Geodesics in (2 + 1)-dimensions

by

Kumah Mohammed, BSc. Mathematics (Hons.)

Thesis submitted to the Department of Mathematics
Kwame Nkrumah University of Science and Technology
In partial fulfillment of the requirements for the degree
of

Master of Science

Faculty of Physical Sciences

College of Science

November 2009



Declaration

| hereby declare that this submission is my own work towards the MSc. And that, to
the best of my knowledge, it contains no material previously published by another person
or material which has been accepted for the award of any other degree of the university,

except where due acknowledgement has been made in the text.

Kumah Mohammed

Student Signature Date
Certified by:

Dr. A. K. Agyei

Supervisor Signature Date
Certified by:

Dr.S. KL Amponsah e

Head of Department Signature Date



ACKNOWLEDGEMENTS

In writing this thesis, |1 have drawn a lot of inspiration from my lecturer and
supervisor Dr. A. K. Agyei. He has equipped me both academic and technical knowledge
which has enabled me to accomplish this thesis. I wish to express my grateful
appreciation to him.

I owe many thanks to a number of persons who have been particularly helpful to me.
First among them is Samuel Amoh Gyampoh, the only course mate in mathematical
physics, who assisted me in making research on the internet.

I also wish to express my thanks to my two junior course mates Mr Amos Odoom
and Mr Augustine Larweh Mahu, for their advice and contribution.

My very sincere gratitude goes to the Manager of Nyansapo publications, Mr
Andrews Debrah for drawing diagrams and arranging my thesis for me.

Lastly and most importantly, my special thanks go to the almighty God for his divine

wisdom and knowledge given to me.



ABSTRACT

The geodesics in (2+1) dimensional spacetime should be the same as the geodesics
in (3+1) dimensional spacetime, since the two dimensional surface on which these
geodesics lie should be embeddable 3-dimensional co-ordinate space. In the present
thesis, we show precisely that .We demonstrate that the plane, the spherical surface, the
ellipsoidal surface and the surface of a saddle on which these geodesics lie are
embeddable in 3-dimensional co-ordinate space. We then go ahead and fine these
geodesics. And clearly, the determination of the geodesics in (2+1) dimensional
spacetime should be easier than in 3-dimensional spacetime since the number of
equations involved in (2+1) dimensional spacetime is much smaller than in (3+1)
dimensional spacetime. We talk about (2+1) and (3+1) dimensional spacetime because it
is easier and more elegant to use the techniques of general relativity in the determination
of these curves.

After showing that the surfaces indicated above are embeddable in 3-dimensional co-
ordinate space, we go ahead and construct the 3-dimensional equivalent of the
Robertson-Walker metric. The equation for the geodesics in general relativity is well
known, and using our 3-dimensional metric, we compute all the geodesics on these
surfaces which turn out to be the surfaces of zero, positive and negative curvatures

Not surprisingly, the geodesics in the plane and spherical surface were found to be
straight line and great circles respectively. What can apparently be considered to be new
results are the geodesics on ellipsoidal surface and the surface of a saddle which can
really be described as 2-dimensional hyperbolic space. The geodesic on these last two
surfaces were found to ellipses and hyperbolae. But it should be emphasized that in the
relativistic language, curves are the geodesics in curved space and it is perhaps worth
nothing that these curves are the trajectories of bodies attracted or repelled in force fields

of the inverse square law
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Chapter 1

Introduction

Cosmology is the study of the large scale properties of the universe as a whole.
Mathematical cosmology involves the formulation of theories that seem to explain existing
astronomical data and make experimentally or observationally verifiable predictions.
Cosmology makes statements about the whole universe. The approach to the study of
cosmology is through the science of astronomy. Astronomy started as a study of the
properties of planets and stars and gradually reached out to include the limits of the Milky

Way system, which is our Galaxy

Modern astronomical techniques have taken the subject beyond the Galaxy to distant
objects from which light may take billions of years to reach us. Cosmology is concerned
mainly with this extragalactic world. Cosmology has three main aspects. They are
Cosmogony: This is the study of the origin of the universe, Cosmography: That is
cataloguing the objects in the universe and charting their positions and motions and
Theoretical Cosmology: Here, we search for a framework within which to comprehend the
information from cosmography. Theoretical cosmology employs the hypothesis known as the
cosmological principle. The simplest model of the universe is obtained from the
Cosmological Principle which states that the universe is spatially homogeneous and

isotropic.

Homogeneity means there is no preferred point in space, so that we can locate the
coordinate origin at any point in space without affecting physical laws. It affirms that all
regions of sufficient size in space are equivalent and that physical laws are the same in all
parts of the universe.

Isotropy means there is no preferred direction so orientation of the coordinate axes
should have no effect on physical laws. This means that all directions in space are equivalent

in regard to the formulation of fundamental physical laws. . (Jayant \ Narliker)l



Translated into the language of Riemannian geometry, this cosmological principle asserts that
three- dimensional coordinate space is a space of maximal symmetry or, a space of constant

but possibly, time-dependent curvature.

In recent times, much attention has been given to the study of cosmology in (2+1)-
dimensions than (3+1) -dimensions. This is apparently because computations in (2+1)-
dimensions can be expected to be less complicated than computations in the higher (3+1)-
dimensions which are being done to test gravitational theories, particularly quantum gravity.
Our studies were motivated by this realization (namely, the realization that computations in
(2+1)-dimensions could be easier than those in (3+1)-dimensions), which are to be
independently of previous workers in the field. We also thought it would be interesting to
determine some properties of the universe of the two-dimensional being (the Maxwell

demon) and compare them with those of our universe.

This Thesis reports the determination of the geodesics (null and non- null in
maximally symmetric 2-dimensional spaces of zero, positive and negative curvatures. As 3-
dimensional coordinate space, the maximal symmetry leads to a Robertson-Walker-type
metric, which, was to be expected, is simple but yields results that are valid for 3-dimensional
coordinate space. These results will be discussed in the last chapter that is chapter five.

In chapter two we give some common definitions, mathematical tools for project

(tensor analysis), and the definition of the Christofel symbols.

In chapter three, the general geodesic equation in tensorial form is derived. The
curvature tensor and the Robertson-Walker metric in (3+1) - dimensions are also derived in

this chapter.

Chapter four contains the actual work in which the derivation of the Robertson-Walker
metric in (2+1) dimensions is carried out. The calculation for the curvature of this metric, the
calculations of all the requisite Christoffel symbols, the formulation of the differential
equations using the general geodesic equation and the appropriate non vanishing Christoffel
symbols are carried out in this chapter. This is followed by the solution of the differential

equations for the various spaces (namely, spaces of different curvatures).

Finally, in chapter five, we compare the physical interpretations of the solutions of the
geodesic equations in 3-dimensional space time with those of 4-dimensional space time. We
also discuss the deflection of a photon by a black hole.



Chapter 2

Mathematical tool for the project

2.1 Definitions of some common terminologies used in the project

The Universe

The universe contains everything. It consists of clusters of galaxies. From a cosmological
point of view galaxies are the atoms of the universe and their distribution, motion and origin
must be determined and explained. The Universe is a space that is homogeneous and

isotropic.
Space

A space is defined by a set of rectangular coordinate system or axes.
Types of spaces to be discussed are Euclidean and Riemannian spaces
Euclidean space

Around 300BC the Greek mathematician Euclid undertook a study of relationships
among distances and angles, first in a plane (2-dimensional space) and then in 3-dimensional
space. An example of such a relationship is that the sum of angles in a triangle is always 180

degrees.
Euclidean structure

Euclidean space is a real coordinate space. In order to apply Euclidean geometry one
needs to be able to talk about the distance between points and the angles between lines and
vectors. The natural way to obtain these quantities is by introducing and using the standard
inner product also known as dot product onR". The inner product of any two vectors X and
Y is defined by

XD = XY = XYy + %Y, +ot XYy

i=1



The result is always a real number. Furthermore, the inner product of X with itself is always
non negative. This product allows us to define the length of a vector X

x| = [ 00

This length function satisfies the required properties of a norm and is called the Euclidean

normonR".

The angle #(0<6<180) between X and Y is then given by

L Xy
f=cos| ————
UXIIIIYIJ

Finally, one can use the norm to define a metric or distance function on R" by

d(x,y)=[x-y|= Zn:(xi—yi)2 ................................ 2.0

i=1
This distance function is called the Euclidean metric.

Real coordinate space together with this Euclidean structure is called Euclidean space.

Euclidean space is a space described by rectangular coordinates.

