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Abstract

Most of the physical laws associated with quantum mechanics are formulated in a
mathematical framework where observables are represented as self-adjoint operators in
Hilbert space. These self-adjoint operators are unbounded and therefore very hard to work
with. Stone’s theorem makes it a little bit easier by establishing a bijection between a
strongly continuous one-parameter group and self-adjoint operators.

We began with the needed terminology, and then proved the stones theorem. In addition,
we have indicated some applications of Stone’s theorem, particularly those associated with

quantum mechanics (dilation and rotation in the Cartesian coordinates).
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Chapter 1

Introduction

1.1 Overview

This chapter consists of the following: the background of the study, problem statement, objectives

of the research and its structure

1.1.1  Background of the study

Most of the physical laws that governed QM can be formulated on the basis of the
fundamental laws of mathematics where elements of a mathematical framework are
mapped to physical objects. In the study of QM, the Observables (position, energy,
momentum, etc.) of a physical system are characterized as self-adjoint operators in HS.
However, these self-adjoint operators naturally existing in quantum theory are unbounded,
and it is very necessary to provide new and efficient way of dealing with such operators:
this is where Stone’s theory comes to the fore. Stone’s theorem on a strongly continuous
one-parameter unitary group is one of the powerful tools that make life a little bit easier by
establishing a bijection between self-adjoint operators and one parameter unitary group.

In addition, it gives us a way to write down certain families of unitary operators in terms



of self-adjoint, possibly unbounded operators. Translated in physical terms, this gives rise
to statements such as "momentum generates translation” or "angular momentum

generates rotation.”

1.1.2 Problem statement

Despite all the existing theories, the lack of boundedness property of the self-adjoint
operator make life extremely difficult. Although some attention has been given to the
unbounded operators, there exist a limited study to explain the unboundedness of the self-
adjoint op-

erators.

1.1.3 Main objective

The main objective was to review a paper by Sven Moller(Mo’ller (2010)) on Stone’s
theorem and it’application. However, in order to do this, we made valuable use of functional

calculus of Marcello Porta ((Porta, 2019))

1.1.4 Specific objectives

Based on the problem statement given, these are the objectives

1. To parametrize strongly continuous unitary operators in terms of self-adjoint opera-

tors.



2. To formulate the mathematical description of quantum mechanics in a strong theo-

retical setting.
3. To prove Stone’s theory on strongly continuous unitary group using the direct approach.

1.2 Justification

QM observables are described by operators acting on the Wave-functions belonging to the
HS of the systems under consideration. However, in contrast to the mathematical literature,
where operators are defined by their action (that is, what they do to the functions on) and
by their domain (i.e, the set of functions on which they operate) in the physical literature
domain are seldom mentioned and operators are defined only by their actions. Operators
in IDHS are not defined for all the functions of the space, and this suggests that one should
be aware of situations where domains of the operators are so important, even in physics,
that we need the operators in quantum mechanics to be self-adjoint and operators are self-
adjoint only in well-defined and prescribed domains. Until quite recently, domains or self-
adjoint were not mentioned in physical. However, in every recent years, some articles in
physics literature begun to point out examples where domains of operators are essential
to the full solution of the problems posed. As far as our research is concerned, not enough
have been published before those articles that mention domains and self-adjointness.
Hence, among other reason, this research thesis seeks to build upon the possibility and

importance of self-adjointness within the realm of quantum mechanics.



1.3 Scope of work and outline of project

The project is presented in five chapters.

Chapter one is divided into two parts: the first part presents the background of study. The
second part of this chapter present statement of the problem, objectives and justifica-
tion.

Chapter two: Spaces and Bounded Operators

Chapter three: The methods used in carrying out the entire project. Theory of unbounded
operators with emphasis to self-adjoint operators, spectral theory and functional calculus.
Chapter four: Mathematical formulation of Quantum mechanics, prove of stones theory on
strongly continuous unitary group and its applications.

Chapter five : conclusions and recommendations.



Chapter 2

Spaces and Bounded Operators

2.1 Overview

To start with, we need to look at the general concept of spaces in purely mathematical
settings, including the important concept of Hilbert space. The theory of Hilbert space
generalizes the definition of Euclidean space and therefore extends the principle of
capturing vector algebra of 2-3 dimensional spaces to either finite or infinite dimensional
spaces. Nevertheless, it has an inner-product that allows the measurement of vector length,
angle and perpendicularity to be determined. The theory of spaces can, of course,
contribute to the study of linear operators and bounded operators. This linkage opens up
our study to cover spaces that are specifically classified as domains and co-domains of
defined operators. Next to follow closely is the analysis of One Parameter Unitary Group, a
group of unitary operators defined on Hilbert spaces with some additional properties, such
as continuity and homomorphism. Finally, we will be involved in the study of Fourier

Analysis, an important theory that regulates the superposition of wave-function.



2.1.1  Linear Vector Space(LVS)

In practical and theoretical sense, we usually encounter physical situations involving a set
Xy, whose nature of elements are vectors either in two or three dimensional space, or a
sequence of numbers, or functions. The elements in the set Xy can be added and multiplied
by constants and the resulting is also a member of the set Xv. The constant is considered as
generalized field Ks, and whose elements are mainly real and complex numbers. However,

such a physical situations proposes the concept of vector space as defined below.

Definition 1. Suppose Xv 6= @ and Kscbe a scalar field. Then a mapping
+: X x Xy—— Xy and
X1 Ksex Xu—> Xy
is called addition and scalar multiplication respectively. That is,
(Vxvuyv € Xv xv+yv€E Xvand a € Kscsuch that axv € Xy) :

Xvis an abelian
1. Vxy)v,zv€ Xvand o8 € Ksc
(a) xv+yv=yv+xy commutativity property
(b) (xv+yv) +zv=xv+ ()v+2zv) associativity property
(c) if3 0eXv:ixv+0=xv identity property

(d) if3 (xv) EXvixv+ (—xv) =0 inverse property



2. (a+ P)xv=axv+ Pxv
3. a(xnu + yv) = axv+ aynu

4. a(fxv) = (af)xv
5. xvx 1 =Xy, where 1 € K

Thus, we call Xy linear vector space when the coefficients are real numbers, and complex

linear vector space when the coefficients are complex numbers.

Definition 2 (Subspace). Suppose Yvis a subspace of linear vector space Xy if

Vyv,yv2 € Yvand o, € Ksc then,

ayvi + ﬁyVZ cYy (21)

In addition,Yvis a linear Vector space because of the algebraic structure it inherited from Xy

Definition 3 (Linear combination). Given vectors {viti=1 € X, and the set of scalars
{a}L, € K An expression of the form aiyvi + azyve + asyva+,..., +anywn is called

linear combination

Definition 4 (Linear independence and Linear dependence). We say {wwikic: € Xojs

linearly independence if there exist a linear combination of the vectors in Xvsuch that

aiyvi + azyv2 + azyvit,..., +a&nYvn = 0 (22)



where {a}i_1 are scalars and are all zero. Geometrically, Any linear independence set of
vectors in a space will always generate another vector under the addition and scalar
multiplication, and a such, the resultant vector is coplanar to the plane. However, if there
exist at least one non zero scalar say® € {a}i_1 such that the equation(1.2) holds.

Then the set of vectors are linearly dependence. In fact, {yiticiis linearly dependent if

.1 € {Wvi}izi such that

vl = @zyv2 + Q3yv3 + a4yva + =+ + Qnyvn (2.3)

or it can be written as linear combination of other vectors in the set (at least one vector is

redundant), and a such all the vectors are collinear.

Definition 5 (Span of a Linear Vector Space). Suppose Yv= {xv1,xv2,xv3,*** ,xvn} is a subspace
to a linear vector space Xv, then the span of Yvis the set of linear combination of the vectors
in Yv,

= V{}, e K ;
Span(Yv) = {aixv1 + azxvz + @sXv3,:* + anxvn} such that ifi=1 sc. The span of Yy is
denoted by Span(Yv). However, if Span(Yv) = Xy, then Xvis spanned by {xv1,Xxv2,xv3,:** ,Xvn}.
Moreover, Yvis a spanning set if all the vectors in Xvcan be written as a linear combination

of vectors in Yy.

Definition 6 (Basis of a Linear Vector Space). Let{€vi}i-1 be a set of linearly independent vectors.
The set{€vi}i=1is called the basis for Xvif the set



Spande,; i, =X, (2.4)

In fact, since {e,i}i-11s the basis vectors for Xv. Then Vxy € Xvthere is a unique

representation called linear combination of the basis vectors, such basis vectors are called

CANONICAL BASIS/STANDARD BASIS for R™. Now, ifli }i=1 are scalars and

eyl = (1,0,0,...,0) ey2 =
(0,1,0,...,0) éy3 =

(0,0,1,..,0)

€vn = (0, 0, 0,..., 1)

thus xv = ai1ev1 +azev2 +azevs+,...,+anevn. Consider a vector space Yy C Xvin which Vyy € Yiare
linearly independent and yv = span(Xv) . Then Yv is called the Hamel basis and obeys

equation 2.4

2.1.2 Dimension of Linear Vector Space

The dimension of linear vector space Xvdepends on the cardinality of the basis vectors that
spans Xv. However, two types of dimensions are encountered in analysis. Namely, finite and
infinite dimensional linear vector space. The infinite dimensional space is of interest and

most relevant in analysis.



2.1.3 Finite Dimensional Linear vector space (X.,)

1

Xvis finite dimensional if n € N, and Havibini € Xu which are linearly independent

vectors such that

Xy = Span{®,;}i"; (2.5)

Furthermore, if we have a fixed amount of vectors that generates all the elements in a space,

then the Xvis finite dimensional.

Example 2.1.3.1. The Euclidean space (R?): This space consists of the collection of all
ordered n-tuples of real numbers. That is, Vxv,y» € R*where n € N, we have xv=

(xv1,Xv2,Xv3,%++ ,Xvn) and yv = (yv1,)v2,)v3,++ ,yvn) and form a vector space under two algebraic operations.

Xv+ yv= (le,XvZ,XvS,"' ,Xvn) + (YVLyVZ,va,"' ,Xvn)

axXv= (ale,aXVZ,aXv3,"' ,aan) where « € Ksc

The Unitary Space C": The space is consists of all ordered n-tuples of complex numbers and
does form a vector space under the supervision of addition and scalar multiplication.

That is; Vz,w € C?, where z = (21,22,23,** ,Zn) and w = (W1,wz,w3,**+ ,wn) then

Z+ W = (21,2223, ,Zn) + (W1,W2,W3,*** ,Wn)
az = (az1,az2,az3,* ,aZn)

10



The Polynomial Space: It is a vector space consisting of all polynomials of degree 2 or less and

it is closed under linear combinations. It is closed because

1. Adding any two such polynomials in the space will yield another polynomial in the space

2. Scaling any such polynomial also produces another polynomial in the space.

In fact, the polynomial space of such degree is finite dimensional since a basis for it consists

of the three polynomials, 1,x T.. That is to say, every function in this space can be uniquely

written as 1 + axv+ ffx2ywhere a,8 € Ksc

Definition 7 (Convergence). A sequence < Xyn > of vectors in Xyis convergent if Ve >0.3xv € X,,

and m€ N :

| Xon—xv| < € nzm

Then xvis the limit of < Xvn >. Also if a sequence < Xvn > is convergent and xv is the limit, then

we say that the sequence < X» > converges to xv, and in symbols, we write

lim Xn=xv or Xn—— Xv as N —— 00 p-—w

Theorem 1. If the limit of a sequence exist, then it’s unique.

Proof. If we set < Xvn > to converge to two distinct limits say xv,yv: xv 6= yvso, |xv -
L . -
| >0and® = 37w =y >0

Case 1 let Xvn converges to a xv, then Ve > 0 and m1 € N we
have

11



|Xvn—Xv| <& Ynz=zm
Case 2 let Xvn converges to a yv, then Ve > 0 and mz2 € N we have

| X — u| <€ Vn > ma

Let m = max(m1,mz2)
— |Xt/n - :I‘.1/| < € VI? 2 m

— | X, — | <e Yn > m
Slre = wl = lr = Xon + X — |
|z, —y,| < |z — X, |+ |X., — ¥l
|z, — | <e+e Yn > m

|z, —y,| <26 Yn>m

|zo — 4, [ |20 ="

Thus, we arrive at a contradiction. The assumption xy 6= yvis False.
O

Definition 8. A space Xvis bounded if it is both bounded below and bounded above. If 3(K1,K2) ER:

Kisxvws K> VxvE Xv
where Ki is the lower bound and Kz is the upper bound.

Theorem 2. Every convergent sequence is bounded

Proof. Let {Xvn}n>1be a convergent sequence.
W.T.S {Xvn}n>11is bounded

From definition of convergence, Ve > 0,3xv € Xy, and m € N such that

12



[ Xvn = xv| < € nzm
ifwesete=1== |Xm-x/| <1
-1 Xim-xvl=>>xy-1<Xumsxv+1
set K1 = min{xv1,Xv2,Xv3,*** ,Xym— 1,xv— 1} and
K>= maX{le,XVZ,Xv3,”‘ ,Xvm — 1,Xv + 1}
~K1<Xwm< K2

Hence the sequence {Xvn}n>1is bounded. m

2.1.4 Normed Linear Space

Here, we will look at norms as a mapping defined on linear vector space, the elements of
which are assigned distance or size.This concept is necessary because it improves the
understanding of geometry as a distance of wave function from its point of reference to a
fixed point. In addition, the concept of completeness will also be introduced by assuming
that there is a Cauchy sequence in the space whose elements will converge to a point in
space. We will then end by giving some examples of normed linear spaces that are complete
and for that matter they are Banach spaces.

Definition 9 (Normed Linear Space (NLVS)). Suppose Xy is a linear vector space A norm
defined on Xvis a real-valued mapping denoted as k - k where, k- k: Xy —— [0 oo[ : V&,ev €
Xvand 3q,f € Kse.Then the following conditions

must be satisfied

(NLVS1) k&ék=20and k&k=0<=2¢&=0 (positive definite).

13



(NLVS2) ||aév|| = |akévk (homogenous)

(NLVS3) k& + evk < k&k + kevk (triangle inequality)
Hence, the linear space Xv with norm define on it is called a normed linear space denoted as

(Xv,k-k)

Show that '»is a normed linear vector space

Proof. NB: To show that a space is normed, then it is necessary to show that the space satisfy
the above three conditions 9. Also,the equivalence relation in NLVS1 suggest that we

assume one quantity to be true and prove the other and vice versa. Now,

Since I~ is a normed linear vector space then

va,fv € lo , da € Ksc that is fv = (fv1,§v2,€v3,'“) and & = (€v1,£v2,€v3,“') we define a
mapping k-ke:lo-—[0,00[ such that k& ke = sup|&u

from definition,

(NLS1) kéke 2 0 (trivial)

Next, suppose kévko=0 W.T.S &=0
= sup|&y;| = 0
since k&vkeo =0 = 9>l
Also, the supremum of all the absolute value is zero, then it implies that each of elements are

made up zero components

14



(NLS2)

(NLS3)

[&il =0Vi=20&1=0,62=0,53=0, hence, & = (&1,&2,63,+1) = 0 == & = 0 Next,
suppose & =0 W.T.S k&Ko = 0 since &= 0 == &= (£,62,63,) =0,:Vi21 |&i| =0
taking the supremum norm on both side sup|&i| = 0 == ||xv||~= 0
i1
W.T.S kaévko = akévKoo

ka& ke = sup|al &
iz1since «a is constant and does not depend on i, so, kaéke =

sup|aéil = ka&ike = |a|sup|&vi| == ka&vke = |a|kévkeo

i1 i1
W.T.S kfvi + &k < kkaoo + kevkeo

k& + ekoo = sup|&vi + &vi|= k& + €K < sup{|&ui| + |€i]}

i>1 21

k& + €k < sup|év| + sup|ev] == kév + evkeo < k&Koo + kevkeo

i21 i21

Definition 10 (Cauchy Sequence). Suppose Xvis a normed linear vector space. An infinite

sequence{& 121 € Xuis Cauchyif Ve>0 30>0: &, =&l <€ Vn,m >N, €N

Definition 11 (Convergence). An infinite sequence {6l €Xis convergent if 3& € Xv

: lim k&n - &k = 0 where & is the limit of infinite sequence lim én=&n-»0 n-5w
Theorem 3. If Xvis a normed linear vector space Then very convergent
sequence is Cauchy.

Proof

suppose{fun}f € X, then 3€ € Xv: lim Xvn= & n--ow

15



||§U71 - EV“ < %

Also,From11 Ve>0, 3dN,eN: n,m > Ny Now limn—soo

== kfvm— fvnk <

by triangle inequality kévm — éun| = kévm — &+ & — Xunk
F é-Vn” S €

Hfum - gv” + ||£U - .Tfu?'r.'.” — Hé“m 4 &/n“ < % i % ||£Um.

Definition 12 (Continuous mapping). Suppose Xvand Yvare normed linear vector spaces We

define a mapping k-k : Xv—— Y, to be continuous at a point & € Xy if

limé& =& == lim ké&k = k&K n—oo

n-—oo

OR

Suppose Xvand Yvare two linear vector spaces. A map Tqis said to be continuous at a

point Zo € X, if Ve >0 and 36> 0:

kTaxv— Taxok <€  whenever [xv—Xo| <6 (2.6)

lim fvn = fv

n-—oo

Theorem 4. The mapping & —— kék is continuous in the sense that if

then lim kfvnk = |€vk n-—o0

Proof. Let k-k : Xv=— [0,00] W.T.S k-kis continuous.

