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ABSTRACT 
 

The complexities presented by today’s economies required a model approach to provide a clearer 

and a more reliable solution to today’s economic problems of Ghana. 

The research therefore approaches the above problem by constructing a simple economic model 

of the economy of Ghana. 

This was done by using the Box-Jenkins method of Time Series Analysis of system identification 

with data from the Bank of Ghana, Kumasi Branch, and comprising quarterly series of the main 

economic components of the economy  of Ghana such as; Inflation, Total money supply, Interest 

rate, Gross Domestic Product, Capital stock, Government Expenditure, Investment, Balance of 

Trade and Consumption. 

As a result Autoregressive (AR) Models were constructed for each of the economic components. 

A simple economic model of the economy of Ghana in the form of a difference equation model 

was constructed. 

In addition, a homogeneous First order difference equation of the form  𝑋𝑘+1 = 𝐴𝑋𝑘  was found 

to be stable at a given equilibrium.  

The non-homogeneous model of the economy of the form  𝑋𝑘+1 = 𝐴𝑋𝑘 + 𝐵𝑈𝑘  was found to be 

controllable. 
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CHAPTER  1 

 

INTRODUCTION 

 

1.1 BACKGROUND OF STUDY 

Various economic policies have been put forward from independence to date, by the successive 

governments of Ghana, in an effort to raise the standard of living for the average Ghanaian. But 

these “good” intention has a lot of set back as a result of the imbalances in the World’s economic 

order leaving the average Ghanaian worse off than before independence (A.K. Osei-Ofosu, 

2003). 

On the basis of today’s levels of per capita income for grouping countries, Ghana would have 

been ranked as a middle-income country at the time of independence in 1957, a status that the 

country is aspiring to achieve by the year 2020 (Ibid 2003). 

Ghana’s economy depends on many indicators, Inflation, Interest Rate, Capital Stock, 

Investment, Total Money Supply, Government Expenditure, Gross Domestic Product, 

Consumption and Trade Balance. These above mentioned indicators have had their rise and fall 

in the performance of the Ghanaian economy before, and after independence. 

A policy to rapidly develop social and economic infrastructure after independence in 1957 

resulted in a quick draw down on the country’s foreign exchange reserves, which saw growth in 

the economy (A. K. Osei-Fosu, 2003). This growth was throughout the 1960’s and early 1970’s. 
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However, the Ghanaian economy began a gradual down turn throughout the rest of the 1970, and 

early 1980. This was due to poor domestic policies, economic mismanagement, rapid increase in 

money supply, increased government expenditure, high inflation and interest rate, low 

investment and low GDP, as well as a decline in the per capita income. 

Though various programmes and policies were put in place by the successive governments, from 

1983 to 1991, to salvage the economy, expectations were not met. For instance, the Structural 

Adjustment Programme in 1983, saw real GDP, rose from (-7%) to over 8% in 1984, and 

maintain growth rate above 5% in 1985 and 1986.  But between 1986 to 1990, it fell back to 

4.8%. Inflation rose from 10% in 1985 to 37% by 1990. Balance of trade deficits increased from 

2.7 billion dollars in 1986 to 3.5 billion dollars in 1990 (Ibid, 2003). 

These declines in the economy were experienced from 1992 to 1995. Winning the election was a 

must for the government of the day, and so huge government expenditure was experienced, an 

increase in money supply, and a low drive towards investments. In effect the economic indicators 

did not perform any better. 

Contemporary economies present challenges that require models, to be used to guide policy 

formulation. The challenges presented above indicate that domestic policies must be tailored 

along model equations which will help promote growth of the Ghanaian economy. 

Constructing Autoregressive models for the various components of the economy was necessary.  

And a linear control discrete time model equation for the entire economy of Ghana that is stable 

and controllable, is required to guide the policy makers to achieve set goals, that promote 

economic growth and which will enable the average Ghanaian lead a descent life.  
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Included in these goals are; 

1. the desire to reach full employment level, which is unemployment of about 5%, 

2. an agenda of reaching optimal distribution of income so that the average person can live a 

decent life, 

3. low level of inflation and  

4. a satisfactory balance of payments. 

 

1.2 STATEMENT OF THE PROBLEM 

The path towards these goals has not been easy for Ghana, and one often asks whether any of 

these goals, could be achieved at all. In any case, it may be possible to reach the above goals 

absolutely only through an adroit use of economic research and policy.  

However, modern economics is so constituted that at least some of these goals may to some 

extent be competitive. These are full employment, price level stability and satisfactory balance of 

payments. 

Having more than one of these goals may sometimes involve having less of another. The concern 

of this research is to find out whether there is a way of obtaining a simple but reliable model of 

the Ghanaian economy which could be used to guide policy makers. 

 

 



4 
 

1.3 THE OBJECTIVES OF THE STUDY 

Every economy has two kinds of variables namely; endogenous variables and exogenous 

variables. Endogenous variables include consumptions, national income and profit. Exogenous 

variables include government expenditure, net investments and indirect taxes. 

The specific objectives of the study are as follows: 

1. To obtain ARIMA models of the main economic indicators of the economy of Ghana. 

2. To construct a homogeneous discrete time linear model of the economy of Ghana. 

3. To construct a control theoretical economic linear model.  

4. To determine the stability and controllability of the economic models. 

 

1.4 METHODOLOGY 

The data used for the study is a secondary data collected from the Bank of Ghana, Kumasi 

Branch, from 1996-2004 comprised quarterly performance on the major economic indicators of 

the economy of Ghana, namely Inflation, Total Money Supply, Interest Rate, Investment, Capital 

Stock, Government Expenditure, Gross Domestic Product, Consumption and Trade Balance. 

The Box-Jenkins method of modelling time series data, implemented by SPSS package was used 

to identify AR(p ) models .  

MATLAB was also used to determine the eigenvalues, as well as stability and controllability of 

the difference economic models obtained.  
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1.5 STRUCTURE OF THE THESIS 

The structure of the thesis is as follows; 

Chapter 1 dealt with the Introduction, which comprises the Background of Study, the Problem 

Statement, the Objective of the Study and the Methodology. 

Chapter 2 dealt with the review of the relevant literature; that is, presenting the available 

information while acknowledging and making reference of the work of originators of the ideas.  

This chapter covered basic concepts on linear systems and spaces, discrete linear systems and 

concepts and theories as well as solutions to matrix equations, and time series concepts. 

Chapter 3 dealt with the modelling and data analysis. The concepts of Chapter 2 would be 

applied in constructing and solving the various AR(p) models as well as the model equations in 

their matrix forms. 

Chapter 4 summarized the results obtained in Chapter 3. It also presented conclusions of the 

study and then offered some recommendations based on the findings made. 
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CHAPTER  2 

LITERATURE REVIEW 

 

2.0 INTRODUCTION 

In Chapter 1, we considered the background and purpose of the research including problem 

statement leading to the objectives, methodology and structure of work. 

In this chapter, literature will be reviewed based on its relevance to the study. 

 

2.1 LINEAR SPACES 

A set is an entity without internal mathematical structure and as such, of limited usefulness and 

interest. The sets that interest us are point sets on a line or plane and sets of ordered numbers. A 

linear space or vector is a set with an algebraic structure of real numbers. The operations of 

addition and scalar multiplication are extensions of the corresponding operations with real 

numbers or complex numbers. 

The field ℝ and the field ℂ will refer to the set of real and complex numbers respectively due to 

their general algebraic structure.                (Halmos, 1958) 
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Definition(Linear Spaces) 

A linear space 𝐴 over a field F is a set of vectors whose elements are to be called vectors and are 

defined as follows: 

(i) An operation called vector addition which associates with each pair of vectors 𝑥 

and 𝑦 in 𝑋 a unique vector in 𝑋 denoted by 𝑥 + 𝑦, in such a way that 

a)   𝑥 + 𝑦 = 𝑦 + 𝑥  

b)   𝑥 + (𝑦 + 𝑧) = (𝑥 + 𝑦) + 𝑧 

c)   There is a unique vector 𝑥 ∈ 𝑋, called the zero vector, such that  

        𝑥 + 0� = 𝑥,    for all 𝑥 ∈ 𝑋  

d)   For each vector 𝑥 ∈ 𝑋, there is a unique vector in 𝑋, to be called −𝑥, such that      

𝑥 + (−𝑥) = 0  

(ii)    An operation called scalar multiplication, which associates with each scalar 

𝑐 ∈ 𝑅 and each 𝑥 ∈ 𝑋, a unique vector in 𝑋, denoted by 𝑐𝑥, in such away that 

a)   1𝑥 = 𝑥       for all      𝑥 ∈ 𝑋  

b)   (𝑐1𝑐2)𝑥 = 𝑐1(𝑐2𝑥),            𝑐1, 𝑐2 ∈ 𝐹  

c)    𝑐(𝑥 + 𝑦) = 𝑐𝑥 + 𝑐𝑦  

d)    (𝑐1 + 𝑐2)𝑥 = 𝑐1𝑥 + 𝑐2𝑥   

The linear space importance to this discussion is the one whose elements are ordered sets of 𝑛 

real numbers, often called n-tuples or  n-vectors.  
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This space is denoted by 𝑅𝑛 and its elements by  

            x  =





















x

x
x

n


2

1

                                                 2.1     

Addition operation  in 𝑅𝑛 is defined as  

x  +  y   = 

























+

+

+

+

yx

yx
yx
yx

nn


33

22

11

                                                                   2.2 

and multiplication by a scalar 𝑐 ∈ 𝑅 as  𝑐𝑥  =  





















cx

cx
cx

n


2

1

                                           2.3   

(Hoffman, and Kunze, 1961) 
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2.1.1 LINEAR DEPENDENCE 

A set { x1, x2, …,xn } of vectors in 𝑋 are linearly dependent if there exist scalars c1,c2 ,…, cn , in 

𝐹 not all of which are zero, such that c1x1 +c2x2 +... + cnxn  =  0. 

Consider for example: 

Let 𝑥 ∈ 𝑅3;  the vector  𝑥 = �
1
2
3
�, is a linear combination of the vectors  

 𝑥1 = �
0
1
2
�  and 𝑥2 = �

1
1
2
�;     

Since  𝑥 = 𝑥1 + 𝑥2.  Here   𝑐1 = 1 ,     𝑐2 = 1 

The set {x, x 1, x2} is linearly dependent because  𝑥 − 𝑥1 − 𝑥2 = 0. 

         ( Rubio, 1971)  

2.1.2 LINEAR INDEPENDENCE 

Definition: A basis for a linear space 𝑋 is a linearly independent set of vectors in 𝑋 such that 

every vector in 𝑋 can be written as a linear combination of elements in the set. 

The set of vectors {e1 , e2 , …, en } in 𝑅𝑛, where all the entries in 𝑒𝑖 are 𝑧𝑒𝑟𝑜  except the ith 

entry, which is 1, is independent. A subset of this set is also independent; but a set formed by an 

arbitrary vector 𝑥 ∈ 𝑅𝑛 and all the vectors  e1,…,en, is linearly dependent. If it is assumed that 𝑥𝑖 

is to be the ith entry in the arbitrary vector; then x - 
in

i ix∑=1
= 0. 
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If the vector  x =  ∑
=

n

i
iic

1
α   and the scalars  ci ,  i =  1,…,n  are the coordinates of the vector 𝑥 

relative to the ordered basis { }iα . 

If a vector 𝑥 is assumed to have two sets of co-ordinates with respect to a basis  

=α { x1,x2, …, xn},  then it can be written as   

x = xbxa i
n

i
i

i
n

i
i ∑∑

==

=
11

   

Therefore      ( ) 0
1

=−∑ = xba in

i ii
                                                            2.4  

Since the vectors  𝑥𝑖 P

   are independent, because they form the basis of the linear space 𝑋. It 

follows that 𝑎𝑖 − 𝑏𝑖 = 0, 𝑖 = 1, 2, … ,𝑛  so that indeed the coordinates of a vector with respect 

to an ordered basis is unique.         (Rubio, 1971) 

 

 

 

 

 

 

 

 



11 
 

2.1.3 LINEAR TRANSFORMATIONS AND MATRICES 

Let 𝑋 and 𝑌 be linear spaces over 𝐹, not necessarily distinct. A linear transformation from 𝑋 into 

𝑌 is a function 𝑇:𝑋 → 𝑌, such that  

 

  T  ( ) ( ) ( )xcxcxcxc TT 2

2

1

1

2

2

1

1 +=+  ,                                                    2.5 

 

 for all 𝑥1 and 𝑥2 in 𝑋 and all scalars 𝑐1 and 𝑐2 in 𝐹.  If 𝑋 = 𝑌, then a function T : X→ X,  which 

satisfies (2.5 ) is said to be a linear operator, which under linear transformation maps a vector 

space unto itself. It must be noted that linear transformations are not necessarily onto. 