In three dimensional space the line element or the distance between two adjacent points

(x,y,z)and (x+dx,y+dy,z+dz)in Euclidean or Cartesian coordinates is given by
AS? = OXZ 4+ dY” +0Z% e 2.1

Riemannian space

Riemannian space is a space that cannot be covered with a set of rectangular coordinates.
It is a space in which an element of distance can be defined. Riemannian space is endowed

with a symmetric metric.
Space time

Let X' (i=1, 2, 3, 4) be any functions of the £'such that, to each set of values of the &'

there corresponds one set of values of X', and conversely. Where x' =x'(&*, &' &2, £4) then

the x' also will be accepted as coordinates, with respect to a new frame of reference, of the

4



event whose coordinates were previously taken to be the &'. It should be noted that, in
general, each of the new coordinate’s x' will depend upon both time and the position of the

event. It will not necessarily be the case that three of the coordinates x' are spatial in nature
and one is temporal. All possible events will now be mapped upon a space V4, so that each
event is represented by a point of the space and the x' will be the coordinates of this point

with respect to a coordinate frame. V4 will be referred to as the space-time continuum.
Space time is therefore defined as space and time considered as one Point.
Examples of space-time are
1. 3-dimensional space time which consist of two spatial and one time component.
2. 4-dimensional space time which consist of three spatial and one time component.
The metric

A metric is a function of a topological space that gives, for any two points in the space,
a value equal to the distance between them. In other words, an expression which expresses
the distance between two adjacent points is called the metric or line element. In three
dimensional Euclidean space, the line element or the distance between two adjacent points

(x,y,z)and (x+dx,y+dy,z+dz)in Cartesian coordinates is given by
ds® = dx® +dy* + 0z oo 2.2

If we let dSbe an element of distance in a different coordinate system such that

(X', X?,%°) are the coordinates of a point in that system then the line element in that system is

given by ds? = (dX*)? + (d%?)? + (dX°)?

Since distance is invariant under coordinate transformation, we have

k
d5? = ds? _Z 6‘
3 k k
_ziid idx
ox' ox!



ds? = gy aX AX s 2.4

3 k k
Where g; = allﬁ_ij ................................................... 2.5
= ox' ox

The quantities g; are collectively referred to as the metric tensor and equation (2.4) is called

the metric or the space-time metric or the fundamental metric form. Examples of

metrics:

1. In polar coordinates, the contravariant components of dsare dx' =dr,dx* =rdéand

we have
ds® =dr? +r’d¢?

2. In cylindrical coordinates p,@,z,the contravariant components of dsare

dx' = d p,dx* = pde,dx* = dz and we have
ds® =d p® + p°de® +dz?

3. In  spherical coordinates r,0,¢, the contravariant components are

dx" =dr,dx* = rd@,dx’ = rsindde, and we have
ds® =dr?® +r’d6” + r’sin’ 6d ¢

All of these concepts can be extended from three-dimensional space to four -dimensional

spacetime without any difficulty. Using four-dimensional coordinates x“ for describing the

events and the world-line in spacetime, the separation of proper time or the separation

between two events x and x* + dx* is given by
2 _ v
ds® =g, dx“dx

For different coordinate systems, the dx“ may not be the same, but the separation

ds®remains unchanged. The metric tensor g . determines the geometric character of the

spacetime and has 16 components of which ten are independent since it is symmetric.



2.2 Tensor analysis

Physical laws must be independent of any particular coordinate systems used in
describing them mathematically, if they are to be valid. A study of the consequences of this
requirement leads to tensor analysis which is of great importance in general relativity theory,
differential geometry, mechanics, hydrodynamics, electromagnetic theory and numerous

fields of science and engineering.

In order to construct physical equations that are invariant under general coordinate
transformation, we must know how the quantities described by the equations behave under
these transformations. For some quantities, those defined directly in terms of coordinate
differentials, the transformation properties may be determined by straight forward
calculations. For other quantities, such as the electromagnetic fields, the transformation
properties are partially a matter of definition. However, there is a tendency for all quantities
of physical interest to transform in a reasonably simple way, for otherwise it would be
difficult to put them together to form invariant equations. This section seeks to describe one
class of objects whose transformation properties are particularly simple from quantities
defined directly in terms of the coordinate system. The quantities or objects to be described

are vectors, scalars, and tensors.

2.2.1 Scalars, Vectors and Tensors

Scalars

A scalar is a quantity that is invariant under coordinate transformation. The numerical
value of a scalar at a point remains constant even if the coordinates of this point change. For

example the interval ds between two points is a scalar. Also the scalar product of a covariant

o¢

and contravariant vector is a scalar. If ¢ is a scalar field, then Pl is a covariant vector
X

because in a transformed coordinate system the gradient is
op _ox og

e 2.6
X' ox' ox!



Vectors
A vector is a tensor of rank 1
Two types of vectors are

Contravariant vectors
A vector A' is said to be a contravariant vector if under the coordinate transformation
X — X', the A"’s transform according to the law

y N 2.7
ox!

The rule of partial differentiation gives

dx’ :a—x.dxj ........................................................................ 2.8
ox!

So the coordinate differential is a contravariant vector
(i) Covariant vectors

A vector A; is said to be a covariant vector if under the coordinate transformation

x' — X', the A’s transform according to the law

Tensors

A tensor in an n-dimensional space is a set of n" functions or quantities which
transform between coordinate systems in a certain way. A tensor of zero rank is a single
function of position, whose value is the same in all coordinate systems; in more familiar
terms, it is a scalar. A tensor of rank one is a set of n functions; in more familiar terms, it
is a vector, and the n functions are its components. A tensor of the second rank is a set of

n® functions, and the metric tensor g; is an example.

One great advantage of the tensor formalism is that, if physical laws are expressed as
relations among tensors, they will be valid for any choice of coordinates.



2.2.2 Types of tensors

Contravariant tensor

The set of N' quantities T""is said to constitute the components of a

contravariant tensor of rank r at a point in an N-dimensional space if under the coordinate

transformation X’ = X’ (x‘ )these quantities transform according to the law

S W 2.10

'Fil---ir — - -
axh axjr

Covariant

The set of N° quantities T, _; is said to constitute the components of a covariant tensor

of rank s at a point P in an N- dimensional space if under the coordinate

transformation X! = X’ (x'), these quantities transform according to the law

iy g _ﬁ

Mixed tensor

A set of N™*quantities T}" is said to constitute the components of a mixed tensor of

rank r + s, contravariant of order or rank r and covariant of rank or order of s at a point P in
an N — dimensional space if under the coordinate transformation x! = X’(x') these quantities
transform according to the law

oo (K KO X

b = e T T 2.12

(David Lovelock and Hanno Rund)2



2.2.3 Fundamental operations with tensors

Addition and Subtraction

The sum and differences of two or more tensors of the same rank and type are also
tensors of the same rank and type. Thus if Aland B, are tensors then C) = A + B are

also tensors.

Proof
Writing the transformation laws for the given tensors, we have

X X ox” _® X X L

Al = s , gij = and
A X ox° X" Ao B X' oxt ox* "
. i axd ox™ y y )
A+ B - Zyr 273 ka (A= +B), o, letting C} = A + B!
X OX" oOX
. Paxd ax™
] _ 8Y 87 8X Crs ................................................................. 2.13

KoxT ox® oxk "

Outer multiplication

The product of two tensors is a tensor whose rank is the sum of the ranks of the

given tensors.

Theorem

The outer product of two tensors of types (r,,s,) and (r,,s,) at a point P in x, is a tensor

of type (1, +5s,,r, +5S,) atP.

Proof

Let Rfand S™tensors, then under coordinate transformationx’ =X (x‘)these tensors

take the form

k S t
ﬁi'_‘:ai 8X-8—X-Rsrt
I ox" ox' ox!

10



g X X o,
oxP ox‘

Rkgin _ oxX* ox® oxt ox' ox™
i

= o 2 o o Ry S™or letting R S™ =T;™ we have
X" oX' ox' OxP ox

pum _ KK KX N g 214
! ox" oxP ox? ox' ox!

which is the transformation law for a tensor of type (3,2)

The product which involves ordinary multiplication of the components of the tensor is called

the outer product of the two tensors.
Contraction

If one contravariant and one covariant index of a tensor are set equal, the result
indicates that a summation over the equal indices is to be taken according to the summation

convention. This resulting sum is a tensor of rank two less than that of the original tensor.

The process is called contraction. For example, in the tensor of rank 5, A\;‘fr,set r=sto
obtain Al*" =B a tensor of rank 3.
The inner product

An inner product of two tensors of types ( r,s;) and (r,,S,) is a tensor of type (
r,+r,-1s, +s, —1) provided that the contraction is over a pair of indices one contra variant

and the other covariant

Proof

Let TY be a contra variant tensor of the second rank, so that its transformation law is given

by

; b o)
-Fu — 67 a—LT rs
ox" ox®

And letC,, and F, be two covariant vectors, with transformation laws

ox"
67‘1

& ox'

,=—C, and F=
GYP

F

m

11



=i ox' ox' ox' ox"

T'C,F, = ——T"C,F, or if
ox" ox® oxP ox
Qp, =T'C_F,, then
Qi X ox)oox' ox™
P ox" ox® oxP oxd
Contracting over the indices j and p we have
ol _x X ox ox"
P ox" axt ox) ax "
S 2.15
ox" ox*

This is a transformation law for a tensor of type (1, 1). The contraction has reduced the both

upper and lower indices by one. Such a product is called inner product.

The quotient theorem

If the product (outer or inner) of R}llj_'_‘;s with an arbitrary tensor yields a non- zero

tensor of appropriate rank and character, then the quantities R}lljl'.igs are components of a tensor.