Assume, lim &, = & then from 11 Ve>0 dNpeN:n2z=Np o

16



- < — £
We have ll&vn — &Il <€ we can write it as’Hf” Sl < & = &l < thus
|kXvn— xvk| <€ == lim kXwnk —— kxvk - k-k is continuous. ]
Completeness

A vector space Xv (either set of vectors or functions) is made into a normed linear space by

treating it as metric space which allows the computation of vector length and distance
between vectors, and it is related to the normed linear space. i.e Vxv,yv € (Xv,d) d(xvyv) = kxv
- ywk. Then we are to prove that the metric space satisfy the desired property of being
complete notwithstanding the fact that a Cauchy sequence of vectors always converges to
a well defined limit that is within the space. Hence, the general procedures to show

completeness are:

1. Construct an®, which is used as limit of the Cauchy sequence.

2. Prove that?. is under space of consideration

3. Prove convergence that is lim “v» = I (in the sense of the metric under consider-

n-—oo

ation)

Remark Every complete norm linear space is regarded as Banach space

17



Example 2.1.4.1. Show that the space '« endowed with the supremum norm is complete Proof. '~ =

{Xv= (xvn,x02,%03,) 1 X © R, |xv| < M where M € Ksc and  kXvKe = sup|xvi|} Since I

. m oo L
is a vector space, set {z." }m=1tobea Cauchy sequence in ‘». Then
1

S T ONS B N B
T, = (-1",/1:-1-:/2: Ty3 )izX2vz(X2v1,X2v2,X2v3,"‘)

X3v = (X3v1,X3v2,X3v3,***)

Since{”)' }m-1is Cauchy then ~Ve>0 3N eN:st>N

s

sty =|2f — 2|l = Sgp|$18/z — @y, < ¢ d(Now
i> 1

T

. -, s _ ot S ol
Lzlzlll){kt"u1 T |y |59 — Ty, |25 = pgl, -} <€ itimplies that

T — il S e 250 —ghol < & |zlg— zigl < e

since each column is a sequence of real numbers R, and R is complete, then each column converges

BN , T .
to a point in ‘» That is, limi—e e

we have, xvi = (X1v1,X1v2,X1v3,*** ,X1vn)
x2 = (22,22, 02, )

v Lyl 1tz T

X3v = (X3v1,X32,X33,**)

P Y e 2k -
Hencelu - (”I I/lva'z/Q:‘Lugu )

Step(2)

WIS 17} €ls

18



From definition offee IMZ? €R: |2}, | <M Vm = [2| <M Vi

£E>n T, =Ty, then, b | = |z}, —apt, + 2| by (9) of NLVS

|23, | < |ay, — x| + |2, = |z 1<6+M

U?

Hence{®; }i=1is a bounded sequence of real numbers.

Step(3)

W.T.S lim x™m; = x*i

j—-—00

N . T — 5 + {
from11 Ve>0 INeN:m >N | —zf | < € Now, d( 5, xl) = supla™, — 2% | < €
i>
1 >

TN 5 .
= d(z7.2,) <€ Hence, ‘»is complete. O

2.1.5 Infinite Dimensional Space

Recall, the dimension of vector space is determined by the cardinality of the basis vectors
that covered the space. However, not all vector space can be spanned by a finite number of

basis vectors. Such a vector space is called infinite dimensional vector space.
Example 2.1.5.1. Consider the expression for the exponential function (Ei‘) 3

2 ’I'd

ra' _1 - — —
St 27

In fact the exponential function is of infinite degree as the series progresses. Hence, it consists of

<}
infinite basis (1,x»: x, ") that spanned the series

19



NB Most of the vector space that are of infinite dimensional are function space.

2.1.6 Function Space

Here, we will systematically look at functions spaces that are most relevant in the
formulation of quantum mechanics. However, we shall lay the foundation that will be
necessary to categorize spaces and in the process review some basic facts regarding these

spaces. Let fa: D(fa) —— Kscthen the support of fais define as a set

suppfo = {.’L‘,, € D(fa) : falx,) # 0}

fahas a compact support if the suppfsis bounded i.e if 3 a, b € R such that suppfa € [a,b] outside this

interval the support vanishes.

Definition 13 ( The space C(R)). Consist of all continuous function with compact

support.

Definition 14 (The space Co(R)). Let fa|D(fa) —— Ksc : fais continuous and
lim fo(z,) =0
—00

Ty

Example 2.1.6.1. Suppose I = (¢,d) andfe : R — {U: 1} -
pEEE1

fa(xv) =
EEEE0  xv6€]

XvE Il

Show that fs has a compact support.
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solution

suppfo = {;1:,, eR: fu(z,) # O} = (¢,d) = [c,d]
fahas a compact support

- fais not continuous but piecewise continuous. so, it is not Co(R) and C¢(R)

2.1.7 The Space L where 1 <p<c

Definition 15. Suppose S € R, be measurable space and allow p € R where 1 <p < oo

then

LP(8) = {fa|fa .5 —C, [, Jilfu() Pz, < m}

measurable,

However, we can also define L*(R) as
,wWhere

L>=(S) = {falf,z F R— L
fa is measurable , and AM=0: |fa(xq)| < M a.e

We only defined a norm on L®(S) by taking the essential
1f Il (s) = inf {j.f | fu(z,)| < M Supremum of fa. That is

a.ein S

2.1.8 Inner product space

Inner-product space enhances the notion of additional structure of geometry called

innerproduct. It enables us to define distance, angle, and perpendicularity between two
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vectors in space, thus matching each pair of vectors in a vector space to a unique quantity
called scalars. Hence, we will then define inner-product space and give some basic result

associated with the space.

Definition 16 (Dot product). Suppose xy,)v € R? be a linear vector space. We define a
mapping - : R*—— R as the dot product of xvand yvdenoted by xv- yvi.e xv-yv= xviyvi +xv2yv2

+Xv3)v3 +--+Xvnyvn Where xv = (xv,Xv2,xv3,+ ,xvn) and yv = (v )3, Ywn) Or

n
Ty * Yy = E Tpilf;
1=1

Definition 17. Suppose a linear vector space Xv

A map h-,-i : Xv¥Xv=— C is called an inner-product such that Va,5 € Xv and 3Faf €

Ksc then the following conditions hold:

(IPS1) hxy,xvi= 0 and hxy,xvi=0 &= xv=0 (positive definite).

(conjugate symmetry)

(IPSZ) th,yvi = hyv,Xvi

The bar denote conjugate

(IPS3) haxv + Byv,zvi = ahxyyvi + fhyy, zvi (linearity in the first slot)
Remark All the spaces enumerated in 2.1.3.1 are also inner product space except the '«

which we shall see later in the following through

(o g0) = / £ (090D

Example 2.1.8.1. Show that the function space €[0,1] endowed with is

an inner product space.

22



Proof. NB: We are to show that the function space satisfy the above conditions (17)

1
fa:ga:h'a € C{O, 1] : (faaga> = / fa(t)q (t)
let 0
Z1 - Z1
(IPS1) hf fui = f(Ofu(Odt == fa(O)]7dt = 0 = hfy fii = O
0

0

Next, suppose hfo,fai=0  W.T.S fa=0

1
(fo, ) =0 = /O |fu()Pdt =0 ¥t e C[0,1]

Since
fa(®)=0 vte C[0,1] ~fa=0
Next, suppose fa=0 W.T.S  hfafai=0

Now,fi=0  =>fu()=0 teC[01]
1

— [ LR =0 (farga) =0
J0O

(PS2) (forge) = [ 7O )
(G fo) = / 00T (B)dt s / 0 (OF Dt

(o ) = / RO = / Lot

comparing (1) and (2)

hence, (1) = (2)

(IPS3) (afa + B9a, ha) _fo (@fa + Bga)(Dha(t)dt = /O (afa(t) + Bga(t)ha(t)dt
(@fo-+ Bonsha = (afutt)
(afo+ BYas ha) = / (affa( )hu( )dt + Bga(t)ha(t)dt

0
1

(@fo+ Bgus ha) = a / fuOY DAL+ B / ge(OTa)de

ha(?) + ,Bga(t)ha(t)) dt
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haf;x + ,Bga,hai = (Ihﬁz,hai + ﬁhga,hai

0,15
Hence,( 10,11,¢) is an inner product space.
Definition 18 (properties of inner-product space). Given xy,zv€ Xv = and 3FJa,f €C.

If an inner-product in defined on Xy, then the following properties hold:

1. th,yv + Zvi = th,_yvi + hxv,zvi

2. th,ayvi = 'ath,yvi

3. th,ayv + ﬁZvi = _(Zth,yvi + ﬁ_th,Zvi
4. hO,xi=0
5. th,Oi =0
Proof. 1.1 W.T.S hxv,yv + zvi = hxyyvi + hxy,zvi
hxv,yv +zvi = hyy + zy,xi from 17 hxv,yv +2vi = hyy,xi + hzy,xi = hyy,xi+
(2usTu)

(ToYo + 20) = (Tu, ) + (Tu,20)

2. W.T.S th,ayvi = _ath,yvi

hxv,ayvi = hayy,xvi = “ahyy,xvi = “ahxy,yvi

3. W.T.S th,ayv + ﬁZvi = _ath,yvi + ﬁ_th,Zvi
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(xy, 0y, + Bz,) = {ay, + Bz,x,) = {ay,,x,) + {Bzx.) = aly,,x,) + 5{z,xz)

@(xu,yy> + d<=LV zv)

4, W.T.Sh0,xvi = 0 h0,xvi == h0xy,xvi = Ohxy,xvi =0

5. W.T.S hx,,0i = 0 hxy,0i == hx,,0xvi = Ohxy,xvi=0

Theorem 5. (KREYSZIG (1978)) Every normed linear space Xris an inner product with

kx:k = phXT,XTi

Proof. Vx1,y: € X, and 37 € K.

We defineamap k'k:Xe=—=[0 oof by

kx:k = pth,X‘ri

1. From definition kx:k? = hxg,x: == kx¢|2 = hxyxi 2 0
(seel7)

Next, supposexr=0 W.T.S kxk=0

Since x:=0 == hXT,XTi =0= phXT,XTi

~kxk=0

Assume kx:k =0 W.T.S x:=0
|z ]| =0 = /{z:2;)=0

(ru) =0 = z.=0
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[Az-|| = v/ (Azr Az;)

1Azl = VAN (s 2r)
2.[\e- | = /N7 27
A || = A/ (s ,zr)
I\e- || = /INP {2,
IM = A/{arzr)
Az ]| = Al

lzr +y- |l = V{2 + yrar + yr)

27+ y- 11 = (7 + yr2r + yr)

27 + 411> = (xrszr) + (Yr27) + (T 07) + (Yro4r)

127 + yrlI* = llz=1* + 2Ry )| + Ny * < Nl + 20yl + Ny 1P
2+ y-lI? < [zl + 2l [yl + lly-1I?

- + g 1* < (llz- 1l + [l 1)

3. ||5I7T + yT” < (H:I"TH + Hy'r“)

Given xz,yr,z: € X and Ja,f € C. If an inner-product in defined on X, then the

following properties hold:

1. hX‘r,y‘r + Z:d = hX‘r,y‘ri + hxgzd

2. hX‘r,ay‘ri = _ahXT,_YTi
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3. th,ayr + BZTi = -ahX‘r,_yTi + ﬁ-hXT,ZTi

4. hO,xi=0
5. hX‘r,Oi =0

Prooﬁ 1.W.T.S hXT,yT + Z7d = th,yri + hXT,ZTi

hxz,yr +z:i = hyr + z¢, x4 from 17 hxz,yr +z:1 = hyrx:d + hzg,x:d = hygx:i+

(27,27)

<-'171'-.yr + ZT> - <513T-.yr> + <;I.‘-1-,ZT>

2. W.T.S hxs,ay-i = "ahx,y-i

hxz,ay+i = hayx:d = "ahyx:i = "ahxgy-i

3. W.T.S th,a’yr + ﬂZ‘ri = _ath,yri + ﬁ_hX‘L’,ZTi
<1r7'-,(ly‘r = p);‘r> = (ay'r +ﬁ82‘r:m‘r> — (CY’!JT,IT) 3 <.BZT:IT> = 55(%;'131—) aw ;B<ZT~IT> =

alxy,) + Bz, z)

4. W.T.S h0,x:i =0
== hO0x,x:i = 0h0,x:i=0
hO,XTi

5.W.T.S hx.,0i =0

hX‘l_’,Oi == hX‘L’,OXTi = OhXT,XTi =0

Theorem 6. Every normed linear space Xris an inner product space (X») with ku| =

phxz,x<1 Proof. [(Vuz,vr € Xr, and 3A € Kse.
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We defineamap k-k:X:=—[0 oof by

ku-k = phll‘r, Uri

1. From definition ku:k? = hugu«i == ku:|?= hugu.i = 0
(seel?7)

Next, supposeur=0 W.T.S kuk=0

Since ur=0 == hugud = 0 = Phugud =0

kUrk =0

Assume kuzk=0 W.T.S ur-=0

|lur | =0 = /{u-u,)=0

Qerstrrhe U e o —Y)

[Au- || = /{Aur Aur)
[Nl = /AN ur )
[Aur || = /A {ursur)
X || = A/ (ur sy
[Aur |l = V/IA[P (urur)
IN = A/ e ur)

2. Az || = Allur]|

3. kur+ Vik = phur'l' Ur, Ut + Vi
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kur + vk? = hur + vy uc + vid Kue + vik2 = hugud + hvgud + hugved + hvgvd
kur + vik? = ku-k? + 2Re|huz,v-i| + kv:k? < ku-k? + 2ku-kkv-k + kv.k? kur +
vek? < kuk? + 2kukkvk + kvek2 kuc + vik2 < (kUrk + erk)z kuc+ vk < (kUrk

+ kvik)

Theorem 7.

Let Xvbe a linear space

Yurv: € X and A € Kscthen the following hold:

1> = ||ur — v || + ity —v-

1 .
(r,vr) = Jtlluntor |2 +illu- +1v- ]}

1. Polarization
identity
2. kur+ vik? + kur = vek? = 2(ku-k? + kv:k?) parallelogram
law

3. kAuk = |A|lkuzk Homogenous
Proof. NB. we will implore result from theorem 6.

1 . ;
L WTS (B, Dol Z{Hwr + v |12 = |lur — v ||? + i|lur — v |]? +il|u, + iUTHQ}kUT 5

vk? = hur+ Vo Ur + Vi

kur+ vik? = hugud + hugvd + hvgu-d + hvg v (a)
Also

29



ku: - v:k?=hu:- Vg Ut — Vzi

kur - v:k2= hUr,UTi - hll‘r,V‘ri - hV‘L',UTi + hV‘r,V‘ri Substracting (b)
(a) from (b) and call it (c¢) kur + vik = kur = vik = hug,vqi +
hu,vi + hv,ui + hvgu-i

(c)

kur+ vk - kur— vk = ZhUT,Vri + 2hVT,UTi NOW, kur + iv-k?
=huc+ ivg,uc+ ivd Kue + ivek? = hug u<d + hug ived + hivg u-i
+ hivgivd ku + ivik? = huud +ihugvid + ithvgud +
i_ihVT,VTi

(d)
iku<+ ivik2 = thur,ud + i"ihug, v-i + ithve,u-i + i thvsv-i Hence,
kur - ivek? = hur- iVT,U‘r— vz kuc - I'V‘rk2 = hUT,UTi - hLlT,iVTi -
hiV‘r,Uri + hiVT,iV’[i ku: - ivk? = hUT,LlTi _-ihUT,VTi - ihVT,llTi +
i_ith,Vri

(e)
ikur — vik2 = ihUT,UTi - i_ihUT,VTi = iith,U‘ri + ii_ihVT,VTi Substracting (d)
from (e) and call it (f)
ikur+ivck2—-ikur—iv.k2 = —hV‘L’,U‘ri—hVT,UTi‘l'ZhU‘r.V‘ri = —ZhVT,UTi+2hUT,VTi (f)

Adding (c) + (f) kur + vik = kur = vik = hugv:i + hug v + hvguqd + hvgued kur +vek=-kur

—vek+ikur +ivek? —ikur —ivek? = 2hu, v<i+2hve, ud-2hvy u-i+

2(tr,vr) = 4(tr, v7)

(u,v) = Z{HUT + v, ||? = [Jur — v ||* + i|ur — v+ ilur + iv,||*}
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2. W.T.S kur + vik? + kur — vk?2 = 2ku-k? + 2kv.k2

kllr + V‘[kz = hut + Vg Ur + vri

ku: + vkZ = hllr,Llri + hUr,V‘ri + th,Llri + hV‘L‘,VTi kur - vok2 (1)
= hur - vgur— vd

kur - vik? = hugu<d — hugved — hvgudd + hvgvid (2)
adding (D) and (2) kur +vrk? +kur -vrk? =

hUr,uTi+hur,Vri+hV-[,Uri+th,Vri+hLlr,Uri—hUT,VTi— hVT,Uri + hVT,V‘L’i ku: + vik2 + kur — vik2 =

2huu-i + 2hvgv4d kur + veke + kur - veke = kudkz + kvzke

3. W.T.S kAuk = |A|lkuk Now, kAuck? = hAugAud kAuk? = M-hUT,U‘ri kAu-k? =

|A|2hur,uri kAuk? = |A|2ku-k? multiplying the exponent by%

« Kdurk = [A|kuck

Orthonormal set

Orthonormal sets are very important for dealing with infinite dimensional space since they
have helpful characteristics. However, when dealing with infinite-dimensional linear
vector spaces which do not posses an algebraic structure but an inner product, the
understanding of the Hamel basis is inadequate. In fact, the Hamel base only captures the
algebraic structure without taking into account the angle between the vectors. For inner
product spaces, orthonormal sets act similarly as Hamel bases and also capture the angle

between the vectors.
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Definition 19. Let X» be an inner product space. Two vectors in X are
saidtobeor- wu, 1 v, if (u,,v,) = U)

thogonal i.e
In general, A set {ei}2) € Alisan orthogonal set if hem,eni =0 Vm 6=n. Then,

he;eji = 85, where 6mnis called kronecker delta and is defined as:

pERE1, M~N
if

m 6=
BRERERO0,if n
hence, we now look at some special result of the above theorem ( Broida and Williamson (1989))

0ij =

Theorem 8. kuw, + vok? = kuwk? + kvok? is achieved if uw 1 ve.

