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ABSTRACT

In this thesis, deterministic and stochastic differential equation (SIR) models for HIV
propagation are formulated using Ghana data. The stability of the disease free and endemic
equilibrium points of the models are investigated as well as an implementation of numerical
simulation of the models to observe the effect of a decrease in the infection rate. It was found
that for both the deterministic and the stochastic models, an infection rate of B = 0.2 or less

would cause the number of infectives to be permanently less than the number of susceptibles.
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CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

In this chapter, we will discuss the background of HIV and state the problem statement. We will

also discuss the mathematical methods that would be employed in our study.

1.2 BACKGROUND

HIV (human immunodeficiency virus) is the virus that causes AIDS. This virus can be passed
from one person to another when infected blood. semen, or vaginal secretions come in contact
with an unlimited person’s broken skin. Also, infected pregnant women can pass HIV to their

baby during pregnancy or delivery, as well as through breast-feeding (www.wikipedia.org).

People with HIV have what is called HIV infection and may develop AIDS as a result of their
infection. The earliest known case of HIV-1 in a human was found in a blood sample collected in

1959, from a man in Kinshasa, Democratic Republic of Congo (www.cdc.gov).

Genetic analysis of this blood sample suggested that HIV-1 may be stemmed from a single virus

in the late 1940s.

In somewhere the mid-1970sHmited States discovered the virus. Doctors in Los Angeles and
New York had cases of pneumonia, cancer, and other illness in a number of male patients who
o

have had sex with other men. These conditions were not usual in people with healthy immune

systems.

— . —— D S
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In 1982, public health officials began to use the term ‘acquired immunodeficiency syndrome’ or

AIDS, to describe the occurrences of opportunistic infections (a kind of cancer).

HIV is a retrovirus and like most of the viruses in this family of viruses, the retroviridae, only
replicate in dividing cells. Infection by the virus HIV-1, the most common variety, has many
highly zomplex characteristic, most of which are still not understood. One such complexity is
that the disease progression can last more than 10 years from the first day of infection. Another is
that whilst most viral infections can be eliminated by an immune response, HIV is only briefly

controlled by it (www.who.org).

The introduction of powerful anti-retroviral therapies has dramatically changed the progression
time between HIV infection and the development of AIDS. Also other treatments can prevent or

cure some of the illnesses associated with AIDS, but do not cure the AIDS itself.
People with HIV may experience these symptoms

e rapid weight loss

e recurring fever or profuse night sweats

e profound and unexplained fatigue

e swollen lymph glands in the armpits, or neck
e diarrhea that lasts for more than a week

e pneumonia

. memnry’féss,.depressiun, and other neurological disorders
e - i_,--""—'-'__d_—._

However, these signs alone are not sufficient for one to think that he has the disease, but then,
Lhachabadi it

the only way to know your HIV status is to be tested for HIV infection.

I —— -
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HIV testing and counseling provides an opportunity for infected individual to know their HIV

status, and if infected, to access medical treatments that may help delay disease progression.

The only surest way of protecting oneself from contracting HIV is to abstain from sexual
stercourse or to be in long-term mutually monogamous relationship with a partner who has been
tested and known to be uninfected. Also consistent and effective use of condoms provides a high
degree of protection against transmission of HIV. However, the use of condoms cannot provide

absolute protection against HIV (www.medicineNet.com).
1.3 STATEMENT OF THE PROBLEM

HIV-1, the most common variety, has many highly complex characteristics, most of which are
still not understood by researchers, and has therefore become a major public health problem
worldwide. The fact that the disease progression can last more than 10 years from the first day of
infection, and also like most viral infection which are eliminated by an immune response, HIV is
briefly controlled by it. Africa is the most affected continent in the world in terms of HIV
infection, yet not much has been done in terms of using mathematical modeling as a tool in
finding solutions to the disease, especially in sub-Sahara Africa where the situation is escalating,
It is against this background that we formulate a deterministic and stochastic differential
equation model, with some parameter values from Ghana that helps us to understand the HIV

propagation in Ghana.



1.4 OBJECTIVES OF THE STUDY

The objectives for this thesis are:

e To formulate a deterministic and stochastic differential equation models for HIV
propagation.

e To investigate the stability of the equilibrium points of the models.

¢ To implement numerical simulation of the models.

e To determine the implications of these models in_relation to the intervention in

controlling the disease.

1.5 METHODOLOGY

1.5.1 Mathematical Methods

In this work, a deterministic SIR epidemic model will be formulated and use to determine the
equilibrium points and the stability of these equilibrium points. A stochastic version of the
deterministic SIR model would be considered, and its local stability and phase portrait
implemented. In order to get realistic results, parameters for the model such as Death rate, rate of
infection and Removal rate were obtained from the Ghana Health Service and CIA World
Factbook (demorgraphic statistics) and were fitted into the model to find the equilibrium points.

The stability of these points were then determined.



1.5.2 Computer Methods

Matlab software will be used to for the following computations;

e For finding the eigenvalues of the linearized system and their system.

o To identify the stability type using the eigenvalues.

e For plotting the Phase portraits and the trajectories of the equilibrium points

e For the numerical simulations of the deterministic and the stochastic version of the SIR

epidemic model
1.6 JUSTIFICATION OF THE STUDY

Mathematical model has serve as an aid to understanding the dynamics of infectious diseases and
how to control them. Therefore, in order to control the HIV/AIDS disease, one needs to

understand the dynamics of the disease, and this can be done by matter of mathematical model.

1.7 ORGANISATION OF THESIS

This thesis begins with Chapter 1 in which the background of HIV is given. Chapter 2 is a
review of a research work pertaining to HIV models that has been done. In Chapter 3 a
Deterministic and Stochastic model of HIV is presented which explains the transmission
dynamics of HIV. In chapter 4, the numerical simulation results of the models are presented.

Finally in Chapter 5 we conclude the thesis with conclusion and recommendation.

. il
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CHAPTER 2

LITERATURE REVIEW

2.1 INTRODUCTION

In this chapter, we will discuss the biology and ecology of the HIV virus, as well as its life cycle
in the cell of human. We will also discuss the social and the economic impart of HIV on the
society. Finally, we will discuss the history of mathematical models, and the variant models of
infectious diseases that have been proposed. We will also discuss the contribution of these

models in regards to controlling infectious diseases and HIV specifically.

22 BIOLOGY AND ECOLOGY OF HIV VIRUS

HIV (human immunodeficiency virus) is the virus that causes AIDS. This virus can be passed
from one person to another when infected blood, semen, or vaginal secretions come into contact

with an uninfected person’s broken skin. Through breast-feeding, the virus can also be passed on

from mother to child.

HIV, like all viruses, is composed of a core and a protein coat. Its genetic material is stored in its
core. The genetic material of all animals (humans and bacteria), is coded in the nucleus of the
cell. The chemical in the nucleus that maintains this genetic code is called nucleic acid. Humans,
plants and other microorganisms have two types of nucleic acids: ribonucleic acid(RNA) and
deux}rribnnug:lt_a_ic"-acid(DNA’l}_!ifnﬁe_g.,_on the other hand, have either DNA or RNA(Consuelo

and Caridad, 2004).

s
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HIV’s nucleic acid is RNA; Hence HIV is called an RNA virus. The protein coat of HIV carries
the chemicals that enable HIV to enter cells. Once it enters the cell, HIV uses the cell’s
machinery to produce energy and reproduce itself HIV uses an enzyme called reverse
transcriptase, to make a DNA copy of its RNA and inserts it into the host cell’s DNA.Viruses
that can make a DNA copy from RNA are called retroviruses, because they reverse the usual
process.HIV is a retrovirus and like most of the viruses in this family of viruses, the retroviridae,

only replicates in dividing cells (www.cdc.gov).

HIV’s DNA carries codes for nine genes, which are sections of nucleic acids that determine a
trait or characteristics of a living being. Three of these genes, gag, pol, and env contain
information needed to make structural protein for new virus particles. Also the genes, tat, rev and

nef are regulatory genes, and the other three genes vif, vpr and vpu are auxiliary (helper) genes.

The auxiliary genes contain needed information of protein that HIV uses to infect a cell and
make new copies of it. Retroviral infections do not kill the cells that they infect, but then, many
of these viruses cause cancer to the cells that they infect. The family of retroviruses to which

HIV belongs does not cause cancers directly (Pratt, 2003).

HIV infects vital white blood cells in the human immune system such as lymphocytes or CD4 T-
cells, dentritic cells and macrophages.HIV infection leads to low level of CD4 T-cells. These
happen as a result of the increased rates of apoptosis in infected cells, and viral killing of infected

cells as well as killing of CD4 T-cell (Murray, 2002).

e ‘.__’_,__.---—'_‘_'__
HIV infections are of two types, HIV-1 and HIV-2.HIV-1, the most common cause of the

majority of HIV infections, has many complex characteristics, most of which are still not

understood by researchers. One of such characteristics is that the disease progression can last

- g ——— - i
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more than 10 years. Another is that whilst most of viral infections can be eliminated by an
immune response, HIV is briefly controlled by it. The depletion of CD4 T-cells in the immune

system leads to AIDS (http //www.who.org).
2.3 THE HIV LIFE CYCLE

HIV passes through several stages in order to infect a person. These stages include binding to the
cell, fusing with the cell membrane, replicating itself with reverse transcription, and releasing
new viruses from the cell. HIV infects a person by first attaching its virus to a cell at a specific
binding site. Thus, HIV can only attach to cells with the appropriate type of binding site. The

CD4 surface molecules of the helper Tcells are the main binding sites for HIV (Pratt, 2003).

