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We compute the vacuum polarization energy of kink solitons in the ϕ8 model in one space and one time
dimensions. There are three possible field potentials that have eight powers of ϕ and that possess kink
solitons. For these different field potentials we investigate whether the vacuum polarization destabilizes
the solitons. This may particularly be the case for those potentials that have degenerate ground states with
different curvatures in field space yielding different thresholds for the quantum fluctuations about the
solitons at negative and positive spatial infinity. We find that destabilization occurs in some cases, but this
is not purely a matter of the field potential but also depends on the realized soliton solution for that
potential. One of the possible field potentials has solitons with different topological charges. In that case the
classical mass approximately scales like the topological charge. Even though destabilization precludes
robust statements, there are indications that the vacuum polarization energy does not scale as the
topological charge.
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I. INTRODUCTION

Solitons are stable, localized particlelike solutions to
nonlinear wave equations in field theories [1–3]. These
particlelike solutions include solitons such as monopoles in
(3þ 1) dimensions and vortices, strings and lumps in (2þ 1)
dimensions. The soliton solutions have wide applications in
many branches of physics: in cosmology [4], condensed
matter physics [5,6], as well as hadron and nuclear physics
[7]. The interested reader is directed to those textbooks and
review articles for more details and further references.
In one space and one time dimensional models with

distinct vacua, soliton solutions connect neighboring vacua
between negative and positive spatial infinity. As there is
no finite energy continuous transformation between these
vacua at spatial infinity, these so-called kink solitons are
topologically stable. When embedded in higher dimen-
sions, these kinks emerge as branes or interfaces. In one
space dimension dynamical stability can be argued for
from Derrick’s theorem [8]. The derivative and potential
contributions to the classical energy scale oppositely when

varying the extension of the kink. The derivative part
diverges when the static configuration is shrunk to a point,
so does the potential part for wide configurations. Hence
the classical energy is minimized for a finite size of the kink.
The situation may, however, change when nonlocal quantum
effects are included. Here we will therefore compute the
leading (one-loop) quantum correction to the classical
energy of the kink using spectral methods [9]. Such
corrections have also been computed within the heat kernel
expansion with ζ-function regularization [10,11] for other
soliton models. Agreement is observed whenever compari-
son is possible. However, spectral methods are technically
less involved and do not require the truncation of an
expansion.
Generally nonlinear field theories have degenerate vacua

with different curvatures in field space. The different
curvatures translate into different masses for the fluctua-
tions about the degenerate vacua. We will call primary
vacuum the one with the lowest of all allowed masses, the
others will be called secondary vacua. In models with
several fields the primary vacuum contains the smallest of
all curvature eigenvalues. It has recently been conjectured
that the occurrence of such secondary vacua causes the
solitons to be unstable on the quantum level. As the kink
occupies the secondary vacuum over an increasing
region in space, the one-loop quantum energy decreases
without a lower bound and thereby destabilizes the kink.
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This conjecture has been drawn from two model calcu-
lations, in the ϕ6 model [12,13] and the multifield Shifman-
Voloshin model [14,15]. In the context of the ϕ6 model, a
similar conclusion was drawn when it was observed that
fluctuations produce a net force on the kink [16].
In this paper we will consider the ϕ8 model that also

contains topologically stable solitons [17,18] and which,
for certain model parameters, exhibits secondary vacua.
Recently this model has attracted quite some attention,
cf. Ref. [19] and references therein, as it induces long range
interactions in the kink-antikink scattering. In this model we
will find that indeed the vacuum polarization energy (VPE),
which is the leading quantum correction to the soliton static
energy, is not bounded from below in certain versions of this
model either. We note that though the ϕ8 is superrenorma-
lizable (as any scalar theory in one space and one time
dimensions) perturbatively, wewill see that renormalizability
is nevertheless an issue and that only a particular renorm-
alization condition (the no-tadpole prescription) leads to a
finite quantum correction. Super-renormalizability makes
statements on the number the divergent Feynman diagrams
but not the structure of the counterterms.
In the next section we briefly outline the construction

principle of soliton solutions in one (space) dimensional
models and list the field potentials for our present study. In
Sec. III we describe the general formalism for computing
the one-loop energy correction to the energies of the
solitons that we construct explicitly in Sec. IV. We present
and discuss our numerical results in Sec. V and conclude
in Sec. VI.