(Cullen, 1972) 

2.1.4   TRANSFORMATIONS BY MEANS OF MATRICES 

Let a finite-dimensional linear space 𝑋 have a basis { }.,,,,1 xxx nj
=α . 

Let 𝑇 be a linear transformation from 𝑋 into another finite-dimensional linear space 𝑌, with basis 

{ }yyy mi
,,,,

1
=β . Since T(xj ) ∈Y  ,  j = 1, …,n, can be written as   

  𝑇(𝑥𝑗)=  ya
im

i ij∑=1
                                                                    2.6                             
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 where aij is the ith co-ordinate of  T(xj) relative to the basis 𝛽. A vector 𝑥 ∈ 𝑋 given by x =  

xc jn

j j∑ =1
  is transformed by 𝑇 into 

T(x)  = ( ) yacxc
im

i ij

n

j j

jn

j jT ∑∑∑ ===
=

111
 

                    =   ( )yca
in

j jij

m

i ∑∑ == 11
                                                        2.7  

 It shall be noted that: 

(i) the coordinates of 𝑇(𝑥) with respect to the bases 𝛽 are completely specified, for 

any 𝑥 ∈ 𝑋, for all coordinates of 𝑥 ∈ 𝑋, and by the set of scalars {aij ,  i = 1,…,m,  

j = 1,…,n}.  It this sense 𝑇 is completely specified by this set of m.n scalars. 

(ii)    the set of scalars is independent on the bases α and β which have been chosen for 

𝑋 and 𝑌 respectively. While the transformation 𝑇 itself does not depend on the 

bases chosen, the set of scalars aij described above will be written in array as 

follows: 

       





















aaa

aaa
aaa

mnmm

n

n









21

22221

11211

                                           2.8 

relative to the bases α  and  β. 

The scalars aij are called the entries of the matrix. The horizontal sub arrays such 

as  a11,  a12,…, a1n, are the rows of the matrix, while the vertical sub arrays such 

as; 
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aa

aa
aa

mm 21

2221

1211


 

are called the columns.  

The matrix ( 2.8)  has 𝑚 rows and 𝑛 columns, and so it is 

an 𝑚 × 𝑛 matrix. The n-tuple in ( 2.8) can be considered as an 𝑛 × 1 matrix 

written as  

    





















x

x
x

n1

12

11


 

It is however, customary to use the notation (2.8)  (Halmos, 1958) 
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2.1.5  IDENTITY MATRIX (𝑰𝒏) 

An important operator is the identity operator 𝐼, which maps every vector in a vector space 𝑋 

into itself. Let 𝑋 be n-dimensional vector and  { }ni xx ,,=α  be a basis for 𝑋.   

Then 𝐼( )jx   =  jx  , j = 1,…,n ;  so that the matrix of  𝐼  with respect to any basis is the 𝑛 × 𝑛 

identity matrix  𝐼Rn. that is  

 

In  =  



























I

I
I

I




                                                       2.9 

where all the  entries not shown are zeros.      

(Halmos, 1958) 

2.1.6   THE ZERO MATRIX ( On) 

The zero operator, which maps every vector 𝑋 into a vector 𝑂, has a matrix relative to any basis, 

the 𝑛 × 𝑛 zero matrix On, all of whose entries are zero. This matrix is sometimes denoted by O. 
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2.1.7  SUM OF MATRICES 

The sum of two matrices of the same dimensions,   T1 = (aij)   and  T2 = (bij)  is a matrix with 

entries   

aij  +  bij. 

That is   𝑇1 + 𝑇2 = (𝑎𝑖𝑗 + 𝑏𝑖𝑗)                                          2.10 

The matrix transformation 𝑇1 + 𝑇2  relative to the bases α and β is therefore 𝑇1 + 𝑇2. 

Let 𝑇1 and 𝑇2 be two transformations which map a finite dimensional vector space 𝑋 into a 

finite–dimensional vector space 𝑌. 

The sum of 𝑇1 and 𝑇2 as a transformation is denoted by 𝑇1 + 𝑇2, such that  

( T1  +  T2) x  =  T1x  +  T2x                                       2.11 

Let 𝑋 and 𝑌 have bases α and β as above. If the matrix of the operator 𝑇1 R, relative to the bases α 

and β is T1  =  aij  and  matrix  operator  T2   is   T2  =  bij ,   

 

T1(x) = ( )yca
in

j jij

m

i ∑∑ == 11
                                                           2.12 

T2(x)  =  ( )ycb
in

j jij

m

i ∑∑ == 11
                                                            2.13 

where   cj, j = 1, …,n,   are the coordinates of 𝑋 relative to the basis α. Then, 

(T1  +  T2 )x  =  ( ) ycba
i

jijij

n

j

m

i








+∑∑

== 11
                                    2.14               
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Therefore the set of numbers  { }njmiba ijij ,,1;,,1,  ==+   completely specify the behavior 

of the operation T1  +  T2  which  leads  to  the  definition  under  (2.14). 

As  an  example  ,  let  X = Y  = R3 ,and  T1  and  T2   linear  operators ,  defined  by   

 

T1(x)  =  
















+

x
xx

x

3

21

13
  ,       T2(x)  =  

















−

x
xx

x

3 3

21

2

  ,  x ∈R3    

Let α = β ={x1, x2, x3}, where   

 

x1  = 
















0
0
1

 ,  x2 =  
















0
2
0

  ,  x3  =  
















3
0
0

          

The matrices 𝑇1 and 𝑇2 relative to these bases are: 

  T1  =  
















300
021
003

         ,   T2  =  















−

900
021
020

                       

The matrix of the operator 𝑇1  +  𝑇2 relative to the same bases is  

            𝑇1 + 𝑇2  =  
















1200
002
023

.      

   (Birkhoff, 1965) 
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2.1.8  MULTIPLICATION OF MATRICES 

Let an 𝑚 × 𝑛 matrix 𝑇 = 𝑎𝑖𝑗 be given. The 𝑚 × 𝑛 matrix 𝑐𝑇 is defined as  

  𝑐𝑇 = �𝑐𝑎𝑖𝑗�                                           2.15 

where 𝑐 is a scalar and 𝑐 ∈ 𝐹, where 𝐹 is a vector field. The matrix relative to the bases α and β 

of a transformation matrix 𝑐𝑇, defined by 

  (𝑐𝑇)𝑥 = 𝑐(𝑇𝑥)                                                            2.16   

is 𝑐𝑇, where 𝑇 is the matrix of 𝑇 relative to the bases α and β.  

Let  𝑋,𝑌,𝑎𝑛𝑑 𝑍  be finite-dimensional vector spaces of n, m, and r respectively. 

Let  α  = { x1 ,…, xn  } ,   β  = { y1,…,ym  }  and  γ  = {z1, …, zr }  be  bases for X, Y ,Z  in this 

order. Two transformations are defined, 𝑇1:𝑋 ⟶ 𝑌 and 𝑇2:𝑌 ⟶ 𝑍, with matrices 𝑇1  𝑎𝑛𝑑 𝑇2  

relative to the corresponding bases. 

Consider the composite transformation  𝑇1𝑇2    defined by   

  (𝑇1𝑇2)𝑥 = 𝑇2(𝑇1𝑥)                                                2.17 

 for all 𝑥 ∈ 𝑋. 

This transformation maps 𝑋 into 𝑍, and is well-defined and linear. 

If x = xc jn

j j∑ =1  , then T1(x) =  yca
in

j
jij

m

i








∑∑
== 11

 ,      where the scalars aij are elements of  𝑇1 

then, 
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T2(T1(x))    =    zbca k
ki

n

j
jij

m

i

r

k 


















∑∑∑
=== 111

                                                      2.18         

where the scalars bki  are the elements of 𝑇2. Equation (2.18) can be arranged as  

 (𝑇2𝑇1(𝑥)))   =  zcab k
j

m

i
ijki

n

j

r

k















∑∑∑
=== 111

                                    2.19 

Thus the transformation 𝑇1𝑇2 is completely defined by the set of scalars; 









==∑
=

m

i
ijki rknjab

1
,,1,,,1,    , by the rxn matrix  







∑
=

m

i
ijki ab

1
. This is the product of 𝑇2 

and 𝑇1; that is: 

                 𝑇1𝑇2 R  =  






∑
=

m

i
ijki ab

1
                                                                2.20 

(Bellman, 1970) 

2.1.9  PARTITION OF A MATRIX  

Often matrices can be partitioned into sub matrices. For example, consider  an 𝑚 × 𝑛 matrix 𝐴, 

with complex entries. Each of the 𝑚 columns can be used to form a column vector with 𝑛 

complex entries. In this way vectors are constructed as a1…,am   and it is written as 

 𝐴 = [ a1a2…am]          2.21 

For instant, if 𝐵 is a 𝑝 × 𝑛 matrix, the product 𝐵𝐴 is equal to  

 𝐵𝐴 = [ Ba1Ba2…Bam].         2.22 
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Similarly, matrices are partitioned as follows: 

 𝐴  =  








43

21

AA
AA

        2.23
 

The matrices 𝐴1,𝐴2,𝐴3, 𝐴4  can be of arbitrary dimensions provided that they cover the whole 

of the matrix 𝐴. The partition of matrix 𝐵 is as follows:   

 𝐵  =  








43

21

BB
BB

   .          2.24 

Then supposed 𝐴𝐵 exists, it is given by;   

 𝐴𝐵  =  







++
++

44233413

42213211

BABABABA
BABABABA

     2.25 

Provided that the partitions of 𝐴 and 𝐵 are such that all the products which appear in the matrix 

𝐴𝐵 are well defined.        (Hoffman and Kunze, 1958) 

 

2.1.10 EIGENVALUES AND EIGENVECTORS 

Let 𝑇 be an operator which maps 𝑋, an n-dimensional linear space over the field 𝐶, into itself. A 

number λ in 𝐶 is an eigenvalue of 𝑇 if there is at least one non-zero vector in 𝑋 such that,  

 𝑇(𝑥) = 𝜆𝑥.                                                2.26 

If  λ  is an eigenvalue of 𝑇, any vector 𝑥 ∈ 𝑋 such that 𝑇(𝑥) = 𝜆𝑥  is said to be an eigenvector of 

𝑇. In other words, each eigenvector is associated with an eigenvalue and each eigenvalue is 

associated at least with one eigenvector.       (Rubio, 1971) 
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2.1.11  REDUCTION (JORDAN CANONICAL FORM) 

The canonical form for a matrix 𝐴 when its characteristic roots are not all distinct, has a general 

result which is stated for any square matrix similar to the Jordan form as  

diag [ ])(),(),()(),( 2111211 qtvnmsmm JJJJJ λλλλλ −=                               2.27                   

Using the notation Jk( λ )  which is a  kxk  Jordan block is written as  

Jk(λ)  =  























λ
λ

λ
λ

0..00
1.00.
......
00.10
00.01

                                                               2.28 

The distinct characteristic roots of 𝐴 are λ1, λ2 ,…, λq and the multiplicity of  𝜆𝑖    

is  m1 +  m2  +  …+  ms. If none of the characteristic roots of 𝐴 is repeated so that 𝑞 = 𝑛 then 

(2.28) reduces to the diagonal matrix and the Jordan block is simply 

𝐽1(𝜆𝑖) = 𝜆𝑖    

There is just one linearly independent characteristic vector of 𝐴 associated with each Jordan 

block, so the total number of such vectors is equal to the number of blocks in Jordan form.   

An important case is stated here, that every symmetric matrix written as (𝐴𝑇 = 𝐴) has a diagonal 

Jordan form and in addition a transforming matrix can be found which is orthogonal.  

The Jordan form of (2.28) can be written as 𝐴 =  dig [  J2(1),J1(1) ]. 
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In this case 𝐴 is derogatory, because it has two Jordan blocks associated with the root 1, and 𝐴 is 

non derogatory if and only if there is only one Jordan block associated with each    𝜆𝑖  , (i = 

1,2…, q ) . 

 

In addition if αi is the largest Jordan block associated with λi, then the minimum polynomial of 𝐴 

is; 

( ) q
qm ααα λλλλλλλ )()()( 21

21 −−−=                                 2.29                                    

which coincides with  k(λ) where 𝑞 = 𝑛; and each αi being equal to unity. Since Jk(λ) in  (2.28) 

is triangular, its rank is 𝑘 if  λ ≠  0 and 𝑘 = 1 if  λ  =  0 . 

 

In conclusion, it should be noted that although the Jordan form is of fundamental theoretical 

importance; it is only of little use in practical calculation. Being generally very difficult to 

compute.        (Barnett and Cameron, 1985) 

2.2.0 LINEAR SYSTEMS 

A system is linear if when the response to some input , 𝑢(𝑡), is  

                  𝑦(𝑡) = 𝐿(𝑢),  

where the response to 𝑐1𝑢1 + 𝑐2𝑢2  is  𝑐1𝐿(𝑢1) + 𝑐2𝐿(𝑢2). Here 𝐿 is some operator- differential, 

integral, probabilistic, etc, the 𝑐𝑖 are constants; and 𝑢𝑗 in general will be vectors.     