All primate lentiviruses use CD4 as a binding site to bind to the T cells or macrophages.HIV and
lentiviruses attach mostly to T lymphocytes, and are therefore called T lymphotropic.Another
receptor of HIV virus is Chemokine co-receptors (CCRs).CCRs assist T cells, providing a place
for Cytokines and other chemicals to attach. These chemicals are directed to Microorganisms to
which they bind.HIV membrane gp120 binds first to CD4, and then to CCR-5 or another
CCR.HIV also uses the CCRs cells in the cervix and the large intestine as binding

sites(Consuelo and Caridad,2004).

Fusion takes place after the binding process. The membrane of the HIV and the cell combine.
The HIV virus then makes copies of itself. During reverse transcription, the enzymes called
reverse transcriptase makes a DNA copy of HIV’s RNA: this DNA is inserted into the person

——— ___,_..-4-""'-_—-____
cell as a provirus, which remains inactive in the cell’s genetic material until the cell is

activated(Murray,2002).
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The HIV proteins are broken down into active proteins by enzymes called proteases and are
organized into incomplete virus particle. The virions bud from the cell then combines with tiny
pieces of the cell membrane to form a mature virus particle which can infect. If the cell is not
activated and does not divide itself, no virions are made. This state of remaining dormant in the
cell DNA is called the latent (inactive) period of the disease. This can take about 5 to 10 years

about which the patient shows no symptoms of the disease, but can infect others

(http://www. findarticle.com).

24 EPIDEMIOLOGY OF HIV

Epidemiology may be defined as the study of the transmission dynamics of infectious diseases
with the objective of tracing factors that contribute to the dynamics and stability of the disease

under consideration (www.wikipedia.org).

Mathematical models have been used in the study of epidemiology, and these models have

served as an aid to understanding the transmission dynamics of infectious diseases.

HIV has gone to the fore-front of epidemiological research ever since its discovery. Its
transmission dynamics, and how to control it, has been of great concern to public health globally.
Many consider HIV to be the most serious world epidemics of this century. Though many works

have been done in the field, yet much is still unknown about HIV.
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2.5 HISTORY OF HIV

The first known case of HIV-1 in humans was found in a blood sample of a man in Kinshasa,

Democratic Republic of Congo in the somewhere early1959.

It was believed that these viruses originated from Chimpanzees living in West Africa. It has been
explained that these viruses were passed on to humans as a result of human activities such as

hunting and eating of bush meat (www.medicinenet.com).

United States discovered the disease somewhere 1970s, with gay men who have had sex with
other men. It was reported that these men have developed pneumonia, cancer, and other types of

illnesses which were rare in people with healthy immune system (htt://www.cdc.gov).

In 1982, public health officials became concerned about the disease, and a formal surveillance of
the disease began in the United States. The discase was then named ‘acquired immunodeficiency
syndrome’, describing a condition in humans in which progressive failure of the immune system

allows life-threating opportunistic infections and cancers to thrive (Consuelo and Caridad, 2004).

In 1983, the virus that causes AIDS was discovered, and was named HTLV-III/LAV (human T-

cell lymphotropic virus-type III).The name was later changed to HIV (human immunodeficiency

virus).

In 1985, the means to avoid becoming infected were known and a test for HIV infection was
developed, allowing blood transfusions to be screened for the presence of HIV infection
(Benenson, l@ﬁﬁ).’i‘hen in 1987, the first truly effective drug that suppressed viral replication

was developed and introduced into clinics, allowing infected people to get access. By the mid-

10
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1990s, range of antiretroviral drugs attacking the virus at different stages of its replication cycle

became available to treat HIV disease (http://www.sceinceaid.co.uk).
76 GLOBAL AND GEOGRAPHIC DISTRIBUTION OF HIV

HIV/AIDS, since its discovery in the year 1980s, has affected most parts of the world. The
pandemic is seen as one of the world’s most dangerous epidemic of all time. The statistics about

the global distribution of HIV/AIDS world-wide are overwhelming.

The World Health Organization(WHO,2006), estimates that about 40 million people of the

world’s population are living with HIV/AIDS. and that nearly 25 million people have died of

AIDS since the disease was first discovered.

The report indicates that 50% of all new HIV infections and 30 percent of the 40 million people

are youth. While every nation has in some way been affected by this pandemic, it is Africa that

the grip of HIV and AIDS has been, by far, the deadliest.

(World Bank, 2002), indicates that over two thirds of HIV/AIDS related deaths are from Africa.

African countries like South Africa, Botswana, Malawi and Swaziland have much higher rates of

HIV infection.

(UNESCO, 2002), report shows that almost one in every ten adults in sub-Saharan Africa are

HIV positive.

Russia saw more fiew infections in 2000 than in all the previous years of the epidemic combined.
e ,.—*"'-.—-_—__._._—

The number of cases in Eastern Europe and Asia has risen by more than two thirds in the last
'—-'-.-_---- - . . . . " " "
year. The situation is alarming in the United States, with increase number of gay men and gay

marriages, HIV infection is doubtlessly on the increase in the United States.

—r
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In the English-speaking Caribbean, it is the leading cause of death among 15-44 years old.

27 TRANSMISSION HYPOTHESIS OF HIV

HIV is primarily transmitted through shared bodily fluid such as blood, semen, or vaginal

secretions, pre-gjaculatory fluid and saliva. Most people in the world have been infected with

HIV as a result of being sexually exposed to the virus. This is due to the fact that HIV is present

in seminal, pre-ejaculatory, vaginal and cervical secretions, and in saliva of infected individual.

Variety of sexual behaviors like homosexual and heterosexual facilitate this viral transmission,

Also, infected pregnant woman can pass HIV to their baby during pregnancy or delivery, as well

as through breast-feeding (http://www.sceinceaid.co.uk)

2.8 BURDEN OF HIV

HIV/AIDS has a whole lot of negative impact on the individual and the society in a number of

ways.

First increased morbidity and mortality are likely to have significant impacts on national
economies.HIV infection can lead to reduction in Gross domestic product of a nation. (Action
Aid.2003),indicates that skilled workers who get themselves infected with HIV,are more likely

to be fired by their employers or leave the job as a result of the stigma. The potential for labor

substitution crucially affects the degree to which any loss of time is translated into a loss of

output. Similarly in the industrial and service sectors, other members of the workforce may cover

to some extent for sick cullmen if market output is maintained, there may be costs

associated with labor substitution, depending on the value of the activities from which the

substituting labor is withdrawn (UNAIDS/WHO, 2004).
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Unemployment and underemployment are common features of sub-Saharan economies, and
farming is often undertaken communally, in households or extended families. In the event of
temporary disability of a household member, the family workforce may provide a cushion for the
period of absence of the disabled member, limiting the consequent loss of output. During some
seasons, agricultural underemployment may be so prevalent that the time lost by sick individuals

can be fully compensated for.

The simple presence of HIV/AIDS in a eommunity or country also hampers individual and
national prosperity due to its influence on social and economic decisions (htt/:www.cdc). The
risk of contracting HIV/AIDS in endemic areas can deter investment, both internal and external.
It affects individual and household decision making in many ways that have a negative impact on
economic productivity and growth. Some of the impacts are undeveloped tourist industry due to

reluctance of travelers to visit HIV/AIDS-endemic areas.

HIV infection also has a negative effect on the standard of Education on a nation. Teachers and
pupils who get infected with HIV eventually lose focus with regards to their responsibility as
teachers or students. These attitudes have effects on the educational objectives in general.
UNECA (2000) presents reports from Kenya (feacher deaths rising from 450 in 1995 to 1.500 in
1999), Congo (schools closing due to death of teachers from AIDS).

2.8.1 Economic and Social implication of HIV

According to Pran—«(zﬂl}i’s), “The burden of HIV/AIDS is enormous, on global scales, HIV/AIDS
disease is amoEthe leading causes of ;reventable ill-health and death in people in developing

countries, causing approximately IImillion illness and more than 5 million deaths each year. In

Every day more than 2000 lives are lost worldwide due to HIV. These estimates render HIV the

13
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pre-eminent world viral disease and one of the top three killers among Communicable diseases.”
Beyond mortality, HIV causes morbidity through weakness, malnutrition, anemia, une:q;lained
prolonged fever, chronic diarrhea, spleen diseases and vulnerability to other diseases. The health
consequences of HIV vary in terms of severity, but the global impact of HIV on human health,
productivity, and general well-being is profound (http://www.hab.hrsa.gov).

HIV imposes substantive social and economic costs. It impedes economic development through
several channels, including but certainly not limited to, quality of life, fertility, population
growth, saving and investment, worker productivity, premature mortality and medical costs
(http://www.BNF.org).

The various effects of HIV are outlined below:

2.8.2 Mortality

Estimating the number of deaths due to HIV/AIDS is problematic (UNAIDS/WHO, 2003). It is
perhaps not surprising that most studies do not attempt to capture any of the economic effects of

death. focusing on the implications of morbidity alone. However, a wide range of immediate and
long-term effects are thus excluded, ranging from funeral costs, to lost output of the deceased,
subsequent changes in the organization of activities, and potentially the dissolution of the
household or knock-on effects on the health of other household members (Falola and
Heaton,2007).

2.8.3 Malnutrition

Malnutrition is a common features of human immunodeficiency virus (HIV) disease and further

o

" i

compounds patient pf’éblems mmune system incompetence. Weight loss and thinness are
cnm_ip all stages of HIV disease in Africa and the Western world. Infection by HIV

produces a progressive, involuntary weight loss in the early stages of the HIV disease and
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increases in severity as the disease progresses (Pratt, 2003).HIV disease also causes metabolic
changes and deficiencies of some nutrients, vitamins and minerals which cause illnesses in
infected individual (Taylor,1994).

