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ABSTRACT 
 

         The geodesics in (2+1) dimensional spacetime should be the same as the geodesics 

in (3+1) dimensional spacetime, since the two dimensional surface on which these 

geodesics lie should be embeddable 3-dimensional co-ordinate space. In the present 

thesis, we show precisely that .We demonstrate that the plane, the spherical surface, the 

ellipsoidal surface and the surface of a saddle on which these geodesics lie are 

embeddable in 3-dimensional co-ordinate space. We then go ahead and fine these 

geodesics. And clearly, the determination of the geodesics in (2+1) dimensional 

spacetime should be easier than in 3-dimensional spacetime since the number of 

equations involved in (2+1) dimensional spacetime is much smaller than in (3+1) 

dimensional spacetime. We talk about (2+1) and (3+1) dimensional spacetime because it 

is easier and more elegant to use the techniques of general relativity in the determination 

of these curves.  

 After showing that the surfaces indicated above are embeddable in 3-dimensional co-

ordinate space, we go ahead and construct the 3-dimensional equivalent of the 

Robertson-Walker metric. The equation for the geodesics in general relativity is well 

known, and using our 3-dimensional metric, we compute all the geodesics on these 

surfaces which turn out to be the surfaces of zero, positive and negative curvatures  

 Not surprisingly, the geodesics in the plane and spherical surface were found to be 

straight line and great circles respectively. What can apparently be considered to be new 

results are the geodesics on ellipsoidal surface and the surface of a saddle which can 

really be described as 2-dimensional hyperbolic space. The geodesic on these last two 

surfaces were found to ellipses and hyperbolae. But it should be emphasized that in the 

relativistic language, curves are the geodesics in curved space and it is perhaps worth 

nothing that these curves are the trajectories of bodies attracted or repelled in force fields 

of the inverse square law  
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Chapter 1 

Introduction  

          Cosmology is the study of the large scale properties of the universe as a whole. 

Mathematical cosmology involves the formulation of theories that seem to explain existing 

astronomical data and make experimentally or observationally verifiable predictions. 

Cosmology makes statements about the whole universe. The approach to the study of 

cosmology is through the science of astronomy.  Astronomy started as a study of the 

properties of planets and stars and gradually reached out to include the limits of the Milky 

Way system, which is our Galaxy 

        Modern astronomical techniques have taken the subject beyond the Galaxy to distant 

objects from which light may take billions of years to reach us. Cosmology is concerned 

mainly with this extragalactic world. Cosmology has three main aspects. They are 

Cosmogony: This is the study of the origin of the universe, Cosmography: That is 

cataloguing the objects in the universe and charting their positions and motions and 

Theoretical Cosmology: Here, we search for a framework within which to comprehend the 

information from cosmography. Theoretical cosmology employs the hypothesis known as the 

cosmological principle. The simplest model of the universe is obtained from the 

Cosmological Principle which states that the universe is spatially homogeneous and 

isotropic.  

       Homogeneity means there is no preferred point in space, so that we can locate the 

coordinate origin at any point in space without affecting physical laws. It affirms that all 

regions of sufficient size in space are equivalent and that physical laws are the same in all 

parts of the universe. 

       Isotropy means there is no preferred direction so orientation of the coordinate axes 

should have no effect on physical laws. This means that all directions in space are equivalent 

in regard to the formulation of fundamental physical laws. . ( )1 V NarlikerJayant  
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Translated into the language of Riemannian geometry, this cosmological principle asserts that 

three- dimensional coordinate space is a space of maximal symmetry or, a space of constant 

but possibly, time-dependent curvature.  

           In recent times, much attention has been given to the study of cosmology in (2+1)-

dimensions than (3+1) -dimensions. This is apparently because computations in (2+1)-

dimensions can be expected to be less complicated than computations in the higher (3+1)-

dimensions which are being done to test gravitational theories, particularly quantum gravity. 

Our studies were motivated by this realization (namely, the realization that computations in 

(2+1)-dimensions could be easier than those in (3+1)-dimensions), which are to be 

independently of previous workers in the field. We also thought it would be interesting to 

determine some properties of the universe of the two-dimensional being (the Maxwell 

demon) and compare them with those of our universe. 

             This Thesis reports the determination of the geodesics (null and non- null in 

maximally symmetric 2-dimensional spaces of zero, positive and negative curvatures. As 3-

dimensional coordinate space, the maximal symmetry leads to a Robertson-Walker-type 

metric, which, was to be expected, is simple but yields results that are valid for 3-dimensional 

coordinate space. These results will be discussed in the last chapter that is chapter five. 

          In chapter two we give some common definitions, mathematical tools for project 

(tensor analysis), and the definition of the Christofel symbols.  

          In chapter three, the general geodesic equation in tensorial form is derived.  The 

curvature tensor and the Robertson-Walker metric in (3+1) - dimensions are also derived in 

this chapter.  

        Chapter four contains the actual work in which the derivation of the Robertson-Walker 

metric in (2+1) dimensions is carried out. The calculation for the curvature of this metric, the 

calculations of all the requisite Christoffel symbols, the formulation of the differential 

equations using the general geodesic equation and the appropriate non vanishing Christoffel 

symbols are carried out in this chapter. This is followed by the solution of the differential 

equations for the various spaces (namely, spaces of different curvatures). 

         Finally, in chapter five, we compare the physical interpretations of the solutions of the 

geodesic equations in 3-dimensional space time with those of 4-dimensional space time. We 

also discuss the deflection of a photon by a black hole.    
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Chapter 2 

 

Mathematical tool for the project             

2.1 Definitions of some common terminologies used in the project 

The Universe 

 The universe contains everything. It consists of clusters of galaxies. From a cosmological 

point of view galaxies are the atoms of the universe and their distribution, motion and origin 

must be determined and explained. The Universe is a space that is homogeneous and 

isotropic. 

Space 

A space is defined by a set of rectangular coordinate system or axes. 

Types of spaces to be discussed are Euclidean and Riemannian spaces 

Euclidean space 

Around 300BC the Greek mathematician Euclid undertook a study of relationships 

among distances and angles, first in a plane (2-dimensional space) and then in 3-dimensional 

space. An example of such a relationship is that the sum of angles in a triangle is always 180 

degrees. 

Euclidean structure  

          Euclidean space is a real coordinate space. In order to apply Euclidean geometry one 

needs to be able to talk about the distance between points and the angles between lines and 

vectors. The natural way to obtain these quantities is by introducing and using the standard 

inner product also known as dot product on nR . The inner product of any two vectors X and 

Y is defined by  

                                           1 1 2 2
1

...
n

i i n n
i

X Y x y x y x y x y
=

= = + + +∑  
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The result is always a real number. Furthermore, the inner product of X with itself is always 

non negative. This product allows us to define the length of a vector X  

                                 2

1
( )

n

i
i

X x x X
=

= = ∑ 
  

This length function satisfies the required properties of a norm and is called the Euclidean 

norm on nR . 

The angle ( )0 180θ θ≤ ≤  between X and Y is then given by   

                                    1cos x y
X Y

θ −  
=   

 

 
  

Finally, one can use the norm to define a metric or distance function on  nR  by  

                                 ( ) ( )2

1
, ................................2.0

n

i i
i

d x y x y x y
=

= − = −∑                                                                                

This distance function is called the Euclidean metric. 

 Real coordinate space together with this Euclidean structure is called Euclidean space.  

Euclidean space is a space described by rectangular coordinates.  

 In three dimensional space the line element or the distance between two adjacent points 

( , , )x y z and ( , , )x dx y dy z dz+ + + in Euclidean or Cartesian coordinates is given by 

                                    2 2 2 2.............................................2.1ds dx dy dz= + +                                                                                                             

Riemannian space  

       Riemannian space is a space that cannot be covered with a set of rectangular coordinates.  

It is a space in which an element of distance can be defined. Riemannian space is endowed 

with a symmetric metric.  

Space time 

        Let xi (i=1, 2, 3, 4) be any functions of the iξ such that, to each set of values of the iξ  

there corresponds one set of values of xi, and conversely.  Where xi =xi( 43,21 ,, ξξξξ ) then 

the xi also will be accepted as coordinates, with respect to a new frame of reference, of the 
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event whose coordinates were previously taken to be the iξ .  It should be noted that, in 

general, each of the new coordinate’s xi will depend upon both time and the position of the 

event.  It will not necessarily be the case that three of the coordinates ix  are spatial in nature 

and one is temporal. All possible events will now be mapped upon a space V4, so that each 

event is represented by a point of the space and the xi will be the coordinates of this point 

with respect to a coordinate frame.  V4 will be referred to as the space-time continuum. 

Space time is therefore defined as space and time considered as one Point. 

Examples of space-time are 

1. 3–dimensional space time which consist of two spatial and one time component. 

2. 4-dimensional space time which consist of three spatial and one time component. 

The metric  

         A metric is a function of a topological space that gives, for any two points in the space, 

a value equal to the distance between them. In other words, an expression which expresses 

the distance between two adjacent points is called the metric or line element. In three 

dimensional Euclidean space, the line element or the distance between two adjacent points 

( , , )x y z and ( , , )x dx y dy z dz+ + + in Cartesian coordinates is given by 

                                            2 2 2 2.........................................2.2ds dx dy dz= + +                                                                

If we let ds be an element of distance in a different coordinate system such that 
1 2 3( , , )x x x are the coordinates of a point in that system then the line element in that system is 

given by                          2 1 2 2 2 3 2( ) ( ) ( )ds dx dx dx= + +  

                                         
3

1
.............................................................2.3k k

k
dx dx

=

=∑                                                                      

Since distance is invariant under coordinate transformation, we have 

                                              
3

2 2

1

k k
i j

i j
k

x xds ds dx dx
x x=

∂ ∂
= =

∂ ∂∑  

                                          
3

1

k k
i j

i j
k

x x dx dx
x x=

∂ ∂
=

∂ ∂∑  
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    2 ..........................................................2.4i j
ijds g dx dx=                                                                        

Where                                 
3

1
...................................................2.5

k k

ij i j
k

x xg
x x=

∂ ∂
=

∂ ∂∑                                                                 

The quantities ijg are collectively referred to as the metric tensor and equation (2.4) is called 

the metric or the space-time metric or the fundamental metric form. Examples of 

metrics:  

1. In polar coordinates, the contravariant components of ds are 1 2,dx dr dx rdθ= = and                                                            

we have           

                                         2 2 2 2ds dr r dθ= +                                                        

2. In cylindrical coordinates , , zρ ϕ ,the contravariant components of ds are      
1 2 3, ,dx d dx d dx dzρ ρ ϕ= = = and we have 

                                           2 2 2 2 2ds d d dzρ ρ ϕ= + +                                                

3. In spherical coordinates , ,r θ ϕ , the contravariant components are                               
1 2 3, , sindx dr dx rd dx r dθ θ ϕ= = = , and we have 

                                     2 2 2 2 2 2 2sinds dr r d r dθ θ ϕ= + +                                       

All of these concepts can be extended from three-dimensional space to four -dimensional 

spacetime without any difficulty. Using four-dimensional coordinates xµ  for describing the 

events and the world-line in spacetime, the separation of proper time or the separation 

between two events xµ  and x dxµ µ+  is given by  

                                            2ds g dx dxµ ν
µν=                                                                                               

For different coordinate systems, the dxµ  may not be the same, but the separation 
2ds remains unchanged. The metric tensor gµν determines the geometric character of the 

spacetime and has 16 components of which ten are independent since it is symmetric. 
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 2.2 Tensor analysis 

        Physical laws must be independent of any particular coordinate systems used in 

describing them mathematically, if they are to be valid. A study of the consequences of this 

requirement leads to tensor analysis which is of great importance in general relativity theory, 

differential geometry, mechanics, hydrodynamics, electromagnetic theory and numerous 

fields of science and engineering. 

         In order to construct physical equations that are invariant under general coordinate 

transformation, we must know how the quantities described by the equations behave under 

these transformations. For some quantities, those defined directly in terms of coordinate 

differentials, the transformation properties may be determined by straight forward 

calculations. For other quantities, such as the electromagnetic fields, the transformation 

properties are partially a matter of definition. However, there is a tendency for all quantities 

of physical interest to transform in a reasonably simple way, for otherwise it would be 

difficult to put them together to form invariant equations. This section seeks to describe one 

class of objects whose transformation properties are particularly simple from quantities 

defined directly in terms of the coordinate system. The quantities or objects to be described 

are vectors, scalars, and tensors. 

