solution of the system Ax=b based on LU factorization of A.

Algorithm Steps:

For k = 1 to n− 1
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Scan the entries of the Ak−1 below the row (k − 1) to the right of the column

(k − 1) to identify the pivot arkk, such that | ark,sk |= max | atk |.

Form the permutation matrices Pk and Qk, and the elementary matrix

Mk such that

A(k) = MkPkA
(k−1)Qk

has zeros below (k, k) entry of the kth column.

Where =



L = P (Mn−1Pn−1...Mn−1Pn−1)−1

U = (Mn−1Pn−1...Mn−1Pn−1AQn−1...Qn−1

P = (P1P2...Pn−2Pn−1)−1

Q = Q1Q2...Qn−2Qn−1

and PAQ = LU

Solution of Ax=b without Explicit factorization

Algorithm Steps:

For k = 1, 2, ..., n = 1

Step 1:

Find rk and sk such that | ark,k |=max| aik | . If ark,sk = 0, stop. Other-

wise, go to step 2.

Step 2a:

Interchange the rows of k and rk of A and b

Step 2b:

Interchange the columns of k and sk of A and b

step 3:

Form multipliers aik ≡ mik =
−aik
akk

step 4:

Update the entries of A:
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aij = aij +mikakj

Step 5:

Update the entries of b

bj = bi +mikbk

3.10 Improving the solvability of ill-conditioned

system of linear equations

The difficulty of solving ill-conditioned system may be negotiated by solving dif-

ferent but equivalent systems which are well-conditioned; well-conditioned sys-

tems have matrices with small condition numbers. The approach put forward

here constructs a new matrix and a new right-hand side that constitute an in-

stance of an equivalent linear system to the one given which is ill-conditioned.

Moreover, this new matrix has a small condition number compared to that of

the matrix of the initial linear system. This means that solving this equivalent

system must be better than solving the original one by virtue of the difference in

the magnitude of the condition numbers of their matrices.

Considering the linear algebraic system

Ax = b (3.5)

or ∑
aijxj = bi,

where i = 1, ..., n and j = 1, ..., n.

Reflecting (an1, an2, ..., an(n−1)), the last row of equation (3.5) about a three di-

mensional hyperplane into (a′n1, a
′
n2, ..., a

′
n(n−1)), resulting in an equivalent system,

A′x = b′ (3.6)
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of the form:
n∑

j=1

aijxj = bi, i = 1, ..., n− 1,

n∑
j=1

a′njxj = b′n

Therefore there is the need to find a′nn and the right-hand side last entry b′n.

3.10.1 Finding the left-hand side vector: Algorithm

Finding a suitable orthogonal row vector to (a′n1, a
′
n2, ..., a

′
nn,) i.e., a vector that

is orthogonal to (a′n1, a
′
n2, ..., a

′
nn, )

T , is done as follows:

• Reflecting the last entry of equation (3.5) about a three dimensional hyper-

plane (a′n1, a
′
n2, ..., a

′
n(n−1))

• compute a′nn =

∑j=1
n−1 anj × a′nj

ann

a′n1, a
′
n2, ..., a

′
n(n−1) is of the same magnitude as an1, an2, ..., ann.

3.10.2 Computing the right-hand side last entry b′n

Since equations (3.5) and (3.6) are equivalent

i.e.,

Ax = b ≡ A′x = b′

x = A−1b ≡ x = A′−1b′

⇒ x = A−1b = A′−1b′,

and

b′ = A′A−1b (3.7)

where

A−1 =
adj(A)

|A|
and A′−1 =

adj(A′)

|A′|
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with

adj(A) =


A11 A21 . . . An1

. . . . . .

A1n A2n . . . Ann

 and adj(A′) =


A′11 A′21 . . . A′n1

. . . . . .

A′1n A′2n . . . A′nn


Aij and A′ij represent the cofactors of corresponding elements of A and

A′ respectively, for all i and j. Since only the nth row of the original system has

been changed, it is clear that the cofactors of an1, a
′
n1, an2, a

′
n2, ..., ann, a

′
nn, are the

same. Therefore An1 = A′n1, An2 = A′n2, ..., Ann = A′nn. As the two systems are

equivalent, b′ can be calculated as in (2).

More explicitly:


a11 a21 . . . an1

. . . . . .

a1n a2n . . . ann



A11 A21 . . . An1

. . . . . .

