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Abstract

Numerical methods form a significant part of the pricing of financial derivatives, es-

pecially in cases where there is no closed form analytical solution. The evaluation of

American options using the Black-Scholes Model where early exercise is possible and

a general closed-form solution does not exist leads to a free boundary value problem.

A common way to deal with this problem is to apply numerical methods. In this the-

sis we price American options with dividend paying stock on a single asset. We start

from the Black-Scholes equation with a free boundary value, the free boundary value

problem is then transformed into a Linear Complementarity Problem, and an Obstacle

Problem. We solve the Linear Complementarity Problem by introducing the method

of Finite Difference method. Finite difference methods is discussed quite extensively

with a focus on the Crank-Nicolson scheme. This leads to a constraint linear system

of equations which is solved on a discrete domain by applying the PSOR method. The

simulation results showed that the price of the American option exceeds the analytical

solution. The payoff function intersects the European option at lower prices relative

to the American option; this gives us the early exercise value. We conclude that the

American option with dividend paying stock is preferred to the European option.
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Chapter 1

Introduction

In this chapter, we present the background of the study to standard option pricing. The

problem of the study is outlined clearly from which the objectives of the study are

stated. The methods that are employed for this work and the significance of the study

are also explained. The organization of the study is finally discussed.

1.1 Background of the Study

An option, one of the components of financial derivatives (contingent claims) has been

considered to be the most dynamic segment in the financial markets traded for cen-

turies. But it remained relatively obscure financial instruments until the inception of a

listed options exchange in early 1970s Liu (2007). Since then, option trading has en-

joyed an unprecedented expansion in American securities markets. Futures, Forwards

and Swaps are also components of contingent claims. According to Cox et al. (1979),

option pricing theory is a relevant field to almost every field of finance. It has a long

and illustrious history, but it also underwent a completely new change in 1973.

In 1905, Albert Einstein expounded more on the work of botanist Robert Brown,

who first described the motion of a pollen particle suspended in fluid in 1828 Kle-

baner (2005). Though, Brown observed the random movement of pollen particles

immersed in water he argued that the movement is due to outpouring of the particle

by the molecules of the fluid and obtained the equations for Brownian motion.
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Before Einstein (1905), Louis Bachelier , a young French PhD student, was the

first to analyse Brownian motion mathematically in order to develop a theory of option

pricing in 1900 cited by Merton (1973). Louis further deduced Brownian motion as a

model for speculative prices. However, the formula was based on unrealistic assump-

tions with zero interest rate (drift) and a process that allowed for a negative stock price

Kishimoto (2008).

Moreover, Norbert Wiener proposed mathematical foundation for Brownian mo-

tion as a stochastic process in 1931 by publishing the first in a series of papers origi-

nating in 1918 cited by Ntwiga as in Klebaner (2005). The Brownian motion process,

(B(t)) is also referred to as Wiener process, (W (t)).

Sprenkle (1961) enhanced Bachelier’s expected-value theory by employing the

assumption that the stock price follows a geometric Brownian motion. Further en-

hancement introduces different discount rates, namely, the expected return of the stock

by Boness (1964) and the expected return of the option by Samuelson (1965). He fur-

ther stated that Sprenkle, Boness and Samuelson improvement on Bachelier’s formula

in 1960s assumed that stock prices are log-normally distributed, which guarantees that

the stock price is always positive and allowed for a non-zero interest rate.

Another assumption was that investors are risk-averse and demand a risk pre-

mium in addition to the risk-free interest rate. Additionally, an economist Samuelson

propagated the exponential Brownian motion (Geometric Brownian motion) for mod-

elling prices which are subject to uncertainty to his students at Massachusetts Institute

of Technology (MIT) in 1960s.

According to Ralf and Elke, 1848 marked the foundation of the Chicago Board

of Trade (CBOT), which later became the biggest future market in the world. In 1973,

the CBOT opens the Chicago Board Options Exchange (CBOE) and became the first

organized exchange to start trading option as well as other financial derivatives.

Before 1973, the valuation approach was, basically, to determine the expected

value of an option at expiration and then to discount its value back to the time of the

evaluation. The difficulty in this approach was determining the discount rate; in other
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words, assigning a risk premium was a tough problem, which was not successfully

resolved at that time.

The most influential development in terms of impact on financial practice was

the Black-Scholes model for option pricing. Black and Scholes published their first

work in 1973, which contains the Black-Scholes formula for option pricing of Euro-

pean option. In the same year, Robert Merton extended their model in several impor-

tant ways. Later 1977, Robert together with Scholes were awarded the nobel Prize for

economics after the death of Fischer Black.

Option is a major financial derivative, which gives its holder the right, not the

obligation to trade a fixed amount of underlying asset at an agreed-upon price on the

maturity date(European option) or any time on or before the maturity date(American

option). According to Hull (2009) a call option gives the holder the right, but not

obligation to buy and a put option also gives the holder the right, but not obligation to

sell its underlying asset at a certain time(t) for a fixed strike price(K).

Finally, options form the foundation of innovative financial instruments, which

are extremely versatile securities that can be used in many different ways. Seydel

(2002)

1.2 Statement of the Problem

Option pricing is widely used amongst academics, practitioners and professionals in

the financial market. Over the last 30 years, option pricing on risky assets has long been

an intriguing problem as valuation of American option is concerned. It is widely ac-

knowledged that a general closed-form analytical solution does not exist for the Amer-

ican option valuation where early exercise is permitted at anytime during the life of the

option, i e where early exercise may be optimal.

In contrast, the European option, which can only be exercised at its maturity date

has been valued analytically by the celebrated Black-Scholes formula for the standard

financial model stated by Black and Scholes (1973).

In real markets, many companies pay dividends to the stock holder. The cele-
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brated Black-Scholes model cannot deal with dividend payments, therefore there is the

need to extend (modify) the model to include the cash dividends. Since most traded

options are of American type and where solution is based on an iterative method, there

is considerable interest in searching for new valuation techniques. In view of that,

the valuation of American option routinely resorts to numerical techniques, whose im-

provement is still an active field of research. Therefore efforts have been concentrated

on approximate methods.

It is against this background that the study seeks to employ Finite difference

methods (FDM) quite extensively with a focus on the Crank Nicolson method, using

transformed Black-Scholes equation (PDE) in valuing standard Option with dividend

and apply these numerical techniques to the pricing of standard (vanilla) options.

Finally, we compare the performance of the Crank Nicolson methods Finite

difference methods to the analytical Black Scholes price of the standard option with

dividend paying stock.

1.3 Objectives of the Study

The objectives of this research are as follows:

• To apply the Crank Nicolson method coupled with projected SOR in valuing

standard option with dividend paying stock.

• To compare the performance of the Crank Nicolson methods to the analytical

solution of basic Black Scholes model for pricing standard option.

• To determine the optimal value at early exercise.

1.4 Methodology

The Crank Nicolson method of FDM is applied in modelling standard option with

dividend paying stock. A Matlab programming language is used to implement the

method in generating the tables and graphs. The codes are listed in the appendix.
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Finally, the results are discussed by comparing their performance to the solution of

transformed Black-Scholes model.

1.5 Significance of the Study

Firstly, the tool could be used for the education purpose. It can also be used for aca-

demics to test accuracy of the option pricing models such as Black-Scholes against the

market option price.

Secondly, for the market speculator to look for the best investment opportunity

in market mispricing, and for the individual investor such as employee who holds em-

ployee options to find a best moment to sell the option.

1.6 Organization of the Thesis

The study consists of five chapters. Chapter 1 provides general background informa-

tion of the study: the statement of problem, the objectives of the study, the methods to

be used, the structure as well as the significance of the study. Chapter 2 reviews perti-

nent literature related to the dynamics of option pricing, the market strategies and the

dynamics of derivative prices, specifically pricing standard options on stocks. Chapter

3 presents the methodology employed in valuing stock options.

The data analysis is presented by means of tables and graphs in Chapter 4. Chap-

ter 5, which is the final chapter, summarizes the main findings of the study and provides

suggestions and recommendations.
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Chapter 2

Literature Review

2.1 Introduction

Option pricing, one of the financial derivatives, has been studied extensively in both

academic and trade literature. There has been vast explosions of theoretical and empir-

ical investigation on option pricing. The focus of this chapter highlights the overview

of related work in the field of finance as assuming a basic Black-Scholes model, the

Crank Nicolson finite difference methods and the option pricing.

2.2 Review of Black-Scholes Model

Options pricing is a very important problem encountered in financial domain. Options

which are one of the financial derivatives are widely traded on financial markets. There

are several method of determining the value (or price) of a given option. To determine

the prices of the option, we require the formulation of a model for the way in which

the asset price changes over time. One of the widely used models is the Black-Scholes

model for pricing a European put and call option Brennan and Schwartz (1978).

A theoretical valuation formula was derived by Black and Scholes in 1973 for

option pricing. This theoretical formula was based on the rationale that, if options

are correctly priced in the market, it should not be possible to make profits by creat-

ing portfolios of long and short positions in options and their underlying stocks. The
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model is applicable to corporate liabilities namely, common stock, corporate bonds,

and warrants since almost all corporate liabilities can be viewed as combination of op-

tions. In particular, the Black-Scholes formula can be used to derive the discount that

should be applied to a corporate bond because of the possibility of default.

Rubinstein (1983), developed an option pricing formula that pushes the under-

lying source of risk back to the risk of individual assets of the firm. Relative to the

Black-Scholes formula, the displaced diffusion formula has several desirable charac-

teristics. The formula include differential riskiness of the assets of the firm, their rela-

tive weights in price determination of the firm, the effects of firms debt and finally the

effects of a dividend policy with constant and random components.

Cox et al. (1979) introduced the binomial method for the valuation of Ameri-

can options, which is also flexible and requires time discretizations. The method is

not stochastic in the sense that random numbers are used. The probabilities for the up

and down movements are rather a consequence of the assumed market factors. The

basic model was extended by additional factors to a multinomial method, with several

possibilities for the up and down movements of the asset price. Boyle (1988). Geske

and Shastri (1985) presented an analytic solution to American put option with or with-

out dividends. However, their formula is an infinite series that must be approximated

by numerical methods. Kim (1990) and Carr et al. (1992) provided an integral repre-

sentation of the option price. These methods are compared by Broadie and Detemple

(1996), who also derived the lower bound and upper bound for the value of American

options.

The valuation of American options with dividends has also been studied by

many researchers. Geske (1979), Roll. (1977) , and Whaley (1981) obtained analyt-

ical solutions for the case of known discrete dividends, while Brennan and Schwartz

(1977) and Brennan and Schwartz (1978) introduced the finite difference approxima-

tion approach with log-transformation. This numerical method approximates differen-

tial terms of the value function by discretizing both time and state space. The finite

difference method is one of the most popular methods because it is flexible and easy

7



to implement, so that non-standard forms of options also may be solved.

Gallant et al. (1992), in their work investigated the joint dynamics of price

changes and volume on the stock market making use of daily data on the S & P compos-

ite index and total NYSE trading volume from 1928 to 1987. Nonparametric methods

were used to achieve the set objectives. Gallant et al. (1992) found out that the daily

trading volume is positively and nonlinearly related to the magnitude of the daily price

change and that price changes lead to volume movements.

Heston (1993) used a new technique, which was based on the Black-Scholes

formula, to derive a closed-form solution for the price of a European call option on

an asset with stochastic volatility. The model allows arbitrary correlation between

volatility and spot asset returns. He introduced stochastic interest rate and showed

how the model is applicable to bond options and foreign currency options. The result

from his work showed that correlation between volatility and the spot asset price is

important for explaining return skewness and strike price biases in the Black-Scholes

model Black and Scholes (1973). Dempster and Hutton (1999) also studied American

option pricing problem using linear programming approach.

Pastorello et al. (2000) dealt with the estimation of continuous-time stochastic

volatility models of option pricing. They achieved this in a Monte Carlo experiment

which compared two very simple strategies based on different information sets. An

Ornstein-Uhlenbeck process for log of the volatility, a zero-volatility risk premium,

and no leverage effect was assumed. Sticking to the framework with no over identify-

ing restrictions, it was shown that, given the option pricing model, estimation based on

option prices is much more precise in samples of typical size.