 

2.2.1 Scalars, Vectors and Tensors 

  Scalars 

         A scalar is a quantity that is invariant under coordinate transformation. The numerical 

value of a scalar at a point remains constant even if the coordinates of this point change. For 

example the interval ds  between two points is a scalar. Also the scalar product of a covariant 

and contravariant vector is a scalar. If φ   is a scalar field, then ix∂
∂φ is a covariant vector 

because in a transformed coordinate system the gradient is   

                                ......................................................................2.6
j

i i j

x
x x x
φ φ∂ ∂ ∂
=

∂ ∂ ∂
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 Vectors  

A vector is a tensor of rank 1 

Two types of vectors are 

Contravariant vectors 

         A vector A i  is said to be a contravariant vector if under the coordinate transformation  

i ix x→ , the   iA ’s   transform according to the law 

                                        .......................................................................2.7
i

i j
j

xA A
x
∂

=
∂

                                                                                          

The rule of partial differentiation gives 

                                  ........................................................................2.8
i

i j
j

xdx dx
x
∂

=
∂

                                                                                      

So the coordinate differential is a contravariant vector 

          (ii)             Covariant vectors 

A vector Ai is said to be a covariant vector if under the coordinate transformation  

i ix x→ , the   iA ’s transform according to the law 

                                   ........................................................................2.9
j

i ji
xA A
x
∂

=
∂

                                                                                          

Tensors 

         A tensor in an n-dimensional space is a set of rn  functions or quantities which 

transform between coordinate systems in a certain way. A tensor of zero rank is a single 

function of position, whose value is the same in all coordinate systems; in more familiar 

terms, it is a scalar. A tensor of rank one is a set of n functions; in more familiar terms, it 

is a vector, and the n functions are its components. A tensor of the second rank is a set of 

n2 functions, and the metric tensor  ijg  is an example. 

One great advantage of the tensor formalism is that, if physical laws are expressed as 

relations among tensors, they will be valid for any choice of coordinates. 
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2.2.2 Types of tensors 

 

Contravariant tensor 

               The set of rN  quantities 1 ri ---iT is said to constitute the components of a 

contravariant tensor of rank r at a point in an N-dimensional space if under the coordinate 

transformation ( )j j ix x x= these quantities transform according to the law 

                                   
1

1 1

1

... ... ...............................................2.10
r

r r

r

i i
i i j j

j j
x xT T
x x
∂ ∂

= ⋅⋅⋅
∂ ∂

                                                                                                                

Covariant 

  The set of sN  quantities 
1 si ---iT is said to constitute the components of a covariant tensor 

of rank s at a point P in an N- dimensional space if under the coordinate 

transformation ( )j j ix x x= , these quantities transform according to the law 

                                               
1

1 1 1
T T .......................................................2.11

s

s s

jj

i i j j sii
x x
x x⋅⋅⋅ ⋅⋅⋅
∂ ∂

= ⋅⋅⋅
∂ ∂

                                                                                         

Mixed tensor 

A set of r sN + quantities 1

1

...

...T r

s

i i
j j is said to constitute the components of a mixed tensor of 

rank r + s, contravariant of order or rank r and covariant of rank or order of s at a point P in 

an N – dimensional space if under the coordinate transformation ( )j j ix x x= these quantities 

transform according to the law 

                           
1 1

1 1

1 11 1

... ...

... ...T T .......................................2.12
sr

r r

s ssr

li i i
i i k k
j j l ljk k j

x x x x
x x x x
∂ ∂ ∂ ∂

= ⋅⋅⋅ ⋅ ⋅ ⋅
∂ ∂ ∂ ∂

   

           ( )2 Lovelock and Hanno RundDavid          
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2.2.3 Fundamental operations with tensors 

Addition and Subtraction 

The sum and differences of two or more tensors of the same rank and type are also 

tensors of the same rank and type. Thus if ij
kA and ij

kB are tensors then ij ij ij
k k kC A B= ±  are 

also tensors. 

 

Proof 

     Writing the transformation laws for the given tensors, we have  

                               
i j m

ij rs
k mr s k

x x xA A
x x x
∂ ∂ ∂

=
∂ ∂ ∂

  , 
i j m

ij rs
k mr s k

x x xB B
x x x
∂ ∂ ∂

=
∂ ∂ ∂

  and 

                                ( )
i j m

ij ij rs rs
k k m mr s k

x x xA B A B
x x x
∂ ∂ ∂

± = ±
∂ ∂ ∂

, or, letting ij ij ij
k k kC A B= ±  

                                     .................................................................2.13
i j m

ij rs
k mr s k

x x xC C
x x x
∂ ∂ ∂

=
∂ ∂ ∂

                                                              

Outer multiplication 

        The product of two tensors is a tensor whose rank is the sum of the ranks of the 

given tensors. 

Theorem 

The outer product of two tensors of types ( 11 , sr ) and ( 22 , sr ) at a point P in nx is a tensor 

of type ( 2211 , srsr ++ ) at P. 

Proof 

Let k
ijR and lmS tensors, then under coordinate transformation ( )j j ix x x= these tensors 

take the form 

                                    
k s t

k r
ij str i j

x x xR R
x x x
∂ ∂ ∂

=
∂ ∂ ∂
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l m

lm pq
p q

x xS S
x x
∂ ∂

=
∂ ∂

 

                                
k s t l m

k lm r pq
ij str i j p q

x x x x xR S R S
x x x x x
∂ ∂ ∂ ∂ ∂

=
∂ ∂ ∂ ∂ ∂

or letting r pq rpq
st stR S T=  we have  

                               ................................................2.14
k l m s t

klm rpq
ij str p q i j

x x x x xT T
x x x x x
∂ ∂ ∂ ∂ ∂

=
∂ ∂ ∂ ∂ ∂

                                            

which is the transformation law for a tensor of type ( 2,3 ) 

 The product which involves ordinary multiplication of the components of the tensor is called 

the outer product of the two tensors. 

Contraction 

         If one contravariant and one covariant index of a tensor are set equal, the result 

indicates that a summation over the equal indices is to be taken according to the summation 

convention. This resulting sum is a tensor of rank two less than that of the original tensor. 

The process is called contraction. For example, in the tensor of rank 5,  ,npr
qsA set r s= to 

obtain mpr np
qr qA B=  a tensor of rank 3. 

The inner product 

          An inner product of two tensors of types ( 11 , sr ) and ( 22 , sr ) is a tensor of type ( 

1,1 2121 −+−+ ssrr ) provided that the contraction is over a pair of indices one contra variant 

and the other covariant 

Proof  

Let ijT  be a contra variant tensor of the second rank, so that its transformation law is given 

by  

                    
i j

ij rs
r s

x xT T
x x
∂ ∂

=
∂ ∂

  

   And let PC  and qF be two covariant vectors, with transformation laws  

                               and
l

p lp

xC C
x
∂

=
∂

  
m

mq

xF F
x
∂

=
∂
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i j l m

ij rs
p q l mr s p q

x x x xT C F T C F
x x x x
∂ ∂ ∂ ∂

=
∂ ∂ ∂ ∂

    or   if                                                                                                                  

                                     ,   thenij ij
pq p qQ T C F=              

                                     
i j l m

ij rs
pq lmr s p q

x x x xQ Q
x x x x
∂ ∂ ∂ ∂

=
∂ ∂ ∂ ∂

 

 Contracting over the indices j and p we have  

                                      
i j l m

ij rs
pq lmr s j q

x x x xQ Q
x x x x
∂ ∂ ∂ ∂

=
∂ ∂ ∂ ∂

 

                                           .........................................................................2.15
i m

rs
lmr q

x x T
x x
∂ ∂

=
∂ ∂

                                                                             

  This is a transformation law for a tensor of type (1, 1). The contraction has reduced the both 

upper and lower indices by one. Such a product is called inner product. 

The quotient theorem 

            If the product (outer or inner) of 1

1

...
...

r

s

i i
j jR  with an arbitrary tensor yields a non- zero 

tensor of appropriate rank and character, then the quantities 1

1

...
...

r

s

i i
j jR are components of a tensor. 

Example  

Let us suppose that at a fixed point P of Nx , we are given a set of quantities ia  such that i
ia x  

is a scalar for any contravariant vector ix  at P such that  

i
ia x φ=   , where φ  is a scalar            

If we denote in x coordinate system  

                                     j
ja x φ φ= = , then, we have                         

                                    i j
i ja x a xφ= =  

                                   
j

i i
i j i

xa x a x
x

∂
=

∂
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                                 0
j

i
i j i

xa a x
x

 ∂
− = ∂ 

 

   But the ix  being the coordinates in the space Nx , are linearly independent we can therefore 

equate the coefficients to zero. Hence 

                               
j

i j i
xa a o
x

∂
− =

∂
 

                       or
j

i j i
xa a
x

∂
=

∂
   

i

j ij
xa a
x
∂

=
∂

shows that the ia  are the components of a 

covariant vector. 

 

2.2.4  Symmetric and anti -symmetric tensors 

Symmetric tensors 

             If two contravariant or covariant indices can be interchanged without altering the 

tensor, then the tenor is said to be symmetric with respect to these two indices. For example, 

if     orA Aµν νµ=  A Aµν νµ=      then the contravariant tensor of second rank Aµν   or covariant 

tensor of second rank Aµν is said to be symmetric. 

For a tensor of higher rank Aµνσ
λ  if A Aµνσ νµσ

λ λ=  then the tensor Aµνσ
λ is said to be symmetric 

with respect to the indices µ  and ν  

The symmetry property of a tensor is independent of the coordinate system used. So if a 

tensor is symmetric with respect to two indices in any coordinate system, it remains 

symmetric with respect to these two indices in any other coordinate system. This can be seen 

as follows,  

If tensor Aµνσ
λ is symmetric with respect to the indices µ andν we have 

                        A Aµνσ νµσ
λ λ=  

 According to tensor transformation law 
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                                     x x x x x x x xA A A A
x x x x x x x x

µ ν σ δ ν µ σ δ
µνσ αβγ βαγ νµσ
λ δ δ λα β γ λ β α γ λ

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= = =
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

     

 Thus a given tensor is again symmetric with respect to first two indices in the new 

coordinate system. Similarly, this result can be proved for covariant indices. 

Number of independent components of a symmetric tensor 

          A symmetric tensor of rank two in n-dimensional space has at most ( )1
2

n n +
 

independent components. This can be obtained as follows 

The total number of components in the array is 2n , out of which all the n diagonal terms will 

in general be different and the rest ( 2n n− ) will be equal in pairs. The number of pairs will be                                          
2

2
n n −

 
 

 

Therefore the total number of independent components  

                                        ( )2 1
2 2

n nn nn
+ −

= + = 
 

                                                           

    Antisymmetric tensors 

            A tensor whose components, change in sign but not in magnitude when two 

contravariant or covariant indices are interchanged, is said to be anti-symmetric  or skew 

symmetric with respect to these two indices. For example, if  

A Aµν νµ= −  or A Aµν νµ= −  then the contravariant tensor Aµν or the covariant tensor Aµν  

of second rank is anti- symmetric. For a tensor of higher rank Aµνσ
λ if A Aµνσ νµσ

λ λ= − then 

the tensor Aµνσ
λ is anti-symmetric with respect to indices µ  and ν  

            The skew symmetric property of a tensor is also independent of the choice of 

coordinate system. So, if a tensor is skew symmetric with respect to two indices in any 

coordinate system, it remains skew symmetric with respect to these two indices in any 

other coordinate system. To show this, let the tensor Aµνσ
λ be antsymmetric with respect to 

the first two indices µ  andν , that is let 
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                                 A Aµνσ νµσ
λ λ= −  . 

Then 

                      x x x x x x x xA A A A
x x x x x x x x

µ ν σ δ ν µ σ δ
µνσ αβγ βαγ νµδ
λ δ δ λα β γ λ β α γ λ

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= = − = −
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

 

The antisymmetry property, like the symmetry property, cannot be defined with respect to 

two indices of which one is contravariant and the other covariant. 

If all the indices of a contravariant or covariant tensor can be interchanged so that its 

components change sign at each interchange of a pair of indices, then the tensor is said to be 

antisymmetric. That is if Aµνσ  are antisymmetric tensor then   

                                A A Aµνσ νµσ νσµ= − =  

Thus we may state that a contravariant or covariant tensor is antisymmetric if its components 

change sign under an odd permutation of its indices and do not change sign under an even 

permutation of its indices. 