HIV disease has a significant impact on nutritional status of the individual resulting in
malnutrition. Malnutrition in turn causes decreased immune function, increased morbidity and
mortality and finally decreased the quality of life in the individual with HIV (www.cdc.gov).
Malnutrition also decreases the ability to withstand opportunistic events and prolongs periods of
hospitalization (Gorbach, 1999).People with malnutrition have decrease in self-care ability and
therefore have to depend on other people like family members. The time lost by such people in
taking care of these family members has impact on the family and the economy.

2.8.4 Interaction with other diseases

In addition to its direct role in morbidity and mortality, HIV/AIDS is also thought to have a
significant indirect effect in conjunction with other common diseases such as tuberculosis,
diarrheal disease and malnutrition, although the extent of the indirect impact is difficult to
measure and not well understood(stillcutt,2004).

2.8.5 Intellectual Development

HIV encephalopathy: A clinical finding of disabling cognitive or motor dysfunction interferes
with activities of daily living such as school absenteeism although the evidence is less.
Variations in reasoning ability, cognitive skill, and years of schooling are considered to be
important determinants of future variations in productivity and earnings of individuals (Knight

and Sabot, 1990); 30 the economicimpact is likely to be significant.
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2.8.6 Economic Cost

Economists have attempted to put an economic value on the burden of HIV/AIDS by measuring
the impacts on households and national economies (Boissier, Knight and Sabot, 1985).

2.8.7 Household

HIV imposes both direct and indirect costs at household level. Direct costs can be from a
personal expenditure or a public expenditure. Personal expenditures include individual or family
spending on doctors’ fees, Anti-retroviral drugs, transport to health facilities, support for the
patient and sometimes an accompanying family member during hospital stays. Public
expenditures include spending by government on maintaining health facilities and health care
infrastructure, education and research. In some countries with a heavy HIV burden, the disease
may account for as much as 40% of public health expenditure, 30-50% of inpatient admissions,
and up to 50% of outpatient visits (http://www.one.org/international).

The indirect costs of HIV include lost of productivity or income associated with illness or death.
This might be expressed as the cost of lost workdays or absenteeism from formal employment
and the value of unpaid work done in- the home by both men and women. Indirect costs, which
are typically harder to measure, include loss of work efficiency and time and work reallocation
within the household. For children in particular, indirect costs also include nutritional
deficiencies, cognitive and educational disabilities, and physical retardation. Pain and suffering
are clearly substantial indirect costs but are perhaps most difficult to quantify and monetize. In
general, long term 'Effeacts such as child development and resistance are unknown (Hutubessy,
Bendib and Efaﬁ_sfzbﬁ 1) In mémh, the indirect cost includes the discounted future

lifetime earnings of those who die.
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2.8.8 National Economies

HIV/AIDS is estimated to cause a decline in economic growth in the range of 0.25% to 1.3% of
per capita Gross National Product (GNP) growth in tropical countries, even after accounting for
initial endowments, overall life expectancy and geographic location. To the extent that slow
economic growth limits funds for HIV/AIDS control, there is a vicious cycle of poverty and HIV
diminishes economic opportunities for a large number of the world’s inhabitants. HIV affects the
health and wealth of nations and individuals alike. In Africa, HIV is a disease of poverty and a
cause of poverty. For developing economies the gap in prosperity between countries with HIV
and countries without HIV has become wider every single year. Annual economic growth in
countries with high HIV transmission has historically been lower than in countries without HIV.
Economists believe that HIV is responsible for a ‘growth penalty’ of up to 1.3% per year in some
African countries. When compounded over the years, this penalty leads to substantial differences
i GDP between countries with and without HIV and severely restrains the economic growth of
the entire region.

2.9 HISTORY OF MATHEMATICAL MODELING OF INFECTIOUS DISEASES

The intuition that transmission of infectious diseases follows certain laws that can be modeled
mathematically has existed long. In 1766, Daniel Bernoulli published an article where he
mathematically analyzed the effects of smallpox variolation on life expectancy (Dietz and

Heesterbeek, 2000).

Sir Ronald RDSS,_EE;hﬂ received the Nebel Prize award for his contribution on elucidating the life

cycle of the Malaria parasite, used mathematical modeling to investigate the effectiveness of
i

various intervention strategies for Malaria (Ross, 1911).
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Kermack and Meckendrick (Kermack and Mckendrick, 1991a, 1991b, 1991c), described the
dynamics of disease transmission in terms of a system of differential equation, and opened up the
concept of threshold quantities.However the nonlinear dynamics of infectious disease
transmission came into the scene somewhere early twentieth century. Since then mathematical
modeling has evolved as an interesting area in the field of applied mathematics, and has been of

great help to public health in policy making.

The study of epidemics has come up with astonishing number of variety of models and
explanations for the spread and cause of epidemic outbreak.In McNeil (McNeil, 1989), he
explains the relation between disease and people. Another astonishing work in regards to
epidemiological modeling is that of Oldstone (Oldstone, 1998).0ldstone described the various

aspects of diseases from the triumphs of medicine to socioeconomic.

Modeling has been helpful in giving estimates for the level of vaccination for the control of

transmitted infectious diseases.

(Anderson and May, 1982, 1985, 1991) discussed and estimated with the model the effects of

different vaccination programmes.
2.9.1 COMPARTMENTAL MODELS IN EPIDEMIOLOGY

A compartmental model is one for which the individuals in a population are classified into

compartments depending on the disease status with regard to the infection under study. Thus the

-

individual may-be classified as-susceptible (S), infected (I, and removed (R) based on their

status of the disease under consideration. For example, an SIR model describes a disease history
i

of susceptible individual becoming infectious through interactions with an infected individual,

and infectious individual moving into the removal class by either immunity or death. A
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compartmental model for infection transmission with an exposed (or latent) compartment
(explicitly containing those infected but not yet infectious) and lasting immunity would be called
an SEIR model, and situations where susceptibility can return after infection (or after immunity)

would be called an SIS (or an S/RS) model ( Busenberg and Cooke,1993).
An example of an SEIR model is

ds SI
d—t*=#N-ﬂCg'u5

dg_ __SI
dl
sees =+l

An equation for R in this model is not important since N = S+ E +1+R is constant. The
model is an extension of the SIR model, not only because of the introduction of the exposed
class, but also because of the host birth and deaths are included. Compartmental models have
provided valuable insights into the epidemiology of many infectious diseases. Extensions to the
models that have been presented here include an additional death rate due to the infection, re-
entering the S after recovery or due to loss of immunity, a birth rate directly into the infective
class and reduced fertility of infected individuals. Also, the ways in which births are modeled or
transmission is described may influence the dynamic behavior of the model systems (Daley and
Gani. 1999). The important assumption that can be made is homogenous mixing within
—= e
compartments. If this does not apply heterogeneity must be an explicit feature of the model

structufe, The important quantity that must be determined is the basic reproduction number (R ),

as this provides the key to transmission dynamics, the ease by which major epidemics may be
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prevented and prospects for the eradication of an infection. The concept of the critical
community size may apply to the susceptible community in a population where the infection
timescale is much faster than the demographic timescale. Here the infection (such as measles)
may leave a small susceptible population following an epidemic, but births into the population

increase the susceptible pool and effectively increase Ru until another epidemic is triggered. In

addition, temporal heterogeneity may manifest as seasonal forcing in transmission, and
precipitate infection cycles. In the literature of (Anderson and May, 1991), a more disease —
specific details such as, the latent period, the vaccinated population, chronic and acute stages of

infection were included in their model.

The refinement of compartmental models to include hetﬁrugeneity of the population into the
model has been of great help. This is done by distinguishing between population subgroups with

different behaviors.

Hethcote and Yorke (Heathcoat and Yorke, 1994), introduced heterogeneity in behavior into
their model in their research on the spread of sexually transmitted diseases. Several
compartmental models were proposed during HIV/AIDS pandemic, which described population
heterogeneity in sexual activity levels, (Koopman, 1998).These models were used to assess the

effects of intervention on the spread of HIV/AIDS, and sexually transmitted disease on a whole.

Diekmann (Diekmann, 1990) developed the theory of finding and computing the reproduction

number in heterogeneous populations.
= mae? e ’.-"_________._-—-—

Age structure is a type of compartmental model with several compartments of individuals
A e

ranging from one compartment to another, according to aging rate.
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2.9.2 MODELS FOR VECTOR-BORN INFECTIONS

(Ronald Ross, 1911), introduced the idea of mass action in continuous time in his study of the
transmission of malaria. Ross' work qualifies him as the founding father of modern epidemic
theory. It was partly under his influence that Anderson McKendrick started his own studies into
the mathematical modeling of epidemic phenomena, at first also in the context of malaria and
other tropical infections. The works of Kermack and McKendrick are regarded as the foundation
upon which much of modern theory rests (Anderson and May, 1991).