Kumar et al. (2012) obtained an analytic solution of the fractional Black-Scholes

European option pricing equation. The Laplace homotopy perturbation method, a com-

bined form of the Laplace transform and the homotopy perturbation method, was used

with boundary condition for a European option pricing problem to obtain a quick and

accurate solution to the fractional Black-Scholes equation. The analytic solution of the

fractional Black-Scholes equation was calculated in the form of a convergent power

8



series with easily computable components.

More recent studies on American option pricing are based on linear comple-

mentarity problems (LCPs). Huang and Pang (1998) provided discretized LCP formu-

lations for various option problems including American options and suggested solu-

tion algorithms including projective successive over-relaxation (PSOR), Lemke’s algo-

rithm and a revised parametric principal pivoting (PPP) algorithm. Forsyth and Vetzal.

(2002) considered a special penalty method for LCPs adequate to handle American

option constraints, while Coleman et al. (2002) proposed a Newton type method for a

nonlinear programming problem based on quadratic penalization of the complemen-

tarity conditions. Ikonen and Toivanen (2007) showed LU decomposition can improve

the performance of several different algorithms for solving LCPs of American options.

Nevertheless, despite the different extensions that have been developed within

the last three decades, the basic Black-Scholes-Model is still the most accepted and

widely used framework in financial industry and research.

2.3 Finite Difference Methods

According to Hull (2009) the finite difference method is one of the most popular

method under Numerical techniques for valuation of options in cases where a closed-

form of analytical solutions are impossible. The finite difference method attempts to

solve the Black-Scholes partial differential equation by approximating the differen-

tial equation over the area of integration by system of algebraic equations Tveito and

Winther (1998). The most common finite difference methods for solving the partial

differential equations are:

• Explicit scheme

• Implicit scheme

• Crank Nicolson scheme

According to them these schemes are closely related but differ in stability, accuracy

and execution speed,
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The finite difference techniques was applied by Brennan and Schwartz to solve

option valuation problems for which closed form solutions are unavailable by Brennan

and Schwartz (1978). They considered the valuation of an American option on stock

which pays discrete dividends. Brennan and Schwartz (1977) introduced the finite

difference approximation approach with log-transformation. This numerical method

approximates differential terms of the value function by discretizing both time and state

space Kwon and Friesz (2008). Finite Difference scheme was also used by Courtadon

(1982) to find the value of an American option.

Wilmott et al. (1996) defined Finite difference methods are a means of obtaining

numerical solutions to partial differential equations and linear complementarity prob-

lems. They constitute a very powerful and flexible techniques and if applied correctly

they are capable of of generating accurate solutions to all models. Shcherbakov and

Szwaczkiewicz (2010) also stated that the main idea of the finite difference methods

is to replace the partial derivatives which appear in the partial differential equations

by difference quotients. In other words, it relies on replacing differential equations by

Finite Differences equations.

Morton and Mayers (2005) of the view that Finite Difference Methods create

a mathematical relationship which links together every point on the solution domain,

like a chain. The first links in the chain are the boundary conditions and from these,

we discover what every other point in the domain has to be. Perhaps the most popular

FD methods used in computational finance are: Explicit Euler, Implicit Euler, and

the Crank-Nicolson method. However, The main disadvantage to using Explicit Euler

is that it is unstable for certain choices of domain discretisation. Though Implicit

Euler and Crank-Nicolson involve solving linear systems of equations, they are each

unconditionally stable with respect to the domain discretisation. But Crank-Nicolson

exhibits the greatest accuracy of the three for a given domain discretisation.

Nwozo and Fadugba (2012) point out that among the three schemes considered,

Crank Nicolson Scheme is unconditionally stable, more accurate and converges faster

than binomial model and Monte Carlo Method when pricing standard options, while
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Monte carlo simulation method is good for pricing path dependent options. Benbow

(2005) used a Crank-Nicolson finite difference method formulated in a Lagrangian

frame in Solving the Black-Scholes equation for the valuation of American options.

2.4 Financial Derivative

A financial derivative also known as contingent claim is a contract whose value is

determined by the value of one or more underlying assets Hull (2009). Seydel (2002)

of the view that derivatives are very essential in financial market as most firms use them

to reduce or control risk (hedge). However, some also use them to speculate by buying

or selling derivatives in hopes of earning a profit. He further stated that investors hold a

great deal of risk. As a result, they incurred losses substantially, if speculations do not

work out. For instance, in 1995, the United Kingdom’s Barings’, one of the world’s

oldest banks, collapsed when futures speculation by one of its traders in Singapore

incurred losses of over $1 billion.

According to Shcherbakov and Szwaczkiewicz (2010), financial derivatives are

instruments to assist and regulate agreements on transactions of the future. They can be

traded on specialized exchanges throughout the world and its significance is evident.

Therefore, derivative is a type of contract that allows purchase or sale of an asset

in the future on terms that are specified in the contract. The future value of a derivative

is a stochastic process due to its uncertainty.

Futures, forwards, swaps and options are the main types of financial derivative

products, but the most important underlying assets that can be traded under financial

market are stocks(equities), bonds (Treasury Bills), foreign exchanges (currencies),

commodities(such as, oil, cocoa, gold), interest rate, etc Wilmott et al. (1996).
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2.5 Financial Derivatives Tools

2.5.1 Risk

Risk is defined in a portfolio as the variance of the return. It can be almost completely

eliminated by holding a well-diversified portfolio.

As stated by Hull (2009), the higher the risk of an investment, the higher the

expected return demanded by an investor. So a highly volatile stock with a very uncer-

tain return has a large variance and is a risky asset. We have two types of risk: specific

and non-specific. Specific risk is the component of risk associated with a single asset

or a sector of the market, whereas the one associated with factors affecting the whole

market is considered as Non-specific risk Wilmott et al. (1996).

2.5.2 Arbitrage

Arbitrage is defined in finance as a strategy that allows to make a profit out of nothing

without taking any risk. According to Ntwiga (2005) arbitrage is a trading strategy that

involves two or more securities being mispriced relative to each other to realise a profit

without taking a risk.

Hull (2009) stated that arbitrage is sometimes possible when the future price of

an assets get out of line with its spot price. Further, arbitrage involves looking in a

riskless profit by simultaneously entering into transaction in two or more markets.

However, Wilmott et al. (1996) of the view that ‘there is no such thing as a free

lunch’, so in financial terms, there are never any opportunities to make instantaneous

riskfree profits as in Neftci (2000). The main tool used to determine the fair price of a

security or a derivative asset rely on the no-arbitrage principle.

Arbitrage-Free Market

According to Klebaner (2005) the main idea in pricing by no-arbitrage arguments is

to replicate the payoff of the option at maturity by a portfolio consisting of stock and
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bond (cash). So, to avoid arbitrage, the price of the option at any other time must equal

the value of the replicating portfolio, which is valued by the market.

Risk Neutral Valuation

Risk-Neutral Valuation states that any security dependent on other traded securities can

be valued on the assumption that the world is risk neutral, according to Hull (2009).

Further, a risk neutral world is a world where assets are valued solely in terms of their

expected return but the expected return on all investment assets is the risk-free interest

rate, r. So all investors are indifferent to risk. As a result, investors do not require a

premium to urge them to take risks.

Moreover, the risk-free rate of interest is the appropriate discount rate to ap-

ply to any expected future cash flow. Consequently, derivative prices are determined

by expected present value pay-off . Therefore, the risk-neutral valuation principle is

important in option pricing, where the value of an option depends on the standard de-

viation of the asset price. In effect, the expected return (drift term), µ in the Stochastic

differential equation for underlying asset is replaced by the risk-free rate of interest (r),

whenever it appears Wilmott et al. (1996).

2.5.3 Log-normal Dynamics

Lognormal Transformation

The log transform method was suggested by Brennan and Schwartz (1978). Accord-

ing to them, when S is a stock price, it is efficient to use log(S) rather than S as the

underlying variable. This is because, as indicated in Brennan and Schwartz (1978) by

Hull and White, when σ is constant, the instantaneous standard deviation of log(S) is

also constant.

Hull (2009) stated that a variable that has a log-normal distribution takes value

between zero and infinity whereas variable that follows normal distribution can have

values from negative infinity to positive infinity, which is not consistent with the real

world stock price behaviour. He further argues that instead of a normal distribution of
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stock price, it is more appropriate to modelled stock that follow a log-normal distribu-

tion. According to Ntwiga (2005), the rate of return of a stock can be given as

(St+δt−St)

St
= µδt +σZ

√
δt

where Z ∼ N(0,1). He further stated that, as the time intervals become smaller and

smaller and the limit as t→ 0, then

dSt

St
= µdt +σdWt

He denoted µdt +σdWt by

dXt = µdt +σdWt

and St by

St = S0eXt

This means that the logarithm of St is normally distributed. Hence, we say that the

distribution of St is log-normal according to Wilmott et al. (1996).

Baz and Chacko (2004) state that the log-normal distribution has the following advan-

tages over the normal distribution:

• It differs from the symmetric normal distribution in that it exhibits a skew with

its mean and median all differing from that in a normal distribution. The stock

dynamics will be treated as log-normally distributed with a specified mean and

variance.

• It is mathematically tractable, and so we can obtain solutions for the value of

the options if stock returns are log-normally distributed. The value of the option

prices that we compute are very good approximations of actual market prices
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2.5.4 Volatility

According to Chiu (2002), volatility (σ) is a measurement of change in price over a

given period, commonly expressed in percentage terms. He further stated that volatility

can be computed as the annualized standard deviation of the percentage change in daily

price. Therefore, volatility is simply a measure of the degree of price movement in a

stock, futures contract or any other market.

Volatility of a stock price is a measure of how uncertain we are about future

stock price movements. The more volatile a stock market, the more an investor stands

to gain or lose in a short time Hull (2009). As volatility increases, the chance of stock

does very well or very poorly. For the owner of a stock, these two outcomes tend too

offset each other. However, this is limited downside risk in the event of price decreases

because the most the owner can lose is the price of the option. Similarly, the owner of

a put benefits from prices decreases, but has limited downside risk in the event of price

increases. The values of both calls and puts therefore increase as volatility increases.

(Hull, 2002).

Historical and Implied volatility are the two major approaches for the estimation

of volatility Jain (1997).

Historical Volatility

Following Jain (1997) historical volatility is the measure of a stock’s price movement

based on historical prices. He states that it is the measure of how active a stock price

typically is over a certain period of time. Historic volatility also called realized volatil-

ity, is a measure of actual price changes during a specific time period in the past.

Mathematically, historic volatility is the annualized standard deviation of daily

returns during a specific period. It estimates the volatility by calculating the standard

deviation of the natural log of the price changes of a sample time series of historical

data for the asset price. Therefore, the daily return is given as,

Xt = ln(
St

St−1
)
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The variance is estimated by the sample variance, which is normalised by (n− 1) to

make it an unbiased statistic.

HV = σ =

√
∑

n
t=1(X

2
t −X2)

(n−1)

The assumed uncertainty about the asset does not increase linearly. If the as-

set pays dividends, then the asset price sequence must be adjusted to reflect the non-

homogeneous nature of the data series. The transition from cum-dividend to ex-

dividend will affect the price of the asset. A dividend payment increases the return

to be paid to the buyer. If the buyer has an asset that pays a dividend λ; then the daily

price return is restated as

ln[
(St +λ)

St−1
].

Implied Volatility

Implied volatility is a volatility percentage that explains the current market price of an

option by reflecting the volatility that options traders expect for the returns to the un-

derlying stock during the life of the option Chiu (2002). As the common denominator

of option prices, it enables comparison of options on different underlying instruments,

and comparison of the same option at different times.

According to Jain (1997), it is the current volatility of a stock, as estimated by its

option price. So, if the price of an option is known, which consists of several compo-

nents such as the exercise price, maturity date, the spot stock price, dividends paid by

the stock (if any), the implied volatility of the stock and interest rates except volatility,

then you can modify the option-pricing model to calculate the implied volatility.