Prove that the Pythagoras identity

Proof. Yuw,vew € Xo and making use of 7 Kuw + vok? =

hue + Vo, Uw + Vol kuw + vok = hUw,Uwi + hUa),Va)i +

th,Uwi + hVa),Va)i

From hypothesis, uwlve or vel uw == huw,Vwi = hve,uwi =0

s Kuw + vok? = kuwk? + kvek? CExample 2.1.8.2.

Show that the two vectors cosxw,sinxe € C[0,27] are orthogonal with the inner-product

27
<fr1-go:> = fo fa.qa.
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Proof. since sinxe,cosxe € C[0,27] then’

2m
(sinx,, cos,) :/ cos T, (sin x)dz,,
0

but from trigonometry
sin2x, = 2sinx,cosr, — 3 sin 2x,, = sinx,, cos .,
2T 1 1 2
(sinz,, cosz,) = —sin2x,dr, =— = sin 2z, dx,,
0o 2 2 Jo
27

(sinw,,cosx,) = (—— cos2x,)

(sinx,,cosz,) = —= +

N

(sinx,, cosz,) =0

Definition 20. A subset S of an inner-product X, is a said to be orthonormal if huw,vei =

0 VuwVe€ Xowlw6=0 and kusk =1
Example 2.1.8.3.

o0

S - { emt}
Let L2[0,2m], the set V2 n=11S an orthonormal set

‘ g ) 1 _
fa: Ja € L2 [0 271'} : j = _e'm.'. = e*tmt
Proof. Let V2r and V21
Now
21
] Wy L6
asJa) = e — et ¢
s = | (% )(m )
1 2
it 7’”}’){
ayYa) — 7 t
(fa: 9a) > ) ((J
1 J’Tl
fﬂ. .ju - % 1 e €
™)
ifm=n
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1 27
0
aryYa) = 5 Cdt
o) = 5= [
1
2m

2T
orsd = 5 [ a
0
y 21
(fa.-ga> — 2_7T
0
(fafh) -
Also if
m 6= 0
from (*)
2T
. 1 ei(n—m)t
(far9a) = 5 (z(n—m)) 0

But from DeMoivre’s theorem
e = cosf + isinf

27
1 [cos(n —m)t +isin(n —m)t _(1-1)=0
27 i(n —m) : - N
hﬁ},gai =0

Hence

pEEELF "

n
hﬁz,gai =
l

Definition 21. Orthogonal Complement S+, (Direct Sum)

34



1. Suppose Sw € Xw be an inner-product space. Then Vx» € Xw are orthogonal to Su i.e
St={v, € X, : (vo,u,) =0}, Vu, €S,

Meaning, if Swis any line R3 that passes through the origin, then S. isthe plane that passes

through the origin and its perpendicular to Se.

2. Given two subspaces Uw, Vo € Ho, the sum Uw + Vw is defined by

— Lo b P . .
Uo + % = {w. € H : wo = U + Y for some uw € Un Vo € Vw}. This space is

called the direct sum of Us and V., denoted by Uw LV YWa. = Wo = Uo + Ve s uniquely

expressed as Wo = Uw + Vo

Characteristics of Complete Orthonormal system

Given any orthonormal system {e}2 the following results can be established.

" oo, 7,
1.{€wi}i%1 is an orthonormal basis

o0
Uy = E (uy, e;) Yu, € HS,
i=1

o0

Z(uw, ewi){€wir Vo) Vi, v, € HE

=1

T~
=
£
=
&
S~
I

2.
3.

Z | (e, €i|2 =3 ”’U’wH2 VeH,
4, i=1

5. Spanicw}ici = Hu

6. itu, € H?, and huw,evii =0 Vi € N then uw=0
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Theorem 9. Suppose Sw C Xo is orthonormal set. Then S. is linearly independent.

Proof. let {uitiiy € Su Haitiy € Ko since Sois linearly independent then

n

=X

aiul +auz +asus ++--+anun= 0 aiui= 0 from properties of inner product

i=1

space

0,u;) =0 = <Z o, ‘u.j> =0

i=1
n

Z a',-<u1-, 'U-J'> = 6-ij
i=1 but hu;uji = i

~ S is linearly independent. u

Theorem 10 (Cauchy-Schwartz inequality). (Pinchuck (2011)) Suppose X be an inner product

space.
An inner-product h-,i : Xo x Xow —— C is defined

|hxw,ywi| < kxokkyok such that VXxw,Yo € X0 and the equality holds &= x. and yo

are linearly dependent

Proof. Let xu,Yw € X : X0 6= 0 other than the above theory holds trivially. However, let
assume Ja € R we compute kxo — ahxw,yoiywk? = hxe — ahxw,yeiyw hxe — ahxe,ywiyol

Expanding the right hand quantity using IPS3 from definition 17.
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0 < ||zy—afz,, yw>yw”2 = (Tws Tuo) = Lo, Yoo ) (Twos Yeo) =Ty Yoo) (Yo $w>+a2($w*a Yo )Ty Yoo) (Yoo Yoo

0 < [[#w =@, o) Yoo l|* = N1 P =i, o) (Mo To) =T, Yeo) (Yoo o) F 0 (T, Yoo ) (W To) (Yoors Yoo

0 < ||2w — aTy, Yo ) Yo |I* = |2wl]® — 20(Z s Yio) (Yios Tuo) + (s Yoo) (Yeos To) (Yous o)

0< Hiw - ()5<:1"w: yw>yw‘|2 = H‘Fw“2 B 2(}:“:‘!’.&)1 yw>|2 3 r£52|<51‘lw:yw>|2“yw”2
1
since a € R then we seta = kywke
. . 2 ;
120 — a{Tu, Y)Y |* = |20 |* — (2w, Yu) 2+ e ) Pyl 2 > 0
[l 1? 19| [*

multiplying through by kyk? kxwk2kywk? -
2|hxw,ywi]|? + |hxwyei|?= 0
|hxw,yeil|? < kxok?kywk? theorem 6 ==
|hxw,Ywi| < kxokkyok
Proving the if and only if statement in the theorem
Case 1
Assuming x» and y» are linearly independent W.T.S |hxw,yei| = kxokkywk From
hypothesis, x» and y» are linearly independent then x» = Ay» where A € Ksc
Now, |hAyw,yei| = kAyokkyok
[hAyo,yei| = |A[kywk? (a)

ldywkkya)k = |A | kywkkywk

| haywya)l | =21 | hyw,ya)i |
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|hAyw,ywi| = |A|kywk? (b)
comparing (a ) and (b)
Hence, (a) and (b ) are equal

Case 2
Suppose |hxw,ywi| = kxokkyok W.T.S Xwand yw are linearly dependent Now kx.,
- ahXw,ywiyok? = 0 and applying NLS1 from 9. == X — ahxw,yiyw =0 set A =
ahxw,ywi we have

Xw — @hXw,Ywiyo =0 == Xo— AYw=0 Xo=Nw

~ Xwand y are linearly dependent

12.1.9 Hilbert Space

The generalization of finite-dimensional space to infinite dimension was the work of an
excellent German mathematician David Hilbert.This concept generalizes the understanding
of Euclidean space and therefore expands the principle of capturing vector algebra of 2-3-
dimensional Euclidean spaces to spaces with either finite or infinite dimension. However,
Hilbert space is an abstract space that has an inner-product framework that enables the

length, angle, and perpendicularity of vectors to be measured. In the mathematical

38



formulation of quantum mechanics, the possible states (more precisely, pure states) of the
quantum mechanic system are represented by unit vectors (called state vectors) that
reside in the complex separable Hilbert space known as state space, well-characterized up
to the complex number of norm 1 (phase factor). Moreover, in quantum mechanics, Hilbert
space (a complete inner-product space) plays a key role in the interpretation of wave
functions: the absolute value of each wave function is interpreted as a probability

distribution function.

Example 2.1.9.1. The space L2 of square integrable function has an important result when
it comes to mathematical formulation of quantum mechanics. Thus, it turns out to be a

Hilbert space. That is Vfa,ga € L2, we define the inner-product as hfa,gqi =

Z
|fa(Xw) ||ga(Xw)|dxw it can be seen that the dot product hfgai is well
defined Vfa,ga € L?
1 - 1
|<fa Ja | < |fa HQ'a(xw |d=13 B |fa -Lw)| dl)w 5 |Qa(£w')| d‘rw » 5 ”L2 +
Sloalie <+
S llYall L2 oo ; . o e o
g 19allL It is easy to see that it satisfies conditions 17
Definition 22 (Basic properties of Hilbert space). 1. It’s a linear vector space

2. It has an inner-product operations that satisfies 17

3. Are separable, so they contains a countable dense subset.

Lemma 1 (paul Garrett (2016)). let Wa be a closed convex subspace of a Hilbert space HP.
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Then, Vxb € HP Alyb e W : kxb - ybk is minimize.

Proof. Since H? is Hilbert, then we are at liberty to use the parallelogram law.Now, W is closed

L zbroe . lim 2t = 2"
then = i—boo !
Also,

W is convex, then Vxby? € W and a € [0,1] we have, ax? + (1 - a)yP€ W Let V =

inf{kx?k : x> € W} but W is closed, then lim kx?k = V

j——00
By the parallelogram law
=} = 25117 = 2|22 11” + W31~ [l + 212
2
b b2 — (b2 12027 + y)I
127 = 2311% = 2(l|2211” + g5 11*) — ———+—
, . II(T” +y)II? .
la? = &l12 = 2012+ 1) = 454, j —» o0
—0
|z? — F’Hz =2V2+2V2 -4V? =0
() +42) = [l + w7l ||
since 2 isconvexthen 2

b : d
Hencel7i}i21is a Cauchy sequence. Also Wais closed then the Cauchy sequence converges to a

point x>* € Wg kxb*k = k lim xbik = lim kxbk =V

j——00 j——00
LetyPe W  yb6=xb*and setkkk=V
b* b2 b¥ b2
0< be*_ybnz :4v2_4H'L + =" + 9|l <V
2 from parallelogram = 2
e Y’
by convexity 2 is false - xb* 6= yP

N . b b . . :
Definition 23 (Isometric spaces). Two spaces Hiand 75 are isometric if 3Lq, linear

b . ‘ S e
Operator VIV\ Y S H <£n.:1f-'u1 'Cu.z r})?{g — <'Lvazu>?{i{
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2.2 Linear Operator

The concept of linear operators, combined with normed linear space plays a vital role in
almost all aspects of mathematics as well as its application to modern physics. However,
we will consider more specific spaces such as Banach space and a Hilbert space with
particular interest to operators (mappings) that preserve the algebraic structure of vector

space.

Definition 24 (Linear operator). Suppose Xvand Yvare any two linear vector spaces over a

scalar field Ksc. An operator Top: Xv—— Yvis linear if Vxy,yv € Xv3a, € Kscsuch that

Ta(a'Xv + ﬁyv) = aTaxv+ ﬁTayv (28)
OR

Ta((XXv) =aTexv (29)

Ta(Xv +_,Vv) = Taxv+ Ta_)/v (210)

If the co-domain Yvis replaced by a scalar field Ksc, then the linear operator T under this

case, is called linear functional on X,

Example 2.2.0.1. Consider the function space X = C[a,b] on a closed and bounded interval [a,b]

and let Ta: X —— R be defined by
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(Tafa)(t) = [;: f”.(S)dS Vf‘“ X andt€ [a,b]

Then Tqis a linear functional on X
Verification

Since C[a,b] is a function space then it contains that is Vfa,ga € X and t € [a,b]

Ja,B € Kscsuch that T.: X -— R
(Tufa)(t) = [, fal(s)ds

(Tulafo+ Bga)) (1) = [} (fa + Bga)(s)ds
(To(afo + Bga)) (8) = [} (afo + Bga)(s)ds
(To(afo + B9a)) (t) = [} (fu(s) + Boals))ds
(Ta(erfa+ B90)) (8) = [} afu(s)ds + [ Bga(s)ds
(Tulafa+Bga)) (1) = a [} fuls)ds + B [ ga(s)ds

(Ta(afa+ Bga))(t) = a(Tafa)(t) + B(Taga)(t)
(Ta(afa+ Bga))(t) = (a(Tafa) + B(Taga)(t)
(Ta(afa+ Bga))(t) - (a(Tafa) + B(Taga)(t) = O
((Ta(afa+ Bga)) - (a(Tafa) + B(Taga))(t) = 0
But ¢ 6= 0 since t € [a,b]

((Talafa+ Bga)) = (a(Tefa) + B(Taga)) = O
To(afa+ Bga) = aTafa+ BTaga - Tais

a linear operator.

Proposition 2.2.0.2. Let Xvand Yvbe any two linear spaces over a scalar field Kscand let an
operator Top: X —— Y be linear operator. Then
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1. Ta((_j) =0
2. Ra(Ta) = {yve Yv: TaXv=yv dxv € Xv} Yy

3. Taisinjective &= Taxv=0 == xv=0
4. Tais injective, thenTs "exists in R(Ta) and”s HR(TL) — X
Proof. 1. From hypothesis, Xvis a linear space, then, Vxv € Xvand a € Kscby the linearity of Ts, we have,
Ta(axv) = aTaxvset a = 0 Ta(0xv) =0 Taxv=0 ==

T,(0) =0
2. suppose xvi,xv2 € R(T)cand 3a,f € Kse. W.T.S ayvi + Pyv2 € R(T)aSince xvi,xv2 € R(Td) ==

Axvi,xvz € Xv: Taxvi = yvi TaXv2 = yv2 == axv1 + Bxv2 € Xvalso, Tais linear, then Ta(axv1 +

Pxvz = aTaxvi + BTaxv2 =
ayvi + Byv2

5axv1 + Bxv2 € Xv== ayv1 + Lyv2 € Ra(Ta) Ra(Ta) is a subspace of Yv

3. Case 1 suppose Topis injective and Toxv=0W.T.S xv=0
Now, Topxv= 0 from (1), Zuz» =T, (0) since Tais injective == x,= ~0
Case 2

Next, suppose Taxvi= 0 and xv=0 W.T.S Tais injective in the sense that
Vxvi,xv2 € Xv: Taxv= Tapv==>Xxv=YvXv = Yv= 0 Taxv— Tyyy=0==>T(x-y) =0
xv=yv.. Tvis injective

4. suppose Tv: Xv—— Yvbe injective, and T,': R(T.) — X exists W.T.S 1u 'is
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a linear operator
Vyviyvz2 € R(Ta) and a,f € Kscthen R(Ta) is a subspace of Yv. Now, ayvi +fyv2 €

R(Ta) == Ixv1,xv2 € Xv: Taxvi= yv1and Taxv2 = yv2 since Topis injective, then
-1 L -1 ) !
Ty = T, Tyyand®u2 = T, oy by the linearity Ta. We have, To(axv1 + fx2) =

aTxvi+ BTaxvz = axvi + Byv2

T, (ayuy + Byus) = oT, 'y + BT, 'y HenceTs 'is a linear operator.

O
Examples of Linear operator
. Identity operator : An operator Ix: Xv-— Xyis an identity operator if Vx € X,
Lexv=Xv (211)

. An operator p : C[a,b] -— Y is called differential operator if Vxv € C[a,b] and t € C[a,b] then

p(xv(t)) = xv(t) (2.12)
. Integral operator: suppose Ta: C[a,b] —— Yvis called integral operator if yv € C[a,b] and t €
[a,b] then

T(autt) = [ ault)it 2.13)

. Matrix operator: let Ta: Mn(C) —— Ma(C) be a matrix operator if A € Mn(C) and
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Xv= (le,XvZ,Xv3,"' ,Xvn)T, Yv= ()/vl,yvz,yv3,"' ,_yvn)l .

w=Axv (2.14)
(2.14) can be written out as
Y1 ail a2
Xvi
Byv2 O Blaz1 a2
7| |?

= EIRxv2

ain
azn
Yvn dnl dn?2 ***dnn Xvn

A € My(C) is a linear operator since matrix multiplication is linear.