Example

Let us suppose that at a fixed point P of x,, , we are given a set of quantities a, such that a x’

is a scalar for any contravariant vector x' at P such that
ax' =g¢ ,where ¢ is ascalar
If we denote in X coordinate system

ax' =¢ =¢, then, we have

I _ 4 _ 3yl

ax =¢=a;x

I —aYJ I

X =a;— X
OX

12



iy
[ai -a, alin' =0
OX

But the x' being the coordinates in the space x,, , are linearly independent we can therefore

equate the coefficients to zero. Hence

_ X!
a-a8—=0
OX
X X'
a; :Eji. or & =La. shows that the a, are the components of a
Oox' oo '

covariant vector.

2.2.4 Symmetric and anti -symmetric tensors

Symmetric tensors

If two contravariant or covariant indices can be interchanged without altering the

tensor, then the tenor is said to be symmetric with respect to these two indices. For example,

if A" =A" or A, =A,6 thenthe contravariant tensor of second rank A“" or covariant

tensor of second rank A is said to be symmetric.

For a tensor of higher rank A" if A" = A then the tensor A} is said to be symmetric

with respect to the indices ¢ and v

The symmetry property of a tensor is independent of the coordinate system used. So if a
tensor is symmetric with respect to two indices in any coordinate system, it remains
symmetric with respect to these two indices in any other coordinate system. This can be seen

as follows,

If tensor A;*”is symmetric with respect to the indices xandv we have
A/;IJVO' — A;yo‘

According to tensor transformation law

13



~uwo  OX* OX" OX? ox° apy  OX OX* OX° ox° ay
Aﬂ- = a B ¥ 2 = B a v A A5
OX?* ox” ox” oxX Ox” ox* ox” oX

_ Avuo
= A/1

Thus a given tensor is again symmetric with respect to first two indices in the new

coordinate system. Similarly, this result can be proved for covariant indices.

Number of independent components of a symmetric tensor

A symmetric tensor of rank two in n-dimensional space has at most

n(n+1)
2
independent components. This can be obtained as follows

The total number of components in the array isn®, out of which all the ndiagonal terms will

in general be different and the rest (n”> —n) will be equal in pairs. The number of pairs will be
n’-n
2
Therefore the total number of independent components

:n{“z-”jz”(””)

2 2

Antisymmetric tensors

A tensor whose components, change in sign but not in magnitude when two
contravariant or covariant indices are interchanged, is said to be anti-symmetric or skew

symmetric with respect to these two indices. For example, if

A" =-A" or A, =-A, then the contravariant tensor A*"or the covariant tensor A

uv uv
of second rank is anti- symmetric. For a tensor of higher rank A" if A" =—-A’“then

the tensor A;" is anti-symmetric with respect to indices x and v

The skew symmetric property of a tensor is also independent of the choice of
coordinate system. So, if a tensor is skew symmetric with respect to two indices in any

coordinate system, it remains skew symmetric with respect to these two indices in any
other coordinate system. To show this, let the tensor A;" be antsymmetric with respect to

the first two indices x andv, that is let

14



HVO __ _ £\VHO
AT = — N

Then

fuve _ OK" OX" X7 Xy, OK K KT X ey A
A a B A ) B a A o A
ox” ox” ox” ox ox” ox* ox’ oX

The antisymmetry property, like the symmetry property, cannot be defined with respect to

two indices of which one is contravariant and the other covariant.

If all the indices of a contravariant or covariant tensor can be interchanged so that its

components change sign at each interchange of a pair of indices, then the tensor is said to be

antisymmetric. That is if ~ A“* are antisymmetric tensor then
Ayvo‘ - _ Av,uo' — Ava,u

Thus we may state that a contravariant or covariant tensor is antisymmetric if its components
change sign under an odd permutation of its indices and do not change sign under an even

permutation of its indices.

Number of independent components of an anti symmetric tensor

An antisymmetric tensor of rank two in n-dimensional space has

n(n-1) .
( 5 ) independent

components. This can be shown as follows

The total number of components in the array isn®, out of which all diagonal terms of the

array will be zero since all the quantities A““ (no summation) are zero. The rest(n2 - n) will

n’-n
be pairwise equal in magnitude. The number of pairs will be%.Therefore the total

_n n(n-1
number of independent components = n 5 n_ ( 5 )

15



2.3  Covariant differentiation
2.3.1 Covariant differentiation of a vector A

By tensor transformation, we have

Differentiating with respect to X*, we have

oA, 0 [ox oxl oA ox" X!

kK = Aok A rF oo =t A
ox<  OX \ X ox' ox" oXx*  OX'OX
The presence of the second term on the right hand side shows that the partial derivatives

oA : : : :
ik do not transform like a tensor. This second term is called the affine term or the

affine connection.
oA

oA,
= 0 even if a—’ =0or A, are constant
X

r

Transformation of the affine connection

Let the affine connection be defined by

o oxd oxiox

Passing form x'to a different system X' we find that

Mo axfox

_ox"ox” o [ ox® ox!
oxP ox) ox* | ox' oxd

_ X" oxP | ox? 9% +8xj 0°x*
oxP ox) | ox' ox ox?  ox* ox*ox

16



_ X" oxP | oxt ox" o°x! +6xj o°X
oxP ox) | ox' ox* ox'oxt  oxY ax<ox

_ X" oxP ox® ox” o°x! LXK ox? ox! o%x°
oxP ox) ox' ox* ox"ox?  oxP ox! ox® ax“ox

_oxX" oxt ox" oxP o°x! e o°x"
oxP ox' ox* ox! ox'ox?  oxP ax“ox’

m r p m 2P
LI S 2.18
x X X " oxP KX

From equation (2.16) and (2.18) we have

prg | KX X" L, KT o°x” | ox'
: X ox X M oxP oxkox |ox™

A

—m~  OX" OX' Ox" oxP ox™ ox' %P
I'TA = -T'P A+ .
o= o o on Y o ok ok

== OX" oXxP o°xP
Fm = —_— P A +—A .................................................. 219
|kAn ayk ayl g p aikail p

Subtracting (2.19) from (2.17) leads to

~ s
%—ri"; =%%[§E—F&Ap} ..................................... 2.20

We therefore define a covariant derivative of a covariant vector

oA m
Aﬁ;k = 6T_Fik

Equation (2.20) tells us that A, is a tensor:

A, XX
Kk 57i 87k qr

17



2.3.2 Covariant differentiation of a vector A"

The transformation law for the vector A™is given by

A" = 67. Al
ox'

Differentiating with respect to X* gives

oA™ o [ox™
Pal— i A
oX oxX" | ox

A" OA X" OX™ %™ oxP
—= ” —+— " A 2.21
oX oxP ox* ox'  ox'oxP ox

m

The first term on the right is what we would expect if were a tensor; the second term

Xk

IS what destroys the tensor behaviour.

m
Although 8Ak IS not a tensor, we can use to construct a tensor. Let us consider the
X
identity
oxP ox* "

Differentiating this identity with respect to X', we have

m p
0 [ax oX ]:o

x| oxP ax*

ox" 0°xP L ox X"
oxP ox'ox€  ox* ox'ox”

X" 9*xP oxP ox? o*%x™

xP aXoxE axX* ox ox oxP

We therefore write equation 2.18 as
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pn _ X" XXt L, ox” o] o*x"
“oxP oxtex' M ax* ox' ox‘ox”

From this equation, we see that

Fngi_ X7 XXX L, o OXP X' X 0K
‘k oxP ox* ox' ox* ™ OxX* oxX' ox® oxiox”

S

oxP oxk ox* oxIoxP

A = :

Adding this equation to equation 2.21, and rearranging the dummy indices we have

OA" i  OATOXP X" X" X,
— +IGA = T aa T A
ox OX" oX" ox' OX" oX

7 = | A L
oX X" ox" | ox

A" — —  ox" ox"[ oAl
A g { M
We therefore define a covariant derivative of a cotravariant vector

m aAm m pi
A,k :W-i_rkiA
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2.4  The relation of Christoffel symbols to the metric tensor

In the computation of covariant derivative of a tensor in Euclidean space demands as a

pre-requisite the evaluation of affine connections

,
m_ O0x' ox"

R 2.22
& axioxe ox!

This formula shows that T';' =T that is affine connection is symmetric in its subscript but
this does not make the most convenient way of calculating the coefficient of ;. It turns out

that we can relate T’ directly to the metric tensor and that the resulting formula is easier to

deal with.

