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Abstract

In this thesis, a SEIR epidemiological model is formulated to help control the

transmission of varicella, using clinical varicella data from Ghana Health Service.

The thesis is based on the assumption that the population is constant with birth

rate equals death rate. First it is shown that there exists a domain where the

model is epidemiologically and mathematically well-posed as desired in any pop-

ulation dynamics. Qualitative results show that the model has the disease-free

equilibrium point which is locally asymptotically stable for R0 < 1 and unstable

for R0 > 1. The Routh-Hurwitz criterion is used to show that the model has an

endemic equilibrium point which is locally asymptotically stable when R0 > 1.

The basic reproduction number for Ghana is found to be R0 = 1.2869, whiles the

herd immunity threshold is found to be HI = 22.3%. Numerical simulation of

the model, using MATLAB and a fouth order Runge-Kuta method suggests that

one practical measure, to bring the transmission of the disease under control is

early detection of the infectious, for isolated supervised treatment. It is concluded

that vaccination is the most important factor to control the spread of varicella

in case of an outbreak and that 22.3% of the susceptible population needs to be

vaccinated in order to bring the disease under control.
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Chapter 1

Introduction

1.1 Background of the Study

Mathematical methods have been proved to be an essential tool in epidemiology.

Using mathematical methods to model epidemiology, provides understanding of

the epidemic features of the spreading law and control measures of the epidemic.

Global incidence of varicella has been significantly reduced through vaccination,

but varicella still remains an important public health problem because vaccina-

tion coverage is not globally uniform.

According to the World Health Organization (WHO), chickenpox is one of the en-

demic diseases in the sub-Saharan country (Providential Aid Organization, 2012).

In 2008, 77,790 cases of chickenpox were recorded in Ghana, 45,512 in 2004,

and 19,614 in 2003 and 35,667 in 2002 ( Ghana Health Service, Prime Division,

Accra).

The first vaccine for varicella was invented in 1974, and a one-dose vaccine was

approved for the U.S. national immunization program in 1995. This one dose

policy effectively decreased incidences, but failed to prevent outbreaks. The two-

dose vaccination program was adopted in 2007 and so far it has been virtually

100% effective in preventing severe cases of varicella and 95% effective in prevent-

ing the illness entirely, Gommel et al. (2012).

Varicella is a highly contagious skin rash disease caused by varicella zoster virus
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(VZV), Schuette and Hethcote (1999). Primary varicella is an endemic disease.

In unvaccinated populations, varicella is primarily a classic childhood illness af-

fecting children from 1 to 14 years, Preblud et al. (1984), with more than 90% of

the population in temperate countries developing clinical infection by early adult-

hood. Varicella confers a lifelong immunity after recovery, Watson et al. (2002),

but it remains dormant in the dorsal root ganglia and can reactivate later in life,

causing herpes zoster (HZ) Holmes et al. (1996), Garnett and Grenfell (1992).

The average incubation period for varicella is 14 to 16 days, with a range of 10

to 21 days. The infectious period is from 5 days before the rash appears, and up

to 6 days afterwards, Baker et al. (2000)

Humans are the only source of infection with the VZV. The virus is transmitted

from person to person through the air and by direct contact with the fluid of a

rash. When an infected person coughs or sneezes, secretions from the nose and

throat become airborne and may infect persons who have not been infected be-

fore or who have not been vaccinated. Infection can also occur from contact with

contaminated items, such as towels, sheets, and clothing. Additionally, contact

with the drainage from zoster lesions can cause chickenpox , Baker et al. (2000).

Protecting children from vaccine-preventable diseases, such as varicella, is among

primary goals of health administrators worldwide. Since vaccination turned out

to be the most effective strategy against childhood diseases, developing a frame-

work that would predict an optimal vaccine coverage level needed to control the

spread of varicella is crucial, Tessa (2006).

Using mathematical methods to model epidemiology, provides understanding of

the epidemic features of the spreading law and control measures of the epidemic.

This situation motivated us to apply the SEIR epidemic model to effectively

model and analyze the disease.
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1.2 Problem Statement

Varicella is an unavoidable communicable diseases of childhood, and virtually

majority of people infected by adulthood.

Even though this incidence has been globally reduced through vaccination, in

Ghana, varicella still remains an important public health problem, since the is no

vaccination against the disease and everyone is susceptible .

In August 2008 an outbreak of varicella at the Accident and Emergency Unit

of the Korle-Bu Teaching Hospital, as reported by Joy news reporter Isaac Essel

on August 26th, resulted in the temporal close down of the unit. This has also

been experienced in other hospitals nationwide.

On Tuesday 15th April 2014, there was an outbreak of varicella at the Koforidua

Central Prisons, with 20 people infected, as reported by Portia Gabor and Abu

Issah Mornnie on TV3 7:00 pm news.

Epidemiology of varicella in Ghana has not been carefully studied and most re-

cent outbreaks indicate a large proportion of people been infected. This situation

motivated us to apply the SEIR epidemic model to effectively model and analyze

the disease.

1.3 Objectives of the Thesis

The objectives of this thesis are as follows:

1. To formulate a mathematical model to control varicella transmission in Ghana.

2. To determine equilibrium points and perform stability analysis of the model.

3. To investigate the role of the reproductive number and perform simulations.

4. To investigate the effect of vaccination against the spread of varicella.

3



1.4 Methodology

The data used for this thesis is obtained from Ghana Health Service Directorate.

We used SEIR model proposed by Anderson and May (1991) to model the spread

of varicella and ordinary differential equations were used to formulate the model

equations. Equilibrium points (steady states) and stability analysis were deter-

mined, and the basic reproductive number found. Numerical simulation using

MATLAB and a fourth order Runge-Kuta method is then performed.

1.5 Justification

Epidemiology of varicella have been extensively studied especially in developed

countries. However, few studies have been done in developing countries like

Ghana, hence there is not enough mathematical publication specifically looking

at varicella epidemics in Ghana. Also, there is no control programme against the

spread of the disease in Ghana. Therefore, this thesis will assist decision makers

to see the need to implement vaccination programme against the transmission of

varicella. The thesis may also assist research scientists to further develop suitable

models to help public health professionals to make better strategies for controlling

the disease.

1.6 Thesis Organization

The thesis contain five chapters. Chapter one presents the background, problem

statement, objectives, methodology, justification and organization of the thesis.

Chapter two examines the previous works related to the thesis. Model formula-

tion is presented in chapter three, and equilibrium points, stability analysis, and

reproductive number were studied. Chapter four apply our results to vaccination

policies, numerical simulation of the model using MATLAB and result discussion.

Chapter five is devoted to conclusions and recommendations.
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Chapter 2

Literature Review

2.1 Introduction

In this chapter we reviewed the work of other researchers related to the topic.

2.2 Abstracts Relevant to this Thesis

The spread of several communicable diseases have been gainfully studied with

mathematical models. Varicella occurs in almost every part of the world. In

Ghana the study of the epidemiology of this disease has not been given much at-

tention. Mathematical models can be used to study the spread of this disease. In

this chapter some of the previous related studies on the spread of communicable

diseases especially varicella have been reviewed.

The application of mathematics to the study of infectious disease was initiated

by Daniel Bernoulli in 1760, presented at the Royal Academy of Sciences in Paris.

His was to influence public health policy, by using mathematical techniques to

evaluate the potential effectiveness of universal vaccination against smallpox. He

was utilizing quantitative techniques, and specifically mathematical modeling, to

influence public health policy, Lachlan (2008)

The mass-action concept was used by Kermack and McKendrick in 1927 who

began to provide a firm theoretical framework for the investigation of observed

patterns of the course of an epidemic. The framework of Kermack and McK-

endrick has evolved to become the classic SIR model for studying population

biology, and their framework could be considered the birth of modern mathemat-
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ical epidemiology, Lachlan (2008).

According to Kermack and Mckenderick (1927), an epidemic, which acts on a

short temporal scale, may be described as a sudden outbreak of a disease that

infects a substantial portion of the population in a region before it disappears.

Epidemics usually leave many members untouched. Often these attacks recur

with intervals of several years between outbreaks, possibly diminishing in sever-

ity as populations develop some immunity.

Throughout history, epidemics have had major effects on the course of events.

One of the early triumphs of mathematical epidemiology was the formulation of

a simple model that predicted behavior very similar to this behavior, observed

in countless epidemics. The Kermack and Mckenderick (1927) model is a com-

partmental based on relatively simple assumptions on the rates of flow between

different classes of members of the population.