(Chen, 1970) 
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2.2.1  DIFFERENCE EQUATION OF LINEAR SYSTEMS 

This is another kind of linear systems whose domain is not in the closed interval of the real 

numbers, but a subset of the set of integers. The input and the output are defined only at discrete 

instants of time, designated as 𝑘𝑇, where 𝑘 is an integer and 𝑇 an arbitrary positive real number.  

The delay simply delays the sequence of numbers at its input by 𝑇 seconds, so that if its input is  

 𝑤(𝑘 + 1)𝑇, then the output is 𝑤(𝑘)𝑇. It follows that the input and output sequences are related 

by   

 

y((k+2)T)   =  u(kt)  -2y((k+1)T)  -3y(kt)                                                        2.30  

 or   

y((k+2)T)  +2y((k+1)T)  +3y(kt)  =  u(kt)                                                      2.31 

By transformation, the equation above is   

x1(kt)  =  y(kt)  ,  x2(kt)  =  y((k+1))  ,  so  that   

x1((k+1)T) =  x2(kt)                                                                                     2.32                                                                         

x2((k+1)T) =  -3x1(kt)  -2x2(kt)  +  u(kt)   

  y(kt)  =  x1(kT) 

Equation (2.30), gives a state variable at (𝑘 + 1)𝑇 in terms of the state variable at the previous 

time 𝑘𝑇, and the values of the input at 𝑘𝑇.  
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Equation (2.30) can be rewritten in the form, 

x(k+1)T)   =  Ax(kT)    +  Bu(kT)                                                                  2.33 

y(kT)   =  Cx(kT)                                                                      2.34 

 

where 𝑥 is a two dimensional state vector, 𝑢 is a scalar input, 𝑦 is a scalar output and 

            𝐴  = 







−− 23
10

,   B = 







1
0

,   C  =  [ ]01 ,  from  (2.30) 

In general, the difference linear system is define by the equations 

x(k+1)   =  A(k)x(k)   +  B(k)u(k)                                                              2.35 

  y(k)  =  C(k)x(k)  +  D(k)u(k),     k∈I  .                                                  2.36 

The added extra term to the output represents direct transmission between input and output. Here 

𝑥 is an n-vector. A(k) is an  nxn matrix, B(k) an nxr matrix, C(k) an mxn matrix, D(k) an mxr 

matrix. The input u(k) is an r-vector, the output y(k) an m-vector. All of these matrices and 

vectors are defined on a subset 𝐼 of the set of integers of the type; 

I  = { p, p+1,p+2,…,p+q. }. 

The matrices 𝐴 and 𝐵 are dependent on 𝑘, and as such, the systems are time-varying. All 

matrices and vectors have real components.      (Rubio,1971) 
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2.2.2  THE HOMOGENEOUS SYSTEM 

Consider the homogeneous system associated with the first equation of (2.35) and 2.36). 

x(k+1)  =  A(k)x(k)  ,  x(ko)  = xo  ,  k∈I                                               2.37     

where the matrices A(k), k∈I is nonsingular, for the uniqueness of solution of (2.37). 

 

2.2.3  THE NONHOMOGENEOUS SYSTEM 

Consider again equation (2.35) and (2.36) starting with (2.35)  

x( k+1)  =  A(k)x(k)   +   B(k)u(k)                                                                2.38             

The input 𝑢 is a sequence of numbers defined for k∈I. If x(ko) is specified. The aim, here, is to 

obtain an explicit expression for the solution of (2.38); with a preferred direction of time.   

Let X(k) be a fundamental matrix of the homogeneous system associated with (2.38).  

Let the solution of (2.38) be of the form;  

x(k)  =  X(k)p(k)                        2.39  

which will be the solution if 𝑝 satisfies equation (2.40) below. 

x(k)  =  X(k+1)p(k+1)  =  A(k)X(k)p(k)  +  B(k)u(k). 

since     X(k+1)  =  A(k)X(k)   

X(k+1){p(k+1) – p(k)}  =  B(k)u(k) 

Suppose now that X(k+1) is invertible then , 



25 
 

   p(k+1)  =  p(k) + X-1(k+1) B(k)u(k)                                                2.40  

If x(ko) is specified, the solution can be seen as   

p(k)   =  X-1(ko)x(ko)  +  ( ) );()(1
1

1 lulBl
k

k

l
o

X +∑
−

=

−    

this implies at last that  

                  p(k) =φ  (k,ko)x(ko)   +  ∑
−

=

1k

kl
)()()1,( lulBlk +φ                         2.41 

(Rubio, 1971) 

2.2.4 z-TRANSFORMATION 

Definition: In a situation where the variables are measured or “sampled” only at discrete 

intervals of time, they produce what are referred to as Sampled-data or Discrete-time Systems. 

The method of z-transform can be used also for obtaining explicit solutions. If 
∧

x , 
∧

u  are the  

z-transforms of 𝑥,𝑢  then, if ko = 0  

( ) )()()( 11 zuBAzIzxAzIzx n
o

n

∧
−−

∧

−+−=   
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If the matrix 𝐴 is diagonal with elements c1,…,cm; then, 

Ak   =  



























c

c
c

k

m

k






2

1

                             

 

If 𝐴 is in Jordan Canonical form, then, 

Ak  =  



























A

A
A

k
q

k

k






2

1

                                        

Ak
i   =  

( )

























A

A
A

k
iis

k
i

k
i






2

1

                                                          

where, it can be recalled that,      
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Aij  =  

























λ
λ

λ
λ

i

i

i

i

xnn ijij

1

1
1

    

So  that  

Ak
ij   =   

































































−−

λ

λλ

λλ

λ

k

i

k

i

k

i

k

i

i

k

i

kk

k









0

0

00

12

1
12

                                                                                       

where �𝐾1� , �𝑘2� , … are the coefficients usually defined in connection with the binomial 

expansion.  

If however, 𝐴 is not in the Jordan Canonical form, we put z =S-1x, where S is the matrix used in 

the transformation of 𝐴 into Jordan canonical form, so that the matrix equation                                      

x(k+1)  =  Ax(k)  ;  x(ko)  =  In , 

becomes   Z(k+1)  = S-1ASZ(k)  ,  z(ko)  =  S-1   
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 where the matrix S-1AS is in Jordan canonical form so that the transition matrix of the system is 

easily computed. It follows that  

Φ(k-ko)   =  S(S-1AS)k-k o S-1    where  k∈I . 

(Barnett and Cameron, 1985) 

2.2.5  DISCRETE –TIME SYSTEMS 

A system in which the input and the output are defined only at discrete instants of time, instants 

which are designated 𝑘𝑇, 𝑘 being an integer and 𝑇 an arbitrary positive real number. 

The delay, simply delays the sequence of numbers at its input by 𝑇 seconds, so that if its input is 

𝑤(𝑘 + 1)𝑇, then its output is 𝑤(𝑘)𝑇. 

Then the mathematical model in state variable form is   

x(k+1)  =  A(kT)x(k)   +  B(kT)u(k)                                                2.42 

where x(k), u(k) denote the values of the state and control vectors x(kT) and u(kT) 

respectively  (k  = 0, 1, 2, …).   

To develop matrix methods for solution of (2.42). Consider first the situation when there is no 

control and 𝐴 is a constant matrix, then (2.42) becomes  

x(k +1)   =  Ax(k)  ,  x(ko) = xo                                       2.43 

x( ko +1)   = Ax(ko) 

x(ko +2)    =  Ax(ko +1)  =  A2x(ko) ,  and  so  on                    

Therefore, the solution of (2.43)  
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𝑥(𝑘) = 𝐴𝑘−𝑘0𝑥0                                                                   2.44 

The state transition matrix is defined by  

Φ(𝑘, 𝑘0) = 𝐴𝑘−𝑘0 P

                                                                                              2.45 

And the solution of (2.45) can be written as  

x(k)   =  Φ(k, ko)xo 
 ;          

with the following properties  

Φ(k+1,ko)   =  AΦ(k,ko) 

   Φ(k,k)   =  I, where I is the identity matrix,                                      

                        Φ(ko,k) =   Φ-1(k,ko),  provided  𝐴  is  nonsingular                    2.46 

                        Φ(k,ko) = Φ(k,k1)Φ(k1,ko),    k≥ k1≥ ko  are the discrete analogue of the 

continuous time. 

Now if 𝐴 and 𝐵 are still time invariant, then from (2.42), 

                       x(k)  =  A[Ax(k-2)  +  Bu(k-2)]   +  Bu(k-1)  

                               =  A2x(k-2)  +  ABu(k-2)  + Bu(k-1)   

                               =   A2[Ax(k-3)  +  Bu(k-3)]   +  ABu(k-2)   +  Bu(k-1)  

                                       .                                                           

                                       .                                                   

                                       .                                                          
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                               =  Ak-koxo  +  )(
1

1 iBu
k

koi

ikA∑
−

=

−−   

                               =  Φ(k,ko) 







++ ∑

−

=

)()1,(
1

0 iBui
k

koi
okx φ  

and assuming 𝐴 is nonsingular then, (2.44) and (2.46) gives  

                    Φ(k,ko)  =   ∏
−

=

1

)(
k

koi

iTA                                                             2.47 

(Cadzow, 1973) 

2.2.6      MODEL FOR DISCRETE TIME CONTROL SYSTEM   

Control is an attempt to compensate for disturbances that infect a system. Some are measurable 

and others are not measurable, and only manifest themselves as unexplained deviations from the 

target of the characteristic to be controlled. Consider the special case where unmeasured 

disturbances affect the output  Yt of a system, and suppose that feedback control is employed to 

bring the output as close as possible to the desired target value by adjustment applied to an input 

variable Xt .    

Supposed that Nt   represents the effect at the output of various unidentified disturbances within 

the system, which in the absence of control could cause the output to drift away from the desired 

target value or set point T. 

(Kucera, 1979) 
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Then, despite adjustments that have been made to the process, an error: 

   tε  = Yt  -T 

 tε   =  V(B)Xt   +  Nt  -  T      

will occur between the output and its target value 𝑇, where 𝐵 is the backward shift operator. 

The object is to choose a control equation that the error ε  will have the smallest possible mean 

square. The control equation expresses the adjustment  

 Xt+1   =  Xt  -  Xt-1 

to be taken at time 𝑡, as a function of the present deviation tε . Previous deviations ,,, 21 −− tt εε

and previous adjustments,Xt-1,Xt-2,…  

 

2.2.6.1       CONTROLLABILITY 

Let 𝑄 be a matrix defined as Q = [B   AB   …   An-1B] has rank n. Then the set of all vectors in 

Rn which can be reached in 𝑛 steps equals the whole of Rn, and in this case there will be 𝑛 

independent columns in 𝑄. Therefore, the system  

 x(k+1)   =  Ax(k)  + Bu(k)       2.49 

is controllable if every state can be reached from the origin in a finite number of steps. 

(Rubio, 1971) 
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Theorem 1 

The system described by x(k+1) = Ax(k) + Bu(k)  with 𝐴 and 𝐵 as constant matrices, is 

controllable if and only if the matrix 𝑄 has rank 𝑛. 

The matrices 𝐴 and 𝐵 are considered constant in the sense that, the shift in the time origin 

changes neither the values of the state nor of the output, provided that the input is shifted 

accordingly. The system with such constant matrices is said to be time invariant or constant. 

Thus if the matrix 𝐴 is non-singular, let  x(ko) = 0, then the system  

      x(ko+p)   =  )1( 0
1

1 −+∑
=

− lBu kA
p

i

p     

                     =  Bu(ko + p-1) +  ABu(ko+ p -2)+…+Ap-2 Bu( ko+1) + Ap-1Bu(ko)         2.48 

is controllable. Where the set of all vectors x(ko + p), and the input 𝑢 takes all possible values at 

each 𝑘,  k = ko, ko+1,…,ko + p-1; which is a subspace of Rn and is spanned by the columns of the 

matrices B, AB,…,Ap-1B. 

 (Rubio, 1971) 

2.2.6.2       STABILITY 

For a given finite dimensional system which in this case is the homogeneous difference system 

of the form  

 x(k+1)  =  A(k)x(k) ,  as  k→ ∞;      2.50 

the interval of definition of the matrix 𝐴 is a set of  type [  ko,∞ ]   
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If  
∧

x  is a point of equilibrium of x(k+1)  = A(k)x(k), where the assumption is that 𝐴 is a matrix 

function defined for all k≥ ko  , 

if  

   A(k)
∧

x   =  0,  for  some  k≥ ko     2.51 

The origin is said to be a stable point of equilibrium  if given 𝑡0, a number 𝛿(𝜀, 𝑡0) can be found 

such that if,  ‖𝑥(𝑡0)‖ < 𝛿(𝜀, 𝑡0), then ‖𝑥(𝑡0)‖ < 𝜀 for 𝑡 ≥ 𝑡0. 