We show that the covariant derivative of the metric tensor g, is zero
Using the relation

A = Gy A s 2.23
This is valid for the vector oA and also for any vector
On the other hand,

A =g, A Sothat
A =gy A) = A Gy + Gy A 2.24
Substituting (2.23) into (2.24)
We have
A“sg, =0

And since the vector A* is arbitrary, we have

AL = Gig = O 2.25

This g, may be considered to be a constant during covariant differentiation
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Now, writing out (2.25) explicitly, we obtain

o,

P T80~ TG = 0, 2.26

Qijx =

Performing cyclic permutation of the indices i, j,k we obtain two other formulae

gk.:ggﬁu—rﬁgk—Iﬂg. = 0noeeee e 2.27
JKi 6X' jidn iJjn
ag n n
gk|;j :W'}'—ijgm _Fijgkn S0 ————— 2.28

Adding (2.27) and (2.28) and subtracting (2.26), on using the symmetric properties of g; and

I, we have

Gy, 09 99

. -2rig,. =0
ox' ox! o ooxk 19
09, 09y 99y
20 I = o et 2.29
I = o T ox T Bt
Multiply both sides of (2.29) by %g " and using the fact that g™g, ="
We have
09 - 00
rifj! =1g"k gl_k +agk} _ g'kl .......................................................... 230
2 ox'  ox!  ox
. 09 ; 00
P = By B S| e 2.31
T2 oxt o oox! o ox

Equation (2.30) is called the chriotoffel symbol of the second kind and (2.31) is called
Christoffel symbol of the first kind

The relationship between the two Christoffel symbols is

21



From (2.30)

Putn=i

1 [eg, og. og,
e BT 2.32
b2 ox' ox! ox

r' =0 forizj=k

Putk =1, in equation (2.32) we have

: | 0g 00
Fl lgll|: gjl +8g||_ glj:|

1727 X oW o
: 1 .00, .. .
I ==g"—" Since g"g, =1
1729 o 9" G
T, 2.33
' 2g; ox!
Put j=iin(2.32), we have
ri =lgik agi_k + aglfi _89:
2 ox'  ox'  ox
Put k =i
ri _ 1 8gi_i _l_agij _agij
2 ox'  ox'  ox'
I 2.34
2g; ox

From (2.32) put i = |
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Putn=i

ri2Llgw 9y, 094 09,
L) ox! o ooxd ox
Putk =i
i ii ag]l agij agjj
i =3 B
I ii _agjj Sinc & g'l
1729 axl o oxt
4 oa.
Hence r. =Lﬁ ............................................................ 2.35
" -2g, o
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Chapter 3

Geodesics

Let M be an n-dimensional differentiable manifold, upon which the usual structure of

vectors, tensors, and differential forms has been defined.

. . . . dx
A geodesic on M is a curve whose tangent vector is parallel transported, that is u' = 37

A vector u' is said to be parallel transported along a curve x'=x' (/1) if it satisfies the

equation

du' ., dx* dx'
—+ly———5=0

di di da
where T}, is the affine connection

A geodesic is also a curve of extremal arc length.

As examples, the geodesics on a plane are straight lines where as the geodesics on a sphere

are arcs of great circles.
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3.1 Geodesics in Euclidean plane

Since finding geodesic in Euclidean space involves finding the minimum curve or
finding the shortest path between two points, we therefore apply calculus of variation which
will lead us to the Euler-Lagrange differential equation. This equation is derived as

follows

We consider a function f(y,y,x) defined on a path y=y(x) between two

points(x,,y;) and (X,,y,). We wish to find a particular path y(x) such that the line

integral J of the function f between x, and X,

X

J:Jf(y,y,x)dx ......................................... 3.0

X

has a stationary value relative to paths differing infinitesimally from the correct function

y(X). The variable x here plays the role of a parameter and we consider only such varied

paths for whichy(x,) =y,, y(X,) =Y, .(Figure 3.1)

Where y= gy
dx
1 y(x,0)
(X2,Y2)
y(x,0)
(X2Yy1)

X

Figure 3.1 Varied paths in the one-dimensional extremum problem

If y(x) is the path and y(x,a) is the path of variation then, the combination of the two

gives the fixed space.
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V(%)= Y(X,0)+an(X) corirrrinriirine, 3.1

%y

Where n(x):(a—) is assumed to be continuously differentiable in the open interval
a a=0

[%,,%,] and such that 7(x,) =7(x,) =0 then J is also a function of & . Hence
J(a) = J' (X, @), Y6 @), X JAX o 3.2

The condition for obtaining an extremum is given by

(ﬂ) S0 s 3.3
8& a=0
Thus differentiating (3.2) we obtain
I o ay ay AX e 3.4
6(1 oy 6a 6‘y o

The second integral of (3.4) is

Xy . Xy 2 X2 Xy
AN R i AV oA ) R
" oy o " 0y oxoa oy oa v % dx\ oy Joa
The condition of all varied curves is that they pass through the points

(x,y;) and  (X,,Y,) and hence Y must vanish at those points. Equation (3.4) becomes

da
Q_Xf ooy _dpot|oy |,
da 4| 0y da dx\ &y )oa

[ [2-2( 2]

Multiplying through by da and evaluate the derivative ata =0, we have

=2 Joa-f| T2 (][ 2 Joac-o
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Where oy :(ﬂj da
0

el

The quantity 5y:(;ﬂda iIs known as the variation of y. It is an arbitrary quantity and
o

therefore generally not equal to zero. Hence we must have

Thus J is an extremum only for curves y(x) such that f (y, y,x) satisfies the differential

equation (3.5). This differential equation is the usual Lagrange equation in classical

mechanics. In calculus of variation, it is known as the Euler-Lagrange equation.
[Herbert Goldstein]3
Ilustration

We prove that the shortest distance between two points in a plane or Euclidean space is a
straight line.

Let the line element or an element of distance between two points P(x,,y,) and Q(x,,Yy,) be

given by
AS% = AXZ 4+ Ay e 3.6
dy 2
ds =[1+ (=2)*]2dx
dx
1
AS = (14 Y2)2Xervrreeeereereeeeeeeee s 3.7
Where y :ﬂ
dx

Using Hamilton’s principle, the total distance between these two points is
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L:]Z(1+ yz)idx=if 110D G 3.8

X X

1

Where F = (L4 Y2)2 oo, 3.9

This does not explicitly depend on y so using the Euler-Lagrange equation

o _dfaf)_,
oy dx\aoy)

But ﬂ:0 therefore d i =0
oy dx\ oy
From equation (3.9) %= y T
Yy
Hence di(ﬂj:di Y —|=0
AT @y
V¢
(1+y%)?

Where C is a constant of integration from which, we have
1
y=C(L+y’)?

J =C(1+y?)

=a (Constant)

dy _
dx

a

y=ax+b
Where b is a constant of integration

Hence, the geodesic in Euclidean plane is a straight line
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3.2 General geodesic equations in Non-Euclidean or

Riemannian space

Two properties of a straight line can be generalised as
i.) The property of straightness.

i) The property of shortest distance between two points
(Jayant V. Narliker)1

These two properties are used to formulate the general geodesic equation in Riemannian

space.

1. Straightness means that as we move along the line, its direction does not change.

Generalization of this concept;

Let x'(A) be the parametric representation of a curve in spacetime. The tangent vector for

this parametric representation is

o
di

U D et 3.10

The straightness criterion demands that u’ should not change along a curve

On moving from Ato A+ 44 in a curve, the change u' is given by

Au' =du' —su
But ou' =T, u*sx!
du’

AU’ =a5/1+FL|Uk5XI

P O 311
da

kIl

The second term on the right hand side of (3.11) arises from the change produced by parallel

transport through coordinate displacement §x' but
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OX S U A oo 3.12

Substituting (3.12) into (3.11), we have

AU =%5/1+F'kluku'§/l

AU = B‘l +Tufu }5/1 ............................................. 3.13

The condition for no change of direction u' implies Au' =0

Equation (3.13) becomes

diﬂ“ikluku' =0 Or
A

2yl k |
L S S 3.14
di di da
Equation (3.14) is the condition that our curve must satisfy in order to be straight.

2. Property of shortest distance between two points

Let a curve parameterised by A connects two points P; and P, of spacetime with

parameters A, and A, respectively. Then the distance of P, from P is defined as

1

A k
dx' dx* |2
Pz,Pl):J[ O }dﬂ [ — 3.15
41 dida
ol
! 2
Where L= (gik %%}

For small displacement of a curve connecting P; and P,, we demand that S(PR,,P) be

stationary and these displacement vanish at P; and P,. This is a standard problem in the
calculus of variation and its solution leads to the familiar Euler-Lagrange equation;

d (aLj 6—".:0 ................................................ 3.16
dA V)oox!

Where j=1, k

30



1

dXi ka 2 0wk =
But L= g, —— | =(g,Xx'x")?2
(glk T d/'t] (9, )

%:%gik(xk +Xixgikxixk)_%
:2_]Lgik(xk + Xi)

-1
oL _14g,, dx" dx" g dx' dx* )2
oxi 2 oxi da da (7™ da da

O 1 0G0 O
ox) 2L ox! dA da

Substituting these equations in to (3.16), we have

d (1 P 1 09, dx" dx" _
(Zgik(x +E)j————— 0

da 2L ox) dA dA

d I og,.. dx™ dx"

(g, (X5 )) = 2 0 e, 3.17
d/”t(g'k( )) oxi dA da

Using ds=LdA equation (3.17) becomes

0 o 3.18

24 ( dx dx‘j_Lz 8g,, dx™ dx"

40— ) —
ds Jie ds Jie ds ox' ds ds

Changing the dummy indices in the first term of (3.18)

0

d( dx™ dx”j og,. dx™ dx"
gmk - =

_ + ! =
ds & 995 )T ds ds

d*x™  dx" dg,, d’x"  dx"dg,, 09, dx" dx" _

+ + =0 e 3.19
957 T as ds M gs? ds ds  ox* ds ds
BUt dgmk — 8gmk dX and dgkn — agkn dX
ds ox" ds ds ox™ ds

Substituting these equations into (3.19) we have
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d*x™ dx" ag,, dx" d’x" dx" ag,, dx™ &g, dx™ dx"
gmk 2 + n + gkn 2 + m - K =0
ds ds ox" ds ds ds ox™ ds ox° ds ds

gmk

2,m 2.,Nn m n
X g, OX {agr;k + % _agn;njdx D 3.20
ds ds OX OX OX ds ds

Setting m, n =i in the first two terms of (3.20), we have

g

20 2,0 m n
ikd >§ +gkid >§ +(agn;k+8gtnn_8gmknjdx dx o
ds ds OX OX dx ds ds

2,1 m n
Zgikd X +(8gmk+agkn_agmnjdx dx =0

ds? | ox"  ox™ ox< )ds ds

2 m n
d )Z +£gik(agn:]k +ag|r<: _agnlln]dx dx =0
ds® 2 OX OX ox' ) ds ds

Hence

d’x'  odx™dx"

—+T =0 s 3.21
ds ds ds

It is clear that equations (3.14) and (3.21) are the same although S in (3.21) has the special
meaning of length along the curve while A in (3.14) appears to be general. If (3.14) is

satisfied then A must be a constant multiple of S.