Number of independent components of an anti symmetric tensor 

             An antisymmetric tensor of rank two in n-dimensional space has  ( )1
2

n n −
 independent 

components. This can be shown as follows 

The total number of components in the array is 2n , out of which all diagonal terms of the 

array will be zero since all the quantities Aµµ (no summation) are zero. The rest ( )2n n−  will 

be pairwise equal in magnitude. The number of pairs will be
( )2

2

n n−
.Therefore the total 

number of independent components ( )2 1
2 2

n nn n −−
= =                                                        

 

 

 

 



 16 

 

2.3  Covariant differentiation  

2.3.1  Covariant differentiation of a vector iA  

         By tensor transformation, we have  

                                  ...........................................................................2.16
j

i ji

xA A
x
∂

=
∂

                                                                                                          

Differentiating with respect to kx , we have 

                        
2

i
j

A A  ........................ 2.17
j j r j

j
jk k i i r k i k

Ax x x x A
x x x x x x x x

∂ ∂ ∂ ∂ ∂ ∂ ∂
= = + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 

The presence of the second term on the right hand side shows that the partial derivatives 

i
k

A
x
∂
∂

 do not transform like a tensor. This second term is called the affine term or the 

affine connection.  

0i
k

A
x
∂

≠
∂

 even if 0j
r

A
x
∂

=
∂

or jA are constant   

Transformation of the affine connection  

             Let the affine connection be defined by  

                                  
2m j

m
ik j i k

x x
x x x
∂ ∂

Γ =
∂ ∂ ∂

 

Passing form ix to a different system ix  we find that 

                               
2m j

m
ik j k i

x x
x x x

∂ ∂
Γ =

∂ ∂ ∂
 

                           
m p q j

p j k i q

x x x x
x x x x x

 ∂ ∂ ∂ ∂ ∂
=  ∂ ∂ ∂ ∂ ∂ 

 

                           
2 2m p q j j q

p j i k q q k i

x x x x x x
x x x x x x x x

 ∂ ∂ ∂ ∂ ∂ ∂
= + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
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2 2m p q r j j q

p j i k r q q k i

x x x x x x x
x x x x x x x x x

 ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 

                             
2 2m p q r j m p j q

p j i k r q p j q k i

x x x x x x x x x
x x x x x x x x x x x

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

 

                                
2 2m q r p j m p

p i k j r q p k i

x x x x x x x
x x x x x x x x x

∂ ∂ ∂ ∂ ∂ ∂ ∂
= +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

 

                              
2

   ............................................. 2.18
m r p m p

m p
ik rqp k i p k i

x x x x x
x x x x x x

∂ ∂ ∂ ∂ ∂
Γ = Γ +

∂ ∂ ∂ ∂ ∂ ∂
 

From equation (2.16) and (2.18) we have  

                             
2m r p m p l

m p
ik m rq lp k i p k i m

x x x x x xA A
x x x x x x x

 ∂ ∂ ∂ ∂ ∂ ∂
Γ = Γ + ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 

                                
2m l r p m l p

m p
ik m rq l lp m k i p m k i

x x x x x x xA A A
x x x x x x x x

∂ ∂ ∂ ∂ ∂ ∂ ∂
Γ = Γ +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 

                                 
2

 ..................................................2.19
r p p

m p
ik m rq p pk i k i

x x xA A A
x x x x
∂ ∂ ∂

Γ = Γ +
∂ ∂ ∂ ∂

 

Subtracting (2.19) from (2.17) leads to 

                                  ..................................... 2.20
q r

qm pi
ik m rq pk i k r

AA x xA A
x x x x

∂ ∂ ∂ ∂
−Γ = −Γ ∂ ∂ ∂ ∂ 

 

We therefore define a covariant derivative of a covariant vector  

                                ;
mi

i k ik mk

AA A
x
∂

= −Γ
∂

 

Equation (2.20) tells us that ;i kA  is a tensor: 

                            ; q;rA                                         
q r

i k i k

x xA
x x
∂ ∂

=
∂ ∂
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2.3.2  Covariant differentiation of a vector mA   

The transformation law for the vector mA is given by 

                    
m

m i
i

xA A
x

∂
=
∂

 

Differentiating with respect to kx  gives  

                   
m m

i
k k i

A x A
x x x

 ∂ ∂ ∂
=  ∂ ∂ ∂ 

 

                    
2

 .......................................2.21
m i p m m p

i
k p k i i p k

A A x x x x A
x x x x x x x

∂ ∂ ∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂ ∂ ∂ ∂
 

The first term on the right is what we would expect if 
m

k

A
x

∂
∂

were a tensor; the second term 

is what destroys the tensor behaviour. 

Although 
m

k

A
x

∂
∂

is not a tensor, we can use to construct a tensor. Let us consider the 

identity  

                                 
m p

m
kp k

x x
x x

δ∂ ∂
=

∂ ∂
 

Differentiating this identity with respect to ix , we have 

                                  0
m p

i p k

x x
x x x
 ∂ ∂ ∂

= ∂ ∂ ∂ 
 

                                   

2 2

2 2

0
m p p m

p i k k i p

m p p q m

p i k k i q p

x x x x
x x x x x x

x x x x x
x x x x x x x

∂ ∂ ∂ ∂
+ =

∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂
= −

∂ ∂ ∂ ∂ ∂ ∂ ∂

 

We therefore write equation 2.18 as  
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2m r q p q m

m p
ik rqp k i k i q p

x x x x x x
x x x x x x x

∂ ∂ ∂ ∂ ∂ ∂
Γ = Γ −

∂ ∂ ∂ ∂ ∂ ∂ ∂
 

From this equation, we see that 

                                 
2m r q i p q i m

m i p s s
ik rqp k i s k i s q p

x x x x x x x xA A A
x x x x x x x x x

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
Γ = Γ −

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
    

                                  
2m r p m

m i p q q
ik rqp k k q p

x x x xA A A
x x x x x

∂ ∂ ∂ ∂
Γ = Γ −

∂ ∂ ∂ ∂ ∂
 

Adding this equation to equation 2.21, and rearranging the dummy indices we have  

                                  
m q p m m r

m i p q
ki rqk p k q p k

A A x x x xA A
x x x x x x

∂ ∂ ∂ ∂ ∂ ∂
+ Γ = + Γ

∂ ∂ ∂ ∂ ∂ ∂
 

                                    
m p m q

m i q r
ki prk k q p

A x x AA A
x x x x

 ∂ ∂ ∂ ∂
+ Γ = +Γ ∂ ∂ ∂ ∂ 

 

We therefore define a covariant derivative of a cotravariant vector 

                              ;

m
m m i
k kik

AA A
x

∂
= +Γ
∂
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2.4  The relation of Christoffel symbols to the metric tensor 

        In the computation of covariant derivative of a tensor in Euclidean space demands as a 

pre-requisite the evaluation of affine connections 

                      
2

....................................................................2.22
j m

m
ik i k j

x x
x x x
∂ ∂

Γ =
∂ ∂ ∂

                                                                                               

This formula shows that m
ki

m
ik Γ=Γ   that is affine connection is symmetric in its subscript but 

this does not make the most convenient way of calculating the coefficient of m
ikΓ . It turns out 

that we can relate m
ikΓ directly to the metric tensor and that the resulting formula is easier to 

deal with. 

We show that the covariant derivative of the metric tensor ikg is zero 

Using the relation 

                          δ i ikA g δ= ................................................................................2.23kA                                                                                                                    

This is valid for the vector iA∂  and also for any vector 

 On the other hand, 

                      k
iki AgA =   So that  

                   δ iA δ= ( )k k
ikg A A δ= ik ikg g δ+ .......................................2.24kA  

Substituting (2.23) into (2.24) 

We have 

                            kA δ 0ikg =  

And since the vector kA is arbitrary, we have 

                           δ : 0..................................................................2.25ik ik lA g= =                                                                                                                  

This ikg  may be considered to be a constant during covariant differentiation  
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Now, writing out (2.25) explicitly, we obtain 

                      : 0..........................................................2.26ij n n
ij k ik nj jk ink

g
g g g

x
∂

= −Γ −Γ =
∂

 

  

Performing cyclic permutation of the indices kji ,,  we obtain two other formulae 

                   : 0........................................................2.27jk n n
jk i ji nk ki jni

g
g g g

x
∂

= −Γ −Γ =
∂

                                                                                  

                  : 0...........................................................2.28n nkl
kl j kj ni ij knj

gg g g
x

∂
= −Γ −Γ =
∂

                                                                                   

Adding (2.27) and (2.28) and subtracting (2.26), on using the symmetric properties of ijg  and 

n
ikΓ     we have 

                    2 0jk ij nki
ij kni j k

g gg g
x x x

∂ ∂∂
+ − − Γ =

∂ ∂ ∂
 

                 2 ................................................................2.29ijn ik ki
nk ij i j k

gg gg
x x x

∂∂ ∂
Γ = + −

∂ ∂ ∂
                                                                                   

Multiply both sides of (2.29) by nkg
2
1  and using the fact that nk n

mk mg g δ=  

We have  

                   1 ..........................................................2.30
2

jk ijn nk ki
ij i j k

g ggg
x x x

∂ ∂ ∂
Γ = + − ∂ ∂ ∂ 

   

                   ;
1 .............................................................2.31
2

jk iji ki
ij k i j k

g gg
x x x

∂ ∂ ∂
Γ = + − ∂ ∂ ∂ 

                                                                           

Equation (2.30) is called the chriotoffel symbol of the second kind and (2.31) is called 

Christoffel symbol of the first kind 

The relationship between the two Christoffel symbols is 
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                      [ ]kjig
ij
n nk ;=







 

 From (2.30) 

Put n i=  

                  1 ........................................................2.32
2

jk iji ik ki
ij i j k

g ggg
x x x

∂ ∂ ∂
Γ = + − ∂ ∂ ∂ 

                          

     

                  0  for i j k  i
j kΓ = ≠ ≠                                                                        

Put k i= , in equation (2.32) we have 

                           1
2

ji iji ii ii
ij i j i

g ggg
x x x

∂ ∂ ∂
Γ = + − ∂ ∂ ∂ 

 

                          1
2

i ii ii
ij j

g
g

x
∂

Γ =
∂

 Since 1=ii
ii gg  

                          1 ...............................................................2.33
2

i ii
ij j

ii

g
g x

∂
Γ =

∂
                                                                                                    

Put  j i=  in (2.32), we have  

                          





∂
∂

−
∂
∂

+
∂
∂

=Γ k
ii

i
ki

i
ikiki

ii x
g

x
g

x
g

g
2
1  

Put ik =  

                          1
2

i ii ii ii ii
ii i i i

g g gg
x x x

∂ ∂ ∂ Γ = + − ∂ ∂ ∂ 
 

                          1 ...............................................................2.34
2

i ii
ii i

ii

g
g x

∂
Γ =

∂
                                                                                                          

From (2.32) put ji =  

                             1
2

jk kj jjn nk
jj j j k

g g g
g

x x x
∂ ∂ ∂ 

Γ = + − ∂ ∂ ∂ 
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Put n i=  

                              1
2

jk kj jji ik
jj j j k

g g g
g

x x x
∂ ∂ ∂ 

Γ = + − ∂ ∂ ∂ 
 

Put k i=  

                             1
2

ji ij jji ii
jj j j i

g g g
g

x x x
∂ ∂ ∂ 

Γ = + − ∂ ∂ ∂ 
 

                             1
2

jji ii
jj i

g
g

x
−∂ 

Γ =  ∂ 
 Since 0ji ij

j j

g g
x x

∂ ∂
= =

∂ ∂
 

Hence                  1 ............................................................2.35
2

jji
jj i

ii

g
g x

∂
Γ =

− ∂
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Chapter 3 

Geodesics 

Let M  be an n-dimensional differentiable manifold, upon which the usual structure of 

vectors, tensors, and differential forms has been defined. 

 A geodesic on M  is a curve whose tangent vector is parallel transported, that is 
i

i dxu
dλ

=  

A vector iu  is said to be parallel transported along a curve ( )i ix x λ=  if it satisfies the 

equation 

                                   0
i k l

i
kl

du dx dx
d d dλ λ λ

+Γ =  

 where i
klΓ  is the affine connection 

A geodesic is also a curve of extremal arc length. 

