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ABSTRACT 

Malaria has always been a major a major health problem and therefore timely and 

accurate information about its occurrence and incidence cannot be underestimated. The 

main objectives of this research is to model the occurrence of malaria cases given the 

age, gender and time in quarters ; to model the incidence of severe malaria cases given 

age , gender and time  in years and lastly to validate the two models using negative 

binomial regression model. Poisson and negative binomial regression models were used 

in fitting the data obtained from Obuasi Government Hospital data based dated 2007 to 

2010. Based on the results, the negative binomial regression model fitted the data better 

than the Poisson regression model.  Both models indicated that malaria is independent of 

gender. With respect to time, more cases were recorded in quarters4 (October-

December) in the first model and the incidence of severe malaria cases also increased 

with time in the second model. The prevalence of malaria and severe malaria cases were 

found to be prevalent among children with less than 1 year old, and those under 5 and 

70+years old. More cases were recorded for those found 20-34 year groups with 

reference to occurrence of malaria and incidence of severe malaria cases. Consequently, 

we draw a conclusion that despite the various interventions such as the Internal Residual 

Mass Spraying (I R M S) exercise by the Malaria Control Programme of AngloGold 

Ashanti introduced in 2006 and other social programmes aimed at reducing the menace 

of malaria, it‟s still remains high particularly among children under 5 years and those 

found between 20-34 age groups. 

KEY WORDS: Ghana, Malaria, Poisson, Negative binomial  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background of study 

Malaria has been a long life-threatening parasitic disease transmitted by female 

anopheles mosquitoes. This has contributed to child morbidity in the world. It threatens 

2.4 billion people, or about 40% of the world‟s population living in the world‟s poorest 

countries and more than one million deaths are attributable to the disease annually 

(WHO, 2000).  Most of these deaths occur in children in high-transmission areas and 

malaria accounts for approximately one in five of all childhood deaths in Africa. 

However, the true burden of malaria is difficult to estimate as many people are treated at 

home and no proper post-mortem diagnosis is made in the case of death. As a result, 

many malaria cases go unreported. In areas of stable endemic malaria transmission in 

sub-Saharan western Africa, it has been estimated that in the year 1995 about 1 million 

deaths were directly attributable to malaria infection (Snow et al., 1999). Of these 

deaths, three quarters were recorded among children below the age of 5 years. 

Accordingly, a World Bank report of 1993 noted that malaria accounts for an estimated 

35 million disability-adjusted life years (DALYs) per year lost in Africa due to ill-health 

and premature death (World Bank, 1993). The discovery of an interactive effect between 

HIV infection and malaria morbidity (Whitworth et al., 2000; Chandramohan & 

Greenwood, 1998; Verhoef et al., 1999) exacerbates the potential for devastating health 

consequences in populations with large numbers of individuals who are co-infected. In 

resource-poor countries in Africa, malaria prevention and treatment consume a large 
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proportion of the health budget, and because it poses a threat to the in these countries. 

Malaria therefore not only affects the health status of Africa‟s population, but also has 

far-reaching economic consequences inhibiting economic development (Wernsdorfer & 

Wernsdorfer, 1988). The impact of malaria on the population and its significance on 

development in the region was recognized by the Abuja, Nigeria Summit in April 2000 

as the first African summit of Heads of government on malaria control. The 

communiqué from the meeting calls, among other things, for more research on trends in 

incidence and prevalence of malaria, epidemic outbreaks and clinical epidemiology 

(Sachs, 2000). A better understanding of the distribution of malaria has been identified 

as an important tool in its control (Snow et al., 1996). More accurate maps make it 

possible for interventions to be mounted that are appropriate to the disease profile, 

which characterizes particular levels of endemicity. However, for clinical trials and 

evaluation, new approaches should be located correctly, and for planners of irrigation 

and other development schemes to take cognizance of the potential effects of these 

schemes on malaria transmission intensities.  

In Ghana, the statistics as supplied by the National Malaria Control Programme (NMCP) 

are no less staggering. Established as the leading cause of illness, it causes about 8,200 

cases daily and 3,000,000 illnesses every year with over 3000 deaths in 2010. As high 

mortality as this is, the NMCP is quick to point out that this represents a steady drop 

from the 40, 000 deaths reported ten years ago. The most vulnerable groups remain 

children under five years of age, pregnant women and non-immune. 

Malaria is caused by the parasites of genus Plasmodium. The four species of 

Plasmodium are Plasmodium falciparium, Plasmodium malariae, Plasmodium ovale, and 
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Plasmodium vivax. In Africa, the predominant species of the disease-causing parasite is 

Plasmodium falciparum. Infection of the human host occurs when a person is bitten by a 

female Anopheles mosquito that has previously become infected. The parasite, called 

sporozoite at this stage of its cycle, enters the human body via the saliva of the mosquito 

that is injected into the blood. The parasites multiply in the liver and re-invade the blood 

via red blood cells as merozoites. These develop into a stage known as the trophozoite, 

which is the one visible in blood films, and subsequently divide by the process of 

schizogony to produce further merozoites, which invade non-infected blood cells. Some 

of the merozoites develop into new trophozoites, while others develop into malice micro 

or female macrogametocytes. Uninfected Anopheles mosquitoes become infected if they 

feed on a person with mature gametocytes in their peripheral blood. Within the 

mosquito, the micro gametocytes exflagellate into gametes before fertilizing the 

macrogametocytes, thereby forming zygotes. The zygote changes into an ookinete and 

then into an oocyst, which is found in the mid-gut wall of the mosquito. Large numbers 

of sporozoites are formed within the oocyst. The rate of development of sporozoites in 

the oocyst is temperature dependent. The sporozoites leave the oocyst to invade the 

mosquito‟s salivary glands, from where they can infect another human host when the 

mosquito takes a blood meal. The incubation period of the parasite in the vector takes 13 

days to complete at 240 C. for P.falciparum. The vector will only become infective if it 

survives this sporogonic cycle (Gilles & Warrell, 1993). Malaria as a disease is therefore 

closely bound to conditions which favour the survival of the anopheles mosquito in the 

form of habitat and breeding sites and which favour the life cycle of the parasite in term 

of suitable temperatures. In the absence of any human intervention, these conditions are 



4 

 

predominantly determined by climatic and environmental factors. Clinically, malaria 

manifests itself in its mild form as an illness associated with other non-specific 

symptoms (Bruce-Chwatt, 1980). The first clinical sign will only appear after the 

incubation period, which varies between nine and fourteen days for falciparum malaria. 

Clinical diagnosis is usually confirmed by a blood test, involving microscopic evidence 

of parasites in the blood, or by a rapid diagnostic kit (Craig & Sharp, 1997).  

1.2 Study area profile 

The Obuasi Municipality is one of the 27 districts of the Ashanti Region and was created 

as part of the government‟s effort to further decentralized governance. It was carved out 

of the erstwhile Adansi West District Assembly on the strength of executive instruments 

(E. I.) 15 of December, 2003 and Legislative Instrument L.I 1795 of 17th March, 2007.   

The Municipality is located at the southern part of Ashanti Region between latitude 

5.35N and 5.65N and longitude 6.35N and 6.90N. It covers a land area of 162.4sqkm.  

There are 53 communities in the Municipality which share 30 electoral areas.    

It is bounded to the east by Adansi South, west by Amansie Central and to the north by 

Adansi North, to the south by Upper Denkyira District in the Eastern Region. It has 

Obuasi as its Administrative Capital where the famous and rich Obuasi Gold Mines, 

now Anglo Gold Ashansti is located. 

The Municipality has a rather undulating topography and the climate is of the semi-

equatorial type with a double rainfall regime. Mean annual rainfall ranges between 

125mm and 175mm.  Mean average annual temperature is 25.5OC and relative humidity 

is 75% - 80% in the wet season. The population of the Municipality is estimated at 

205,000 using the 2000 Housing and Population Census as a base and applying a 4% 
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annual growth rate.  The vegetation is predominantly a degraded and semi-deciduous 

forest.  The forest consists of limited species of hard wood which are harvested as 

lumber.  The Municipality has nice scenery due to the hilly nature of the environment. 

Obuasi Government hospital is located in one the beautiful suburbs in the municipality 

called Mensah Krom which about 5 minute drive from commercial area of the town and 

it has several clinics under its supervision. 

1.3 Problem statement 

Malaria has always been the most significant public health threat to the community. To 

deal with the spread of malaria, AngloGold Ashanti and Obuasi Municipal Assembly 

undertook to implement an Integrated Malaria Control Programme, focussing on Indoor 

Residual Spraying (IRS) in the Obuasi municipality and its surrounding villages.   

The programme covered the entire Municipality.  The total number of dwellings in the 

intervention area was 35000. 

Malaria, still a major health concern in the Obuasi municipality recorded in 2005, an 

average of 12,000 cases monthly. Forty-eight percent (48%) of all Out Patient 

Attendants were due to malaria and the disease headed the top ten killers, being 

responsible for 22% of all deaths (GHS-District Annual Report, 2005). 

There are consistent efforts to reduce malaria episodes which include chemical spraying, 

use of treated mosquito bed nets, clearing bushes, cleaning drains and subsidised 

treatments and yet prevalence rates and malaria incidence remain high. It is probable 

that the efforts to reduce malaria do not specifically take into account the risks factors 

likely to aggravate malaria disease. The high incidence of malaria cases among the age-

structured population is unknown to the district, the season which recorded the highest 
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incidence despite the Integrated Malaria Control programme is also not known in the 

Obuasi municipality. 

1.4 Objectives of the Thesis 

The objectives of the thesis are as follows; 

1. To model the occurrence of malaria cases given the age, gender and time in 

quarters. 

2. To model the incidence of severe malaria cases given the age, gender and time in 

years. 

3. To validate the two models using Negative Binomial model.   

1.5 Methodology 

 Since the data are count of events (non-negative integers with no upper bound), with the 

events being independent and average rate not changing over the period of interest, 

Poisson regression model could be a necessary tool for the modeling. 

In statistics, Poisson regression is a form of regression analysis used to model count data 

of which malaria cases is no exception. Poisson regression assumes the response 

variable Y has a Poisson distribution, and assumes the logarithm of its expected value 

can be modelled by a linear combination of unknown parameters. A Poisson regression 

model is sometimes known as a log-linear model, especially when used to model 

contingency tables. 

A characteristic of the Poisson distribution is that its mean is equal to its variance. In 

certain circumstances, it will be found that the observed variance is greater than the 

mean; this is known as over-dispersion indicates that the model is not appropriate. A 

common reason is the omission of relevant explanatory variables. Under some 

http://en.wikipedia.org/wiki/Poisson_distribution
http://en.wikipedia.org/wiki/Logarithm
http://en.wikipedia.org/wiki/Expected_value


7 

 

circumstances, the problem of over-dispersion can be solved by using a negative 

binomial distribution instead.  