The N equations (3.21) are second-order differential equations for the functions x'(s)and
their solutions will involve 2N arbitrary constants. If these equations are satisfied at every
point of the curve x'(s), it is a geodesic. If A, B are two given points having coordinates

x' =a',x' =b' respectively, the 2N conditions that the geodesic must contain these points

will, in general determine the arbitrary constants. Hence there is, in general a unique geodesic
connecting every pair of points. However, in some cases this will never be so. For instance,

the geodesics on the surface of a sphere (R,) are great circles and in general there are two

great circle arcs joining two given points, major arc and a minor arc (figure 3.2)
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(D.F Lawden)*.

Great circles

Figure 3.2 Diagram showing the great circles of a spherical object.

3.2.1 To show that the geodesic equation has a first integral

1
From L= (gikx‘xk )2 since L does not explicitly depend on A ,we have

Where c is a constant

al— _1 . k ciwk ;1_ 1 K
But ﬁ_ggikx (gikXX )2 _Zgikx
L1 »
L-x'—g,x“=cC
2Lglk
1 ok
L-—g, X'x=c
2Lglk
L—iLzzc
2L
L
—=C
2 .
L2 = 4c* = constant g, X'X* = cons tant
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Hence

iyl

R 3.23
ds ds

Where C is the constant of integration

Characteristics of equation (3.23) are;

If g; has one positive eigenvalue and three negative eigenvalues, then

(i) C =0 for a null geodesic
(ii.) C > 0O for time like curves
(iii). C < 0 for space like curves

The A is called an affine parameter
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3.3  The curvature tensor

One property that distinguishes a curved space from a flat space is the curvature of the space.

The curvature of the space is defined by the curvature tensor which is derived as follows;
Let a vector x' at a point P undergo parallel transport to another point Q.

The component of the x! will change, the covariant differentiation of the vector x' is given

by

Taking the second derivative of the above equation, we have

o ,ox
§h;k a k (a h

+17,x")

— a(XJ,h)
ox

. X ) m .
X =— 0 {5 +T7, X }+F m{gxh +1“”‘|hx']l“'hkx‘;|
o X

j m Iy i
A X =T Xy

ox" | ox'"
2y j | m )
= %-F%XI +T) 2Xk +T th + 0 T ™ =T "% e, 3.25

Interchanging h and k, we have

o’ ar,’ Ox' cox™ _
Vv +X—'th'+F.‘h o~ S v T R B 3.26

i _
X;k;h_

2y
Subtracting equation (3.26) from (3.25) and considering the fact that 88 2 are symmetric
X" Ox¥

that is
0%x! 0%x! h
——=———, wehave
OX"OX OX" OX
or! - arik . , :
X g =X g = aTk'“— o +rlmkrmlh—rlmhrmlk}x'—[r'hk—r'kh]x{I ............. 3.27
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Where

o'y Oy

K =L
lhk k
oxk ox" m

TM =T T s 3.28

And

S = T 3.29

The quantity K 'n is called the curvature tensor or Riemannian tensor of type (1, 3). This

can be seen by using the symmetric property of the affine connections I''w =T"'wn in equation
(3.27) we obtain

The quantity on the left hand side of equation (3.30) is a component of a third rank tensor
since it is the difference between the components of two tensors. Therefore the quantity on

the right is also a component of a third rank tensor. It has the form of a contracted product of
a fourth rank tensor whose components are K ' and the first rank tensor whose components
are x' . We may infer that K ' are components of a fourth rank tensor called the Riemann—

christoffel curvature tensor. It is usually denoted by R .
The quantity S'w is the component of a type (1, 2) tensor called the torsion tensor.

The space endowed with symmetric affine connections, that isT'w =T, the torsion tensor

vanishes identically but the curvature tensor does not in general vanish.

Space-time is said to be flat if its Riemann tensor vanishes everywhere. Otherwise it is said to

be curved. The curvature tensor in Riemannian space is given by

or, _arj,k

Rl =
ok axn

AT T =T T e, 3.31
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3.3.1 The properties of Riemann - Christoffel tensor

1. Anti -symmetric property. Interchanging the indices h and k in equation (3.31) we have

.ol er! - -
Rk :a—hlk— p klh + T ol =Tk ™ n
X X
ort. or! - -
:_{?hlk_yklh"‘r]mkr A

Rlih = _R”J:]k
Which shows that R/, is anti -symmetric with respect to the indices h and k

2. Cyclic property; permuting the indices |, h and k in a cyclic order and adding, we obtain

the relation
R|£1k + thkl + Rkjm =0

3. Given a Riemann-Christoffel curvature tensor Ry, , we can take the inner product with

the metric tensor g, to obtain a type (0,4) Ry, thatis

glmR?;]k = R

This new type of tensor is usually called the covariant curvature tensor. It is derived as

follows

From equation (3.31) replace j by m, | by j and m by p, we have

m

jhk =

61“;}“, 61“1-”; e -
Era +p Ll =Ty

Taking the inner product of the above equation with g,,

ors orsy
glmRJTuk =0 8Xlk O 8X1h +g|mrg?<rj$1 _glmrrr)nhrji

oy, o9 N oy, og N
R = axjk - axlk Iy - axjh + 8XIk T+ D =T Tk
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But

ith 1 6 églh gl] th
+ —
6Xk 2 an

2 ox!  ox"  ox!

T2l axkoxi  axfox™  oxkex!

_E{ 8’ gy, N 0’9y 99y, }
2

also

oy 1 0 |09, 09y 09
= + J—
ox"  20ox"

2 ox!'  ox*  ox

_1{ o%9,, 62gu 6zgjh }

2| oxkox!  oxkox"  oxkox!

And

< ox" 2

Mgy g _ 1) 0°9n %G 0°9y 09y
ox‘ox!  ox"ox’  ox"ox'  ox*ox'

a9
axllr(n = g pml—‘"? + glprn?k = 1—‘Imk + lek

a9
axlrrln =9 pmrlr’? + glprrrrw)h = Din + Doy

1| o%g 0°g 62gjk 62gjh m
Rink zﬁ{axka;i “odaxd et o (9ol + 8T )T

+ (g men? + glprn?h Jnl: + rmIkFJT] - lehrjmk

2

1 azg 82g 0°9 82g'h m m m
iink :E{axkaii - ax“a;tj " ax“ajx' - ﬁxkﬁjx' = Gonl il ~ Gl + Gpn T+

glprn’:hrjnlz + glprn?kr;ﬂ - glprnfl)hrj!E
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1| o%g, 0%g, O0°0; 0°g, " m
l: h Ik jk jh _gpmrlfrthrgpmr,ﬁij

ol axkax) ox"ox) | oxfox' oxox!
1| &%g d%g 2’9, 0°0y, . .
jlhk :E|:8Xkal)ij - aXhal;j + aXhGJXI - anaJXI + gpm I:ijrﬁl _thl—"ﬁ)(:l ...................... 332

In general the curvature of a space is given by the Gaussian curvature K

Given by the formula K = Rip where g is the determinant of the spatial part of the metric
g
and R,,, can be obtained from equation (3.32) as follows

Setting j=h=1landl=k=2

1| &*g,, 0%y, 0% 0’9 m m
R = E[@xzéil "ol kol acod |9 [F&rs-Tars]

Since g,, =g,, =0we have

1 _ 82922 82911
oxtoxt  OxPox?

R = 3|~ 2 [, [ -1,

Summing over p and m, we obtain

2 2
212 = % - (aaxglz‘)zz N (zxgl)lz +0u [rizrlzl - Filr‘lzz] 02 I:Ffzrgl _Flzlrgz:l

Substituting

L 1 0Jg,, 2 _ 1 o9, o 1 odg,, 2 1 o9, oo 1 o9,
Yo2gy T 20 ¢ T 2g T T 20, T F 0 2g, X
1 og
1ﬂ121:_2 121
Gy OX

2
|:\>1 :1 _ azg22 _ azgll +0 1 5911 + 1 agn a922
e 2 (6X1)2 (6X2>2 . 2911 axz 49211 6Xl axl

2
+g 1 agZZ + 1 8gll agZZ
21\ 2g,, ox' ) 4g?, ox* ox°
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R1 =1 _82922_62911 + 1 (agnjz_'_agn agzz + 1 (6922)2+agn agzz
222 (axl)z (axz)z 4g,, |\ ox? oxt ot | 4g,, |\ oxt X2 ox?