As examples, the geodesics on a plane are straight lines where as the geodesics on a sphere 

are arcs of great circles. 
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3.1  Geodesics in Euclidean plane 

         Since finding geodesic in Euclidean space involves finding the minimum curve or 

finding the shortest path between two points, we therefore apply calculus of variation which 

will lead us to the Euler-Lagrange differential equation. This equation is derived as 

follows  

We consider a function ( ), ,f y y x  defined on a path ( )y y x=  between two 

points ( ) ( )1 1 2 2,   and ,x y x y . We wish to find a particular path ( )y x  such that the line 

integral J  of the function f  between 1 2 and  x x  

                           ( )
2

1

, , dx .........................................3.0                                           
x

x

J f y y x= ∫   

has a stationary value relative to paths differing infinitesimally from the correct function 

( )y x . The variable x   here plays the role of a parameter and we consider only such varied 

paths for which 1 1( )y x y= , 2 2( )y x y= .(Figure 3.1) 

Where                        dyy
dx

=     

  

      

 

 

 

  

Figure 3.1 Varied paths in the one-dimensional extremum problem 

If ( )y x  is the path and ( ),y x α  is the path of variation then, the combination of the two 

gives the fixed space. 

 

y 

x 

y(x,α) 

(x2,y2) 

(x1,y1) 

y(x,0) 
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                          ( ) ( ) ( ), ,0  ................................................3.1y x y x xα αη= +  

Where ( )
0

yx
α

η
α =

∂ =  ∂ 
is assumed to be continuously differentiable in the open interval 

[ ]1 2,x x  and such that 1 2( ) ( ) 0x xη η= =  then J is also a function ofα . Hence 

                    ( )
2

1

x

x

( ) , , ( , ),  ...........................................3.2                       J f y x y x x dxα α α =  ∫   

The condition for obtaining an extremum is given by 

           
0

               0 ................................................................3.3J

αα =

∂  = ∂ 
 

Thus differentiating (3.2) we obtain  

                  
2

1

 ................................................3.4
x

x

J f y f y dx
y yα α α

 ∂ ∂ ∂ ∂ ∂
= + ∂ ∂ ∂ ∂ ∂ 
∫




 

The second integral of (3.4) is 

                  
22 2 2

1 1 11

2 xx x x

x x xx

f y f y f y d f ydx dx dx
y y x y dx yα α α α

   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= = −   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

∫ ∫ ∫


   
 

The condition of all varied curves is that they pass through the points 

( ) ( )1 1 2 2,    and      ,x y x y  and hence dy
dα

 must vanish at those points. Equation (3.4) becomes 

                                      

2

1

2

1

x

x
     =

x

x

J f y d f y dx
y dx y

f d f y dx
y dx y

α α α

α

  ∂ ∂ ∂ ∂ ∂
= −  ∂ ∂ ∂ ∂ ∂  

  ∂ ∂ ∂
−  ∂ ∂ ∂  

∫

∫





 

Multiplying through by dα  and evaluate the derivative at 0α = , we have  

                                      
2

1

0
x

x

J f d f yJ d d dx
y dx y

α α
α α

  ∂ ∂ ∂ ∂   ∂ = = − =     ∂ ∂ ∂     
∫ 
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2

1

0
x

x

J f d fJ d ydx
y dx y

α δ
α

  ∂ ∂ ∂ ∂ = = − =   ∂ ∂    
∫ 

 

Where                      
0

yy dδ α
α
∂ =  ∂ 

 

                                     0f d f y
y dx y

δ
  ∂ ∂

− =  ∂ ∂  
 

The quantity yy dδ α
α
∂

=
∂

 is known as the variation of y. It is an arbitrary quantity and 

therefore generally not equal to zero. Hence we must have  

                                   0 ......................................................3.5f d f
y dx y

 ∂ ∂
− = ∂ ∂ 

 

Thus J is an extremum only for curves ( )y x  such that ( ), ,f y y x  satisfies the differential 

equation (3.5). This differential equation is the usual Lagrange equation in classical 

mechanics. In calculus of variation, it is known as the Euler-Lagrange equation. 

[ ]3 Herbert Goldstein  

Illustration  

 We prove that the shortest distance between two points in a plane or Euclidean space is a 

straight line.  

Let the line element or an element of distance between two points 1 1( , )P x y  and 2 2( , )Q x y  be 

given by    

                               2 2 2................................................3.6ds dx dy= +                                                                                                                                            

                                
1

2 2[1 ( ) ]dyds dx
dx

= +      

                                 
1

2 2(1 ) ..................................................3.7ds y dx= +                                                                    

Where                        dyy
dx

=  

Using Hamilton’s principle, the total distance between these two points is    
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2 2

1 1

1
2 2(1 )    ..............................................3.8

x x

x x

L y dx fdx= + =∫ ∫                                                                                        

Where                       
1

2 2(1 )   ...................................................3.9f y= +                                                                                               

This does not explicitly depend on y so using the Euler-Lagrange equation 

                                0f d f
y dx y

 ∂ ∂
− = ∂ ∂ 

 

But  0f
y
∂

=
∂

  therefore            0d f
dx y

 ∂
= ∂ 

 

From equation (3.9)                1
2 2(1 )

f y
y y

∂
=

∂
+






 

      Hence           1
2 2

0
(1 )

d f d y
dx y dx y

 
 ∂  = =   ∂   + 






 

                         1
2 2(1 )

y C
y

=
+





 

Where C is a constant of integration from which, we have        

                               
1

2 2(1 )y C y= +   

                                 2 2 2(1 )y C y= +   

                                 
2

2
21

Cy
C

=
−

          

                                  
21

Cy a
C

= =
−

   (Constant)      

                                  y a=        

                                dy a
dx

=      

                              y ax b= +       

        Where b is a constant of integration                                                                    

 Hence, the geodesic in Euclidean plane is a straight line 
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3.2  General geodesic equations in Non-Euclidean or 

Riemannian space 

              Two properties of a straight line can be generalised as  

i.)  The property of straightness. 

ii)  The property of shortest distance between two points 

 ( )1 V. NarlikerJayant  

 These two properties are used to formulate the general geodesic equation in Riemannian 

space. 

 1. Straightness means that as we move along the line, its direction does not change. 

Generalization of this concept; 

  Let ( )ix λ be the parametric representation of a curve in spacetime. The tangent vector for 

this parametric representation is 

                                 ...........................................................3.10
i

i dxu
dλ

=                                                                                          

The straightness criterion demands that iu  should not change along a curve 

On moving from λ to λ δλ+  in a curve, the change iu  is given by 

                                 i i iu du uδ∆ = −  

But                            i i k l
klu u xδ δ= −Γ  

                                 
i

i i k l
kl

duu u x
d

δλ δ
λ

∆ = +Γ  

                                ........................................3.11i

i
i i k l

kl

duu u x
d

δλ δ
λ

∆ = +Γ                                                                                               

The second term on the right hand side of (3.11) arises from the change produced by parallel 

transport through coordinate displacement lxδ but 
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                                      ...........................................................3.12l lx uδ δλ=                                                                       

Substituting (3.12) into (3.11), we have 

                      
i

i i k l
kl

duu u u
d

δλ δλ
λ

∆ = +Γ  

                               .............................................3.13
i

i i k l
kl

duu u u
d

δλ
λ

 
∆ = +Γ 

 
                                                               

The condition for no change of direction iu  implies 0iu∆ =  

Equation (3.13) becomes 

                        0
i

i k l
kl

du u u
dλ

+Γ =         Or       

                          
2

2 0................................................3.14
i k l

i
kl

d x dx dx
d d dλ λ λ

+Γ =                                     

Equation (3.14) is the condition that our curve must satisfy in order to be straight. 

2. Property of shortest distance between two points 

 Let a curve parameterised by λ connects two points P1 and P2 of spacetime with 

parameters 1λ  and 2λ  respectively. Then the distance of P2 from P1 is defined as 

              
2 2

1 1

1
2

2 1( , )   ..................................3.15
i k

ik
dx dxS P P g d Ld
d d

λ λ

λ λ

λ λ
λ λ

 
= = 

 
∫ ∫                                              

Where                       

1
2i k

ik
dx dxL g
d dλ λ

 
=  
 

 

For small displacement of a curve connecting P1 and P2, we demand that 2 1( , )S P P  be 

stationary and these displacement vanish at P1 and P2. This is a standard problem in the 

calculus of variation and its solution leads to the familiar Euler-Lagrange equation; 

                              0 ................................................3.16j j

d L L
d x xλ

∂ ∂  − = ∂ ∂ 
                                                                                                

Where j= i, k 
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But                          L= 2
12

1

)( ki
ik

ki

ik xxg
d
dx

d
dxg =








λλ

  

                              ( )( ) 2
1

2
1 −

+=
∂
∂ ki

ik
ik

ikj xxgxxg
x
L




 

                                    = ( )ik
ik xxg

L
 +

2
1  

                             
2
1

2
1

−









∂
∂

=
∂
∂

λλλλ d
dx

d
dxg

d
dx

d
dx

x
g

x
L ki

ik

nm

j
mn

j  

                                
λλ d

dx
d
dx

x
g

Lx
L nm

j
mn

j ∂
∂

=
∂
∂

2
1  

Substituting these equations in to (3.16), we have 

                           ( )1 1 0  
2 2

m n
k i mn

ik j

gd dx dxg x x
d L L x d dλ λ λ

∂ + − =  ∂ 
     

                                ( )( ) 0..............................................3.17
m n

k i mn
ik j

gd dx dxg x x
d x d dλ λ λ

∂
+ − =

∂
                     

Using  ds Ldλ=   equation (3.17) becomes 

                      
2 2 0 ..............................................3.18

k i m n
mn

ik ik j

gd dx dx dx dxL g g L
ds ds ds x ds ds
  ∂

+ − =  ∂ 
                                            

Changing the dummy indices   in the first term of (3.18)                                                                            

                 0=
∂
∂

−







+

ds
dx

ds
dx

x
g

ds
dxg

ds
dxg

ds
d nm

j
mn

n

kn

m

mk  

               g
2 2

2 2 0 .....................3.19
m m n n m n

mk kn mn
mk kn k

dg dg gd x dx d x dx dx dxg
ds ds ds ds ds ds x ds ds

∂
+ + + − =

∂
               

But              
ds

dx
x
g

ds
dg n

n
mkmk

∂
∂

=  and   
m

kn kn
m

dg g dx
ds x ds

∂
=
∂

 

Substituting these equations into (3.19) we have 
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2 2

2 2 0
m m n n n m m n

mk kn mn
mk knn m k

g g gd x dx dx d x dx dx dx dxg g
ds ds x ds ds ds x ds x ds ds

∂ ∂ ∂
+ + + − =

∂ ∂ ∂
   

                
2 2

2 2 0 ..........................3.20
m n m n

mk kn mn
mk kn n m k

g g gd x d x dx dxg g
ds ds x x x ds ds

∂ ∂ ∂ + + + − = ∂ ∂ ∂ 
                       

Setting m, n = i in the first two terms of (3.20), we have 

                      
2 2

2 2 0
i i m n

mk kn mn
ik ki n m k

g g gd x d x dx dxg g
ds ds x x dx ds ds

∂ ∂ ∂ + + + − = ∂ ∂ 
 

 

                        
2

22 0
i m n

mk kn mn
ik n m k

g g gd x dx dxg
ds x x x ds ds

∂ ∂ ∂ + + − = ∂ ∂ ∂ 
 

                            
2

2

1 0
2

i m n
ik mk kn mn

n m k

g g gd x dx dxg
ds x x x ds ds

∂ ∂ ∂ + + − = ∂ ∂ ∂ 
  

Hence  

                                 
2

2 0 ...........................................................3.21
i m n

i
mn

d x dx dx
ds ds ds

+Γ =                                                              

It is clear that equations (3.14) and (3.21) are the same although S in (3.21) has the special 

meaning of length along the curve while λ  in (3.14) appears to be general. If (3.14) is 

satisfied then λ  must be a constant multiple of S. 

The N equations (3.21) are second-order differential equations for the functions ( )ix s and 

their solutions will involve 2N arbitrary constants. If these equations are satisfied at every 

point of the curve ( )ix s , it is a geodesic. If A, B are two given points having coordinates 

,i i i ix a x b= =  respectively, the 2N conditions that the geodesic must contain these points 

will, in general determine the arbitrary constants. Hence there is, in general a unique geodesic 

connecting every pair of points. However, in some cases this will never be so. For instance, 

the geodesics on the surface of a sphere ( 2R ) are great circles and in general there are two 

great circle arcs joining two given points, major arc and a minor arc (figure 3.2)  
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(D.F Lawden) 4. 

 

  

 

 

 

 

 

 

Figure 3.2    Diagram showing the great circles of a spherical object.   