2.2.1 Bounded operator

Definition 25. suppose Xvand Yvare linear vector spaces. An operator Ta: Xv—— Yvis bounded

ifAIM=0€ R : Vxv€ Xvand 3a,f € Ksg, :
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kTaxvk < Mkxk (2.15)

== kTdk = lnf{M >0:KkTaxvk kak}
1Tl _
From (2.15) lz.[[ 7 we noticed that the smallest value of M which will make the expression
72 = sup L]
in (2.15) holds, is the supremum and it is expressed as w40 |[Tv]l if we set kxk = 1 then we

have kTak = supkTaxvk

xv6=0

NB. we denote B(X)Y) as the collection of all bounded linear operators from X to Y, and forms a
normed linear space under supervision of the supremum norm. That is, VTa €

B(XY)

Extension of Bounded linear operator

Let Uvbe a closed subspace of a normed linear space Xvand suppose Tabe a bounded linear
operator on Uy onto a Banach space Yv. Then the operator Tq(defined on Uy) is said to be
extended if there exists unique bounded operator T3 - X, — Y, such that

T;(zy) = To(x) Vo el, thus the operatorTrlk satisfies!| o [| = |17l

2.2.2 Bounded linear operators on Hilbert space

Definition 26 (Adjoint Operator (T;)). LetH? andH5 be Hilbert spaces. Amap Ta:

H? — M3 is such that it’s adjoint operator (12) 1% : Hy —H . Vo, € H]
<ziirya yy) - (IV: I:;Fyu>
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Sesquilinear form Let Xvand Yv be linear spaces over a set of scalar fields Ks, then the

sequilinear form Ta: Xvx Ya—— Ka VXv1,Xv2Xa and yvi,yv2 € Yv I, fKsc :
1. Ta(xv1+yv2,0v) = Ma(x1,y) + La(X2,y)
2. La(xy1+y2) = La(Xvyv1) + L(xvyv2)

3. La((XXv,yv) = (XLa(Xv,yv)

4, La(Xv,ﬁ_Yv) = ﬁL_ a(Xv,yv)

Then Lqis called bilinear operator. However, the boundedness of Lqis given by

LG Ly Yy

|L'rz($u:yu)| < AI”IMHHUUH = ||]—:L|| o SHDM = sup |LG(.’15,,,:U;,)| (216)
A (e | o=
y ==t

We now establish the fact that given any bounded linear operator its adjoint always

exist.

Theorem 11. (KREYSZIG (1978)) Let*and*ibe Hilbert spaces. An adjoint operator

Hb* of Lg exists inH‘g and it is bounded with norm HTa* H — HTa ||

Proof. from eqn(2.15),

Iall < 1731 @)
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”T:yuamr/” ~ |<*'fj T:yVH

HLaH = sup Z Ssup = HTa*H HLa” > Hn”
70 ||'7:V‘|||yu” Y70 ”T:yu““yz)”
Also, Y70 Ty #0 (2)
Comparing (1) and (2)
IMall < IEH < Mlwoll = €GN = | Lall similarly
kTok =kLak  then, we havell o |l = [[Lall = T3]l = T3] = [ 7] O

Proposition 2.2.2.1. SupposeH?andH‘gare Hilbert spaces. An operator}Ca T HY — H

) b . , b
andLa : Hi — M3 are two distinct bounded operators:vxv» Y» € Hiand Jda,f € Kse. .

Then the following results are established.
1. <£Zyl/: ‘rl/> - (yy, E.I)

2.(Ka + L) =K, + L
3.(aly)" = aLl;

4. (L))" =L. 5,
(KaLa)™ = (LK)

Proof. 1. Using condition (IPS2) OF inner product space (see 17)

(Q{?Ju;iﬂu) = (yus Ea.$V> = (Eamuayy> o (yu; Eairl/> - (f':yuaxv) = (ymﬁaxv>

2. <UC& + £ﬂ)*$r/! yu> - (I’lw (}Ca + Ea?}u)) == <xv; }Cayy o Eg@}y) = <$V, ]Cayp> + <ﬂ.’-',,, ,Cay,,> =
Koz, Yu) +(LoT0s Yu)

(K + Lo)xv,y) (Kot La)* = K+ L

3WTS (@Ld)" =aLly
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(aLy) Yy, ) = (Y, (aLyx,)) = alyy, Lox,) = a{Lly,, x,) = (@Llliy,,x,) = (al,)" =
all
4, h(L*a)*Xv,yvi = th,L*ayvi = hLaXv,yvi == Lw+a= La

5. h(KaLa)*Xv,yvi = th,L*ayvi = hKa*Xv,L*ayvi = h(Ka*L*a)Xv,yvi == (KaL*a) = KasL+a

NB. All the operators mentioned in (see 2.2) are bounded operators except the differential
operator. However, to show that the differential operator is not bounded, we set p» € C[0,1] : t €
[0,1] and define pn(t) = t"then kpnk = sup |t?| = 1 Also,

teCla,b]

Lapn(t) = pn° (t) = ntr-1 Vn € N == kLqpn(t)k = sup |nt*-1| =n wheren € N
teCla,b]

Hence, Lq called the differential unbounded operator, because there is no fixed value that
will make the expression in (1.24) to hold.This will lead to the notion of unbounded linear

operators in the next section

Definition 27 (Self-adjoint, unitary and normal operators). Given H2 to be Hilbert space and Ta

: H"—— HPto be a bounded adjoint operator. Then
1. The operator Tqis self adjoint or Hermitian if{a = 15

2. The operator Teis unitary if Tqis bijective andly =T,
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3. The operator Tqis normal ifl'ly; = 1,1, = 1,

NB. We are to note that, given a bounded operator Tqif is self adjoint then hTq,xyyvi =
(0, Tyyw) Vu,9, € H" and ifis unitary hTaxy, Tal = hxuyvi From definition, the opera-

tor existing between any two isometric spaces is the unitary operator.

Theorem 12. (KREYSZIG (1978)) Let Hbbe a Hilbert space. A bounded operator on

Hilbert space is self adjoint if the conditions hold:

1. If Tais self-adjoint then hTaxy,xvi is real Vxy € H?

2. If HPis complex Hilbert space, then hTaxy,x:i is real Vxv € H the operator Tqis
self adjoint
Proof. 1. From the hypothesis, Tais self adjoint. Now,hLaxy,xvi = hxy, Laxvi =
hLaxv,xvi

An operator which is equal to its complex conjugate is self adjoint.

2. let hTaxy,xvi be real, Vxy, then{ToZv, T,) = (Lo, x,) = (v, Lix,) = ([w,,2,)
(Tyxy,x,) — (Trr,,x,) =0 (Loxy —Trxy,x,) =0 (T —TH)z,,x,) =

(Te=T)=0 = T,=T;
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2.2.3 Matrix operator

Matrix operators are of practical importance in the application of quantum theory, where
observables are treated as matrices with a special interest in symmetry and rotation of
eigenvectors in an orthonormal system. However, we will examine some classes of matrix

operators with emphasis on geometric symmetry.

Definition 28 ( General Linear Group GL(N)). The set of all square invertible matrix

ie VAE€EGL(N):detA6=0

Definition 29 (Special Unitary Group SU(N)). The set of all square matrices

Le {VA € SU(N) : detA = +1}

Definition 30 (matrix lie group). Let G be a closed subspace of GL(N) with the property that

given there exist a converging sequence{An}?—l € Gfor which lim Ar = A for some

n-—oo

A € GL(N) then, A € GL(N) or A is not invertible
Definition 31 (Lie algebra). Let Xvbe vector space over a scalar field Ksc. A bilinear operator [-,+] : Xv

xXv—— Xvis called Lie algebra together with the following conditions:

1. [XV,XV] =0 VXv€Xv

h ih ih i
2. xylywzv] + yv[zvxv] + 2y [xv)v] = 0 (Jacobian Identity)

[xvyv] are called commutator of xvand yv

51



Definition 32 (Exponential Operator). Given A € GL(N) define e2 € GL(N) as

()OA.”_ 1 1 .
A A | 8 2 - 3
et =) = LR A+ 5 A +3!A 4

n=0

Definition 33 (Properties exponential operator). 1.e0=1

2. efisinvertible

3. if A,B commute, then eA+B = eA(eB)

4. if S € GL(N) then e545-1= SeAS-1

d - tA
5. d'[‘L = A(,

2.2.4 One Parameter Unitary Group

(2.17)

Definition 34. (Baker (2000)) Set Ua(t) € B(H®) to be a family of unitary operators then

Uq(t) is strongly continuous one-parameter if

(i)  Ua(t) : R-— B(H?) where t 7— Uq(t) is strongly continuous.
(i)  Ua(t + s) = Ua(t)Ua(s) Vts ER

Definition 35. (Infinite Generator of Unitary Group) A well-defined densely linear operator

Tqwith domain D(T4) € HP?is said to be a generator of Uq(t) if the following conditions are

met:
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nb:t7- Uq(t)xvis differentiableo 1. D(Ta) =
xv€H

2. Viff,, € ‘D(‘]:r) — "'.('_Iua.(t)mr/ T u{r(t)TIa;fj.v

" dt

Lemma 2 (Properties of Infinite Generator). If Tqis an infinite generator of Uq(t) then it has

the following properties:
(a) D(Ta) is invariant. i.e Vt € R Uq(t)D(T4) = D(Ta)
b It commutes with Uq(t) i.e

[Ta,Ua(t)]Xv= TaUa(t)Xv- Ua(t) Taxv=0 Xv E D(Ta) (218)

(c) Tais symmetric, i.e

hTaXv,yvi = th, Tayvi VXv,yv = D(Ta) (219)
(d)  Uaq(¢) is uniquely determined by T«

Proof. (a) W.T.S D(Tq)isinvariant
Now, if we set

s7— Ua(S)Ua(t)Xv: Ua(S + t)Xv (220)

is differentiable if and only if

s 7= Ua(s)xv= Ua(=t)Ua(s + t)xv  is differentiable. (2.21)
consider (2.20) Ats=0, wehave (-i)Ua(t)Taxv
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Also, consider (2.21) at s = 0 we have (-1)Ua(-t)Ua(t) Taxv. Hence xv € D(Ta) &= xv €
Ua(t)D(Ta)

(b) Ifwe setx, € D(Ta) and allow!a(!)Tuy = Ua(t)i g:Ua ()T = 155U (DU (5) T, =

i%ua(s)u (t)zy = Tulla(t) % eyaluated at s = 0

Ua(S + t) = Ua(S)Ua(t) == Ua(t)XvE D(Ta)

(c)  Toshow symmetry, By 27 hxy)vi = hTaxy, Tayvi it preserve in inner-product. Now,

) = 0 = S U0 a0 = (ITUa0), Uoll)+ a0}, ~ T80

—ikUa(t)kzh TaXv,yvi + ikUa(t)kthv, Tayvi but kUa(t)kz =1==> —ihTaXv,yvi + ith, Tayvi hTaXv,yvi =

hxy, Tayvi

(d) setTato be a generator of UaA(t). Then by symmetry of T, we have

%nua () — U (D, |2 = % (e (0 = UoB) Uo(0)2, — a2,

o [0 02 a0, U ) = WP, e ()0
d

Un(i)2.)] = [0 2~ 2R a0 U 00) N0 ] = [l 2]+
kUa (£)k2) - 2<hUa(t)x,Ua (t)1 but kUa(£)k? = kUa (k2= 1
\IMa()ruU"(f):mIIQ [2||z,,||2—zﬁfe< ()r,,,ua(t)m,»}:—m[ Uty Us(1))]

K %Wﬂ(“"‘w“u-(“fﬂv) (LU (O, Uy (D)) + Ua(t)z,, —iT U, ()2,

[< T (O Unl1)2,) o Ua O, —T U (0, | = —2R[0] = 0

(O~ thlt), 2 =

a o S Y2 —
(h‘“uﬂ(i)lﬂ/ u@(t)lzull 0

Hence, Vxv € D(T4) and Ua(0) = Ua (0) == Ua(t) = Ua (¥t ER = D(Ta) = H?,
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and Ud(t) = Ua (&)

Proposition 2.2.4.1. The necessary and sufficient condition for Uaq(t) € B(H?) to be unitary is

Uy (t) = U ' (t)

a

Proof. necessary condition suppose Uq(t) is unitary then by

definition we have Vxy,y»v € H?,

Uz OU(t) T — T yy) = UaB)@o,Ua(O)ye) — (0, %)= 0 but Us (DU(E) = I by the

surjectivity of Ua(t) we define Y¥» € H Jw, € H' i U(D)mw = yo = Us(OUL()y, =
U, (DU (U (1), = U (), =y o UL(EUNE) =1

Hencells (t) = U; (1)

sufficient condition

supposeurf (t) =u;" (t) by the surjectivity of Ua(t) we have

(Ua( D)y, Ua(t)y) = Uy (OUa(b)0,40) = U (OUO)T0s90) = (Zunyp) = Ua(tyis

unitary. n
We now consider the classes of matrix operators with emphasis on complex matrices.

Definition 36. Let Ma(C) be a square matrix and let A € Mn(C) with entries aijwhere

i = rows and j = columns Now, A = "ajj = ajiconjugate of A

Aljj= gjicalled the transpose conjugate of A and is a square matrix , denoted by A*:

A= (A) = (A)! if Ais real then A*= Al

1. A matrix A € Mn(C) is Hermitian if A*= A
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2. If A € Mn(R) then A is symmetric, thatis Al = A

3. A € Mn(C) is normal, if AA*= A*A

4. A matrix Us € Ma(C) is unitary iftdalfy = UU =1

5. A matrix Q € Mn(R) is orthogonal if QQ' = Q!Q =1

6. A = aij € Mn(C) then tra(A) = ai1 + a2z + as3 + --- + ann, sum of its diagonal element and it is a
linear map.That is
(a) tra(aA) = atra(A)

(b) tra(A + B) =tra(A) + tra(B)

2.2.5 Spectral Thoery

Given any square matrix A € Mn(C) and A € C called an eigenvalue of A if 3xv= 06 € C called the
eigenvector of xy such that Axv= Ax , however, if we set A € C to be the eigenvalue of the square

complex A with the corresponding set of eigenvalues. Hence, if

A€ C Viis a set of an eigenvalues of a complex square matrix A, thenVz» € C",  Vijg
a also a set of eigenvectors corresponding to each A%s are called the eigenvectors of A with
respect to A. However, in the presence of zero vector, the eigenvectors forms a subspace

called eigenspace. Also, if we set A € C to be eigenvalue of A. Then the following holds if
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1. Axv=Axv:xv6=0, xv€ECn

2. AI-A)xv=0

3. (Al - A) defines a linear operator which has a non zero kernel.
4. (Al - A)is notinvertible when det(Al - A =0

det(AI - A) is a polynomial of degree n of the form

An = tra(A)An-1+ - + detA (2.22)

Thus, A% of A are the zeros of (2.22). Equation (2.22) is called the characteristic polynomial of

A

Definition 37 (Spectrum). The set of n-roots of the characteristic equation in (2.22) are called
the spectrum

Let p(A) = max|Ai| is called the spectral radius

1<i<n

Definition 38 ( Properties of square complex matrix). 1. A € Mn(C) is a complex square
matrix, if the eigenvalues of A are real and forms orthogonal matrix as

A = Q'dig(A1,A2,43,-:An) Q

2. A € Mn(C) is Hermitian if the eigenvalues are real and form an orthogonal matrix as A =

U, ldig(A1,22,23,+An)Uq
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Definition 39 (Diagonalizable matrix operator ).

A Square matrix A is diagonalizable if it is similar to a diagonal matrix. That is,

3P:P-1AP=D

Definition 40 (Diagonalization). It is the process of finding a corresponding diagonal matrix or

linear operator

Proposition 2.2.5.1. If A € Mn(C) is Hermitian and Uaq(t) = eitA. Then the following are

established
1. Uq(t) is unitary
2. Ua(t)Ua(S) = Ua(t + S)

3. For any arbitrary collection of Uq(t)ter is abelian under the supervision of multiplication.

. ua(t) —£ o
1 5% =7
Proof. 1. To show Uq(t) is unitary then W.T.S (Ua(t))*Ua(t) = 1
A" 1 g
A - — A2 A3 S
e’ S B i

n=0

Depicting the above equation, we have
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. ((tA) ) ¢ (HitA)
NOW, (ua(t)) - Z - Z “A

n! n!

is
Hermitian == A*= A n=0 n=0
o0 o t n
R A
n=0 | ) (223)

From a singular value decomposition, since A is Hermitian, we can find a unitary operators

Vand V*: A = VDV*where V are the entries of eigenvectors of A and D is diagonal

matrix. So,
(it o= (VDY) = (VEEHY)r L = (itD)"
uﬂ(t)zz( n.!) :Z( n! ! :Z( (rnJ) : - Z( *n.!) v
n=0 n=>0 n=0 n=0

since matrix multiplication is point-wise then

Ua(t) = V*diag(eitdL eitd2, eitd3, .. gitdn)yy but Ua(£) (Ua(8))* = Ua()Ua(~1)

Ua(t)(Ua(t))« = [V+diag(eitdi, eitdz,€itd3,++ ,eitdn) V][ V+diag (e-itd1,e-itd2,e-itd3,*+ ,€-itdn) V|

Ua()(Ua(8))*= V-V = 1
9 Ua(?‘) _ Z (ifA) y eit.A X =

n!

?/(a_(s) _ Z (?9-/4) A (iiSA - b{a(t)ua(s) _3 (e-itA)(eisA) 3 eitA+isA - f?i(t‘+.~,~)¢4 —

similarly

i [i(t + 5).A]"

n!