One of the distinguishing characteristics of malaria is that the protozoan parasite is indirectly
transmitted between humans by mosquitoes. Several important human infections depend on
similar vectors for their transmission. For modeling this introduces a new problem, the need to

include the population dynamics of the vector
2.9.2.1 MODELING MALARIA
A simple model that captures the essential elements of malaria epidemiology is

dp M
b uvﬁq(l —-p)—VP

dq
o utp(l1—q) —uq

Where p and g are the functions of infected humans and mosquitoes respectively; M/N is the
number of (female) r_I;usquitnes per human host in an infected free steady state; u is the per
capita biting ratr;f mosquitoes—of humans; v is the probability that a bite by an infectious
muswgnsmits the parasite; t is the probability that a bite of an infected human by a

susceptible mosquito results in transmission of the parasite to the mosquito; y is the rate at which
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humans recover from infection; and p is the per capita death rate of mosquitoes. The basic

reproduction number for this model is

5 M u?vt
°" N ynu

This can be define as the expected time for which a typical infected human remains
infectious(1/y), multiplied by the expected number of mosquitoes to which the parasite will be
transmitted (ut), multiplied by the expected life-span of a mosquito (1/p), multiplied by the
number of mosquitoes per host (M /N), multiplied by the expected number of humans to which a
mosquito will transmit the parasite (uv). Campaigns for Eradication have been aimed at
controlling the mosquito population strongly enough to achieve Ry < 1, that is because the

threshold valve R, = 1 defines a threshold for M /N, the ratio of mosquitoes to humans.

2.9.3 MODELS FOR PARASITE POPULATIONS

The tropical helminth infections served as the framework of epidemic theory. Early work by
Kostitzin in 1934 was followed thirty years later by Macdonald's study of schistosomiasis and a
flourishing of activity in the seventies and eighties(Scott and Smith,1994).

A major difference between microparasite and macroparasite is that the former reproduce rapidly
within the host, whereas the latter reproduce by releasing offspring into the environment, some
of which eventually complete a life-cycle, becoming infective stages, and infect a new host.
Hence, for infections c_aused by parasitic helminths the compartmental models that classify a host
as susceptible, iﬂﬁe;;;ﬂij'ﬁ,_ etc. are-mappropriate, and a model that allows multiple infections in a
single host is required. Again, the notion that the population of susceptible diminishes during the

adie 39

course of an epidemic does not necessarily hold, differential equation models no longer have a

negative feedback mechanism that is automatically incorporated, and careful attention must be

22




paid to the mechanisms that regulate the parasite population. Early models for parasites of wild
animals included increased mortality of the host due to parasite infection; therefore heavily
parasitized hosts had a shorter life expectancy, and upon dying removed large numbers of
parasites from the system. For many helminth infections of humans this would not be the case,
and cognizance must be taken of regulatory mechanisms such as acquired immunity (Diekmann
and Heesterbeek, 2000).

In situations where an individual's immunity to infection increases with frequent reinfection, it is
not always clear how this should be modeled mathematically. Currently the word immuno-
epidemiology is used to signify an area of modeling that attempts to link immunological
processes within individual hosts with epidemiological processes of transmission between hosts.
Given the implications that this interaction between immunity and epidemiology (and
increasingly with evolution) has for control strategies this area is likely to see much activity by

epidemic modelers in the near future (Grenfell and Dobson, 1995).

2.9.3.1 THE POPULATION DYNAMICS OF MACROPARASITES

A simple model for the dynamies of a population of parasitic helminthes in a host population of

constant size is given by

dp
T p(@(P) —1)P

Where P is the mean number of parasites per host,u is the rate of loss of parasites from the

=

system and Q(P)is the ratio nfﬁMsmissim rate to loss rate. This model is applicable in
a situation where host immunity is a fraction of current mean parasite burden. The number Q (0)

is the basic reproduction number for the parasite population. It may be defined as the expected
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number of offspring of a typical parasite that reaches reproductive maturity, in a completely
susceptible host population. Hence, whereas for microparasites the reproduction number is
defined in terms of secondary infections of hosts, for macroparasites it is defined in terms of the

parasite population dynamics (Grenfell and Dobson, 1995).

294 MODEL WITH STRUCTURE

The infection that sparked off a tremendous increase in epidemic modeling activity in the 1980s
was HIV.This has helped brought more realistic models of different infections of humans and
animals for the past ten years. The progress of the whole area of epidemic modeling is no longer
attached to specific classes of infections as it was in the early days. There has been much
progress, not only on the applied front but also mathematical advances necessary to cope with
the more complex models that aim to take relevant heterogeneity in the population into account.
The transmission of childhood infections depends upon the age-structure of the population, with
greater contact between those in the same classroom. Models of sexually transmitted infections
call for the incorporation of much structure, including age-structure and groups with differences
in infectivity or susceptibility (Mollison, 1996). The contact structure of these models must take
account of discrete characteristics such as sex, sexual preferences and sexual activity. Two
complications are particularly important: varying infectivity as a function of time elapsed since
infection and the implications of long lasting partnerships. The first complication is relevant to
almost all infections; the second is related to sexual transmission. One of the key notions to come
out of HIV mndcl_i,né ;s that of a core-greupof infected. This is a small group that is very active
in making contacts and can keep the epidemic going in a much larger group where the internal

isas O
contacts alone cannot sustain it (Isham and Medley, 1996).
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2.9.4.1 ADDING MORE CLASSES

Consider an SIR model for the transmission of an infection within a population that may be
divided inton classes, for which the contact rate within classes may be different to those
between classes. The classes may be based on, for example, sex or sexual orientation, school
attended or college year. Neglecting mortality within the population at risk, the model equations

for the densities of the susceptible (S;) and infectious (/;) populations are

-&? = Af s (H.; + ﬁ . C“Ij)Sl
dl; n
=65, Cyli= G+l

Fori =1..n. A; and y; are the recruitment rates into class i, and the rates at which individuals

leave i respectively.

29.5 MATHEMATICAL MODELING OF HIV

Mathematical models have served as an aid to understanding the transmission dynamics of
immunodeficiency syndrome (AIDS).Ever since the discovery of HIV as the primary virus
associated with AIDS, several mathematical models have been constructed both deterministic
and stochastic, to determine the rate of HIV progression to AIDS, optimal drug regimes, and the

effect of the intracellular latency period on progression to disease (Murray, 2003).

-

Deterministic models assume | population size such that stochastic effects can be neglected.
These models are applicable to the later stages of the process when the population is large
C_model

(Shonkwiler and Herod, 2009).A list of work that has been done in this area are (Mclean and

Nowak, 1992), (Frost and Mclean, 1994), (Kirschner and Webb, 1997), (Wein, 1998).
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Stochastic models account for the early events in the disease when there are few infected cells

and a small number of viruses (Murray, 2003). (Nowak, 1996), used stochastic model to look for

the effects of variability among viral strains.

The best mathematical model of HIV so far has been the work of (Ho,1995).Ho ,used differential
equations ,‘ogether with some patient data, and proposed a treatment strategy for the public
health.However,this treatment strategy is no more in used, because of its failure in controlling

and eradicating the disease, and its effects on many antiretroviral drugs.

HIV/AIDS modeling has been a controversial area since the complete understanding of the

disease mechanism and its interaction with the immune system is lacking.
2.9.6 USE OF MODELING FOR PUBLIC HEALTH

Mathematical models have served as an aid to assess the effectiveness of vaccination strategies,

to determine the best vaccination ages and target group and to estimate strategies in which

infection can be eliminated from a population (Fergusion, 2003).

Mathematical modeling has also been of great help to the public health in planning response
strategies to an epidemic outbreak such as the case of pandemic strain of influenza (Ferguson,

2006).Modeling also help in intervention measures of epidemic outbreak (Kretzschmar,2001).

However, it must be stated that the application of mathematical model to public health situation,

requires an intensive focusing on a relevant data source, clinical and microbiological knowledge

i STy | .
to make a decision about how to design an appropriate model.

e
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CHAPTER 3

METHODOLOGY

3.1 Introduction

In this chapter, we will review the dynamics of ordinary differential equations and apply it to the
deterministic SIR Epidemic model. Stochastic model will then be introduced immediately the
deterministic is understood. Then we will illustrate some of the differences in the stochastic and
the deterministic model formulation. We will also discuss the meaning and importance of the
Basic Reproduction Number in respect to modeling of infectious disease and use it to investigate

the qualitative dynamics of the deterministic model with solution paths and phase portraits.

Also, since our model is a two dimensional system, most of our discursion would be limited to

two dimensional systems,
3.2 Ordinary Differential Equations

An equation of the form

By ;
2 = f(t.y) 3.0

: s i 9
Where f:R? — R is a function of two or more variables and that the expression E‘E represents

the derivative of y with respect to t is called ordinary differential equation (ODE). Any function

-

y = u(t) that safisfies u'ﬂ(t) = f»('tm said to be the solution of the differential equation
(3.1).The order of a differential equation is the order of the highest ordered derivative in the

equation; thus equation (3.1) is a first order differential equation. Differential equations can also

be of a higher order derivative such as
27
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y" =f(t,y,y',y", s oy 1)y (3.2)

The equation (3.11) is n*® order differential equation. The vector generalization of (3.1) where

Y= (Y1 Yz e e v e Yn)' € R™and f:R X R™ - R™ is given by
}'1] = fl(t,yl,}"z, ......... }"n)-l

(3.3)
ynl e fn(t.yl,}'z, sis e ...yn J

The system (3.2) is a first order system of differential equations and such equations are useful in

the study of dynamical systems.
3.3 Eigenvalue

Let A = [a;] be an n X n matrix. Consider the equation Ax = Ax , where 4 is a scaler (a real or
complex number) to be determined and x is a vector to be determined. Now for every 4 a
solution is x = 0. A scaler A such that (Ax = Ax) holds for some vector x # 0 is called an

eigenvalue of A, and this vector is called an eigenvector of A corresponding to this eigenvalue A.