Hence usingK = hwe have
g

=i _ azg22 _ 82gll " 92 (agllj2+6gll 09, " 9 (8922 j2+ag11 09,
29 (6x1)2 (ax2)2 4g% |\ ox? oxt oxt | 4g®|\ oxt ox% ox?

(Steven Weinberg)’

With a given diagonal metric the curvature K can be calculated by using the formula

:_i 62922 + azgll + 92 (6911)2_’_6911 a922 + i (agzz jz+agl1 agzz
29 (axl)2 (c’?xz)2 497 |\ ox? ox' oxt | 4g®| oxt ox? ox?

40



3.4  The Robertson-walker metric in (3+1)-dimensions

The only metric that is in accord with the cosmological principle is the Robertson-

Walker metric.

The Robertson-Walker metric in 4-dimensional space-time is given by

dr?
1—kr?

ds® :czdtZ—RZ(t){ +r2(d¢92+sin29d¢;2)} ............................ 3.33

Where R (t) is called the expansion factor or cosmic scale factor and k is the curvature

scalar.

3.4.1 Derivation of the Robertson-walker metric in (3+1)-dimensions

The simplest way to derive this metric is to consider a 3 - dimensional space as a space
embedded in a 4 - dimensional hypersurface.
Assuming that space-time is static, we can choose a time coordinate t such that the line

element of space-time could be described by

ds? = c2dt? — o AX'dX! oo 3.34

Where «ij functions of space are coordinates x' (i, j =1,2,3only)
We can now construct a homogeneous and isotropic closed space of the positive curvature.

Let (x,x?,x*,x*) be a rectangular Cartesian coordinates in E4. Then a hypersphere of radius

R has equation
(R)Z = (X)2 + (X2 + ()2 + (X*)? e 3.35

Where R is in general a function of time t

In such a space the line element is defined as

do? = (AXY)? + (AX?) + (AX%)? + (AX*) oo 3.36
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To use coordinates intrinsic to the surface, we set
x' = Rsin ycos@
x* = Rsin ysin@cos ¢
x® = Rsin ysingsin ¢
x* =Rcos y
Computing the(dxi )2 , Substituting into equation (3.36) and simplifying, we obtain
do® = R%d y* +R?sin® yd&” + R?sin® ysin® 6d ¢’

Hence

do? = R*(d g2 +sin® yd6” +sin® ySiN*0d@®) .ovvvvveveeereeeeeernnn, 3.37

The ranges of 6,¢ and y are given by

0<y<r, 0<f<r, 0<¢p<27
Setting  r=sin y and differentiating we have

dr? =cos® yd y°
2 2

S 3.38

cos“y 1-r
Substituting (3.38) into (3.37), we have
2 o| dr? 20402 | cin? 2
do”“=R 1 S+ r(dO” +sin“0d@7) | oo 3.39
-r

Where R is the radius of the universe or the expansion factor

Substituting (3.39) into (3.34), the line element becomes

2
ds® :czdtz—R{Lz+ rz(d02+sin2¢9d¢2)} ............................................ 3.40
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This is the Robertson —Walker metric for a space of constant positive curvature.

We can similarly get other homogeneous and isotropic spaces by considering them as 3 —
surfaces of constant negative curvature. In terms of the Cartesian coordinates x*,x, x>, x*

used earlier, a 3 — surface of constant negative curvature is given by an equation of the form
() + () + (¥ = (x*)* = ~(R)*
Where R is in general a function of time
The line element in this pseudo-Euclidean space is given by
do® = (dx")? + (dX?)? + (dX®)? = (AX*)? e, 341
By setting
x" = Rsinh ycos@,
x* = Rsinh ysin@cos¢,
x> = Rsinh ysin@sing,
x* =Rcosh y
Equation (3.41) becomes

do® =R*[dy* +sinh® z(d0° +sin* 0d#”) | woocvvrvvcvvcrcn 3.42
The negative sign on (dx*)> means we are embedding our 3 — surface in a pseudo —
Euclidean space but not in a Euclidean space.

In Euclidean space, the Pythagoras theorem holds with the line — element given by
dx® = dx,? +dx,” +dx,* +... If some of the plus sign on the right — hand side are changed to

minus signs, the results is a pseudo — Euclidean space. Thus Minkowski space is a pseudo-

Euclidean space.
By setting r =sinh y

dr =cosh yd y
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dr? 4.
cosh? y

dr?

112 =0 7 e 3.43

Substituting (3.43) into (3.42), we obtain

2
do? = R{ld%+ r2(d¢92+sin20d¢2)} ......................................... 3.44
+

Comparing (3.44) with (3.39), we can combine both expressions into a single expression by

introducing a parameter k that takes values +1. That is

dr?

kr?

do’® = RZL +r?(do? +sin20d¢2)} ................................................ 3.45

Putting k =0 in (3.45), we obtain
do® =R?[dr® +r(d6’ +sin’ 0dg?) |

Which is the Euclidean line element scaled by the constant factor R. This is the third
alternative of the 3 — surface of zero curvature. The most general line element which is

referred to as the Robertson — Walker line element is given by

dr?
1—kr

ds? :czdtZ—RZ(t){ - +r2(d¢92+sin29d¢2)}

Where R (t) is called the expansion factor or cosmic scale factor and k is the curvature

parameter

The main reason for using Robertson — Walker metric for this project is that, it was
formulated based on the cosmological principle. That is a space is homogeneous and

isotropic.

Isotropic condition tells us that there should be no terms of the form dtdx” in the line

element. This can easily be seen in the following way. If we had terms like g, dtdx” in the

line element, then spatial displacements dx“ and -dx*“would contribute oppositely to

ds? over a small time interval dt, and such directional variation is forbidden by isotropy.
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The (figure 3.3) below shows three surfaces formed when the curvature scalar is varied from
-1, 0to +1.

(b)

(©

Figure 3.3 (a) shows a section of the Euclidean plane, (b) shows a spherical surface,
(c) Shows a saddle — shaped surface

Suppose we try to cover these surfaces with a plain sheet of paper. We will find that our sheet
fits exactly and smoothly on the plane surface. If we try to cover the spherical surface, the
sheet of paper develops wrinkles, indicating that the sheet of paper has area in excess of that
needed to cover the surface. Similarly, in trying to cover the saddle our paper will be torn,
being short of the necessary covering area. These differences can be expressed in differential
geometry by the notion of curvature. The plane surface has zero curvature, the spherical
surface has positive curvature and the saddle has negative curvature. Our paper covering

experiment tells us in general whether a given surface has a zero, positive or negative

curvature as stated by (Jayant \Y/ Narliker)l
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Chapter 4

4.1 The derivation of the Robertson-Walker metric in (2+1)

dimensions

In analogy with the Robertson walker metric, we consider a 2-dimensional space as a space

embedded in 3-dimensional hypersurface

Assuming that the space time is static so that we can choose a time coordinate t such that the

line element of space time could be described by

ds? = c2dt® —a,dX'dX] oo 4.0

Where a; functions of space are coordinates x'(i, j =1,2) .We can construct a homogenous

and isotropic closed space of positive curvature.

Let (x',x%,x%) be a rectangular Cartesian coordinates in E,. Then a hypersphere of radius R

has an equation

(X)) 4+ (X3)2 4+ (X2 = (R)? oo 4.1

where R is in general a function of time

Let the line element in such a space be given by
do? =a;dx'dx’ or
do? = (dX")? +(AX?)% 4+ (dX%)? v, 4.2
Then by setting
x' = Rsin ycos@
x*=Rsinysing

x*=Rcosy
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We Compute the dx' )2, substitute into (4.2) and simplify, we obtain

do® =R%d y* + R%sin® yd&”

Setting r=siny dr=cosydy
dy? dr?  dr?  dr?
d cos’y 1-sin®y 1-r?
Hence
2
do? = RZLdLﬁ rzdez} ................................................... 43
—r

Substituting equation (4.3) into (4.0), we obtain

2
ds? = c2dt* —R? [L

T +r2d¢92} ............................................ 4.4
-r

This is the Robertson-Walker metric for a space of constant positive curvature

Similarly, we can construct a homogeneous and isotropic space by considering them as 2-

surfaces of constant negative curvature.

In terms of the Cartesian coordinates x*,x?,x? used earlier, two surfaces of constant negative

curvature is given by

SO RN S (=) I 45

Where R is in general a function of time

The line element in this pseudo-Euclidean space is given by

do? = (AdXD)? +(AX?) = (AX3)? e, 4.6
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Now setting
x' = Rsinhycosé
x* = Rsinh ysiné
x® =Rcosh y
Computing the(dxi )2 , and substituting into (4.6) and simplifying, we obtain
do? =R%d y* + R?sinh? yd&?
do? =R*(d y? +SiNh? yd6?) oo 4.7
Setting r =sinh y
dr =cosh yd y
dr? = cosh® yd »?

_odr? dr? dr?
cosh? y  1+sinh? y  14r°

dx?