=U,(t+ s)

n=>0

(3) W.T.Stheset{Uq(t):t€ R}is abelian.
(i) commutativity property
Vs,t € R we have

e o]

U, (t) = Z (itA) = = Ua (1)U (5) = Tl = Ua (5)Us (1)
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(ii)  Identity property

3(Ua(t)* such thatta(H)U; (t) = Ibut (Ua(6))* = Ua(~t) == = eithe-ith = g0 = |

(iii) Inverse property if 3 Uq(0) such that Ug(0) =1

So,  Ud(t)Ua(0) = (eth)(ei®A) = Uq(t)

(4) WIS lim Ul =1 _ 4
31.5.4 -1 JEA 1
where [ = U,(0) = ‘ = lim (E a(t) —1
t t—0 t vy

Using the L’'Hopitals rule lim (iAe*A) By the linearity of
limit function we have ¢-o0

iA lim ¢4 =iA
50

U (t) -1
— lim ——
t—0 t

=iA

2.3 Fourier Analysis

To comprehend the phenomenon governing superposition of wave-function, it will be of utmost

benefit to begin with the review of Fourier analysis

Fourier series

Consider a periodic function fa(xv) of infinite dimension space with periodicity of 2@ such

that fa(xv+ 2m) = fa(xv). However, in the mathematical treatment of Quantum mechanics, the

wave-function is considered as complex wave-function. So it will be of particular interest

to treat the Fourier expansion in exponential function.

Now
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fu,(;'l’,',,) = Z (y?_bem;r,,
n=—oo (2.24)
where anis the coefficient of expansion which will be determined shortly.

By the orthogonality of the wave-function, we have

™ ! ’
/ ei(n—-’”)-”"vdl‘ = 27]—511?7?,

=T

(2.25)

which is expressed in-terms of Kronecker delta
Since we have introduced the orthogonality relation, we can then proceed to find the coefficient

of expansion by multiplying fa(xv) by the conjugate of its function and then integrate the

resultant function along the interval -mto o

1 ' ! 7,’7?,11’ !
- = VoLl "0,

(2.26)
put eqn(1.25) into eqn(1.23) we obtain the Fourier expansion for f(x) as
S ey ety
f(’f) _ Z % /_ f(.]’f )em(;{:—u: )d’I‘
= 2m ) (2.27)

, _ 1 _inx
To introduce the orthonormal condition for the function f{x). let’s consider Ful®) = 526" ye

can write eqn(2.26) as:

o fx) = X yufal(x)

[=—00
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Zr * o 0 0

fa(x )fm(x)dx = 6nm

-

Zx * o 0 0
set  yn= Salx Yfon(x Ydx = S
L) = S [ f@) @) 14z,
Hence i=—oo T

We now consider the periodic interval of 21, where [ is the length of the wave :fa(xv +21) = fa(xv).

However, we can introduce the orthonormal function as;

]_ irm‘;:i:
_8_“‘_
2m
= ]. inTn
= elZ,) = An e !
ful) 2; >
1 L,
e i(n—m) vd L
27T - !’ ‘Ty -
]_ 'l I 'in?rx’ ’ 1 - + ! in-rr( : ) !
/\n. o 2771_ ./_l fa(.]; )g 7 dng e fa(qry) = 2[71_2_00 ‘/_l fa(xy)e T (Te—xy, dIU
Now, to introduce the wave number kn
kn:EZQ_W )\n:gi
[ An  with n
1

:’ik’nfl'u

() = e e .
Hence the orthonormal function is V2l This relationship enables the transi-

tion from the Fourier series to the Fourier integral to a finite-dimensional space wave packet.
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Fourier Integral

If we consider a periodic function fa(xv) with periodic interval 2/ which repeat its functional
value from —oo to oo. Setting I —— oo and keeping the wave packet fixed. Then taking [ —— o
under the condition that fa(xv) = 0 sufficiently rapidly as xv —— #oo. In fact, we can make a
transition from an infinite wave to a wave packet of finite dimensional. As [ -— oo, then the
spectrum of possible values of k» goes from discrete spectrum to continuous one.

Now the Fourier expansion for f{x) becomes

_ 1 fe et )
falz,) = 5] ./—oodk/—ood%fa(%)e

we then obtain the Fourier amplitude as:

fa(l‘,,) —- % /OO dkfg(k)eik:ru

The Fourier amplitude is called the Fourier transform of fa(xv) and is given by

1 - "N —ikz ’
k) =5 [ ),

0
Hence the orthonormal integral diverges where k = k

Jl S W / y ’
. “:u(k_k )d = 6 k' _ k
o B

The Kronecker delta now becomes the Dirac delta function.
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2.4 Dirac Delta Function

Consider the Fourier series to be a limit sum over a fixed number of terms, then :

Z
fa(x) = lim X . (2.28)
N-—00 Sx ) fa(xv) for (xv)dxv ?v
e n=-N 8
The corresponding Fourier integral
oo r 1 kO . ’
.fa(:’l:y) = . lim fﬂ.(ly)_ f elk(ﬂfufﬂfu)dk
ko—ro0 00 27 “ko (229)
set
' . 1 k
k‘(.’l’:v ’IV) — _/ Elk(.L —x, )dk
oX * 2 S
k(x,xv) = filx)fa(x)  OR
n=-N

If N or ko becomes very large then the function is strongly peaked at *» = z, However, if

, # &, then the oscillation is of a very small amplitude.Notwithstanding the fact that the

limit point of this wave are the equations (2.28) and (2.29). Now change the infinite sum

or the k-integral with Ty integral through the definition of Dirac delta function.

Z fn(IV)f:(IV) = 6(1’,, CCVU)
e (2.30)
i e,jk-(:l,-_:f:g)dmﬂ aa (5(.’1‘1, ey IO)
21 Jogg (2.31)

NB The Dirac delta function is not a function but a distribution.
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Definition 41 (Properties of Dirac delta function). 1. §(xv - xw) = 0 for ¥/~ , if

Ty = &, the Dirac delta function becomes infinite. That is

Z ro6(xv - xvo)dxvo provided xv = xvo is in the space (r,ro)

Also
/ Ful@00)0(z, — 240) = ful,)

[o. o]

The limiting process from eqn(1.28)
k 2
] k T, — Ty
5(3"11 _xu{}) = lim i / 3 sin O(T L [))
n—7od .

e{,l,:(_r,,—ﬂ?ul_l)dk‘ == hm
ko ko—voo (& = Ty0)

Graph

2. Dirac delta function is an even function
§(—z,) = 8(x,) = o+ = —d(x,)

“dry

Allso . ‘
/ror 2,0 (z,) = {xc)"(:ry)}m = /m 6(x,)dz, = — jro §(z,)dz,

3. ifa € R, then
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Chapter 3

UNBOUNDED OPERATORS

3.1 Overview

This chapter will provide the necessary background to be able to work with unbounded
and self-adjoint operators, which includes the important concept of graph an operator.
Next will develop a functional calculus to give meaning to the expression f{Tq), where fis a
function on the real line and Tz is an operator. For this we will need the spectral theorem
for unbounded, self-adjoint operators. Finally, we state some criteria necessary for an

operator to be self-adjoint and essentially self-adjoint.

3.1.1 Introduction

As it turns out, most of the operators occurring in the mathematical formulation of
quantum mechanics under certain conditions are linear, self-adjoint and unbounded. In
particular, many quantum operators expressed in terms of ordinary and partial
differentiation are generally unbounded. More often than not, these operators admit
another type of property which in a way, makes up for the fact that they are unbounded.

Consequently, these operators are closed. We will now look at the sufficient condition for
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an operator to be bound by defining everywhere-operator on a Hilbert space (H?) NB we

will state the theorem without proof.

Theorem 13 (Helinger-Toeplitz). Suppose A be everywhere defined linear operator on a Hilbert

space(H?) : hxy,Ayvi = hAxy i

We define an operator everywhere in Hilbert when it is symmetrical and bounded.
However, in the case of unbound operators, we can not define the symmetric operator for
the whole space, but rather for the subspace of the space. This is referred to as the domain

of an unbound operator D(T4).

Definition 42 (Graph). suppose H? andM5 are Hilbert spaces andZo : H} — Hjan

operator. Then graph of Ta(Gr(Ta)

GG {(@."}b, YY) Yy’ € H?}
(3.1)

we observe that G7(T) € Hj x Hjand (Yb,e) € Gr(Ta) &= @b = Tah?

Definition 43 (Closed Graph). GivenH1 andH5 as Hilbert spaces and Za : H;{ — Hias linear

operator. Then Tais closed if G(Za) C Hi X H;
In general, not all operators are closed but it is possible to include their extensions.

Proposition 3.1.1.1. SupposeTa o s %g, where?t1: 75 are Hilbert spaces Then

. — P 1 - . T o b g
Tais closed 3 {vn}.o C D(T“) with Yn—— p andZe¥n, —> @ as n — o0 we have
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() »eD(Tad (i) Tahp®=¢®

h h 2,0 1L !
Proof. Suppose Ta is closed subset of HY x Hy, Let {{-'“n}n:l C D(1, ) be such that
: Lo — b : ,
G = U ndTut, — ¢ WS (1) b € D(T) (if) Tepb = b
Now, lim ¢nb = ¢b and lim Taiﬁnb = (Pb == (lpnb, Tal/lnb) - (l/)b,(Pb) as N —— 0 p-—-oo n-—o0

moreover, (Vn: TV5) € Gr(T,) Vn € Nand since Tais closed, we have (b,¢?)
= ' eD(T,), ¢ =T,

Next, suppose b e HE, b — b JngTattt — ¢ as n — oo

() yYbeD(Tq) and (ii) Tapb=¢b  W.T.S Gr(Ta) is closed subset] x Hj
Suppose {Lﬁ T“'l-*j”'ﬁ}nzl be any arbitrary sequence inGr(Ty) « (2, Tty — (V7 gsh) as
n —— 0. To conclude that Gr(Ta) is closed it suffices to show that (b,¢?) € Gr(Ta)

b

U8, Tyl — (WP, ¢%) asn — oo = lim o? =4®

[ T wb - be
But ( " n—» oo and n—seo &7

lim
n—:oo

From hypothesis, y» € D(Ta) andT¥), =" = (°, 1)) "— (%, ¢°) € G"'"(Ta) and

so Gr(Ta) is closed.

We now give an example of an operator that is linear and unbounded. This is to appreciate the

importance of the closed Graph Theorem.

Example 3.1.1.2. Consider the supnorm defined on the function space C[0,1] is given by

Dom = {ja  f. € C[0,1], f < oo} . y
and Tq : D(Ta) -— C[0,1] is also defined by Tofo = fais a

differential operator. Then

(i) Taislinear
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(ii) Tais closed

(i) To show linearity of T, we assume that 3fa,g« € C[0,1] and &, € Ksc such that

To(afo+ Bg.) = (afs + _‘Bya)’ = Off; + 59; = oy fo+ 81,9, = Tuis linear.

(ii) W.T.S Tais closed
Suppose{f”}ﬂzl c Co.1] - nlig)ofn - f"'andTafn = fo — ¢"as - oo But

lim Tafn = P == convergence in the norm

n-—oo

So, kTafn — Pk = sup | Ta(fn)(t) — @?(¢)]| = sup |f2°(t) - @2(t)| —— 0asn —— o

t€[0,1] t€[0,1]

The convergence is uniform (t € [0,1]) and @?(t) = lim fx:0(t),

n-—-oo

By the uniform convergence, we have

ds = ft lim f,(s)ds = lim /f 1o/ (s)ds, = fa(t) = f
0 0

o e (0)(fundamental theorem of calcu-
lus)
.
16) = 10+ [ ot)ds _ o~
o Applying the Leibniz rule
fo(t) = ¢"(t), Vt € [01]butfue D and Tofo = fo = @ Ve € [0,1] = (fu Tofs) €

Gr(Ta) == Tais closed. (iii) W.T.S Tais bounded

We set fu(t) = t then kfuk := [t7| = 1 == f1,0(t) = nt"-1so that
te[0,1]

kTafn| = |nt"-1| = n Vn € N.. Tais not bounded.
te[0,1]
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We will now look at the scenario where a map is continuous by carefully examine its bounded and
linearity property. In other words, a map is said to be continuous if we can show its boundedness

and linearity property.

Theorem 14. Suppose X, Yvare Banach spaces, and Ta: Xv—— Yvis linear. Let Gr(Tq) be closed.

Then Tqis continuous

Proof. Consider the space X x Y with norm

k(yn,b)kxoxyvy= ki, ok + knkp (3.2)

Since Xvand Yvare Banach space, it follows that XxY in Banach endowed with the norm (3.2)

Gr(Ta), closed in Xy x Yy == Gr(Tq) is Banach.

Consider the projection map Q. Gr(Ta) —— Xis defined by Q, (Yb, Tap?) = PP then Qisa bijective

~1
map, continuous as well. Then I X — GT(TG-) is con-

- , .
tinuous. Hence,aﬂpn € R: H]._.[l (1.‘;’?)”@1"(1'};) < ﬂf”'ﬂ)”, V’fﬁb e X WLOG assume

M>1.  Thenl IIT @lermy < M, = |0, Tut®)lorm) < M1} by 3.2
K(tps, Tatbs) = kipokip + KTatpokip s0 kipPkby + KTipEKb, < MKiKby s0, KTapbkbp < (M = 1)kipb|by,

VX == Tqis continuous (i.e linear and bounded)
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Definition 44 (Unbounded operators). 1. Tais an unbound operator if Ta: D(Tq) C

Hb -— Hb: D(Ta) = H2. Then Tqis densely defined

2. (Sa,D(Sa)) is an extension of (Ta,D(T4q)) if D(Sa) 2 D(Ta) : Ta C Sa
3. (T4,D(Ta)) is symmetric if Vipb, P € D(Tq) then hip’, Tagli = hTah?, @Pi.

Definition 45 (The adjoint of an unbounded operator). If Tqis densely defined on H?.

Then the domainD(T;) of the adjointch is given by
D(T}) = {w" e H': Iy € W|(W Tud?) = (1,6") Vo' € D(Ta>}

D(Ta) is dense and y is uniquely defined 7V € D(T;). Now

T DTy — H, P — Tt =4

/

Definition 46 (Self-adjoint operator). Suppose Taq: D(Tq) € H2 —— HP.

D(T7) = D(Ta) andZs = TaThen (T4, D(Ta)) is called self-adjoint operator.
Proposition 3.1.1.3. An unbound operator Tqis symmetric < I

Proof. Let Tato be symmetric == D(T.) C D(T;) V' € D(T,)jf
we set? = Tu¢" = T;"

Next, supposela C 177 W.T.S = Tais symmetric

NOW,\U/‘*"‘I"’{j € D(T.) C D(T:) and(V"; Tu¢") = (T;4°.0") = (T.y", ¢")

Theorem 15. Suppose Tqis a densely defined linear on D(Tq). Then Tqis a generator of a

unitary Group Uq(t) = e"iTet &= Tqis self-adjoint
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Remark A symmetric operator is called closable whenever{a C 15 and?4 is closed.
Self-adjoint operators are of course, the most relevant operators in quantum mechanics

due to their capacity to produce time evolution. However, we will lay down the necessary

requirements that will allow us to verify whether or not an operator is self-adjoint

Criteria for an operator to be self-adoint

Lemma 3. Let Tq: D(Tq) € H? —— H2where H?is Hilbert. Then

hl/lb,Talpbi ER Vl/)b € D(Ta) (=
is symmetric

Proof. Suppose Tqis symmetric Then W.T.S h¢?, Tal/)bi €R VP € D(Taq)

Since Tais symmetric == he?, Tayp?i and he?, TapPi = hTagpb,1pbi

Next, suppose h@?, Tap?i, Ve D(Ts) W.T.S Tais symmetric
Now, h(pb, Tal/)bi leb € D(Ta) == h(pb, Tal/)bi = hTa(pb,lpbi leb € D(Ta)

From polarization identity
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(0", Tud") = 7 ((cﬁ” + U8, Ta(@" +90)) — (@ =0, Ta(¢" — ¥)) —i(¢® + 0", Tu(¢* + ")) +

i{¢" — i, T, (6" — -ri'q‘;”)>)
Also,

(0, Tuy?) = (Tuy", ¢") = ; [(@b + 08 To(@® +00)) = (¢ = 0P, Tu(0" — b)) +i(e® +

", To(¢" +iv?)) — (0" — i)’ To(” — iv?"))

Interchanging 1? with ¢? we have

(T4 = {<¢b + 9% To(6" +4)) — (¢ =" Tl — 90)) +iw’ +id", Tu(u' +i¢")) —

i~ T~ i)

4
i(i? + ¢¥, T, (i + c*’))] = (¢", Tay’) -

(Tt ) = - {(ob + 0, T + $)) = (@0 =4 Tul@* = 4P)) + i — ", Tu(it® — i) —

Definition 47 (Essentially Self-adjoint operator). A symmetric operator is essentially selfadjoint

whenever its closure is self-adjoint

We shall state a lemma without proof that will allow us to state the requirements necessary for

an operator to be essentially self-adjoint.

Lemma 4. Suppose (T4, D(Tq)) be densely defined, then

1. vzeC==ker({as £ z) = Ran(T, £+ 2)*

ker(Is £2) ={0} <= Ran(T, +2) =T, (3.3)

2. If Tais closed and symmetric, then Ran(Ta * i) is closed.
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Theorem 16 ((Moller (2010))). Suppose a well-defined symmetric operator Tq together with

the D(Ta). Then the following conditions are equivalent.

1. Tais self-adjoint
2. Tais closed and keril, £i} = {0}

3. RantZly Lit= {71a}

Proof. (1) == (2) Suppose Tais self-adjoint and Tais closed we set st € ker(Lz £7). Then

Tap: = Filp+>. But the eigenvalues of a symmetric operators are always real == b= 0

(2) == (3) From (3.3) Tais closed and symmetric and by (4) == RanTais closed.
(3) == (1) since Tais symmetric, =~ Za C 1; and suppose ¥? € Dom(T *) then by assumption,

Ran(Tai I) =Ta Ell/)bE D(Ta) :

(Ta -’ = (T.=1)¢ (3.4)

Byl CT; = (I; —i)p=(T; —i)¢ jep-gpeker(ls —1i) = ¢ —¢"=0

U =¢" € D(T,) = D(T}) C D(Ty). Also, Lo =T on D(T,) O

3.1.2  Spectral Theorem for unbounded operator

To be able to formulate and prove stone theorem, it is necessary to understand the

expression of the form Uq(t) = e~itA for an unbounded operator A. We can achieve this by
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developing a functional calculus with the help of spectral theorem for unbounded

selfadjoint operators.