Another important distinction is between epidemics and endemic situations. An

epidemic acts on a short time scale and may be described as a sudden outbreak

of a disease that infects a substantial portion of the population in a region before

it disappears. Epidemics usually leave many members untouched. In an endemic

situation, a disease becomes established in a population and remains for a long

time.

In models for epidemics, one usually ignores demographic effects (births and

deaths not due to disease) because of the short time scale. The justification for

ignoring demographic effects is that the demographic time scale is normally much

longer than the disease time scale, and may be neglected. Endemic situations, on

the other hand, may endure for years, and it is necessary to include demographic

effects in modeling them, Dietz (1982).

According to Arino et al. (2007), in the mathematical modeling of disease trans-
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mission, as in most other areas of mathematical modeling, there is always a

trade-off between simple models, which omit most details and are designed only

to highlight general qualitative behavior, and detailed models, usually designed

for specific situations including short-term quantitative predictions. Detailed

models are generally difficult or impossible to solve analytically and hence their

usefulness for theoretical purposes is limited, although their strategic value may

be high.

In their example, very simple models for epidemics predict that an epidemic will

die out after some time, leaving a part of the population untouched by disease,

and this is also true of models that include control measures. This qualitative

principle is not by itself very helpful in suggesting what control measures would

be most effective in a given situation, but it implies that a detailed model de-

scribing the situation as accurately as possible might be useful for public health

professionals.Such a model might have many equations and in practice could only

be solved approximately by numerical simulations. This has become feasible in

recent years because of the developments in high-speed computing.

Anderson et al. (1986) studied an epidemic such as mumps in the United King-

dom. The work was done on virus transmission, herd immunity and the potential

impact of immunization. On their findings children are mostly affected by the

disease. However vaccination of susceptible population does not confer perma-

nent immunity, but with regards to SEIR model, permanent immunity would be

attained with effective vaccination for a longer period before the vaccination will

lose it effectiveness.

Hethcote (2000) introduced SEIR model to describe the spread of epidemics.

According to his studies, the dynamics of the disease depends on infection rate,

and the removal rate. There is an outbreak of the disease if the reproductive

number exceeds unity. The disease dies out in the susceptible population if the

7



reproductive number is less than one . Moreover, an outbreak of the disease is

likely to ensure, if the density of susceptible is high and the removal rate of infec-

tion is low. The solution of number of removals depend on infection rate, removal

rate, initial number of susceptible and population size. On the other hand the

solution of the removal class cannot be used to estimate removals if the outbreak

results in large population.

Nokes and Anderson (1986) studied rubella epidemiology in south east England.

The disease was characterized by age-dependent changes in the pattern of virus

transmission. The rate of infection was low in children than in adults. Immu-

nization against people raised levels of immunity in both children and adults.

On average, antibody concentrations recorded a reduction with age and low in

vaccinated females than in unvaccinated males.

Kermack and Mckenderick (1927) studied epidemics of measles in United King-

dom. In their study the dynamics of the disease depended on infections rate,

the removal rate and relative removal rate. Their work observed that the dis-

ease threshold occurs when reproductive number equals to one. There will be an

outbreak of the disease if the reproductive number exceeds unity. The disease

dies out in the susceptible population if the reproductive number is less than one.

Moreover, an outbreak of the disease is likely to ensue if the density of suscep-

tible is high and the removal rate of infectives is low. The expression for the

number of the removal or recovered class was ascertained from other equations of

the system as a function of time. The solution of number of removals depend on

infection rate, removal rate, initial number of susceptibles and population size.

Their work observed that the solution of the removal class be used to estimate

removals if the outbreak results in large population. More importantly, the quali-

tative solution of the removal class at equilibrium was not captured in their work.
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Li and Zou (2009) applied a generalization of the Kermack and Mckenderick

(1927) SIR model to a patchy environment for a disease with latency. Their

work assumed that the infectious disease had a fixed latent period in a popula-

tion. The SIR model for a population living in two cities were formulated. Their

model used system of delay differential equations with a fixed delay accounting

for the latency and non-local terms caused by the mobility of the individuals

during the latent period. The disease later dies out, leaving a certain portion

of the susceptible population untouched. Their work revealed that the ratio of

the final sizes in two compartments is determined by the ratio of the dispersion

rates of the susceptible individuals between the two compartments. Numerical

methods were used to explore the dynamics under which the disease dies out and

the existence of multiple outbreaks. Their work was found to be inconsistent with

that of Kermack and Mckenderick (1927) SIR model.

Alli et al. (2010) reported on the stability of two SIR type models for HIV.

An SIR model with birth rate equal to natural death rate was compared with the

SIR model with two different infectivies for HIV. The reproductive numbers for

the models were determined from spectral radius of the next generation matrix.

Two different expressions of reproductive numbers were obtained for the models.

In the modified SIR model there were high-infective and higher-infective individ-

uals in the infective class.

Their work observed three different removal rates for infective to high-infectives,

from infective to higher-infectives and from infective class to removed class. Mod-

ified SIR model involved more dynamics than simple SIR. They observed that

if reproductive number is less than unity the infection free equilibrium is locally

asymptotically stable for the modified SIR model and unstable for modified SIR

model if reproductive number is greater than unity. In simple SIR model, an

infectious free equilibrium point was asymptotically stable.

They concluded that the modeled disease observed disease-related factors such

9



as the infectious agent, mode of transmission and infectious period. Factors such

as geographic factors, demographic and economic status of infectious were not

captured in their work.

An SIR epidemic model with vital dynamics, incubation time and also with bilin-

ear incidence rate was formulated by Setiawan (2008). The total host population

was assumed constant. The threshold value RO determining whether the disease

dies out found. They used Taylor series method to find the root of characteristics

of the system. Then, the root of characteristic and the threshold value RO will

be determining the stability of the equilibria of the model which is in the absence

of time delay or if it’s exist. The result obtained showed that the global dynam-

ics were completely determined by the values of the threshold valueRO and time

delay. If RO is less than or equal to one, the disease-free equilibrium was globally

asymptotically stable (GAS) and the disease always dies out, while if it exceeds

one there will be an endemic. Then, by using incubation time length as constant

time delay, the local stability for endemic equilibrium was investigated.

The result obtained that the endemic equilibrium was locally asymptotically sta-

ble (LAS) for RO exceeds one and for all positive time delay, or it can be called

absolutely locally asymptotically stable (ALAS) when RO exceeds one.

Age structure of a population affects the dynamics of disease transmission. Tra-

ditional transmission dynamics of certain diseases cannot be correctly described

by the traditional epidemic models with no age-dependence. A simple model was

first proposed by Lotka and Von Foerster where the birth and the death pro-

cesses were independent of the total population size and so the limitation of the

resources were not taken into account. To overcome this deficiency, Gurtin and

MacCamy (1974) in their pioneering work considered a nonlinear age-dependent

model, where birth and death rates were function of the total population. Var-

ious age-structured epidemic models have been investigated by many authors,
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and a number of papers have been published on finding the threshold conditions

for the disease to become endemic, describing the stability of steady-state solu-

tions, and analyzing the global behavior of these age-structured epidemic models.

With the improvement of human society sanitation, the enhancement of med-

ical level and science technology, many diseases, such as cholera, smallpox, have

been controlled by human. However, more and more new viruses are coming.

Yulian (2010) investigated the prediction and establishment of SIR model for

H1N1 epidemic disease. The H1N1 SIR epidemic model of Hong Kong has been

established and the software MatLab was used to write a program for solving the

established SIR epidemic model. Through their numerical calculation, their pre-

dicted infected curve agrees with their fact infected curve well. The result of the

investigation proved that the established SIR epidemic model of H1N1 in Hong

Kong is accurate and can be used to analyse the development of H1N1 of Hong

Kong in the future. Their result could provide the condition and investigation

method for their sanitation department.

Several studies have modeled VZV transmission. Most of these studies are con-

cerned with the effect of vaccination on the long-term epidemiology. Factors such

as changes in the age distribution of infection, reduction in case numbers, reduc-

tions in morbidity and mortality, and the economic effects of vaccination have all

been investigated. The effect of vaccination on herpes zoster (HZ) incidence has

also generated substantial interest from the modeling community.

Esson et al. (2014), used the SEIR model to study epidemiology of chickenpox

in the Agona West Municipality of Ghana. The study showed that chickenpox

is persistent in the municipality with R0 = 2. The stability analysis of disease

free and endemic equilibrium point of varicella transmission without vaccination

was estimated to be a center. He concluded that varicella in the Municipality
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can be prevented by reducing the rate at which people are exposed to the disease.