Combining equations (4.7) and (4.8) introducing a parameter k that takes the values +1 and

0, we have

When k=0
do? = Rz[dr2+r2d02]

Which is the Euclidean line element scaled by a constant factor. It is the third surface of zero

curvature.

The Robertson Walker like line element in (2+1)-dimension is given by
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dr?
1—kr?

ds® = c*dt? —Rz(t)[ +r2d¢92} ..................................... 4.10

Where R (t) is the expansion factor and k is the curvature parameter that characterises the

geodesic of the space.

4.2  Calculation of the curvature of (2+1)-dimensional space
From equation (4.10) the determinant of the special part is given by
R2

gij = 1- kl’2
0 R?r?

Using the formula derived from section 3.3.1, the curvature K is given by

1| _P9n 00y |, 9 (6911j2+69u 09y |, O (6922 ]Zﬁgu 09y,
29 (8x1)2 (8x2)2 49° |\ ox oxt oxt | 4g®| oxt ox% x>

2 4.2

Where g, ::7 g, =R°r? and g :% is the determinant of the metric tensor

takenx* =r, x> =6

6922 _ 6922 — 2R2|’

oxt  or

62922 _ 62922 _ 2R2

(o) ot
0y _ 09 _
x> ox?

09y 09,  2kR*r
oxtor (1—kr2)2
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Hence

K- 1| 0 |, 9 {agn 6922}+ Oy (%ZJZ
29 (axl)z 49°| oxt oxt | 4g?|\ oxt

L-kr® R (1-kr?) [ akR? R2 (1-kr?
:%(_ R+ 4r | R8r4) (1_kr2r)22R2r +4(1_kr2)( R8r4) (4R"r?)
K—_(l_kr2)+L+(l_kr2):L

Where k =0 defines a flat space, k =—1defines a space of negative curvature and k =+1a

space of positive curvature
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4.3  Calculations of the christoffel symbols

Consider the line element

dr?
1—kr?

ds? =czdt2—R2(t){ +r2d«92}

The metric determinant from equation (4.10) is given by

1 0 0
-R*(t)

=10

Ji 1—kr?

0 0 —r’R%(t)
Letx'=ct, x>’ =rand x*=6
In our calculations we shall write R (t) asR and R = c;—lj for short, R is a function of t only.

Using the formulae derived from section 2.4

The christoffel symbols are given by

. 1 ag..
1 L=l
@ i 2g; ox'
7 _ L % _g for i=1,3
2g;; ox
Y4
2 8 R 2 2 2
» 1 09, 1-kr* \1-kr") 1-kr*| —2krR® |  kr
270, ¢ 2R? o 2R | (1K) | 1ok
) 1 ag__
2 L= =i
( ) 7/“ 2gii aXJ

7; =0 for j=2,3

72 — 1 agZZ
2 2g,, oxt

51



- [ —R? ot —2R?
)

—R?
o ——— , . .
1 1-kr’ ) 1-kr’( 2RR) R
1-kr?) cR

1—kr?

. 1 09,
2 2g,, oX°

/8 = 1 6g33: 1 _
%29, X —2R*r? cot —2R%r?

cR

o(-Rr*) 1 (—ZerRj:E
C

1 og, 1 O(-R")_ orir 1

3 _ _ _
V2 20, X —2Rr2  or —2R%r? r
. 109,

3 i T+ i

© 717 2g, o

—R?
ol — . .
v lag, 1 {l—krzj_i 2RR )RR
72 29, o' 2 cot 2cl1-kr® | c(—kr?)

P _10(-R'r") 1(2RRr*)_RRr’
¥ 29, X' 2 cét 2 ¢ c
72 — -1 agll _
t2g,, ox
- o(—R?r? —kr?
y§3=2 : 69323:— : ; ( )=1 k§ (—2R%r)=-r(1-kr?)
9z OX o[ -R or 2R
1-kr?

y;=0forj=1,2

The non-vanishing christoffel symbols therefore are

- X
RR 1_RRr 2_ kr 2__R 2_ 2
7;2:—C(1_kr2) v V3 = c ! 722_1_kr2 v Vo1 T CR, 7/33——I’(1—kr ),
1
3 = 3 e
Va1 R’ V32 .
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4.4  Determination of the geodesics
Using the general geodesic equation from section 3.2

d’x) ; dx" dx"

+y T 411
ds? 7h ds ds

The differential equations are formulated as follows

For j=1 we have (4.11) to be

d’xt | (dx? ’ L[ ax® ’
—+Vp| —— | +7| = | =0
ds? 7/22[ ds ] 73| "gs

d%  RR (drjz RRr? [d@
C—+ | | +
ds® c(l—kr°)\ds c \ds

j =0 4.12

For j=2 equation (4.11) becomes
d2x2+ , dx? dx* d_x2 dx® _0
ds? 7% ds ds E ds gE ds

2 > 2
u+2_R£C_dt+ kr (drj — (1 kr )( j =0

ds> cRds ds 1-kr*ld

Hence

2 . 2 2
d—£+§ﬂ$+%(£j —r(l—krz)(d—g] S R 413
ds R dsds 1-kr<\ds ds

For j=3 equation (4.11) becomes

d’x®* 5 dx® dx 5, ax® dx?

—+7 =0
ds? £ ds ds £ ds ds

d29+2rz dgcdt  2dodr _
ds> cR ds ds r ds ds
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Hence

d?9 2R d6? dt 2dé@dr
Tkl s il
ds> R dsds r dsds

The three differential equations to be solved are

d%  RR (drjz Rer(deT
C—+ <l |+ —| =0
ds® c(l—kr")\ds c \ds

2 > 2
dr,2Rdrdt, Kk (drj —r—kr )( j -0
R dsds 1—kr®\ds ds

d?9 2RdOdt 2dodr

ds?> R dsds r ds ds

From equation (4.14) the left hand side can be combined as follows

i(Rzr2 dej R’r? o 9+2RRr2 do dt +2rR2d—9£
ds ds ds? ds ds ds ds

, ,(d?0 2RdOdt 2d6Odr
=Rr ot ———t+——— |=
ds R dsds r ds ds

Hence
d (RZ 2 dej 0
ds ds
EE(RZ 2 dgjzo
ds dr ds
But ar o i[Rzrzd—‘gjw
ds dr ds

J.i(Rzr2 OI—ngr =0
dr ds

dé ) .
R?r? P a where ais a constant not a fucntion of r
S
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...................................................................... 4.15
From equation (4.13) we have
2 : 2 2
d—!+2—Rﬁﬂ+Lz(ﬂj :r(1—kr2)(d—9j .............................. 4.16
ds R dsds 1-kr\ds ds

Combining the left hand side of the above equation we have

d R? dr R d°r 2RR dr dt R2kr
Lds | L ds? " L ds ds (E)
(1 kr )2 (1—kr )2 @—kr )2 (1—kr )2
That is
d R? dr

¢ LR [dr R o,
(1k);ds (1k)2 ds? Rdsdslkr

(1—kr2)5d R dr

dr 2Rdrdt kr
R2

............................. 4.17
(1 r );ds ds2 R ds ds 1 krz( )

Hence equating (4.16) and (4.17) we have

1

1-kr?)2 q| R 4oy
| = ) & o |5
(1—kr?)2

4

Multiplying through by , we have
R drd| R® dr _R4r(d9j2
1 1
(1 K 2)5 ds dr (L—kr?)? ds ds
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Substituting equation (4.15) we have

R? drd R?2 dr a ) a
EEE —1$ =R4r(R2r2j ZF .......................... 418
(1 kr2)2 (1—kr?)?
Let
2
p——FR 1% ................................................................ 4.19
(1-kr?)2 &

Equation (4.18 ) becomes

dp a’
p_p:_3
dr r
do” _a
2dr r®
aZ
p?=—=-+/ Where 3 is a constant
r
. pr-a’

p:%«/ﬂrz—a2 .................................................... 4.20

Substituting equation (4.20) into (4.19) we have

2
R—Ezl /ﬂrz_az

(k2 O T

And

dr (1— kr2)5 (,Br2 —a2)

—= TR 4.21
ds rR
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4.4.1 The differential equation involving the coordinates r and ¢

From equation (4.21) we have

doar (1-ke): (pri—a?)
ds do rR?

1

o _(kCp(prt-ates oo 422
do R? 4o

Substituting equation (4.15) we have

ar (1K) (pr-a?) e
do R’ a

3_;=£(1_kr2)§(ﬂr2 _at)e

0" r(m2 —1); (1—|<r2)E ..................................................... 4.23
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1
Set u=—- we have
r

1

——du
J-dazL/(a—E)(u—k)

Now set
U= COS* G+ KSIN% Prvererirrcreireiceiesee s 4.24
Then
du =(—2a cosgsin g+ 2k cos gsin ¢) d g
du =-2cos¢sing(a—k)dg

And

J(e@-u)(u-k) :\/(a—acosz¢—ksin2¢)(acosz¢+ksin2¢—k)

- Jlaali-sm o) 9] o’ g {1-cos' 9K

= J(e-a+(a—K)sin? §)((a-K)cos® g+k k)
=(a—k)singcos ¢

Hence

_l(a_k)(—zcos¢sin ¢)dg
do-—2 - =d¢
(a—k)cosgsing

[do={dg
0 = Brereeeeeeeeeeeeseeee e 4.25
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From (4.24)
u=acos’@+ksin’@
= acos’ 0+k(1-cos’ 0)
=acos’@+k-kcos’

u—k=(a-k)cos*o

c
|
=

=cos’ 0
a—k
-
r =cos? 0
a_

rizz(a—k)coszéhrk

1=(a—k)r?cos’ 0+Kr’. ..., 4.26
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4.4.2 The geodesics obtained in (2+1)-dimensions.
Whenk =0, equation (4.26) becomes

ar’cos’f=1 a>land 0<r>1

From the substitution

X, =Rsin ycosd r=siny

X, = Rrcos @
v R
Ja

R is a function of time but can be taken to be a constant in any particular epoch.
This is a straight line in Euclidean plane which describes an open two dimensional space

An epoch is a time frame of about one million years which is very small compare to the

estimated age of the universe.