A1n A2n . . . Ann


∆

=


b1

.

b′n


or



∑n
j=1 a1jA1j 0 . . . 0

0
∑n

j=1 a2jA2j 0 . . 0

. . . . . .

. . . . . .∑n
j=1 a

′
njA1j

∑n
j=1 a

′
njA2j . .

∑n
j=1 a

′
njAnj





b1

b2

.

.

bn


∆

=



b1

b2

.

.

b′n


or
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

b1

b2

.

.∑n
j=1 a

′
njA1jb1 +

∑n
j=1 a

′
njA2jb2 + · · ·+

∑n
j=1 a

′
njAnjbn


∆

=



b1

b2

.

.

b′n


Now, by identification

b′n =

∑n
j=1 a

′
njA1jb1 +

∑n
j=1 a

′
njA2jb2 + ...

∑n
j=1 a

′
njAnjbn

∆
,

or

b′n =

∑n
j=1 a

′
nj(A1jb1 + A2jb2 + ...+ Anjbn)

∆
,

i.e.,

b′n =

∑n
j=1 a

′
nj(
∑n

i=1Aijbi)

∆
(3.8)

3.10.3 Solution of A′x = b′

The solution of the equation can be solved by any of the direct methods. In

this thesis however Gaussian elimination with no pivoting is used to compute the

solution of the linear system due to its stability for ill conditioned systems that

are extremely sensitive to numerical errors.
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Chapter 4

ANALYSIS

Matrix algebra is used to solve system of simultaneous linear equations for many

mathematical procedures such as the solution to a set of linear and nonlinear

equations, interpolation, integration, and differential equations, the solutions re-

duce to a set of simultaneous linear equations. MATLAB is used to run most of

the analysis. In this thesis however, a well-known ill conditioned matrix called

the Hilbert matrix is used for the analysis.

In linear algebra, a Hilbert matrix, introduced by Hilbert, is a square

matrix n × n with entries being the unit fractions. The Hilbert matrices are

canonical examples of ill-conditioned matrices, making them notoriously difficult

to use in numerical computation. In this thesis however, H
(4×4)
ij is considered

with a suitable right hand side vector. The linear system is

H(n)x = b

4.1 The Hilbert System

The Hilbert system is made up of the Hilbert matrix and a suitable right hand

side vector which are given as H
(n)
ij = 1

i+j−1
, and bi =

∑n
j=1 Hij respectively.

if n = 4, 

1 1
2

1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

1
4

1
5

1
6

1
7





x1

x2

x3

x4


=



25
12

77
60

342
360

638
840


where

51



H4×4 =



1 1
2

1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

1
4

1
5

1
6

1
7


, x=



x1

x2

x3

x4


and b =



25
12

77
60

342
360

638
840


As n −→∞, H

(n)
ij becomes more ill-conditioned.

4.1.1 Rank of Hilbert Matrix

[H] is a 4 × 4 matrix and the largest square sub-matrix is [H] itself. The deter-

minant of [H], det(H) = 1.6534e − 007, which is not equal to zero therefore the

rank of [A] is of order 4.

4.1.2 Nullity of Hilbert Matrix

The nullity of the linear system is the difference between the number of columns

and the rank of the linear system. Nullity counts the number of free variables

whiles rank counts the pivot variables and the column corresponds to the total

number of variables for the coefficient matrix of the linear system. The rank of

the linear system is 4 and the number of columns is 4, therefore the nullity of the

linear system is given as:

Nullity = n - rank = 4 - 4 = 0

H is an invertible and nonsingular if and only if Rank(H) = n

4.1.3 Norm of Hilbert Matrix

The row sum norm (also called the uniform-matrix norm) is used and which is

the sum of the absolute value of the elements of each row of [H] and it is defines

as:

‖H‖∞ =
max

1 < i < m

n∑
j=1

| Hij |
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H =



1 1
2

1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

1
4

1
5

1
6

1
7



‖H‖∞ =
max

1 < i < 4

4∑
j=1

| Hij |

= max[(| 1 |) + (| 1

2
|) + (| 1

3
|) + (| 1

4
|), (| 1

2
|) + (| 1

3
|) + (| 1

4
) |) + (| 1

5
|),

+ (| 1

3
|) + (| 1

4
|) + (| 1

5
|) + (| 1

6
) |), (| 1

4
|) + (| 1

5
|) + (| 1

6
|) + (| 1

7
) |)]