3.2.1 To show that the geodesic equation has a first integral 

From   ( )
1
2i k

ikL g x x=    since L does not explicitly depend onλ ,we have 

                           ..........................................................3.22i
i

LL x c
x
∂

− =
∂




                                                               

Where c is a constant 

But                     ( )
1

21 1
2 2

k i k k
ik ik iki

L g x g x x g x
x L

−∂
= =

∂
   


 

                       

1
2

1
2

i k
ik

i k
ik

L x g x c
L

L g x x c
L

− =

− =

 

 

 

                   21
2

L L c
L

− =  

 

                    tani k
ikg x x cons t=   2 2

                    
2

                   4 tan

L c

L c cons t

=

= =

Great circles 
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Hence  

                         ..........................................................3.23
i j

ij
dx dxg C
ds ds

=                                                                             

Where C is the constant of integration 

 Characteristics of equation (3.23) are; 

If ijg  has one positive eigenvalue and three negative eigenvalues, then 

(i) C = 0 for a null geodesic 

(ii.) C > 0 for time like curves 

(iii). C < 0 for space like curves 

Theλ  is called an affine parameter 
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3.3  The curvature tensor 

One property that distinguishes a curved space from a flat space is the curvature of the space. 

The curvature of the space is defined by the curvature tensor which is derived as follows; 

 Let a vector jx  at a point P undergo parallel transport to another point Q.  

The component of the jx  will change, the covariant differentiation of the vector jx  is given 

by 

                                       ;  ............................................................3.24
j

j j l
h lhh

xx x
x
∂

= +Γ
∂

                                           

Taking the second derivative of the above equation, we have 

                   ; ; ( )
j

j j l
h k lhk h

xx x
x x
∂ ∂

= +Γ
∂ ∂

 

                  = ;
; ;

( )j
h j m l j

mk h hk lk

x
x x

x
∂

+ Γ −Γ
∂

 

                ; ;

j
j j l

h k lhk h
xx x

x x
 ∂ ∂

= + Γ ∂ ∂ 
+ 








Γ+

∂
∂

Γ l
lh

m
h

m

mk
j x

x
x - l

j
hk

l x ;Γ  

                =  
2

;  ...................3.25
jj l m

l j j j m l l jlh
lh mk mk lh hk lk h k k h

x x xx x x
x x x x x

∂Γ∂ ∂ ∂
+ +Γ +Γ +Γ Γ −Γ

∂ ∂ ∂ ∂ ∂
               

Interchanging h and k, we have 

  
2

; ; ;  .......................3.26
jj l m

j l j j j m l l jlk
k h lh mh mh lk kh lh k h k k

x x xx x x x
x x x x x

∂Γ∂ ∂ ∂
= + +Γ +Γ +Γ Γ −Γ
∂ ∂ ∂ ∂

                    

Subtracting equation (3.26) from (3.25) and considering the fact that 
2 j

h k

x
x x
∂
∂ ∂

 are symmetric 

that is  

                    hk

j

kh

j

xx
x

xx
x

∂∂
∂

=
∂∂

∂ 22

,   we have  

       ; ; ; ; ;  .............3.27
j j

j j j m j m l l l jlh
h k k h mk lh mh lk hk kh lk h

lkx x x x
x x

 ∂Γ ∂Γ  − = − +Γ Γ −Γ Γ − Γ −Γ   ∂ ∂ 
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Where  

                            ................................3.28
j j

J j m j mlh lk
lhk mk lh mh lkk hK

x x
∂Γ ∂Γ

= − +Γ Γ −Γ Γ
∂ ∂

                       

And 

                                        ............................................................3.29l l l
hk hk khS = Γ −Γ                                        

The quantity lhk
jK  is called the curvature tensor or Riemannian tensor of type (1, 3). This 

can be seen by using the symmetric property of the affine connections kh
l

hk
l Γ=Γ  in equation 

(3.27) we obtain 

                            ; ; ; ;   ...........................................................3.30j j j l
h k k h lhkX X K x− =                                        

The quantity on the left hand side of equation (3.30) is a component of a third rank tensor 

since it is the difference between the components of two tensors. Therefore the quantity on 

the right is also a component of a third rank tensor. It has the form of a contracted product of 

a fourth rank tensor whose components are lhk
jK  and the first rank tensor whose components 

are  lx  . We may infer that lhk
jK  are components of a fourth rank tensor called the Riemann– 

christoffel curvature tensor. It is usually denoted by lhk
jR . 

The quantity hk
lS  is the component of a type (1, 2) tensor called the torsion tensor. 

The space endowed with symmetric affine connections, that is kh
l

hk
l Γ=Γ , the torsion tensor 

vanishes identically but the curvature tensor does not in general vanish. 

Space-time is said to be flat if its Riemann tensor vanishes everywhere. Otherwise it is said to 

be curved. The curvature tensor in Riemannian space is given by 

              ..............................................3.31
j j

j j m j mlh lk
lhk mk lh mh lkk hR

x x
∂Γ ∂Γ

= − +Γ Γ −Γ Γ
∂ ∂
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3.3.1 The properties of Riemann - Christoffel tensor  

1. Anti -symmetric property. Interchanging the indices h and k in equation (3.31) we have 

                            lh
m

mk
j

lk
m

mh
j

k
lh

j

h
lk

j
j

lhk xx
R ΓΓ−ΓΓ+

∂
Γ∂

−
∂
Γ∂

=                                 

                             
j j

j m j mlk lh
mk lh mh lkh kx x

 ∂Γ ∂Γ
= − − +Γ Γ −Γ Γ ∂ ∂ 

  

                     j
lhk

j
lkh RR −=  

Which shows that j
lkhR  is anti -symmetric with respect to the indices h and k 

2. Cyclic property; permuting the indices l , h and k in a cyclic order and adding, we obtain 

the relation  

                                    0=++ j
klh

j
hkl

j
lhk RRR  

3. Given a Riemann-Christoffel curvature tensor m
jhkR , we can take the inner product with 

the metric tensor lmg to obtain a type (0,4) jlhkR  that is 

                                    jlhk
m
jhklm RRg =  

This new type of tensor is usually called the covariant curvature tensor. It is derived as 

follows 

From equation (3.31) replace j by m, l  by j and m by p, we have  

                                p
jk

m
ph

p
jh

m
pkh

m
jk

k

m
jhm

jhk xx
R ΓΓ−ΓΓ+

∂

Γ∂
−

∂

Γ∂
=  

Taking the inner product of the above equation with lmg  

                             p
jk

m
phlm

p
jh

m
pklmh

m
jk

lmk

m
jh

lm
m
jhklm gg

x
g

x
gRg ΓΓ−ΓΓ+

∂

Γ∂
−

∂

Γ∂
=  

                            m
jkmlh

m
jhmlk

m
jkk

lm
h
jlkm

jhk
lm

k
jlh

jlhk x
g

xx
g

x
R ΓΓ−ΓΓ+Γ

∂
∂

+
∂

Γ∂
−Γ

∂
∂

−
∂

Γ∂
=  
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But  

                                   







∂

∂
−

∂

∂
+

∂
∂

∂
∂

=
∂

Γ∂
l
jh

h
lj

j
lh

kk
jlh

x
g

x
g

x
g

xx 2
1  

                                 =












∂∂

∂
−

∂∂

∂
+

∂∂
∂

lk
jh

hk
lj

jk
lh

xx
g

xx
g

xx
g 222

2
1   

 also 

 

 

 

          =












∂∂

∂
−

∂∂

∂
+

∂∂
∂

lk
jh

hk
lj

jk
lh

xx
g

xx
g

xx
g 222

2
1  

 And 

                












∂∂

∂
−

∂∂

∂
+

∂∂
∂

−
∂∂

∂
=

∂

Γ∂
−

∂

Γ∂
lk

jh
lh

jk
jh

lk
jk

lh
h
jlk

k
jlh

xx
g

xx
g

xx
g

xx
g

xx

2222

2
1  

                            mlklmk
p

mklp
p

lkpmk
lm gg

x
g

Γ+Γ=Γ+Γ=
∂
∂

 

                           mlhlmh
p

mhlp
p

lhpmh
lm gg

x
g

Γ+Γ=Γ+Γ=
∂
∂

 

                     












∂∂

∂
−

∂∂

∂
+

∂∂
∂

−
∂∂

∂
= lk

jh
lh

jk
jh

lk
jk

lh
jlhk xx

g
xx

g
xx

g
xx

g
R

2222

2
1 ( )p p m

pm lk lp mk jhg g− Γ + Γ Γ                                          

+ ( ) m
jk

p
mhlp

p
lhpm gg ΓΓ+Γ  + m

jhmlkΓΓ - m
jkmlhΓΓ  

                   
2 22 21

2
jk jhlh lk

jlhk k j h j h l k l

g gg gR
x x x x x x x x

 ∂ ∂∂ ∂
= − + − − 

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  

p m
pm lk jhg Γ Γ − m

jk
p

lhpm
m
jh

p
mklp gg ΓΓ+ΓΓ +

m
jk

p
mhlp

m
jh

p
mklp

m
jk

p
mhlp ggg ΓΓ−ΓΓ+ΓΓ  

1
2

jlk lj jklk
h h j k l

g gg
x x x x x

∂Γ ∂ ∂ ∂∂
= + − ∂ ∂ ∂ ∂ ∂ 
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                    m
jk

p
lhpm

m
jh

p
lkpmlk

jh
lk

jk
jh

lk
jk

lh
jlhk gg

xx
g

xx
g

xx
g

xx
g

R ΓΓ+ΓΓ−












∂∂

∂
−

∂∂

∂
+

∂∂
∂

−
∂∂

∂
=

2222

2
1  

        
2 22 21  ......................3.32

2
jk jh m p m plh lk

jlhk pm jk lh jh lkk j h j h l k l

g gg gR g
x x x x x x x x

 ∂ ∂∂ ∂  = − + − + Γ Γ −Γ Γ   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  
          

In general the curvature of a space is given by the Gaussian curvature K  

 Given by the formula   1212RK
g

=   where g is the determinant of the spatial part of the metric 

and  1212R  can be obtained from equation (3.32) as follows 

Setting 1 and 2j h l k= = = =  

2 2 2 2
21 22 12 11

1212 12 21 11 222 1 1 1 1 2 2 2

1
2

m p m p
pm

g g g gR g
x x x x x x x x

 ∂ ∂ ∂ ∂  = − + − + Γ Γ −Γ Γ   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
 

Since 12 21 0g g= = we have 

2 2
22 11

1212 12 21 11 221 1 2 2

1
2

m p m p
pm

g gR g
x x x x

 ∂ ∂  = − − + Γ Γ −Γ Γ   ∂ ∂ ∂ ∂ 
 

Summing over p and m, we obtain 

( ) ( )
2 2

1 1 1 1 2 2 2 222 11
1212 11 12 21 11 22 22 12 21 11 222 21 2

1
2

g gR g g
x x

 ∂ ∂     = − − + Γ Γ −Γ Γ + Γ Γ −Γ Γ    ∂ ∂ 
 

Substituting  

1 11
11 1

11

1
2

g
g x

∂
Γ =

∂
, 2 22

22 2
22

1
2

g
g x

∂
Γ =

∂
, 1 11

12 2
11

1
2

g
g x

∂
Γ =

∂
, 2 22

21 1
22

1
2

g
g x

∂
Γ =

∂
, 1 22

22 1
11

1
2

g
g x

∂
Γ = −

∂
, 

2 11
11 2

22

1
2

g
g x

∂
Γ = −

∂
 

( ) ( )

22 2
22 11 11 11 22

1212 112 2 2 2 1 11 2
11 11

2

22 11 22
22 1 2 2 2

22 22

1 1 1
2 2 4

1 1
2 4

g g g g gR g
g x g x xx x

g g gg
g x g x x

    ∂ ∂ ∂ ∂ ∂   = − − + +   ∂ ∂ ∂  ∂ ∂   
  ∂ ∂ ∂
 + + ∂ ∂ ∂   
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( ) ( )
2 22 2

22 11 11 11 22 22 11 22
1212 2 2 2 1 1 1 2 21 2

11 22

1 1 1
2 4 4

g g g g g g g gR
g x x x g x x xx x

     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    = − − + + + +        ∂ ∂ ∂ ∂ ∂ ∂      ∂ ∂     

 

Hence using 1212RK
g

= we have 

( ) ( )
2 22 2

22 11 22 11 11 22 11 22 11 22
2 2 2 2 1 1 2 1 2 21 2

1
2 4 4

g g g g g g g g g gK
g g x x x g x x xx x

     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    = − − + + + +        ∂ ∂ ∂ ∂ ∂ ∂      ∂ ∂     
 

 ( )5 WeinbergSteven  

With a given diagonal metric the curvature K  can be calculated by using the formula 

                  

( ) ( )
2 22 2

22 11 22 11 11 22 11 22 11 22
2 2 2 2 1 1 2 1 2 21 2

1
2 4 4

g g g g g g g g g gK
g g x x x g x x xx x

     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    = − + + + + +        ∂ ∂ ∂ ∂ ∂ ∂      ∂ ∂     
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3.4  The Robertson-walker metric in (3+1)-dimensions  

 The only metric that is in accord with the cosmological principle is the Robertson-

Walker metric. 