Martey (2012), used the SIR epidemic model to study varicella transmission in

Ghana. He concluded that chickenpox is endemic in Ghana with average patient

contact rate of 1.4588 and the reproductive number R0 = 1.078 and that about

7.26% of the susceptible population should be immune in order not to have an

epidemic during an outbreak.

Garnett and Grenfell (1992) introduced a quantitative model with the aim of

describing VZV transmission dynamics as well as HZ. Their model is a simple

compartmental, deterministic model. Infants enter the model into a class with

maternal antibodies (M), become susceptible (S), then exposed (E), infectious (I),

and finally recover with permanent immunity (R). In the terminology presented

above, this is an MSEIR model. The parameters that describe the flow from one

compartment to the next are estimated from observed data. Age structure and

the rate of zoster occurrence among the recovered add complexity to the model.

The effect of age is accounted for by including age-specific forces of infection.

Their results concern rates of viral reactivation, which causes HZ in previously

infected and recovered individuals. They find that an age-dependent reactivation

rate approximates real data better than a constant reactivation rate.

Mathematical modeling is used to investigate VZV transmission in the US pop-

ulation as well as the effectiveness of various control measures by Gommel et al.

(2012). In their effort to mathematically model Varicella-Zoster Virus (VZV) and

still be able to analyze the models without numerical computer simulation, devel-

oped several models to capture the transmission dynamics. In these models, the

population is divided into up to seven distinct, disjoint classes, denoted S, I, P,

V, J, Z,R and N, respectively standing for susceptible, infected/infectious (with

chickenpox), partial immunity (immune to chickenpox), vaccinated against vari-
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cella, breakthrough infected/infectious, infected with zoster, recovered/removed

and entire population.

Their first and simplest model divides the population into four classes: S, I, R,

and Z. Their second model improves upon the first one by removing the ambigu-

ity of the class R; they were not sure whether an individual in the R class is only

immune to chickenpox, or immune to both zoster and chickenpox. With this in

mind, they created the class P, for individuals who have contracted and recovered

from chickenpox but have not yet been infected with shingles. Their third model

accounts for the potential for breakthrough cases after vaccination by adding a

vaccinated class V (not just by moving vaccinated people to the class P) and a

breakthrough infected/infectious class J. Their fourth model is an extension of

the third model; it adds the P class back in, and accounts for the zoster vaccine.

In addition, they accounted for both doses of the varicella vaccine (not just one),

and provided a path for an individual to bypass both chickenpox and zoster and

end in the recovered/removed class with the vaccinations and the P class.

For the first two models, the Vaccination Reproduction Number (also known as

the basic reproduction number, the basic reproduction ratio, or the basic repro-

ductive rate) was the same and the interpretation for this vaccination reproduc-

tion number was identical. The last two model was too complex to find the

endemic equilibrium, either by hand or using a computer program, and thus they

were unable to list the Endemic Equilibrium (EE). They were, however, able to

use the Next Generation Operator Method to find the vaccination reproduction

numbers, but could make no claims about the stability of the EE since they were

unable to find it.

They developed these four models in an effort to accurately depict the transmis-

sion dynamics of the VZV without being so complex that they could not analyze

them without computer simulation. As such, more complex models, such as that

of Shuette and Hethcote, predict a rise in zoster incidence with a universal vac-

cination program. Using model number four, their results seem to agree with
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the claim that higher zoster rates coincide with higher values for varicella vacci-

nation rate. Their research data also backs the claim that conditions where the

Disease-Free Equilibrium (DFE) is unstable do exist when the one-shot varicella

vaccination is given at a 90% coverage rate, meaning that breakouts could hap-

pen given these conditions, which lead them to believe that the two-dose varicella

vaccination program is the most effective way to prevent outbreaks and achieve

maximum efficacy.

Socan et al. (2010) studied varicella susceptibility and transmission dynamics

in Slovenia. their research revealed that the most appropriate approach to re-

duce the burden of varicella in Slovenia would be a universal, standard two dose

varicella vaccination programme (the first dose administered at 12-18 months

and the second at 3-6 years). After the introduction of varicella vaccine in the

childhood immunization schedule, a vigilant surveillance of varicella epidemiology

should continue in order to promptly identify gaps and unexpected epidemiolog-

ical changes in both varicella and herpes zoster.

According to Valeika (2008), in 1995, the United States implemented a single-

dose strategy of varicella vaccination in infants. Varicella incidence, morbidity,

and mortality declined dramatically by roughly 80%, though outbreaks contin-

ued, even in highly vaccinated populations, and the incidence of varicella began

rising in 2003. These events prompted the recommendation of a two-dose vacci-

nation strategy in 2005. He therefore researched on the epidemiology of varicella

under a two-dose vaccination strategy.

A deterministic, age-structured transmission model of the two-dose strategy pre-

dicts a large epidemic of varicella in the near future, even with high second-dose

coverage rates. In the long-term, incidence rates under a two-dose regime will be

10% or less compared with pre-vaccination rates, compared with up to 50% with

a continued one-dose strategy. This study predicts that the resurgence in vari-

14



cella incidence that has been observed since 2003 will continue and peak in 2015,

20 years after the beginning of the single dose varicella vaccination strategy. The

resurgence is a result of a buildup of susceptibles (S) protected by herd-immunity,

as well as a buildup of partially susceptible vaccinated individuals (VS) due to

waning immunity or sub-optimal response to vaccine, compounded by the de-

creasing circulation of VZV.

Yusuf and Benyah (2012) presented Optimal control of vaccination and treatment

for an SIR epidemiological model. They considered an SIR model with variable

size population and formulated an optimal control problem subject to the model

with vaccination and treatment as controls. Their main aim was to find the op-

timal combination of vaccination and treatment strategies that will minimize the

cost of the two control measures as well as the number of infectious. The analysis

of the model show that the disease free equilibrium is globally asymptotically sta-

ble if the basic reproduction ratio is less than one while the endemic equilibrium

exists and it is globally asymptotically stable whenever the basic reproduction

ratio is greater than one. Their results confirm that the optimal combination

of vaccination and treatment approach required to achieve the set objective will

depend on the relative cost of the control measures. In conclusion, the results in-

dicate that the case where it is more expensive to vaccine than to treat, resources

should be invested in treating the disease until the disease prevalence begins to

fall. This option, does not decrease the number of susceptible quickly enough,

but rather result in an overall increase in the infected population. On the other

hand, if it is more expensive to treat than to vaccine, then more resource should

be put into vaccination. This case rather resulted in a rapid decrease in the sus-

ceptible as well as an appreciable decrease in the number of infectives. However,

the case where both measures are equally expensive showed that the optimal way

to derive the epidemic towards eradication within the specified period is to use

more of the vaccination control and less of the treatment control initially to de-
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rive the epidemic to below certain threshold after which we can then apply less

of vaccination control and more of the treatment control.

Flavio and Rowthorny (2009), in their paper used the SI model to fully char-

acterizes the optimal control of a recurrent infectious disease through the use of

(non-vaccine) prevention and treatment. The dynamic system may admit multi-

ple steady states and the optimal policy may be path dependent. They found that

an optimal path cannot end at a point with maximal prevention; it is necessarily

zero or at an intermediate level. In contrast, an optimal path must end at a point

at which treatment is either maximal or minimal. They showed that treatment

and prevention are imperfect substitutes and may or may not be used in conjunc-

tion, depending on the state of the system. This means that optimal paths do

not generally approach steady states as rapidly as possible. They showed that

for some parameterizations, it is always optimal to go to a specific steady state

(either a high or a low prevalence one) while for others, the optimal path and

steady state depend on initial conditions and thus there is hysteresis. They found

that the comparative statics with respect to the rates of infectivity and recovery

may radically differ across steady states, which has important policy implications.

According to Gaff and Schaefer (2009), mathematical models provide a powerful

tool for investigating the dynamics and control of infectious diseases, but quanti-

fying the underlying epidemic structure can be challenging especially for new and

under-studied diseases. They considered the variations of standard SIR, SIRS,

and SEIR epidemiological models to determine the sensitivity of these models to

various parameter values that may not be fully known when the models are used

to investigate emerging diseases. Optimal control theory was applied to suggest

the most effective mitigation strategy to minimize the number of individuals who

become infected in the course of an infection while efficiently balancing vacci-

nation and treatment applied to the models with various cost scenarios. The
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optimal control simulations suggest that regardless of the particular epidemiolog-

ical structure and of the comparative cost of mitigation strategies, vaccination,

if available, would be an essential tool of any intervention plan. However, if

resources allow for the provision of treatment as well, this additional tool is a

valuable resource in decreasing the number of individuals who are affected.
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Chapter 3

Methodology

3.1 Introduction

This chapter is mainly concerned with developing a SEIR model to control vari-

cella transmission in Ghana, finding threshold conditions for the disease to be-

come endemic and describing the stability of steady-state solutions.