II. THE MODELS

Starting point is the general Lagrangian for a D ¼ 1þ 1
dimensional model

L ¼ 1

2
∂μϕ∂μϕ −UðϕÞ; ð1Þ

whereUðϕÞ is the field potential that governs the dynamics.
In one space dimension it is standard to derive a first order
differential equation for the soliton profile [1]. Integrating
the right-hand side in

x − x0 ¼ �
Z

ϕKðxÞ

ϕKðx0Þ

dϕffiffiffiffiffiffiffiffiffiffiffiffiffi
2UðϕÞp ð2Þ

then yields an implicit function for the profile function
ϕKðxÞ. The first order formalism furthermore simplifies the
classical energy (mass)

Ecl ¼ M ¼
Z

∞

−∞
dx

�
1

2

�
dϕK

dx

�
2

þ UðϕKÞ
�

¼
Z

ϕKð∞Þ

ϕKð−∞Þ
dϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2UðϕÞ

p
ð3Þ

for the soliton solution. For the ϕ8 model we consider three
different field potentials

U2ðϕÞ ¼ λ2ðϕ2 − a2Þ2ðϕ2 þ b2Þ2;
U3ðϕÞ ¼ λ2ðϕ2 − a2Þ2ðϕ2 þ b2Þϕ2 and

U4ðϕÞ ¼ λ2ðϕ2 − a2Þ2ðϕ2 − b2Þ2: ð4Þ

The subscripts denote the number of degenerate vacua that
the respective potential contains.
Before discussing the model and its soliton solutions

in more detail we will briefly review the computation
of the VPE, in particular in the context that secondary
vacua exist.

III. VACUUM POLARIZATION ENERGY

The VPE, Evac emerges from the shift of the zero point
energies of the fluctuations in the presence of the soliton.
This shift manifests itself in two contributions, from the
discrete bound states (b.s.) and from the modified density
of the scattering states ΔρðkÞ. Here k is the wave number of
the continuous scattering states. We thus write

Evac ¼
1

2

Xb:s:
j

Ej þ
1

2

Z
∞

0

dk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

L

q
ΔρðkÞ þ Ect; ð5Þ

where mL is the mass for fluctuations about the primary
vacuum and Ect is the contribution from the counterterms
that render the model finite at one-loop order. We extract
both the bound state energies Ej and ΔρðkÞ from the
fluctuations ηðt; xÞ about the soliton. Since the soliton is
static we can separate the time dependence as ηðt; xÞ ¼
eiωtηðxÞ. We then linearize the field equations for a general
field potential UðϕÞ:

�
−

d2

dx2
þ VðxÞ

�
ηðxÞ ¼ ω2ηðxÞ; where

VðxÞ ¼ d2UðϕÞ
dϕ2

����
ϕ¼ϕKðxÞ

: ð6Þ

As described at the end of this section, it is straightforward
to (numerically) obtain the discrete b.s. solutions ω ¼ Ej

with 0 ≤ Ej ≤ mL. The continuous scattering states are

parametrized by real k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

L

p
. Unfortunately,

extracting scattering data and subsequently ΔρðkÞ is subtle
when there are secondary vacua. In such a case the
background potential VðxÞ approaches different values at
negative and positive spatial infinity. We take our frame
of reference such that limx→−∞VðxÞ ¼ m2

L and define
m2

R ¼ limx→þ∞VðxÞ so that always mR ≥ mL.
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According to the Krein formula [20] we find that

ΔρðkÞ ¼ 1

π

dδðkÞ
dk

where δðkÞ ¼ −
i
2
log ½det SðkÞ� ð7Þ

is the sum of the eigenphase shifts that we extract from the
scattering matrix1 SðkÞ. To compute SðkÞwe first define the
pseudopotential