If the number 𝛿(𝜀, 𝑡0) does not depend on 𝑡0, the origin, is said to be uniformly stable. 

 

Definition: The origin is said to be an asymptotically stable point of equilibrium if it is stable 

and if every trajectory of this system, regardless of the initial condition, satisfies,  

 lim𝑡→∞‖𝑥(𝑡)‖ = 0                                   

That is, given x(to) = xo    and  ε > 0,  a  number  N(xo, to, ε) can be found such that ‖𝑥(𝑡)‖ < 𝜀,  

for  𝑡 > 𝑁(𝑥0, 𝑡0, 𝜀). If the number 𝑁(𝑥0, 𝑡0, 𝜀) does not depend on to, the origin is said to be 

uniformly asymptotically stable. 

(Rubio, 1971) 
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Theorem 2:  

The system  x(k+1) = Ax(k)                                             2.52 

is asymptotically stable if and only if the eigenvalues of the matrix 𝐴  have an absolute values 

less than unity. 

Proof:      

For all matrices A(k), k∈I are singular, then a transition matrix for the system  

 x( k+1) = A(k)x(k),  x(ko)  =  xo, k ∈I is defined.  

If x(ko) = In, in x(k+1) = A(k)x(k), for k≥ ko, defined on the set Φ(k,ko) is given as  

 Φ(k,ko)   =  A(k-1)…A(ko),  k > ko  , k∈I     

then, the solution generated by Φ(ko,ko)  = In       from   x(k+1) = A(k)x(k),   x(ko) = xo, k∈I is 

 x(k)  =  Φ(k,k0)x(ko)    for k ≥ ko, and has the properties: 

 Φ(ko,ko)  =  I  

 Φ(k2,k1)Φ(k1,ko)  =  Φ(k2,ko)   where ko ≤ k1 ≤ k2; and the transition 

matrix Φ(k1,ko) is not invertible. Then if A is a diagonal matrix with elements c1,…,cm,  then  

 Ak  =  



























c

c
c

k

m

k

k

.
.

.
2

1

    , and  
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 Aij  =  
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So that   Ak
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Which holds when Knλk→0  as K →∞, for a fixed 𝑛, such that |λ| <1 

 

Theorem 3 

The origin is an asymptotically stable point of equilibrium for the system   

 x(k+1)   =  Ax(k),   

if and only if, given any positive definite  matrix 𝐺, there is a positive definite matrix 𝐹 which is 

the unique solution of the equation  

 A1FA-1F = G                                                                   2.53                   
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The equation (2.53) has a unique solution 𝐹 if and only if, none of the eigenvalues of 𝐴, λ1 , …, 

λn, and none of the sums λi  + λj, i ≠j,  i,j = 1,…,n are zero. 

(Rubio, 1971) 

 

2.3.0      TIME SERIES 

A time series is a set of observation generated sequentially in time. If the set is continuous, the 

time series is said to be continuous. If the set is discrete, the time series is said to be discrete. 

Thus the observation from a discrete time series made at times 𝜏1, 𝜏2, 𝜏3, … , 𝜏𝑛 may be denoted 

by 𝑧(𝜏1), 𝑧(𝜏2), 𝑧(𝜏3), … , 𝑧(𝜏𝑛) 

(Box et al, 1994) 

2.3.1       COMPONENT OF TIME SERIES  

1. PERIODIC COMPONENT 

If 𝑌𝑡 = 𝑌𝑡+1 + 𝑒𝑡, for all 𝑡𝜖𝑁, then the time series has a periodic component of period 𝑇. 

 

2. TREND COMPONENT 

If 𝑌𝑡 = 𝑦 + 𝛽𝑡 + 𝑒𝑡, then there exists a linear trend with the slope being 𝛽. 

2.3.2       STATIONARY TIME SERIES 

A time series is said to be strictly stationary if the joint distribution of  𝑋𝑡1 ,𝑋𝑡2 , … ,𝑋𝑡𝑛  is the 

same as the joint distribution of  𝑋𝑡1+𝑇 ,𝑋𝑡2+𝑇 , … ,𝑋𝑡𝑛+𝑇 for all 𝑡1+𝑇 , 𝑡2+𝑇 , … , 𝑡𝑛+𝑇.       
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If there is a trend in the mean, differencing the time series data removes the trend to achieve 

stationarity. 

Also if there is a trend in variance, transforming the time series data by 𝑌𝑡 = ln𝑋𝑡, where 𝑋𝑡 is 

the original time series data, removes the trend to achieve stationarity. 

(Box et al, 1994) 

2.3.4       AUTOREGRESSIVE MODEL   

A stochastic model can be used to represent certain practically occurring series. In this model the 

current value of the process is expressed as a finite linear aggregate of previous values of the 

process and a shock at. 

Denote the values of a process at equally spaced times,  t,  t-1,t-2, … by zt, zt-1, zt-2,…  . Also let 

tz ,  1−tz , …,  be deviations from µ, for example µ−= tt zz , then, 

 tptpttt azzzz ++++= −−− φφφ ...2211                                   2.54 

and is called an autoregressive process of order 𝑝. 

That is, given the linear model,  

 z =  axxx pp ++++ φφφ ...2211 ,            2.55 

relating a dependence variable 𝑧 to a set of independent variable  x1,x2,…,xp, plus an error term 

𝛼, is often referred to as a regression model and 𝑧 is said to be regressed on x1, x2, …,xp . 

The variable 𝑧 is said to be regressed on previous values of itself hence the model is 

autoregressive. 
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If the autoregressive operator of order p is represented by  

 Φ(B)   =  1- Φ1B - Φ2B2 -…ΦpBp        2.56 

the autoregressive model may be written economically as Φ(B) tz  = at. 

The model contains 𝑝 + 2 unknown parameters µ1, Φ1,Φ2,…,Φp , 2
aσ , which in practice have to 

be estimated from the data. The additional parameter 2
aσ  is the variance of the white noise 

process ta . 

2.3.5        AUTOREGRESSIVE PROCESSES 

Consider the model  

 trtpttt azzzz ++++= −−− φφφ 2211                           2.57                

In  which only the first 𝑝 of the weights are nonzero. The symbols ,,,, 21 pφφφ   are used for the 

finite set of weights parameters. 

The process in 2.57  above is called an autoregressive process of order 𝑝, or more succinctly 

𝐴𝑅(𝑝) process. In particular, the autoregressive process of first order (𝑝 = 1) and of the second 

order (𝑝 = 2), are given respectively as   

 ttt azz += −1φ                                                               2.58 

 tttt azzz ++= −− 2211 φφ                                             2.59 

(Box et al, 1994) 
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2.3.6         STATIONARY CONDITIONS  

A set of adjustable parameters pφφφ ,,, 21   of an 𝐴𝑅(𝑝) process.  

 tptptt azzz +++ −− φφ 11      2.60 

or      ( 1- ttt
p

p azBzBB ==−− )() φφφ      2.61 

 must satisfy certain conditions for the process to be stationary. For illustration, the first order 

autoregressive process tt azB =− −1
1 )1( φ  may be written     jt

j

j
tt aaBz −

∞

=
∑=−=

0
11 )1( φφ       

Hence     j

j

j BBB ∑
∞

=

− =−=
0

1
1

1 )1()( φφψ  where ( )Bφ  must converge for |B| ≤ 1.   

This implies that the parameter 1φ  of an AR(1) process must satisfy the condition  11 ≤φ   to 

ensure stationarity. Since the root of 1- 1φ B = 0 is B  =  1
1
−φ , this condition is equivalent to saying 

that the root of 1- B1φ =0 must lie outside the unit circle. 

 

For the general AR(p) process  ( ) ,1
tt aBz −= φ  is obtained as 

Φ(B) = (1-G1B)(1-G2B)…(1-GpB),  where 11
1 ,, −−

pGG   are the  roots of 0)( =Bφ  and 

expanding  Φ-1(B) in partial fractions yields  

 
t

p

i i

i
tt a

BG
K

Baz ∑
=

−

−
==

1

1

1
φ  .           2.62 
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Hence , if  ψ(B)  =  Φ-1(B) is to be a convergent series for |B| ≤  1, that is if weights 

j
i

p

i ii GK∑=
=

1
ψ  are to be absolutely summable so that the AR(p)  will represent a stationary  

process, which gives |Gi| < 1, for i  =  1,2,…,p. 

(Box et al, 1994) 

2.3.7     FIRST–ORDER AUTOREGRESSIVE PROCESS 

The first-order autoregressive process is   

 ttt azz += −11φ     

        =  2
2

111 −− ++ ttt aaa φφ            2.63   

where it has been shown that 1φ   must satisfy the condition -1< 1φ <1, for the process to be 

stationary. 

2.3.8    AUTOCORELATION FUNCTION   

The autocorrelation function satisfies the first-order difference equation  

          11 −= kk ρφρ     k > 0, which , with oρ = 1 , has  the  solution ,1
k

k φρ =  k≥0 . 

This autocorrelation function decays exponentially to zero, when  is positive, but decays 

exponentially to zero, and oscillates in sign when 1φ  is negative.  

 In particular, 11 φρ =  

(Box et al, 1994) 

1φ
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2.3.9      VARIANCE 

The variance of the process is 
11

2
2

1 φρ
σ

σ
−

= a
z  =  2

1

2

1 φ
σ
−

a    .         

on substituting, 11 φρ =  

(Box et al, 1994) 

2.3.10       GENERAL FORM OF THE AUTOREGRESSIVE INTEGRATED MOVING 

AVERAGE PROCESS (ARIMA) 

It is sometimes useful to consider a slight extension of the ARIMA model; 

 tt
d aBzB )()( θφ =∇        

by adding a constant term 0θ . 

Thus the general form of the model to be used to describe ARIMA process is                                                                              

 tt
d aBzBB )()()( 0 θθφϕ +=∇=  

where  q
q BBBB φφφφ −−−−= ...1)( 2

21  . 

 
q

q BBBB θθθθ −−−−= ...1)( 2
21    

It follows that:  

1. )(Bφ  will be called autoregressive operator, which is assumed to be stationary; and that 

the roots of )(Bφ =0, lie outside the unit circle. 
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2. dBB ∇= )()( φϕ , will be called the generalized autoregressive operator; it is a 

nonstationary operator with 𝑑 of the roots of )(Bϕ = 0 equal to unity. 

3.  )(Bθ  will be called the moving average operator; it is assumed to be invertible, that is, 

the roots of θ(B) = 0 lie outside the unit circle. 

(Box et al, 1994) 

2.3.11       BACKSHIFT FORM OF THE MODEL 

Direct use of the difference equation permits us to express the current value tz  of the process in 

terms of previous values of the z’s and of current and previous values of the a ’s. 

 Thus if; 

 ( ) ( ) qp
qp

d BBBBBB +
+−−−−=−= ϕϕϕφϕ 2

211)1(    .   

If in π, ,00 =θ π it is written as, 

  tqtqtqptqptt aaazzz +−−++= −−−−++ θθϕϕ  1111  

 

(Box et al, 1994) 
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CHAPTER  3 

MODELLING AND DATA ANALYSIS 

 

3.1.0  INTRODUCTION 

In this chapter, the various components of the economy were analyzed using time series analysis 

and Box-Jenkins method of time series data using SPSS. 

The main components of the economy include Inflation, Total Money Supply, Interest Rate, 

Gross Domestic Product, Capital Stock, Government Expenditure, Investment, Consumption and 

Balance of Trade. 

A forty data point was used for each from 1996 to 2004, on a quarterly performance of the 

economy from the Bank of Ghana, Kumasi branch. 

 

3.1.1 PRELIMINARY ANALYSIS  

We present below a preliminary (descriptive) analysis of the data 

Inflation 

The graph in Fig. 3.1.1 below is the histogram on inflation values from 1996 to 2004. It has 

mean 30.28 and standard deviation 13.49 and it is positively skewed with mode 40.00. 
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Fig. 3.1.1 Histogram on Inflation from 1996-2004 

 

Interest Rate 

The graph of Fig 3.1.2 as shown below represents the histogram of Interest Rate values from 

1996 to 2004. It is approximately positively skewed and has mode 45.00, mean 28.89 and 

standard deviation 11.35. 

 

Fig. 3.1.2   Histogram on Interest Rate from 1996-2004 
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Total Money Supply 

The graph in Fig. 3.1.3 below is the histogram on Total Money Supply values from 1996 to 

2004. It has mean value of 191.65, its standard deviation value is 102.56, a modal value of 52.1 

and it is approximately normally distributed. 