3.2 Why Epidemiological Models

Epidemiology is the study of the distribution and determinants of disease preva-

lence in humans. One function of epidemiology is to describe the distribution of

the disease, i.e. find out who has how much of what, where and when. Another

function is to identify the causes or risk factors for diseases in order to find out

why everyone does not have the same thing uniformly. A third function of epi-

demiology is to build and test theories. A fourth function is to plan, implement

and evaluate detection, control and prevention programs.

Epidemiology modeling can play an important role in these last two functions.

Mathematical models have become important tools in analyzing the spread and

control of infectious diseases.Understanding the transmission characteristics of

infectious diseases in community, regions and countries can lead to better ap-

proaches to decreasing the transmission of diseases.
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3.3 Model Formulation

The model we study in this thesis is a SEIR epidemic model. Even though the

SIR model provides a general framework to understand the spread of a disease,

it may be too simple to accurately model a real epidemic like the outbreak of

varicella in Ghana. The limitations in this model, can be overcomed by intro-

ducing an Exposed (but not yet infected) class; people have to be exposed to the

disease before they can be infected and consequently become infectious, and this

is the case for the varicella. A varicella patient becomes infectious only after the

infected person develops the symptoms. Hence, the limitations and flaws in the

SIR model can be modified and extended to the SEIR model.

The total constant population N(t), is divided into four disease-state compart-

ments: susceptible individuals (S), people who can catch the disease; exposed

individuals (E), people whose body is a host for the infectious agent but are not

yet able to transmit the disease; infectious (infective) individuals (I), people who

have the disease and can transmit the disease; recovered individuals (R), people

who have recovered from the disease with permanent immunity.

Let γ be the Recruitment rate , µ be the natural death rate, β be the rate

(force) of infection per unit time - the average number of effective contacts with

other(susceptible) individuals per infective per unit time , ω is rate at which an

infected individual becomes infectious per unit time, α is the rate at which an

infectious individual recovered per unit time.

3.3.1 Model Assumptions

The model assumptions for the SEIR model are as follows:

1. People can be infected only through contacts with infectious people except

those who are immune, and recovered individuals are permanently immune.
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2. The disease does not inflict death on the infected hosts so that the total

population density is constant. Thus S(t) + E(t) +I(t) +R(t) = 1.

3. There is equal birth and death rates, and all persons, including Newborns

are assume to be susceptible.

4. The population is homogeneously mixed (A population that interacts with

one another to the same degree) and fixed.

Figure 3.1: The compartmental diagram of SEIR model for Varicella

Where:

S(t) is the number of susceptible individuals at time, t

E(t) is the number of exposed individuals at time, t

I(t) is the number of infected individuals at time, t

R(t) is the number of recovered individuals at time, t
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and

γ is the recruitment rate

µ is the natural death rate

β is the contact rate (rate of infection)

ω is the rate at which an infected individual becomes infectious

α is the clinical treatment -recovery rate of humans from the infectious state to

the recovered state.

3.3.2 The SEIR Model Equation

From the assumptions, definitions of state variables and parameters and com-

partmental diagram above, the system of non-linear differential equations which

describe the dynamics of varicella outbreak in Ghana are formulated below:

dS

dt
= γ − µS − βSI

dE

dt
= βSI − (µ+ ω)E

dI

dt
= ωE − (µ+ α)I

dR

dt
= αI − µR

with initial conditions

S(0) = S0, E(0) = E0, I(0) = I0, R(0) = R0

The total population size N = S + E + I +R, is constant and thus
dN

dt
= 0.

The disease is assumed not to inflict death on the infected hosts so that the total

population density is constant. Thus S(t) + E(t) + I(t) +R(t) = 1

The variable R(t) does not appear in the first three equations of the model,
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and can always be determined from the relation R(t) = 1− S(t) + E(t) + I(t).

Hence, we will analyze the first three equations, forming our new reduced system

of equations as

dS

dt
= γ − µS − βSI (3.1)

dE

dt
= βSI − (µ+ ω)E (3.2)

dI

dt
= ωE − (µ+ α)I (3.3)

3.3.3 Feasible and Non-Negative Solutions

The feasible solution shows the region in which the solutions of the system (3.1) -

(3.3) are biologically meaningful and the positivity of the solutions describes the

non-negativity of the solutions of the system (3.1)- (3.3)

Invariant Region

This region can be obtained by the following theorem.

Theorem 3. 1

The solutions of the system (3.1)- (3.3) are feasible for all t > 0 if they enter the

invariant region Ω.

Proof:

Let Ω = (S,E, I) ∈ R3
+ be any solution of the system (3.1)- (3.3) with non-

negative initial conditions.

From the model equations, the total population of individuals is given by N =

S + E + I + R. Therefore adding the first 4 differential equations, results in a

first-order linear differential equation of the form

dN

dt
= γ − µN (3.4)
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with an integrating factor (IF ) = e
∫
µdt = eµt

Multiplying both sides of the equation with eµt gives

dN

dt
eµt = γeµt − µNeµt

and when rearranged it becomes

dN

dt
eµt + µNeµt = γeµt (3.5)

and finally

d

dt
(Neµt) = γeµt (3.6)

Integrating equation (3.6) on both sides, we have

Neµt =
γ

µ
eµt + C (3.7)

where C is a constant of integration. Dividing (3.7) through by eµt gives

N(t) =
γ

µ
+ Ce−µt (3.8)

applying the initial conditions at t = 0, N(0) = N0 we obtain

N0 =
γ

µ
+ C

=⇒

C = N0 −
γ

µ
(3.9)

The solution of the linear differential equation then becomes

N(t) =
γ

µ
+ (N0 −

γ

µ
)e−µt (3.10)
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so that

N(t) ≤ γ

µ
as t −→∞ (3.11)

Therefore as t −→ ∞ in (3.11) the population of Ghana N approaches K = γ
µ

( that is, N −→ K = γ
µ

). The parameter K = γ
µ

is usually called the carrying

capacity.

Hence all feasible solutions set of the population of the model (3.1) - (3.3) enters

the region

Ω = {( S, E, I, ) ∈ R3
+ : S + E + I ≤ γ

µ
S > 0, ( E, I) ≥ 0, }

Therefore, the region Ω is positively-invariant (i.e. the solutions exist and remain

positive for all times, t) and the model (3.1) - (3.3) is biologically meaningful and

mathematically well-posed in the domain Ω.

Positivity of Solutions

For the model to be realistic, we need to make sure that all the variables including

R remain positive, since we are dealing with a human population.

Theorem 3. 2

Let the initial data be { S > 0, ( E, I, ) ≥ 0 } = Ω

Then the solution set { S, E, I, }(t) of the system (3.1) - (3.3) is positive for

all t > 0.

Proof

From equation (3.1) we have

dS

dt
= γ − µS − βSI ≥ −µS − βSI = −(µ+ βI)S

Rearranging, we have

dS

S
≥ −(µ+ βI)dt
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Integrating by separation of variables gives

∫
dS

S
≥ −

∫
(µ+ βI)dt =⇒ lnS ≥ −(µ+ β)t+ C =⇒ S(t) ≥ e−(µ+β)t+C

=⇒ S(t) ≥ e−(µ+β)t × ec = e−(µ+β)t × A = Ae−(µ+β)t

At t = 0, S(0) ≥ A = S0 =⇒ S(t) ≥ S0e
−(µ+β)t ≥ 0

Therefore

S(t) ≥ S0e
−(µ+β)t ≥ 0 since (µ+ β) > 0 (3.12)

From equation (3.2)

dE

dt
= βSI − (µ+ ω)E ≥ −(µ+ ω)E =⇒ dE

E
≥ −(µ+ ω)dt

∫
dE

E
≥
∫
−(µ+ ω)dt =⇒ lnE(t) ≥ −(µ+ ω) + C

Therefore

E(t) ≥ E0e
−(µ+ω)t ≥ 0 at t > 0 since (µ+ ω) > 0 (3.13)

From equation (3.3)

dI

dt
= ωE − (µ+ α)I ≥ −(µ+ α) =⇒ dI

I
≥ −(µ+ α)dt

∫
dI

I
≥ −

∫
(µ+ α)dt =⇒ ln I(t) ≥ −(µ+ α) + C

Therefore

I(t) ≥ I0e
−(µ+α)t ≥ 0 at t > 0 since (µ+ α) > 0 (3.14)

Hence, all variables are positive for all time t > 0. Thus our model has both the

invariant and positivity of solutions. Therefore, in the rest of the thesis we will

study the system and formulate our results accordingly in the region

Ω = {( S, E, I, ) ∈ R3
+ : S + E + I ≤ γ

µ
S > 0, ( E, I) ≥ 0, }
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3.4 Equilibrium point and Stability

In order to determine the stability of the model, we first evaluate the equilibrium

points or steady states of the ordinary differential equations (3.1) - (3.3). Steady

state solutions or equilibrium points are the roots or solutions of the system of

equations when the right-hand side of a nonlinear system is set to zero.