2.5.5 Dividend Paying Stock

Dividends are a share of profits paid to shareholders as cash or as additional shares

of stock. They have influence on the stock price. Profits or earnings that are not

distributed to shareholders stay with the firm and are called retained earnings. These
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earnings influence the value of the stock, because they increase the total asset value,

or total amount of assets, of the firm . The stock price goes up in post-dividend date

and it reduces the stock price on the ex-dividend date. According to Hull (2009) the

value of call option is negatively related to the size of any anticipated dividends, and

the value of a put option is positively related to the size of any anticipated dividends.

Discrete Dividend

Assumption

The underlying stock S is paying a discrete dividend at a fixed and known date tD ∈

(0,T ). There will be either a known dividend payment of amount λ > 0 or a known

dividend rate ρ ∈ (0,1) at tD. In case of a discrete payment, one has to take into

consideration that at the instant of a discrete payment the price St of the asset instan-

taneously drops by the amount of the payment. Suppose that the stock pays N dis-

crete dividends at known payments times (dates) t1, t2, ..., tN where t1 < t2 < ... < tN of

amounts D1,D2, ...,DN , respectively. Since ex-dividend dates and the actual amounts

of dividends are known then we could assume that the asset price is composed of two

components:

• The risk-free component that will be used to pay the known dividends during the

life of the option. This is then taken to be the present value of all future dividends

discounted at the risk free interest rate. The dividends will have been paid and

the risk-less component will no longer exist by the time the option matures.

• Risky component which follows a stochastic process. The value of the risky

component denoted as S̃t is

S̃t = St−Die−rti f or i = 1,2, ...,N.

The new asset price S̃t is then used to compute the value of the option
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Continuous Dividend yield

The continuous yield model is extremely useful to options on stocks. Let λ represent

the constant continuous dividend yield which is known. The dividend yield is defined

as the proportion of an underlying asset price that is paid out per unit time. Thus, in

each time interval , δt, the underlying asset pays out a dividend λSδt to the holder,

where λ≥ 0 is a constant. The share value is lowered after the dividend payout so the

expected rate of return µ of a share becomes (µ−λ).

18



Chapter 3

Methodology

3.1 Introduction

The chapter discusses the methods used in achieving the objectives of the research

work. The principal attention is about pricing American option, where early exercise

is optimal. We derive the celebrated Black and Scholes model with a free bound-

ary value. The problem is transformed equivalently into a Linear Complementarity

Problem, an Obstacle Problem and a Variational Inequality. To solve the Linear Com-

plementarity Problem, the chapter introduces the method of Finite Differences, which

leads to a constraint linear system of equations. The latter can be solved by employing

an iterative projection method.

3.2 Options

An option is the right but not the obligation for a transaction of a risky asset(stocks)

at a fixed time for a given price in future. Dontwi et al. (2010) stated that options are

used as valuable tools in numerous hedging strategies as they define the price at which

underlying assets can be bought or sold in the future. It gives the holder the right to

buy or sell an asset in the future at a price that is agreed upon today. The specified time

and the prescribed amount in the contract are the expiration date or maturity and strike

price (exercise price ) respectively.
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Option contract involves two parties; the writer(Bank) and the holder (investor)

about trading underlying asset at a certain future time Seydel (2002). The holder of the

option has the right, not an obligation, to exercise the option. He purchases the option

by paying a premium, which is the price (V ) of the option. The other party, the writer,

who fixes the terms of the contract, has the potential obligation to sell the underlying

in case the investor chooses to exercise. As a result, the writer of the option must be

compensated for the obligation he assumed, if the investor fails to exercise. The holder

is said to be in the long position (buy the option) while the other side of the investor

takes the short position(sell the option) of the option contract Hull (2009). The party

with the long position agrees to buy the underlying asset while the other party who

assumes the short position agrees to sell the asset.

Moreover, the option on stock is said to be exercised when the holder chooses

to buy or sell the underlying stock, S. As stated by Wilmott et al. (1996) there are two

basic types of options; the call and put options. The call option allows the holder the

right to buy the underlying for an agreed fixed strike price, K, by maturity date, T . The

put option also gives the holder the right to sell the underlying at a certain time, T for

an agreed fixed exercise price, K. The exercise rights under option are European and

American option. They are not a geographical classification but refers to a technicality

in the option contract. Both types are traded in each continent.

In general, there are two main groups of options: standard and non-standard

options (exotic). The standard options, the American or European call or put options,

with pay-off functions are based on a single underlying asset(single-factor). Exotic op-

tions also known as path-dependent options, with pay-off functions depend on several

underlying assets (multi-factor options). Further, Options, whose pay-off functions

only depend on the final value of the underlying asset, are called vanilla options. Op-

tions, whose payoffs depend on the path of the underlying asset, are called exotic or

path-dependent options. In this thesis, we will be concerned with pricing plain-vanilla

American options with dividend paying stock by means of finite differences.
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European Options

According to Ntwiga (2005), European options can only be exercised at a maturity date

(t = T ). An European call (put) option gives the holder the right but not the obligation

to buy (sell) the underlying asset with an initial price S; at a given maturity date, t = T

and for a fixed strike price, K. Ntwiga then defined the price of the European call and

put option as Ec and Ep respectively. He further stated that the pay-off of the European

call at maturity time t = T is

Ec = max(St−K,0) := (St−K)+ (3.1)

If St < K, the call will be worthless and the holder will not exercise the right.

The pay-off of an European put at maturity time t = T is

Ep = max(K−St ,0) := (K−St)
+ (3.2)

If St > K , the put will be worthless with no cash flows and the holder will not

exercise the right . The pay-off of the European put at maturity can be obtained from

the put- call parity. The put - call parity is the relationship between a European call

and put, given by

Ec +Ke−rt = Ep +S, (3.3)

where r denotes the risk free interest rate, S the initial stock price and St repre-

sents the variation of the asset price(current price) S with time t.

American Options

American options can be executed(exercised) at anytime prior to their maturity date

(t ≤ T ) Ntwiga (2005). He then stated that American call or put option gives to its

holder the right (not the obligation) to buy (sell) the underlying asset, S at any time t

(0 < t < T ); up to maturity date T ; for a strike price K. Let denote Ac and Ap the price

of American call and American put respectively. The pay-off of an American call at
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maturity time t is

Ac = max(St−K,0) := (St−K)+. (3.4)

The pay-off of an American put at maturity time t is

Ap = max(K−St ,0) := (K−St)
+ (3.5)

According to Ntwiga (2005) the price boundary and put-call parity for the Amer-

ican option is given by

S−K ≤ Ac−Ap ≤ S−Ke−rt (3.6)

The valuation of an American option can be shown to be uniquely specified by a set of

constraints:

• the option value must be greater than or equal to the payoff function.

• the Black-Scholes equation is replaced by an inequality.

• the option value must be a continuous function of S.

• the option delta (slope) must be continuous.

American options are more flexible and more valuable than European ones. This

is the reason why options on stocks are mostly of American style. For an American

option, mostly there exist no explicit formulas and hence numerical solution techniques

are required.

Option Value

The value of the option, V =V (S, t) is a function of both the underlying asset (S) and

the time (t) in option pricing. The calculation of the price of an option (premium) is

our prime concern. The premium is the fair value of an option contract which the buyer

pays to the writer. It is ascertained in the competitive market Seydel (2002).
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Hull (2009) stated that the value of the stock option depends on six major fac-

tors: the current stock price (So), the strike price (K) and the maturity date (T ). The

market parameters affecting the price are the risk-free interest rate (r), the volatility

(σ) of the price (St), and the dividend yield (λ), if the asset pays dividends.

Paully (2004) of the view that when the price ST of the underlying asset is lower

than the exercise price (ST < K), the option is said to be in-the-money (IT M). The

holder would exercise the put option, i.e sell the stock with value ST for the higher

price K, and earn the amount of (K− ST ). If ST , the spot price is equal to the strike

price, K,(ST = K), the put is said to be at-the-money(AT M) and the pay-off function

is zero. Otherwise the option is out-of-the-money (OT M), if (ST > K).

In the second case, the holder would choose not to exercise the option, which

would be worthless on maturity date with no cash flows. This is clear since the holder

would not make any profit by selling the underlying asset for K, if its actual price were

greater than, or equal to K. If a call is in the money, the holder would buy a stock

worth ST for a lower price K, yielding (ST −K). A call being at or out of the money

would also be worthless on expiration date. The above considerations lead to the payoff

functions for plain options:

1. for a call option

VC(ST ,T ) = max{ST −K,0} := (ST −K)+, (3.7)

2. for a put option

VP(ST ,T ) = max{K−ST ,0} := (K−ST )
+, (3.8)

All these factors are meant to be per year. Volatility describes the standard

deviation, or uncertainty, in the movements of the value S of the underlying asset. The

dividend is expressed as the continuous dividend yield λ. Last, but not least, it should

be mentioned that the value of American options is always greater than, or equal to the
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value of their corresponding European, VAm≥VEur

3.3 Derivation of the Black-Scholes Model (PDE)

The famous Black-Scholes model has been used as the basis for pricing financial

derivatives, particularly option pricing. The general idea of dynamic hedging was

introduced by Black and Scholes (1973) and Merton (1973). This was to replicate the

option payoff by a trading strategy in the underlying asset.

Prior to Black and Scholes famous model in 1973, various researchers work

on the valuation of options has been presented in terms of warrants. This formula is

useful because it relates the distribution of spot returns to the cross-sectional properties

of option prices. Black and Scholes (1973) derived the theoretical valuation formula

for options. The main conceptual idea of Black and Scholes lie in the construction of

a riskless portfolio taking positions in bonds (cash), option and the underlying stock.

In developing the celebrated Black-Scholes model the following assumptions

were made in the financial market under consideration, Black and Scholes (1973). It

is assumed in the Black-Scholes model that

• the stock price follows a log normal random walk in continuous time with a

variance rate proportional to the square of the stock price. Thus the distribution

of possible stock prices at the end of any finite interval is log-normal.

• The market is frictionless, thus there are no transaction costs ( fees or taxes).

• There are no arbitrage possibilities exist, meaning that there are no opportunities

of instantly making a risk-free profit.

• The underlying asset pays no dividends during the life of the options.

• The risk-free interest rate r and the variance of the return (volatility) σ are known

functions of time over the life of the option.

• The underlying asset trading is continuous and the change of its price is contin-

uous.
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The stochastic differential equation (or SDE) can model the randomness of the

underlying asset in financial derivatives. They are utilized in pricing derivative assets

because they give a formal model of how an underlying asset’s price changes over time.

In pricing derivative assets, the randomness of the underlying instrument is essential.

After all, it is the desire to eliminate or take risk that leads to the existence of derivative

assets.

A trader continuously tries to forecast the price of an asset at any time interval,

δt. These ‘new events’ recorded as time passes contain some parts that are unpre-

dictable. After that, they become known and become part of the new information set

{It} the trader possesses. The formal derivation of SDE’s is compatible with the way

dealers behave in financial markets.

If St is the price of a security, then according to Ntwiga (2005) the dynamic

behaviour of the asset price in a time interval dt can be represented by the SDE given

by

dSt = α(St , t)dt +σ(St , t)dWt f or t ∈ [0,∞)

where dWt is an innovation term representing unpredictable events that occur during

the infinitesimal interval dt, α(St , t) is the drift parameter and σ(St , t) the diffusion

parameter which depends on the level of observed asset price St on time t Neftci (2000).

Following Sevcovic (2011) the stochastic process X = {Xt , t ≥ 0} that solves

Xt = X0 +

t∫
0

α(Xs, t)ds+
t∫

0

b(Xt , t)dWs

is an Itô process. The corresponding stochastic differential equation is given by

dXt = α(Xt , t)dt +b(Xt , t)dWt

where α(Xt , t)dt is the drift form, b(Xt , t)dWt is the diffusion form and Ws is a standard

Wiener process.