 

Fig. 3.1.3 Histogram on Total Money Supply from 1996-2004 
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Gross Domestic Product 

The graph in Fig. 3.1.4 below is the histogram on Gross Domestic Product values from 1996 to 

2004. It has deviated from the normal curve and positively skewed. Its modal value is 9631.90. 

The mean 5876.96 whiles its standard deviation has value equal to 1626.89. 

 

Fig. 3.1.4 Histogram on Gross Domestic Product from 1996-2004 

 

Capital Stock 

 The graph in Fig. 3.1.5 below is the histogram of Capital Stock over the time interval 1996 to 

2004. It is also positively skewed, with deviation and mean being 7516.29 and 8915.66 

respectively. 
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Fig. 3.1.5 Histogram on Capital Stock from 1996-2004 

 

Government Expenditure 

Fig. 3.1.6 below represents the histogram on Government Expenditure values. This has mode of 

1384, mean 3526.48 and standard deviation 2550.72. This is observed to be positively skewed.  

 

Fig. 3.1.6 Histogram on Government Expenditure from 1996-2004 
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Investment 

Fig. 3.1.6 is the histogram representing the investment values in the economy, from 1996 to 

2004. The graph is generally positively skewed. It has modal value of 97.40, mean 1982.26 and a 

standard deviation 2162.37 

 

Fig. 3.1.7 Histogram on Investment from 1996-2004 

 

Balance of Trade 

Fig. 3.1.8 is the histogram representing the Balance of trade values during the period under 

consideration from 1996 to 2004. It is negatively skewed with mean and standard deviation 

being -942.82 and 1124.39 respectively. The mode is -2587.50. 

 

Fig. 3.1.8 Histogram on Balance of Trade from 1996-2004 
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Consumption  

Fig. 3.1.9 is the histogram of the values of the Consumption component in the economy of 

Ghana from 1996 to 2004. It is a nearly normally distributed with mean, mode and standard 

deviation being 1775.98, -3631.0 and3732.50 respectively.   

 

Fig. 3.1.9 Histogram on Consumption from 1996-2004 
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3.2   TIME SERIES ANALYSIS 

Time series analysis was used to analyse the various components of the economy. Detailed 

analyses were done for all as follows: 

 

3.2.1  INFLATION 

 

Fig 3.2.0 Trajectory of inflation from 1996 to 2004 

 

 

Fig. 3.2.0 is the trajectory of the inflation values which was analysed for any form of periodicity 

and seasonality but none appeared to exist. However the data appears to be non-stationary in 

mean therefore, differencing is required to make it stationary.  
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Model Identification  

The autocorrelation function (ACF) dies down quickly into a wave form whilst the partial 

autocorrelation function (PACF) truncates after lag 1 as exhibited in Figures 3.2.1 and 3.2.2 

below. 

 

Fig 3.2.1 Autocorrelation function of inflation  1996-2004 
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Fig 3.2.2 Partial autocorrelation function of inflation 

The results from Fig.3.2.1 and Fig 3.2.2 above indicate an ARIMA(1,0,0) model. This model is 

now compared to two other practically likely models, i.e. ARIMA(1,1,0) and ARIMA(1,2,0) and 

the best is chosen based on the following tabular results. 

 

Table 3.2.0 Comparison Table of likely models for inflation 

MODEL Residual Variance Akaike’s Information 

Criterion(AIC) Value 

ARIMA(1,0,0) 23.331 244.315 

ARIMA(1,1,0) 18.211 226.025 

ARIMA(1,2,0) 23.563 230.016 

242322212019181716151413121110987654321

Lag Number

1.0

0.5

0.0

-0.5

-1.0

Pa
rt

ia
l A

C
F

Lower Confidence
Limit

Upper Confidence Limit
Coefficient

Inflation



53 
 

From the results in Table 3.2.0 above, comparing both residual variance and AIC value we have 

ARIMA(1,1,0)  to be our most preferable model since its residual values are least. 

The identified model is of the form  𝑌𝑡 = (1 + 𝛼)𝑌𝑡−1 − 𝛼𝑌𝑡−2 + 𝑒𝑡. 

Where  𝑌𝑡 is the observation at the present time, 𝑌𝑡−1 and 𝑌𝑡−2 are respectively observations at 

time lag 1 and time lag 2, 𝑒𝑡  the white noise or error at the present time and 𝛼,  𝐴𝑅 parameter to 

be estimated. 

After the model has been identified the parameters of the model were estimated as shown in the 

table below. 

 

Diagnostic Testing 

On the adequacy of the model, Q-statistic was estimated to be  𝜒2 − 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑  with  

𝑘 − 𝑝 − 𝑞 degrees of freedom. Where k = 24 (maximum lag) used for Q, 𝑝 is the order of the AR 

process and 𝑞 is the order of the MA process. The 𝑄 − 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 is compared to the critical value 

of  𝜒232   which is 35.172.  Since the calculated 𝑄 − 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 = 13.062 < 35.172  the chosen 

model is adequate.   

Thus our selected model for inflation is given by  𝑌𝑡 = 1.403𝑌𝑡−1 − 0.403𝑌𝑡−2 − 1.19 

 

Parameter Estimates

.403 .149 2.696 .010
-1.190 1.125 -1.058 .297

AR1Non-Seasonal Lags
Constant

Estimates Std Error t Approx Sig

Melard's algorithm was used for es timation.
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3.2.2  INTEREST RATE 

 

Fig 3.2.3 Trajectory of Interest Rate from 1996 to 2004 

 

Fig. 3.2.3 is the trajectory of the Interest Rate values. This was analysed for any form of 

periodicity and seasonality but none appeared to exist. However, the data appears to be non-

stationary in mean therefore differencing is required to make it stationary.  

Model Identification  

The autocorrelation function (ACF) dies down into a wave form whilst the partial autocorrelation 

function (PACF) truncates after the first lag (lag 1) as exhibited in Figures 3.2.4 and 3.2.5 below. 
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Fig 3.2.4 Autocorrelation function of Interest Rate 

 

Fig 3.2.5 Partial autocorrelation function of Interest Rate 
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The results from Fig.3.2.4 and Fig 3.2.5 above indicate an ARIMA(1,0,0) model. This model is 

now compared to two other practically possible models, ARIMA(1,1,0) and ARIMA(1,2,0), and 

the best is chosen based on the following tabular results. 

 

Table 3.2.1 Comparison Table of likely models for Interest Rate 

MODEL Residual Variance Akaike’s Information Criterion(AIC) Value 

ARIMA(1,0,0) 23.331 244.315 

ARIMA(1,1,0) 18.211 226.025 

ARIMA(1,2,0) 23.563 230.016 

 

From the results in Table 3.2.1 above, comparing both residual variance and AIC value we have 

ARIMA(1,1,0)  as the statistically most preferable model since its residual values are least. 

The identified model is of the form  𝑌𝑡 = (1 + 𝛼)𝑌𝑡−1 − 𝛼𝑌𝑡−2 + 𝑒𝑡, where 𝑌𝑡 is the observation 

at the present time 𝑌𝑡−1 and 𝑌𝑡−2 are respectively observations at time lag 1 and time lag 2, 𝑒𝑡,  

the white noise or error at the present time and 𝛼,  parameter to be estimated. 

After the model has been identified the parameters of the model were estimated and shown in the 

table below. 

 

Parameter Estimates

.403 .149 2.696 .010
-1.190 1.125 -1.058 .297

AR1Non-Seasonal Lags
Constant

Estimates Std Error t Approx Sig

Melard's algorithm was used for es timation.
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Diagnostic Testing 

On the adequacy of the model, Q-statistic was estimated to be  𝜒2 − 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑  with  

𝑘 − 𝑝 − 𝑞 degrees of freedom. Where 𝑘 = 24 (maximum lag) used for Q, 𝑝 is the order of the 

AR process and 𝑞 is the order of the MA process. The 𝑄 − 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 is compared to the critical 

value of  𝜒232   which is 35.172.  Since the calculated 𝑄 − 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 = 13.062 < 35.172  the 

chosen model is adequate.   

Thus our selected model for Interest Rate is given by  𝑌𝑡 = 1.403𝑌𝑡−1 − 0.403𝑌𝑡−2 − 1.19 
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3.2.3  TOTAL MONEY SUPPLY 

 

Fig 3.2.6 Trajectory of Total Money Supply from 1996 to 2004 

 

Fig. 3.2.6 is the trajectory of the Total Money Supply values which was analysed for any form of 

periodicity and seasonality but none appeared to exist. However, the data appears to be non-

stationary in mean therefore differencing is required to make it stationary.  

Model Identification  

The autocorrelation function (ACF) dies down slowly whilst the partial autocorrelation function 

(PACF) truncates after the first lag as exhibited in Figures 3.2.7 and 3.2.8 below. 
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Fig 3.2.7 Autocorrelation function of Total Money Supply  

 

Fig 3.2.8 Partial autocorrelation function of Total Money Supply 
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The results from Fig.3.2.7 and Fig 3.2.8 above indicate an ARIMA(1,0,0) model. This model is 

now compared to two other practically possible models, ARIMA(1,1,0) and ARIMA(1,2,0), and 

the best is chosen based on the following tabular results. 

 

Table 3.2.2 Comparison Table of likely models for Total Money Supply 

MODEL Residual Variance Akaike’s Information Criterion(AIC) Value 

ARIMA(1,0,0) 125.947 345.220 

ARIMA(1,1,0) 54.115 295.703 

ARIMA(1,2,0) 69.843 300.199 

 

From the results in Table 3.2.2 above, comparing both residual variance and AIC value gives 

ARIMA(1,1,0) as the most preferable since its residual values are  least. 

The identified model is of the form  𝑌𝑡 = (1 + 𝛼)𝑌𝑡−1 − 𝛼𝑌𝑡−2 + 𝑒𝑡, where 𝑌𝑡 is the observation 

at the present time 𝑌𝑡−1 and 𝑌𝑡−2 are respectively observations at time lag 1 and time lag 2, 𝑒𝑡  

the white noise or error at the present time and 𝛼, 𝐴𝑅 parameter to be estimated. 

After the model has been identified the parameters of the model were estimated and shown in the 

table below. 

 Estimates Std Error T 
Approx 

Sig 
Non-Seasonal Lags AR1 -.239 .152 -1.576 .123 
Constant 8.116 .909 8.926 .000 
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Diagnostic Testing 

On the adequacy of the model, Q-statistic was estimated to be  𝜒2 − 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑  with  

𝑘 − 𝑝 − 𝑞 degrees of freedom. Where 𝑘 = 24 (maximum lag) used for Q, 𝑝 is the order of the 

AR process and 𝑞 is the order of the MA process. The 𝑄 − 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 is compared to the critical 

value of  𝜒232   which is 35.172.  Since the calculated 𝑄 − 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 = 20.33 < 35.172  the 

chosen model is adequate.   

Thus our selected model for Total Money Supply is given by 

𝑌𝑡 = 0.7461𝑌𝑡−1 + 0.239𝑌𝑡−2 + 8.116 
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3.2.4  GROSS DOMESTIC PRODUCT (GDP) 

 

Fig 3.2.9 Trajectory of Gross Domestic Product (GDP) from 1996 to 2004 

 

 

Fig. 3.2.9 is the trajectory of the Gross Domestic Product values which was analysed for any 

form of periodicity and seasonality but none appeared to exist. However the data appears to be 

non-stationary in mean therefore differencing is required to make it stationary.  

Model Identification  

The autocorrelation function (ACF) dies down slowly into a wave form whilst the partial 

autocorrelation function (PACF) truncates after as exhibited in Figures 3.2.10 and 3.2.11 below. 
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Fig 3.2.10 Autocorrelation function of Gross Domestic Product 

 

 

Fig 3.2.11 Partial autocorrelation function of Gross Domestic Product 
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The results from Fig.3.2.10 and Fig 3.2.11 above indicate an ARIMA(1,0,0) model. This model 

is now compared to two other practically possible models, ARIMA(1,1,0) and ARIMA(1,2,0),  

and the best is chosen based on the following tabular results. 

 

Table 3.2.3 Comparison Table of likely models of Gross Domestic Product 

MODEL Residual Variance Akaike’s Information Criterion(AIC) Value 

ARIMA(1,0,0) 125973.5 589.123 

ARIMA(1,1,0) 107581.8 564.534 

ARIMA(1,2,0) 174814.8 568.814 

 

From the results in Table 3.2.3 above, comparing both residual variance and AIC value gives 

ARIMA(1,1,0) as the most preferable model  since its residual values are least. 

The identified model is of the form  𝑌𝑡 = (1 + 𝛼)𝑌𝑡−1 − 𝛼𝑌𝑡−2 + 𝑒𝑡, where 𝑌𝑡 is the observation 

at the present time 𝑌𝑡−1 and 𝑌𝑡−2 are respectively observations at time lag 1 and time lag 2, 𝑒𝑡,  

the white noise or error at the present time and 𝛼,  𝐴𝑅 parameter to be estimated. 