Thus Ax = Ax
(Ax—ADx =0
These are n linear algebraic equations in the n unknowns X; ..........X, (the components

of x).For these equations to have a solutionx # 0, the determinant of the co-efficient matrix

=it ..»-*""-‘-__-_-_-_
A — Al must be zero.
—
Let A—(a“ a”) 1=(; :
“\az;  ap 0 1
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Then (A—ADx =0

11 Gy 1 0
g (ﬂzl az,) ~ A (U 1) (;:) - (g)
a;,—A  ag o
( az4 Az — ﬂ) (;:) A (u)
|
= (all e A.)Il + A13X2-9 '

a1xy + (ﬂ.zz - ,-l)xz =0

Now A — Al is singular if and only if its determinant det(A — Al), called the characteristics

determinant of A is zero.

a;; — A a2
azq A22-2

det(A — Al) =
= (a;, —A)(az; —A) — aj2a3,

2?2 = (ay; + azp)A + ay1a3; — @420,1 = 0, which is the characteristic equation of A.

Hence the characteristic equation is A* — (trace A)A + detA = 0. The solution of the

characteristic equation are the eigenvalues 4, and 4; of A.

Eigenvalues determine the nature of the solution. If both eigenvalues A; and A4, < O,¢then the

solution is stable, otherwise the solution is unstable.
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Example 1.1
Given the system ' = -4y, + 4y,

¥;' = =16y, — 3y,

Since y' = Ay = (-1‘.1.6 ;2) y, then= (—-1?6 1?2) :

Therefore the characteristics equation A* — (trace A)A + det A =0 is given by
A= (-28)1+16=0.

Hence the eigenvalues of A are A, = —0.8Band 4, = -2.

3.4  Stability of Eigenvalues

Consider a two-dimensional system:
x=p(xy),

y=q(xy),

and suppose (X, ¥) is a steady state, then p(x,¥) =0 and q(x,7) = 0. To determine whether

the steady state is stable or unstable, a small perturbation from the steady state is considered by

letting

Where f and g are considered to be small enough. To determine whether f and g move towards

the steady state or away from the steady state, we let
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f = %, since ¥ is a constant. But x = p(x,y), hence
f =p(x,y), substituting x and y gives
f=p(x+f.y+g)

By Taylor expansion,
=p(x,7) + = ENf + L&)
] dx ¥ d}l’ ,}' g R e R e

Since (x,y) = 0, it implies

_dp (g ey 485 s
F=22GENf+5 &g
Similarly

- A L m—
§=LEINf +7 &g

Since f and g are assumed to be small, higher terms of f?, g%, fg can be neglected. Hence the

linearized system of the equation of the perturbations f and g is

dp ,— dp ;-
(f) =(%y) . (%7 (f)
da = 5y 4905 5 |\g
L&) &)
This matrix is called the Jacobian matrix of the original system at the steady state (%, y). The
linear system for f and g has a trivial steady state (f,g) = (0,0). The Jacobian matrix needs to
e = ’—’,_.-———-_-_.d_ o .
be calculated once for each nonlinear system. For each critical point of the system, we can

computetie coefficient matrix of the linearized system about a given critical point and then use

its eigenvalues to determine the stability of the original nonlinear system.
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Example 1.2

Consider the system
X=—-4y +2xy —8
y = 4y? — x2

The critical points are (—2, —1) and (4,2).The Jacobian matrix is

_[Zy —4+2x
J=—2x 8y ]

At (—2,—1), the linearized system has a coefficient matrix

=7 =8
2 A

a=|
The characteristic equation 12 — (traceA)A + detA = 0 is given by
A* +101+48 =0

Eigenvalues are 1; = —5 + 4.7958 and A, = —5 — 4.7958

At (4,2), the linearized system has a coefficient matrix

i [—43 145]

The characteristic equation 1* — (traceA)A + detA =0 is given by

— [ ey
A2 —20A+4+96=0
——

Eigenvalues are .; = 12 and 4, = 8
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3.5 The Phase Plane (Phase Portrait)

Consider a system of linear differential equation y' = A4y. Its phase portrait is a representative set
of its solutions, plotted as a parametric curves (where t is the parameter) on the Cartesian plane
tracing the path of each particular solution (x,y) = (x,(t), x,(t)), — < t < o, Phase portrait
is a graphical representation of the nature of the solution of a given system of differential
equation. The Cartesian plane where the phase portrait resides is called the phase plane. The
parametric curves traced by the solutions are called trajectories:(see [10] for more on Phase

portrait).
3.6 The critical point

An equilibrium solution of the system y' = Ay is the point (¥1,¥2) where y' = 0, that is, where
= () = yz'. An equilibrium solution is a constant solution of the system, and is usually called
a critical point. For a linear system y' = Ay, an equilibrium solution occurs at each solution of
the system (of homogenous equation) Ay = 0. The system has exactly one solution, located at
the origin, if det(4) = 0. If det(A) = 0, then the system has many infinite solutions. (See [10]

for more on critical point).
3.6.1 Types of Critical Point

There are five types of critical points depending on the geometric shape of the trajectories near

them. These are o

S = "_.__,.-"-'_‘__'_'_._

e Improper nodes
——
* Proper nodes

¢ Saddle Points
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e Centers

e Spiral Points
3.6.2 Improper Nodes

An improper node is a critical point p, at which all the trajectories, except for two of them, have
the same limiting direction of the tangent. The two exceptional trajectories also have a limiting
direction of the tangent at p, which, however, is different. Improper nodes are asymptotically

stable if both eigenvalues are negative. It is unstable if the eigenvalues are positive.
Example 1.3

Consider the system x' = —3x+y
y' =x =3y

Since y' = Ay = (_13 _13)}', then A = (_f _13)

The characteristic equation A% — (traceA)A + detA = 0 is given by
A2 +61+8=0
The eigenvalues are A; = —2 and A; = —4

Improper node occurs when there are repeated real eigenvalues, and one linearly independent

eigenvector. The phase portrait of an improper node looks like that of a node. The trajectories of

— ,,-"""-__-_-_-_— s - ‘ : i
an improper node all diverge away from the critical point to an infinite distant when 4 > 0.

-
When A < 0, the trajectories all converge to the critical point. It is asymptotically stable if 1 < 0,

and unstable if A > 0.

LTﬂRHRY
gWAME N HUMAR phIvERSITE L1/
il‘.‘lEHBE yxn TECRROLONE
xumaaﬂ-sanus
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Figure 3.1. Phase Portraits of an Improper node generated using dfield8 and pplane8 from

R —
Matlab with the x — axis, =2 < x < 4 and the y — axis, —4<y<2andthe x' = -3x+y

&ﬂd}"|=x—3y
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3.6.3 Proper Node

A proper node is a critical point py at which every trajectory has a definite limiting direction and

for any given direction d at p, there is a trajectory having d as its limiting direction.

Example 1.4

Consider the system x! = x

y =y

Since y' = Ay = ([1} ?) y, then 4 = (3 {1})

The characteristic equation A* — (traceA)A + detA = 0 is given by
A2-21+1=0
The eigenvalues are A; = 1,4, = 1, which are repeated root.

Proper nodes normally happen as a result of a repeated real eigenvalues.The phase portrait has a
distinct star-burst shape. The trajectories move away from the critical point to an infinite distant

when A > 0, and move towards, and converge to the critical point A < 0. It is asymptotically

stable if A < 0, and unstable if A > 0.
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Figure 3.2. Phase Portraits of a Proper node generated using dfield8 and pplane8 from Matlab

withﬂE:_axis,—zc_:xsrl-andthe y-—uxis,-4£y£2&ndthex'=x andy' =y
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3.6.4 Saddle Point

A saddle point is a critical point p, at which there are two incoming trajectories, two outgoing

trajectories, and all the other trajectories in a neighborhood of Po by pass py.

Example 1.5

Consider the system x' = x

y'=—y

Buty’ = Ay = ([1] __{_Jl)y,then A= ([1] —ﬂl)

The characteristic equation 1> — (traceA)A + det A = 0 is given by
2-1=0

The eigenvalues are A; = 1 and 4, = -1

A saddle point has two distinct real eigenvalues which are opposite in signs. Its phase portrait
has the trajectories of the eigenvector of the negative eigenvalue, starting at infinite distant away,

and gradually moves towards the critical point.

The trajectories of the eigenvector of the positive eigenvalue also start at the critical point, and
gradually move away from the point. All other trajectory starts a distant from the critical point,

and moves toward the critical point, but never converges, since its direction is diverted.

. '__,,..---"'-_d_'_
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Figure 3.3. Phase Portraits of a Saddle Point generated using dfield8 and pplane8 from Matlab

with thex="axis, -2 < x < 4and the y — axis, -4 <y < 2andthex' = x and y' = —y
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3.6.5 Center

A center is a critical point that is enclosed by infinitely many closed trajectories.
Example 1.6

Consider the system x' = 3y

y =—x

jotr=( Domocen= (5, 3
The characteristics equation 1> — (traceA)A + detA = 0 is given by
Z+3=0

Hence 4, = iv3and 4, = —iv/3

The phase portrait of a center has a complex eigenvalues, with real part zero. The trajectories

neither converge to the critical point nor move to infinite distant away. They rather stay in a

constant circular shape, and is always stable.

40
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K'=3y
yz-x

Figure 3 4. Phase Em:ataits'bf a Centergenerated using dfield8 and pplane8 from Matlab with the

X — axis, —2 < x < 4and the y — axis, -4 <y <2andthex' =3y andy' = —x
e
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3.6.6 Spiral Point

A spiral point is a critical point p, about which the trajectories spiral, approaching pyas t = o

(or tracing these spirals in the opposite sense away from Po).