There two equilibrium points in this model are the Disease-Free (I = 0) and the

Endemic (I 6= 0). Therefore using the nonlinear system (3.1) - (3.3) , we have

γ − µS − βSI = 0 (3.15)

βSI − (µ+ ω)E = 0 (3.16)

ωE − (µ+ α)I = 0 (3.17)

3.4.1 The Disease-Free Equilibrium Point (DFE)

Let define the diseased classes as the population that are either exposed or infec-

tious; that is, E and I.

In absence of the disease, this implies that E = I = 0, therefore (3.15) - (3.17)

reduces to

γ − µS = 0 (3.18)

=⇒

S∗ =
γ

µ
(3.19)

But since birth rate is equal to death rate, i.e γ = µ =⇒ S∗ = 1. Therefore, the

DFE, the state in which there is no infection(in the absence of varicella) in the

society, is given by,

DFE = ( S∗, E∗, I∗) = (1, 0, 0 ). (3.20)
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3.4.2 An Endemic Equilibrium Point (EEP)

Endemic equilibrium points are steady state solutions where the disease persists

in the population.

Adding (3.15) and (3.16), we have

γ − µS − (µ+ ω)E = 0 (3.21)

Let the birth rate be equal to death rate, ie. γ = µ

S =
−(µ+ ω)E + µ

µ
(3.22)

From (3.17)

ωE = (µ+ α)I

=⇒

I =
ωE

(µ+ α)
(3.23)

From (3.16)

βSI − (µ+ ω)E = 0

But from (3.22) and (3.23) above, we have

β[
−(µ+ ω)E + µ

µ
][

ωE

(µ+ α)
]− (µ+ ω)E = 0

−β(µ+ ω)ωE2 + (βµωE)

µ(µ+ α)
− (µ+ ω)E = 0

E[
−β(µ+ ω)ωE

µ(µ+ α)
+

βµω

µ(µ+ α)
− (µ+ ω)] = 0
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Therefore either E = 0 or

−β(µ+ ω)ωE

µ(µ+ α)
+

βµω

µ(µ+ α)
− (µ+ ω) = 0

(µ+ ω)βωE = βµω − µ(µ+ α)(µ+ ω)

E =
µ

(µ+ ω)
− µ(µ+ α)

βω
=

µ

(µ+ ω)
[1− (µ+ ω)(µ+ α)

βω
]

Therefore

Ee =
µ

(µ+ ω)
[1− (µ+ ω)(µ+ α)

βω
] (3.24)

From(3.24) and (3.22), we have

S =
−(µ+ ω)E + µ

µ
, E =

µ

(µ+ ω)
[1− (µ+ ω)(µ+ α)

βω
]

=⇒

S =
−(µ+ ω){ µ

(µ+ω)
[1− (µ+ω)(µ+α)

βω
]}+ µ

µ

S = −1 +
(µ+ ω)(µ+ α)

βω
+ 1 =

(µ+ ω)(µ+ α)

βω

Therefore

Se =
(µ+ ω)(µ+ α)

βω
(3.25)

Again from (3.23) and (3.24)

I =
ωE

(µ+ α)
, E =

µ

(µ+ ω)
[1− (µ+ ω)(µ+ α)

βω
]
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Thus

I =
ωµ

(µ+ α)(µ+ ω)
[1− (µ+ ω)(µ+ α)

βω
]

Therefore

Ie =
ωµ

(µ+ α)(µ+ ω)
[1− (µ+ ω)(µ+ α)

βω
] (3.26)

Therefore, the EEP of the varicella model (3.1) - (3.3) is given by,

EEP = {(µ+ ω)(µ+ α)

βω
,

µ

(µ+ ω)
[1− (µ+ ω)(µ+ α)

βω
],

ωµ

(µ+ α)(µ+ ω)
[1− (µ+ ω)(µ+ α)

βω
] (3.27)

3.4.3 Basic Reproductive Number (R0) of the Model

The basic reproduction number Ro (Kermack and McKendrick, 1927), is defined

as the average number of Secondary infections that occur when one infective

individual is introduced into a susceptible population with no immunity to the

disease, in the absence of interventions.

Therefore, when R0 < 1, the DFE is locally asymptotically stable and the EEP is

unstable, that is the disease dies out . When R0 > 1, it follows that an infected

individual will cause more than one additional infection on average, and thus the

disease will spread and the EEP will be stable, whereas the DFE will be unstable.

When Ro = 1, then the disease becomes endemic, meaning the disease remains

in the population at a constant rate. This means that the threshold quantity for

eradicating the disease is to reduce the value of Ro to value less than one. Ro is

an important factor in determining targets for vaccination coverage.

Ro is determined by the dominant eigenvalue of the Jacobian matrix at the DFE.

We now calculate our R0 using the Next Generation Matrix Approach comprising
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two matrices F and V. The elements in matrix F constitute the new infections

that will arise, while that of matrix V constitute the transfer of infections from

one compartment to another.

The Next Generation Matrix is defined as

K = FV −1 (3.28)

R0 is the dominant eigenvalue value or spectral radius of the Next Generation

Matrix. Rearranging the system (3.1) to (3.3) and separating new infections F

from other transitions V. We have

dE

dt
= βSI − (µ+ ω)E............ = A(E, I, S)

dI

dt
= ωE − (µ+ α)I............ = B(E, I, S)

dS

dt
= γ − µS − βSI............ = C(E, I, S)

(3.29)

Linearization of the SEIR model gives the Generation matrix (G) evaluated at

the Disease Free Equilibrium.

G(E, I, S) =


AE AI AS

BE BI BS

CE CI CS

 (3.30)

Since A and B form a subsystem describing the generation and transition of in-

fections, the Jacobian matrix associated with the linearized subsystem at Disease

Free Equilibrium (DFE) is given by,

J(E, I) =

∂AE

∂E
∂AI

∂I

∂BE

∂E
∂BI

∂I

 (3.31)

Therefore from equation (3.29) above, the Jacobian matrix becomes
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J(E, I) =

−µ− ω βS

ω −µ− α

 (3.32)

Therefore at the DFE,

J(1, 0) =

−µ− ω β

ω −µ− α

 (3.33)

J(1, 0) is decomposed as F − V , where F is the transition matrix describing the

changes in individual states. The DFE is locally asymptotically stable provided

that Ro < 1,where as if Ro > 1, then the disease free equilibrium is unstable. For

the disease state

J(1, 0) = F − V =

−µ− ω β

ω −µ− α

 (3.34)

J(1, 0) = F − V =

0 β

0 0

−
µ+ ω 0

−ω µ+ α



Therefore

F =

0 β

0 0

 and V =

µ+ ω 0

−ω µ+ α

 (3.35)

V −1 =
1

(µ+ ω)(µ+ α)

µ+ α 0

ω µ+ ω

 =

 1
µ+ω

0

ω
(µ+ω)(µ+α)

1
µ+α



K = FV −1 =

0 β

0 0


 1

µ+ω
0

ω
(µ+ω)(µ+α)

1
µ+α


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K = FV −1 =

 βω
(µ+ω)(µ+α)

β
µ+α

0 0

 (3.36)

From (3.36), we can now calculate the eigenvalues to determine the basic repro-

duction number Ro by taking the spectral radius (dominant eigenvalue) of the

matrix K. This is computed as

∣∣∣∣K − λI∣∣∣∣ = 0, and so we have

∣∣∣∣∣∣∣
βω

(µ+λ)(µ+α)
− λ β

µ+α

0 −λ

∣∣∣∣∣∣∣ = 0 (3.37)

(
βω

(µ+ ω)(µ+ α)
− λ)(−λ) = 0

Therefore

(
βω

(µ+ ω)(µ+ α)
− λ) = 0 or − λ = 0

=⇒

λ =
βω

(µ+ ω)(µ+ α)
or λ = 0

Therefore the dominant eigenvalue of the matrix K is λ = βω
(µ+ω)(µ+α)

.