VpðxÞ ¼ VðxÞ −m2
L þ ðm2

L þm2
RÞΘðx − xmÞ; ð8Þ

where xm is an arbitrary matching point. Then the wave
equation reads

�
−

d2

dx2
þ VpðxÞ

�
ηðxÞ ¼

�
k2ηðxÞ; x ≤ xm;

q2ηðxÞ; x ≥ xm;
ð9Þ

with q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

L −m2
R

p
. For real q, i.e., k ≥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

R −m2
L

p
we formulate a variable phase approach [21] by para-
metrizing

x ≤ xm∶ ηðxÞ ¼ AðxÞeikx
A00ðxÞ ¼ −2ikA0ðxÞ þ VpðxÞAðxÞ

x ≥ xm∶ ηðxÞ ¼ BðxÞeiqx
B00ðxÞ ¼ −2iqB0ðxÞ þ VpðxÞBðxÞ: ð10Þ

Here, and subsequently, a prime denotes the derivative
with respect to the coordinate x. We solve Eq. (10) with
boundary conditions Að−∞Þ ¼ Bð∞Þ ¼ 1 and A0ð−∞Þ ¼
B0ð∞Þ ¼ 0 yielding the scattering matrix [22]

SðkÞ ¼
�
e−iqxm 0

0 eikxm

��
B −A�

iqBþ B0 ikA� − A0�

�−1

×

�
A −B�

ikAþ A0 iqB� − B0�

��
eikxm 0

0 e−iqxm

�
;

ð11Þ
where A ¼ AðxmÞ, etc., are the coefficient functions at the
matching point. In the second case, k ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

R −m2
L

p
we

replace iq by κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

R −m2
L − k2

p
≥ 0 and para-

metrize the wave function for x ≥ xm as ηðxÞ ¼
BðxÞe−κx. In that region the differential equation now reads
B00ðxÞ ¼ κB0ðxÞ þ VpðxÞB and we extract the reflection
coefficient as

SðkÞ ¼ −
AðB0=B − κ − ikÞ − A0

A�ðB0=B − κ þ ikÞ − A0� e
2ikxm: ð12Þ

In the nontadpole renormalization scheme, which is the
only one applicable when secondary vacua emerge [12],

the counterterm contribution in Eq. (5) subtracts exactly
the Born approximation δð1Þ from the phase shift [9]. Again
there is subtlety in the presence of secondary vacua as there
is a direct contribution from the pseudopotential as well as
from the step function potential inherited from the different
masses

δð1ÞðkÞ ¼ −
1

2k

Z
∞

−∞
dxVpðxÞ

����
xm

þ xm
2k

ðm2
R −m2

LÞ

¼ −
1

2k

Z
∞

−∞
dxVpðxÞ

����
0

: ð13Þ

Here the subscript gives the position of the step in the
pseudopotential, VpðxÞ. We stress that this Born approxi-
mation for the phase shift is obtained from the full
fluctuation potential, VðxÞ −m2

L. In Eq. (8) we used the
unique feature that the Born approximation is linear in
the fluctuation potential to obtain a well-defined integral
representation. Especially we have thus found that a
particular matching point must be chosen and that there
is no variation of the Born approximation with xm. Of
course, for numerical evaluations we always verify that this
is the case for the full calculation. In total, the vacuum
polarization is computed as

Evac ¼
1

2

X
j

ðEj −mLÞ

−
1

2π

Z
∞

0

dk
kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þm2
L

p ðδðkÞ − δð1ÞðkÞÞ: ð14Þ

In the introduction we mentioned that the renormalization
of the VPE in the ϕ8 model would only be possible for
the no-tadpole condition with respect to the full potential.
This is exactly what Eq. (14) implies. There is no leftover
first order contribution to the VPE. Any first order finite
renormalization would contain an integral of the full
fluctuation potential. It cannot be the pseudopotential since
the model by itself has no information on the matching
point. However, the integral over the full fluctuation
potential does not exist when mR ≠ mL.
For symmetric background potentials Vð−xÞ ¼ VðxÞ

(which implies mR ¼ mL and no secondary vacuum) a
simpler formalism to compute the VPE exists. It makes
ample use of analytic properties of scattering data and
results in [9]

ES
vac ¼

Z
∞

mL

dt
2π

tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 −m2

L

p
×

�
ln

�
gð0; tÞ

�
gð0; tÞ − 1

t
g0ð0; tÞ

�	�
1

: ð15Þ

The subscript indicates that the Born approximation has
been subtracted. Here gðx; tÞ is the Jost solution factor that
solves the differential equation