The Robertson-Walker metric in 4-dimensional space-time is given by 

                   
2

2 2 2 2 2 2 2 2
2( ) ( sin )  ............................3.33

1
drds c dt R t r d d

kr
θ θ ϕ

 
= − + + − 

                                      

Where R (t) is called the expansion factor or cosmic scale factor and k is the curvature 

scalar. 

  

3.4.1 Derivation of the Robertson-walker metric in (3+1)-dimensions 

The simplest way to derive this metric is to consider a 3 - dimensional space as a space 

embedded in a 4 - dimensional hypersurface. 

Assuming that space-time is static, we can choose a time coordinate t  such that the line 

element of space-time could be described by 

                            2 2 2  ...........................................................3.34i j
ijds c dt dx dxα= −                                                                            

Where ijα  functions of space are coordinates ( , 1, 2,3 )ix i j only=  

 We can now construct a homogeneous and isotropic closed space of the positive curvature.  

Let 1 2 3 4( , , , )x x x x  be a rectangular Cartesian coordinates in E4. Then a hypersphere of radius 

R has equation 

                        2 1 2 2 2 3 2 4 2( ) ( ) ( ) ( ) ( )   ..........................................3.35R x x x x= + + +     

Where R is in general a function of time t  

In such a space the line element is defined as 

                          2 1 2 2 2 3 2 4 2( ) ( ) ( ) ( ) .....................................3.36d dx dx dx dxσ = + + +                                               
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To use coordinates intrinsic to the surface, we set 

                          1 sin cosx R χ θ=   

                         2 sin sin cosx R χ θ φ=  

                         3 sin sin sinx R χ θ φ=  

                        χcos4 Rx =  

  Computing the ( )2idx , substituting into equation (3.36) and simplifying, we obtain  

                       2 2 2 2 2 2 2 2 2 2sin sin sind R d R d R dσ χ χ θ χ θ φ= + +  

Hence 

                      2 2 2 2 2 2 2 2( sin sin sin ) ..................................3.37d R d d dσ χ χ θ χ θ φ= + +                                            

The ranges of   ,θ φ  and χ  are given by 

                        0 χ π≤ ≤  ,              0 θ π≤ ≤  ,                  0 2φ π≤ ≤       

Setting      sinr χ=  and differentiating   we have       

                2 2 2cosdr dχ χ=                                                                                                                                   

2 2
2

2 2  .............................................................3.38
cos 1

dr drd
r

χ
χ

= =
−

              

   Substituting (3.38) into (3.37), we have                                                                                                  

2
2 2 2 2 2 2

2                            ( sin )  .....................................3.39
1
drd R r d d

r
σ θ θ φ

 
= + + − 

                                                

Where R is the radius of the universe or the expansion factor 

Substituting (3.39) into (3.34), the line element becomes   

                
2

2 2 2 2 2 2 2 2
2          ( sin )  ............................................3.40

1
drds c dt R r d d

r
θ θ φ

 
= − + + − 
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This is the Robertson –Walker metric for a space of constant positive curvature.                                   

We can similarly get other homogeneous and isotropic spaces by considering them as 3 – 

surfaces of constant negative curvature. In terms of the Cartesian coordinates 1 2 3 4, , ,x x x x  

used earlier, a 3 – surface of constant negative curvature is given by an equation of the form 

                                     1 2 2 2 3 2 4 2 2( ) ( ) ( ) ( ) ( )  x x x x R+ + − = −                                                                            

Where R is in general a function of time 

The line element in this pseudo-Euclidean space is given by 

                       2 1 2 2 2 3 2 4 2( ) ( ) ( ) ( )  ..............................................3.41       d dx dx dx dxσ = + + −  

By setting 

                           1 sinh cosx R χ θ= ,       

                           2 sinh sin cosx R χ θ φ= ,     

                          3 sinh sin sinx R χ θ φ= , 

                       4 coshx R χ=  

  Equation (3.41) becomes 

                            2 2 2 2 2 2 2sinh ( sin )  .............................3.42d R d d dσ χ χ θ θ φ = + +                                    

The negative sign on 4 2( )dx  means we are embedding our 3 – surface in a pseudo – 

Euclidean space but not in a Euclidean space. 

In Euclidean space, the Pythagoras theorem holds with the line – element given by 
2 2 2 2

1 2 3 ...dx dx dx dx= + + +  If some of the plus sign on the right – hand side are changed to 

minus signs, the results is a pseudo – Euclidean space. Thus Minkowski space is a pseudo-

Euclidean space. 

 By setting    sinhr χ=  

                  coshdr dχ χ=           
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2

2
2cosh

dr dχ
χ
=              

                            
2

2
2  .................................................................................3.43

1
dr d

r
χ=

+
                                                                               

Substituting (3.43) into (3.42), we obtain 

                          
2

2 2 2 2 2 2
2 ( sin )  .........................................3.44

1
drd R r d d

r
σ θ θ φ

 
= + + + 

                                                            

Comparing (3.44) with (3.39), we can combine both expressions into a single expression by 

introducing a parameter k that takes values ±1. That is 

                        
2

2 2 2 2 2 2
2 ( sin )  ................................................3.45

1
drd R r d d

kr
σ θ θ φ

 
= + + − 

                                                              

Putting k = 0 in (3.45), we obtain 

                               2 2 2 2 2 2 2( sin )d R dr r d dσ θ θ φ = + +   

Which is the Euclidean line element scaled by the constant factor R. This is the third 

alternative of the 3 – surface of zero curvature. The most general line element which is 

referred to as the Robertson – Walker line element is given by 

                             
2

2 2 2 2 2 2 2 2
2( ) ( sin )

1
drds c dt R t r d d

kr
θ θ φ

 
= − + + − 

 

Where R (t) is called the expansion factor or cosmic scale factor and k is the curvature 

parameter 

The main reason for using Robertson – Walker metric for this project is that, it was 

formulated based on the cosmological principle.  That is a space is homogeneous and 

isotropic. 

Isotropic condition tells us that there should be no terms of the form dtdxµ  in the line 

element. This can   easily be seen in the following way. If we had terms like og dtdxµ
µ  in the 

line element, then spatial displacements dxµ  and - dxµ would  contribute oppositely to 
2ds over a small time interval dt , and such directional variation is forbidden by isotropy. 
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The (figure 3.3) below shows three surfaces formed when the curvature scalar is varied from 

-1, 0 to +1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 (a) shows a section of the Euclidean plane, (b) shows a spherical surface,    

(c) Shows a saddle – shaped surface 

Suppose we try to cover these surfaces with a plain sheet of paper. We will find that our sheet 

fits exactly and smoothly on the plane surface. If we try to cover the spherical surface, the 

sheet of paper develops wrinkles, indicating that the sheet of paper has area in excess of that 

needed to cover the surface. Similarly, in trying to cover the saddle our paper will be torn, 

being short of the necessary covering area. These differences can be expressed in differential 

geometry by the notion of curvature. The plane surface has zero curvature, the spherical 

surface has positive curvature and the saddle has negative curvature. Our paper covering 

experiment tells us in general whether a given surface has a zero, positive or negative 

curvature as stated by ( )1 V NarlikerJayant    

 

 

 

(b) 

(a) 

 

 

 

 

 

 

 

 

 

 

 

(c) 
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Chapter 4 
 

4.1 The derivation of the Robertson-Walker metric in (2+1) 

dimensions 

In analogy with the Robertson walker metric, we consider a 2-dimensional space as a space 

embedded in 3-dimensional hypersurface  

Assuming that the space time is static so that we can choose a time coordinate t such that the 

line element of space time could be described by  

                         2 2 2  .....................................................4.0i j
ijds c dt a dx dx= −                                      

Where ija functions of space are coordinates ( , 1, 2)ix i j = .We can construct a homogenous 

and isotropic closed space of positive curvature. 

Let 1 2 3( , , )x x x  be a rectangular Cartesian coordinates in 3E . Then a hypersphere of radius R 

has an equation 

                          1 2 2 2 3 2 2( ) ( ) ( ) ( )  ...............................................4.1x x x R+ + =                                                 

where R is in general a function of time 

 Let the line element in such a space be given by 

                  2 i j
ijd a dx dxσ =  or   

                 2 1 2 2 2 3 2( ) ( ) ( )  ...................................................4.2d dx dx dxσ = + +                                           

Then by setting           

                      1 sin cos                      x R χ θ=    

                      2 =Rsin sin                  x χ θ  

                      3 =Rcos                     x χ  
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We Compute the ( )2idx , substitute into (4.2) and simplify, we obtain 

  

                      2 2 2 2 2 2sind R d R dσ χ χ θ= +  

Setting           sinr χ=     cosdr dχ χ=  

                   
2 2 2

2
2 2 2cos 1 sin 1

dr dr drd
r

χ
χ χ

= = =
− −

 

Hence 

                 
2

2 2 2 2
2   ...................................................4.3

1
drd R r d

r
σ θ

 
= + − 

                                             

Substituting equation (4.3) into (4.0), we obtain 

                  
2

2 2 2 2 2 2
2  ............................................ 4.4

1
drds c dt R r d

r
θ

 
= − + − 

                                                              

This is the Robertson-Walker metric for a space of constant positive curvature    

Similarly, we can construct a homogeneous and isotropic space by considering them as 2-

surfaces of constant negative curvature. 

In terms of the Cartesian coordinates 1 2 3, ,x x x  used earlier, two surfaces of constant negative 

curvature is given by 

                                                                                                                                  
1 2 2 2 3 2 2 ( ) ( ) ( ) ( )  ................................4.5x x x R+ − = −  

Where R is in general a function of time 

The line element in this pseudo-Euclidean space is given by  

                     2 1 2 2 2 3 2( ) ( ) ( )   ..............................................  4.6d dx dx dxσ = + −  
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Now setting  

                        1 sin cosx R hχ θ=  

                        2 sinh sinx R χ θ=  

                        3 coshx R χ=   

     Computing the ( )2idx , and substituting into (4.6) and simplifying, we obtain      

                              2 2 2 2 2 2sinh   d R d R dσ χ χ θ= +  

                           2 2 2 2 2( sinh )  .......................................... 4.7d R d dσ χ χ θ= +  

Setting  sinhr χ=   

                             coshdr dχ χ=  

                              2 2 2coshdr dχ χ=  

                            
2 2 2

2
2 2 2cosh 1 sinh 1

dr dr drdx
rχ χ

= = =
+ +

 

                          
2

2 2 2 2
2  ......................................................4.8

1
drd R r d

r
σ θ

 
= + + 

                                                  

Combining equations (4.7) and (4.8) introducing a parameter k that takes the values 1±  and 

0, we have  

                                 
2

2 2 2 2
2  ..................................................4.9

1
drd R r d

kr
σ θ

 
= + − 

                                               

When 0k =  

                                   2 2 2 2 2d R dr r dσ θ = +   

Which is the Euclidean line element scaled by a constant factor. It is the third surface of zero 

curvature. 

The Robertson Walker like line element in (2+1)-dimension is given by 
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2

2 2 2 2 2 2
2( )  .....................................4.10

1
drds c dt R t r d

kr
θ

 
= − + − 

 

Where R (t) is the expansion factor and k is the curvature parameter that characterises the 

geodesic of the space.  