= max[
25

12
,
77

60
,
342

360
,
638

840
]

=
25

12
≈ 2.0833

4.1.4 Condition number of Hilbert Matrix

This is given as:

κ(H) =‖ H ‖∞‖ H−1 ‖∞

where

‖H‖∞ =
25

12
≈ 2.0833,

H−1 =



16 −120 240 −140

−120 1200 −2700 1680

240 −2700 6480 −4200

−140 1680 −4200 2800


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and

‖H−1‖∞ =
max

1 < i < 4

4∑
j=1

| Hij |

= max[(| 16 |) + (| −120 |) + (| 240) + (| −140),

+ (| −120 |) + (| 1200 |) + (| −2700 |) + (| 1680),

+ (| 240 |) + (| −2700 |) + (6480 |) + (| −4200),

(| 140) + (| 1680) + (| −4200) + (| 2800)]

= max[516, 5700, 13620, 8820]

= 13620

Therefore

κ(A) =
25

12
≈ 2.0833× 13620

= 2.8375× 10+004

Since the condition number is greater than one it suggest that [H] is ill condition,

i.e. the solution is not very accurate if input is rounded and then a small roundoff

error can have a drastic effect on the output, and so even pivoting techniques will

not be useful. However, if the matrix is well-conditioned, then the computerized

solution will be quite accurate. Thus the accuracy of the solution depends on the

conditioning number of the matrix.

4.1.5 Solution Methods of Hilbert System

There would be comparison of unperturbed and perturbed solutions with their

respective errors. Gaussian elimination with no pivoting is used to compute the

solutions which is considered to be a stable method in practice. Ill conditioned

systems are extremely sensitive to numerical errors and as such pivoting is not

much of a help.
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Unpertubed Hilbert System

It is assumed that neither the coefficient matrix nor the right hand side vector is

contaminated by error.

H
(n)
ij = 1

i+j−1
, bi =

∑n
j=1 Hij

if n = 4, 

1 1
2

1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

1
4

1
5

1
6

1
7





x1

x2

x3

x4


=



25
12

77
60

342
360

638
840


The matlab solution is given: as 

x1

x2

x3

x4


=



1

1

1

1


‖ X ‖∞= 1

‖ C ‖∞= 2.0833

Perturbing RHS of Hilbert System

In order to estimate the accuracy of the computed solution, the error in the

Hilbert system is taken into account. The effect of small perturbations in the

right hand side vector is considered, i.e. successively adding and subtracting

0.001 to the entries of b respectively.

H
(n)
ij = 1

i+j−1
, bi =

∑n
j=1 Hij

1 1
2

1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

1
4

1
5

1
6

1
7





x1

x2

x3

x4


=



25
12

+ 0.001

77
60
− 0.001

342
360

+ 0.001

638
840
− 0.001


=



2.0843

1.2823

0.951

0.7585


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The matlab solution is given as:

x
′
1

x
′
2

x
′
3

x
′
4


=



1.5228

−4.7760

14.8020

−7.9380


Change in the solution vector:

[∆X] = [X
′
]− [X]

=



1.5228

−4.7760

14.8020

−7.9380


−



1

1

1

1



=



0.5228

−5.7760

13.8020

−8.9382


∴‖ ∆X ‖∞= 13.8020
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Change in the right hand side vector:

[∆C] = [C
′
]− [C]

=



2.0843

1.2823

0.951

−1.5296


−



25
12

77
60

342
360

−1.5286



=



0.001

−0.001

0.001

−0.001


∴‖ ∆C ‖∞= 0.001

Relative change in the norm of the solution vector

‖∆X‖∞
‖X‖∞ = 13.8020

1
= 13.8020

Relative change in the norm of the RHS vector:

‖∆C‖∞
‖C‖∞ = 0.001

2.0833
= 4.8001× 10−04

Conclusion: small relative change of 4.8001×10−04 in right hand side vector norm

results in a large relative change in the solution vector norm of 13.8020. The ratio

between them are 13.8020
4.8001×10−04 = 2.8754× 10+04 = 28754

4.1.6 Adequacy of solution

‖ ∆X ‖
‖ X + ∆X ‖

≤‖ A ‖‖ A−1 ‖ ‖ ∆C ‖
‖ C ‖

and

‖ ∆X ‖
‖ X + ∆X ‖

≤‖ A ‖‖ A−1 ‖ ‖ ∆A ‖
‖ A ‖

are theorems used to find how many significant digits can be trusted in the

solution vector of linear system.
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The above algorithms show that the relative error in a solution vector is ≤ Cond

(A) × relative error in either the right hand side or the coefficient matrix.