Hence the basic reproduction number

Ro =
βω

(µ+ ω)(µ+ α)
(3.38)

Comparing (3.25) and (3.38) , it is clear that Se = 1
Ro

.

Therefore, the EEP is given by,

EEP = ( Se, Ee, Ie) =
1

R0

,
µ

(µ+ ω)
[1− 1

R0

],
µ

β
[Ro − 1] (3.39)
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3.4.4 Stability Analysis of Disease-Free Equilibrium (DFE)

The DFE of the system is asymptotically stable if R0 < 1. To determine the

local stability of the system at the DFE, we consider the linearized form of the

varicella model (3.1) - (3.3) below about the equilibrium point.

dS

dt
= γ − µS − βSI

dE

dt
= βSI − (µ+ ω)E

dI

dt
= ωE − (µ+ α)I

The Jacobian matrix J of the system is

J =


−(µ+ βI) 0 −βS

βI −(µ+ ω) βS

0 ω −(µ+ α)


Therefore at the disease-free equilibrium

J(1, 0, 0) =


−µ 0 −β

0 −(µ+ ω) β

0 ω −(µ+ α)

 (3.40)

The eigenvalues of the Jacobian matrix are the solutions of the characteristic

equation ∣∣∣∣J − λI∣∣∣∣ = 0

That is

∣∣∣∣∣∣∣∣∣∣
−µ− λ 0 −β

0 −(µ+ ω)− λ β

0 ω −(µ+ α)− λ

∣∣∣∣∣∣∣∣∣∣
= 0
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Thus, λ = −µ is one of the eigenvalues, and the other two are the roots of,

λ2 + (α + ω + 2µ)λ+ (µ+ α)(µ+ ω)− βω = 0 (3.41)

All the eigenvalues being negative means that the disease-free equilibrium is

asymptotically stable.

Hence the DFE (1, 0, 0) is locally asymptotically stable provided that Ro < 1,

that is, βω < (µ+ ω)(µ+ α). Where as if Ro > 1, then the DFE is unstable,

that is the system is said to be uniformly persistent.

3.4.5 Stability Analysis of Endemic Equilibrium Point (EEP)

The endemic equilibrium point is asymptotically stable if R0 > 1. The system

has an endemic infection because of the introduction of those with secondary

infection. To determine this, we linearized the Jacobian matrix J evaluated at

the endemic equilibrium point. The Jacobian matrix of the system is

J =


−(µ+ βI) 0 −βS

βI −(µ+ ω) βS

0 ω −(µ+ α)



At the endemic equilibrium point Se = 1
R0
, Ee = µ

(µ+ω)
[1− 1

R0
], Ie = µ

β
[Ro − 1]

Inserting (Se, Ee, Ie) into the Jacobian matrix gives

J =


−µRo 0 −β 1

R0

µ(Ro − 1) −(µ+ ω) β 1
R0

0 ω −(µ+ α)

 (3.42)

We determine the eigenvalues by calculating the determinants of the Jacobian

matrix. Thus
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det(J − λI) =

∣∣∣∣∣∣∣∣∣∣
−µRo − λ 0 −β 1

R0

µ(Ro − 1) −(µ+ ω)− λ β 1
R0

0 ω −(µ+ α)− λ

∣∣∣∣∣∣∣∣∣∣
= 0

To compute the determinant of the above matrix, we divide the above matrix

into three 2× 2 matrices and find their determinants. Let

d1 =

∣∣∣∣∣∣∣
−(µ+ ω)− λ β 1

R0

ω −(µ+ α)− λ

∣∣∣∣∣∣∣

d2 =

∣∣∣∣∣∣∣
µ(Ro − 1) β 1

R0

0 −(µ+ α)− λ

∣∣∣∣∣∣∣
and

d3 =

∣∣∣∣∣∣∣
µ(Ro − 1) −(µ+ ω)− λ

0 ω

∣∣∣∣∣∣∣

det(J − λI) = (−µRo − λ)× d1 − 0× d2 + (−β 1
R0
× d3) = 0

det(J − λI) = (−µRo − λ)× d1 − β
1

R0

× d3 = 0 (3.43)

Now calculating the values of d1, d2 and d3, we have

d1 = (µ+ω+λ)(µ+α+λ)−ωβ
R0

= λ2+[(µ+ω)+(µ+α)]λ+(µ+ω)(µ+α)−ωβ
R0

d2 = (µ(Ro − 1))(−(µ+ α)− λ)

d3 = µω(Ro − 1)
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Substituting the values of d1, d2 and d3, we have

(−µRo−λ)×[λ2 + [(µ+ ω) + (µ+ α)]λ+ (µ+ ω)(µ+ α)− ωβ
R0

]+ βµω
R0

(1−Ro) = 0

λ3+[(µ+ω)+(µ+α)+µRo]λ
2+µRo[(µ+ω)+(µ+α)]λ+µ(µ+ω)(µ+α)[Ro−1] = 0

(3.44)

and is of the form

λ3 + a1λ
2 + a2λ+ a3 = 0 (3.45)

where

a1 = (µ+ ω) + (µ+ α) + µRo > 0

a2 = µRo[(µ+ ω) + (µ+ α)] > 0

a3 = µ(µ+ ω)(µ+ α)[Ro − 1]

which implies that

a3 =


> 0 ifRo > 1,

< 0 ifRo < 1.

Using the Routh-Hurwitz Criteria on (3.44), we can prove that all roots of the

polynomial (3.44) have negative real parts. This criteria give the necessary and

sufficient conditions for all of the roots of the characteristic polynomial (with real

coefficients) to lie in the left half of the complex plane, Flores (2011).

Routh-Hurwitz Criteria

Theorem 3.3

Given the polynomial

P (λ) = λn + a1λ
n−1 + ...+ an−1λ+ an
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where the coefficients ai are real constants, i = 1, ..., define the n Hurwitz matri-

ces using the coefficients ai of the characteristic polynomial:

H1 =

[
a1

]
, H2 =

a1 1

a3 a2

 , H3 =


a1 1 0

a3 a2 a1

a5 a4 a3

 , Hn =



a1 1 0 0 ... 0

a3 a2 a1 1 ... 0

a5 a4 a3 a2 ... 0

. . . . ... .

0 0 0 0 ... an


where aj = 0 if j > n. All of the roots of the polynomial P (λ) are negatives

or have negative real parts if and only if the determinants of all Hurwitz matrices

are positive:

det(Hj) > 0, j = 1, 2, ..., n.

For the characteristic polynomial in (3.44), when n = 3, the Routh-Hurwitz cri-

teria are

a1, a2, a3 > 0 , det(H1) = a1 > 0, det(H2) =

∣∣∣∣∣∣∣
a1 1

0 a2

∣∣∣∣∣∣∣ = a1a2 > 0

det(H3) =

∣∣∣∣∣∣∣∣∣∣
a1 1 0

a3 a2 a1

0 0 a3

∣∣∣∣∣∣∣∣∣∣
= a1a2a3 − a23 = a1a2 − a3 > 0

a1a2−a3 = ((µ+ω)+(µ+α)+µRo)([(µ+ω)+(µ+α)]µRo)−µ(µ+ω)(µ+α) > 0

a1a2 − a3 = 2µ3R2
o + ωµ2R2

o + αµ2R2
o + 4µ3Ro + 4ωµ2Ro + 4αµ2Ro + ω2µRo +

2αωµRo + α2µRo − µ3 − ωµ2 − αµ2 − αωµ > 0

According to the Routh-Hurwitz criterion, the eigenvalues of the matrix have

negative real parts if and only if the following inequalities hold,
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a1, a2, a3 > 0 and a1a2 − a3 > 0.

For Ro > 1, we have a1, a2, a3 > 0 and a1a2 − a3 > 0, and this

shows that the EEP is locally asymptotically stable.

3.5 Optimal Vaccination Strategies

3.5.1 Herd Immunity Threshold

Herd Immunity is a type of community protection from disease that occurs when

the vaccination of a portion of the population (or herd) provides protection to

unvaccinated individuals by making it less likely that any infected individual will

contact a susceptible individual and thus pass on the disease.

Vaccination is an effective way to control the transmission of varicella. Interrupt-

ing horizontal transmission by appropriate immunization program is expected to

have a significant impact on the rate of acquisition of new infected.

One Purpose of vaccination is that it reduces the incidence of the disease in

those immunized, the susceptibles. Also, vaccination protects indirectly non-

vaccinated susceptibles against infection by producing herd immunity, while hav-

ing the amount of infected people to be very small, Tessa (2006). The Herd

Immunity Threshold HI is the percentage of the population that needs to be

immune to control transmission of a disease.