1Branches of the logarithm must be taken such that δðkÞ is a
smooth function with δð∞Þ ¼ 0.
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g00ðx; tÞ ¼ 2tg0ðx; tÞ þ VðxÞgðx; tÞ ð16Þ

for imaginary momenta t ¼ ik with boundary conditions
gð∞; tÞ ¼ 1 and g0ð∞; tÞ ¼ 0. We will use this formalism
to verify our results in case VðxÞ is indeed symmetric. It
can also be used to consider Vðx0 þ xÞ þ Vðx0 − xÞ [12].
For sufficiently large x0 this is a noninterfering super-
position and the resulting VPE is twice that of VðxÞ [23].
Unfortunately, numerically there are restrictions on how
large x0 can be taken.
The wave equation (6) is also used to determine the

bound state energies Ej < mL. We integrate this equation
with the initial conditions

ηL → 1 and η0L →
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

L − E2

q
for x → −∞;

as well as

ηR → 1 and η0R → −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

R −m2
L − E2

q
for x → ∞

from either side. Whenever we tune the energy to E ¼ Ej

such that the Wronskian ηLη
0
R − ηRη

0
L is zero at any

intermediate coordinate (preferable xm) we have identified
a bound state energy.

IV. THE ϕ8 SOLITONS

In this section we discuss the classical solutions from
the field potentials in Eq. (4) and list the formulas for the
resulting background potentials for the fluctuations. To a
major part this discussion is a brief review of the findings
from Ref. [18] with a particular emphasis on the vacuum
structures and the implications for the fluctuations ηðt; xÞ.
Exemplary graphs for the field potentials in the three
different sectors are shown in Fig. 1.

A. Two degenerate minima: U2

For the case of U ¼ U2 the kink solution interpolating
between −a and a is given implicitly by

�mRðx − x0Þ ¼
2a
b
arctan

�
ϕK

b

�
þ ln

�
aþ ϕK

a − ϕK

�
; ð17Þ

where mR ¼ ffiffiffi
8

p
λaða2 þ b2Þ. The corresponding classical

kink mass is

Mð−a;aÞ ¼
4
ffiffiffi
2

p

15
λa3ða2 þ 5b2Þ: ð18Þ

The background potential for the fluctuations is symmetric
under the spatial reflection x → −x

VðxÞ ¼ V2ðxÞ
¼ λ2f56ϕ6

K þ 60ðb2 − 2a2Þϕ4
K

þ 12ða4 − 4a2b2 þ b4Þϕ2
K þ 4a4b2 − 4a2b4g:

ð19Þ

An example is shown in the top left panel of Fig. 2.
By construction U2 only has a primary vacua yielding
mL ¼ mR.

B. Three degenerate minima: U3

WhenU ¼ U3 there are solitons that interpolate between
the degenerate vacua at ϕ ¼ a and ϕ ¼ 0. The implicit
solution to the first order equation (2) with the boundary
conditions ϕ → 0 as x → −∞ and ϕ → a as x → ∞ is

emRðx−x0Þ ¼
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ ϕ2
K

p
− bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ ϕ2
K

p
þ b

! ffiffiffiffiffiffiffiffi
b2þa2

p
b

×

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ a2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ ϕ2

K

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ a2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ ϕ2

K

p
!
; ð20Þ

with mR ¼ 2
ffiffiffi
2

p
λa2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
. The resulting classical

mass is

Mð0;aÞ ¼
ffiffiffi
2

p

15
λð2ðb2 þ a2Þ52 − b3ð2b2 þ 5a2ÞÞ: ð21Þ
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FIG. 1. Field potentials in the ϕ8 model. From left to right for two, three and four degenerate vacua.
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The background potential

VðxÞ ¼ V2ðxÞ
¼ λ2f56ϕ6

K þ 30ðb2 − 2a2Þϕ4
K

þ 12ða4 − 2a2b2Þϕ2
K þ 2a4b2g ð22Þ

is not symmetric under the reflection x ↔ −x, cf. top
right entry of Fig. 2. Consequently Vð−∞Þ ≠ Vð∞Þ and
mL ¼ ffiffiffi