 

4.2  Calculation of the curvature of (2+1)-dimensional space 

From equation (4.10) the determinant of the special part is given by   

                             

2

2

2 2

0
1

0
ij

R
g kr

R r

 
 = −  
 

 

Using the formula derived from section 3.3.1, the curvature K  is given by 

            
( ) ( )

2 22 2
22 11 22 11 11 22 11 22 11 22

2 2 2 2 1 1 2 1 2 21 2

1
2 4 4

g g g g g g g g g gK
g g x x x g x x xx x

     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    = − − + + + +        ∂ ∂ ∂ ∂ ∂ ∂      ∂ ∂     
               

Where 
2

2 2
11 222     

1
Rg g R r
kr

= =
−

 and 
4 2

21
R rg

kr
=

−
 is the determinant of the metric tensor 

taken 1x r= , 2x θ=  

                          222 22
1 2g g R r

x r
∂ ∂

= =
∂ ∂

 

                        
( )

2 2
222 22

2 21
2g g R

rx

∂ ∂
= =

∂∂
 

                           11 22
2 2 0g g

x x
∂ ∂

= =
∂ ∂

                         

                          
( )

2
11 11

21 2

2

1

g g kR r
x r kr

∂ ∂
= =

∂ ∂ −
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  Hence  

                       
( )

22
22 22 11 22 11 22

2 2 1 1 2 11

1
2 4 4

g g g g g gK
g g x x g xx

   ∂ ∂ ∂ ∂    = − + +      ∂ ∂ ∂    ∂   
     

            

( ) ( ) ( )
( ) ( )

( ) ( )
2 22 2 22 2 2 2

2 2 4 2
24 2 8 4 8 422

1 1 122 2 4
2 4 4 11

kr kr krR r kR r RK R R r R r
R r R r R rkrkr

 − − − = − + +
  −− 

 

                  
( ) ( )2 2

2 2 2 2 2 2

1 1kr krk kK
R r R R r R

− − −
= + + =                 

                      

Where 0k =  defines a flat space, 1k = − defines a space of negative curvature and 1k = + a 

space of positive curvature 
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4.3  Calculations of the christoffel symbols  

Consider the line element 

                            
2

2 2 2 2 2 2
2( )

1
drds c dt R t r d

kr
θ

 
= − + − 

  

The metric determinant from equation (4.10) is given by 

                               
2

2

2 2

1 0 0
( )0 0

1
0 0 ( )

ij
R tg

kr
r R t

 
 

− =
 −
 − 

 

Let 1x ct= , 2x r= and 3x θ=  

In our calculations we shall write R (t) as R and dRR
dt

=  for short, R is a function of t only. 

Using the formulae derived from section 2.4 

The christoffel symbols are given by 

(1)   1
2

i ii
ii i

ii

g
g x

γ ∂
=

∂
 

         1 0
2

i ii
ii i

ii

g
g x

γ ∂
= =

∂
  for 1,3i =  

                         
( )

2

22 2 2
2 22
22 22 2 2 22

22

11 1 1 2
2 2 2 11

R
krg kr kr krR kr

g x R r R krkr
γ

 −
∂    −∂ − − −   = = = =

 ∂ − ∂ − −− 

 

(2)  1
2

i ii
ij j

ii

g
g x

γ ∂
=

∂
 

                          1
1 0jγ =  for 2,3j =  

                         2 22
21 1

22

1
2

g
g x

γ ∂
=

∂
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2

2 2

2 22

2

11 1 2
2 1

2
1

R
kr kr RR R

c t R kr cRR
kr

 −
∂  −  − − = = = ∂ − − −  

 − 

 
 

                               2 22
23 3

22

1 0
2

g
g x

γ ∂
= =

∂
 

                              
( )2 2 2

3 33
31 1 2 2 2 2

33

1 1 1 2
2 2 2

R rg Rr R R
g x R r c t R r c cR

γ
∂ −  ∂ −

= = = = ∂ − ∂ −  

 
 

                               
( )2 2 2

3 33
32 2 2 2 2 2

33

1 1 2 1
2 2 2

R rg R r
g x R r r R r r

γ
∂ −∂ −

= = = =
∂ − ∂ −

 

(3)     1
2

jji
jj i

ii

g
g x

γ
∂−

=
∂

 

                        

2

2
1 22
22 1 2 2

11

11 1 1 2
2 2 2 1 (1 )

R
krg RR RR

g x c t c kr c kr
γ

 −
∂  −  ∂−  = = − = = ∂ ∂ − − 

 
 

                     
( )2 2 2 2

1 33
33 1

11

1 1 1 2
2 2 2

R rg RRr RRr
g x c t c c

γ
∂ −  ∂−

= = = = ∂ ∂  

 
 

                     2 11
11 2

22

1 0
2

g
g x

γ ∂−
= =

∂
 

                    
( ) ( ) ( )

2 2 2
2 2 233
33 2 22

22
2

1 1 1 2 1
2 2

2
1

R rg kr R r r kr
g x r RR

kr

γ
∂ −∂− −

= = − = − = − −
∂ ∂ −

 − 

 

3 0jjγ =  for 1j = , 2 

The non-vanishing christoffel symbols therefore are  

       1
22 2(1 )

RR
C kr

γ =
−

      , 
2

1
33

RRr
c

γ =


,   2
22 21

kr
kr

γ =
−

 , 2
21

R
cR

γ ==


,     ( )2 2
33 1r krγ = − − ,   

          3
31

R
cR

γ =


 ,    3
32

1
r

γ =     
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4.4  Determination of the geodesics 

Using the general geodesic equation from section 3.2   

                         
2

2 0 ...........................................................4.11
j h k

j
hk

d x dx dx
ds ds ds

γ+ =       

                                              

The differential equations are formulated as follows 

For 1j =  we have (4.11) to be 

                          
2 22 1 2 3

1 1
22 332 0d x dx dx

ds ds ds
γ γ

   
+ + =   

   
 

                
2 22 2

2 2 0 .......................................4.12
(1 )

d t RR dr RRr dc
ds c kr ds c ds

θ   + + =   −    

 
                                      

For 2j =  equation (4.11) becomes 

                   
2 22 2 2 1 2 3

2 2 2
21 22 332 0d x dx dx dx dx

ds ds ds ds ds
γ γ γ

   
+ + + =   

   
 

                   
2 22

2
2 2

2 (1 ) 0
1

d r R dr cdt kr dr dr kr
ds cR ds ds kr ds ds

θ   + + − − =   −    


 

Hence  

              
2 22

2
2 2

2 (1 ) 0 ............................4.13
1

d r R dr dt kr dr dr kr
ds R ds ds kr ds ds

θ   + + − − =   −    


                      

For 3j =  equation (4.11) becomes 

                
2 3 3 1 3 2

3 3
31 322 0d x dx dx dx dx

ds ds ds ds ds
γ γ+ + =  

                 
2

2

2 2 0d R d cdt d dr
ds cR ds ds r ds ds
θ θ θ
+ + =


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Hence 

                    
2

2

2 2 0 ......................................................4.14d R d dt d dr
ds R ds ds r ds ds
θ θ θ
+ + =


                                                                

The three differential equations to be solved are 

               
2 22 2

2 2 0 
(1 )

d t RR dr RRr dc
ds c kr ds c ds

θ   + + =   −    

 
 

              
2 22

2
2 2

2 (1 ) 0 
1

d r R dr dt kr dr dr kr
ds R ds ds kr ds ds

θ   + + − − =   −    


 

               
2

2

2 2 0 d R d dt d dr
ds R ds ds r ds ds
θ θ θ
+ + =


 

From equation (4.14) the left hand side can be combined as follows 

                           
2

2 2 2 2 2 2
2 2 2d d d d dt d drR r R r RRr rR

ds ds ds ds ds ds ds
θ θ θ θ  = + + 

 
  

                         
2

2 2
2

2 2 0d R d dt d drR r
ds R ds ds r ds ds
θ θ θ 

= + + = 
 


 

Hence  

                            2 2 0d dR r
ds ds

θ  = 
 

 

                             2 2 0dr d dR r
ds dr ds

θ  = 
 

 

But                      0dr
ds

≠    2 2 0d dR r
dr ds

θ  = 
 

 

                          2 2 0d dR r dr
dr ds

θ  = 
 ∫  

                    2 2   where  a is a constant not a fucntion of rdR r a
ds
θ
=  
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                        2 2  ......................................................................4.15d a
ds R r
θ
=                                                                           

   

From equation (4.13) we have 

                    
2 22

2
2 2

2 (1 )  ..............................4.16
1

d r R dr dt kr dr dr kr
ds R ds ds kr ds ds

θ   + + = −   −    


         

Combining the left hand side of the above equation we have 

                             3
2

2 2 2 2
2

1 1 12
22 2 22 2 2

2 ( )
(1 )(1 ) (1 ) (1 )

d R dr R d r RR dr dt R kr dr
ds ds ds ds ds dskrkr kr kr

 
  = + +   −− − − 


 

That is 

                           
2 2 2

2
1 1 2 2

2 22 2

2 ( )
1

(1 ) (1 )

d R dr R d r R dr dt kr dr
ds ds ds R ds ds kr dskr kr

 
   = + +   −  − − 


 

            
( )

1
2 2 2 2

2
12 2 2

2 2

1 2 ( ) .............................4.17
1

(1 )

kr d R dr d r R dr dt kr dr
R ds ds ds R ds ds kr dskr

 −   = + +  − − 


                               

 

Hence equating (4.16) and (4.17) we have 

                               
( ) ( )

1
2 22 2

2
12

2 2

1
1

(1 )

kr d R dr dr kr
R ds ds dskr

θ
 −    = −      − 

 

Multiplying through by  
4

21
R
kr−

 , we have 

                               
( )

22 2
4

1 1
2 22 21 (1 )

R dr d R dr dR r
ds dr ds dskr kr

θ
 

   =      − − 
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Substituting equation (4.15) we have 

           
( )

22 2 2
4

1 1 2 2 3
2 22 2

          ..........................4.18
1 (1 )

R dr d R dr a aR r
ds dr ds R r rkr kr

 
   = =     − − 

                                                                                                           

     

Let    

                              
( )

2

1
2 2

 ................................................................4.19
1

R drp
dskr

=
−

                                                                                             

   

Equation (4.18 ) becomes 

                              
2

3

dp ap
dr r

=  

                               
2 2

32
dp a

dr r
=     

                            
2

2
2

ap
r

β= − +   Where β  is a constant  

                               
2 2

2
2

r ap
r

β −
=  

                                2 21  .................................................... 4.20p r a
r

β= −  

Substituting equation (4.20) into (4.19) we have  

                                
( )

2
2 2

1
2 2

1

1

R dr r a
ds rkr

β= −
−

        

And  

                             
( ) ( )

1
2 2 22

2

1
 ...............................................4.21

kr r adr
ds rR

β− −
=                                                        
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4.4.1  The differential equation involving the coordinates  r  and θ  

From equation (4.21) we have 

                                    
( ) ( )

1
2 2 22

2

1 kr r ad dr
ds d rR

βθ
θ

− −
=  

                                   
( ) ( )

1
2 2 22

2

1
 ................................................4.22

kr r adr ds
d rR d

β

θ θ

− −
=                                                                       

 

Substituting equation (4.15) we have 

                                   
( ) ( )

1
2 2 22 2 2

2

1 kr r adr r R
d rR a

β

θ

− −
=  

                                  ( ) ( )
1 1

2 2 22 21dr r kr r a
d a

β
θ
= − −  

                                  ( )
1

122 2 2
2 1 1dr r r kr

d a
β

θ
 = − − 
 

 

                                    ( ) ( )
1 1

2 22 21 1  .....................................................4.23dr r r kr
d

α
θ
= − −                                                        

Where 2a
βα =  

                                      ( )( )2 21 1dr r r kr
d

α
θ
= − −  

                                    
( )( )2 21 1

drd
r r kr

θ
α

=
− −

 

                                       
3

2 2
1 1
drd

r k
r r

θ
α

=
   − −   
   
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2

2 2

1 1
2
1 1

d
rd

k
r r

θ
α

 −  
 =

  − −  
  

 

Set 2

1u
r

=  we have 

                                    
( )( )

1
2

du
d

u u k
θ

α

−
=

− −∫ ∫  

Now set  

                                   2 2cos sin ........................................................4.24u kα φ φ= +   

Then 

                                 ( )2 cos sin 2 cos sindu k dα φ φ φ φ φ= − +  

                                  ( )2cos sindu k dφ φ α φ= − −  

And 

                              ( )( ) ( )( )2 2 2 2cos sin cos sinu u k k k kα α α φ φ α φ φ− − = − − + −  

                           ( )( ) ( )( )2 2 2 21 sin sin cos 1 cosk k kα α φ φ α φ φ= − − − + − −  

                          ( )( ) ( )( )2 2sin cosk k k kα α α φ α φ= − + − − + −  

                           ( )sin coskα φ φ= −  

Hence  

                               
( )( )
( )

1 2cos sin
2

cos sin

k d
d d

k

α φ φ φ
θ φ

α φ φ

− − −
= =

−
 

                                       
...........................................................................4.25

d dθ φ

θ φ

=

=
∫ ∫  
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From (4.24) 

                                     2 2cos sinu kα θ θ= +  

                                ( )2 2cos 1 coskα θ θ= + −  

                                    2 2cos cosk kα θ θ= + −  

                                    ( ) 2cosu k kα θ− = −  

                                   2cosu k
k

θ
α
−

=
−

 

                                  
2 2

1

cos
k

r
k

θ
α

−
=

−
 

                                ( ) 2
2

1 cos      k k
r

α θ= − +  

                                ( ) 2 2 21 cos ....................................... 4.26k r krα θ= − +              
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4.4.2  The geodesics obtained in (2+1)-dimensions. 