Definition 48 (Resolvent setp(Taq)). (Porta (2019))
Let Ta: D(Tq) € HP —— HP. resolvent of Tqis:

p(Ta) := nz € C|(Ta- z) : D(T4) —— HPis a bijection with continuous inverse.® (3.5) Definition 49

(Resolvent). Considering z € p(Ta), we define the resolvent of Tqat z as:

R(T) :=(T-2z)1eHb (3.6)

Definition 50 (Spectrum). The spectrum of Tsis given by

O'(Ta) g \p(Ta) (37)

Remark The consequence of a graph of an operator is that an operator is closed only if
the linear operator is continuous, so the continuously property of the resolvent set can be

dropped.(see 3.5)

Proposition 3.1.2.1. p(Ta) 6= 0 only if Tais not closed
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Proof. if we set (Ta— z) : D(Ta) —— HPto be bijective and (T« - z) invertible. Then I'(Ta) = I'(Ta - 2)
=['(Ta- z)1. Thus, if I'(Ta) is not closed == I'(Tq - z)~1is not

closed . Then 3¢5, C H" : ¢ — 0 as n —+ 0O byt (T, - 2)-1is not continuous (i.e)

(To — 2)¥y, ~/+ 0 as n — o0 Hence p(Ta) = @ O
Definition 51. Suppose Ta: D(Ta) € H? —— HPis closed. Then its spectrum o(Tq) can

be categorized as follows:

otz == { = e cfr - )
1.is not injective is called the

point spectrum, and it

coincides with the set of eigenvalues of the operator.

bo(Toes {z eC|T,— =z )
2.is

injective not surjective with dense range is called the

continuous spectrum

o (T,) = {z e Cli, : =z )

injective but not surjective with no dense range is

3.is

called the residual spectrum.

Example 3.1.2.2 (Porta (2019)). (a) Given a position operator "xywith domain

D= {@f’ € L*(R)

Zy(¥(1)) € LQ(RJ}
(3.8) We defined

X1 —x(y) == xv-2)"
~0(x’v) =R Then (xv-1)

is the product of the function (xv-z)=1 < oo, Vz € C\Rhas a
dense range VA € R. Also, Vi? € L2, we define

76



X:p-—-xp == (x"v—-2z)1is product of the function (xv- z)-1 which is bounded
Vz€E\R ~o(x™v) =R

The map ( "xv— A) has a dense range VA € R. Now Yi» € L2, we defined

,"I‘.‘", b
Ty, — A

Then (xv-A)YPn—— P2 € LZand hence the range of x-A is dense . o(x") = 0c(x") =R

1 1
A== A=
n n

Un = XR

(3.9)

(b) Let Uqs € B(H?) be unitary. Then o(Ta) = 6(UaTqUa1) == Ta- z is injective
_ s od
&= Uq(Ta-2z)U-1= UaTaUa ! -z is injective - the momentum operator ¥ = ~*dz, on R2has real

continuous spectrum, o(p”) = o¢(p”) = R, since "p = FX'F-1== F is unitary.

Definition 52 (Neumann series). If we set X to be Banach and Tq € B(x) with kTek < 1. Then (1 -

T) is continuously invertible. i.e

n=0 (3.10)

and

Kk(1 - )k < (1 - (kTak)-1) (3.11)

Theorem 17. If Ta: D(Ta) € H? == D(T4). Then

1. p(Ta) is not open.i.e the o(Ta) is closed
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2. The resolvent map

p(Ta) » 4 B(Hb) 1z7- Rz(Ta) = (Ta o Z)_l (312)

3. ifweset Toc B(H?) : |z| <kTak  Vo(Ta) == the spectrum is compact
4. Vz,w € p(Ta) the first resolvent identity holds:

Rw(Ta) Rz(Ta) = Rz(Ta)Rz(Ta)

Proof. (1) if we set zo € p(Ta) and allow |z - zo| < kRzk-1we have

Ta=2z=(Ta-2z0) - (z - 2z0) = (Ta= 20)(1 - (z = Z0)Rz)(Ta) (3.13)

|(z = 20)Rz(Ta)| <1 == (1 = (z — z0)Rx) is continuously invertible. == (Ta - z) is continuously

invertible z € p(T) (2) From 52

Rzo= (1 = (Z o ZO)Rz—ol)Rzoz X(Z = ZO)nRzn0+1 (314)
n=0

RYMB(H)

where the coefficients /%
1

(3) set|z| >kTek then 1  zisinvertible and To-z as well .z € p(Ta)
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(4) Rz(T)—RW(Ta) = Rz(Ta)(Ta —W)Rw(Ta)—Rz(Ta)(Ta _Z)RW: (Z—W)Rz(Ta)Rw(Ta)

We shall now look at the projection-valued measure which is a necessary condition in deriving

the spectrum of an unbounded self-adjoint operator.

A bounded operator “p defined on a Hilbert space H? is called projection-valued measured if it
satisfies @2 = @. All the eigenvalues of” @ are either 0 or 1. The compliment of a" projector @ is also

a projector NB” We denote o -algebra by B

Definition 53. Considering the map ®%: B —— B(H?) is a projection measure, if V¢ €
B,®(¢?) is a projection. Then
1. d(R) =1

(n — EJ

2. ifwe setL” n W1th99m Fi w =0, m #n then

oL b
RIE}EOZ(I) H‘Qn - ),Ul V}u’ = %

Lemma 5. Suppose @ is a projection-valued measured. Then the following properties can be

established:
1.P(¢p)=1-D(p) 2. P(pnN
¢m) = ©(¢n)(Ppm)
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3.591:. - Pm = H‘I’(P(fs)ﬂu é ||(I)b(5‘9?”)'u”

Proof (1) d(P)u = Xd(B)p == d(0) = 0 Also, R= U ¢ U D U QU,---

n=1

D(R)u = (D(¢") + D) == (= (1~ DBk Vi € HP

ﬂb q) ﬁb
(2) set 5+ mto be Borel sets and if?n 1 ¥ = OThen d( )PP

Ab

other hand, we write@s = (5 — ©h,) U (¢) Nel,)
) = 0. on the Also, d(

®)®(ph) = (‘I’(tpiﬁ —? )+ P(eh N ;om)) (<I>(s-9§2. — b )+

(3) suppose'ﬁPi C Pm, then¥n = ¥ U (@), — 99:’,) partitionedﬁf?zl
kD (Ppbm)uk? = hd(Ppbm)u,pi = hd(Ppn® p,pi + h®(pPm — dPn)p, i

= KD (Pbn)K2 + KD (bm — bn) k2 = KD (pbn) k2

Corollary 1. Suppose densely well-defined operator (Te,D(Ta)) on Hb. Then, @ 6= o(Ta). If z

€ ®(T4), we have

13(2)] (3.15)

Furthermore, Rr("z) = Rr (2)*
see(Troung (2015)) for the proof.

Definition 54 (Nevanlinnna-Herglotz functions). Analytic function Fa(z) is said to be
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Herglotz if it maps the upper half-plane H*nz € C : =(z) > 0° into itself

Theorem 18. For all Herglotz functions have the integral representation as:

Fa(z)ﬁ‘f'JrﬁH_/R (1i,\ - 1+1)\2)d’u’

(l + )\2)(1;.', < 00

Vz € H* for some Borel measure u satisfying /R where a and £ are

8= lim Fa(iy)
constants to be determined. a = <[(Fa(i))] and y—roo Y Also, suppose Fa(z) is
Fu(2)| < o, 2€ H*
Herglotz satisfying 3(2) . Then the integral form is
R = [ 5
RA—Z (3.16)

for some Borel measure u satisfying u(R) < M

Theorem 19 (Stieltjes inversion formula). Suppose F(z) be Borel transform of a Borel

measure u. Then the Borel measure of an interval(A1,A2) with r.p.t u is

Ag+d
(A1, A2) = lim lim — S(F (A 4+ ig))dA
§—0E=T Sy 44 (3.17)

Definition 55 (Spectral Theory for unbounded self-adjoint operator). If a well-defined self-

adjoint operator (7Te,D(T4)) is define on a Hilbert space H.

Then 3D r,:

Ta= Adq) Ta
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Proof. see proof from(Troung (2015)) m

Theorem 20 (Functional Calculus). Suppose on a Hilbert spaceH? we can define a
selfadjoint A such that 3!¥? from the Borel function on R into a B(H?). Then the following

results are established.

1. WAis algebraic- homomorphism
WA(faga) = WA(fa) PA(g), where fa,gq € 0(R) and a € Ksc

WA(afa) = a'¥A(fa)
2. WAis continuous. kWA(fa)ks(a) < Nkfake where N is constant.

3. suppose the function fa(xv) = xvthen WA(fa) = A

4. suppose AyP = Abyhb
UA(f)Y® = faX’)

5. suppose f2 0 then WA

Proof. see (M oller (2010)) for the proof O

Having develop the means of executing any bounded Borel function of a self-adjoint
operator such that their algebraic structure is possible on the real line. This is what we

called functional calculus.
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Chapter 4

MATHEMATICAL FORMULATION

OF QUANTUM MECHANICS

4.1 Overview

First of all, we will look at the description of Quantum Mechanics in a strongly mathematical
setting. We will also prove the existence and uniqueness of Schroedinger’s timedependent
particle wave equation, which is the pivot in the formulation and proof of Stone’s theorem.
Lastly, we will state and prove Stone’s theorem using a direct approach and then some

applications related to the Dilation and Rotation of unitary Operators.

4.1.1 Introduction

The wave function has been the core and the most relevant to the study of microscopic
particles in quantum mechanics. The concept was first established in 1926 by a German
Scientist Erwin Schroedinger, in which he proposed that the wave function that describes
the particles and are spread out in space with the most particles concentrated at where the

wave-function is large. However, Born argued that the description propounded by
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Schroedinger was actually a probabilistic amplitude and the square of its absolute value
represents the probability density function for finding or locating a particle in space (Gao
(2011)). This idea became the most conventional and commonly accepted notion of wave
function in the contemporary research of QM. Moreover, the wave function defining the
particle was actually a complex-wave function as determined through double-slit
experiment that the intensity of the incoming wave (?(x,t) = Acos(kx — wt)) of amplitude
(A) and wavelength must be a constant- thatis I = |[42|. However, squaring the wave function

to achieve the square of the amplitude as resulted in varying the cosine square:

I = |ob(2,t)]* = |AJ? cos® (%m)
ipx
. To resolve the problem, complex wave function was adopted ¥»(x,t) = Ae —» where,
|[YP(x,t)|% = Y*ip = (Ae=vx)(Aew_,) = |A|%2 = I which is constant at all points and agrees with
the experiment, and therefore the incoming wave was actually a complex-wave with a
complex amplitude containing a phase variable. (Energy (E), Momentum (P), Position (X))
the general particle wave equation is Y»(x,t) = AexP*-E) The configuration of any quantum
system is completely described by the phase variable, and the program of quantum
mechanics is to look for the particle wave function, in which the notion of finding the

particle wave function is captured in the Schro’dinger equation:

81‘ b h_? (')2 1,/‘ b

. S8 S V1 b
ot 2m Jx2 k2
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and thereby determines the position of particle by completely solving the differential
equation with some initial condition which determines the particle wave function (y?(x,t))
at all future time, just as, how Newton classical mechanics determines (x(t)) at all future
time(Griffiths and Schroeter (2018)). However, In the mathematical formulation of
quantum mechanics, the complex wave function(y?) are state vectors in Hilbert space with
some geometric properties associated with it. Hilbert space plays a vital role in the
formulation of QM, where vectors in space represent the quantum state of the particles and
for the matter, any geometric property associated with it can be use to describe the

quantum state of the particle in any given system.

The mathematical formulation of Quantum mechanics as to do with the mathematics of
linear vector space. Any quantum system is associated with a complex wave function. This
wave-function (state vectors) completely described the state or condition of any physical
system. Moreover, this state vectors covers all the possibilities of a system, and a such forms

a complex linear vector space.

4.1.2 Dirac Notation

The mathematical objects of quantum mechanics are mainly state vectors and linear
operators(matrices) which are written in Dirac notation as ket and bra-vectors. Dirac
denote the ket-vectors |*i as column vectors and the bra-vectors hi?| as row vectors.
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|l/)b1 = , <L)b‘ = ((1_‘}1’, a_g_. ag‘ s U:’,)T

ARERARREREER ..., AR RRRERRER

4.1.3 Scalar Product

Usually, in Quantum theory, we often compute wave amplitude of any physical system in a

state |yPi as

/ L'bf(h??)ﬁh(l’)d.ﬁ’} pu / ‘@){J(I)Fdiﬁ

o0 —co (4.1) However,

generalization of the concept conforms with the mathematics of inner-product

(

The complex inner-product returns a complex number and a such its value depends on the

. )

order of the state vectors

hipP|Pi = heP|pPif (4-2)

Hence, (4.2) is designed in a such a way that its value will always be real Although

the inner-product is positive definite

86



|[pizo

It allows us to define length or norm on a complex linear vector space.

kipPk = Phypb|pbi (4.3)

Also, (4.1) made it possible to also look at the limit and convergence of an infinite sequence.

Two state vectors are orthogonal if
hi?|pbi=0

However, this can be made into an orthonormal system by first showing that the two

vectors are orthogonal and each state vector has a norm of 1. That is

hip?|pbi=0

lpPi=1 [pfi=1
In generalization,

EIRIRIO if
mé=nbp b
hl/)mll/}nl = 5mn =

ll if m=n
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where dmnis called the Kronecker delta

Also, since |Yni represents basis vectors in a state |yi, then |Yni spanned i that is , if

Jai,az,a3,++ ,anVn € N we have,

Za %)

(4.4)
From (4.4),
= (Z a?nlwm)T(Zalei))
(v'[0") ZZam an (U mltn)
If m=n then
el Z Sl g (4.5)

Meaning there is the possibility of locating the particle somewhere with certainty. However,

if m 6= n then
hyp? i = 0
Z la,|” < oo
In fact (4.5) is complete, provided that » and the expansion from (4.4)

converges to a vector in a vector space. A complete complex linear is called a HS. The HS is
a mathematical structure that serves as probability space in QM where all the information

of a PS can be based.
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QM is based on two fundamental concepts: state vectors and operators. The state vectors
describe the state of any quantum system, and the observables are represented as
operators. These state vectors satisfy the conditions for abstract vectors and the operators
act as a linear transformation on them. Thus, the mathematical formulation of QM is
centered around HS, where state vectors reside, and is often reserved for an infinite-

dimensional inner product space having the property that is complete or closed.

@)

4.1.4 The Probability Interpretation of Wave-function

= (100 108

In any given quantum system, we are only interested in physical quantities that can be
measured such as position, momentum, and energy called observables. These observables
are random variables, and their values as a result of measurement are completely described
by the quantum state of the particle. However, the observables do not commute - meaning
the order in which the values are obtained will not influence the outcome of the
measurement, which is a clear deviation from classical probability theory. Hence, there’s
the need to appeal to the non-commutativity probability theory in other to give meaning to
the values of the observables (Go (2016)). The Hilbert space serves as the probabilistic
space that contains state vectors, and at a particular time, contains all the statistical
information that anybody needs about the particle. But the wave function(y?(x,t)) itself has
no physical interpretation . It is not measurable. However, the square of the absolute value

of the wave function has a physical interpretation. We interpret |?(x,t)|% as a probability
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density, a probability per unit length of finding the particle at a time t at position x which is
actually Born statistical interpretation of the wave function.

mathematically
b

a_ bz, t)Pdx w6

which is the probability of finding a particle within the interval a and b. The probability
density function immediately established predict with certainty the position of any particle
in a given domain of interpretation. The probability is just an area under the graph |i?|2,
and this can be computed by dividing the finite interval into segment and adding together
the contributed each segment.
Note: The wavefunction represents a bunch of identical prepared system called Ensemble. It is

this system that contains all the information one needs about a particle..

4.1.5 Normalization of wave function

Recall that the wave function is a state vector residing in a complex linear space and it
allows us to carry out some useful mathematical operations including the inner product.
Space is either finite or infinite dimensional based on the physical state of the system.
Therefore, it is required in quantum mechanics, that the state vector should be square
integrable in other to have a physical meaning to the quantum system. However, this state
vector Y’ is a solution of the Schro’dinger WE, and so any constant multiplying the state
vector is also a solution. We will later treat the Schro’dinger equation into details in other

to give meaning to the wave vector We can, therefore, define normalization as multiplying
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a constant to a state vector to ensure that the sum of the possibility of finding the particle
is one. mathematically,
Z oo

|pP(x)|2dx =1 (4.7)

-0

This is the probability of finding a particle if we look everywhere. We notice that the wave
function that we have been mostly dealing with, the wave function of a free particle of given
energy and momentum 1? = Asin(kx - wt), Acos(kx-wt), Aellkx-»t) does not satisfy the
normalization condition Eq (1.2) - the integral of |i)2(x,t)|2is infinite. Hence, it appears that
there is an irregularity in the way we handle the wave equation. However, there is a place
for such wave functions in the greater scheme of things, though this is an issue that cannot
be considered here. It is sufficient to interpret this wave function as saying that because it
has the same amplitude everywhere in space, the particle is equally likely to be found

anywhere.