2
p

λa2b < mR. The field potential U3 also has
topologically equivalent solitons that interpolate between
ϕ ¼ −a and ϕ ¼ 0. We will not consider them here as they
are not subject to our choice mL ≤ mR. Of course, the
numerical results coincide with those for the chosen soliton.
We note an interesting relation between the U2 and U3

models. In the limit b → 0 the soliton of the U2 model
separates into two structures. In one region the soliton has a
kink shape that connects ϕ ¼ −a and ϕ ≈ 0. In the second
region the soliton then connects ϕ ≈ 0 and ϕ ¼ þa. The
smaller b, the further apart are these regions. Each of the
two structures then is similar to a soliton of the U3 model.
Stated otherwise, any peculiar feature of the U3 model (like
instabilities) should also be seen in the U2 model when the
limit b → 0 is considered.

C. Four degenerate minima: U4

For the model with four degenerate minima, U4 in
Eq. (4) we take b > a > 0. The four degenerate minima

are at ϕðx; tÞ ¼ �a and ϕðx; tÞ ¼ �b. The interesting
feature is that there are two distinct soliton solutions with
inequivalent topology.

1. Kink interpolating between − a and + a

In this sector, the field is constrained to be jϕj < a. The
implicit solution for the kink is

e�mLðx−x0Þ ¼
�
aþ ϕK

a − ϕK

��
b − ϕK

bþ ϕK

�a
b

; ð23Þ

where mL ¼ ffiffiffi
8

p
λaðb2 − a2Þ. It has the classical mass

Mð−a;aÞ ¼
4
ffiffiffi
2

p

15
λa3ð5b2 − a2Þ: ð24Þ

The background potential for the fluctuations

VðxÞ ¼ V4ðxÞ
¼ λ2f56ϕ6

K − 60ða2þb2Þϕ4
K

þ 12ða4þ 4a2b2þb4Þϕ2
K − 4a4b2− 4a2b4g ð25Þ

is symmetric under the spatial reflection x ↔ −x. This, of
course, implies mR ¼ mL. A typical example is shown in
the bottom left panel of Fig. 2.
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FIG. 2. Background- and pseudopotentials from solitons in the various sectors. All cases have x0 ¼ 0. Top row: models with two (left
panel) and three (right panel) degenerate minima. Bottom row: model with four degenerate minima and symmetric (left panel) and
nonsymmetric (right panel) solitons.
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2. Kink interpolating between a and b
(or − b and − a)

In this case the field is constrained by a < jϕj < b and
the implicit solutions reads

e�mLðx−x0Þ ¼
�
ϕK − a
ϕK þ a

��
bþ ϕK

b − ϕK

�a
b

; ð26Þ

with mL as above. For the kink in this sector the classical
mass of the kink is

Mða;bÞ ¼
ffiffiffi
8

p

15
λðb − aÞ3ða2 þ 3abþ b2Þ: ð27Þ

Formally and by construction, the background potential
for the fluctuations is that of Eq. (25). However, since the
kink is not invariant under spatial reflection, the back-
ground potential is not either and we obtain different mass
parameters: mR ¼ bmL=a > mL.

V. NUMERICAL RESULTS

In this section we present the numerical results for the
VPEs for the different topological sectors discussed above.
As mention earlier, we take the model parameter λ ¼ 1.
This is legitimate as long as we are only interested in the
VPE. In general, λ serves as a loop-counting parameter and
the classical mass scales inversely with λ while the VPE is
only proportional tom, wherem is a mass parameter2 in the
potential UðϕÞ.
We first note that for the classical soliton and the discrete

bound state energies we have reproduced all numerical
results reported in Ref. [18]. Of course, scattering solutions
were not considered in that paper. When computing the
phase shifts we have furthermore verified that the number
of bound states nbs agrees with Levinson’s theorem in one
space dimension [24,25] according to which the phase shift
at zero momentum is δð0Þ ¼ πðnbs − 1=2Þ. Numerically
there actually is a nontrivial ingredient as the phase shift
computed from Eq. (7) is always between −π=2 and þπ=2
with jumps of π whenever the determinant of the scattering
matrix passes negative one. These jumps are eliminated
by adding appropriate multiples of π to the phase shift with
the boundary condition δð∞Þ ¼ 0. In this way we not only
get a continuous phase shift, but also agreement with
Levinson’s theorem in all our simulations.
The computation of scattering data is hampered by the