Example 1.7

Consider the system x' = —x+y

y'=-x-y

Buty' = Ay = (:i _11) y, then 4 = (:1 _11)

The characteristics equation A* — (traceA)1 + detA = 0 is given by
F+21+2=0
Eigenvaluesare A, = —1+iand 1, = -1 —i

A spiral point has a complex and a real part of its eigenvalues. The phase portrait shows a
trajectories that spiral away from the critical point to infinite distant away when A > 0, and the
trajectories that spiral toward, and converge to the critical point where 4 < 0. It is stable if the

eigenvalues have positive real part, and asymptotically stable if the eigenvalues have negative

real part.
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Figure 3.5. Phase Puﬁits-nf a Spiral Point generated using dfield8 and pplane8 from Matlab

with the x — axis, —2 < x <4 and the y—axis, —4 £y < 2 and the x'==x+y and
| e

Y=-x- y
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3.7  Criteria for Critical points stability

Consider a homogenous linear system with constant coefficients in components form

¥ =ayuy + A12Y2

Y2 = a;y; + Az2Y>

Q11 Q2 . :
Theny' = Ay =y' = (ﬂzx ﬂzz) y -The solution of this is of the form
y(t) = xe?t

Substituting into ¥' = Ay, gives y' = Axe’t,

Hence y'(t) = Axe?t = Ay = Axe?t
=  Axe’" = Axe’*, dividing both sides by e?* gives
Ax = Ax

Since the general form of the phase portrait is determined to a large extent by the type of critical

point of the system

e L
Y1 = Q1)1 +a12)2

Y2 = @191 + G22Y2

At the point where :?nrbecumes U_ggi;tﬂminﬂd, thus 0 /ﬂ.
: 1
__._____.-—'-:: ﬂ,}"z = }"zldt - 31 ¥4 +az2Y¥:z

dy, . y,'dt i ay1y1+as12Y2
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Since critical points are related to the eigenvalues, then the characteristic equation for 4 = 4, and

le are

o ﬂ'll = A a
det(4 — Al) = b ﬂgzli al = A% — (ay; + ay,)A + detA = 0.

This gives auadratic equation A* — ud + v = 0 with coefficients u, v and discriminant A given

by

u = (a;; + a;;) —»Trace of A
v=detd = a,,a;; — a,,a,,
A= u? — 4p
The solution of the characteristic equation is given by
Ay == (u+VB) and A, = > (u —VB)
The product representation of the equation is given by
A—ul+v=22- +1,)A+ 44,

Hence u and v are the sum and product of the eigenvalues. (see [10] for more on critical point

stability).

Uu=xA+4 v = A, A= (A, — A2)?
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F .- AI'IFAI v= -‘1‘-] A= (AI - 11)!_ Cmmll.llz
Trace of A Det of A
[Node v>0 A2 0 Real, same sign
"Saddle Point v<0 Real, opposite sign
Center u=0 v>0 Pure imaginary
-ml'nint u#0 A< 0 Complex,immaginary
38  Stability

Critical points may also be classified in terms of their stability. Stability means, that a small
Mnce of a system changes the behavior of the system only slightly at all future times t.

consider the system
' =auy + a5y,

Y2 = auy +any;

&ﬂ'ﬁﬂl point p, of the sysl:lee if all trajectories of the system that are close to
&

close to p, at all future times(See [10], for more on stability).

e
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Table 3.2 Stability criteria for Critical point

 Types of Stability u = A; + A,(Trace) det v = 1,1,
Stable & attractive u<o v >0
Stable u<o v>0
Unstable u>0 v <0

o If v=A;4; >0, both eigenvalues are positive or both are negative or complex

conjugates.

o Ifu=21; +A; <0, both eigenvalues are negative or have a negative real part. Hence p,
is stable and attractive.

e IfA< 0, the eigenvalus are complex conjugates, thus A; = b + if and 4, = b — if,and if

u = A; + A, < 0,this gives a spiral point that is stable and attractive
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1.9 The Deterministic Model

These are mathematical models which are without randomness or noise. They are usually

represented in the form of a set of ordinary differential equations (ODE). They are normally

robustics and with one set of initial values, the system will generate only one solution.

3.10 The Basic Reproduction Number

The Basic Reproduction Number or Ratio is one of the most useful threshold parameters which
characterize mathematical problems concerning infectious diseases. It is often use in

epidemiological models.

The basic reproduction number (R,) is defined as the expected number of new infections from a
single infected individual placed into a population of fully suseeptible individuals .Thus R, tells

us about the initial spread of the disease.

If R, < 1, then a single infected individual introduced into the population will die, without being
not able to replace themselves by new infection. Conversely, if R, > 1, there will be an

epidemic.

For the case of a single infected compartment, R, is simply the product of the infection rate and
the mean duration of the infection. However, for more complicated models with several infected
compartments, this parameter is established by investigating the stability of disease free
equilibrium. The P;a_r;a'_rfﬁel;er pmvich:s’sign.iﬂsant insight into the transmission dynamics of a

disease and can guide strategies to control its spread.
—
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3.11 Deterministic SIR Epidemic Model

Consider a simple SIR model for HIV in a mixing homogeneous population which can be

grouped into three distinct compartments of Susceptible (S), infective (I), and Removed (R).

The model does not consider demographic turnovers (birth and death),

assumed to end with recovery. The total size of the population is constant and is denoted by

N = 5(t) +1(t) + R(t), where S, 1, R > 0, because they represent the numbers of people.

Further we assume that;

e Encounters between infective and susceptible individuals occur at a rate proportional to
their respective numbers in the population. Thus the rate of new infection is defined as
BSI, where B > 0 is a parameter for infectivity

¢ The rate of removal of infective to the removed class is proportional to the number of
infectives, thus yI where y > 0 is a constant

e The incubation period is short enough to be negligible; that is a susceptible who contracts

the disease is infective right away.

Hence

. s \

and all infections are

Figure 3.6 . A Schematic ﬁf system (3.1), Bc;xes represent compartments, and arrows indicate

flux between the compartments.S is the susceptible,/ is the infectives and R is the removeds,f is

the infection rate,y is the removal rate.
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The differential equations describing this model are:

SI
§=" = S(0) =5, =0,
A o S -
4 gy 10) = Iy > 0,
§=]"I R(0) =R, 2 0,

From N = S+ 1 + R , dividing through by N gives

5.1 . R
1—E+E+F
Let

s > .
s = = be the susceptible fraction

i =i be the infective fraction

R -
s be the removal fraction
Also let

Sp = %"- be the initial susceptible fraction
ig = !—:} be the initial infective fraction

R T e -
p = Fﬂ be the initial removal fraction

—#_#-._

Since the total population N is constant, dividing system (3.5) by N gives
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d S S I

EM‘HNN '
L R

;.;[;;]"ﬁn v V'r (3.6)

b0
prd 17 AR

Substituting the fractional variables s, i, into (3.6) gives

kG

.}i: —PBsi s(0) =520

di . : : :

== Bsi —yi i(0)=i=20 (3.7)
dr y

—=yi r(0) =r,=0

Since r affects neither s nor i, we neglect r.Hence the system reduces to two-dimensional

equations,

t%:_ﬁﬂ s(0) =520 (1)

di e : ;

o= Osi — yi i(0) =ip=0 () (3.8)

Dividing equation (2) of (3.8) by (1), we obtain

g Bsi—yl | (3.9)
ds  -Bsi’ g
e - f___‘-«-"'“_'—_._._._
Simplifying (3.9) gives the equivalent equation
—
di y
Fria =1+ -B_S ,
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But the reproduction number by definition is given by

=™

L. ai 1
Hence - 23w (3.10)
Separating (3.7) and solving with initial conditions gives

Sp

s - s _ 1., %
i(t) = 5(t)+:.}+lnl Inl (3.11)

1.4 . - r T
Susceptible
12} Infective i
Removed

08}
06

0.4

0.2 . oS —

0 5 10 15 20 25
B time in days t
Figure (3.7): Phase portrait of Solution of the SIR epidemic model, R, =3 with initial
i

conditions (s iy) = (0.99,0.01)
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312 The Endemic SIR Model

Here we add the demographic turnovers (birth and death) and assume that the birth rate equal

death rate so that the total size of the population will still remain constant

Hence

Figure (3.8). A Schematic of system (3 .13), where s is the susceptible,/ is the infectives and R is

the removeds.p and y have the same meaning as in the epidemic SIR model.

The differential equations for the system are;

ds 51 -
E=Fﬁ_ﬂs_ﬁﬁ S(0)=5,20
dl
E'ﬂ%"iﬂ‘?*’ 10)=1,=20 (3.13)
==yl - uR R(0) =R, =0

' A f________._

Where N = S(¢t) + I(t) + R(2)

e

53

- -



A similar derivation as in section (3.13) gives the equivalent system of equations

Ef=ll"|-’-5"ﬁﬂ s(0) =520

di : - - j

== psi—(u+y)i i(0)=i,>0 (3.14)
%:yi-—m‘ r(0)=7r20

Once again r does not affect s and i,Hence we neglect r and the reduced system becomes

%‘:-=pﬂ-p$—ﬁ5i 5(0)=5n:30
di g : :
_=ﬁg[ —Cu-|- ].f)i i(0) = ip=0 (3.15)

dt
With r(t) = 1—s(t) — i(1).

The reproduction number for this model is

R.n= ﬁ
Yy +u

IfRg > 1andy > 0, then lim,. I(t) = [, > 0.