4.1.6 Continuous Space

So far we have discussed state vectors as discrete particle. However, we will now
considered the state vectors as continuous particle in an infinite dimensional Hilbert space.

It is a space where all physical observables take infinite number of values called
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eigenvalues. Such spaces are continuous real valued functions on a closed and bounded

interval [0,2m]. The function have to be square integrable. That is

2
/ | (@)|*dz < oo
0 (4.8)

Addition and multiplication of vectors be done in a natural way.
¢"(z) = vy (x) + B(x)

Note An Observable is any physical property of a system or particle that can be

measured. eg momentum, energy, position, angular momentum etc.

4.1.7 Quantum Measurements and Observables

1. Suppose through a series of measurements the observables Q of a physical system is
found to have values q1,92,q3,::,qn we then introduce the basis states or eigen-states

Y1,P2,P3,+++ ,n for the respective measured values.

2. The measured valued corresponding to the observables Q are called the eigenvalues

of Q.
3. The basis states form an orthonormal basis function set since g;jis associated with ;

4. The total number of eigenvalues or basis states is called the state space.

5. Astate? canbe prepared for which the value of the observable Q is g»n with certainty
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. . . b .
6. If a system is prepared in the basis state¥» and measurement of Q is made on the

system only the value g» will be produced and never any real value gm for m 6= n.

hb afb b o
Hence, gm 6= qn we then conclude that¥1: V2. ¥ -+ . ¥ are orthonormal

. b i b b iy
7. The basis states ¥1: V3. V5 -, ¥, cover all possibilities of the system and form a
complete orthonormal basis set.

For any state )» we have

|bi = XCuth (Scramble state)

mn
1
(b Py = (Z C,,'(,@.ﬁi ) ( Z Cﬂa’@rn)
n m
(ﬁ’rﬂ Id)b) & Z Z OI.C?rz.tfjbl.wfft — Z |O'”"|2 “b-i "C’)b

n m n andcﬂ =U U
8. Ifthe system is in state i then the probability of obtaining the eigenvalue gnis

AT ‘
|’¢)bnw|2 = Jcn|z provided ybtypb =1

9. The Observables Q is represented by a Hermitian operator Q" whose eigenvalues are

the possible values g1,g2,g3,*** ,qn of the measurement of Q associated with the basis

‘-‘,b,b,f‘,b_._ /b . - - .
states¥1: ¥2; ¥3," " » ¥n which are vectors in Hilbert space. That is

QY b= qp
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10. Ifameasuring Q for a system y?the result g»is obtained then the system immediately

. . 2o .
after the measurement goes into the basis state?». This called collapse of wave

vector.

4.1.8 Quantum Operators

An operator in QM is any function that acts on a state vector in a vector space and transform

the state vector into another state vector.

Linear operators

. . : 1b
From section(4.1), a linear operator L can be define onlUn) as

Lll/)nbi = de)mb Lmn (49)

where

Lmn - hl/)mlLll/)nl

is the matrix entry of |ini.

In generalization

Lll/)l = XLangnbi = X(XnLll/)nbi

n n
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Xb b Xb
anllpniLmn = |lpia'ann

where anLmnis a matrix entry of L|ni

Identity operator

An operator is said to be an identity operator if

I[yPi = |phi

Now,

’ ‘ . y . IR/AWN
Given any orthonormal system |[ixi, the identity operator I acting on ¥ is

V) =)

Tiyh) = ) [thn) (@bn
T= Z | ) (1, 3

where (outer product)

Inverse operator

An operator L-1lis called an inverse operator if

L-1L =LL-1
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If L-Thas o solution then L is singular. However, this always true in finite dimensional space
when the detL = 0. Furthermore, in infinite dimensional, the concept of determinant is not

always defined.

Definition 56 (Expectation value). If we allow Q" to be a linear operator define on the state

|ypPi. Then we can find a real number called the expectation value of |ip?i if

hQ'i = hy?|Q [bi = h|(Q [¥* Componentwise hQ'i = Xataiq; (4.11)

ij

In addition, if Q" is Hermitian then the expectation value is the average value of

measurement of quantum system in the state |psibi

Definition 57 (Normal Operators). we say an operator QA is normal if QATQA = QAQAT.

However, diagonalisation exists whenever the operator is normal. i.e , for any normal
operator, we can find an orthonormal basis |1’ such that

Wil

Q:ZAf

(4.12)
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where A; are the eigenvalues of the operator Q and |[yp#i are the corresponding

eigenvectors.In an experiment where the eigenvalues are degenerate then there is always

a unique eigenvectors that correspond to each eigenvalues.

Definition 58. An operator H mis said to be Hermitian if

i, —E (4.13)

Definition 59 (Commutator). Allowing Q" and R* to be operators then the matrix
multiplication existing between them is non commutative if Q°'R" 6= R°Q"

We denote the commutator of Q"and R" by [Q"R"] = Q"R" - Q'R" Or [Q," R"] = 0 It is the direct
consequence of the Heisenberg’s uncertainty principle which state non-commuting

observables cannot be measured at the same time.

Theorem 21 ( Heisenberg’s uncertainty principle). Suppose Q" and R" are any two

observables of a quantum system in the state |?i. Then

AQAR > —[(v",[Q, Rl¢")|*

= =

Proof, we compute (¢"; Qub) = (b, Ry*) =0
Now, (", [Q, Rl¥") = (¥ QRY") = (4°, RQy") = 23(y*, QRy’) By boundedness property

(W [Q, Rly*) < 23", Qu°) < 2(°Q, Ry’) from(10) [{¥", [Q. RIY")| < 2[(Qu°, k)]

and by (6) | (4", [Q, B¢") < 2(|QuP(|[| Re*([2(AQ¢") 3 (ARy")?
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< AQUPARY®

(", [QR]Y")|?
1

Definition 60 (Orthogonal Projectors). Every orthogonal projectors is Hermitian if P2=

~

P r. In addition, all the eigenvalues are either 1 or 0.

Eigenfunction and Eigenvalue of an Operator

Consider a wave-function ?(x,t) with an operator A acting upon. Then Ai,b,\ b(x,t) produces

a new function say @?(x,t) .If Y2(x,t) is such that Y?(x,t) is directly proportional to ¢?(x,t).

We have

AP b(x,8) = apb(xt)

Here, a is the constant of proportionality called the eigenvalue and ¥?(x,t) is called the

eigenfunction of the operator A"

Example 4.1.8.1. Given a wave-function ?(x,t) = eillx-»9) of a free particle traveling along

2

L= P

2m

the x- trajectory with momentum P"m = ~k and energy

Momentum Operator(PAm) The

wave-function

Yu(x,t) = eiix-wt)

98



I
multiplying the wave-function by a constant i and then differentiate the resultant function

with respect to x. We obtain

h o 'b(.'li,t) _| zikffi(km_wt)

1 Ox i

hoi :
'O b, t) = Bkt — By, 1

—ov

1 0x’

L or

ho o,
——(x.t) = hky(x, t
) = Bt

ha ‘b A b
i9zY (z,t) = PyY’(z,t)

1

%3
i ozas the momentum operator.

==

The momentum is a constant called the eigenvalue and with

Hence 1?(x,t) is an eigenstate of P m moving with definite momentum

i Ox (4.14)

Energy operator Em
) — 22

For non-relativistic system, thel’ = 3
Now

b P2 1.0
E’(2,t) = 5—¢"(x,)

P
E_,;,b Tt :_be.,,t .
" (1, ) o P (’I‘, ) but Plpb(x,t) :Pl/) (X,t)

| P
B! (x,t) = o—Py(a,1)
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b P (ho ,
Ey(z,t) = S (Ta'g’ (:r_.t))

12m dr’

EY’(z,t) = hi(h’ ¢ -'b(x,t))

EY° (nf) = Eip(ﬂwb(a:, t))

i2m 75140)

h29°

Ey’(x,t) = —mﬁ;b(x:, t)

- h*o?
P~
Hence 2madx? is the energy operator with 1(x,t) as the eigenstate of definite energy

292
| —m
2mox? (4.15)

m

Parity or Space-Inversion operator(I1) The parity operator changes x-component to —x
component and y to -y and z to -z in the function in which it acts. In fact, it only acts on

wave-function which are described by spatial coordinates.

My (xy,z) = Pp(-x-y,-2z) (4.16)

Position operator(x’)
This type of operator corresponds the position of an observable. However, the position for
a single particle is simply given by a scalar say x such that the operator "x acting on a wave-

function yY?(~x) multiplies the wave-function by ~x.That is

X [PP(~x)i = x| (~x)i (4.17)
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NB All quantum operators are Hermitian

4.1.9 Superposition of plane waves

Consider the plane waves propagating along the positive x-direction

Pb(x,t) = sin(kx - wt)
Po(x,t) = sin ((k + A)z — (w + Aw)t) yng¥h(@, t) = sin ((k — A)z — (w — Aw)t)
Uz, t) =+ = sin (k + A)z — (w + Aw)t) + iz, t) = sin ((k — A)z — (w — Aw)t)
YP(x,t) = 2cos ((Ak)x — (Aw)t) sin ((Ak)m “ (Aw)t)
The second term represent a plane wave whereas the first term is the amplitude of the 2nd
term which varies with position and time. It is called the modulating amplitude envelope
function
wt) is vy =%

The velocity of the propagating wave sin(km E and is called the phase

e
velocity.However, the velocity of the envelope is Ys = @ called the group velocity.
Moreover, if we represent a particle by a delta function then the wave-function should be
infinite dimensional and continuous in variable P and x

We now write the wave-function as:
Ph(x,t) = A(ky)ei®1=1t) 4 A(ky)eilhar=wat) 4 A(kg)eitkar=wat) 4o . =" A(k,)ein=—ent
n=1

countably infinite dimensional

k - Ak < kn < k + Ak width allowed K’s is 2Ak
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Uh(.}J t) _ / A(k)ei(k:x:fwl.)dk:

(4.18)
where
A(k) is a delta distribution function that helps to obtain the envelope
eilk-wt) is 3 traveling wave component.
Att=0
Z o l/)b(X,t) =
Pb(x,0) = A(k)ekxdk (4.19)

—00

comparing eqn(4.18) and (4.19) we require that A(k) be a delta function and that

IR Rl oo x=0
7 «» 6(x) = if
A(Kk)dk = o
o RRREARO0  if O
- T
d(k) = —/ e**dx
which is the integral form of a delta function. Hence, 2 Tl In
general,
. 1 : ‘
O(:l? _ 370) _ %/ ¢ik(@==0) 4k
21 J o This leads to the study of Fourier transform.

By the property of the delta function

Z
Ph(x) = Pb(x0)8(x — x0)dxo using the delta function

—-00

"o gl sl
h(x) = / " (x0) {— / e*k(l_r”)dk} dxg
—o0 27 J oo
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1 .
;)b ) = "i’b T r.1.3,'(:::—:1:0) ; 1k
P (x) o //1, (zo)e dzgc

ge ol ge. el
b (z) = L/ [L/ @5(m0)eik(I0)dxf) e dk
V2T Joo V2T Joo

Yh(z) = /OO 3 — x0))(xg)dxg

oo
o]

'lli’z‘b(l') — \/]é_ / 'l‘jf'b(k)eikrdk
"o is the Laplace transform of ?(k) which is also the enve-

lope in k momentum space.

The inverse transform

Lﬁ/‘b(k) - V%/ wb(l,)efﬂr:ﬁdx

4.1.10 Quantum Dynamics

When setting up an experiment to evaluate the numerical value of any quantum system.
The values are expressed as the EV of SAO which is the immediate result of the spectral
theorem. Here, we will apply the spectral theorem to study Schroedinger time-dependent

equation of the form:

i—'(t) = H, 't

ot ) (4.20)
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where H mis SAQ, interpreted as the total energy of the system (Hamiltonian) defined

on a domain D(HAm) € Hb

Remark. We can see that the Schroedinger equation is typical of PDE, and whose

existence and uniqueness of solutions is of particular interest.

Existence and Uniqueness of the solution

<4 pP(t)-=-Hup®(¢

Now,Fromzav ). The solution of the equation is of the form:

Ph(t) = Ua(t)Y?(0)
where Uq(t) = e-iH'mt defined through functional calculus as:

—iH mt -iAt b

e = Ae do (4.21)

Also, b is the projection-valued measured of the operator H mdefines on the D(HAm)

Theorem 22. If (HAm,D(HAm)) is a densely well-defined linear operator with Uq(t) = e-'nt

Then
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1. Uq(t) is a strongly continuous one parameter group.

2. The lim

Ho b ) Wb /b
Z/{U(f)q‘ uﬂ-(o)lﬂ < 001 <:> wb e D(H:)n) lil]l uu(t)w Z/{”(O)'U _

t—0 t t—00 t

—iH "
3. Ua(t)D(Hgl) = D(Ha) and onD(ng): (U (t), Hﬁrz} =0 VteR
Proof (a)  Ua(t) is continuous at to € R such that Ve > 0,30 >0 then
”uﬂ ‘ff)b - U(,(tg ‘””2 (Ua(t)’i;ﬁb 3 ua (tﬂ)"[)baua(t)lbb e ua (tﬂ)wb>
= Ua()" Us()0") — Ua(t)0", Ua(t0)1) = Ualto) Vs Ua(E)1") + (Ua(to)V", Ua(to)1)
= 1> (Ua (t), Ua () — ([0 (Ua(t), Ualto)) — W71 Ualto), Ua(t)) + [[°]1* Ua(to), Ua(to))

3 ||¢b)l2{(ua(t)ﬂa(t)> — (Ua(t), Ua(to)) — Ualto), Ua(t)) + (Ua(fo):ua(to))}

Unitary operator preserves inner-product. i.e hUa(t),Ua(to0)i = ht, toi

U ()0 — Ulto)?|* = ||wb||2{<t, £ — (b, 10) — (to, ) + (to. t0>}
LH—IBO U (£)0° — Uy (t0) 00| = ||Ub||2{<t0,f0> — (to, to) — (to, to) + (tU:t())}

lim kUa(t)? - Ua(to)1p?k? = kipk?{0} =
0 showing that Ud(t) is strongly U, (//\e zAtd@b) (/)\ €1Asd¢)b> _

continuous -t
Z

(b)  Ua(t) = e-irme= e-ind®p but

(/)\[Ase_i/\te_i/\sd@h>

Uy (1)U, (5) = ( f /\L/\Re—if‘ﬁﬂ)d@) ( / Aef*<t+s)d@b) =U,(t + s)
we set AsAt= A Then

Ua(t)l/)b 7 Ua(O)l/}b ua (t)’#b - wb(o)vb
(2) suppose lim < o Then ;. "
W.T.S lim t—-—o0 t

= _sz?V'
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[ (E*ixﬁmt —_ 1)?;/& _JF @.ﬁmwb]

Now, if we set b € D(HAm) and allowing i’ f
=0
((f—met — l)wb + 'igm/qf")b 2 (G—i}\t B 1)%#’ n ?f/\wb 1
t—0 + Jim :

we can bound |e-*- 1| < |tA| by dominated convergence theorem, Y’ € D(HAm) such that

Z
A2ddb(A) < oo

Conversely, suppose Hom: D(Hﬂm) -— HPsuch that

D(Hy) = { iy Ha®)9” — 07 OO}

t—0 t

(4.22)

and
";{ua (t)q,,h ) d)b]

) q e’!b = i {
Hyt" = lim - (4.23)

Also, Yyt e D(H,m) == Hisa generator Uad(t).Vipbpb e D(HAm)

: olb — alb o —F\alsb — alsb )
<¢b‘7{m@,b> b <@b:f1im i[Ua(t)y (4 ]> i < i[Ua(=t)Y° =4 ]Tob> < <ngﬁi,bjéb>

—0 t t—0 t

Hence Hinis symmetric, since i = H,, by ((47)) = ¢’ € D(H},)(3)

suppose Pb e D(Hhm). we have

Z’{a(t)Hmdf‘b = ua(t)i%@bl.'i:[} i idisua(t)ua(s)wblszo = iiz’{a(t)ua(s)’l:i‘bles:[} - Hmua(t)wb
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hence we used Ua(t)Ua(s) = Ua(s + t) to get third equality, and also Ua(t)yp? € D(HAm) Hence,

Uq(t) = e"i'mt is solution to the Schroedinger wave equation with initial valued condition

(0) = v}
(UL (E+s) — U)W’ iU, (s) — 1)U, ()b "
i,ﬁb(a(t)wb((]) = lim a(t +5) — U @)y (0) = lim a(s) = 1Jta(8)¥"(0) = H,,U,(t)]
ot s—0 s s—0 S
L]

Lemma 6 (Uniqueness). Consider a particle wave equation

0 ..
i () = Ayt

and suppose Y>(t) is a solution to the differential with initial value condition ¥*(0) = Uithen

00 = Ul

Proof. From (4.1.10), since ¢’ € D(HAm) == @b is differentiable. Set @b = Ua(-t)1p?
Y - b
2 ) = i |i( TP < Ul <t>)] o=
ot h—0 h
Now,

h) e ”L."i'b(t)] + Z/{a-(_t = h)qpb(t) i Z/{a(_t)wb(t)):i

(2ol + W)+

h—0

9 ot) = Jimn | (Ut — WL+ B) = (0] o) (YD) ~ u(z<—t)wb(t))]

0 00() = Y & (th(—t = B+ B) — V(0] + Un( DOy (=) — 11)}

ot’ h—s0 ]
' t+h) = 4A(t)] M)]

N [4"(
i ¢ (t) = hlglo L(L{ﬂ(—t —h)

e O

The limit of a function is a linear operator
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O o iUt =)W+ h) =) iUl (—h) — 1] b

A%O (t) = h,hglo h * hlE}O h Ua(=t)9"(1)

igq‘)“’(t) = '."L{r,,(—t)'z,-"";bl(t) — f[,,,,bf(,,(—t)@fff’(t)

Hence Vt € R we conclude that ¢ (t) = 0 and ¢@?(t) = Ua(t)yp2(t) when we set t = 0 we

!

then have ¢b(0) = ﬁ’b(o) = lﬁbgthus Tf""b(f) = U, (t)-z;f)g O]

Theorem 23 (Stone’s Theorem). Suppose {u@(t) 1€ R} be a strongly continuous one

parameter group and a generator A of Uq(t) is defined by

A:D(A) -— Hb

such that

lim
t—0

D(A) = {z,-;»” eH’ -

%@w%mw<m}

Then the following results are established

1. vyre D(A),  U(t)y is differentiable i.e dt

2. Ais essential self-adjoint if

AP =1i(Ua(0))erp?