The Condition for Control

The Herd Immunity Threshold HI , is the proportion immune after a vaccination

campaign. Recall that, for a stable state: Ro×S = 1, so that, S will be (1−HI).

Hence the control condition to be fulfilled is: Ro × (1−HI) < 1. This means

Ro × (1−HI) = 1⇐⇒ 1−HI = 1
Ro
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Therefore

HI = 1− 1

Ro

(3.46)

As the amount of vaccinations increase, the herd immunity threshold also in-

creases. By decreasing the amount of susceptible people, the herd immunity

threshold decreases.

3.5.2 Control Vaccination Number

The Control Vaccination Number, denoted Cv , is the average number of sec-

ondary cases generated by an infectious case during epidemic with control mea-

sures, i.e. vaccinations. The formula for estimating the control vaccination num-

ber is given by is the average number of secondary cases generated by an infectious

case during epidemic with control measures, i.e. vaccinations Where h is the vac-

cine efficacy (the effectiveness of the vaccine) and f is vaccination coverage (the

fraction of the population that has been vaccinated). The goal of researchers and

health officials is to have Cv < 1. Having Cv < 1, and knowing the efficacy of

the vaccine we can estimate the proportion of the population that need to be

vaccinated. This is given by

f >
1− ( 1

Ro
)

h
(3.47)
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Chapter 4

Analysis

4.1 Introduction

In this chapter, we use the varicella model in chapter three to analyze clinical

varicella data in Ghana. Numerical simulations using MATLAB and a fourth

order Runge-Kuta method will also be performed.

4.2 Parameter Estimation

The parameters in the model were estimated using clinical varicella data and

demographics statistics of Ghana. Those that were not available were obtained

from literature published by researchers in varicella endemic countries which have

similar environmental conditions comparable to Ghana.

The latency rate ω, by which exposed become infectious can be derived from

the average latency period (1/ω), and the recovery rate α, can be obtained from

the average duration of the infectious period (1/α). The average latency pe-

riod (1/ω) for varicella is about 14 days, Valeika (2008), Schuette and Hethcote

(1999), Garnett and Grenfell (1992), and Thrasher (1996), so that the latency

rate, ω = (1/14) per day.

The average infectious period is estimated to be 7 days, Hethcote (2000) and

Schuette and Hethcote (1999) so that the recovery rate, α = 1/7 per day. The

birth rate (γ) and the death rate (µ) are assumed to be equal to keep the total

population (N) constant. The death rate (µ) is based on the 65.32 year life ex-

pectancy of Ghana, (2013 CIA World Factbook, Index Mundi, 2013 est.).
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The contact rate is estimated to be 0.184.

The parameter values are summarized in table 4.1 below.

Table 4.1: Estimated Parameter values and their Sources

4.3 Basic Reproductive Number Ro

The basic reproduction number is given by:

Ro =
βω

(µ+ ω)(µ+ α)
=

(0.184)( 1
14

)

(0.00004194 + 1
14

)(0.00004194 + 1
7
)

Ro = 1.2869 (4.1)

Since the reproductive number, Ro = 1.2869 > 1, the presence of a person infected

with varicella virus will eventually result in an outbreak of the disease in Ghana.

Also the number of contacts between susceptibles and varicella patients during
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the infectious period is

σ =
β

α
=

0.184

0.1429
= 1.2876 (4.2)

Meaning that on the average 1429 varicella patients contacts 1840 susceptible

people in the country during an infectious period.

4.4 Equilibrium point and Stability

4.4.1 Stability Analysis of Disease-Free Equilibrium (DFE)

From (3.20), the DFE is DFE = (1, 0, 0 ). From (3.40), the Jacobian matrix

(J) of the varicella model at disease-free equilibrium point is given by

J(1, 0, 0) =


−µ 0 −β

0 −(µ+ ω) β

0 ω −(µ+ α)

 =


−0.00004194 0 −0.184

0 −0.07147 0.184

0 0.07143 −0.1429


Thus, λ1 = −0.00004194 is one of the eigenvalues, and the other two are

the roots of,

λ2 + (α + ω + 2µ)λ+ (µ+ α)(µ+ ω)− βω = 0

λ2 + (
1

7
+

1

14
+ 2× 0.00004194)λ+ (0.1429)(0.07147)− (0.184× 1

14
) = 0

λ2 + 0.2144λ− 0.002930 = 0

Now by using

λ2,3 =
−b±

√
b2 − 4ac

2a
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where a = 1, b = 0.2144, and c = −0.002930, we have

λ2,3 =
−0.2144±

√
(0.2144)2 − 4(1)(−0.002930)

2(1)
=
−0.2144± 0.2402

2

λ2 = −0.2278, λ3 = 0.0129

Since all the roots of the equation are not negative, the DFE is locally asymptot-

ically unstable, meaning that the presence of an infectious person in Ghana will

eventually result in an outbreak of the disease.

4.4.2 Stability Analysis of Endemic Equilibrium Point (EEP)

From(3.39), the endemic equilibrium point is given by,

EEP = ( Se, Ee, Ie) = 1
R0
, µ

(µ+ω)
[1− 1

R0
], µ

β
[Ro − 1]

EEP = ( Se, Ee, Ie) = (0.7771, 0.0001308, 0.00006539) (4.3)

From (3.42), the Jacobian matrix at the endemic equilibrium point is,

J =


−µRo 0 −β 1

R0

µ(Ro − 1) −(µ+ ω) β 1
R0

0 ω −(µ+ α)



Now we determine the eigenvalues of J by calculating the determinants of the

Jacobian matrix above.

Using (3.44), the characteristic equation of the Jacobian matrix is given by

λ3+[(µ+ω)+(µ+α)+µRo]λ
2+µRo[(µ+ω)+(µ+α)]λ+µ(µ+ω)(µ+α)[Ro−1] = 0
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and is of the form λ3 + a1λ
2 + a2λ+ a3 = 0, where

a1 = (µ+ ω) + (µ+ α) + µRo > 0

a2 = µRo[(µ+ ω) + (µ+ α)] > 0

a3 = µ(µ+ ω)(µ+ α)[Ro − 1]

Putting in the values of the parameters we have

a1 = 2.144× 10−1, a2 = 1.157× 10−5, a3 = 1.229× 10−7 and

a1a2 − a3 = 2.358× 10−6

According to the Routh-Hurwitz criterion, the eigenvalues of the matrix have

negative real parts if and only if the following inequalities hold,

a1, a2, a3 > 0 and a1a2 − a3 > 0.

And from the calculations aboves, for Ro > 1, we have a1, a2, a3 > 0

and a1a2 − a3 > 0, and this shows that the EEP is locally asymptotically

stable. This means that varicella will spread in Ghana.

4.5 Optimal Vaccination Strategies

4.5.1 Herd Immunity Threshold

Herd Immunity Theory proposes that in contagious diseases that are transmitted

from individual to individual, chains of infection are likely to be disrupted when

large numbers of a population are immune or less susceptible to the disease. From

equation (3.46), we estimate our Herd Immunity Threshold HI .

HI = 1− 1

Ro

= 1− 1

1.2869
= 1− 0.777

HI = 0.2229 (4.4)
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Thus about HI = 22.3% of the susceptible Ghanaian population should be im-

mune in order to bring the spread of varicella under total control. This means

that if the proportion of immune individuals exceeds this level due to a mass vac-

cination programme, the disease will die out, because unvaccinated individuals

are indirectly protected by vaccinated individuals.

4.5.2 Control Vaccination Number

Research has shown that the vaccine for varicella has 99% effectiveness in the

first year, and after eight years the effectiveness drops to 87%, Valeika (2008).

Knowing the efficacy of the vaccine we estimate the proportion of the population

that need to be vaccinated.

This is given by

f >
1− ( 1

1.2869
)

0.99
and f >

1− ( 1
1.2869

)

0.87

f > 0.2252 and f > 0.2562

We can observe from calculations above that when the effectiveness is 99%, then

about 22.5% of the population need to be vaccinated in order for Cv < 1 . When

the effectiveness is 87% then about 25.6% of the population need to be vaccinated

in order for Cv < 1.

4.6 Numerical Simulations of the Model

In this section, we present the numerical analysis of the model. A numerical

simulation of the model is conducted to find out the dynamics of the disease in

the human population. The simulations were conducted using MATLAB and a

fourth order Runge-Kuta method. The initial conditions in terms of proportion

used were S(0) = 1, E(0) = 0.000926, , I(0) = 0.00176, R(0) = 0.00176
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(Appendix B).