According to Ntwiga (2005), if V (S, t) be twice differentiable function of t and
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of the random process St , and St follows the Itô`s process

dXt = αtdt +σtdWt , t ≥ 0

with well behaved drift and diffusion parameters αt and σt then,

dVt =
∂V
∂St

dSt +
∂V
∂t

dt +
1
2

∂2V
∂S2

t
σ

2
t dt.

Now,the above conditions lead to an Itô‘s stochastic differential equation, describing

the behaviour of the asset price which follows a geometric Brownian motion (GBM)

dS = µSdt +σSdW, (3.9)

where µ denotes the expected return of the underlying asset (drift), σ is the volatility

and W follows a Wiener process (Brownian Motion).

We now look for a function V (S, t) that gives the option value for any asset

price S ≥ 0 and at any time 0 ≤ t ≤ T . In this setting, V (S0,0) is the required time-

zero option value. We further assume that such a function exists and is smooth in

both variables. Therefore, Itô‘s Lemma provides us with a derivative chain rule for

stochastic functions. Hence, by Itô‘s Lemma

d f =
d f
dS

(µSdt +σSdW )+
1
2

σ
2S2 d2 f

dS2 dt (3.10)

considering equation (3.10) We write as

dV = σS
∂V
∂S

dW +

(
µS

∂V
∂S

+
1
2

σ
2S2 ∂2V

∂S2 +
∂V
∂t

)
dt. (3.11)

This gives the random walk followed by V . We now construct a portfolio consisting

of one option and a proportion −∆ of the underlying asset. The value of th portfolio is

Π =V −∆S (3.12)
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Then the change in the value of this portfolio in one time-step becomes

dΠ = dV −∆dS (3.13)

Combining equations (3.9), (3.11) and (3.12) we find that Π follows the random walk

dΠ = σS(
∂V
∂S
−∆)dW +(µS

∂V
∂S

+
1
2

σ
2S2 ∂2V

∂S2 +
∂V
∂t
−µ∆S)dt (3.14)

We can eliminate the random component by choosing ∆ =
∂V
∂S

. This results in a port-

folio whose increment is wholly deterministic

dΠ = (
∂V
∂t

+
1
2

σ
2S2 ∂2V

∂S2 )dt (3.15)

The return on an amount Π invested in a riskless asset would see a growth of rΠdt

in a time dt. If the right hand side of equation (3.15) were greater than this amount,

an arbitrageur could make a guaranteed risk less profit by borrowing an amount Π to

invest in the portfolio. Conversely, if the right-hand side of equation (3.15) were less

than rΠdt then the arbitrageur would make a risk less, no cost, instantaneous profit.

Thus we have

rΠdt =
(

∂V
∂t

+
1
2

σ
2S2 ∂2V

∂S2

)
dt (3.16)

Substituting equation(3.12) into equation(3.16), where ∆ =
∂V
∂S

and dividing by dt.

Then we arrive at the Black-Scholes partial differential equation

∂V
∂t

+
1
2

σ
2S2 ∂2V

∂S2 + rS
∂V
∂S
− rV = 0 (3.17)

Any derivative security whose price depends only on the current value of S and

on time, t, which is paid for up-front, must satisfy the Black-Scholes equation.
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3.4 Modification to Black-Scholes Model

In this thesis, we attempt to model the price of American standard options based on

dividend paying stock. In contrast, the Black-Scholes model discussed above is on

assumption that no dividends are paid, where λ = 0. But when dividend payment is

incorporated into the Black-Scholes model, the American options which can be exer-

cised at any time t prior to the maturity date T , leads to the Black-Scholes-inequality.

In modelling stock with dividends, the two important questions one needs to asked are:

• When and how often are dividend payments made?

• How large are the dividend payments?

The amounts paid as dividends may be modeled as either deterministic or stochastic.

But the focus is on deterministic way only on those equities with dividends whose

amount and timing is known at the start of the options life.

Using SDE, equation (3.9), which is the random walk of the asset price is modified to

become

dS = (µ−λ)Sdt +σSdW (3.18)

Considering the effect of the dividend payments on our hedged portfolio, we receive

an amount λS∆dt for every asset held, and since we hold −∆ of the underlying, the

portfolio changes by an amount

−λS∆dt (3.19)

Adding equations (3.13) and (3.19) we obtain

dΠ = dV −∆dS−λS∆dt (3.20)

Following the same previous analysis, we arrive at

∂V
∂t

+
1
2

σ
2S2 ∂2V

∂S2 +(r−λ)S
∂V
∂S
− rV = 0 (3.21)
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3.4.1 Solving Transformed Black-Scholes Equation

Solving the equation (3.21) for a dividend paying stock using European option, let

τ = T − t; where T denotes maturity time, t is current time and τ denotes the remaining

life time. The value of European Call and Put options are respectively written as

Ec(S,τ) = Se−λτN(d1)−Ke−rτN(d2) (3.22)

and

Ep(S,τ) = Ke−rτN(d2)−Se−λτN(d1) (3.23)

where d1 =
ln(S/K)+(r−λ+σ2/2)τ

σ
√

τ
and d2 = d1−σ

√
τ.

3.5 Transformed Black-Scholes To Diffusion Equation

It is useful to transform the Black-Scholes equation corresponding to (3.21) into the

well known heat-conducting equation to simplify the computation of American op-

tions. So we obtain;
∂2y
∂x2 =

∂y
∂τ

(3.24)

for y(x,τ),where x ∈ R,and τ≥ 0.

According to Seydel (2002), the equation (3.24) is a Partial Differential Equation of

simplest parabolic type. It can also be written as yxx = yτ, where yxx is the diffusion

term. Both equations (3.21) and (3.24) are linear in the dependent variables V or y.

The transformation is obtained by applying:

S = Kex, t = T − 2τ

σ2 , q :=
2r
σ2 , qλ :=

2(r−λ)

σ2

v(x,τ) := K exp{−1
2(qλ−1)x− (1

4(qλ−1)2 +q)τ}y(x,τ)

V (S, t) =V (Kex,T − 2r
σ2 ) =: v(x,τ)

(3.25)
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In view of the time transformation in equation (3.25), τ corresponds to the time variable

t in the original Black-Scholes equation denotes the remaining life time of the option

towards the assuming date: t = T transforms to τ = 0 and t = 0 is transformed to

τ = 1
2σ2T . And the original domain of the half strip S > 0 ,0 ≤ t ≤ T of equation

(3.21) becomes the strip

−∞ < x <+∞, 0≤ τ≤ 1
2

σ
2T

on which a solution y(x,τ) to equation (3.24) will be approximated. We now apply

the transformations of equation (3.25) to derive out of y(x,τ) the value of the option

V (S, t) in the original variables, after the caculation.

Under the transformations of equation (3.25), the initial conditions will be

call : y(x,0) = max{e
x
2 (qλ+1)− e

x
2 (qλ−1),0}

put : y(x,0) = max{e
x
2 (qλ−1)− e

x
2 (qλ+1),0}

The payment of dividend lowers the stock price from S to Seτ−λ and the risk-

free interest rate which is the rate of return from r to (r−λ) according to Hull (2009).

Since American option may be exercised at any time prior to the maturity date, exercise

under equation (3.21) is not optimal. The equality sign in equation (3.21) is replaced

by an inequality sign to obtain

∂V
∂t

+
1
2

σ
2S2 ∂2V

∂S2 +(r−λ)S
∂V
∂S
− rV ≤ 0 (3.26)

where V = V(S, t), S > 0, 0 ≤ t ≤ T and V does not depend on µ, but on the riskless

interest rate r and the annual dividend yield λ≥ 0 of the asset Seydel (2002) .

In mathematical literature, (r−λ)S∂V
∂S is called convection term, σ2

2 S2 ∂2V
∂S2 is a diffusion

term and rV is a reaction term. In this sense, equation (3.26) is a convection-diffusion

PDE. In finance, ∂V
∂S denotes the option delta (∆), ∂2V

∂S2 is the option gamma (Γ), and ∂V
∂t
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is known as option theta (Θ). Hull (2009). The lower boundary condition for equation

(3.26) is given as

Vc(S, t)≥ (S−K)+ for all (S, t),

Vp(S, t)≥ (K−S)+ for all (S, t),
(3.27)

Therefore, the inequalities hold and hence, the value of American options can

not be less than their payoff function.

3.6 Options as Free Boundary-Value Problems

3.6.1 Scheme for Dealing with American Options

The valuation of an American option is therefore more complicated than its European

counterpart since we have to determine not only the option value but also, for each

value of S, whether or not it should be exercised. This is what is known as a free

boundary problem. However, the European options, put options, do not allow early

exercise and can reach values Vp(S, t)< K−S for S getting close to zero according to

Paully (2004).

At each time t, there is a particular value of S, where S > 0 marks the boundary

between two regions: to one side one should hold the option and to the other side one

should exercise it. We denote this value, which varies with time, by S f (t), and refer to

it as the optimal exercise price.

Initially, this high contact point S f (t) is unknown but very important to know as

it tells whether its worth to hold or to execute the option. In the second case, the cor-

responding point tS is called stopping time. If S f (t) which is 0 < S f < K is calculated,

one should obey the following scheme for American options.

call: S < S f (t): hold S≥ S f (t): execute asap
put: S≤ S f (t): execute asap S > S f (t): hold

If a put is executed, the earned amount K should be invested in a riskless asset

at rate r for the remaining time τ. If a call is executed, the K purchased stock is sold

for S and the profit S−K should be invested in a riskless asset.
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In figure 3.1, the curve S f (t) divides the [0,∞)× [0,T ] into the continuation re-

gion(grey) and the stopping region. Keeping the option longer than necessary reduces

the profit of the alternative riskless investment, and that the calculation for this strategy

does not yet include the cost of carry and the price of the option itself.

Figure 3.1: Scheme for Dealing with American Options

3.6.2 Free Boundary-Value Problem

The values of American call and put are given by equations (3.28) and (3.29) respec-

tively. The visualized results is also shown in figure 3.1

Vc(S, t)


> (S−K)+ for S < S f (t)

= (S−K) for S≥ S f (t)
(3.28)

Vp(S, t)


> (K−S) for S > S f (t)

= (K−S) for S≤ S f (t)
(3.29)

Figure 3.2: Value functions of American options at time t < T

Since S f is not known theoretical, solving for V (S, t) is called a free boundary-

value problem. In order to calculate the unknown free boundary S f , we need an
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additional condition. Therefore, we consider the slope ∂V
∂S more closely with which

VP(S, t) touches at S f (t) the straight line K−S and has a slop −1 .

With similar arguments , the slope for the call which VC(S, t) coincides with the straight

line S−K, is equals to 1. Finally, the two boundary conditions at the contact point for

both the put and the call are known as smooth boundary condition:

VC(S f (t), t) = S f (t)−K,
∂VC

∂S
(S f (t), t) = 1

VP(S f (t), t) = K−S f (t),
∂VP

∂S
(S f (t), t) =−1

(3.30)

This means that V (S, t) touches the payoff function tangentially in S f (t). This

tangent point also has an effect on the Black-Scholes-inequality. Here, the equality

holds in case early exercise does not make sense (which is also valid for European

options). For the other case, one has to deal with the inequality. Summarizing all those

facts for American options, one obtains the following free boundary-value problems

(FBVP):

American call option

for S < S f (t) : V (S, t)> (S−K)+ and

Vt +
σ2

2 S2VSS +(r−λ)SVS− rV = 0

for S > S f (t) : V (S, t) = S−K and

Vt +
σ2

2 S2VSS +(r−λ)SVS− rV < 0

boundary conditions: V (0, t) = 0

V (S f (t), t) = S f (t)−K

VS(S f (t), t) = 1

terminal condition: V (S,T ) = (S−K)+

(3.31)
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American put option

for S < S f (t) : V (S, t) = K−S and

Vt +
σ2

2 S2VSS +(r−λ)SVS− rV < 0

for S > S f (t) : V (S, t)> (K−S)+ and

Vt +
σ2

2 S2VSS +(r−λ)SVS− rV = 0

boundary conditions: lim
S→∞

V (S, t) = 0

V (S f (t), t) = K−S f (t)

VS(S f (t), t) =−1

terminal condition: V (S,T ) = (K−S)+

(3.32)

Note that for American call a dividend yield λ 6= 0 is needed, because other-

wise early exercise of the option is of no advantage to its holder, and the value of the

American call equals the European-style call.