The research will be restricted to the use of quantitative data. A routine time data will be 

taken from Obuasi Government Hospital for the analysis and modeling. The data is 

obtained from the Out Patients Department database and dates back from January 2007 

to December 2010. Data analysis would be done using the R software. 

1.6 Significance of the Thesis 

Health is the level of functional and or metabolic efficiency of a living being. In humans, 

it is the general condition of a person in the mind, body and spirit, usually meaning to be 

free from illness, injury or pain (as in “good health” or “healthy”). The World Health 

Organisation (WHO) defined health in its broader sense in 1946 as "a state of complete 

physical, mental, and social well-being and not merely the absence of disease or 

infirmity. Although this definition has been subject to controversy, in particular as 

having a lack of operational value and the problem created by use of the word 

"complete", it remains the most enduring. Classification systems such as the WHO 

Family of International Classifications, including the International Classification of 

Functioning, Disability and Health (ICF) and the International Classification of 

Diseases (ICD), are commonly used to define and measure the components of health. 

The maintenance and promotion of health is achieved through different combination of 

physical, mental, and social well-being, together sometimes referred to as the “health 

triangle”. The WHO‟s 1986 Ottawa Charter for Health Promotion furthered that health is 

not just a state, but also "a resource for everyday life, not the objective of living. Health 

is a positive concept emphasizing social and personal resources, as well as physical 
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capacities." Systematic activities to prevent or cure health problems and promote good 

health in humans are delivered by health care providers. Applications with regard to 

animal health are covered by the veterinary sciences. The term "healthy" is also widely 

used in the context of many types of non-living organizations and their impacts for the 

benefit of humans, such as in the sense of healthy communities‟ healthy cities or healthy 

environment. In addition to health care interventions and a person's surroundings, a 

number of other factors are known to influence the health status of individuals, including 

their background, lifestyle, and economic and social conditions; these are referred to as 

"determinants of health". Malaria is an integral part of the health and health practitioners 

are constantly making efforts in the area of research to reduce it menace hence the need 

for this research.  

The result of the research will go a long way to help the municipal health directorate to 

make informed decisions and the various hospitals and the offices of the malaria control 

programme to understand and appreciate the underlying risk factors of malaria and 

modeling of malaria cases. This will enhance strategy formulation to assist in curtailing 

the prevalence and incidence of malaria. 

1.7 Scope and Limitation of the Thesis 

The thesis is restricted to the objectives of the research. Research work is often 

characterized by some constraints. Some of these setbacks include resource inadequacy 

since the project is solely self-sponsored, time constraints and the unavailability of 

relevant materials such as journals on the study. 
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1.8 Organisation of the Thesis 

The thesis contains five chapters. Chapter 1 discuses the background of study, study area 

profile, problem statement, objectives, methodology, significance of the study, scope of 

study and the limitation of the study. Chapter 2 explores some previous research on 

malaria and other diseases and some applications. Count models such as a Poisson and 

Negative binomial regression models with applications in accidents, health, traffic and 

road crashes and criminology. Chapter 3 discusses the methodology and its process. 

Data Analysis and Results are explored in Chapter 4. Chapter 5 deals with the 

conclusions and recommendations. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

 The purpose of the review of related literature in a study is to discover facts, findings, 

concerning the area of study and how they can propel the researcher to explore the 

unknown Leedy (1989). Again this review also seeks to investigate the literature on the 

subject of modeling malaria incidence using a hospital based data. Kumekpor (2002), 

noted that the non-availability of relevant documentary sources poses serious challenge 

to would-be investigators and rightly so in the West Africa situation. The few that exist 

are normally poorly equipped and it difficult to get up-to-date information on many 

topics of interest to the investigator. This review will actually elaborate on the previous 

research on malaria and previous applications of count models such as Poisson 

regression model and negative binomial model. 

2.2 Previous Research on Malaria 

According to Claus et al. (2007) understanding local variability in malaria transmission 

risk is critically important when designing intervention or vaccine trials. Using a 

combination of field data, satellite image analysis, and GIS modeling, we developed a 

high-resolution map of malaria entomological inoculation rates (EIR) in The Gambia, 

West Africa. The analyses are based on the variation in exposure to malaria parasites 

experienced in 48 villages in 1996 and 21 villages in 1997. The entomological 

inoculation rate (EIR) varied from 0 to 166 infective bites per person per rainy season. 

Detailed field surveys identified the major Anopheles gambiae s.l. breeding habitats. 

These habitats were mapped by classification of a LANDSAT TM satellite image with 
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an overall accuracy of 85%. Village EIRs decreased as a power function based on the 

breeding areas size and proximity. We use this relationship and the breeding habitats to 

map the variation in EIR over the entire 2500-km
2
 study area. 

Greenwood et al. (1986) measured mortality and morbidity from malaria were measured 

among 3000 children under the age of 7 years in a rural area of The Gambia, West 

Africa. Using a post-mortem questionnaire technique, malaria was identified as the 

probable cause of 4% of infant deaths and of 25% of deaths in children aged 1 to 4 

years. The malaria mortality rate was 6·3 per 1000 per year in infants and 10·7 per 1000 

per year in children aged 1 to 4 years. Morbidity surveys suggested that children under 

the age of 7 years experienced about one clinical episode of malaria per year. 

Calculation of attributable fractions showed that malaria may be responsible for about 

40% of episodes of fever in children. Although the overall level of parasitaemia showed 

little seasonal variation, the clinical impact of malaria was highly seasonal; all malaria 

deaths and a high proportion of febrile episodes were recorded during a limited period at 

the end of the rainy season. 

Greenwood and Pickening, (2004) recognized malaria as an important cause of death 

among early European visitors to The Gambia, but the infection was first studied 

systematically in the local population only in the 1950s. Studies undertaken in the 

village of Keneba at that time showed that nearly all children under the age of 5 years 

had parasitaemia throughout the year. More recent surveys in rural areas of The Gambia 

have shown much lower levels of parasitaemia, probably as a result of a decline in 

rainfall in The Gambia during the past 30 years and because of an increase in the 

availability of anti-malarial drugs. Nevertheless, community surveys and reviews of 
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hospital statistics show that malaria is still one of the most important causes of death 

among Gambian children; about 1 in 25 rural Gambian children die from malaria before 

reaching the age of 5 years. Until recently, malaria control in The Gambia relied upon 

prompt treatment of clinical attacks, first with quinine and more recently with 

chloroquine, and upon some limited vector control in the capital, Banjul. However, 

during the past few years, it has been shown that mortality in rural children can be 

reduced substantially by means of chemoprophylaxis given by village health workers. 

Bed nets (mosquito nets) are used widely in The Gambia and epidemiological surveys 

have shown an association between the use of bed nets and protection against malaria. 

This observation led to a series of small scale intervention trials. These showed that 

conventional bed nets were not very effective at protecting against clinical attacks of 

malaria in children but that their protective effect was enhanced substantially when they 

were impregnated with the insecticide permethrin. The success of these pilot trials led to 

a much larger study of impregnated bed nets which had the objectives of determining 

whether the use of impregnated bed nets could reduce mortality in Gambian children and 

whether impregnation of bed nets could be accomplished successfully on a large scale 

through the national primary health care programme. Malaria has been a major cause of 

poverty and low productivity accounting for about 32.5 percent of all OPD attendances 

and 48.8 percent of under five years admissions in the country. (National Malaria 

Control Programme annual report, 2009). The attempt to control malaria in Ghana began 

in the 1950s. It was aimed at reducing the malaria disease burden till it‟s no longer of 

public health significance. It was also recognized that malaria cannot be controlled by 

the health sector alone therefore multiple strategies were being pursued with other health 
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related sectors. In view of this, interventions were put in place to help in the control of 

the deadly disease. Some of the interventions applied at the time included residual 

insecticide application against adult mosquitoes, mass chemoprophylaxis with 

Pyrimethamine medicated salt and improvement of drainage system. But malaria 

continued to be the leading cause of morbidity (illness) in the country. 

 Ghana then committed itself to the Roll Back Malaria (RBM) initiative in 1999 and 

developed a strategic framework to guide its implementation. Overall, the Ghana RBM 

emphasizes the strengthening of health services through multi and inter-sectoral 

partnerships and making treatment and prevention strategies more widely available. The 

goal was to reduce malaria specific morbidity and mortality by 50% by the year 2010 

(National Malaria Control Program, Ghana Health Service, 2011). 

McCombie (1999) review of literature on treatment seeking for malaria was undertaken 

to identify patterns of care seeking, and to assess what is known about the adequacy of 

the treatments used. There is considerable variation in treatment seeking patterns, with 

use of the official sector ranging from 10–99% and self-purchase of drugs ranging from 

4–87%. The majority of malaria cases receive some type of treatment, and multiple 

treatments are common. The response to most episodes begins with self-treatment, and 

close to half of cases rely exclusively on self-treatment, usually with antimalarials. A 

little more than half use the official health sector or village health workers at some point, 

with delays averaging three or more days. Exclusive reliance on traditional methods is 

extremely rare, although traditional remedies are often combined with modern 

medicines. Although use of antimalarials is widespread, under dosing is extremely 

common. 
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Further research is needed to answer the question of what proportion of true malaria 

cases get appropriate treatment with effective antimalarial drugs, and to identify the best 

strategies to improve the situation. Interventions for the private and public sector need to 

be developed and evaluated. More information is needed on the specific drugs used, 

considering resistance patterns in a particular area. In order to guide future policy 

development, future studies should define the nature of self-treatment, record multiple 

treatments and attempt to identify the proportions of all cases that begin treatment with 

antimalarials at standardized time intervals. Hypothetical questions were found to be of 

limited usefulness in estimating rates of actual treatments. Whenever possible, studies 

should focus on actual episodes of illness and consider supplementing retrospective 

surveys with prospective diary-type methods. In addition, it is important to determine 

the specificity of local illness terms in identifying true malaria cases and the extent to 

which local perceptions of severity are consistent with clinical criteria for severity and 

symptoms of complicated malaria. 

Olaleye et al. (1997) researched into diagnosis of malaria in children is difficult without 

laboratory support because the symptoms and signs of malaria overlap with those of 

other febrile illnesses such as pneumonia. Nevertheless, in many parts of Africa 

diagnosis of malaria must be made without laboratory investigation. Therefore, a scoring 

system has been developed to assist peripheral health care workers in making this 

diagnosis. Four hundred and seven Gambian children aged 6 months to 9 years who 

presented to a rural clinic with fever or a recent history of fever was investigated. A 

diagnosis of malaria was made in 159 children who had a fever of 38 °C or more and 

malaria parasitaemia of 5000 parasites/μL or more. Symptoms and signs in children with 
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malaria were compared with those in children with other febrile illnesses to identify 

features which predicted malaria. Symptoms and signs were incorporated into various 

logistic regression models to test which were best independent predictors of malaria and 

these regression models were used to construct simple scoring systems which predicted 

malaria. A nine terms model predicted clinical malaria with a sensitivity of 89% and a 

specificity of 61%, values comparable to those obtained by an experienced paediatrician 

without laboratory support. The ability of peripheral health care workers to diagnose 

malaria using this approach is now being investigated in a prospective study. 