The possible relative error in the solution vector is ≤ Cond(A) × machine epsilon,

εmach. Hence Cond(A) × machine epsilon, εmach gives the number of significant

digits (m), for which Cond(A) × machine epsilon, εmach is less than 0.5× 10−m

Considering the Hilbert square linear system:

1 1
2

1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

1
4

1
5

1
6

1
7





x1

x2

x3

x4


=



25
12

77
60

342
360

638
840


where

κ(H) =‖ H ‖∞‖ H−1 ‖∞

= 2.0833× 13620

= 2.8375× 10+4

Assuming single precision with 23 bits used in the mantissa for real numbers, the

machine epsilon is

ε = 2−23

= 0.119209× 10−6

⇒ κ(H)× εmach

= (2.8375× 10+4)× (0.119209× 10−6)

= 0.0034

= 3.4× 10−3
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The maximum positive value of m for which κ(A)× εmach ≤ 0.5× 10−m is given

as:

3.4× 10−3 ≤ 0.5× 10−m

6.8× 10−3 ≤ 10−m

log 6.8× 10−3 ≤ log 10−m

−2.1675 ≤ log 10−m

−2.1675 ≤ −m

∴ m = 2.1675

≈ 2

So two (2) significant digits are at least correct in the solution vector.

4.2 Transformed Hilbert System

A new and equivalent system is constructed from that of the original Hilbert

system. Solving this new equivalent system must be better than solving the

original Hilbert system by the virtue of the huge difference in the magnitude of

the condition numbers.

Original Hilbert system: 

1 1
2

1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

1
4

1
5

1
6

1
7





x1

x2

x3

x4


=



25
12

77
60

342
360

638
840


Reflecting (hn1, hn2, ..., hn(n−1)) of the last row of the system about a three di-

mensional hyperplane into (h′n1, h
′
n2, ..., h

′
n(n−1)) resulting in an equivalent system,

H ′x = b′.

Reflecting the entries of the last row (h′n1, h
′
n2, h

′
n3)

h41 = h′41 = −1
4
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h42 = h′42 = −1
5

h43 = h′43 = −1
6

Computing h′nn

h′nn =

∑j=1
n−1 anj × h′nj

hnn

h′44 =
[h41 × h′41] + [h42 × h′42] + [h43 × a′43]

a44

h′44 =
[1
4
×−1

4
] + [1

5
×−1

5
] + [1

6
×−1

6
]

1
7

h′44 =
− 469

3600
1
7

h′44 = −3283

3600
≈ −0.91194

The transformed Hilbert matrix is given as:

H ′ =



1 1
2

1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

−1
4
−1

5
−1

6
−3283

3600


Computing the right-hand side entry b′n

Hx = b ≡ H ′x = b′

x = H−1b ≡ x = H ′−1b′

⇒ x = H−1b ≡ H ′−1b′,

60



Therefore

b′ = H ′H−1b

but

H =



1 1
2

1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

−1
4
−1

5
−1

6
−3283

3600


, H−1 =



16 −120 240 −140

−120 1200 −2700 1680

240 −2700 6480 −4200

−140 1680 −4200 2800


and

b =



25
12

77
60

342
360

638
840



b′ =



1 1
2

1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

−1
4
−1

5
−1

6
−3283

3600


×



16 −120 240 −140

−120 1200 −2700 1680

240 −2700 6480 −4200

−140 1680 −4200 2800


×



25
12

77
60

342
360

638
840


=



25
12

77
60

342
360

−1.5286



The new transformed Hilbert system is given as:

H ′ =



1 1
2

1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

−1
4
−1

5
−1

6
−3283

3600





x1

x2

x3

x4


=



25
12

77
60

342
360

−1.5286



4.2.1 Rank of Transformed Hilbert Matrix

[H ′] is a 4 × 4 matrix and the largest square sub-matrix is [H ′] itself. The

determinant of [H ′], det(H ′) = −3.5622 × 10−004, which is not equal to zero

therefore the rank of [H ′] is of order 4.
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4.2.2 Nullity of Transformed Hilbert Matrix