3.7 Formulation as Linear Complementarity Problem

3.7.1 Obstacle Problem

The free boundary conditions do not show up explicitly, so there is a need to reformu-

late the obstacle problem. This may anticipate computational advantages.

Figure 3.3: Setup for the obstacle problem

Let a function g(x),x∈ R,g∈C2,g′′(x)< 0 be given, it represents an obstacle as
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shown in the figure above. Let u(x),u ∈C1[x0,x1] be a function that is stretched over

g(x) like a string, and for simplicity let u(x0) = u(x1) = 0. On [a,b] both functions

coincide, everywhere else one has u > g. Initially, a and b are unknown.

Now we can formulate the example as free boundary-value problem:

for x0 < x < a: u′′ = 0 , then u > g

for a < x < b: u′′ = g′′ < 0, then u = g

for b < x < x1: u′′ = 0, then u > g

(3.33)

This situation attests a complementarity in the sense that u(x) is a straight line.

If u > g meaning, u′′ = 0;

and

If u = g, then u′′ < 0

.

So on [x0,x1] one has either u′′ = 0 or u−g = 0, but not both at the same time. Hence

this obstacle problem can be equivalently reformulated as a linear complementarity

problem:

(LCP) =


find a function u(x) such that :

u′′(u−g) = 0, −u′′ ≥ 0, u−g≥ 0,

u(x0) = u(x1) = 0, u ∈C1[x0,x1]

(3.34)

The reverse equivalence is clear, since when a suitable u(x) is found, for a given

g′′(x) < 0 one gets the original obstacle problem. Note that in the LCP the boundary

values a and b are not mentioned explicitly. However, if one knows a solution for it,

the boundaries will also be known.

Recall the free boundary-value problems 3.31, they are of a similar form as 3.33.
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So they can also be seen as obstacle problems, that is with u :=V (S, t),g := (K−S)+

and b := S f for the put. Therefore it is obvious that we can also formulate the evaluation

of American options as LCP, where the free boundary S f is not mentioned explicitly,

but will be known when the problem can be solved.

3.7.2 Linear Complementarity Problem (LCP)

It is useful to transform the Black-Scholes Inequality corresponding to equation (3.26)

into the well known heat-conducting equation. This will simplify and enhance easy

computation of American options.

Technically, it is easier to solve heat-conducting equation as compared with

Black-Scholes Inequality for several reasons: The most obvious one is that the dif-

fusion Equation contains only two terms, i.e. the diffusion and the time derivative,

as compared to the four terms in (3.26), which results in a simpler algorithm for the

computation.

The convection term in equation (3.26) might lead to numerical spurious oscilla-

tions in our application. The problem of numerical instabilities were not caused by the

PDE itself, but by the particular numerical algorithms we will use to solve it. However,

these difficulties do not occur for the heat-conducting equation.

As originally one has to deal with a Black-Scholes inequality when evaluating

American options, the direct transformation yields:

∂2y
∂x2 ≤

∂y
∂τ

(3.35)

for y(x,τ) with 0≤ τ≤ τmax , x ∈ℜ.

For this inequality, one can construct a linear complementarity problem (LCP)

similar to (3.34). Specifically, the constraints of the FBVP for an American put in

equation (3.31) can also be transformed as LCP. Applying the transformation to them

lead to

VP(S, t)≥ (K−S)+ = K max{1− ex,0} (3.36)

36



Inserting this into (3.25) yields

y(x,τ)≥max{1− ex,0}exp
{

1
2
(qλ−1)x− (

1
4
(qλ−1)2 +q)τ

}
= exp

{
(
1
4
(qλ−1)2 +q)τ

}
max

{
(1− ex)e

1
2 (qλ−1)x,0

}
= exp

{
(
1
4
(qλ−1)2 +q)τ

}
max

{
e

1
2 (qλ−1)x− e

1
2 (qλ+1)x,0

}
=: g(x,τ)

(3.37)

The terminal condition of the American put, V (S,T ) = (K−S)+ implies equal-

ity in the above equation, so the initial condition for y is y(x,0) = g(x,0). For x→±∞,

we also have y(x,τ) = g(x,τ).

With an adjusted function g, it also works for American call with 0 < λ < r.

So formulating the linear complementarity problem

call : g(x,τ) := exp
{
(
1
4
(qλ−1)2 +q)τ

}
max

{
e

1
2 (qλ+1)x− e

1
2 (qλ−1)x,0

}
put : g(x,τ) := exp

{
(
1
4
(qλ−1)2 +q)τ

}
max

{
e

1
2 (qλ−1)x− e

1
2 (qλ+1)x,0

}

(LCP)



find a y(x,τ)such that :(
∂y
∂τ
− ∂2y

∂x2

)
(y−g) = 0

∂y
∂τ
− ∂2y

∂x2 ≥ 0, y−g≥ 0

y(x,0) = g(x,0), 0≤ τ≤ 1
2σ2T,

y(x,τ) = g(x,τ) for x→±∞

(3.38)

In financial terms, the heat-conducting inequality (3.35) means that the expected return

from the riskless delta-hedged portfolio is less than the riskless interest rate Wilmott

et al. (1996).
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3.8 Finite Differences Method

Introduction

This section presents the method of Finite Differences(FD), one of the first approaches

used to compute the value of options on a single underlying asset. However, the origi-

nal FD approach, which was adapted to the Black-Scholes partial differential equations

(B-S PDEs) directly, suffered spurious oscillations.

In order to avoid such disorders, we applied the transformation in equation (3.25),

yielding equation (3.24) , and proceed to formulate the LCP. The latter can be solved

by employing an iterative projection method. Before we start, the domain for our com-

putations will be considered first.

3.8.1 Types of Finite Differences

The main idea of the method of Finite Differences is to replace differentials by differ-

ential quotients. Therefore, we consider the Taylor expansion of an arbitrary function

f : D 7→ ℜ,D ⊂ ℜn open and convex, f ∈ C4: The most common finite difference

methods for solving the partial differential equations are:

• Explicit scheme.

• Implicit scheme.

• Crank Nicolson scheme.

We discuss the Finite difference method quite extensively with a focus on the Crank-

Nicolson schemes, and apply these techniques to the pricing of vanilla options.
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3.8.2 Foundations of Finite-Difference Methods

This section describes the basic ideas of finite differences as they are applied to the

equation (3.24) . Each two times continuously differentiable function f satisfies

f ′(x) =
f (x+h)− f (x)

h
− h

2
f ′′(ξ)

where ξ is an intermediate number between x and x+ h. The accurate position

of ξ is usually unknown. Such expressions are derived by Taylor expansions.

We discretize x ∈ R by introducing a one-dimensional grid of discrete points xi with

· · ·< xi−1 < xi < xi+1 < .. .

For example, choose an equidistant grid with mesh size h := xi+1− xi. The x is

discretized, but the function values fi := f (xi) are not discrete, fi ∈ R. For f ∈C2 the

derivative f ′′ is bounded, and the term −h
2 f ′′(ζ) can be conveniently written as O(h).

This leads to the forward difference with f ∈C2

f ′(xi) =
f (i+1)− f (i)

h
+O(h), (3.39)

and the backward difference yields

f ′(xi) =
f (i)− f (i−1)

h
+O(h), (3.40)

Analogous expressions hold for the partial derivatives of y(x,τ), which includes a dis-

cretization in τ . This suggests to replace the neutral notation h by either ∆x or ∆τ,

respectively. The fraction in equation (3.39) is the difference quotient that approx-

imates the differential quotient f ′ of the left-hand side(LHS); the O(hp) term is the

error. The one-sided (i.e. non-symmetric) difference quotient of equation (3.39) is of

the order p = 1. Error orders of p = 2 are obtained by central differences
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f ′(xi) =
f (i+1)− f (i−1)

2h
+O(h2) (for f ∈ c3)

f ′′(xi) =
f (i+1)−2 f (i)+ f (i−1)

h2 +O(h2) (for f ∈ c4) (3.41)

or by one-sided differences that involve more terms, such as

f ′(xi) =
− f (i+2)+4 f (i+1)−3 f (i)

2h
+O(h2) (for f ∈ c3)

Rearranging terms and indices provides the approximation formula

fi ≈
4
3

fi−1−
1
3

fi−2 +
2
3

h f ′xi (3.42)

which is of second order.

3.8.3 Domain Discretization

Figure 3.4: Detail and notations of the grid

Actually, an American option works on the S− t half strip [0,∞)× [0,T ]. But

it became an x− τ strip (−∞,∞)× [0,τmax] after applying the transformation, where

τmax :=
1
2

σ2T .

Under this section, the domain needs to be discretized to a finite lattice i.e. [xmin,xmax]×

[0,τmax]. Let ∆x and ∆τ be the equidistant mesh sizes of the discretizations of x and

τ. The choice of the x-discretization is more complicated. So, the infinite interval
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−∞ <×< ∞ must be replaced by [xmin ≤ x≤ xmax]. We chose xmin and xmax such that

the solution on the interval [xmin,xmax] is in line with the solution on −∞ < x < ∞.

For m and νmax be a suitable integers, we define the mesh density by ∆x := xmax−xmin
m

and the step in τ as ∆τ := τmax
νmax

. Since the equidistant of the grid simplifies the imple-

mentation and the estimation of the error terms, the work stands better side of it.

The transformation S = Si = Kexi , which makes it appropriate to choose xmin < 0,and

xmax > 0 fit the original limits of the S-interval correctly. The grid is then based on the

knots;

τv := v.∆τ, for v = 0,1, . . . ,νmax

xi := xmin + i∆x for i = 0,1, . . . ,m

Furthermore, wv
i denotes the approximation for yv

i , where yv
i := y(xi,τv). This is only

defined on the discrete nodes and the nodes are the intersection of the points xi and τv.

In contrast to the theoretical solution y(x,τ), yv
i is defined on a continuum.

The error ‖ wv
i − yv

i ‖ depends on the prior choice of parameters m, xmin, xmax and

vmax. A priori we do not know whose choice of parameters matches a prespecified

error tolerance. For instance, if the order of magnitude of these parameters is given

by xmin = −5,xmax = 5,vmax = 100,m = 100. This choice of xmin,xmax has shown to

be reasonable for a wide range of r, σ-values and accuracies. The actual error is then

controlled via the numbers vmax and m of grid lines.

With the reference to equation ( 3.24), the RHS and LHS of it can be written as

equations (3.39) and 3.41 respectively to obtained;

∂

∂τ
yv

i =
yv+1

i − yv
i

∆τ
+O(∆τ), the forward difference (3.43)

and

∂2

∂x2 yv
i =

yv
i+1−2yv

i + yv
i−1

∆x2 +O(∆x2), the central difference (3.44)
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Then the backward difference of the RHS of equation (3.24) also yields

∂

∂τ
yv

i =
yv

i − yv−1
i

∆τ
+O(∆τ), (3.45)

The Explicit Scheme

With w being the approximation for y, where ∆x and ∆τ denoted the introduced mesh

sizes, we replace equations (3.43) and (3.44) into equation (3.24) and discarding the

0-error terms leads to

wv+1
i −wv

i
∆τ

=
wv

i+1−2wv
i +wv

i−1

∆x2 (3.46)

Solving for wv+1
i under the idea of explicit scheme, where all values w are cal-

culated for the time level v, then the values of the time level (v+1) are given by

wv+1
i = wv

i +
∆τ

∆x2 (w
v
i+1−2wv

i +wv
i−1)

.

Further, starting at v = 0, as all w0
i := y(xi,0), i = 0, . . . ,m are known, each w1

i can

explicitly be calculated (hence the name of the method). Then, successively the next

levels of time can be proceeded, for 1≤ v≤ vmax.