3. suppose Tq(t) = e7®A" then Ta(t) = Uq(t) = e &
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Proof. From hypothesis, let {U(t) € R} be strongly continuous, and by definition (12) we

set to € R such that

e (£)0" — Ua(to) "1 = Ua(t)0” — Ua(to) 8", Ua(t)1" — Ua(to)¥")
= (Ua (0" Us()0°) — Ua(t)0® Ua(t0)V”) — (Ua(to) V", Ua(t)0") + Ua(to) V", Ua(to) V")

= klpbktha(t),Ua(t)i - kl/)bktha(t),Ua(tO)i - klpbktha(tO),Ua(t)i + kl/)bktha(tO),Ua(tO)i

= ||'¢1‘b||2{(Ua(t),?f(a(m — (Ua(t),Ua(to)) — Ualto), Ua(t)) + (ua.(t(])aua(tﬂ))}

Unitary operator preserves inner-product. i.e hUa(t),Ua(to0)i = h, toi

Hua(f)ub e ua(f[))wb“Q = ”wb|2{<ta t) — (f tO) &, (tUa t) + <t01 tl))}
iy 124 0)0% — U2 = 17 ) = )t o) )}

lim kUa(t)y? - Ua(to)1pPk? = kipk2{0} = 0 showing that Uq(t) is strongly continuous

t—-—to

Next, W.T.S D(A) is dense in H?

0

From (6), we have 1? (t) = Uq(t)yp? which implies
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’l,/‘b(f) - /ua(s)zr:)bds
R

(4.24)
If we set t > 0 and allow g € Co(R),Vy € H?, then (4.24) becomes
; ; i ;
s v ig(t) e / U, (s)1’ds
! 0 (4.25)

Also, by the continuity property of Ua(t) at a point to € R and by definition,

Ve > 0,30 >0 [[Ua (1)) — Ua(t0)V’|| < ewhenever |t-to| < 6 From (4.25) it implies that
P
lim —2 = b
—0 ¢ , L.e,

1 /\b b 1 ' b b
o=l = | | sl < ebds)

1 t
<4 [ ) = s) < o

= Y — P ast— Hence, we claim¥s € P(A)

verification

set to> 0 we have
1 1

to+t t
—(uﬂ(f)z-u;—u'fg)=—[ [ wtspras— [ ua(s)wbds]
¢ ¢ Lk 0 | From Leibniz rule
1 t+to a

8 d t A
_ - . b bb_ g — o = v ) b
tK f 5V (s 4 Ua(t +t0)0 5 (E+ to) —Ua()Y dt(fo)) ( | gthsrtas +

)

ua(t)wb%(t) — U, (U)u’z"’%(ﬂ))}

Ua(t + to)y" — Ua(t)))

1 vl a
lim — (U (£)0) =1}) = t — [Ulto) -1 ast == o 4t € D(A)

t—0 ¢ =

(1) W.T.S differentiability of Ua(t)
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t
gt) = / U, (s)"ds
0

Since Uq(t) is continuous and From (4.25), vVt=20
we have
d 4
— ()= U, (t)*
g Vo = Wl o 6y The LHLS of (4.26) becomes
d ) wp(t) —4g(0)  d
—P () =1 927 — ljm 2L Ter b
g Vo) = fim == = lim == dt " *(0) (4.27)
The R.H.S of (4.26) becomes
d b
—2(0) = U,
a0 =tg 1 ar t=0 (4.28)

/ b .
5 wg(fo) #0. ‘invertible for some to> 0

Ua(t) = (13 (0)) ™ (U (80) Ua(t) = (¥ (1))~ f Un(t-+5)itds = (u1(E9)) ™ f “Us(s)tds

(W (1)) (w;;(t Fg) = (w;(t)))wb s U

) is differentiable,

iuu(t) = lim L{a (t N tO) = ua(t) = hm [ua(to) ™ uﬂ'(o)]U(t)
dt to—0 Lo to—0 Lo
d ,

(2) To show the operator A is essentially self-adjoint. Then it suffices to prove it is
(a) Self-adjoint
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(b) ker(A* + i) = {0} 2(a) suppose Yybe? € D(A) and

f.9 € Co(R) AY} = id (0)

Ua(t) —Ua(0)

’ﬂ‘"?h — —9 i S ——————— ‘-‘"
Ay i thmo . Vg
o [, (t) — U, (0)]b , iU (t))* — 1]
/ b b = 1 —1 g b — 1i J",fb. = — Wb
s, (A, 07) < Ihm0 i . ; qbf> thmo <1, b . @f>

. (U (=) = 1]
=t (v, T —at) K Atg)

~ A is Hermitian.

Suppose A is Hermitian and 1? € D(At) such that iAtypb = b

AU = Uat) ALl = — 14,1
d . . . ‘
Et@'f’b:ua(t)qbb) -~ (’l,z‘)h, —z.AZ/la(t)ng) = <E.A* / *’,Z/(a(t)qbb) — <wbgz/{a(t)®b>

d
(0 Ua(0)9) = (0", Ua(0)8") (4.29)

(4.29) represent differential equation with initial datum Uq(0) = 1
We then allow the equation to depict

(W°, Ua(t)9") = (¥° 0")e! (4.30)

Recall, Uq(t) is unitary with kUq(t)k = 1 and by the boundedness property, we have
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(W U O)")] < [[9°(lle°]] vt e R Vo € (D(A)) which is only possible when hy?,¢bi =
0, thus ¢?= 0 since D(A) is dense
We then show that ker(A* £ il) = {0}.. it has been proven in (16). Similarly, ker(A* + il) =

0. == A is essentially self-adjoint.

(3) Finally, we are to show that Ua(t)y? = Ta(t)yh? thatis, coincideat0  Vy?€ D(A)

== Ua(t)Yp? - Ta(t)yYp2 =0 Let g(t) = Ua(t)y? - Ta(t)yp?

Hence Ta()y? € D((A) go(t) = Us(6)ypb - T o(e)ipb = iAUL(OW? - i{A} T(D)gP=iA g(o)
1 . . _

é\ly(t)llz = —i{Ag(t), g(t)) +i(g(t), Ag(t)) =0 ¢(0) =0

and thusg(t)=0 VteR m

4.2 Applications

After the proof , we will look at more interesting results especially physics related issues
and whenever possible we will attempt to interpret it in terms of the physical quantities

mentioned in the last few chapters.

4.2.1 Dilation

Dilation is one more to the point operation to look at. This of course would be unitary in its

nature for each y 6= 0 the operator I is defined by
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(T4")(@") = 724" (ya'y (431)

(4.31) satisfies the isometry property of unitary operator. i.e L(R)

Definition 61. The unitary operator / by definition would be expressed as:
(19)(x) = e2 ey (4.32)

Since I(y)I(u) = I(y + u) pose SCUG property then we are to show that the dilation operator

y = ly is strongly continuous.

Proposition 4.2.1.1. (M oller (2010)) Every dilation operator is strongly continuous Proof.

NI()p — oIl = ||e? d(e7a) — p() '
< l(ex - o(e) +H¢("’) >3 ‘
et — 1

= ol + o) - o0

c

(4.33)
Obviously, the starting term turns to zero as y — 1. Studying the second term. From rotation

the term approaches zero as y = 0 V¢@? € Co For those functions we get (since they are

d(e7) — ¢(a’) p(e’xb) —

uniformly continuous) that oogoes to zero and thus

()

2 goes to zero as ¢ has compact support. So indeed, the Iy form a unitary

oneparameter strongly continuous group. Again we can apply Stone’s theorem and

determine the infinitesimal generator A of I(y). We know iAg is given by
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D0y (4.34)

if it exists. Now let us try to determine what limit is. For this, let us first assume that ¢ € C®

i.e. @ is continuously differentiable. Then the pointwise limit is for any x given by

= lim

=0 (%e% dlera)ted (¢)b(e1x)en )

= 20, +7-9(0)
SOl e (4.35)

owhere we used I'Hopital’s rule and
continuity of ¢ and ¢ . The next question is under which premises this convergence is also

in L2. For this we have to assume in addition that ¢ has compact support, so ¢ € C;°, Then:

etg(e12) = o(a) | |eFole + (7 = 1)) — o(x)
< :
2|2 0@ + (@ = D[4 ll) - 8(a)
L
e 1>w)||c>'||m)$‘
—— v (4.36)

If we assume that we have a sequence y» converging to, then there is a compact support K,
such that the left hand side of the equation is supported inside of it for all y». On the other

hand, the right hand side is monotonic in y. So if we set A = supa(y»), then with

|

e¥-1 0\, (€7=1))[|¢loc) ..
= olx) + Y Tl ifxeK
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9(z) = { | (4.37)

21 |7 3
0 otherwise

we have found an L2-function which dominates the left hand side and thus the left hand side
also converges in L2 p its pointwise limit by the dominated convergence theorem. As we did
in other examples, we could also look at the scalar product of any function ¢ for which the

(ref) exits withCo -function n. Then

¥—0 a'l

= lim <M_7O ?’]>
+—0 e

= 4 lii <¢, _I(’Y): - 'r]>

+—0
y—0 Ny
1 ,
(4.38)

where the limit in the last step exists by the above calculations and since Co O C3° It dwere

o= iy 152 )

sufficient differentiable, integration by parts would give us

- ‘1-_;,_»" — 1 — ."_,»"
Ggntan ) =—(¢5n ¢z,
oo | '
=—<¢, §?I>+<~”€-¢ +¢=Ti>

1 o
= <—1) + 7 _.qa>
2 (4.39)
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which means that the 22=% ]imisa weak version of
y=0 |

;1 f
(4.40)

4.2.2 Rotation in Cartesian Coordinate

Now that we have looked at Dilation in R?, we will focus on linear maps which can be
parameterised so that they form a unitary group. Rotations around a fixed axis come
immediately into one’s mind. Let us for convenience first look at rotation in in RZ since
rotations (around a fix axis) in higher dimensions can be reduced to that case by choosing

an appropriate coordinate system.

Definition 62. We define the rotation matrix

cos(a) -sin(a)
Ra=
sin(a)

BE & =

cos(a)
which rotates a vector in R2 counterclockwise around the origin by the angle « With this we

define the rotation operator on L2(R2)

Definition 63. The rotation operator Ioon L%(R2) is defined by

(Iap)(x) = o (Rax) (4.41)
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It rotates the function @clockwise around the origin by an angle of «

Proposition 4.2.2.1. (Moller (2010)) The rotation forms a strongly continuous

oneparameter unitary group

Proof. We note that the rotation operator is unitary for all theta since it is an isometry,

namely

Iapl|?= " [la)(x)|?d?x

R2

Z

| (Rax)|2d?(x)

Rz

lp(=-y
)|2|det(Ra-1)|d2y rZ

lo(T 7y

)|2d?y v

and a bijection, namely

(Iala®) = (Ia@)(R-a @) = ¢(RaBR-a) = $(T) = (IaI_a0)(T)

Furthermore

(IHIE(!'J)) = (I(rqb)(}?u?) = (D(R£Ru?) = Q(RE-H)’?) i (I(Y-FE)(?)

where we use the well known property that
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RfRa = R§+a (445)
which can be easily shown using trigonometric addition theorems. So, if we can show that

a = I« is strongly continuous, we have shown that the I« form a strongly continuous one-
parameter unitary group.

We need to show that l«¢p = ¢ in L2(R2) as a = 0 for all ¢ € L2(R2).We can show this again

using Lemma 1 and noting that rotations are all bounded with unit norm. Thus, it is enough

if we can show that Iap — ¢ as @ — 0 for all ¢ € Co(R?) i.e. for all continuous functions with

compact support.

Let ¢ € Co(R2). Then ¢ is uniformly continuous. Hence there is a § > 0 such that

16(Z) = (V)] <€ foral —-x,—-y € R2with ||~ "x= "7y || <. Also note that since ¢
has

compact support, there is an r > 0 such that supp(¢) € Br(0). Thus, HRn? 3 ?H <7a, So

’

making a smaller than; we get e — dlloo < € and choosing€ ~ EK) 72
we getH[n-G) — ¢ll, < (Y(K))"*[[1a¢ — ¢l < € Hence the rotation group is strongly

continuous, which completes the proof O

We can then once again apply stone’s theorem and determine the infinitesimal

generator A. Again D(A) is given by all the ¢ € L2(R?) for which

— 4 lim Lo — ¢ =Aop
e — (4.46)

exists. It is not directly apparent what the above limit means (it is exists).
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4.2.3 Proposition

i fef= .
If the limita—0 @  exists, it isgiven by ¢ = x1+ D2¢ - x2 - ¢, where Dig is the weak

partial derivative of ¢ in the direction of the i-th unit vector. Proof. To investigate this, let us
oo : 2
assume the limit exists and call it ¢. Now let’l € Ce (R ). Then

. Inﬂ(;b - (D . I—n‘n - O
(p,my = ( lim ,n ) =lim(n ———=
a—0 Y +—0 « (447)
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On the other hand since”? € CBO(R2) we get pointwise

I_.n( ?) — ()

(R T) — (D)

lim = lim
a—0 a—()
cos(a)  sin(a) T 1
n —n
—sin(a) cos(a) To To
= lim
a—0 v
cos(a)zy + sin(a)zy T
n =)
—sin(a)z; + cos(a)x, Ty
= lim
a—0 8%
cos(a)zy + sin(a)zy T
n -l
—sin(a)z; + cos(a)xs sin(a)x; + cos(a)z,
= lim
a—0 X

Ta

L1
n L7
—sin(a)z; + cos(a)x,

T + Qxg I I H)
n Ui —

+ lim

a—0

QT + X9 — s o —Qxry + X9 To
= lim + lim
a—0 a—0 [a%
Ty + arg Ty Iy T2
n -n n —n
Ta T —Qr + T T9
= lim x + lim x4
a—0 T2 Ty
= 3326177(?) B 1”13277(?) (4.48)
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Since”l € C5° (R2), the pointwise limit is also the L2-limit and we have

ho,ni = ~he,x102n - x201n (4.49)

Hence, in the sense of weak derivatives,
lim lad = ¢

a—0 8] P ' T2 g (450)

if it exists. We have therefore identified the generator A to be i(Tx1.D1 — Tx.D1) with its domain
being all functions for which the limit in (ref) exists and lies again in L2(R2). As final result
we can write

€(x1D2-x2D1)a = Ia (4.5 1)

We again find as intriguing physical interpretation of the above result. Formally, the
generator A = i(TxuD1 - Tx.D1) of the rotation corresponds to the observable L3 = xpy -
ypx(making use of the corresponding rules for the momentum and position operator),

e

which is the third component of the angular momentum —-L = ~~x x ~ " p . Since the

infinitesimal generator is per see self-adjoint, we can indeed view it as the operator
corresponding to Ls.

Hence, one says that "angular momentum generates rotation”.

Chapter 5
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Conclusions

In this research, the theory of unbounded operators on Hilbert spaces was established by
targeting important classes of operators like closed, symmetric, or self-adjoint ones. This
also considered the relationship and utilization of the properties for the focus areas
mentioned above. An in-depth examination of self-adjoint operators and their spectral
properties was imperative to meet the intermediate goal of a functional calculus. This in
effect, allowed for a clearer understanding to the exponential of an operator. Focus was also
placed on strongly continuous groups of unitary operators. Employing functional calculus,
parameterization of the unitary operators in terms of self-adjoint operators became
possible and making them much more convenient and easier to handle with respect to its
manipulations and computation. The resultant was Stone’s theorem, the ultimate goal of
this research. It came to light as part of the observations that, these unitary groups exerts
an essential influence in quantum mechanics if their generator could be related to a
physical observable. As a result, many other remarkable features was deduced. The
principal conclusion here is that not only is it possible but also easy to put the mathematical
description of quantum mechanics on a firm theoretical environment. However, the use of
more sophisticated concepts and results such as the spectral theorem for unbounded self-
adjoint operators was employed to arrive at this point. It should be however noted that,

when dealing with these unitary groups, the level of complexity can increase tremendously.
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RECOMMENDATIONS

Additionally, this thesis could be extended to take an insightful look into the examination
and proof of the classic Bochner’s theorem on positive-definite functions. Also, Stone’s
theorem could for instance be applied, when considering the time evolution of a particle in
a more complicated potential to further extend the research around it.

Furthermore, try to use Fourier transform to recast Stone’s where the real line is locally

compact abelian group.
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