If R > 1and y = 0, then lim,_,. I(t) = 0.

There is an epidemic if R, -# > 1.

If4y < Lthen lim, s 1(t) =0 —
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Phase portrait of Solution of the SIR epidemic model, R, =3 with initial
(So,i0) = (0.99,0.01)

uilibrium Points

Stability of the model is found by evaluating the equilibrissti poiis P the reduced systems of
quations of (3.15).

its are disease-free, where i = 0 and endemic, where [ = 0.
:¢ -

hMmhﬁmm(S.lz)hwnmuﬂhmi
d simultaneously for s and i.
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Thus
0=p—ps—psi (3.16)
0 = Bsi — (u + )i (3.17)
From (3.14) 0= i(Bs — (u+7)),

Hence either i = 0

or

Bs—(nt+y)=0.

5=

But A =R, =-~- |

u+y’

substituting gives s = % :

Therefore equation (3.14) has solution i = 0,5 == -

S

Putting into equation (3.16) produces the equilibrium points (s,i) = (1,0) and

60= [ )]

B v
e = H_’__,..-—-—-_'-‘_'_ g . ] '
Clearly, the equilibrium point (s, i) = (1,0) is the disease-free equilibrium since i = 0, and the
——— s e 3 : : I-lf,i_l]
. point (s,i) = G, ”(’L 1:') is endemic equilibrium since L = ;



L ' s

314 Disease-free Equilibrium

o : L |
The stability of the system at disease-free equilibrium is found by evaluating the jacobian of the i

system (3.12) at the equilibrium point (s, i) = (1,0).
”
V(s,i) = p— ps — Bsi

U(s,i) = Bsi— (y + i

Hence the Jacobian of V and U is given by

dv

dv

j=|® @ =[-u-ﬁ'i —ps
du du Bi  Bs—(r+w
ds di

Therefore

-B

Jeo=ja0 =+ ,_ 7,

Therefore by applying the characteristic equation formula for the (2 X 2) matrix

A% — (traceA)A + detA = 0

Since the Jacobian matrix is diagonal, it is clear that the eigenvalues are

A=-pandd; =B — (v + 1)

-

i = —ew N ) . .
In order for the equilibrium point to be asymptotically stable, both eigenvalues must be negative.

It is clear-that 2, = —p is negative and that if 4, = B — (y + u) < 0 then both eigenvalues are
negative and the equilibrium point is asymptotically stable.
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This means a small population of infectives introduced into the system would not cause a

persistent infection and that the population would return to disease-free state after some time

On the other hand, if 8 — (y + ) > 0, then the equilibrium point is unstable and an introduction

of infectives will result in a persistent infection. Hence there will be endemicity.

3,15 Endemic Equilibrium

For the equilibrium point (s, i) = {i ; "{ﬁ;l}) the jacobian is given by
i — 1 - =i
J(s,i) = (I'%) = pa A ]
pA=1) 0

Then the characteristic equation is given by:

Since the trace is less than zero and the determinant, @ > (,it satisfies that the endemic

equilibrium is asymptotically stable (thus A > 1 makes it stable).If A < I, it becomes unstable.

L SS———m



3.16 The Stochastic Model

These are mathematical models which have stochastic effect, and hence involve randomness.
They can be formulated in terms of a stochastic process or stochastic differential equations
(SDEs) or in terms of stochastic ordinary differential equations (SODEs). For stochastic model,

with one set of initial values, the system may generate different solutions
3.17 Stochastic Process

A collection of random variables {X(t)|t > 0} is called a stochastic process. Example of

stochastic process is wiener process.
3.18 The Wiener Process w(t)

A real-valued stochastic process w(t) is called a Brownian motion or wiener process if it

satisfies the following properties.

e w(t)is continuous and w(0) = 0(with probability 1)

o For 0 <s <t<T the random variable given by the increment w(t) — w(s) is normally
distributed with mean zero  and variance t — s;equivalently,w(t) —
w(s)~v't — sN(0,1),where N(0,1)
denotes a normally distributed random variable with zero mean and unit variance.

e For 0<s<t<u<v<T the increments w(t)— w(s) and w(v) —w(u) are

independent —



Y :

319 Applications of Stochastic Differential Equation

Stochastic differential equation (SDE) models have a wide range of application in areas of

Finance, Biology, Chemistry, Epidemiology, Mechanics, Microelectronics, and Economics.

320 General Stochastic Differential Equation

Consider an ordinary differential equation of the form
20 = f(tx(®) X0 = x, | (3.19)

Suppose we add randomness to the system, then the general stochastic differential equation of

(3.19) is of the form

%L £, x(D) + g(t, x(t)) 22 (3.20)

Tdt
Where f: < 0,T >x R = R is the drift coefficient and
8:<0,T >%x R = R is the diffusion coefficient.
Multiplying equation (3.20) by dt gives
dx(t) = f(t,x(t))dt + g(t, x(t))dw(t), X(0) = x; (3.21)
as the general SDE with initial condition x(0) = x;.

If x(¢t) solves equation (3.21), then integrating and substituting the initial condition gives

-
-

L iR s
XO = X©) + [ £(s.X(s)ds + [ 9(s.X)aw(s)
= 0

0




321 Stochastic SIR Epidemic Model

Now that the deterministic model is understood, a stochastic version of the SIR model is

obtained by random perturbation of the deterministic model with white noise. We Replace the
| : dp dg . : &
contact rate jp in the system (3.13) by B + p—=, where = is a white noise (i.e. B(t) is a Brownian

motion. See[8], [16], [17], [18]). Hence

e N LS ag\s 1

E[Et' =Rky T By (ﬁ+pd£ N'N

1[dr] _ GENSA dEOe sl - L

F[E]_(ﬁ-l'pdr)m'w Hy = Y% (3.22)
.1.[;‘5 gL R

vlael Vv MY

Substituting the fractional variables s, i, r into (3.22) gives

di T
E=(B+pﬂ—f)s.z—m—y: (3.23)
S i —

ae W

Multiplying system (3.23) by dt and re-arranging gives the stochastic version of the system

| (3.13) as

ds = [~ ps — Bsildt~ psidp
e e ‘,_.’-"'"-____'_._.—
(3.24)

di = [Bsi — pi — yi]dt + psidf

e

dr = [yi — pr]dt



322 The Ito-Formula

The Ito-formula is used to solve stochastic differential equations which are difficult to be

integrated by the normal integration. Let the Stochastic process x(t) be a solution of the

stochastic differential equation

dx(t) = f(t,x(t))dt + g(t, x(t))dw(t) , for some suitable functionsf, g.
Letalso h(t, x): (0, ) X R — R be a twice continuously differentiable function. Then
¥(t) = h(t,x(t)), is a stochastic process for which

1 d’h

ar(e) = 5 (6, x(@®)de + 32 (6,x(0)dx(0) + 5+ 55 (6.x(0) (@x(0))? (3.25)

Where

(dx(t))’ = (dx(t)). (dx(t)) is computed according to the rules

dt.dt = dt.dw(t) = dw(t).dt =0, dw(t).dw(t) = dt

Equation (3.25) is called Ito’s formula. (See [2] ,[18].for more on Ito Formula).

323 Solving the Stochastic SIR Epidemic Model

- Now that the deterministic model is understood, consider the stochastic SIR model of system

(3.24). Again the R term is ignored, since it has no effect on the dynamics of § and /. Hence the

equivalent system is _—
ds = [ — s — Bsi]dt — psidp
e ———

di = [Bsi — pi — yildt + psidp (3-20)




324 The Disease-Free Equilibrium

In the absence of infection, i = 0,Hence system (3.26) reduces to ;
ds = [n — ps]dt (3.27)
325 Solving the Stochastic Disease-Free Equilibrium by Ito-Formula

[n order to solve the system (3.27), we set X(t) = § — 1, so that system (3.27) becomes

dX = —pX(t).dt (3.28)

Now applying the Ito Formula (3.19) to (3.28), we denote u(t,x(t)) = eMt. X , and compute its

derivative at point u(t, x(t)) using the Ito Formula.
du(t, x(t)) = d(e". X) = Xpett.dt + e, (=pX(£)).dt + 0.d((1))? (3.29)
=XpeHt.dt — Xpe¥t.dt + 0.dt (3.30)
Integrating equation (3.30) gives
X (L) = C. (3.31)
Dividing (3.31) by e"* gives the solution
(3.32)

Al = ce I

Substituting the initial condition X(0) = X, into (3.22) gives

_-"r'-'-

-

I e (3.33)

But XGT_;?: 1, substituting into (3.33) gives




S(t) — 1= (Sp — 1)e

(3.34)
— == —put
= S(t) =1+ (S, — 1)e* (3.35)
But Sﬂ e
S(t) =1—|S; —1|e~* (3.36)
Let 0 = |So — 1]
Hence S*(t) =1 — gy (3.37)

Hence the equilibrium point of the disease-free equilibrium (5*,1*) corresponds to (S*,I%) =

(1 - agpe ™, 0).
326 Numerical Solution of SDEs-Euler-Maruyama Method

A scaler, autonomous SDE can be written in integral form as
X(t) =X, + f;f(s,x(s))ds + futg(s,x(s})dw(s), 0<t<T (3.38)
Where,f and g are scaler functions and the initial condition X, is a random variable.

If x(t) is the solution to (3.38), then the solution x(t) is a random variable that arises when we

take the zero stepsize limit in the numerical (method).