With the notation ζ := ∆τ

∆x2 , the result is written compactly in time-iteration form as

wv+1
i = ζwv

i+1 +(1−2ζ)wv
i +ζwv

i−1. (3.47)

The total error is O(∆τ+∆x2) for y ∈C4,2(D̄w), for Dw := (xmin,xmax)× (0,τmax).

The Implicit Scheme

This method is sometimes called implicit method. But to distinguish it from other

implicit methods, we call it fully implicit, or backward-difference method, or more

accurately, backward time centered space scheme (BTCS).
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Figure 3.5: Connection scheme of the explicit method

Using the backward difference, equation (3.45) and equation (3.44) to discretize the

heat-conducting equation,(3.24), yields

wv
i −wv−1

i
∆τ

=
wv

i+1−2wv
i +wv

i−1

∆x2

This is rewritten as

wv+1
i −wv

i
∆τ

=
wv+1

i+1 −2wv+1
i +wv+1

i−1

∆x2 , (3.48)

with the same 0-error terms as in the explicit scheme. Sorted by time-levels, we obtain

the iteration form

−ζwv+1
i+1 +(2ζ+1)wv+1

i −ζwv+1
i−1 = wv

i (3.49)

The equation (3.49) couples three unknowns. Therefore, only the value wv
i of the RHS

of the equation (3.49) is known, whereas on the LHS of the same equation in each step,

one has to compute three unknown variables. The corresponding molecule is shown in

Figure 4.3

Eventually this leads to a linear system of equations (LSE) that includes all time

stages. This system can then be solved. The method is unconditionally stable for all

∆τ > 0
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Figure 3.6: Molecule of the backward-difference method

The Crank-Nicholson Scheme

This last scheme was proposed by Crank and Nicholson (1947). They applied the

forward scheme in time step v of equation (3.46), the backward scheme at step (v+1)

of equation (3.48) and to average them. The summation of equations (3.46) and (3.48),

and truncating the error terms yields

wv+1
i −wv

i
∆τ

=
wv

i+1−2wv
i +wv

i−1 +wv+1
i+1 −2wv+1

i +wv+1
i−1

2∆x2 (3.50)

With ζ := ∆τ

∆x2 the equation (3.50) can be rewritten as

−ζ

2
wv+1

i−1 +(1−ζ)wv+1
i − ζ

2
wv+1

i+1 =
ζ

2
wv

i−1 +(1−ζ)wv
i +

ζ

2
wv

i+1. (3.51)

To get the error for the CN scheme for a y ∈ C4,3(D̄w), Dw defined as before,

first consider the L.H.S. of 3.50 by using the first three terms of the Taylor expansion,

it can be approximated by

(w(v−∆τ)−w(v))
∆τ

= wτ +
1
2

wττ∆τ+O((∆τ)2)

From the R.H.S. of equation (3.50) it follows

1
2
(wxx(x,τ)+wxx(x,τ+∆τ)) =

1
2
(2wxx +wxxτ∆τ+O((∆x)2 +(∆τ)2))
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Eventually, we get the total consistency error

cerr = wτ−wxx +
1
2

∆τ(wττ)−wxxτ +O((∆x)2 +(∆τ)2)

Figure 3.7: Molecule of the Crank-Nicolson method

So finally the Crank-Nicholson approach has got a better order than the former

two methods. But similar to the one before, there is no explicit way to solve (3.51).

Again, one needs to set up an LSE, which then can be evaluated. Thus, the CN scheme

is also of implicit type.

3.9 FDM in a Linear System of Equations

The iteration of the three FD schemes i. e. equations ( (3.51), (3.49) and (3.47)) can

be written as a sequence of LSEs, that is

Awv+1 = Bwv + cv, v = 0, . . . ,vmax−1 (3.52)

with the matrices
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A =



1+2ζθ −ζθ 0

−ζθ
. . . . . .
. . . . . . . . .

0 . . . . . .


, B =



1−2ζθ̃ ζθ̃ 0

ζθ̃
. . . . . .
. . . . . . . . .

0 . . . . . .


The two matrices are tridiagonal and of the dimension (m− 1)× (m− 1). The free

paremeters θ and θ̃ := 1−θ denote the particular FD scheme, where for;

• θ = 0,one has the explicit,

• θ = 1
2 , the Crank-Nicolson

• θ = 1, the implicit one .

ζ = ∆τ

∆x2 , as defined before. The vectors are wi := (wi
1, . . . ,w

i
m−1)

T , i = {v,v+

1} and cv := (cv
0,0, . . . ,0,c

v
m)

T . The elements cv
0 and cv

m contain the terms that were

discarded when setting up matrix A and B. In particular, they are defined by the bound-

ary conditions of the PDE. Note that the actual setup of the matrices A and B depends

both on m and vmax, where the former parameter influences the size, and both of them

affect the eigenvalues.

3.10 Existence of a Uniform Solution

A uniform solution of the system of equations (3.52) exists, if matrix A has an inverse,

which is actually true for ζ > 0 and θ∈ [0,1]. To prove this statement, we need to show

that no eigenvalue λ of A equals zero:

Let x := (x1, . . . ,xn)
T be an arbitrary eigenvector of A with the corresponding eigen-

value λ. Let xi := max{|x j| : x j is element ofx}, i, j = {1, . . . ,n}. Then, from λxi =

(Ax)i = ∑
j=1,...,n

ai jx j, after division by xi 6= 0 follows:

|λ−aii|=

∣∣∣∣∣∑j 6=i
ai j

x j

xi

∣∣∣∣∣≤∑
j 6=i
|ai j|
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So by claim of Gerschgorin’s Theorem, for the eigenvalues of A as in (3.52), one has

1≤ λ≤ 1+4ζθ,

with ζ and θ defined as before, and in particular,λ≤ 0, q.e.d.

3.11 Finite Differences Applied to American Options

Following Seydel (2002) Finite Differences are an efficient tool to solve the parabolic

equation. Recall from (3.38), that in order to evaluate American options, we actually

need to solve a LCP, containing a heat-inequality. This means, that the iteration (3.52)

needs to be adjusted to

Aw(v+1) ≥ Bw(v)+ c(v), v = 0, . . . ,vmax−1 (3.53)

Additionally, the LCP claims y−g≥ 0, which in terms of the FD discretization

leads to w(v) ≥ g(v) . Note that inequalities in vectors are meant to be component-wise.

The last things missing are the initial conditions (w0), and the structure of vector c,

which is defined by the boundary conditions. From the LCP (3.38) we get w0
i = g0

i for

i = 1, . . . ,m−1, i.e. w0 = g0. The boundary conditions are w(v)
0 = g(v)0 and w(v)

m = g(v)m

for all v≥ 1, yielding

c(v) :=



ζθg(v+1)
0 +ζθ̃g(v)0

0
...

0

ζθg(v+1)
m +ζθ̃g(v)m


(3.54)

Since in step (v+1) the R.H.S. of (3.53) is completely known, we can set

b := Bw(v)+ c(v), (3.55)
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and rewrite the LCP (3.38):


find w := w(v+1), such that

Aw≥ b, w≥ g, (w−g)T (Aw−b) = 0
(3.56)

3.12 Implementation of the Methods

This section adds on to the LCPs derived by the finite difference method (3.56). The

problem involves the three equations

Aw≥ b, w≥ g, (w−g)T (Aw−b) = 0. (3.57)

This section will introduce a solution scheme for these equations and provide a closed

form algorithm for the actual computation.

3.12.1 Iterative Solution of a Linear System of Equations

We consider the linear system of equations

Ax = b, A ∈ Rn×n, b, x ∈ Rn, (3.58)

and assume that A is symmetric and positive definite. There are many ways to solve

a linear system of equations with numerical methods. However, in our context, when

dealing with large sparse matrices (A), iteration methods are of advantage, compared

to ordinary elimination schemes, since they require less memory and arithmetic cost.

The main idea to solve a linear system of equations by fixed point iteration is to

choose a suitable regular matrix Q ∈ Rn×n, such that we rewrite equation (3.58)

Qx = (Q−A)x+b (3.59)

x = (I−Q−1A)x+Q−1b = Φ(x) (3.60)
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Now let M = (I−Q−1A) and c = Q−1b, then

xk+1 = Φ(x(k)) = Mx(k)+ c. (3.61)

Equation (3.61) converges if and only if ρ(M) < 1, where ρ(M) is the spectral radius

of M. In order to optimize convergence, we require the matrix M in an appropriate

manner. Therefore, we decompose A into A = D−L−U, where D contains the diag-

onal, L and U are the lower and the upper elements of A, respectively. We now focus

on Relaxation Methods. Let us choose

Q :=
1
ω

D−L =⇒Mω = I− (
1
ω

D−L)−1A,

with a relaxation parameter ω > 0. This leads to the iteration

x(k+1) =

(
I−
(

1
ω

D−L
)−1

A

)
x(k)+

(
1
ω

D−L
)−1

b. (3.62)

When ω = 1 then equation (3.62) equals the Gauss-Seidel method. For 0 < ω < 1,

the iteration is called damped, and for 1 < ω < 2 the scheme is called Successive

Over-relaxation (SOR). In practice, we can approach the iteration by rewriting (3.62)

equivalently as

1
ω
(D−L)x(k+1) =

((
1
ω

D−L
)
−A
)

x(k)+b ⇐⇒ (3.63)

1
ω

Dx(k+1) = Lx(k+1)+

((
1
ω

D−L
)
−D+L+U

)
x(k)+b ⇐⇒ (3.64)

x(k+1) = x(k)+ωD−1(Lx(k+1)−Dx(k)+Ux(k)+b), (3.65)

and assuming that for step x(k+1) the components x(k+1)
i , 1 ≤ i ≤ j− 1, are already

known.
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3.12.2 The Projected SOR Method

We were dealing with problem (3.57), which contained a linear system of inequalities.

To be able to use an iterative scheme for linear system of equations on this problem,

we need to make some modifications. In particular, we will focus on an extension of

the SOR method. We rewrite (3.57) as

w−A−1b≥ b, w−g≥ g, (w−g)T (Aw−b) = 0 ⇐⇒ (3.66)

min
w
{w−A−1b, w−g}= 0 ⇐⇒ (3.67)

w = max{A−1b, g} (3.68)
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Chapter 4

Analysis and Results

4.1 Introduction

This chapter presents an analysis on the implementation of the black Scholes model

with and without dividend. The thesis sake of the analysis the various benchmark

parameter are chosen. The tolerance parameter (ε) is chosen as 10−6. This is due

to the fact that PSOR iteration, the accuracy of the convergence test depends on the

tolerance parameter. Usually tolerance parameter value less than 10−3 leads to quite

inaccurate results. The iteration speed also depends on the relaxation parameter(ω).

For PSOR iteration, the relation parameter is usually between one and two inclusive,

1≤ w≤ 2. Par the nature of our iteration, we choose the relaxation parameter as 1.15.

We discuss the impact of dividend on both American option and European option. The

numerical computations are implemented in MatLab.
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4.2 A Put Option with Non-dividend Paying Stock

Analysing the American and European put option with non-dividend paying stock,

the risk free interest rate is taken as 0.25. The price of the underlying (S) and the

strike price (K) are both chosen as 50. An annual volatility (σ) is chosen as 0.4.

Because higher volatility sometimes deters investors from investing. The maturity

time of underlying (T ) is 5
12 , ie that fifth month in the year and dividend λ is chosen as

zero because we are considering a non-divided paying stock.

Figure 4.1: The value function V (S,0) of the European and American put when K =
50, σ = 0.6, r = 0.25, T = 5

12 , S = 50.

Figure 4.1 shows the comparison between American put option, American Call

option and the payoff function. The payoff function is zero when the price of the

underlying asset is greater than the strike price. The American put is in parallel shape

to the European put. With the American put lying on top of the European implies the

American put with dividend equal to zero have similar prices to the European put. The

price of the American put is also the same as the payoff function at the initial stages of

the iteration but moves away from each other at the certain stages of the calculation.
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4.3 A Call Option with different Dividend values

An American put option is evaluated with the following financial values. The strike

price (K) is chosen as 50. An annual volatility (σ) equal 0.6. The risk free interest

rate (r) and the maturity time of underlying(T ) are both 0.25 and 1 respectively. We

compute this based on different dividend values.