fact that the soliton profiles are only available in form of

implicit expressions, cf. Eq. (17). Numerically we solve
them by the method of nested intervals. Though that
procedure is sufficiently efficient for quantities on the
classical level, the differential equations of the scattering
problem, Eqs. (9) and (10), are treated within an adaptive
step size algorithm and a priori it is unknown at which
coordinate the profile functions are needed. Therefore the
nested intervals procedure must be applied at every
coordinate requested by the algorithm. This is numerically
time consuming.
In Fig. 2 we show examples for the background potential

that enter the differential equations for the scattering data.

A. Two degenerate minima: U2

The model with two degenerate minima of the field
potential is conceptually that of the standard ϕ4 kink model
as the two vacua have equal curvature. Hence, as a proof
of concept, we only compute the VPE for a single set of
parameters that we take as in Ref. [18]: a ¼ 4

5
and b ¼ 1.

This translates into mL ¼ mR ¼ 3.710. The major interest-
ing aspect is that there four bound states. Accordingly the
phase shift at zero momentum approaches 7π=2 as seen in
the top left entry of Fig. 3. The bound state energies as
well as the various contributions to the VPE and the VPE
itself are listed in Table I. As for the standard kink, the
leading quantum correction is negative. We have confirmed
the VPE result using the Jost function formalism of
Eq. (15). The numerical result from that calculation
is ES

vac ¼ −1.574.

B. Three degenerate minima: U3

Again we adopt the model parameters of Ref. [18]: a ¼ 3
4

and b ¼ 1. Even though the model produces the transla-
tional zero mode as the only bound state, this model is
nevertheless more interesting than the one with two
degenerate minima. The reason is that with the additional
minimum we now have primary and secondary vacua.
This is most obvious from the meson masses (curvatures):
mL ¼ 0.7955 andmR ¼ 1.9887. This yields −0.398 for the
bound state contribution to the VPE irrespective of x0.
Furthermore, the phase shift exhibits the typical threshold
cusp at k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

R −m2
L

p
as seen on the top right in Fig. 3.

Obviously the phase shift at zero momentum, δð0Þ ≈ π=2 is
consistent with Levinson’s theorem.
Most importantly the appearance of the secondary

vacuum at spatial infinity induces a translational variance
of the VPE as seen in Table II. As the kink is shifted
towards the primary vacuum, the region with the secondary
vacuum increases and low-lying modes disappear.
Consequently the VPE decreases. As matter of fact, there
is no bound to this decrease and the VPE can take any
arbitrarily large negative value. Hence for any fixed loop-
counting parameter λ, there will be an x0 such that the total

2For this to be correct, the dimensionless parameters a and b
must be written as a ¼ α

ffiffiffiffiffiffiffiffiffi
m=λ3

p
and b ¼ β

ffiffiffiffiffiffiffiffiffi
m=λ3

p
where α and β

do not vary with m or λ. With this scaling the quadratic mass type
term in UðϕÞ does not contain the coupling constant λ. In turn the
kink profile, ϕK also scales like

ffiffiffiffiffiffiffiffiffi
m=λ3

p
and the prefactor λ2

cancels in VðxÞ, cf. Eq. (25). Then the classical mass scales as
ðm=λÞ2=3.
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energy is negative and the quantum corrections destabilize
the soliton.