After the model has been identified the parameters of the model were estimated and shown in the 

table below. 

 Estimates Std Error T 
Approx 

Sig 
Non-Seasonal Lags AR1 -.051 .156 -.326 .746 
Constant 128.450 45.438 2.827 .007 
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Diagnostic Testing 

On the adequacy of the model, Q-statistic was estimated to be  𝜒2 − 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑  with            

𝑘 − 𝑝 − 𝑞 degrees of freedom. Where 𝑘 = 24 (maximum lag) used for Q, 𝑝 is the order of the 

AR process and 𝑞 is the order of the MA process. The 𝑄 − 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 is compared with the 

critical value of  𝜒232   which is 35.172.  Since the calculated 𝑄 − 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 = 19.558 < 35.172  

the chosen model is adequate.   

Thus our selected model for Gross Domestic Product is given by 

𝑌𝑡 = 0.949𝑌𝑡−1 + 0.051𝑌𝑡−2 + 128.45 
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3.2.5  CAPITAL STOCK 

 

Fig 3.2.12 Trajectory of Capital Stock from 1996 to 2004 

 

Fig. 3.2.12 is the trajectory of the Capital Stock values which was analysed for any form of 

periodicity and seasonality but none appeared to exist. However the data appears to be non-

stationary in mean therefore differencing is required to make it stationary.  

 

Model Identification  

The autocorrelation function (ACF) dies down very quickly to zero whilst the partial 

autocorrelation function (PACF) truncates after the first lag as exhibited in Figures 3.2.13 and 

3.2.14 below. 

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

987654321

Case Number

2500000.00

2000000.00

1500000.00

1000000.00

500000.00

0.00

Va
lu

e 
C

ap
ita

l_
St

oc
k



67 
 

 

Fig 3.2.13 Autocorrelation function of Capital Stock 

 

Fig 3.2.14 Partial autocorrelation function of Capital Stock 
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The results from Fig.3.2.13 and Fig 3.2.14 above indicate an ARIMA(1,0,0) model. This model 

is now compared to two other possible models, ARIMA(1,1,0) and ARIMA(1,2,0), and the best 

is chosen based on the following tabular results. 

 

     Table 3.2.4 Comparison Table of likely models for Capital Stock 

MODEL Residual Variance Akaike’s Information Criterion(AIC) Value 

ARIMA(1,0,0) 2 × 107 779.842 

ARIMA(1,1,0) 2 × 107 760.982 

ARIMA(1,2,0) 2 × 107 753.984 

 

From the results in Table 3.2.4 above, comparing both residual variance and AIC value gives 

ARIMA(1,2,0) as the statistically most preferable model since its AIC values are least. 

The identified model is of the form  𝑌𝑡 = 𝛼𝑌𝑡−1 + 𝑌𝑡−2 − 𝛼𝑌𝑡−3 + 𝑒𝑡, where 𝑌𝑡 is the observation 

at the present time 𝑌𝑡−1, 𝑌𝑡−3 and 𝑌𝑡−2 are respectively observations at time lag 1 and time lag 2 

and time lag 3, 𝑒𝑡 the white noise or error at the present time and 𝛼,  𝐴𝑅 parameter to be 

estimated. 

After the model has been identified the parameters of the model were estimated and shown in the 

table below. 

 Estimates Std Error T 
Approx 

Sig 
Non-Seasonal Lags AR1 -.693 .131 -4.122 .000 
Constant -102.395 45.438 43731.854 -.035 
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Diagnostic Testing 

On the adequacy of the model, Q-statistic was estimated to be  𝜒2 − 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑  with  

𝑘 − 𝑝 − 𝑞 degrees of freedom. Where 𝑘 = 24 (maximum lag) used for Q, 𝑝 is the order of the 

AR process and 𝑞 is the order of the MA process. The 𝑄 − 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 is compared to  the critical 

value of  𝜒232   which is 35.172.  Since the calculated 𝑄 − 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 = 4.72 < 35.172  the chosen 

model is adequate.   

Thus our selected model for Capital Stock is given by 

𝑌𝑡 = −0.693𝑌𝑡−1 + 𝑌𝑡−2 + 0.693𝑌𝑡−3 − 102.395 
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3.2.6  GOVERNMENT EXPENDITURE 

 

Fig 3.2.15 Trajectory of Government Expenditure from 1996 to 2004 

 

Fig. 3.2.15 is the trajectory of the Government Expenditure values, which was analysed for any 

form of periodicity and seasonality but none appeared to exist. However the data appears to be 

non-stationary in mean therefore differencing is required to make it stationary.  

Model Identification  

The autocorrelation function (ACF) dies down slowly into a wave form whilst the partial 

autocorrelation function (PACF) truncates after lag 1 as exhibited in Figures 4.2.1 and 4.2.2 

below. 
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Fig 3.2.15 Autocorrelation function of Government Expenditure 

 

Fig 3.2.16 Partial autocorrelation function of Government Expenditure 
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The results from Fig.3.2.1 and Fig 3.2.2 above indicate an ARIMA(1,0,0) model. This model is 

now compared to two other possible models ARIMA(1,1,0) and ARIMA(1,2,0) and the best is 

chosen based on the following tabular results. 

 

Table 3.2.5 Comparison Table of likely models for Government Expenditure 

MODEL Residual Variance Akaike’s Information Criterion(AIC) Value 

ARIMA(1,0,0) 281004.3 621.151 

ARIMA(1,1,0) 237479.3 595.455 

ARIMA(1,2,0) 438451.3 603.789 

 

From the results in Table 3.2.5 above, comparing both residual variance and AIC value  gives 

ARIMA(1,1,0)  to be the most preferable model since its residual values are least. 

The identified model is of the form  𝑌𝑡 = (1 + 𝛼)𝑌𝑡−1 − 𝛼𝑌𝑡−2 + 𝑒𝑡, where 𝑌𝑡 is the observation 

at the present time 𝑌𝑡−1 and 𝑌𝑡−2 are respectively observations at time lag 1 and time lag 2, 𝑒𝑡,  

the white noise or error at the present time and 𝛼, AR parameter to be estimated. 

After the model has been identified the parameters of the model were estimated and shown in the 

table below. 

 Estimates Std Error T 
Approx 

Sig 
Non-Seasonal Lags AR1 -.149 .154 -.968 .338 
Constant 188.877 63.924 2.955 .005 
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Diagnostic Testing 

On the adequacy of the model, Q-statistic was estimated to be  𝜒2 − 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑  with  

𝑘 − 𝑝 − 𝑞 degrees of freedom. Where 𝑘 = 24 (maximum lag) used for Q, 𝑝 is the order of the 

AR process and 𝑞 is the order of the MA process. The 𝑄 − 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 is compared with the 

critical value of  𝜒232   which is 35.172.  Since the calculated 𝑄 − 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 = 12.505 < 35.172  

the chosen model is adequate.   

Thus our selected model for Government Expenditure is given by 

𝑌𝑡 = 0.851𝑌𝑡−1 − 0.149𝑌𝑡−2 + 188.877 
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3.2.7  INVESTMENT 

 

Fig 3.2.17 Trajectory of Investment from 1996 to 2004 

 

Fig. 3.2.17 is the trajectory of the Investment values, which was analysed for any form of 

periodicity and seasonality but none appeared to exist. However the data appears to be non-

stationary in mean therefore differencing is required to make it stationary.  

Model Identification  

The autocorrelation function (ACF) dies down into a wave form whilst the partial autocorrelation 

function (PACF) truncates after the first lag as exhibited in Figures 3.2.18 and 3.2.19 below. 
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Fig 3.2.18 Autocorrelation function of Investment 

 

Fig 3.2.19 Partial autocorrelation function of Investment 
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The results from Fig.3.2.18 and Fig 3.2.19 above indicate an ARIMA(1,0,0) model. This model 

is now compared to two other possible models, ARIMA(1,1,0) and ARIMA(1,2,0), and the best 

is chosen based on the following tabular results. 

 

Table 3.2.6 Comparison Table of likely models for Investment 

MODEL Residual Variance Akaike’s Information Criterion(AIC) Value 

ARIMA(1,0,0) 908000.8 665.818 

ARIMA(1,1,0) 9069290.7 650.266 

ARIMA(1,2,0) 1514257.0 650.851 

 

From the results in Table 3.2.6 above, comparing both residual variance and AIC value produce 

ARIMA(1,1,0) as the most preferable model since its residual values are least. 

The identified model is of the form  𝑌𝑡 = (1 + 𝛼)𝑌𝑡−1 − 𝛼𝑌𝑡−2 + 𝑒𝑡, where 𝑌𝑡 is the observation 

at the present time 𝑌𝑡−1 and 𝑌𝑡−2 are respectively observations at time lag 1 and time lag 2, 𝑒𝑡,  

the white noise or error at the present time and 𝛼, 𝐴𝑅  parameter to be estimated. 

After the model has been identified the parameters of the model were estimated and shown in the 

table below. 

 Estimates Std Error T 
Approx 

Sig 
Non-Seasonal Lags AR1 -.010 .156 -.063 .950 
Constant 14.112 141.295 .100 .921 
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Diagnostic Testing 

On the adequacy of the model, Q-statistic was estimated to be  𝜒2 − 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑  with  

𝑘 − 𝑝 − 𝑞 degrees of freedom. Where 𝑘 = 24 (maximum lag) used for Q, 𝑝 is the order of the 

AR process and 𝑞 is the order of the MA process. The 𝑄 − 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 is compared to the critical 

value of  𝜒232   which is 35.172.  Since the calculated 𝑄 − 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 = 15.546 < 35.172  the 

chosen model is adequate.   

Thus our selected model for Investment is given by 𝑌𝑡 = 0.99𝑌𝑡−1 + 0.01𝑌𝑡−2 + 14.112 
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3.2.7  BALANCE OF TRADE 

 

Fig 3.2.20 Trajectory of Balance of Trade from 1996 to 2004 

 

Fig. 3.2.20 is the trajectory of the Balance of Trade values which was analysed for any form of 

periodicity and seasonality but none appeared to exist. However the data appears to be non-

stationary in mean therefore differencing is required to make it stationary.  

Model Identification  

The autocorrelation function (ACF) dies down slowly into a wave form whilst the partial 

autocorrelation function (PACF) truncates after the first lag as exhibited in Figures 3.2.21 and 

3.2.22 below. 
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Fig 3.2.21 Autocorrelation function of Balance of Trade 

 

Fig 3.2.22 Partial autocorrelation function of Balance of Trade  
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The results from Fig.3.2.21 and Fig 3.2.22 above indicate an ARIMA(1,0,0) model. This model 

is now compared to two other practically possible models ARIMA(1,1,0) and ARIMA(1,2,0) and 

the best is chosen based on the following tabular results. 

 

Table 3.2.7 Comparison Table of likely models for Balance of Trade  

MODEL Residual Variance Akaike’s Information Criterion(AIC) Value 

ARIMA(1,0,0) 67968.425 563.456 

ARIMA(1,1,0) 65994.489 545.474 

ARIMA(1,2,0) 98368.612 546.962 

 

From the results in Table 3.2.7 above, comparing both residual variance and AIC value 

providuce ARIMA(1,1,0) as the most preferable model since its residual values are least. 

The identified model is of the form  𝑌𝑡 = (1 + 𝛼)𝑌𝑡−1 − 𝛼𝑌𝑡−2 + 𝑒𝑡, where 𝑌𝑡 is the observation 

at the present time 𝑌𝑡−1 and 𝑌𝑡−2 are respectively observations at time lag 1 and time lag 2, 𝑒𝑡,  

the white noise or error at the present time and 𝛼, 𝐴𝑅 parameter to be estimated. 

After the model has been identified the parameters of the model were estimated and shown in the 

table below. 

 Estimates Std Error T 
Approx 

Sig 
Non-Seasonal Lags AR1 .026 .156 .168 .867 
Constant 50.758 38.230 1.328 .192 
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Diagnostic Testing 

On the adequacy of the model, Q-statistic was estimated to be  𝜒2 − 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑  with  

𝑘 − 𝑝 − 𝑞 degrees of freedom. Where 𝑘 = 24 (maximum lag) used for Q, 𝑝 is the order of the 

AR process and 𝑞 is the order of the MA process. The 𝑄 − 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 is compared to the critical 

value of  𝜒232   which is 35.172.  Since the calculated 𝑄 − 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 = 24.544 < 35.172  the 

chosen model is adequate.   