Malaria in Thailand is endemic in forest regions and many cases occur along the 

national borders, particularly on the border with Myanmar to the east (Wattanavadee 

Scriwattanapongse, 2009). Although malaria cases and deaths had fallen substantially 

since 1999, the disease remained a considerable public health problem. Gomez-Elipe et 

al. (2007) developed a model to predict malaria incidence in an area of unstable 

transmission in Burundi by studying the association between environmental variables 

and disease dynamics. The model used time series of quarterly notifications of Malaria 

cases from local health facilities, rain and temperature records, and the normalized 

difference vegetation index. An autoregressive integrated moving average methodology 

was employed to obtain a model showing the relation between quarterly notifications of 

malaria cases and the environmental variables. 

2.3 Count Models 

2.3.1 Poisson distribution 

 The Poisson distribution is often used to model information on counts of various kinds 

particular in situations where there is no natural “denominator”, and thus no upper 
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bound or limit on how large an observed count can be. This is in contrast to the 

Binomial distribution which focuses on observed proportions. Possible examples of 

count data where a Poisson model is useful include (i) the number of automobile 

fatalities in a given region over year intervals, (ii) the number of AIDS cases for a given 

risk group for a series of monthly intervals, (iii) the number  of murders in Chicago by 

year, (iv) the number of server failures for a web-based company by ear, and (v) the 

number of earthquakes of a certain magnitude in a seismically active region by decade 

and modeling malaria prevalence or cases fits directly into this context (i.e.) three main 

factors of malaria prevalence are explored in this chapter, followed by a review of 

Poisson regression model. Poisson regression assumes that the data follows a Poisson 

distribution, a distribution frequently encountered when counting a number of events. 

The distribution was first used to characterize deaths by horse kicks in the Prussian 

army. Poisson distributions have three special problems that make traditional (i.e., least 

squares) regression problematic. 

1. The Poisson distribution is skewed; traditional regression assumes a symmetric 

distribution of errors. 

2. The Poisson distribution is non-negative; traditional regression might sometimes 

produce predicted values that are negative. 

3. For the Poisson distribution, the variance increases as the mean increases; 

traditional regression assumes a constant variance. 

2.3.2 Negative Binomial Distribution 

The weakness of the Poisson distribution in accommodating heavy tails was recognized 

in the early twentieth century, when Greenwood and Yule (1920) postulated a 
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heterogeneity model for the over-dispersion, in the context of disease and accident 

frequencies. This is the first appearance of the negative binomial as a compound Poisson 

distribution, as opposed to its derivation as the distribution of the number of failures till 

the rth success. Newbold (1927) and Arbous and Kerrich (1951) illustrated compound 

Poisson distributions in the context of modeling industrial accidents. In the actuarial 

literature, Lundberg (1940) further considered the negative binomial as a compound 

Poisson distribution, as a result of heterogeneity of risk over either time or individuals, 

as a model for claim frequencies; see also Seal (1982). There are alternative choices to 

the gamma for the mixing distribution g(λ). 

Two which have appeared in the actuarial literature are the generalized inverse Gaussian 

and inverse Gaussian distributions. The generalized inverse Gaussian is a three-

parameter distribution which is highly flexible, but has the drawback that its 

computation is complex. Its two-parameter version, the inverse Gaussian, is 

computationally somewhat simpler. Poisson-inverse Gaussian distribution, which has 

greater skewness than the negative binomial, and so may be more suited to modeling 

heavy-tailed claim frequency distributions. Willmot (1987) compared their performance 

in fitting claim frequency distributions, and found that the Poisson-inverse Gaussian was 

more successful in accommodating the heavy tails than the negative binomial. However, 

this difference appears to be a marginal improvement only and the benefit of the 

Poisson-inverse Gaussian over the negative binomial was disputed by Lemaire (1991). 

In recent years the negative binomial has gained popularity as the distribution of choice 

when modeling over-dispersed count data in many fields, possibly because of its simpler 

computational requirements and its availability in standard software. 
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2.4 Poisson and Negative Binomial Regression Models 

Box (1979) wrote, “All models are wrong but some are useful.” This statement is 

unquestionably true, but it raises the question: Useful for what? There are two ways in 

which a model can be useful, it can improve our understanding of the system generating 

the data or it can make accurate predictions of future observations. For example, linear 

models for designed factorial experiments are useful because the terms they contain may 

be interpreted as main and interaction effects. On the other hand, accurate weather 

prediction models are useful even if they are hard to interpret. 

Strien et al (2000), loglinear Poisson regression method has been developed to analyze 

time series of count data. The method produces yearly indices and trend estimates. It is 

also capable of testing the effects of covariants on the changes so that the impact of 

human activities on changes can be investigated. The method can also deal with several 

difficulties inherent to monitoring data, especially missing values, over- and under 

sampling of particular strata, serial correlation and deviations from Poisson distribution. 

Parodi and Bottarelli, (2006) described Poisson regression model as a technique used to 

describe count data which is a function of a set of predictor variables. In the last two 

decades it has been extensively used both in human and in veterinary Epidemiology to 

investigate the incidence and mortality of chronic diseases. Among its numerous 

applications, Poisson regression has been mainly applied to compare exposed and 

unexposed cohorts and to evaluate the clinical course of ill subject. This review provides 

a description of the Poisson regression in the framework of the prospective cohort study, 

which represents the conceptual ground of most epidemiological investigations. 

Furthermore, some strategies of modeling are illustrated, which allow to obtain estimates 
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of relative risk between exposed and unexposed individuals, adjusted for the effect of 

extraneous variables (confounding), or to assess the presence of an interaction between 

an exposure variable and another factor (“effect modifier”). Finally, a short description 

of some veterinary epidemiology studies, which have applied the Poisson regression 

model, is provided.  

Applying linear regression to count data leads to inconsistent standard errors and may 

produce negative predictions for the dependent variable. Even with a logged dependent 

variable, the least squared estimates have these problems and are biased and inconsistent 

King (1989). Therefore count dependent variables require different modeling. The most 

common assumption of count data distribution is the Poisson distribution which restricts 

the data distribution to be equal-dispersion (the conditional variance equals the 

conditional mean). This stringent restriction cannot handle many empirical applications. 

Other modeling distributions have been developed. Mixed-Poisson distributions and 

negative binomial distributions have been widely used in situations where counts display 

over-dispersion (conditional variance exceeds the conditional mean). For under-

dispersion (conditional variance is less than conditional mean) there are fewer modeling 

options. Since there is no model that handles only the underdispersed data, with 

underdispersed data we need to consider models that are flexible enough to cover both 

over- and under-dispersed data. Models that provide this flexibility include: the 

generalized event count (GEC (k)) model (Winkelmann (1991) and Zimmermann 

(1995), double Poisson, Efron (1986), Poisson polynomial expansion, hurdle models 

(Mullahy 1986), and the generalized Poisson models (Famoye 1993, Famoye and Singh. 

(2003). 
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 Poisson regression is routinely used for analysis of epidemiological data from studies of 

large occupational cohorts. It is typically implemented as a grouped method of data 

analysis in which all exposure and covariate information is categorized and person-time 

and events are tabulated. Liu Sela (2008) describes an alternative approach to Poisson 

regression analysis using single units of person-time without grouping.  Data for 

simulated and empirical cohorts were analyzed by Poisson regression. In analyses of 

simulated data, effect estimates derived via Poisson regression without grouping were 

compared to those obtained under proportional hazards regression. Analyses of 

empirical data for a cohort of 138 900 electrical workers were used to illustrate how the 

ungrouped approach may be applied in analyses of actual occupational cohorts .It was 

realized that using simulated data, Poisson regression analyses of ungrouped person-time 

data yield results equivalent to those obtained via proportional hazards regression: the 

results of both methods gave unbiased estimates of the „„true‟‟ association specified for 

the simulation. Analyses of empirical data confirm that grouped and ungrouped analyses 

provide identical results when the same models are specified. However, bias may arise 

when exposure-response trends are estimated via Poisson regression analyses in which 

exposure scores, such as category means or midpoints, are assigned to grouped data. It 

was concluded that Poisson regression analysis of ungrouped person-time data is a 

useful tool that can avoid bias associated with categorizing exposure data and assigning 

exposure scores, and facilitate direct assessment of the consequences of exposure 

categorization and score assignment on regression results  

Poisson regression has been widely used to model count data. However, it is often 

criticized for its restrictive assumption of equi-dispersion, meaning equality between the 
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variance and the mean. In real-life applications, count data often exhibits over-dispersion 

and excess zeroes. While Negative binomial regression is able to model count data with 

over-dispersion, both Hurdle (Mullahy, 1986) and Zero-inflated (Lambert, 1992) 

regressions address the issue of excess zeroes in their own rights. Different modeling 

strategies for count data and various statistical tests for model evaluation are illustrated 

through an example of healthcare utilization.  

Researchers do not always evaluate the potential for bias in this method when the data 

are over-dispersed. This study used simulated data to evaluate sources of over-dispersion 

in public health surveillance data and compare alternative statistical models for 

analyzing such data. If count data are over-dispersed, Poisson regression will not 

correctly estimate the variance. A model called negative binomial 2 (NB2) can correct 

for over-dispersion, and may be preferred for analysis of count data. This paper 

compared the performance of Poisson and NB2 regression with simulated over-

dispersed injury surveillance data. Methods: Monte Carlo simulation was used to assess 

the utility of the NB2 regression model as an alternative to Poisson regression for data 

which had several different sources of over-dispersion. Simulated injury surveillance 

datasets were created in which an important predictor variable was omitted, as well as 

with an incorrect offset (denominator). The simulations evaluated the ability of Poisson 

regression and NB2 to correctly estimate the true determinants of injury and their 

confidence intervals. Results: The NB2 model was effective in reducing over-dispersion, 

but it could not reduce bias in point estimates which resulted from omitting a covariate 

which was a confounder, nor could it reduce bias from using an incorrect offset. One 

advantage of NB2 over Poisson for over-dispersed data was that the confidence interval 
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for a covariate was considerably wider with the former, providing an indication that the 

Poisson model did not fit well.  When over-dispersion is detected in a Poisson regression 

model, the NB2 model should be fit as an alternative. If there is no longer over-

dispersion, then the NB2 results may be preferred. However, it is important to remember 

that NB2 cannot correct for bias from omitted covariates or from using an incorrect 

offset Kim and Kriebel (2009). 

  Count data regression models are used when the dependent variable takes on non-

negative integer values. Cameron and Trivedi (1996) and Long (1997) provide good 

overviews of count regression models. Count data models are widely used in empirical 

studies. Some recent research used count models are as follows. Yang (2007) uses a 

Poisson distribution count model to explore factors affecting the potential entry into an 

industry. Hellström and Nordström (2008) using the count data modeling to analyze 

household‟s choice of total number of nights to spend on monthly recreational trips. 