The nullity of the linear system is the difference between the number of columns

and the rank of the linear system. Nullity counts the number of free variables

whiles rank counts the pivot variables and the column corresponds to the total

number of variables for the coefficient matrix of the linear system. The rank of

the linear system is 4 and the number of columns is 4, therefore the nullity of the

linear system is given as:

Nullity = n - rank = 4 - 4 = 0

H is an invertible and nonsingular if and only if Rank(H) = n

4.2.3 Norm of Transformed Hilbert Matrix

The row sum norm (also called the uniform-matrix norm) is used and which is

the sum of the absolute value of the elements of each row of [H ′] and it is defines

as:

‖H ′‖∞ =
max

1 < i < m

n∑
j=1

| H ′ij |

H ′ =



1 1
2

1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

−1
4
−1

5
−1

6
−3283

3600



‖H ′‖∞ =
max

1 < i < 4

4∑
j=1

| H ′ij |

= max[(| 1 |) + (| 1

2
|) + (| 1

3
|) + (| 1

4
|), (| 1

2
|) + (| 1

3
|) + (| 1

4
) |) + (| 1

5
|),

+ (| 1

3
|) + (| 1

4
|) + (| 1

5
|) + (| 1

6
) |), (| −1

4
|) + (| −1

5
|) + (| −1

6
|) + (| −3283

3600
) |)]

= max[
25

12
,
77

60
,
342

360
, 1.5286]

=
25

12
≈ 2.0833
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4.2.4 Condition number of Transformed Hilbert Matrix

This is given as:

κ(H ′) =‖ H ′ ‖∞‖ H−1′ ‖∞

where

‖H ′‖∞ =
25

12
≈ 2.0833,

H−1′ =



9.0032 −36.0390 30.0975 0.0650

−36.0390 192.4679 −181.1697 −0.7798

30.0975 −181.1697 182.9242 1.9495

−0.0650 0.7798 −1.9495 −1.2996


and

‖H−1‖∞ =
max

1 < i < 4

4∑
j=1

| Hij |

= max[(| 9.0032 |) + (| −36.0390 |) + (| 30.0975 |) + (| 0.0650),

(| −36.0390 |) + (| 192.4679 |) + (| −181.1697 |) + (| −0.7798 |)+

+ (| 30.0975 |) + (| −181.1697 |) + (| 182.9242 |) + (| −1.9495),

(| −0.0650 |) + (| 0.7798 |) + (| −1.9495 |) + (| −1.2996 |)]

= max[75.2047, 410.4564, 396.1409, 4.0939]

= 410.4564

Therefore

κ(H ′) =
25

12
≈ 2.0833× 410.4564

= 855.10

Though κ(H ′) is significantly different from 1, it is far better than κ(H), since

this new matrix has a smaller condition number compared to that of the original

matrix. This means that solving the transformed Hilbert system must be better
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than the original Hilbert system by the virtue of the difference in the magnitude

of the condition numbers of their matrices. Moreover the solutions of H ′ are

quite accurate than that of H since the accuracy of the solution depends on the

condition number of the matrix and the condition of H ′ is enhanced.

4.2.5 Solution Methods of Transformed Hilbert Systems

Here there would be comparison of unperturbed and perturbed solutions with

their respective errors.

Unperturbed Transformed Hilbert Matrix

It is assumed that neither the coefficient matrix nor the right hand side vector is

contaminated by error.

H ′ =



1 1
2

1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

−1
4
−1

5
−1

6
−3283

3600





x1

x2

x3

x4


=



25
12

77
60

342
360

−1.5286


The matlab solution is given: as 

x1

x2

x3

x4


=



1

1

1

1


‖ X ‖∞= 1

‖ C ‖∞= 2.0833

Perturbed Transformed Hilbert Matrix

In order to estimate the accuracy of the computed solution, the error in the

system is taken into account. The effect of small perturbations of the right hand

side vector is considered, i.e. successively adding and subtracting 0.001 to the

entries of b respectively.
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H
(n)
ij = 1

i+j−1
, bi =

∑n
j=1 Hij

1 1
2

1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

−1
4
−1

5
−1

6
−3283

3600





x1

x2

x3

x4


=



25
12

+ 0.001

77
60
− 0.001

342
360

+ 0.001

−1.5286− 0.001


=



2.0843

1.2823

0.951

−1.5296


The matlab solution is given as:

x
′
1

x
′
2

x
′
3

x
′
4


=



1.0760

0.5859

1.3973

0.9985


Change in the solution vector:

[∆X] = [X
′
]− [X]

=



1.0760

0.5859

1.3973

0.9985


−



1

1

1

1



=



0.0760

−0.4141

0.3973

−0.0015


∴‖ ∆X ‖∞= 0.4141
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Change in the right hand side vector:

[∆C] = [C
′
]− [C]

=



2.0843

1.2823

0.951

−1.5296


−



25
12

77
60

342
360

−1.5286



=



0.001

−0.001

0.001

−0.001


∴‖ ∆C ‖∞= 0.001

Relative change in the norm of the solution vector

‖∆X‖∞
‖X‖∞ = 0.4141

1
= 0.4141 = 4.141× 10−1

Relative change in the norm of the RHS vector:

‖∆C‖∞
‖C‖∞ = 0.001

2.0833
= 4.8001× 10−04

Conclusion: small relative change of 4.8001×10−04 in right hand side vector norm

results in a small relative change in the solution vector norm of 4.141×10−1. The

ratio between them are 4.141×10−1

4.8001×10−04 = 2.8754× 10+04 = 862.69

4.2.6 Adequacy of solution

‖ ∆X ‖
‖ X + ∆X ‖

≤‖ A ‖‖ A−1 ‖ ‖ ∆C ‖
‖ C ‖

and

‖ ∆X ‖
‖ X + ∆X ‖

≤‖ A ‖‖ A−1 ‖ ‖ ∆A ‖
‖ A ‖

are theorems used to find how many significant digits can be trusted in the

solution vector of linear system.
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The above algorithms show that the relative error in a solution vector is ≤ Cond

(A) × relative error in either the right hand side or the coefficient matrix.

The possible relative error in the solution vector is ≤ Cond(A) × machine epsilon,

εmach. Hence Cond(A) × machine epsilon, εmach gives the number of significant

digits (m), for which Cond(A) × machine epsilon, εmach is less than 0.5 × 10−m

Considering the new transformed Hilbert system is given as:

H ′ =



1 1
2

1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

−1
4
−1

5
−1

6
−3283

3600





x1

x2

x3

x4


=



25
12

77
60

342
360

−1.5286


where

κ(H ′) =‖ H ′ ‖∞‖ H−1 ‖∞

= 2.0833× 410.4564

= 855.10

= 8.5510× 102

Assuming single precision with 23 bits used in the mantissa for real numbers, the

machine epsilon is

ε = 2−23

= 0.119209× 10−6

⇒ κ(H)× εmach

= (8.5510× 102)× (0.119209× 10−6)

= 1.0194× 104
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The maximum positive value of m for which κ(A)× εmach ≤ 0.5× 10−m is given

as:

1.0194× 104 ≤ 0.5× 10−m

2.0387× 10−4 ≤ 10−m

log 2.0387× 10−4 ≤ log 10−m

−3.6906 ≤ log 10−m

−3.6906 ≤ −m

∴ m = 3.6906

≈ 4

So four (4) significant digits are at least correct in the solution vector.

4.3 Discussions of Findings

Errors in system of equations is always a possibility when solving practical prob-

lems such as economical and engineering observation, measurements, estimations

and experiments. It is a desirable property that system of linear equations must

be well condition in its inputs in order to have confidence in the solution, so that

we would not get completely different results from slight changes in the input.

However, this is not always the case some matrices are very sensitive to small

changes in input data which results in a large change in the solution vector. This

is the solution of ill conditioned systems which are unreliable, unstable and can-

not be trusted to any degree of accuracy and as such it is necessary to convert it

into a well conditioned system in order to have any degree of accuracy in their

solutions.

Analysis is made between an original Hilbert system and a transformed

Hilbert system. Under original Hilbert system comparison is made between un-

perturbed and perturbed Hilbert system and under transformed Hilbert system
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comparison is made between unperturbed and perturbed transformed Hilbert

system and the findings of the thesis are as follows:

1. The Hilbert system is consistent since there is a solution and the rank of the

coefficient matrix is the same as the number of unknowns; this also means

that the solution is also unique. The nullity of the linear system is equal to

zero, since the rank and the number of columns is 4.