Thus our selected model for Balance of Trade is given by  

𝑌𝑡 = 1. 026𝑌𝑡−1 − 0.026𝑌𝑡−2 + 50.758 
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3.2.8  CONSUMPTION 

 

Fig 3.2.23 Trajectory of Consumption from 1996 to 2004 

 

Fig. 3.2.23 is the trajectory of the Balance of Trade values which was analysed for any form of 

periodicity and seasonality but none appeared to exist. However the data appears to be non-

stationary in mean therefore differencing is required to make it stationary.  

Model Identification  

The autocorrelation function (ACF) dies down into a wave form whilst the partial autocorrelation 

function (PACF) truncates after lag 1 as exhibited in Figures 4.2.1 and 4.2.2 below. 
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Fig 3.2.24 Autocorrelation function of Consumption 

 

 

Fig 3.2.25 Partial autocorrelation function of Consumption  

242322212019181716151413121110987654321

Lag Number

1.0

0.5

0.0

-0.5

-1.0

A
C

F
Lower Confidence
Limit

Upper Confidence Limit
Coefficient

Consumption

242322212019181716151413121110987654321

Lag Number

1.0

0.5

0.0

-0.5

-1.0

Pa
rt

ia
l A

C
F

Lower Confidence
Limit

Upper Confidence Limit
Coefficient

Consumption



84 
 

The results from Fig.3.2.24 and Fig 3.2.25 above indicate an ARIMA(1,0,0) model. This model 

is now compared to two other possible models, ARIMA(1,1,0) and ARIMA(1,2,0), and the best 

is chosen based on the following tabular results. 

 

Table 3.2.8 Comparison Table of likely models for Consumption  

MODEL Residual Variance Akaike’s Information Criterion(AIC) Value 

ARIMA(1,0,0) 2077066 699.49 

ARIMA(1,1,0) 2076258 680.015 

ARIMA(1,2,0) 3788279 685.760 

 

From the results in Table 3.2.8 above, comparing both residual variance and AIC value gives 

ARIMA(1,1,0) as the most preferable model since its residual values are least. 

The identified model is of the form  𝑌𝑡 = (1 + 𝛼)𝑌𝑡−1 − 𝛼𝑌𝑡−2 + 𝑒𝑡, where 𝑌𝑡 is the observation 

at the present time 𝑌𝑡−1 and 𝑌𝑡−2 are respectively observations at time lag 1 and time lag 2, 𝑒𝑡,  

the white noise or error at the present time and 𝛼,  parameter to be estimated. 

After the model has been identified the parameters of the model were estimated and shown in the 

table below. 

 Estimates Std Error t 
Approx 

Sig 
Non-Seasonal Lags AR1 -.199 .153 -1.300 .201 
Constant -125.852 175.679 -.716 .478 
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Diagnostic Testing 

On the adequacy of the model, Q-statistic was estimated to be  𝜒2 − 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑  with  

𝑘 − 𝑝 − 𝑞 degrees of freedom. Where 𝑘 = 24 (maximum lag) used for Q, p is the order of the 

AR process and q is the order of the MA process. The 𝑄 − 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 is compared to the critical 

value of  𝜒232   which is 35.172.  Since the calculated 𝑄 − 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 = 17.55 < 35.172  the 

chosen model is adequate.   

Thus our selected model for Consumption is given by 𝑌𝑡 = 0.801𝑌𝑡−1 − 0.199𝑌𝑡−2 − 125.852. 
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3.3                    MODELLING 

The economy of Ghana could be likened to the theoretical four sector economy. Such as 

  𝑌 = 𝐼 + 𝐶 + 𝐺       3.1 

an open economy, that is one involving an international trade; equation (3.1) above becomes; 

 

 𝑌  =   𝐶 +   𝐼  +   𝐺  + (𝑋 −𝑀)                                      3.2 

 Where the macro economic variables are defined as  

  Y =   National Income 

  C = Consumption   

 I =   Investment 

 G = Government Expenditure 

 X = Export expenditure 

 M=Imports 

On the other hand expenditure on imports is a leakage from the system; some part of 

consumption, investment and government expenditure is likely to be spent on foreign produced 

goods, and these expenditure (M) needs to be deducted so that equilibrium condition requires the 

equality of planned expenditure on domestically produced goods and domestic national output.   
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Consider also a simple consumption function    

 𝐶 =  𝑎 + 𝑐(𝑌 −  𝑇)                                                        3.3   

Where a is autonomous consumption and c is the propensity to consume. 

As regards imports, assume that they are positively related to real disposable income so that  

 𝑀  =   𝑏  +  𝑚(𝑌 − 𝑇)  , 0 <  𝑚 <  1                               3.4   

That is a rise in real disposable income that will cause an increase in planned import expenditure, 

which is directly related to consumption function. 

m is the marginal propensity to import, which is the proportion of an increase in real disposable 

income that is spent on imports and b is autonomous import. 

Substituting (3.3) and (3.4) into (3.2) gives  

                         𝑌  =   𝑎  +  𝑐(𝑌 − 𝑇)   +   𝐼  +   𝐺  +   𝑋 – (𝑏 +   𝑚(𝑌 − 𝑇)      

   𝑌 =   𝑎 −  𝑏 +  𝐼 +  𝐺  +  𝑋 +  𝑐(𝑌 − 𝑇) –  𝑚(𝑌 − 𝑇) 

𝑌 –  𝑐( 𝑌 –  𝑇)  +   𝑚( 𝑌 −  𝑇)   =  𝑎 –  𝑏  +  𝐼 +  𝐺  +   𝑋  

𝑌–  𝑐𝑌 +  𝑐𝑇 +   𝑚𝑌 −  𝑚𝑇   =  𝑎 –   𝑏 +  𝐼 + 𝐺 +  𝑋  

𝑌 –    𝑐𝑌 +  𝑚𝑌  =   𝑎 –   𝑏 +  𝐼  +  𝐺 +  𝑋 +  𝑚𝑇  –   𝑐𝑇  

𝑌( 1–   𝑐 +  𝑚)     =   𝑎 –   𝑏 +  𝐼  +  𝐺  + 𝑋 +  𝑚𝑇 –   𝑐𝑇  

                             𝑌    =   (𝑎 –   𝑏 +  𝐼 +  𝐺 +   𝑋  +  𝑚𝑇 –    𝑐𝑇)   







+− mc1
1    3.5 
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Autonomous elements are   𝑎 –  𝑏 +  𝐼 + 𝐺 +  𝑋 +  𝑚𝑇 –  𝑐𝑇,  and  Multiplier    
mc +−1

1     

 

Trade balance or Balance of trade is defined as   

 BT  =  X  –  M  , where M =  b  – mY           3.6 

 BT  =  X –  b  – mY                                                          3.7 

For a given foreign interest rates, one expects net financial flows into the domestic economy (F) 

to be an increasing function of the domestic interest rate. 

That is;                       𝐹 =  𝐹(𝑟)                                                       3.8   

  F/ > 0 . That is to say that the first derivative is positive.  

From (3.5), (3.6) and (3.7) gives  

 BT  =  X–  b –  mY  + F(r)        3.9 
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A linear system of difference equation was used to model the simplified version of the  United 

States of America’s (U.S.A.) economy of 1969 and is given as follows:       

 

)()1()(
)()()(

)()()()(
)()()()(

)()1()()(
)()1()()(

3210

2210

1210

kIkKkK
kWkYkP

kGkIkCkY
kutkYkW

kukKkPkI
kukCkYkC

+−=
−=

++=
+++=

+−++=
+−++=

γγα
βββ
ααα

   3.10

 

Where   C = consumption   

 W = wage income   

 K = net capital stock  

 G = government expenditure  ui , i=  1,2,3,… ;   are  interventions  

Y  =  net  product  income, I = investments, t = time, P  = non-wage income and  

𝛽𝑖 γi, αi  are  controls.        

(USA Treasury Department, 1969) 

 

 

We now attempt to simplify the above system using linear models of a four sector economy.       
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3.4             ASSUMPTIONS MADE REGARDING THE SIMPLIFIED MODEL 

1. The dependent variable is obtained base on the previous year’s policy instruments. That 

is to say that the independent variables lagged one time unit the dependent. 

2. β2K(k-1) = the capital stock cannot exist independent of the Investment and income. 

3. In fact, Investment and capital stock are directly proportional and so β2K(k-1) is equal to 

I(k-1). 

4. The consumption and investment in Ghana’s economy depends largely on the 

Government’s expenditure. 

5. All the autonomous factors namely; 

 

a)      αo   =  consumption   

b)     βo   =   Investment   

c)      γo =   wages  

are considered as having a negligible influence on the Economy of Ghana, and so are ignored.  
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3.5             MODEL SIMPLIFICAION 

 

 

16.3............................).........1()1()(
15.3......................................).........()()(
14.3.............).........1()1()1()(
13.3..............................................).........()(

12.3.........................).........1()()(
11.3........................).........1()()(

1

21

21

−+−=
−=

−+−+−=
=

−+=
−+=

kIkKkK
kWkYkP

kGkIkCkY
kYkW

kKkPkI
kCkYkC

γ
ββ
αα

 

 

Substituting  (3.14)  into (3.11) for Y(k)  gives   

 C(k)  =  α1[C(k-1)  +  I(k-1)  +  G(k-1) ]  +  α2C(k-1)     

 C(k)  = α1C(k-1)  +  α1I(k-1)  + α1G(k-1)  + α2C(k-1)   

 C(k)  =  (α1 + α2 ) C(k-1)  +  α1I (k-1)  + α1G(k-1)                 3.17 

Equation (3.17) is now reduced to  

 )1()1()1()( 11211 −+−+−= kGbkIakCakC                      3.18    

Where        
112

2111

α
αα

=
+=

a
a

  and        
11 α=b  

  

Substituting (3.15) into (3.12) gives 

  I(k)   =  β1[(Y(k)  −  W(k)] + β2K(k-1) ,                                3.19 
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Substituting (3.13) into (3.19) gives  

  I(k)  =   β1[Y(k) −  γ1Y(k) ]  +β2K(k-1)                                                                          

 I(k)   =  β1(1−  γ1)Y(k)  +  β2K(k-1)      3.20 

Using equation (3.14), substituting for Y(k)  in (3.20), gives 

 I(k)  =  β1 (1−  γ1 ) [C(k-1) + I(k-1) +G(k-1) ]  + β2K(k-1),     3.21 

I(k)  =  β1 ( 1 −  γ1 )C(k-1) + β1(1 − γ1 )I(k-1) + β1(1 −  γ1) G(k-1) + β2K(k-1)      3.22 

But K(k) = K(k-1) + I(k-1)  and β2K(k-1) = I(k-1),   

Since investment is part of capital stock. (3.22) can then be written as  

 I(k) = β1( 1 – γ1)C(k -1) + β1( 1 – γ1)I(k-1)  +  β1( 1 – γ1)G( k – 1) + I( k – 1)  

and simplifying gives 

I(k)  = β1( 1 – γ1)C(k – 1) + [ β1( 1 – γ1) + 1)]I(k-1) + β1( 1 – γ1)G( k – 1 )               

 3.23 

Equation (3.23) is now reduced to  

)1()1()1()( 22221 −+−+−= kGbkIakCakI                                                                3.24             

where  a21 = β1 (1- γ1) ,  a22 = β1(1-γ1)+1 and b2 = β1(1-γ1) 

The two equations (3.18) and (3.24) are now resolved into matrix form as  

                 
)1(

)1(
)1(

)(
(

2

1

2221

1211 −







+








−
−









=







 kG
b
b

kI
kC

aa
aa

kI
kC

                                        3.25 
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Equations (3.17) and (3.23) are the linear equations of the Economic Model whiles the matrix 

form of the Economic Model is equation (3.25)                                            

                  G(k-1) =  government  expenditure , a control  variable   

                  C(k-1)  = consumption  , a state  variable   

                  I(k-1)  =  investment  ,  a state  variable   

Equation (3.25) is then compared to the non-homogenous state matrix equation   

                 X (k)   = Ax(k-1)  +  Bu(k-1),   

where A =  an  n x  n matrix, B  =  an  n x 1 matrix, X(k-1)  =  a state  vector  

u(k-1)  =  a  state control  vector. 

A =  








2221

1211

aa
aa

    ,    B =  








2

1

b
b

 , x(k-1)  = 







−
−

)1(
)1(

kI
kC

  ,  u(k-1) = G(k- 1)    and   

X(k)  =  







)(
)(

kI
kC
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3.6   DATA BASED MODEL 

3.6.1   Homogeneous (Free) System Model 

The homogeneous (free) system model of the form  









−
−









=








)1(
)1(

)(
(

2221

1211

kI
kC

aa
aa

kI
kC

 

where  𝑎11 = 0.870, 𝑎12 = −0.122, 𝑎21 = −0.068, 𝑎𝑛𝑑 𝑎22 = 0.793, which were  obtained 

using the data (refer to Appendix) is given in a matrix equation as  









−
−









−

−
=








)1(
)1(

793.0068.0
122.0870.0

)(
)(

kI
kC

kI
kC

 

The homogeneous model equation above has the matrix 𝐻 = � 0.870 −0.122
−0.068 0.793 � and the 

characteristic value equation  

|𝐻 − 𝜆𝐼| = �0.870 − 𝜆 −0.122
−0.068 0.793 − 𝜆� = 𝜆2 − 1.663𝜆 + 0.681614 = 0 

The above equations give eigenvalues 𝜆1 = 0.93038,    𝜆2 = 0.732615. 