Nelson and Young (2008) study the effects of various factors on alcohol advertising in 

magazines using the Poisson and negative binomial count regressions. Czado et al. 

(2007) proposed an extension of zero-inflated generalized Poisson regression models for 

count data. Guikema and Goffelt (2008) present a count model based on Conway-

Maxwell Poisson (COM) distribution that is useful for both under-dispersed and over-

dispersed count data.   

Applying linear regression to count data leads to inconsistent standard errors and may 

produce negative predictions for the dependent variable. Even with a logged dependent 

variable, the least squared estimates have these problems and are biased and inconsistent 

King (1989). Therefore count dependent variables require different modeling. The most 
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common assumption of count data distribution is the Poisson distribution which restricts 

the data distribution to be equal-dispersion (the conditional variance equals the 

conditional mean). This stringent restriction cannot handle many empirical applications. 

Other modeling distributions have been developed. Mixed-Poisson distributions and 

negative binomial distributions have been widely used in situations where counts display 

over-dispersion (conditional variance exceeds the conditional mean). For under-

dispersion (conditional variance is less than conditional mean) there are fewer modeling 

options. Since there is no model that handles only the underdispersed data, with 

underdispersed data we need to consider models that are flexible enough to cover both 

over- and under-dispersed data. Models that provide this flexibility include: the 

generalized event count (GEC (k)) model (Winkelmann and Zimmermann,1991 and 

1995), double Poisson (Efron 1986), Poisson polynomial expansion, hurdle models 

(Mullahy 1986), and the generalized Poisson models (Famoye 1993, Famoye and Singh 

2003) .  

While Poisson regression is a popular tool for modeling count data, it is limited by its 

associated model assumptions. One assumption is that the response variable follows a 

Poisson distribution. However, over- or under-dispersion are common in practice and are 

not accommodated by Poisson regression. In addition, the dispersion is assumed fixed 

across observations, whereas in practice dispersion may vary across groups or according 

to some other factor. Recently, Sellers and Shmueli (2008) introduced the Conway-

Maxwell-Poisson (CMP) regression, based on the CMP distribution. CMP regression 

generalizes both Poisson and logistic regression models and allows for over- or under-

dispersed count data. The model structure introduced, however, assumes a fixed 
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dispersion level across all observations. In this paper, we extend the CMP regression 

model to account for observation-level dispersion. We discuss model estimation, 

inference, diagnostics, and interpretation, and present a variable selection technique. We 

then compare our model to several alternatives and illustrate its advantages and 

usefulness using datasets with varying types and levels of dispersion. 

 In particular, Poisson regression implicitly uses a log transformation which adjusts for 

the skewness and prevents the model from producing negative predicted values. Poisson 

regression also models the variance as a function of the mean (Professor Mean, 2007). 

  care hospitals. Their study indicated that race, income and education are significant 

factors in differential hospital utilization rates. They also found that admission rates for 

medical reasons declined with increasing community income levels and were elevated in 

blacks. Kudur and Demlo (1985) found average income levels in areas of high 

admission rates were significantly lower than those areas of low admission. Wilson and 

Tedeschyi (1984) found income levels positively associated with surgical discharges 

rates and a positive association between the percent of Medicaid population and medical 

discharge rates. Wennberg and Freeman (1987) found in a population-based study that 

the relationship between hospitalization rates for avoidable hospital conditions (AHC) 

cases and median household income, revealed consistent correlation between low 

income and high rate of hospitalization. Also, Codman Research Group (1991), a group 

of investigators in California found a negative correlation between income and the rate 

of hospitalization for these AHC and suggested that a reduction in these AHC‟s offers a 

considerable cost savings to the community. DeShazo (1997) admits that the random 

nature of the discharge count data of his research suggests a fit of the pure Poisson 
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model because the data indicates the average number of discharges per person per time 

interval.  It indicated that the goodness-of-fit of pure Poisson model for the count data 

was poor and observed that the count data indicated extra-Poisson variation; and thus, 

decided to fit a log-linear model.  DeShazo argued that the log-linear model was 

observed to be appropriate for this purpose since it can be extended to include measured 

community characteristics in a regression model, while still yielding an estimate of the 

amount of systematic variability beyond that predicted by the factors included in the 

model. The results of DeShazo research support the hospital discharge findings of 

Wilson and Tedeschyi (1984). 

Again, in another research it was revealed that Poisson regression model is another 

natural choice for fitting a log-linear model, since it estimates incidence rate ratio and 

since most medical applications of the Poisson distribution arise via the Poisson 

approximation to the binomial distribution. This approach has been proposed by 

Traissac et al (1999), McNutt et al (2003), Zou (2004), and Carter et al (2005). The 

estimating equations were those for a generalized linear model with log link and 

variance proportional to mean. 

 Malaria in Thailand is endemic in forest regions and many cases occur along the 

national borders, particularly on the border with Myanmar to the east (Wattanavadee 

Scriwattanapongse, 2009). Although malaria cases and deaths had fallen substantially 

since 1999, the disease remained a considerable public health problem. Gomez-Elipe et 

al(2007). developed a model to predict malaria incidence in an area of unstable 

transmission in Burundi by studying the association between environmental variables 

and disease dynamics. The model used time series of quarterly notifications of Malaria 
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cases from local health facilities, rain and temperature records, and the normalized 

difference vegetation index. An autoregressive integrated moving average methodology 

was employed to obtain a model showing the relation between quarterly notifications of 

malaria cases and the environmental variables . Devi and Jauhari (2006) investigated the 

relationship between climate variables and malaria transmission in India. Earlier, Bi et al 

(2008), also explored the impact of climate on the transmission of malaria in China and 

suggested that climatic variables should be considered as possible predictors for regions 

with similar geographic and socio-economic conditions. Hoshen and Morse (2004) 

described a mathematical-biological model of the parasite dynamics in Africa, 

comprising the weather-dependent stages, both within vectors and within hosts. Gagnon 

et a (2001), found a statistically significant relationship between El Ni o and malaria 

epidemics in South America and thus postulated that global warming will be an 

important factor in the spatial distribution of infectious disease.  

 Kleinschmidt et al,(2002)  investigated malaria incidence in children under 10 in South 

Africa by using logistic regression modeling. The model used climatic, population and 

topographic variables as potential predictors and described a simple two-stage procedure 

for producing maps of predicted risk, including environmental factors such as land use. 

Built up areas were found to have the highest incidence rates. Studies like these aim to 

identify risk factors for the disease, which could provide a basis for health organizations 

in countries affected by malaria to establish effective prevention programs. However, 

when resources are limited it is also important to know in which area prevention should 

be targeted for treatment and control patterns and trends, and this is the focus of the 

present study. The objective of their study was to identify the spatial patterns and trends 
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of hospital-diagnosed malaria incidences based on case data aggregated by quarterly 

periods in 65 districts of the North-western region of Thailand. The provinces in our 

study comprise Lamphun, Phrae, Nan, and Chiang. They made use data are available in 

computer files with a record for each case and fields comprising characteristics of the 

subject and the disease, including dates of sickness and disease diagnosis, the subject‟s 

age, gender, address, severity of the illness, and date of death for mortality cases. Counts 

for malaria cases( incidence) were created for each combination of quarter (24 periods 

from January, March 1999 to October-December 2004), age group (0-4, 5-14, 15-39 and 

40+ years), and district. Incidence rates were computed as the number of cases per 1,000 

residents in the district according to the 2,000 Population and Housing Census of 

Thailand. Since there was little evidence of a gender effect, the data for the two sexes 

were combined. They considered two alternative statistical models for describing the 

relation between malaria incidence and the age group, district and period factors, namely 

a negative binomial and log-normal distribution, respectively. In each case the mean 

function for the selected distribution was a specified combination of demographic 

factors. The negative binomial model was found to be an extension of the Poisson model 

for incidence rates that allows for the over-dispersion that commonly occurs for disease 

counts in re 
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CHAPTER 3 

METHODOLOGY 

3.1 Introduction 

A good statistical model is the one that provides a good approximate mathematical 

representation of the data being modeled with particular emphasis being on structure or 

patterns in the data (White and Bennetts, 1996). Statistical analysis and modelling of 

data have become increasingly important in scientific research and study inquiries and 

the process involves application of appropriate statistical procedure, testing hypotheses, 

interpreting data results, and coming up with valid conclusions (Clinical Science 

Research, 2009). 

In this chapter, we shall define and give a detailed description of some count models 

mainly Poisson regression and negative binomial models in the analysis and modeling of 

malaria occurrence and incidence. We shall begin by describing the data and the coding 

scheme used. The main emphasis of this chapter is to make available a detailed and 

inclusive understanding of the topic. A comprehensive elaboration of the analysis plan 

will be dealt with. Issues related to quantities, estimations and inferences will also be 

discussed.  

3.2.   Data Description 

This thesis utilized a hospital based data from Obuasi Government Hospital database 

and it is a routine time data (secondary administrative data). Modelling the incidence of 

malaria using count models such as Poisson regression and negative regression models 

will be used with malaria cases being the response variable and gender, age (age group), 

and time in years and quarters with respect to the stipulated year of study between 2007 
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to 2010 being the predictors .This study is basically on modeling the occurrence of 

malaria cases and the incidence of malaria and severe malaria cases using Obuasi 

Government Hospital as the case study. The study is based on the records of the Out 

Patients Department (OPD) who were diagnosed with severe malaria (laboratory 

confirmed). The data was put together at the Obuasi Government Hospital and dates 

back from January 2007 to December 2010. 

3.3 Coding Scheme 

The data is categorized into four main groups. The response variable being the  malaria 

cases and these are patients who were diagnosed with severe malaria (laboratory 

confirmed) and other malaria cases with or without laboratory confirmation given the 

independent variables gender, age (age group) and time (years and quarters). The age 

groups provided by the hospital were used, gender (with the males coded as 0 and the 

females coded as 1) and the time in quarters numbering quarters 1 to quarters 4 between 

2007 to 2010 and the years also coded as 1,2,3,and 4 from 2007 to 2010. 

3.4 Generalized Linear Models (GLM) 

Generalized linear models (GLM) was first introduced by Nelder and Wedderburn 

(1972, JRSSA). They provided a unified framework to study various regression models, 

rather than a separate study for each individual regression. Generalized linear models 

(GLM) are extensions of classical linear models. It includes linear regression models, 

analysis of variance models, logistic regression models, Poisson regression models, log-

linear models, as well as many other models. The above models share a number of 

unique properties, such as linearity and a common method for parameter estimation. A 

generalized linear model consists of three components: 
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1. A random component, specifying the conditional distribution of the response 

variable, iY
 given the explanatory variables. 