When 0k = , equation (4.26) becomes 

2 2cos 1     1 and   0 1r rα θ α= ≥ ≤ ≥  

From the substitution  

                           
1

1

1

sin cos      sin
cos

x R r
x Rr

Rx

χ θ χ
θ

α

= =
=

=

  

R  is a function of time but can be taken to be a constant in any particular epoch. 

This is a straight line in Euclidean plane which describes an open two dimensional space 

An epoch is a time frame of about one million years which is very small compare to the 

estimated age of the universe. 

When 1k = , equation (4. 26) becomes 

                    ( ) 2 2 21 1 cosr rα θ= − +   where    1 and 0 r 1α ≥ ≤ ≤  

From the substitution  

                      1 2sin cos    sin sinx R x Rχ θ χ θ= =  but sinr χ=  

                   1 2cos     sinx Rr x Rrθ θ= =        21 2
2

x x r
R
+

=  

                   ( ) 1 1 2
2 21 1 x x x

R R
α +

= − +  

                  2 2 2
1 2R x xα= +         or 

                   2 2 2x y Rα + =  
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Graphs of different values of α   

 

 

 

 

 

 

 

 

 

Figure 4.1 Graph of 1  α = and 1R =  we have 2 2 1x y+ =   indicating a great circle 

 

            

                                                

 

 

 

 

 

 

Figure 4.2   Graph of  1     α >  , indicating ellipses. 

When 1k = − , equation (4.26) becomes  

( ) 2 2 21 1 cosr rα θ= + −  where    1 and 0 r 1α ≥ ≤ ≤  

1 1 

1 

1 

1 

1 

0.7 -0.7 



 62 

Using the transformations  

                      1 2sin cos    sin sinx x R x y Rχ θ χ θ= = = =  and sinr χ=  

                       ( )
2 2 2

2 21 1 x x y
R R

α +
= + −  

                           2 2 2R x yα= −  

                              

 

Graphs of different values of α  

 

 

 

 

 

 

 

 

Figure 4.3  Plotting with different values of α  show different hyperbolae, they describe the 

surface of a saddle and are open spaces. 

               

 

 

 

 

 

0.7 -0.7 

y 

x 
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 4.5  The Null Geodesic 

The differential equations in terms of the affine parameter are 

                  
2 22

2 2
2 2 0 .............................................4.27

1
d t RR dr dc RRr
d kr d d

θ
λ λ λ

   + + =   −    


  

( )
2 22

2
2 2             2 1 0 ..........................4.28                          

1
d r R dr dt kr dr dr kr
d R d d kr d d

θ
λ λ λ λ λ

   + + − − =   −    



 

2

2

2               2 0...............................................................4.29d R d dt d dr
d R d d r d d
θ θ θ
λ λ λ λ λ

+ + =


 

From (4.29) we have  

                            

2
2 2 2 2 2 2

2 2 2

                                                  

d d d dt d d drR r R r RRr rR
d d d d d d d

θ θ θ θ
λ λ λ λ λ λ λ
  = + + 
 


 

                          
2

2 2
2

22 0d R dt d d drR r
d R d d r d d
θ θ θ
λ λ λ λ λ

 
= + + = 

 


 

                                
2 2 0

                                                  

d dR r
d d

θ
λ λ
  = 
   

                                      
2 2 0

                                                  

dr d dR r
d dr d

θ
λ λ

  = 
   

Since                          
2 20 ,          0 

                                                  

dr d dR r
d dr d

θ
λ λ

 ≠ = 
   

  And therefore 
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2 2

2 2

    where  a is a constant independent of r

    
d  Hence    ...................................4.30
d

                                                  

dR r a
d

a
R r

θ
λ

θ
λ

=

=
 

For a null geodesic, we have  

                                    
2

0 
i

ii
dxg
dλ

 
= 

 
 

Thus, 

                               
2 2 21 2 3

11 22 33 0dx dx dxg g g
d d dλ λ λ

     
+ + =     

     
 

Substituting the metric, we have 

                              
2 2 22

2 2 2
2 0

1
dt R dr dc R r
d kr d d

θ
λ λ λ

     − − =     −     
 

 

                               
2 2 22

2 2 2
2 ....................................4.31

1
dt R dr dc R r
d kr d d

θ
λ λ λ

     = +     −     
 

                             
2 2 22

2
2 ......................................4.32

1
c dt R dr dRr
R d kr d d

θ
λ λ λ

     = +     −     
 

From (4.27), we have  

                             
2 22

2 2
2 2 0

1
d t R dr dc R Rr
d kr d d

θ
λ λ λ

    + + =    −      
  

Substituting equation (4.32), we have 

                                
22 2

2
2 0d t Rc dtc

d R dλ λ
 + = 
 


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22

2 0d t R dt
d R dλ λ

 + = 
 


 

                                  
22

2

d dt d t dtR R R
d d d dλ λ λ λ

   = +   
   

  

                                    
22

2 0d t R dtR
d R dλ λ
  = + =  

   


 

                                                      0d dtR
d dλ λ

  = 
 

 

                                                 
0

 since  0,        0

dr d dtR
d dr d

dr d dtor R
d dr d

λ λ

λ λ

  = 
 

 ≠ = 
 

 

                     And therefore  

                                       where h is a constant, not dependent on rdtR h
dλ

=  

                                  .........................................................................4.33dt h
d Rλ

=  

Substituting (4.33) and (4.30) into (4.31), have 

                                 
2 2 22

2 2 2
2 2 21

h R dr ac R r
R kr d R rλ

     = +     −     
 

                                 
22 2 2 2

2 2 2 21
c h a R dr
R R r kr dλ

 − =  −  
 

                                
( )22 2

2 2
4 2

1 krdr ac h
d R rλ

−    = −  
   

 

                              
( )

2 2 2
2 2

2

4 2

1 1c h ra kr
a

R r

 
− − 

 =  



 66 

 Setting 
2ch

a
α  =  

 
 

                                 
( ) ( )

1 1
2 22 2

2

1 1a kr rdr
d R r

α

λ

− −
=  

                         
( ) ( )

1 1
2 22 2

2

1 1a kr rd dr
d d R r

αθ
λ θ

− −
=  

                             
( ) ( )

1 1
2 22 2

2

1 1a kr rdr d
d R r d

α λ
θ θ

− −
=  

                                  
( ) ( )

1 1
2 22 2 2 2

2

1 1a kr rdr R r
d R r a

α

θ

− −
=  

                                    ( ) ( )
1 1

2 22 21 1dr r kr r
d

α
θ
= − −  

                                   
( ) ( )

1 1
2 22 21 1

dr d
r kr r

θ
α

=
− −

 

                                  1 1
2 23

2 2
1 1

dr d

r k
r r

θ

α

=
   − −   
   

 

                                 
2

1 1
2 2

2 2

1 1
2

1 1

d
r d

k
r r

θ

α

 −  
  =

   − −   
   

 

Setting 2

1u
r

=  

                                 
( ) ( )

1 1
2 2

2 ..................................................4.34du d
u u k

θ
α

= −
− −

∫ ∫  
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Making the substitution  

                                   2 2cos in ...............................................................4.35u ksα φ φ= +  

                                   [ ]2 cos sin 2 cos sindu k dα φ φ φ φ φ= − +  

                                   ( )2cos sindu k dφ φ α φ= − −  

                                    ( )( ) ( )( )2 2 2 2cos sin cos sinu u k k k kα α α φ φ α φ φ− − = − − + −  

                                      ( )( )2 2 2 2sin sin cos cosk k k kφα α α φ α φ φ= − + − + − −  

                                          ( ) ( )2 2sin cosk kα φ α φ= − −  

                                            ( )sin coskα φ φ= −  

Equation (4.34) becomes 

                                   ( )
( )

2cos sin
2

cos sin
k d

d
k

φ φ α φ
θ

α φ φ
− −

−
−∫ ∫  

                                        φ θ=  

From (4.35) 

                                   ( )2 2cos 1 cosu kα θ θ= + −  

                                   ( ) 2cosu k kα θ= − +  

                                 ( ) 2
2

1 cosk k
r

α θ= − +  

                                 ( ) 2 2 21 cosk r krα θ= − +  

Using the substitutions 

                                 
sin cos         

 y=Rsin sin   
 z=Rcos

x R χ θ
χ θ
χ

=
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And putting R to be constant in any particular epoch, we have  

                                 2 2 2x y r+ =  

                                 
( ) ( )2 2 2

2 2

1

1  .................................................................4.36

k x k x y

x ky

α

α

= − + +

= +
 

These null geodesics are the same as the geodesics obtained from the massive particle. 
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Chapter 5 

Discussion   

5.1  The non-null geodesic   

After determining the geodesics for the Robertson-Walker metric in (2+1)-dimensional 

spacetime, we found that these geodesics are all curves and can lie on surfaces. Thus, when 

the curvature parameter 0k =  we have a straight line which is a section of the Euclidean 

plane.   

When the curvature parameter 1k = + , we have great circles and ellipses. They are closed. 

When the curvature parameter 1k = −  we have hyperbolae which describe the surface of a 

saddle. They are open. 

These geodesics are curves because of the presence of gravity and curvature of the space. 

It is therefore not possible in the presence of gravity and hence curvature, to transform all 

geodesics into straight lines. Under such circumstances geodesics are intrinsically curved. As 

a result, spacetime itself is said to be curved by the distribution of mass and energy in it. 

Bodies like the earth are not made to move on curved orbits by gravity; instead, they follow 

the nearest thing to a straight path in a curved space, which is called a geodesic. For example, 

the surface of the sphere is a two-dimensional curved space. A geodesic on the sphere is 

called a great circle, and is the shortest path between two nearby points.  
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5.2   The null geodesic 

The null geodesic is the path described by a photon. A photon is a quantum of light. 

Light rays too must follow geodesics in spacetime. Again, the fact that space is curved means 

that light no longer appears to travel in straight lines in space. So general relativity predicts 

that light should be bent by gravitational fields. For example, the theory predicts that the light 

cones of points near the sun would be slightly bent inward, on the account of the mass of the 

sun. This means that light from a distant star happened to pass near the sun would be 

deflected through a small angle, causing the star to appear in a different position to an 

observer on the earth (figure 5.1).     

 

 

 

 

 

 

 

 

Figure 5.1   Shows deflection of light by the sun 

 

The bending of a photon by a black hole 

             A black hole is a region of spacetime from which nothing, not even light, can escape 

because of its strong gravity. 

The path of a photon from a distant source is bent by a black hole due to its strong gravity 

The equations of the null geodesic (paths described by a photon) are given by 

                                         2 2 1x kyα + =  

 

 

Observer on earth surface 

Apparent position of star 
Light from star 

Star 

Sun 
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       Thus, when 0k = the photon with finite energy is absorbed by a black hole and therefore 

describes a straight line. When 1k = + and 1α = , the photon describes a circular trajectory 

around a black hole. When 1k = − the photon is deflected outwards due to the strong gravity 

possessed by the black hole to describe a hyperbola    
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5.3 Conclusion 
      The geodesics determined in (2+1)-dimensional spacetime are the same as the 

geodesics in (3+1)-dimensional spacetime. This is due to the fact that the 2-dimensional 

surfaces on which these geodesics lie are embeddable in 3-dimensional coordinate space.  

The determination of the geodesics in (2+1)-dimensional spacetime are easier than in 

(3+1) - dimensional spacetime since the number of equations involved in (2+1)-

dimensional spacetime are much smaller than those in (3+1) dimensional spacetime. This 

reason serve to buttress the viewpoint that certain problems in (3+1)-dimensional 

spacetime can be more easily solved by considering them in (2+1)-dimensional 

spacetime. 

          After constructing the 3-dimensional equivalent of the Robertson –Walker metric, 

we computed all the geodesics using the equation for the geodesics in general relativity. 

We found that these geodesics are surfaces of zero, positive, and negative curvatures. It 

was not surprising that, the geodesics in the plane and spherical surface were found to be 

a straight line and great circles respectively. What can apparently be considered to be 

new results found are the geodesics on the ellipsoidal surface and the surface of a saddle. 

These geodesics are ellipses and hyperbolae respectively. 

         Since all these geodesics are curves, it means that spacetime itself is curved and that 

bodies follow these geodesics as their trajectory.     
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