From the simulation we obtain the graph below.

Figure 4.1: Dynamics of SEIR Compartmental Model of Varicella

This simulation shows that the epidemic builds up to where almost 6% of the

population is infected, and then declines, whiles the exposed group builds up to

about 12% and then declines. In the end almost 80% of the population will have

become infected and immune to any subsequent outbreak.

About 20% of the population never gets the disease and remains susceptible to

the infectious disease. The simulation also shows that the number of infected

individuals and exposed individuals sharply decreases to zero. After about 85

years, the disease seems to disappears from the host population.

We now consider the effects of varying the main parameters responsible for con-
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trolling varicella.

We consider the effect of:

• Reducing the contact rate (β) on the model.

• Increasing the treatment rate (α) of infectious humans on model.

• Combining the reduction in the contact rate and the increase in the treat-

ment rate of infectious humans on model.

4.6.1 Simulation of the Effect of Reducing the Contact

Rate on the Model

The contact rate of the infection can be reduced by early detection for isolated

supervised treatment. The value of the contact rate is reduced to 2
3
, resulting in

the portrait below.

Figure 4.2: Effect of Reducing the Contact Rate
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This simulation shows that the epidemics reduced from the initial 6% to about

2%, whiles the exposed also reduced from the initial 12% to about 4%. In the

end almost 52% of the population will have become infected and immune to any

subsequent outbreak and about 48% of the population never gets the disease and

remains susceptible to the infectious disease. The disease seems to disappears

from the host population after about 140 years.

4.6.2 Simulation of the Effect of Increasing the Treatment

Rate on the Model

Increasing the treatment rate will reduce the transmission rate of infection from

an infectious human to the susceptible. Therefore increasing the treatment rate

from 1
7

to 1
5

give the phase portrait diagram below.

Figure 4.3: Effect of Increasing the Treatment Rate

This simulation also shows that the epidemics reduced from the initial 6% to
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about 3%, whiles the exposed also reduced from the initial 12% to about 6%. In

the end almost 60% of the population will have become infected and immune to

any subsequent outbreak and about 40% of the population never gets the disease

and remains susceptible to the infectious disease. The disease seems to disappears

from the host population after about 120 years.

Clinical treatment rate could be increased if the pharmaceutical industry produces

anti-varicella drug(s) that will reduce the number of days it takes to recover from

the infection from 7 to 5 days, reducing R0 from 1.2869 to 0.9193.

4.6.3 Simulation of the Combine Effect of Contact Rate

Reduction and Increasing Treatment Rate

The effects of combining the two interventions in controlling varicella disease are

shown below. Less than 1% of the population is exposed to the disease as well

as infected. With these two control measures, almost 8% of the population will

have become infected and immune to any subsequent outbreak and about 92%

of the population never gets the disease and remains susceptible to the infectious

disease. The disease seems to disappears from the host population in less than

50 years. This simulation shows that the combination of these interventions can

play a positive role in reducing or eradicating the disease in the country.
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Figure 4.4: Effect of Combined Contact Rate Reduction and Increasing Treat-
ment Rate

4.7 Discussion

A mathematical model was derived and analyzed to control varicella transmission

in Ghana. The basic reproduction number R0 was computed for the model. If

R0 < 1, the disease can not persist in the country and when R0 > 1 the disease

can persist. It is also shown that the model has both a disease-free and endemic

equilibria. The Herd Immunity Threshold and Control Vaccination Number were

investigated and finally simulation of the model was performed.

The following results were obtained from the analysis of the model. The ba-

sic reproduction number R0 = 1.2869, meaning that the presence of a person

infected with varicella virus will eventually result in an outbreak of the disease

in Ghana. The number of contacts between susceptibles and varicella patients

during the infectious period is σ = 1.2876, meaning that on the average about
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1429 varicella patients contacts 1840 susceptible people in the country during an

infectious period.

The disease-free equilibrium point ( S∗, E∗, I∗) = (1, 0, 0), and the endemic

equilibrium point (Se, Ee, Ie) = (0.7771, 0.0001308, 0.00006539). The disease-

free equilibrium point is locally asymptotically unstable, whiles the endemic equi-

librium point is locally asymptotically stable. That means varicella will spread

in Ghana.

The herd immunity threshold shows that about 22.3% of the susceptible pop-

ulation of Ghana should be immune in order to bring the spread of varicella

under total control. Meaning that if the proportion of immune individuals ex-

ceeds this level due to a mass vaccination programme, the disease will die out,

because unvaccinated individuals are indirectly protected by vaccinated individ-

uals.

From further analysis with vaccination as the control measure, and having a

vaccine efficacy of 99%, about 22.5% of the susceptible population should be

vaccinated in order to have Varicella under total control, whilst with a vaccine

efficacy of 87% about 25.6 % of the susceptible population of Ghana should be

vaccinated in order to bring the disease under control in Ghana. Vaccinating

these percentages of the entire population reduces the proportion of the suscep-

tible population who risk infection upon outbreak.

The numerical simulation shows that the epidemic builds up to where almost

6% of the population is infected, and then declines, whiles the exposed group

builds up to about 12% and then declines. In the end almost 80% of the popula-

tion will have become infected and immune to any subsequent outbreak and that

bout 20% of the population never gets the disease and remains susceptible to the
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infectious disease. The simulation also shows that the number of infected indi-

viduals and exposed individuals sharply decreases to zero after about 85 years.

Further simulation revealed that if the contact rate can be reduced to 2
3

its value,

by early detection for supervised treatment, and if the number of days it takes

to recover from the infection can be reduced from 7 to 5 days, thereby increasing

the treatment or recovery rate, then the disease can be effectively controlled in

Ghana.
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Chapter 5

Conclusion And Recommendation

5.1 Introduction

In this chapter, a conclusion and recommendations are offered to stakeholders,

the government, public health agencies and health care providers to enable them

determine how best to allocate scarce resources for the prevention and controlling

varicella transmission in Ghana.

5.2 Conclusion

A mathematical model is derived and analyzed to better understand the dynamics

of varicella transmission in Ghana. First it is showed that there exists a domain

where the model is epidemiologically and mathematically well-posed. The basic

reproduction number R0 = 1.2869, meaning that the presence of a person infected

with varicella virus will eventually result in an outbreak of the disease in Ghana.

From the model the herd immunity level for varicella in Ghana is found to be

22.3%. Meaning that for Ghana to be declared varicella free state, at least 22.3%

of the population must attain immunity through mass vaccination programme.

The simulation revealed that early detection of the infectious, for isolated super-

vised treatment, as well as increasing the treatment rate, has a positive impact

on the reduction of varicella transmission; that is there is a need to detect new

cases as early as possible so as to provide early treatment for the disease and to

produce anti-varicella drugs to increase the treatment rate.

Comparing with others, we had situations in 1995, where there were 2934 verified

cases reported in Antelope Valley, CA, 3130 cases in Travis County and 1197

53



cases in West Philadelphia. The number of cases declined in all sites in 1996

and remained stable until 1998. In 1999, the number of cases began to dramati-

cally decrease and in 2000, there were 837, 491 and 250 cases in Antelope Valley,

Travis County, and West Philadelphia, respectively. Between 1995 and 2000, the

total number of cases in the three surveillance areas declined from 71 to 84%,

with the most considerable reduction in preschool children (1 to 4 year olds). By

2005, the number of cases declined by about 90% in both Antelope Valley and

West Philadelphia combined, Esson et al. (2014). This supports our thesis that

varicella transmission can be controlled in Ghana through vaccination.

5.3 Recommendation

Eradication of contagious diseases such as varicella has remained one of the

biggest challenge facing developing countries like Ghana. To eradicate varicella

from Ghana, the following recommendations are made:

1. That vaccination against varicella should be added to the National Im-

munization Programme and should target vaccinating at least 22.3% of

the susceptible population in order to fully bring the disease under control

where the outbreak is considered epidemic.

2. The simulation results confirmed that the transmission rate is one of the

dominant parameters in the spread of the disease in Ghana. Therefore a

National Varicella Control Programme should be instituted to educate on

the improvement in early detection of varicella cases for isolated supervised

treatment so that the disease transmission can be minimized.

3. Stakeholders in the health sector should ensure that up to date data is kept

on all diseases reported at the various health facilities to facilitate research

work in Ghana.
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5.4 Future Work

Researchers can extend the model to non constant population size, unequal birth

and death rate, and different age groups.
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Appendix A

Table 5.1: Source: Ghana Health Service, Prime Division, Accra
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