2. A linear function of the regressors, called the linear predictor, 
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response to the linear predictor. The inverse of the link function is sometimes 

called the mean function:  
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For traditional linear models in which the random component consists of the assumption 

that the response variable follows the Normal distribution, the canonical link function is 

the identity link. The identity link specifies that the expected mean of the response 

variable is identical to the linear predictor, rather than to a non-linear function of the 

linear predictor. The Generalized Linear Model is an extension of the General Linear 

Model to include response variables that follow any probability distribution in the 

exponential family of distributions. The exponential family includes such useful 

distributions as the Normal, Binomial, Poisson, Multinomial, Gamma, Negative 

Binomial, and others. 

3.5 The Poisson distribution 

The Poisson distribution is a discrete probability distribution that expresses the 

probability of a number of events occurring in a fixed period of time if these events 
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occur with a known average rate and independently of the time since the last event. The 

Poisson distribution can also be used for the number of events in other specified 

intervals such as distance, area or volume. 

The Poisson regression model is a technique used to describe count data as a function of 

a set of predictor variables. In the last two decades it has been extensively used both in 

human and in veterinary epidemiology to investigate the incidence and mortality of 

chronic diseases. Among its numerous applications, Poisson regression has been mainly 

applied to compare exposed and unexposed cohorts and to evaluate the clinical course of 

ill subjects. 

The distribution was first introduced by Simeon-Denis Poisson (1781–1840) and 

published together with his probability theory, in 1838 in his work Recherchessur la 

probabilite des jugements en matierecriminelle et enmatierecivile (“Research on the 

Probability of Judgments in Criminal and Civil Matters”). The work focused on certain 

random variables N that count, among other things, the number of discrete occurrences 

(sometimes called “arrivals”) that take place during a time-interval of given length. 

If the expected number of occurrences in this interval is λ, then the probability that there 

are exactly k occurrences (k being a non-negative integer, k = 0, 1, 2…) is equal to 
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Where 

• e is the base of the natural logarithm (e = 2.71828...) 

• k is the number of occurrences of an event - the probability of which is given by the 

function 
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• k! is the factorial of k 

• λ is a positive real number, equal to the expected number of occurrences that occur 

during the given interval. For instance, if the events occur on average 4 times per 

minute, and one is interested in probability for k times of events occurring in a 10 

minute interval, one would use as the model a Poisson distribution with λ = 10×4 = 40. 

The parameter λ is not only the mean number of occurrences, k  but also its variance 

    )(
222

)( kEkE
k                                                                                (4) 

Thus, the number of observed occurrences fluctuates about its mean λ with a standard 

deviation according equation (5) 
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The variance as a function of k is the probability mass function. The Poisson distribution 

can be derived as a limiting case of the binomial distribution. The Poisson distribution 

can be applied to systems with a large number of possible events, each of which is rare. 

A classic example is the nuclear decay of atoms. The Poisson distribution is sometimes 

called a Poissonian, analogous to the term Gaussian for a Gauss or normal distribution. 

Assumptions of Poisson distribution are: 

 Observations are independent. 

 Probability of occurrence in a short interval is proportional to the length of the 

interval. 

 Probability of another occurrence in such a short interval is zero. 
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We verify that this Poisson distribution belongs to the exponential family as defined by 

Nelder and Wedderburn (1972). By taking logs of the Poisson distribution function, we 

find                  
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Looking at the coefficient of 
y

i we see immediately from (7) that the canonical 

parameter is 
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and therefore that the canonical link is the log. Solving for 


i  we obtain the inverse 

link 
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and we see that we can write the second term in (14) the p.d.f. as 
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The last remaining term in (14) is a function of 
y

i  only, so we identify 
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Finally, note that we can take 
)(ai  and 1 , just as it is in the binomial case. Let us 

verify the mean and variance. Differentiating the cumulant function  
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 we have 
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And differentiating again regarding equation (14) we have 
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Hence the mean is equal to the variance 

3.6 The Exponential Family 

GLMs may be used to model variables following distributions in the exponential family 

with probability density function  
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Where   is a dispersion parameter and )(a , )(b  and );( yc  are known functions in 

equations (14). 

For distributions in the exponential families, the conditional variance of Y is a function 

of the mean,   together with a dispersion parameter .  

That is,  
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Where )(' b  and  )(" b  are the first and second derivatives of  )(b  . The dispersion 

parameter is usually fixed to one for some distributions. 

Many commonly used distributions in the exponential family are the normal, binomial, 

Poisson, exponential, gamma and inverse Gaussian distributions. In addition, several 

other distributions are in the exponential family and they include the beta, multinomial, 
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Dirichlet, and Pareto. Distributions that are not in the exponential family but are used for 

statistical modelling include the student‟s t and uniform distributions. 

3.7 Poisson Regression 

Poisson regression analysis is a technique which allows for modeling dependent 

variables that describe count data (Cameron et al, 1998). It is often applied to study the 

occurrence of small number of counts or events as a function of a set of predictor 

variables, in experimental and observational study in many disciplines, including 

Economy, Demography, Psychology, Biology and Medicine (Gardener et al. 1995). The 

Poisson regression model may be used as an alternative to the Cox model for survival 

analysis, when hazard rates are approximately constant during the observation period 

and the risk of the event under study is small (e.g., incidence of rare diseases). For 

example, in ecological investigations, where data are available only in an aggregated 

form (typically as a count), Poisson regression model usually replaces Cox model, which 

cannot be easily applied to aggregated data. Furthermore, using rates from an external 

population selected as a referent, Poisson regression model has often been applied to 

estimate standardized mortality and incidence ratios in cohort studies and in ecological 

investigations (Breslow et al. 1987). Finally, some variants of the Poisson regression 

model have been proposed to take into account the extra-variability (over dispersion) 

observed in actual data, mainly due to the presence of spatial clusters or other sources of 

autocorrelation (Trivedi et al. 1998). Besides medical studies, the Poisson regression 

model has been used in different fields of veterinary research, ranging from herd 

management assessment to animal health in domestic and wild animals and control of 

infectious diseases in different animal species. The Poisson model has been applied also 
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to data analysis in a multidisciplinary study on cancer incidence in veterinary and other 

workers of veterinary industry compared to that of other part of active population in 

Sweden (Travier et al. 2003). The most recent applications of the Poisson model and of 

its variations (e.g., negative binomial model, Poisson random effect model, Poisson 

model with autocorrelation terms, etc.) in veterinary medicine are aimed to evaluate: the 

effect of anthelmintic treatment with eprinomectin at calving on milk production in dairy 

herds with limited outdoor exposure (Sithole et al, 2006); the periparturient climatic, 

animal, and management factors influencing the incidence of milk fever in grazing 

systems in cows (Roche et al. 2006) ; the effects, both positive and negative, of 

widespread badger culling programs on Mycobacterium bovis tuberculosis in cattle in 

Britain (Donelly et al. 2006) ; the seasonality of equine gastrointestinal colic (Archer et 

al. 2006) 

In spite of its recent wide application, Poisson regression model remains partly poor 

known, especially if compared with other regression techniques, like linear, logistic and 

Cox regression models. 

The Poisson regression model assumes that the sample of n  observations iy
 are 

observations on independent Poisson variables Y i  with mean 


i . 

Note that, if this model is correct, the equal variance assumption of classic linear 

regression is violated, since the Y i  have means equal to their variances. 

So we fit the generalized linear model, 

                   
 xii

'
)log( 

                                                     (15) 
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We say that the Poisson regression model is a generalized linear model with Poisson 

error and a log link so that (from 17) 

                     
)exp(

'
 xii


                                                   (16) 

This implies that one unit increases in an xi  are associated with a multiplication of 


i  

by
)exp(

j . 

 

3.7.1 Exposure (offset) 

Poisson regression model is appropriate for rate data, where rate is a count of events 

occurring to a particular unit of observations divided by some occurrence of that of 

exposure. It is given by  

xosurexYE 
'

)log(exp))(log( 
                                                                            (18)                 

Which implies? 

x
osure

xYE
osurexYE 

'

exp

))(log(
)log(exp))(log( 

                                                   (19) 

In Poisson regression, this is handled as an offset, where the exposure variable enters on 

the right hand side of equation (18), but with a parameter estimate constrained to 1. 

3.8 Model specification 

The primary equation of the model is  

,...2,1,0,
!

)(  y
y

e
yY i

i

ii

y

P

i


                                                                             (20) 

The most common formulation of this model is the log-linear specification: 
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 xii

'
)log( 

                                                 (21) 

From (20) the expected number of events per period is given by 

  exy xE
iii


'

1                                     (22) 

 

Thus: 

  



iiii exy xdE i                                                          (23)

                                              

The major assumption of Poisson model is 

   xYexY iiiiiI

xE i var


                                (24)

                                

This assumption would be tested later on. If     xYxY iiii
Evar    then there is 

over-dispersion. If,     xYxY iiii
Evar    then   under-dispersion 

has occurred. 

3.9 Estimation 

Estimation involves estimating the regression parameters specifically using the 

maximum likelihood estimation. 

3.9.1 Maximum Likelihood Estimation 

The likelihood function for n independent Poisson observations is a product of 

probabilities given by 
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                                            (25) 

Taking logs and ignoring a constant involving  
)!log( y

i  we find that the log-likelihood 

function is 
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                                                     (27)  

Where  ey xi

ii




'


                                            (28) 

The parameters of this equation can be estimated using maximum likelihood method   

0
1

'
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and 
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this is the Hessian of the function and with typical element 
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As 
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 does not involve the y data     
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And the information matrix is 
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There is no closed form solution to, 
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   so the MLE for β must 

be obtained numerically. However, as the Hessian is negative definite for all x and β, the 

MLE 


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 and 
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To make matters more transparent, consider the case of a single covariate and an 

intercept. Then  is a scalar observation and  
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Where 
 xii  21

exp 
  , for  

.,...,2,1 ni 
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 (39) 

The first order conditions,  

0



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L

 yield a system of K equations (one for each β) of 

the form 
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Where  ey xi

i


'




 is the fitted value of
y

i . The predicted/fitted value has as usual been 

taken as the estimated value of 















x

y

i

iE

 . This first order condition tells us that the vector 

of residual is r orthogonal to the vectors of explicative variables. 