Whenk =1, equation (4. 26) becomes
1=(a-1)r’cos’6+r? where a>land0<r<1
From the substitution
X, =Rsin ycos@ x, =Rsin ysin@ but r =sin y

X +X
17 %2 _ 2

X, =Rrcosé x,=Rrsing o2

+ X
1:(05—1)%+X1R2 .

R*=axi+x;  or

ax’+y* =R?
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Graphs of different values of «

ah
NI

Figure 4.1 Graphof =1 and R=1 we have x*+y’ =1 indicating a great circle

Figure 4.2 Graphof a«>1 ,indicating ellipses.

Whenk =-1, equation (4.26) becomes

1=(a+1)r*cos’@—r? where a>land0<r<1
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Using the transformations

X, =X=Rsin ycosd x,=y=Rsinysing and r =sin y

X2 X2+y2
1:(6(4-1)?— R2
R*=ax’ -y’

Graphs of different values of «

»
»

Figure 4.3 Plotting with different values of « show different hyperbolae, they describe the

surface of a saddle and are open spaces.
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4.5 The Null Geodesic

The differential equations in terms of the affine parameter are

, .
4, RR (A1 Ry 90 e 4.27
dA’ 1-kr\di di

2 > 2
d—2+25£ﬂ+L2(£j r(L-kr? )(dej T 4.28
d2 “Rdidi 1-kr*\da dA

2

40 pRAO A 200 AT e 4.29

a2 RdidA rdida

From (4.29) we have

i(Rzr2 dgj Rr? d* 92+2RRr2 dt d‘9+2rR2d—9ﬂ
dA dAi dA dida dida

+
di> Rdi di rdidi
d (RZ 2de) 0
di di

ﬂi(RZer_elzo
dAdr dA

_Rzr{dze R dt dg  2de dr}

Il
o

| S0, e
Since di dr di

And therefore
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Rr? j—i =a where ais a constant independent of r

For a null geodesic, we have

S\ 2
dx'
1= =0
g”[d/l}

Thus,

axt ) ax? ) e )’
kil == —1 =0
gll[d/lj +922[d/1j +gS3[d//LJ

Substituting the metric, we have

2 2 2 2
(] ] ee(2)
da 1-kre\dA di

2 2 2 2
cz(ﬂj =R_2(£j L 431
di) 1-kr?\dA dz

) 2 2 2
C_(Ej :Lz(ﬂJ +Rr2(d—0j ...................................... 4.32
R\di) 1-kr2ldA di

From (4.27), we have

2 2 2
czdt2+R R2 ar +Rr2d—9 =0
da 1-kr-\ dA da

Substituting equation (4.32), we have

,d% Rc’(dt)
¢ —+—|—| =0
di> R \da
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o)
di> R\da

2 2
TR
di\ da di di

2 3 2
=R d_2+5(£j =0
di® R\dA

1(Rﬁjz
di\ da
drd(pd) g
didr dA
or since ﬂ;«tO, a Ri =0
dA dr dA
And therefore
dt .
FzH =h where h is a constant, not dependent on r
R, 433
dli R

Substituting (4.33) and (4.30) into (4.31), have

2 ) 2 2
C(gj :1Rk (:_;j +R2r2[R?2j
—kr r

ch® a* R (ﬂjz
R> R*? 1-kr*\dA

(g]:w 2
di R* r2

a*(1- krz)(czzzrz —1}

R*r?
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: (chj2
Setting o =| —
a

dr a(l-kr?)?(ar®-1)2
di R’r
1 1
do dr a(l-kr®)?2 (ar?-1)2
dido Rr

dé R? a
:—;= r(1- krz);(ocr2 —1);
(ljr r=dé
r(1-kr?)?2 (ar?-1)2
ar ~do
2

Setting u = riz
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Making the substitution

U=0COS” G4+ KSIN? oo 4.35
du =[-2a cos gsin ¢+ 2k cos gsin ¢]d ¢

du=-2cos¢gsing(a—k)dg

J(@-u)(u-k) :\/(a—acosz¢—ksin2¢)(acosz¢+ ksin® g —k)

:\/(a—a+asin2¢—kSin2¢)(aCOSZ¢+k—kCOSZ¢—k)

J

J(oz—k)sin2 $(a—k)cos’ ¢

=(a—k)singcosg
Equation (4.34) becomes

I—Zcos¢sin¢(a—k)d¢
(a—k)cosgsing

—2jde

$=0

From (4.35)
U=cacos’f+k (1—cos2 9)

u=(a—k)cos® 8+k

r—lzz(a—k)cosze+k

1=(a-k)r*cos’ §+kr?
Using the substitutions
X =Rsin ycosé

y=Rsinysinég
z=Rcosy
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And putting R to be constant in any particular epoch, we have
2 2 2

X +yi=r

1:(a—k)x2+k(x2+y2)
L= X2 FKY? oo 4.36

These null geodesics are the same as the geodesics obtained from the massive particle.
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Chapter 5

Discussion

5.1  The non-null geodesic

After determining the geodesics for the Robertson-Walker metric in (2+1)-dimensional
spacetime, we found that these geodesics are all curves and can lie on surfaces. Thus, when
the curvature parameter k =0 we have a straight line which is a section of the Euclidean

plane.

When the curvature parameterk =+1, we have great circles and ellipses. They are closed.
When the curvature parameter k =—-1 we have hyperbolae which describe the surface of a

saddle. They are open.

These geodesics are curves because of the presence of gravity and curvature of the space.
It is therefore not possible in the presence of gravity and hence curvature, to transform all
geodesics into straight lines. Under such circumstances geodesics are intrinsically curved. As
a result, spacetime itself is said to be curved by the distribution of mass and energy in it.
Bodies like the earth are not made to move on curved orbits by gravity; instead, they follow
the nearest thing to a straight path in a curved space, which is called a geodesic. For example,
the surface of the sphere is a two-dimensional curved space. A geodesic on the sphere is

called a great circle, and is the shortest path between two nearby points.
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5.2 The null geodesic

The null geodesic is the path described by a photon. A photon is a quantum of light.
Light rays too must follow geodesics in spacetime. Again, the fact that space is curved means
that light no longer appears to travel in straight lines in space. So general relativity predicts
that light should be bent by gravitational fields. For example, the theory predicts that the light
cones of points near the sun would be slightly bent inward, on the account of the mass of the
sun. This means that light from a distant star happened to pass near the sun would be
deflected through a small angle, causing the star to appear in a different position to an

observer on the earth (figure 5.1).

Star
*

Light from star
7
7
7
e
7
@/
o

Observer on earth surface

/,* Apparent position of star

Figure 5.1 Shows deflection of light by the sun

The bending of a photon by a black hole

A black hole is a region of spacetime from which nothing, not even light, can escape

because of its strong gravity.
The path of a photon from a distant source is bent by a black hole due to its strong gravity

The equations of the null geodesic (paths described by a photon) are given by

ax?+ky’ =1
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Thus, when k = 0the photon with finite energy is absorbed by a black hole and therefore
describes a straight line. Whenk =+1anda =1, the photon describes a circular trajectory
around a black hole. When k =—1the photon is deflected outwards due to the strong gravity

possessed by the black hole to describe a hyperbola
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5.3 Conclusion

The geodesics determined in (2+1)-dimensional spacetime are the same as the
geodesics in (3+1)-dimensional spacetime. This is due to the fact that the 2-dimensional
surfaces on which these geodesics lie are embeddable in 3-dimensional coordinate space.
The determination of the geodesics in (2+1)-dimensional spacetime are easier than in
(3+1) - dimensional spacetime since the number of equations involved in (2+1)-
dimensional spacetime are much smaller than those in (3+1) dimensional spacetime. This
reason serve to buttress the viewpoint that certain problems in (3+1)-dimensional
spacetime can be more easily solved by considering them in (2+1)-dimensional
spacetime.

After constructing the 3-dimensional equivalent of the Robertson —Walker metric,
we computed all the geodesics using the equation for the geodesics in general relativity.
We found that these geodesics are surfaces of zero, positive, and negative curvatures. It
was not surprising that, the geodesics in the plane and spherical surface were found to be
a straight line and great circles respectively. What can apparently be considered to be
new results found are the geodesics on the ellipsoidal surface and the surface of a saddle.
These geodesics are ellipses and hyperbolae respectively.

Since all these geodesics are curves, it means that spacetime itself is curved and that
bodies follow these geodesics as their trajectory.
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