The |𝜆| < 1 for all eigenvalues suggests that the homogeneous model system is stable. 
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3.6.2  The Non-homogeneous (Controlled) System Model 

The non-homogeneous (controlled) system model which has the system matrix 

 𝑎11 = 0.197,   𝑎12 = −0.984, 𝑎21 = 0.405,   𝑎22 = 1.399  with the control matrix 

𝑏1 = −0.505, 𝑎𝑛𝑑 𝑏2 = 0.355. 

The system equation is given in the matrix notation as: 

)1(
355.0
505.0

)1(
)1(

399.1405.0
984.0197.0

)(
)(

−






−
+








−
−








 −
=







 kG
kC
kC

kI
kC

 

The control parameters are the government expenditure and taxation, whiles the state variables 

are investment and consumption. 

The controllable matrix of the system model has the matrix  

𝐴 = �0.197 −0.984
0.355 0.29212� ,     𝐵 = �−0.505

0.355 � and 𝐴𝐵 = �−0.448805
0.29212 � is given in the form  

𝑄 = (𝐵   𝐴𝐵)  , that is  𝑄 = �−0.505 −0.448805
0.355 0.29212 � 

The rank of 𝑄 is 2 and the model is controllable. 
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Table 3.3 Summary of Models of the components of the economy of Ghana 

COMPONENT OF THE ECONOMY MODEL 

Inflation 𝑌𝑡 = 1.403𝑌𝑡−1 − 0.403𝑌𝑡−2 − 1.19 

Interest Rate 𝑌𝑡 = 1.403𝑌𝑡−1 − 0.403𝑌𝑡−2 − 1.19 

Total Money Supply 𝑌𝑡 = 0.7461𝑌𝑡−1 + 0.239𝑌𝑡−2 + 8.116 

GDP 𝑌𝑡 = 0.949𝑌𝑡−1 + 0.051𝑌𝑡−2 + 128.45 

Capital Stock 𝑌𝑡 = −0.693𝑌𝑡−1 + 𝑌𝑡−2 + 0.693𝑌𝑡−3 − 102.395 

Government Expenditure 𝑌𝑡 = 0.851𝑌𝑡−1 − 0.149𝑌𝑡−2 + 188.877 

Investment 𝑌𝑡 = 0.99𝑌𝑡−1 + 0.01𝑌𝑡−2 + 14.112 

Balance Of Trade 𝑌𝑡 = 1. 026𝑌𝑡−1 − 0.026𝑌𝑡−2 + 50.758 

Consumption 𝑌𝑡 = 0.801𝑌𝑡−1 − 0.199𝑌𝑡−2 − 125.852 
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CHAPTER  4 

CONCLUSIONS AND RECOMMENDATIONS 

 

4.0  INTRODUCTION 

Since the model economy like any other economy be it developing or developed seeks stability 

and control, it is necessary that the economic model equation satisfies these basic requirements 

of a standard economic model. 

The main components of the research model are consumption, investment and government 

expenditure. For any three sector economy the national income depends on investment, 

consumption and government expenditure. Since investment is the main drive of an economy, 

the economic growth of a typical developing country like Ghana will therefore require such a 

model for a trial. 

 

4.1  CONCLUSION 

The summary of findings as regards the work done is as follows; 

1. The following table is the ARIMA models of the various components of the economy. 
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Table 4.0 Summary of Models of the components of the economy of Ghana 

COMPONENT OF THE ECONOMY MODEL 

Inflation 𝑌𝑡 = 1.403𝑌𝑡−1 − 0.403𝑌𝑡−2 − 1.19 

Interest Rate 𝑌𝑡 = 1.403𝑌𝑡−1 − 0.403𝑌𝑡−2 − 1.19 

Total Money Supply 𝑌𝑡 = 0.7461𝑌𝑡−1 + 0.239𝑌𝑡−2 + 8.116 

GDP 𝑌𝑡 = 0.949𝑌𝑡−1 + 0.051𝑌𝑡−2 + 128.45 

Capital Stock 𝑌𝑡 = −0.693𝑌𝑡−1 + 𝑌𝑡−2 + 0.693𝑌𝑡−3 − 102.395 

Government Expenditure 𝑌𝑡 = 0.851𝑌𝑡−1 − 0.149𝑌𝑡−2 + 188.877 

Investment 𝑌𝑡 = 0.99𝑌𝑡−1 + 0.01𝑌𝑡−2 + 14.112 

Balance Of Trade 𝑌𝑡 = 1. 026𝑌𝑡−1 − 0.026𝑌𝑡−2 + 50.758 

Consumption 𝑌𝑡 = 0.801𝑌𝑡−1 − 0.199𝑌𝑡−2 − 125.852 

 

 

2. Based on time series analysis the following series were obtained. 

i. The homogenous (free) system model is given as 









−
−









−

−
=








)1(
)1(

793.0068.0
122.0870.0

)(
)(

kI
kC

kI
kC

 

ii. The non-homogeneous (controlled) system model is given as  
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iii. The controllability matrix model system was found to be of rank 2 thereby implying 

that the system is controllable. 

4.2  RECOMMENDATION 

1. Stakeholders should make use of mathematical models of the economy such as the one 

obtained, even if simple, for the purposes or a guide to policy making, especially in the 

area of using government expenditure as a major tool for managing the economy. 

2. For further studies or work, it is recommended, that, a non-linear system model which 

will be more reliable should be formulated, using preferably updated data. Also an 

optimal control model could be studied even in the linear case by incorporating an 

objective function such as the welfare integral 
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APPENDIX 

DATA FOR THE MODEL 

 

   
1996 

  PARAMETER Q1 Q2 Q3 Q4 TOTAL 
INFLATION 64.10 65.30 59.00 49.60 238.00 

INTEREST RATE 47.10 46.70 46.40 45.90 186.10 
TOTAL MONEY SUPPLY 52.10 58.00 61.30 69.70 241.10 

GDP 4452.86 4498.69 4501.60 4633.90 18087.05 
CAPITAL STOCK 1601400.00 1647900.00 1744000.00 2120400.00 7113700.00 

GOVT. EXPENDITURE 638.80 654.20 703.60 834.60 2831.20 
INVESTMENT 97.40 98.60 100.10 124.00 420.10 

BALANCE OF TRADE -1837.50 -1980.00 -2130.00 -2212.50 -8160.00 

      
   

1997 
  parameter Q1 Q2 Q3 Q4 TOTAL 

INFLATION 40.90 35.90 30.50 28.50 135.80 
INTEREST RATE 45.00 45.00 45.00 47.50 182.50 

TOTAL MONEY SUPPLY 71.63 76.64 72.36 92.07 312.7 
GDP 4452.86 4498.69 4501.62 4633.90 18087.07 

CAPITAL STOCK 813.96 1197.84 1448.67 1504.70 4965.17 
GOVT. EXPENDITURE 962.50 1034.20 1095.60 1103.90 4196.20 

INVESTMENT 136.40 142.80 139.20 140.10 558.50 
BALANCE OF TRADE -2587.50 -2550.00 -2512.50 -2430.00 -10080.00 

      
      
   

1998 
  parameter Q1 Q2 Q3 Q4 TOTAL 

INFLATION 27.40 26.80 26.50 27.42 108.12 
INTEREST RATE 45.00 45.00 44.00 35.00 169.00 

TOTAL MONEY SUPPLY 100.30 112.50 105.90 113.00 431.70 
GDP 4675.25 4693.88 4735.90 4746.70 18851.73 

CAPITAL STOCK 3035.56 3226.53 3227.82 3232.85 12722.76 
GOVT. EXPENDITURE 1121.70 1156.80 1193.20 2063.40 5535.10 

INVESTMENT 154.80 168.10 175.90 184.20 683.00 
BALANCE OF TRADE -2392.50 -2340.00 -2265.00 -2242.50 -9240.00 

      



103 
 

     

 
 
 
 

   
1999 

  parameter Q1 Q2 Q3 Q4 TOTAL 
INFLATION 28.50 30.60 32.80 36.50 128.40 

INTEREST RATE 32.40 28.50 27.40 33.80 122.10 
TOTAL MONEY SUPPLY 117.53 119.71 123.96 133.20 494.40 

GDP 4856.61 4899.62 4946.84 4956.92 19659.99 
CAPITAL STOCK 3146.29 3239.29 3334.72 3579.96 13300.26 

GOVT. EXPENDITURE 1241.20 1468.41 1659.46 1806.90 6175.97 
INVESTMENT 184.30 196.42 196.51 241.28 818.51 

BALANCE OF TRADE -2190.20 -2130.41 -2085.56 -2062.50 -8468.67 

      
      
   

2000 
  parameter Q1 Q2 Q3 Q4 TOTAL 

INFLATION 40.00 42.00 40.00 40.00 162.00 
INTEREST RATE 20.20 21.60 19.50 19.20 80.50 

TOTAL MONEY SUPPLY 146.34 157.13 158.13 165.12 626.72 
GDP 4906.55 4996.41 5069.63 5142.19 20114.78 

CAPITAL STOCK 4972.20 4983.80 5012.34 5214.80 20183.14 
GOVT. EXPENDITURE 1891.00 2041.63 2254.77 2508.49 8695.89 

INVESTMENT 375.36 389.16 390.12 379.96 1534.60 
BALANCE OF TRADE -876.83 -863.42 -855.89 -842.30 -3438.44 

      
      
   

2001 
  parameter Q1 Q2 Q3 Q4 TOTAL 

INFLATION 43.00 38.00 30.00 27.00 138.00 
INTEREST RATE 27.00 23.00 24.00 17.00 91.00 

TOTAL MONEY SUPPLY 178.43 189.26 196.59 200.42 764.70 
GDP 5199.76 5258.36 5296.23 5359.12 21113.47 

CAPITAL STOCK 5267.38 5384.46 5399.26 5492.90 21544.00 
GOVT. EXPENDITURE 2456.80 2648.92 2859.66 3154.70 11120.08 

INVESTMENT 3876.84 3922.88 3968.88 4070.22 15838.82 
BALANCE OF TRADE 16.50 25.50 34.50 43.50 120.00 
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2002 

  parameter Q1 Q2 Q3 Q4 TOTAL 
INFLATION 17.00 15.00 15.00 17.00 64.00 

INTEREST RATE 23.00 24.00 24.00 23.00 94.00 
TOTAL MONEY SUPPLY 210.23 220.14 234.26 249.44 914.07 

GDP 5497.63 5581.96 5596.40 5600.80 22276.79 
CAPITAL STOCK 8003.50 8165.80 8534.00 10513.60 35216.90 

GOVT. EXPENDITURE 3194.00 3263.50 3348.60 3506.29 13312.39 
INVESTMENT 4161.24 4296.39 4367.65 4473.48 17298.76 

BALANCE OF TRADE 92.23 115.92 136.16 151.80 496.11 

      
      . 

  
2003 

  parameter Q1 Q2 Q3 Q4 TOTAL 
INFLATION 29.90 29.60 26.80 23.60 109.90 

INTEREST RATE 22.80 22.50 22.20 21.50 89.00 
TOTAL MONEY SUPPLY 256.49 266.82 272.69 280.93 1076.93 

GDP 6653.14 6773.36 6840.43 6886.73 27153.66 
CAPITAL STOCK 11194.90 11673.00 11473.40 11375.90 45717.20 

GOVT. EXPENDITURE 4745.30 4913.64 5042.20 5312.55 20013.69 
INVESTMENT 4572.40 4774.60 48994.42 4924.28 63265.70 

BALANCE OF TRADE 249.32 259.44 270.48 281.62 1060.86 

      
      
   

2004 
  parameter Q1 Q2 Q3 Q4 TOTAL 

INFLATION 22.40 11.20 11.90 12.90 58.40 
INTEREST RATE 20.00 18.50 18.50 18.50 75.50 

TOTAL MONEY SUPPLY 314.90 320.44 339.63 341.72 1316.69 
GDP 7650.91 7740.82 7850.63 7963.80 31206.16 

CAPITAL STOCK 10957.80 11502.70 11521.50 11628.40 45610.40 
GOVT. EXPENDITURE 4615.62 5090.40 5540.61 6066.59 21313.22 

INVESTMENT 5012.32 5103.48 5263.41 5381.90 20761.11 
BALANCE OF TRADE -24.05 -25.41 -23.64 -30.98 -104.08 
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