3.9.2 The Statistical model 

The canonical treatment of GLMs is McCullagh and Nelder (1989), and this review 

closely follows their notation and approach. Begin by considering the familiar linear 

regression model,  


iii xY 

,                                                                        (41) 
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Where ni ,...,2,1  : Y i  is a dependent variable, xi is a vector of k independent 

variables or predictors,   is a k-by-1 vector of unknown parameters and the  i  are 

zero-mean stochastic disturbances. Typically, the  i  are assumed to be independent 

across observations with constant variance i , and distributed normally. That is, the 

normal linear regression model is characterized by the following features: 

1. The Random Component: identifies the response variable Y i  and assumes a 

distribution for it: 
)(~ PY i                                                                                                                     

2. Systematic component: specifies the explanatory or the independent variables 

for the model:  

xxx ppi   ...
22110                                                                         (42) 

     The covariates xi  combine linearly with the coefficients to form the linear predictor                                                    

3. Link function: specifies a function of the expected value (mean) of Y i , 

which the GLM relates to the explanatory or the independent variables through a 

prediction equation having a linear form 

xxx pp
g   ...)(

22110                                                                (43) 

 The linear predictor 
 xii


 is a function of the mean parameter 


i  via a link 

function,
)(

i
g

. Note that for the normal linear model g  is an identity. 
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3.10   The Link Function 

In theory, link functions  
)(

ii
g

 can be any monotonic, differentiable function. In 

practice, only a small set of link functions are actually utilized. In particular, links are 

chosen such that the inverse link 
)(

1


ii

g



 is easily computed, and so that 

g
1

  

maps from 


iiX  into the set of admissible values for


i . A log link is usually 

used for the Poisson model, since while  
 )(

ii
g

 , because Y i  is a count, we 

have
,...1,0

i  . For binomial data, the link function maps from 
10  

i   to   


i   

Examples of link functions that are used are the identity, log, inverse, logit, probit, log -

log, complementary log – log, etc. The table 4.1 below display the various link functions 

that can be used in GLM frame work. 

4.1:    Exponential Family and their link functions 

Distribution 
Link 

function 

Canonical  

link 

Dispersion Expectation Variance 
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3.11 Log-linear Models 

Suppose that we have a sample of n  observations  
yyy

n
,...,

21  which can be treated as 

realizations of independent Poisson random variables, with, 
)(~ 

ii
PY  and suppose 

that we want to let the mean  


i  (and therefore the variance) depend on a vector of 

explanatory variables xi  . 

We could entertain a simple linear model of the form 

 xii

'


                     (44) 

But this model has the disadvantage that the linear predictor on the right hand side can 

assume any real value, whereas the Poisson mean on the left hand side, which represents 

an expected count, has to be non-negative. 

A straightforward solution to this problem is to model instead the logarithm of the mean 

using a linear model. Thus, we take logs calculating 

)log(
ii


          (45) 

and assume that the transformed mean follows a linear model 

 xii

'


          (46) 

Thus, we consider a generalized linear model with link log. Combining these two steps 

in one we can write the log-linear model as 

   
 xii

'
)log( 

           (47)                   
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In this model the regression coefficient  


j  represents the expected change in the log of 

the mean per unit change in the predictor   x j . In other words increasing  x j  by one 

unit is associated with an increase of  


j  in the log of the mean. 

Exponentiating Equation 47 we obtain a multiplicative model for the mean itself: 

)exp(
'
 xii


         (48) 

In this model, an exponentiated regression coefficient  
)exp(

j   represents a 

multiplicative effect of the j-th predictor on the mean. Increasing x j  by one unit 

multiplies the mean by a factor  
)exp(

j  . 

A further advantage of using the log link stems from the empirical observation that with 

count data the effects of predictors are often multiplicative rather than additive. That is, 

one typically observes small effects for small counts, and large effects for large counts. 

If the effect is in fact proportional to the count, working in the log scale leads to a much 

simpler model. 

3.12 Fisher Scoring in Log - Linear Models 

Fisher scoring algorithm is a form of Newton-Rapson method used in statistics to solve 

maximum likelihood equations numerically. Nelder and Wedderburn (1972) applied 

Fisher scoring algorithm to estimate



  in generalized linear models. The Fisher scoring 

algorithm for Poisson regression models with canonical link would be considered, where 

it would be modelled as: 
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The derivative of the link is easily seen to be 
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Specifically, given an initial estimate  , the algorithms update it to 
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Where both derivatives are evaluated at  , and the expectation is evaluated as if    

were the true parameter values.  is then replaced by 


new

  and the updating is repeated 

until convergence. 

It can be shown that for a GLM, the updating equation (51) can be rewritten as 

  WXWXX Z
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1
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       (52) 

where z is the n-vector with ith component 
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and W is the n × n diagonal matrix with 
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And this simplifies to 


iiW 
          (56) 

It is noted that the weight is inversely proportional to the variance of the working 

dependent variable. 

3.13  Tests of Hypotheses 

Likelihood ratio tests for log-linear models can easily be constructed in terms of 

deviances. In general, the difference in deviances between two nested models has 

approximately in large samples a chi-squared distribution with degrees of freedom equal 

to the difference in the number of parameters between the models, under the assumption 

that the smaller model is correct. One can also construct Wald tests, based on the fact 

that the maximum likelihood estimator 



  has approximately in large samples a 

multivariate normal distribution with mean equal to the true parameter value   and 

variance-covariance matrix, 
WXX
'

)var( 



 where X  is the model matrix and W  is 

the diagonal matrix of estimation weights. 

3.14  Likelihood Ratio Test 

A simple test on the overall fit of the model, as an analogue to the F-test in the classical 

regression model is a Likelihood Ratio test on the “slopes”. The model with only the 

intercept is nothing but the mean of the counts, or 


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 i           (57) 
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The corresponding log-likelihood is: 
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where the R stands for the “restricted” model, as opposed to the “unrestricted” model 

with 1K  slope parameters. The last term in  

!log
1
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i
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y
 can be dropped, as long as it is 

also dropped in the calculation of the maximized likelihood  
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for the unrestricted model, Lu  using e tIxL






'

 . The Likelihood Ratio test is then: 

)(2 LL RU
LR 

                    (61) 

  

and follows a 


2

 distribution with K-1 degrees of freedom. 

3.15 Goodness of Fit Test 

In order to assess the adequacy of the Poisson regression model you should first look at 

the basic descriptive statistics for the event count data. If the count mean and variance 

are very different (equivalent in a Poisson distribution) then the model is likely to be 

over-dispersed. The model analysis option gives a scale parameter (sp) as a measure of 

over-dispersion; this is equal to the Pearson chi-square statistic divided by the number of 

observations minus the number of parameters (covariates and intercept). 

The variances of the coefficients can be adjusted by multiplying by sp. The goodness of 

fit test statistics and residuals can be adjusted by dividing by sp. Using a quasi-
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likelihood approach sp could be integrated with the regression, but this would assume a 

known fixed value for sp, which is seldom the case. A better approach to over-dispersed 

Poisson models is to use a parametric alternative model, the negative binomial. 

The deviance (likelihood ratio) test statistic, D², is the most useful summary of the 

adequacy of the fitted model. It represents the change in deviance between the fitted 

model and the model with a constant term and no covariates; therefore D² is not 

calculated if no constant is specified. If this test is significant then the covariates 

contribute significantly to the model. 

The deviance goodness of fit test reflects the fit of the data to a Poisson distribution in 

the regression. If this test is significant then a red asterisk is shown by the P value, and 

you should consider other covariates and/or other error distributions such as negative 

binomial. 

Technical validation: 

The deviance function is: 
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      (62) 

where y is the number of events, n is the number of observations and 




i  is the fitted 

Poisson mean. The first term is identical to the binomial deviance, representing `twice‟ a 

sum of observed times log of observed over fitted'. The second term, a sum of 

differences between observed and fitted values, is usually zero, because MLE's in 

Poisson models have the property of reproducing marginal totals, as noted above. 
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The log-likelihood function is: 
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The maximum likelihood regression proceeds by iteratively re-weighted least squares, 

using singular value decomposition to solve the linear system at each iteration, until the 

change in deviance is within the specified accuracy. 

The Pearson chi-square residual is: 
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For large samples the distribution of the deviance is approximately a chi- squared with 

pn   degrees of freedom, where  is the number of observations and p  the number of 

parameters. Thus, the deviance can be used directly to test the goodness of   fit of the 

model. An alternative measure of goodness of fit is Pearson's chi-squared statistic, which 

is defined as 

The Pearson goodness of fit test statistic is: 
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The deviance residual is (Cook and Weisberg, 1982): 
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      (66) 

The Freeman-Tukey, variance stabilized, residual is (Freeman and Turkey, 1950): 
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The standardized residual is: 
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 where h is the leverage (diagonal of the Hat matrix) 

3.16 Over-dispersion and the Negative binomial model 

The major assumption of the Poisson model is 

   xyexy iiiii

xE i var
'




        (69) 

Implying that the conditional mean function equals the condition variance function. 

This is very restrictive. If  
   xyxy iiii

E var
  then we speak about over- dispersion, 

and when 
   xyxy iiii

E var
  we say we have under-dispersion. The Poisson model 

does not allow for over or under-dispersion. A richer model is obtained by using the 

negative binomial distribution instead of the Poisson distribution. Instead of 
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we then use 
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This negative binomial distribution can be shown to have conditional mean  i  and 

conditional variance 





   ii

2

1
 with  


1

:
2


 . Note that the parameter 


2

  is not 

allowed to vary over the observations. As before, the conditional mean function is 

modeled as 

  exY
xE i

iii




'


        (72) 

The conditional variance function is then given by 

  

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xx ii
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
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       (73) 

Using maximum likelihood, we can then estimate the regression parameter    , and also 

the extra parameter .  The parameter   measures the degree of over (or 

under)dispersion. The limit case 0      corresponds to the Poisson model. 

3.17 Akaike Information Criterion (AIC) 

The Akaike Information Criterion (AIC) is a way of selecting a model from a set of 

models. The chosen model is the one that minimizes the Kullback-Leibler distance 

between the model and the truth. It's based on information theory, but a heuristic way to 

think about it is as a criterion that seeks a model that has a good fit to the truth but few 

parameters. It is defined as: 

AIC = -2 (ln (likelihood)) + 2 K        (74) 

where likelihood is the probability of the data given a model and K is the number of free 

parameters in the model. AIC scores are often shown as ∆AIC scores, or difference 
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between the best model (smallest AIC) and each model (so the best model has a ∆AIC of 

zero). 

The second order information criterion, often called AICc, takes into account sample 

size by, essentially, increasing the relative penalty for model complexity with small data 

sets. It is defined as: 

      1/*2ln2  knnklikelihoodAIC                       (75)            

  

where n is the sample size. As n gets larger, AICc converges to AIC ( n - K -1 -> n as n 

gets much bigger than K, and so (n / ( n - K - 1)) approaches 1), and so there's really no 

harm in always using AICc regardless of sample size. In model selection in comparative 

methods, sample size often refers to the number of taxa (Butler and King, 2004; 

O'Meara et al., 2006). 

3.18 Software (R) 

R: In R (R Development Core Team 2008), GLMs are provided by the model setting 

functions glm (Chambers and Hastie 1992) in the stats package and glm.nb in the MASS 

pack (Venables and Ripley 2002) along with associated methods for diagnostics and 

inference.  