C. Four degenerate minima: U4

For the numerical exploration we again adopt the
relevant parameters from Ref. [18]: a ¼ ð ffiffiffi

3
p

− 1Þ=2 and
b¼aþ1. This translates intomL¼1.793 andmR ¼ 6.692.
In the topological sector ð−a; aÞ the background poten-

tial is symmetric under the spatial reflection x → −x as
seen in the bottom left entry of Fig. 2. In this regime the

squared masses for the vacua are equal and consequently
q ¼ k in Eq. (10). Numerically we confirm that the
determinant of the scattering matrix is invariant under
the translation x → x − x0 and that the VPE is independent
of x0. We present the bound state energies and the
corresponding VPE for this kink solution in Table III.
Besides the mandatory translational zero mode the soliton
has a shape mode slightly below threshold. We show the
sum of the eigenphase shifts entering this computation in
the bottom left panel of Fig. 3 and read off δð0Þ ¼ 3π

2
,

confirming the existence of two bound states via Levinson’s
theorem.
In the case of the topological sector ða; bÞ we only have

one bound state, the translational zero mode. Consequently
δð0Þ ¼ π

2
as observed in bottom right entry of Fig. 3. The

binding energy is
P

jðEj −mLÞ ¼ −0.896.
In this topological sector we have mRð6.692Þ ≠

mLð1.793Þ and the existence of a threshold is also reflected
by the cusp in the phase shift. More importantly, the
different masses correspond to primary and secondary

TABLE I. Numerically obtained energies from scattering sol-
utions in the model with two degenerate minima and the
parameters a ¼ 4

5
and b ¼ 1. Note that the threshold is at

mL ¼ mR ¼ 3.710. The entries Ebind and Escat denote the bound
state and continuum contributions to the VPE, i.e., the two
distinct terms in Eq. (14).

Bound state energies Ebind Escat Evac

0.0 2.067 3.192 3.689 −2.947 1.3722 −1.575

TABLE II. The VPE as a function of the center of the kink x0 in the model with three degenerate minima.

x0 1.00 0.75 0.50 0.25 0 −0.25 −0.50 −0.75 −1.00

Evac 0.254 0.215 0.176 0.138 0.0986 0.0595 0.0211 −0.0179 −0.0568
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15

δ (k) δ (k)
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full phase shift
Born approx

0 5 10 15
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0
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8
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FIG. 3. Sample phase shifts in the various version of the ϕ8 model. Top row: two (left) and three (right) degenerated vacua. Bottom
row: four degenerate vacua for the sectors ða; aÞ and ða; bÞ in the left and right panels, respectively. The Born approximations are
computed from Eq. (13).
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vacua and, as seen from Table IV, the VPE depends in the
position of the soliton.
Obviously there is no lower bound to the VPE and the

emergence of a secondary vacuum again causes quantum
effects to destabilize the soliton.

D. Moderate differences in the curvatures

The ϕ8 model would be a perfect sample to study the
dependence of the VPE on the topological charge because
the model with four minima admits soliton solutions with
different charges without changing any model parameter.
These are kinks that connect ða; bÞ and ð−a; aÞ, respec-
tively. One would simply compare the calculated VPEs.
Unfortunately, the ða; bÞ kink induces a translational
variance of the VPE and no unique value can be assigned.
To nevertheless get a rough idea, we consider parameters a
and b leading to mL ¼ 2.0 and mR ¼ 2.5 such that the
difference in the curvatures is small to moderate. The
topological charges scale as Qð−a;aÞ=Qða;bÞ ¼ 8 and the
classical masses approximately follow that behavior
Mð−a;aÞ=Mða;bÞ ¼ 8.44. Yet the ð−a; aÞ soliton is not stable
energetically but topologically since b > a.
The VPE for this ð−a; aÞ soliton is −1.242. The trans-

lational variance of the VPE for the ða; bÞ soliton is listed in
Table V. As expected there is only a mild (linear) depend-
ence of the VPE on x0 that we fit to Evac ≈ Ēvac þ ϵvacx0

with Ēvac ¼ −0.550 and ϵvac ¼ 0.025. Assuming Ēvac as a
reasonable measure for the VPE of the ða; bÞ soliton we see
that the VPEs in different topological sectors do not scale
with the topological charge. Since this is different from the
classical masses, the VPE can have significant effects when
estimating the binding energies of solitons with large
topological charges. To compare the VPE of the decaying
soliton with that of the decay products we need to compare
8Ēvac ≈ −4.40 with the VPE of the ð−a; aÞ soliton and
conclude that including the VPE has the potential to reduce
the binding energy significantly. A scenario that was also
seen for the H dibaryon in the Skyrme model [26]. In the
present model the total energies depend on the particular
value of the loop-counting parameter λ for which we,
unfortunately, have no empirical input. Nevertheless we
think that our results may alter the picture obtained for
binding energies of nuclei in phenomenological soliton
models [27] once the VPE is included, which is hampered
by those models not being renormalizable.