From Figure 4.2 the red graph represents a dividend level of 0.6, while as the

blue line represents a dividend of 0.3. As dividend is increased the value of the call

option also increases. At stock prices less then 30, there are no distinct differences

between the call option with dividend equal 0.3 and call option with dividend equal

0.6.

Figure 4.2: The value function V (S,0) of the American call when K = 50,σ = 0.6, r =
0.25, T = 5

12

These are evaluated with the projected over-successive relaxation algorithm.

The table below gives an elaboration of the Figure 4.2.
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Table 4.1: A Call Option with different Dividend
Stock Price Call Option λ = 0.3 Call Option λ = 0.6
5 1.5721e-09 5.4211e-23
10 0.0001 3.8319e-07
15 0.0069 0.0030
20 0.0756 0.0380
25 0.3538 0.1967
30 1.0313 0.6192
35 2.2495 1.4349
40 4.0593 2.7179
45 6.4324 4.4799
50 9.2944 6.6852
55 12.5545 9.2734
60 16.1247 12.1757
65 19.9288 15.3269
70 23.9056 18.6701
75 28.0077 22.1587
80 32.1999 25.7558
85 36.4563 29.4330
90 40.7583 33.1690
95 45.0925 36.9480
100 49.4494 40.7583

As the spot price of the stock increases the value of the call option at these

different dividend values also increases. All call values at λ = 0.3 are greater then call

values at λ = 0.6.

4.4 A Call Option with Dividend Paying Stock

Now examining the differences between the European call, the payoff function and the

American call option with dividend paying stock, we considered dividend λ value of

0.2 is used for the computation. The price of the underlying (S) and the strike price (K)

are both chosen as 80. An annual volatility (σ) is chosen as 0.6. The risk free interest

rate (r) and the maturity time of underlying(T ) are chosen as 0.25 and 5
12 respectively.

Though the pictorial view depict same prices for the American call, the Euro-

pean call and the payoff function when the strike price is less than thirty. There are

slight differences between the corresponding numerical values. The payoff function
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is zero when the price of the underlying asset is less than the strike price. The payoff

function rises immediately the price of the underlying asset becomes greater than the

strike price.

Figure 4.3: The value function V (S,0) of the European and American call when K =
80, σ = 0.6, λ = 0.2, r = 0.25, T = 5

12 , S = 80.

The payoff function intersect both the European call and the American call func-

tions. But, it intersects the European call at lower call price with it relativity to the

American option. The PSOR simulation of the American call with dividend paying

stock more desirable than the European call. A similar analysis of a put option with

dividend paying stock is shown in Figure 4.4.

4.5 A put option with dividend paying stock

An American put option with dividend paying stock is evaluated with the following

financial values. The strike price (K) = 80 , an annual volatility (σ) equal 0.6. The

risk free interest rate (r) = 0.25, the maturity time of underlying, measured in years

(T ) = 1. S = 80, that is, the asset value price at issuing date and dividend λ = 0.2.
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Below shows a clear cut distinction between American put dividend paying

stock, the pay-off function and the European put. The blue line represents for the

American put option, the green line for the European put, and the pay-off function

by the red line. The pay-off function has an intersection with both the American and

European put. Figure 4.4 presents a put option on which dividend are paid.

Figure 4.4: The value function V (S,0) of the European and American put when K =
80, σ = 0.6, r = 0.25, T = 1, S = 80.
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4.6 Convergence to the Exact Solution

The following financial values were employed for the Numerical Simulation in Table

4.2. The strike price (K) = 10 , an annual volatility (σ) equal 0.6, dividend λ = 2
10 .

The risk free interest rate (r) = 0.1, the maturity time of underlying, measured in years

(T ) = 5
12 . S = 10, that is, the asset value price at issuing date.

Vmax = M Time (sec) Value of option
100 0.3899 26.9890
200 1.5302 27.0059
300 4.0597 27.0090
400 7.9792 27.0101
500 14.0717 27.0106
600 22.3674 27.0109
700 32.2696 27.0111
800 45.3769 27.0112
900 61.1237 27.0112
1000 78.5957 27.0112
2000 154.0145 27.0112
3000 434.9952 27.0112
4000 912.5345 27.0112
5000 1684.2001 27.0112

Table 4.2: Value of the option as the mesh size M is varied

As the mesh size for the PSOR iteration Vmax = M increases, the price of the

option converges to the exact solution. There are no changes in the price of the option

as the value of mesh size goes beyond 800. All higher values of mesh size has an

option value of 27.0115. Hence, the exact solution of the option is 27.0115.
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4.7 Option at Early Exercise

An American call option with dividend paying stock, where early exercise exist is

evaluated with the strike price (K) = 80 , an annual volatility (σ) equal 0.6. The

risk free interest rate (r) = 0.25, the maturity time of underlying, measured in years

(T ) = 1. The current price was issued at S = 80 attracting dividend (λ) of 0.2.

Figure 4.5: The value function V (S,0) of the European and American call when K =
80, σ = 0.6, r = 0.25, T = 1, λ = 0.2, S = 80.

At a price S f (t), the American call option behaves almost identically to the pay-

off function which implies that early exercise is possible. This means that the option

value tangentially touches the pay-off function in S f (t). As long as the the option value,

V (S, t) coincides with the pay-off function, a financial investor executes the option as

early as possible to maximize profit.

Furthermore, at the point when S is less than S f (t) i.e. ( S < S f (t) ), the holder

will retain or hold the option and allow it goes worthless. Conversely, the holder will

exercise the call option and make profit if the spot price S is greater than or equal to
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S f (t) . This means that if a call is executed, K purchased stock is sold for S and the

profit S−K should be invested in a risk-less asset.

Therefore, early exercise becomes possible at a stock price of 139.0154. This is

shown by the position of the free boundary point S f (t) in Figure 4.5 above.

4.8 Selceted PSOR tolerance values

The numerical results for the adjusted tolerances 10−6, 10−7 , 10−8 and 10−9 gives the

same price of option as the number of step size, (M) keeps on changing. However, the

time which is measured in seconds vary as M keeps changing.

10−6 10−7 10−8 10−9

Vmax = M Time Value Time Value Time Value Time Value
100 0.3899 26.9890 0.4234 26.9890 0.4430 26.9890 0.4376 26.9896
200 1.5302 27.0059 1.7624 27.0059 1.9834 27.0059 2.1346 27.0059
300 4.0597 27.0090 4.5112 27.0090 5.1234 27.0090 5.5700 27.0090
400 7.9792 27.0101 9.0976 27.0101 10.3388 27.0101 11.3361 27.0101
500 14.0717 27.0106 15.6140 27.0106 17.4682 27.0106 195427 27.0106
600 22.3674 27.0109 24.9805 27.0109 27.9952 27.0109 30.9696 27.0109
700 32.2696 27.0110 36.5399 27.0111 416835 27.0111 45.4040 27.0111
800 45.3769 27.0112 51.8811 27.0112 58.3954 27.0112 64.0929 27.0112
900 61.1237 27.0112 69.0228 27.0112 79.2385 27.0112 88.4214 27.0112
1000 78.5957 27.0112 90.3653 27.0112 105.2096 27.0112 117.6885 27.0112

Table 4.3: Numerical simulation times, with selected PSOR tolerances 10−6, 10−7 ,
10−8 and 10−9 , measured in seconds

The corresponding graph for the numerical results for the adjusted tolerances

10−6, 10−7 , 10−8 and 10−9 is shown in Figure 4.6
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Figure 4.6: Error analysis when λ= 0.2K = 10, σ= 0.6, r = 0.1, T = 5
12 , λ= 0.2, S=

10.

As the tolerance value is increased, the time needed to complete a single iteration

also increase. This iteration was done with HP ProBook 4530s laptop with Windows 7

operating system. Intel Core i3 2350M CPU @ 2.3GHz, 4GB DDR3 RAM Memory,

500GB Hard Disk Drive, 15.6” HD LED.
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4.9 Effect of varied Interest rate

With the dividend rate, λ given as 0.2. The price of the underlying (S) and the strike

price (K) are both chosen as 80. An annual volatility (σ) is chosen as 0.6. The maturity

time of underlying (T ) is 1. The asset matures at the end of the years.

The price of the option at 10% interest rate for all values of the strike price are

much higher than at 30%, 60% and 80% interest rate. As the rate of interest rises,

the price of American put option falls. Figure 4.7 demonstrated this distinct values of

interest rate.

Figure 4.7: Value of American put option with interest rate values of 10%, 30%, 60%,
and 80%
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4.10 Value of the Option with varying annual volatility

American put option are evaluated with the following financial values. The risk free

interest rate (r) and the maturity time of underlying(T ) are both 0.25 and 5
12 respec-

tively. The asset price at issuing date, S = 80. The strike price (K) is chosen as 80 and

dividend λ = 0.2. We compute this based on different annual volatility values.

Figure 4.8: An American put option with selected annual values for volatility

The volatility rates for this simulation are 0.2, 0.4, 0.6, and 0.8. This is in-

dicated in Figure 4.8. Within a particular range of the strike price, the prices of the

American put remains same for all values of volatility selected for the simulation. At

the latter part, the disparity between the prices of the option is shown clearly.
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4.11 Different Maturity Times Measured in Years

Quarterly time intervals in years are chosen for computing the value of the on American

call option. The following financial values were employed for the calculation in Figure

4.9. The strike price (K) = 50 , an annual volatility (σ) equal 0.6, dividend λ = 2
10 .

The risk free interest rate (r) = 0.25, S = 10, that is, the asset value price at issuing

date.

Figure 4.9: American call option when λ= 0.2, K = 10, σ= 0.6, r = 0.1, T = 5
12 , λ=

0.2, S = 10.

For American call with dividend paying stock, the early exercise value remains

the same irrespective of the time of maturity. This is shown by the point of intersections

in Figure 4.9. Maturity time is an important element to consider when dealing with

American option.
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Chapter 5

Conclusion and Recommendations

5.1 Introduction

In this chapter, we conclude based on the discussed results obtained from the simula-

tions in chapter four. Based on these same results we make possible recommendations

to researchers and businessmen who are into options.

5.2 Conclusion

In this study, we made a review on financial derivatives. The main types of financial

derivatives are futures, forwards, swaps and options. The underlying assets that are

traded under financial markets are stocks, bonds, interest rate and commodities such

as cocoa, gold and oil. The various types of options that were considered are the

American options- call and put; and European options - call and put.

The study looked at the Black Scholes model. We transformed the Black Sc-

holes PDE to heat conduction PDE for easy computation. We formulated a linear

complementarity problem (LCP) to solve the heat equation in a discrete domain by

applying the projected successive over-relaxation (PSOR) method and showed that the

details of discritization and assembling of matrices for the LCP depend on the choice

of the finite difference method. We considered all the finite difference approaches;

the explicit method, the implicit method and the Crank Nicholson method. The Crank
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Nicholson Scheme was chosen because it was found to be an unconditionally stable

compared to the other two finite difference scheme.

We applied the Crank Nicolson method in valuing standard option with dividend

paying stock. Different financial values were chosen for the computation. We evalu-

ated for a call option at different dividends values. It was realized that the price of the

option has negative relationship with the dividend value.

The result revealed that the American option and European options does not

intersect their pay-off function on the non-dividend paying stock (λ = 0). As a result,

the price of American call equals to the European style call where early exercise of the

option is of no important to its holder. So it is important to note that for American calls

a dividend yield λ 6= 0 is needed as early exercise will be observed.

For the dividends paying stocks, the computational results for the prices of the

American option exceed the analytical solution. The pay-off function intersects both

the European call and the American call functions. But, it intersects the European call

at lower call price compared to the American option. The PSOR simulation of the

American call with dividend paying stock is more desirable than the European call.

For the put option, the American option is also favourite.

For early exercise, the holder has to exercise the call option and make profit

when the spot price S is greater than or equal to S f (t). This means that, if a call is

executed, K purchased stock is sold for S and the profit S−K should be invested in a

risk-less asset.