3.19 Analysis plan 

Modelling the incidence of malaria will be analyzed using R software with malaria cases 

being the dependent variable and gender, age (age group) and time in quarter and years 

being the independent variables. Total percentage of variation in the dependent variable 
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explained by these factors will be analyzed and discussed.  All outputs shall be discussed 

and analyze. 
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CHAPTER 4 

DATA ANALYSIS AND RESULTS 

4.1 Introduction 

This chapter introduces the analysis of the various models and discussion of findings. 

Preliminary analysis, summary of results and snapshot of the data will also be presented 

and discussed. Poisson and Negative Binomial regression models shall be used in the 

modeling. 

4.2 Source of Data 

A routine time data was obtained from Obuasi Government Hospital from 2007 to 2010. 

Laboratory confirmed cases of malaria (severe malaria and simple malaria) and simple 

malaria cases (non-laboratory confirmed) recorded at the Out Patients Department 

(OPD) section of the hospital is the response (dependent) variable and the age , gender , 

time (years and quarters) are independent variables. 

4.2The Occurrence of Malaria cases for the various age groups. 

Age Category                           Cases  

<1 2849 

1-4 6268 

5-9 3768 

10-14 3456 

15-17 2737 

18-19 2450 

20-34 8567 

35-49 6179 

50-59 2759 

70+ 1686 

Total 40719 

Source: Obuasi Government Hospital 



56 

 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

<1 1-4 5-9 10-14 15-17 18-19 20-34 35-49 50-59 70+

Age-Group

In
ci

de
nc

e

 

Figure 4.1: A bar chart depicting the number of cases of malaria for the various 

age groups. 

 

From Table 4.2, it can be seen that the highest malaria cases (incidence) occurred among 

those found between 20-34 age group and it directly followed by 1-4 and 35-49 age 

groups. The lowest cases or incidence were recorded for 70+ age group (adults). 

A bar chart in Figure 4.1 confirms it with the highest bar depicting more cases or 

incidence being those in 20-34 age group followed by 1-4 and 35-49 age groups. 

 

Table 4.3: The Occurrence of Malaria Cases for Gender for the period. 

 

Gender Cases  

Female 23460 

male 17259 

Total 40719 

Source: Obuasi Government Hospital. 
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Figure 4.2: A bar chart depicting cases of malaria with respect to gender. 

 

Out of a total of 40719 cases or incidence, the female recorded the highest followed by 

males. Both T able 4.3 and Figure 4.2 confirm it. 

 

Table 4.4:  The Occurrence of Malaria cases for time in quarters for 2007 to2010. 

Time in quarters Cases  

Quarter1 8671 

Quarter 2 9642 

Quarter 3 10486 

Quarter 4 11920 

Total 40719 

        Source: Obuasi Government Hospital 
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Figure 4.3: A bar chart of malaria cases in quarterly time. 

With respect to the quarterly time, quarter 4 saw the highest cases or incidence of 

malaria and it directly followed by quarter 3, quarter 2 and quarter 1 in that order. This is 

consistent with Table 4.4 and Figure 4.3.  

4.3 Modeling and Criteria for assessing Model Goodness of Fit 

The model goodness of fit assessment criteria results as outputted from the R software 

using the glm procedure for Poisson regression models are shown in Table 4.5 and its 

coefficients estimate are also depicted in Table 4.6 with malaria cases being the response 

variable given the independent variables age, gender and time in quarters. Again let i , 

be the respective intercept estimates where i=1, 2… 10 represent the various intercept 

for the 10 models and 


lji
and,

denote the estimates of the independent variables 

for i= 1,2,3 and 4;j=0 and 1 and l=1,2,3,…,10 representing time in quarters, gender and 

age.  
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4.3.1 Modeling the Occurrence of malaria Cases 

Table 4.5: Poisson Regression Models with their AIC’s 

 

                                        Models AIC’s 

  

1. 3,..,2,1,)_ln(
1

 kcasesmean quarters
ik

   19393 

2. 1,)_ln(
2

 kcasesmean gender
jk

   19733 

3. 9,...,1,)_ln(
3

 kcasesmean age
lk

  17030 

4. 13,..,2,1,)_ln(
***

4
 andmkcasesmean genderquarters

jmik
   

19367 

5. )*()_ln(
15 genderquarters

ji
casesmean     19366 

6. 9,...2,13,...,2,1,)_ln(
****

6
 andnkcasesmean agequarters

lnik
   

16664 

7. )*()_ln(
26 agequarters

li
casesmean    11737 

8. 9,...2,11,)_ln(
*****

7
 andnmcasesmean agegender

lnjm
   

17004 

9. )*()_ln(
38 agegender

lj
casesmean     16638 

 

10.

9,...,3,2,1,

1,3,..2,1,)_ln(
******

10





nand

mkcasesmean agegenderquarters
lnjmik

   

16638 

 

From Table 4.5 model 10 was chosen to assess the goodness of fit test because it 

satisfied all the assumptions with an AIC value of 16638, a deviance of 14505 on 306 

degrees of freedom following the chi-square distribution 


2

)1(  .The corresponding p-

value associated with this model is < 0.00 and this indicates over-dispersion. Table 4.6 

shows the parameter estimates of the selected Poisson regression model for model 10. 

 

 

 



60 

 

Table 4.6:  Parameter Estimates of the Selected Poisson Model  

Coefficients Estimates Standard errors z values pr(>|z|) 

intercept 5.246723 0.015673 337.962 <0.001 

quarters2 -0.148015 0.012591 -11.755 <0.001 

quarters3 -0.083806 0.02379 -6.77 <0.001 

quarters4 -0.239595 0.012912 -18.557 <0.001 

 female 0.047856 0.009074 5.224 <0.001 

age1-4 -0.644854 0.022304 -28.912 <0.001 

age5-9 -0.113363 0.019051 -5.95 <0.001 

age10-14 -0.0607 0.018792 -3.23 0.001237 

age15-17 0.041582 0.018315 2.27 0.023184 

age18-19 -0.062156 0.018799 -3.306 0.000945 

age20-34 -0.444213 0.020932 -21.222 <0.001 

age35-49 -0.698124 0.022701 -30.754 <0.001 

age50-59 -0.039282 0.018689 -2.102 0.03559 

age70+ -0.126099 0.019116 -6.597 <0.001 

 

A dispersion parameter of 47.40196 shows that the data is over-dispersed i.e. a situation 

where the variance of the response variable exceeds the mean.  In the nut shell, Poisson 

regression model cannot fit the data. A negative binomial regression model is considered 

to be convenient and practical; they handle over-dispersion; they allow the likelihood 

ratio and other standard maximum likelihood tests to be implemented. Table 4.7 depicts 

the parameter estimates after validating the Poisson regression model using negative 

binomial regression model and the parameter estimates are depicted in Table 4.7. 
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Table 4.7: Negative Binomial Regression Model Parameter Estimates 

 

Coefficients Estimates Standard Error z value pr(>|z|) 

intercept 5.33495 0.13895 38.396 <0.001 

quarters2 -0.15686 0.10516 -1.35305 0.1358 

quarters3 -0.10387 0.10514 -0.988 0.32317 

quarters4 -0.2734 0.07439 -2.599 0.00936 

 female 0.05084 0.16651 0.683 0.49435 

age1-4 -0.67796 0.16611 -4.072 <0.001 

age5-9 -0.15571 0.16609 -0.937 0.34856 

age10-14 -0.1255 0.16601 -0.756 0.44988 

age15-17 0.02526 0.16605 0.152 0.87904 

age18-19 -0.06559 0.16632 -0.395 0.69283 

age20-34 -0.46634 0.16632 -2.804 0.00505 

age35-49 -0.72386 0.16656 -4.346 <0.001 

age50-59 -0.05718 0.16605 -0.344 0.7306 

age70+ -0.14917 0.1661 -0.898 0.36916 

 

The AIC of this model is 3767.9; a deviance of 347.06 on 306 degrees of freedom also 

following the chi-square distribution 


2

)1(   with one degree of freedom .The dispersion 

parameter was found to be 1.227679 and a p-value of 0.0528855 indicating the 

significance of the model. 

)70(14917.0)5950(05718.0

)4935(72386.0)3420(46634.0)1918(06559.0)1715(02526.0

)1410(1255.0)95(15571.0)41(67796.005084.04

2734.0310387.0215686.033495.5)_ln(









ageage

ageageageage

ageageagefemale

quartersquartersquarterscasesmean

                                                                                                                                                                       

(76) 
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The goodness of fit results shown in Table 4.8 below clearly shows that the negative 

binomial regression model fits better the occurrence of malaria cases data better than the 

Poisson model. First, the ratios of deviance and Pearson chi-square to degree of freedom 


2

)1(
~

DF

D

 for the Poisson are much larger than 1, which indicate an over-dispersion in 

the data and hence Poisson does not do a good job of modeling such kinds of data. 

Second, (


2

)1(
~

DF

D

 ) ratios for negative binomial model are both close to one which 

shows a good fit to the data. Third, the lower deviance, Pearson chi-square and the larger 

log likelihood values of negative binomial as against those of Poisson, all of them 

together share the same conclusion of favouring the negative binomial model. 

Table 4.8 Assessment Criteria for Poisson and Negative Binomial Regression 

Models 

Assessment 

Parameter 

Poisson Regression model Negative Binomial Regression 

Model 

AIC 16638 3767.9 

Residual Deviance 14505 347.06 

Degrees of Freedom 306 306 

Dispersion parameter 47.40196 1.13418 

From the Table 4.7, the expected number of occurrences of malaria cases is 0.15685, 

0.15685 and 0.10387 times lower in quarters2, quarters3 and quarters4 respectively 

compared to the base level (quarter1). Meanwhile quarters4 is the most significant 

quarter at 5%  -level, with the expected cases of e
2734.0

(0.7607) approximately 76% 

of all cases. For gender, the expected occurrence of malaria cases is 0.05084 times 
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higher in females than in their male (base level) counterparts. It is not significant 

because malaria is independent of gender, but relevant and significant in a non – 

technical sense and therefore gender cannot be ignored. Gender norms and values that 

influence the division of labour, leisure patterns, and sleeping arrangements may lead to 

different patterns of exposure to mosquitoes for men and women. There are also gender 

dimensions in the accessing of treatment and care for malaria, and in the use of 

preventative measures such as mosquito nets. A thorough understanding of the gender 

related dynamics of treatment-seeking behaviour, as well as of decision-making, 

resource allocation and financial authority within households is key to ensuring effective 

malaria control programmes. Therefore, gender and malaria issues are increasingly 

being incorporated into malaria control strategies in order to improve their coverage and 

effectiveness in different contexts. 