E. Transition between the two and
three degenerate minima models

The soliton in the model with three minima can be
viewed as a limiting case of the one in the model with only
two minima. As we decrease b in theU2 model, the ð−a; aÞ
configuration disintegrates into two separated ð−a; 0Þ and
ð0; aÞ structures each being similar to the kinks in the
model with three minima. Changing that separation trans-
lates into changing the center of the ð0; aÞ kink in the model
with three minima. We hence expect that the VPE of the
model with only two minima becomes large and negative as
we tune b towards zero. This is exactly the behavior of the
data listed in Table VI, even though there is a small increase
of the VPE as we decrease b in the moderate regime. The
b → 0 limit of the U2 potential takes the shape of a wide
well. On the other hand, two widely separated ð−a; 0Þ and
ð0; aÞ structures form a potential barrier in the U3 model.
The height of this barrier equals the depth of the well. With
the no-tadpole renormalization scheme the second order
contribution from the potential dominates the VPE. This
second order piece is the same for the well and the barrier.
Hence we can indeed expect the two scenarios in the U2

and U3 models to yield similar results for that limiting
scenario.

VI. CONCLUSION

In this project we studied the leading (one-loop) quan-
tum corrections to classical energies of solitons in the ϕ8

TABLE VI. VPE as function of b in model with two minima.

b 1.0 0.7 0.5 0.2 0.1 0.08 0.07 0.06 0.05

Evac −1.574 −1.307 −1.277 −1.868 −3.162 −3.846 −4.341 −5.006 −5.947

TABLE IV. The VPEs as a function of the center of the kink x0
of the topological sector ða; bÞ in the four degenerate minima
regime.

x0 0.50 0.25 0 −0.25 −0.50

Evac 2.628 1.869 1.111 0.348 −0.407

TABLE V. Translational variance of VPE for the ða; bÞ soliton
for mL ¼ 2 and mR ¼ 2.5 in the model with four minima.

x0 −1.0 0.25 0.0 0.25 1.0

Evac −0.578 −0.553 −0.550 −0.542 −0.528

TABLE III. The bound states energies of the kink of Eq. (23)
and its VPE. The last entry in parenthesis is computed via ES

vac in
Eq. (15).

Bound state energies Ebind Escat Evac

0.0 1.644 −0.971 0.389 −0.582ð0.583Þ
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model in one space and one time dimensions. We utilized
spectral methods for this study. These methods merely
require to compute the scattering data for fluctuations about
the solitons. No other approximation or truncation is
needed. The Born approximation enters the calculation
only as a technical tool when renormalizing the ultraviolet
divergences.
Central to our study has been the question of whether or

not these corrections destabilize classically stable solitons.
The key issue to this problem is the existence of secondary
vacua. Here the ϕ8 model is unique as it possesses these
vacua, but not all soliton solutions approach these vacua at
spatial infinity. Our simulations confirm the earlier con-
jectured picture: whenever the soliton can connect to a
secondary vacuum, increasing the coverage of that vacuum
(as a portion in space) reduces the quantum energy without
lower bound. This signals soliton destabilization at the
quantum level. This scenario is furthermore supported by
computing the quantum correction in a model that only
has a primary vacuum but a certain limiting choice of the
model parameters approaches a model that has a secondary

vacuum. The quantum correction to the energy of the
soliton is also found to diverge in that limit. We stress,
however, that destabilization cannot be solely attributed to
the field potential but also requires a soliton configuration
that connects primary and secondary vacua.
We have also obtained indications that the (one-loop)

quantum correction to the energy does not scale with the
topological charge, even though translational variance in the
presence of secondary vacua prohibits robust conclusions. In
the particle picture of soliton models the topological charge
is identified as the particle number and the classical energy,
which approximately scales like the charge, as the particle
mass. This predestines these models to predict binding
energies of compound objects, such as nuclei. Our results
hence suggest that quantum corrections should not be
ignored when estimating such binding energies.
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