2. The condition numbers of the original Hilbert matrix and the transformed

Hilbert matrix are κ(H) = 2.8375 × 10+004 and κ(H ′) = 855.1175 respec-

tively. Though both κ(H) and κ(H ′) are greater than 1, κ(H ′) is closer to

1 than κ(H) and hence [H ′] is improved and better conditioned than [H].

It also suggest that small error in the matrix may produce larger error in

the solution of [H] than [H ′], i.e. the solution of [H] is not very accurate if

input is rounded.

3. The relative change in the norm of the solution vector and the relative

change in the norm of the RHS vector of [H] are 13.8020 and 4.8001

×10−04 respectively whiles that of [H ′] are 4.141× 10−1 and 4.8001× 10−04

respectively. It is obviously clear that for [H ′], small relative change of

4.8001 × 10−04 in the right hand side vector norm results in a small rel-

ative change in the solution vector norm of 4.141 × 10−1 and the ratio

between these two parameters are 4.141×10−1

4.8001×10−04 = 862.69. For [H], it is

also clear that the same small relative change of 4.8001 × 10−04 in the

right hand side vector norm results in a larger relative change in the so-

lution vector norm of 13.8020. The ratio between the parameters are

13.8020
4.8001×10−04 = 2.8754 × 10+04 = 28754. This means that [H] contained

more error than [H
′
].

4. For original Hilbert system [H], the unperturbed and perturbed exact so-
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lutions are



x1

x2

x3

x4


=



1

1

1

1


and



x
′
1

x
′
2

x
′
3

x
′
4


=



1.5228

−4.7760

14.8020

−7.9380


respectively.

It can be seen that a small change of 0.001 in the RHS resulted in greatly

changes in the solution vector. This means that the solution of the per-

turbed original Hilbert systems is far different from that of the exact so-

lution. For the transformed Hilbert system [H ′], its unperturbed and per-

turbed solutions are

x1

x2

x3

x4


=



1

1

1

1


and



x
′
1

x
′
2

x
′
3

x
′
4


=



1.0760

0.5859

1.3973

0.9985


respectively. It can be seen that a small

change of 0.001 in the RHS resulted in small changes in the solution vector.

This means that the solution of the perturbed transformed Hilbert systems

is not far different from that of the exact solution.

This suggest that the solution of [H ′] are relatively stable and reliable than

that of [H] if their RHS entries are slightly perturbed.
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Chapter 5

CONCLUSION

This thesis is a theoretical academic work which explores on a well known ill

condition matrix called the Hilbert matrix. The dimension of Hilbert matrix

used is a 4× 4 with entries being the unit fractions.

The approach put forward here constructs a new matrix and a new right-

hand side that constitute an instance of an equivalent and a transformed linear

system to the one given which is ill-conditioned, this new matrix has a small

condition number compared to that of the matrix of the initial linear system.

Hence converting an ill conditioned Hilbert system to an improved system have

been achieved.

The difficulty of solving ill-conditioned system is negotiated by solving

different but equivalent and transformed systems which are well-conditioned.

This means that solving this equivalent and transformed system which consti-

tute the improved system must be better than solving the original one by virtue

of the difference in the magnitude of the condition numbers of their matrices and

as a result, the solution of the ill-conditioned Hilbert system is computed via the

solution of an equivalent and improved system.

It is obviously clear that for [H ′], small relative change of 4.8001× 10−04

in the right hand side vector norm results in a small relative change in the solution

vector norm of 4.141×10−1 and the ratio between these two parameters are 862.69.

For [H], it is also clear that the same small relative change of 4.8001 × 10−04 in

the right hand side vector norm results in a larger relative change in the solution

vector norm of 13.8020. The ratio between the parameters are =28754. This

means that the solution of [H ′] is relative stable and reliable than that of [H].
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5.1 RECOMMENDATION

This thesis is recommended for university lecturers, researches, students and pol-

icy makers. University lecturers can use the concept and approaches in the teach-

ing of numerical errors as well as serving as a base or a reference material for

researches to dive into the problem for onward suggestions. It will also aid as

an introductory step for university students to develop interest in working at the

topic, and moreover it can serve as a curricular material for policy makers in

which recommendations can be made to enhance and broaden the horizons of

teaching and learning of the research topic.
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