5.3 Recommendations

The PSOR method is recommended for solving the transformed Black Scholes equa-

tion because of it high speed of convergence.

The result of the study showed that American option with non-dividend paying

stock has a close solution to the European option. But for dividend paying stock the

American option is preferred to the European option. We would advise the financial

institutions to adapt to the American option when dividends are paid.
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In the area of mathematical finance, there is still the need for more advanced

mathematical models which make simulation very efficient and accurate. The thesis

used the finite difference scheme (Crank Nicolson Method) at a discretization scheme

for the transformed Black-Scholes equation. The finite element method (FEM) may

minimize the error function and may produce a stable, because it connects many tiny

straight lines to form a curve over many small sub-domains. Researchers can consider

an extension of these work by discretizing the Black-Scholes equation with either iter-

ative techniques or meshfree methods.

Extension can also be done on pricing American option with two or more un-

derlying assets since the study looked at the valuation of a single underlying asset.
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Appendix A

Matlab code for PSOR

function [x,iter] = PSOR(A, b, f, x, omega, maxIter, tol)

%PSOR(A, b, f, x, omega, maxIter, tol) solve the LCP

%A*x >= b, x >= f, (x - f)’*(A*x - b) = 0, for x

%omega - relaxation parameter (0,2)

%maxIter - maximum interations

%tol - tolerance for stopping critia

%Note if A is not symmetric positive definite and consistently

% orders this may not converge

%see also LCPforPDE

%The don’t run signal

if(tol>=1.0)

iter = 0;

return

end

%check the LCP conditions to see if we already have the solution

r = A*x - b;

if(all(r >= 0) && all(x >= f) && (x-f)’*(r)==0.0)

iter = 0;

return
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end

omegaOD = omega./diag(A);

At = transpose(A);

N = length(x);

lim = 8*floor(N/8);

for iter = 1:maxIter

xOld = xt;

%loop unwind

for i = 1:8:lim

xt(i) = max(f(i),xt(i) + omegaOD(i)*(b(i)-xt*At(:,i)));

xt(i+1) = max(f(i+1),xt(i+1) + omegaOD(i+1)*(b(i+1)-xt*At(:,i+1)));

xt(i+2) = max(f(i+2),xt(i+2) + omegaOD(i+2)*(b(i+2)-xt*At(:,i+2)));

xt(i+3) = max(f(i+3),xt(i+3) + omegaOD(i+3)*(b(i+3)-xt*At(:,i+3)));

xt(i+4) = max(f(i+4),xt(i+4) + omegaOD(i+4)*(b(i+4)-xt*At(:,i+4)));

xt(i+5) = max(f(i+5),xt(i+5) + omegaOD(i+5)*(b(i+5)-xt*At(:,i+5)));

xt(i+6) = max(f(i+6),xt(i+6) + omegaOD(i+6)*(b(i+6)-xt*At(:,i+6)));

xt(i+7) = max(f(i+7),xt(i+7) + omegaOD(i+7)*(b(i+7)-xt*At(:,i+7)));

end

for i = lim+1:N

xt(i) = max(f(i),xt(i) + omegaOD(i)*(b(i)-xt*At(:,i)));

end

error = norm( xt - xOld ) / norm( xt );

if ( error <= tol ), break, end

end

if ( error > tol )

errMsg= MException(’OpenGamma:PSOR’,’no convergence’);

throw (errMsg);

end x = transpose(xt); end
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Appendix B

Matlab Code for LCP

function x = LCP(M,q,parameters)

%LCP(M,q,parameters) Solve the Linear Complementarity Problem.

% USAGE

% x = LCP(M,q) solves the LCP

% x >= 0

% Mx + q >= 0

% x’(Mx + q) = 0

% x = LCP(M,q,l,u) solves the generalized LCP (a.k.a MCP)

% l < x < u => Mx + q = 0

% x = u => Mx + q < 0

% l = x => Mx + q > 0

%x = LCP(M,q,l,u,x0,display) allows the optional initial value ’x0’ and

%a binary flag ’display’ which controls the display of iteration data.

% Parameters:

%tol- Termination criterion. Exit when 0.5*phi(x)’*phi(x) < tol.

%mu - Initial value of Levenberg-Marquardt mu coefficient.

% mu_step - Coefficient by which mu is multiplied / divided.

%mu_min - Value below which mu is set to zero (pure Gauss-Newton).

%max_iter - Maximum number of (successful) Levenberg-Marquardt steps.

%b_tol- Tolerance of degenerate complementarity: Dimensions where
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% max( min(abs(x-l),abs(u-x)) , abs(phi(x)) ) < b_tol

% are clamped to the nearest constraint and removed from

% the linear system.

% ALGORITHM

%This function implements the semismooth algorithm as described in [1],

%with a least-squares minimization of the Fischer-Burmeister function using

%a Levenberg-Marquardt trust-region scheme with mu-control as in [2].

n = size(M,1);

%defaults

tol = 1.0e-12;

mu = 1e-3;

mu_step = 5;

mu_min = 1e-5;

max_iter = 10;

b_tol = 1e-6;

l = zeros(n,1);

u = inf(n,1);

x0 = ones(n,1);

display = false;

if(nargin>2)

if(isfield(parameters,’tol’)), tol = parameters.tol; end

if(isfield(parameters,’mu’)), mu = parameters.mu; end

if(isfield(parameters,’mu_step’)), mu_step = parameters.mu_step; end

if(isfield(parameters,’mu_min’)), mu_min = parameters.mu_min; end

if(isfield(parameters,’max_iter’)), max_iter = parameters.max_iter; end

if(isfield(parameters,’b_tol’)), b_tol = parameters.b_tol; end

if(isfield(parameters,’l’)), l = parameters.l; end

if(isfield(parameters,’u’)), u = parameters.u; end
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if(isfield(parameters,’x0’)), x0 = parameters.x0; end

if(isfield(parameters,’display’)), display = parameters.display; end

end

lu = [l u];

x = x0;

[psi,phi,J] = FB(x,q,M,l,u);

new_x = true;

warning off MATLAB:nearlySingularMatrix

for iter = 1:max_iter

if new_x

[mlu,ilu] = min([abs(x-l),abs(u-x)],[],2);

bad = max(abs(phi),mlu) < b_tol;

psi = psi - 0.5*phi(bad)’*phi(bad);

J = J(˜bad,˜bad);

phi = phi(˜bad);

new_x = false;

nx = x;

nx(bad) = lu(find(bad)+(ilu(bad)-1)*n);

end

H = J’*J + mu*speye(sum(˜bad));

Jphi = J’*phi;

d = -H\Jphi;

nx(˜bad) = x(˜bad) + d;

[npsi,nphi,nJ] = FB(nx,q,M,l,u);

r = (psi - npsi) / -(Jphi’*d + 0.5*d’*H*d);

% actual reduction / expected reduction
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if r < 0.3 % small reduction, increase mu

mu = max(mu*mu_step,mu_min);

end

if r > 0 % some reduction, accept nx

x = nx;

psi = npsi;

phi = nphi;

J = nJ;

new_x = true;

if r > 0.8 % large reduction, decrease mu

mu = mu/mu_step * (mu > mu_min);

end

end

if display

fprintf(’iter = %2d, psi = %3.0e, r = %3.1f, mu = %3.0e\n’,iter,psi,r,mu);

end

if psi < tol

break;

end

end

warning on MATLAB:nearlySingularMatrix

x = min(max(x,l),u);

function [psi,phi,J] = FB(x,q,M,l,u)

n = length(x);

Zl = l >-inf & u==inf;

Zf = l==-inf & u==inf;

a = x;
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b = M*x+q;

a(Zl) = x(Zl)-l(Zl);

a(Zu) = u(Zu)-x(Zu);

b(Zu) = -b(Zu);

if any(Zlu)

nt = sum(Zlu);

at = u(Zlu)-x(Zlu);

bt = -b(Zlu);

st = sqrt(at.ˆ2 + bt.ˆ2);

a(Zlu) = x(Zlu)-l(Zlu);

b(Zlu) = st -at -bt;

end

s = sqrt(a.ˆ2 + b.ˆ2);

phi = s - a - b;

phi(Zu) = -phi(Zu);

phi(Zf) = -b(Zf);

psi = 0.5*(phi’*phi);

if nargout == 3

if any(Zlu)

M(Zlu,:) = -sparse(1:nt,find(Zlu),at./st-ones(nt,1),nt,n)

- sparse(1:nt,1:nt,bt./st-ones(nt,1))*M(Zlu,:);

end

da = a./s-ones(n,1);

db = b./s-ones(n,1);

da(Zf) = 0;
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db(Zf) = -1;

J = sparse(1:n,1:n,da) + sparse(1:n,1:n,db)*M;

end
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Appendix C

Matlab Code for the Value of the

option

function opt = roo05_06_2013(status)

% input parameters

% american options

%clc, close all hidden

global r vol lambda qLambda q

K = 80; % strike

T = 1; % time to expiration

r = 0.25; % risk free interest rate

vol = 0.6; % volatility

lambda = 0; % dividend

% status = ’call’;

xmax = 0;

xmin = -5;

% LCP

theta = 1/2;

% if isequal(status,’put’)
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m = 100;

h = (xmax - xmin)/m;

vmax = 100;

tauMax = ((volˆ2)*T)/2;

dtau = tauMax/vmax;

zeta = dtau/(hˆ2);

x = xmin:h:xmax;

S0 = K*exp(x(1)); % spot price

tau = 0:dtau:tauMax;

% creating the matrices

A = zeros(m,m);

B = zeros(m,m);

for i = 1:m

A(i,i) = 1 + 2*zeta + theta;

B(i,i) = 1 - 2*zeta + (1 - theta);

end

for i = 1:m-1

A(i,i+1) = -zeta*theta;

A(i+1) = A(i);

B(i+1,i) = B(i,i+1);

end

c = zeros(m,1);

c(1) = zeta*theta*gfunction(x(1),0,status)

+ zeta*(1 - theta)*gfunction(x(1),0,status);

c(m) = zeta*theta*gfunction(x(m),0,status)

+ zeta*(1 - theta)*gfunction(x(m),0,status);

w = zeros(m,1);
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f = zeros(m,1);

for i = 1:m

w(i) = gfunction(x(i),0,status);

f(i) = gfunction(x(i),tau(i),status);

end

b = B*w + c;

% w = LCP(A,b);

tol = 10ˆ(-6);

omega = 1.5;

maxIter = 100;

[w,iter] = PSOR(A,b,f,w,omega,maxIter,tol);

for i = 2:m+1

V(i-1) = K*w(i-1)*exp(-(x(i)/2)*(qLambda - 1))

*exp(-tauMax*((1/4)*(qLambda - 1)ˆ2 + q));

end

% temp = [];

if isequal(status,’put’)

err = K*10ˆ(-5);

f = abs(V + S -K);

idx = find(f < err);

Sif = max(f(idx));

plot(fliplr(S));hold on;plot(V(end),S(round(V(end))),’r.’)

if S0 < Sif

return

% temp = [temp f];

end
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elseif isequal(status,’call’)

err = K*10ˆ(-5);

f = abs(K - S + V);

idx = find(f < err);

Sif = min(f(idx));

plot(S);hold on;plot(V(end),S(round(V(end))),’r.’);

if S0 > Sif

return

% temp = [temp f];

end

end

opt = V(end);

% the prototype core algorithm

function g = gfunction(x,tau,status)

% required parameters

global r vol lambda qLambda q

q = (2*r)/(volˆ2);

qLambda = (2*(r - lambda))/(volˆ2);

if isequal(status,’put’)

g1 = exp(tau/4*((qLambda - 1)ˆ2 + 4*q));

g2 = max(exp((x/2)*(qLambda - 1)) - exp((x/2)*(qLambda + 1)),0);

g = g1 + g2;

elseif isequal(status,’call’)

g1 = exp(tau/4*((qLambda - 1)ˆ2 + 4*q));

g2 = max(exp((x/2)*(qLambda + 1)) - exp((x/2)*(qLambda - 1)),0);

g = g1 + g2;

end
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