Regarding the age categories, it can be seen that, the expected difference in log count of 

malaria cases between the all the ages and the bases level. The expected occurrence of 

malaria cases for 1-4, 20-34, and 35-49 age groups are 0.67796, 0.46634 and 0.72386 

times lower compared to the base level (<1 year old). They were all significant at 5% 

 -level with those found in 20-34 age category being the  most significant accounting 

for e
046634

(0.6272), which is about 62% percent of all cases in malaria compared to 

cases recorded for those in 1-4 and 35-49 with e
67796.0

(0.5070) approximately 50% and 

e
7238.0

(0.4848)  which is approximately 48% respectively. Similarly, the  expected 

occurrence of malaria cases  is  0.15571, 0.06559, 0.05718 and 0.14917 times  lower for  



64 

 

5-9, 18-19, 50-59 and 70+age categories respectively compared to the base level (<1year 

group) but it is 0.02526 times  higher in  15-17 age group compared to the base level 

year group  but none was significant at 5%  - level. 

 Based on the discussion of model selection coupled with established model outputs, the 

negative binomial was selected on the grounds of producing relatively low ratio 

deviance (347.06) and chi-square distribution to the degree of freedom (306) values 

(depicting better model fit to the data), thus aiding the estimation of the parameters 

shown in Table 4.7 

4.3.2 Modeling the incidence of severe malaria cases. 

The total number of observations used was 40717with severe malaria cases as the 

response variable in the model. The offset variable used as the log of the total number of 

malaria cases. The following models were obtained with s
, s=1,2,…10 being the 

respective intercepts and 
******

,,
nmk

and denoting the parameter estimates of gender, 

time and the age categories. 
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Table 4.9 Poisson Regression Models for the Incidence of Severe Malaria Cases  

Models AIC’s 

1. 0,
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Table 4.9 shows the various models for the incidence of severe malaria cases and the 

respective AICs. Assessing the goodness of fit, model 10 below, was chosen based on an 

AIC of 13613, a deviance of 12955 on 75 degrees of freedom following a chi-square 

distribution and a p-value of < 0.00, thus statistically significant and the parameter 

estimates are displayed in Table 4.10 
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Table 4.10 Parameter Estimates for the Incidence of Severe Malaria Cases using 

the Poisson regression model 

Coefficient Estimate Standard error z-value Pr(<|z|) 

Intercept 4.086346 0.028027 145.798 <2e-16 

male -0.329643 0.011236 -29.337 <2e-16 

time 0.552520 0.005598 98.706 <2e-16 

age10-14 0.255481 0.028308 9.025 <2e-16 

age15-17 -0.029768 0.030300 -0.982 0.326 

age18-19 -0.164388 0.031296 -5.257 <2e-16 

Age1-4 0.814577 0.025531 31.905 <2e-16 

age20-34 1.074733 0.024636 43.625 <2e-16 

age35-49 0.753653 0.0225855 29.149 <2e-16 

age5-9 0.321030 0.027975 11.476 <2e-16 

age50-59 -0.027483 0.032402 -0.904 0.366 

age70+ -0.602318 0.036181 -16.647 <2e-16 

 

However, it was over-dispersed meaning the variance far exceeded the expected mean.  

It therefore became necessary to validate the model using negative binomial regression 

model. Validating the model 10 yielded model 10.1 whose parameter estimates are 

displayed in Table 4.11 and the equation is displayed below. 
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Table 4.11 Parameter Estimates for the Incidence of Severe Malaria Cases using 

the Negative Binomial Regression Model 

Coefficients Estimate Standard error z-value Pr(>|z|) 

Intercept 4.7376 0.3180 14.896 <2e-16 

male -0.2508 0.1543 -1.626 0.1040 

 time 0.3470 0.0690 5.029 4.94e-07 

age10-14 0.1236 0.3616 0.342 0.7326 

age15-17 -0.1047 0.3618 -0.289 0.7723 

age18-19 -0.1983 0.3618 -0.548 0.5836 

age1-4 0.6443 0.3614 1.783 0.0746 

age20-34 0.8535 0.313 2.363 0.0182 

age35-49 0.5838 0.3614 1.616 0.1062 

age5-9 0.1200 0.3616 0.332 0.7400 

age50-59 -0.1295 0.3618 -0.358 0.7205 

age70+ -0.7706 0.3626 -2.125 0.0336 

 














707706.0)5950(1295.0

)95(1200.0)4935(5838.0)3420(8535.0)41(6443.0)1918(1983.0

)1715(1047.0)1410(1236.03470.02508.07376.4
_

ln

ageage

ageageageageage

ageagetimemale
total

casessevere

(77) 

Model 10.1 above gave a good fit to the data because it was statistically significant 

with reference to the AIC of 1176.9, a deviance of 95.563 on 75 degrees of freedom 

following a chi-square distribution, a dispersion parameter of 1.271507 and a p-value of 

<0.00. Table 4.12 summarizes the assessment criteria for selecting negative binomial 

regression model. 
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Table 4.12 Assessment Criteria for Poisson and the Negative Binomial Regression 

Models for the Incidence of Severe Malaria Cases 

Assessment parameter Poisson regression model Negative binomial 

regression model 

AIC 13613 1176.9 

Deviance 12955 95.563 

Degrees of freedom 75 75 

Dispersion parameter 172.7333 1.271507 

 

From the results in Table 4.11, it can be seen that the expected incidence of severe 

malaria cases is 0.2508 lower in the base level (female) compared to their male 

counterparts. It is not significant in the sense that malaria is not dependent on gender. 

 The variable time (years) has a coefficient of 0.3470 which is statistically significant at 

5%  level. This means that for each one-unit increase in time (years), the expected log 

count of the incidence of severe malaria cases will increase by 0.35262 (i.e.) 

e
35262.0

(1.4227). It also follows that as time goes on there will an increase in severe 

malaria cases.  

Now, for the age categories, the expected incidence of severe malaria cases for 10-14, 1-

4, 20-34, 35-49 and 5-9 are respectively 0.1236, 0.6443, 0.8535, 0.5838 and 0.1200 

higher compared to the base level (< 1 year old). Among these age groups, 20-34 age 

category was significant at 5%  level with an associated p-value of < 0.0182. Again the 

expected log count of the incidence of severe malaria cases is 0.1047, 0.1983, 0.1295 

and 0.7706 lower in 15-17, 18-19,50-59 and 70+ age categories respectively compared 
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to the base level (<1 year old) with 70+age category being the most significant at 5% 

 level with an associated p-value of 0.0336. 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATONS 

5.1 Introduction 

This chapter presents conclusions from the research and some recommendations 

5.2 Conclusions 

The objective of this research was to model the occurrence of malaria cases given the 

age , gender and time (quarters); to model the incidence of severe malaria cases given 

the age, gender and time in years and lastly to validate the two models using negative 

binomial regression model.  Data from Obuasi Government Hospital were utilized in this 

study. Severe malaria cases confirmed by the laboratory, simple malaria (laboratory 

confirmed) and simple malaria (non-laboratory confirmed) were used in the analysis and 

modeling. Both Poisson and negative binomial regression models were used and well 

known statistical goodness of fit model assessment criteria were used in selecting which 

model will fit the malaria cases better. 

Based on the results, the negative binomial regression model was found to fit the data 

better than the Poisson regression model. In modeling the occurrence of malaria cases, 

the analysis produced a reasonable AIC values, (16638) deviance (14505); p-value <0.00 

for the Poisson model and a dispersion parameter of 47.40196 showing an extra-Poisson 

variation or over-dispersion in the data; leading to overestimated standard errors, thus 

inaccurate parameter estimates apparently due to a violation of one of its main 

assumption of the equality of mean and variance parameters. Because of over-

dispersion, it became a necessary tool to validate the Poisson regression models using 
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negative binomial. The deviance for the negative binomial regression model displayed in 

Table 4.8 is 347.06 on 306 degrees of freedom. 

The occurrence of malaria cases in quarter4 (October- December) was found to be 

e
2734.0

 (0.7607) accounting for 76% of all laboratory confirmed cases recorded between 

2007 to 2010. Regarding the various age groups, the occurrence of malaria found to be 

statistically significant at 5%  -level for 1-4, 20-34 and 35-49 age groups with the 

expected cases being e
67796.0

(0.5070), e
67796.0

(0.5070) and e
7238.0

(0.4848). 50% 

laboratory confirmed cases were children below 5 years with more cases recorded for 

20-34 age groups accounting for (48%) and those found in 20-34 age groups recording 

the highest number of cases accounting for 62% of laboratory confirmed cases. 

 Again the negative binomial regression model fitted the data. The variable time (in 

years) had a coefficient of 0.3470 which is statistically significant at 5%  level. This 

means that for each one-unit increase in time (years), the expected log count of the 

incidence of severe malaria cases will increase by 0.35262 (i.e.) e
35262.0

(1.4227). It also 

follows that as time goes on there will be an increase in severe malaria cases. Similarly, 

for the age categories, the expected incidence of severe malaria cases is 0.1236, 0.6443, 

0.8535,0.5838 and 0.1200 higher in 10-14, 1-4,20-34, 35-49 and 5-9 age categories 

respectively compared the base level. Among these age groups, 20-34 age category was 

significant at 5%  level with an associated p-value of < 0.0182. Again the expected log 

count of the incidence of severe malaria cases are 0.1047, 0.1983, 0.1295 and 0.7706 

lower in 15-17, 18-19,50-59 and 70+ age categories respectively compared the base 
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level  with 70+age category being the most significant at 5%  level with an associated 

p-value of 0.0336. Both model showed the independence of malaria with respect to 

gender. 

With reference to the findings of the research, it can be concluded that: 

 the occurrence of malaria cases and the incidence of severe malaria cases were 

independent of gender. 

 the occurrence of malaria cases was found to be very high in the last quarter ( 

October-December) between 2007 to 2010. 

 the occurrence of malaria was significantly high among infants ,  children under 

5 years old  and adults aged between 20-49 years. 

 between 2007 to 2010, the incidence of severe malaria cases increased. 

 the incidence of severe malaria cases was found to  be very high among infants 

and adults aged 20-34 and 70+ years. 

5.2 Recommendations 

On the basis of the findings of the research, the following recommendations were made: 

 since more cases were recorded in the last quarter (October-December) of the 

years considered apparently due to some seasonal changes like rainfall, it is 

imperative that programmes and campaigns meant to reduce the menace of 

malaria should be carried out before, during and after the seasonal changes. 

 because most of the affected group were people between 0-4years (infants and 

children) and 20-34 and 35-49 age groups, which are working force of the 

country and that matter the municipality and therefore government under 
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auspices of the municipal health directorate must intensify its campaign on the 

effects of severe malaria. The economic gains of the municipality will increase if 

these people are free from malaria. 

 the education on the use of treated mosquito nets and environmental cleanliness 

such clearing of bushes, desilting of choked gutters and getting rid of stagnant 

waters which serves as breeding ground for plasmodium larvae, must be 

enforced in order to bring the disease under control. 

 the Internal Residual Mass Spraying exercise introduced by the Anglo Gold 

Ashanti as part of its  corporate social responsibility in the municipality must  

intensify its campaign in order to bring the disease under control. 

 It is therefore suggested that more studies and research be carried out in highly utilized 

hospital in other to check the incidence of malaria so that appropriate measures and 

strategies could be adopted to curtail its spread. 
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