Hence the differential equation form of (3.38) can be written as

dx(t) = f (t,x(r))dt; g(t, x(t))dwet) X(0) =xp, 0<t<T (3.39)

Hence fremrequation (3.39), if g = 0 and ¥, is constant, then the problem becomes deterministic

and (3.39) reduces to ordinary differential equation
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(2.x(2)), with X(0) = x,

(3.40)

the Euler-Maruyama method 10 (3.39) over (0,T), we first discretize the interval. Thas

¢ = 7 for some positive integer L and T, = jat.

F

our numerical approximation to X(T)) will be denoted by X, Therefore the Euler -
ma (EM) method takes the form.

s + £(X)-1)t + g(X,_,)((w(T) ~W(T)-)). J =12 L (3.41)
I

uation (3.41) comes from the integral form

) &

X(10) #7105 ] @i o)

3

if g = 0 and x, constant, then (3.39) reduces to Euler’s Method. (See [32], [33] for more

fl

-

yama method).
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CHAPTER 4

MODELING AND SIMULATION

41 Introduction

In this chapter, the parameter values were fitted into the model and the stability of their
equilibrium points determined. Also, numerical simulations of all the models are implemented to

explore the behavior of the models.

We acknowledge the difficulty in estimating some of these parameters, since estimates of some
of the parameters are complicated and tricky to attain from measurements in real life. However, a
thorough search was done in compiling the interesting parameters such as Mortality rate, Rate of

infection and Recovery rate from a reliable source.

Table4.1:  Table of parameter values

The parameters Definition Parameter Values Parameter Source
M Mortality Rate ~ 0.0875 CIA world factbook
p Infection Rate T Ghana Sentinel Survey
Y Removal Rate -0.029 Ghana Sentinel Survey

42 The Deterministic Model Formulation

The parameter values §|I(:h as mo Wtinn and removal rates were taken from Ghana

Health service and CIA world factbook (demographic statistics), and were fitted into our model

—— : )
in order to determine the equilibrium points as shown in table (4.1).
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42.1 Equilibrium Points of the Deterministic Model

In order to determine the equilibrium points of the deterministic model, the parameter values

were substituted into the deterministic model equations (3.15). Thus,

ds = = = P
n 0.0875 — 0.0875s — 1.5si (4.1)

= 1.5si — (0.0875 + 0.029)i (4.2)

=

Applying the equilibrium condition and equating the left-hand side of (4.1) and (4.2) to zero and

solving them simultaneously, we have

0= 0.0875 — 0.0875s — 1.5si (4.3)
0= 1.5s5i — (0.1165)i (4.4)
From (44) 0= i(1.5s — (0.1165)), Hence either i = 0 or

1.55s - 0.1165 = 0

s =0.0776

Substituting into equation (4.3) produces the disease-free equilibrium point (s, i) = (1,0) and the

endemic equilibrium point(s, i) = (0.0776,0.6927).

4.2.2 Stability Analysis of the Deterministic Model at the Disease-free state
The stability analyﬁsj,s;a:;-r.-cspect of the disease—free equilibrium is as follows.
Let f(s4)-=0.0875— 0.0875s — 1.5si

g(s,i) = 1.5si — (0.0875 + 0.029)i
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Then the Jacobian of f and g is given by

= ds di _ [~0-0875 — 0.66:i —1.5s
i’i ig_ 1.5i 1.5s — (0.1165) |
Lds  di- '
')
|

. :[
@ o Ei

Therefore

[—-U.UB'}'S =15
0

JGs,0) =J(1,0) = 1.3835

The characteristics equation is given by
2 =1.2961 — 0.121056 = 0
Hence A, = 1.3835 and 4, = —0.0875

Since the eigenvalues are of opposite signs, the equilibrium point is a saddle point. Hence the

equilibrium point (s, i) = (1,0) is an unstable equilibrium point.
4.2.3 Stability Analysis of the Deterministic Model at the Endemic State
The stability analysis in respect of the endemic equilibrium is given as follows
Let  f(s,i) = 0.0875 — 0.0875s — 1.5si

g(s,i) = 1.5si — (0.0875 + 0.029)i

Then the Jacobian of f and g is given by

—— f,_-——'-__
e o 1.5
. _|as @il [~0.0875 — 0.66i ~1.55 |
1= d.i_’c?; _[ 1.5i 1.55 — (0.1165) i
T 1
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The Jacobian at the equilibrium point (s, i) = (0.077666,0.692746) is given by

J6,D) = 1(0.0776,0.6927) = [~ 1266 iy

Hence the characteristic equation is
2+ 1.12661 + 1.1601 = 0
The eigenvalues are given by 4; = —0.5633 + 0,9180{ and A, = —0.5633 — 0.9180i

The equilibrium point of the endemic equilibrium is a spiral equilibrium point. For spiral
equilibrium point, its stability is determined by the real part. Since the real parts are both

negative, the endemic equilibrium is stable,

4.3 The Stochastic Model Formulation

Here, the parameter values from table 4.1 were also fitted into the stochastic model equations

(3.26) and the equilibrium point of the disease-free equilibrium determined.

Specifically, the parameter values of mortality rate, infection rate and removal rate were
substituted into (3.26) to yield

ds = [0.0875 — 0.0875s — 1.5si]dt — psidf (4.5)
di = [1.5si — 0.0875i — 0.029i{]dt + psidf (4.6)
4.3.1 The Eq““ibl:i_l_llj_’ﬁb_i_m of th M Model at the Disease-Free State

In the absence of infection, i = 0, Hence the system becomes
——

(4.7)

ds = [0.0875 — 0.0875s]dt




Setting X(t) = S — 1, system (4.7) becomes

dX = —0.0875.X(t).dt

(4.8)

Again applying the Ito Formula (3.19) to (4.8), we denote (;:, x(t)) = 00875t ¥ anq compute

its derivative at point u(t, x(t)) using the Ito Formula

du(t,x(t)) = d(e®°"5.X) = 0.0875X %%t dt — 0.0875Xe%9875¢ gt 4 0.dt  (4.9)
Integrating equation (4.9) gives

en.ﬂa?s.t X=c (4.10)
Dividing (4.10) bye 2875t gives

X(t) = ce—00875t @.11)
Substituting the initial condition X(0) = X, into (4.11) gives

X(t) = X e~ 00875t (4.12)
But X(t) = § — 1, substituting into (4.12) gives

S(t) — 1 = (S, — 1)e~"875¢ re-arranging gives

S(t) =1+ (5, — 1)e~00875¢ (4.13)
But S;<1

e (4.14)

Hence S(t) = 1 —-|§:— tle T2

——
Let Og = |Su — 1]




§(t) = 1 — gpe00875¢

Hence the equilibrium point of the disease-free equilibrium (S™I*) corresponds to (S*,I%) =

(1 5 Jﬂe“ﬂ-ﬂﬂ?stl D).
44 Numerical Simulations

Numerical simulations are vital tools for analyzing the disease progression patterns. Our
numerical results were obtained using MATLAB, by means of some epidemiological parameter
values, obtained from reliable sources. Since some of our parameter values were taken from
Ghana where data keeping is poor, the infection rate was varied whilst the other parameters were
unchanged for the purpose of our simulation. We therefore perform simulation of the

deterministic and stochastic models and compare them.

44.1 Simulations of the Deterministic Model

A numerical simulation of the deterministic Model (equations (4.1) and (4.2)) was performed
using initial conditions of (0) = 0.99 , I(0) =0.01 and the parameter values of p = 0.0875
B =15, 7=0.029. A plot of S, I against time yielded by the simulation is displayed in

Figure 4.1. We observe from the figure that about 72 percent of the population would be

infective , 8 percent would be susceptible and about 20 percent would be removed, at the end of

~ the time frame of about 25 years. The endemic equilibrium point computed in section 4.2.1

S

confirmed this result with the same set of parameter values. The endemic equilibrium estimates

that about 8 percent wWould be susceptible and 70 percent would be infective in the same time
percent /#__I_*_____,_

—

period. The crossover point after which the number of infectives permanently exceeds the

_—--"'-"——-‘

number of susceptibles occurs at about year 3.5.
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ure 4.1: A Computer Simulation of the Deterministic Model (4.1 and 4.2)
Simulations of the Deterministic Model with reduced Infection Rate

simulation of the deterministic Model was performed using initial conditions of
= 0.99, I(0) =0.01 and the same parameter values except for a reduced infection rate of
;{;, 0.9. A plot of S, I against time yielded by the simulation is displayed in Figure 4.2. Again

with the same set of parameter values, but different infection rate of f = 0.9 . The deterministic

model plot of figure 4. 2 now shows slightly different issue. A lower percentage of the population
would be infected, and higher percentage would be susceptible in the same period of time. Thus
percent would be infected and about 13 percent would be susceptible whilst about 19 percent

_uld be removed. . The crossover point after which the number of infectives permanently

exceeds the number of susceptibles occurs at about year 7.

e ’,,,-—"'""'__—-—_
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gure 4.2: A Computer simulation of the Deterministic Model with a lower infection rate of

b 049 -
4.3 Simulations of the Deterministic Model with further reduced Infection Rate

numerical simulation of the deti;rministjc Model was performed using initial conditions of
) =0.99 , 1(0) =0.01 and the same parameter values except for a further reduced infection
""7 B =05, Aplotof S, I against time yielded by the simulaﬁun is displayed in Figure 4.3.
he deterministic model plot of figure 4.3 now shows slightly different issue: that 62 percent of
-ipopulatinn would be infected, and almost 22 percent would be susceptible, with 16 percent

moved in 25years. The crossover point after which the number of infectives permanently

xceeds the number of susceptibles occurs at about year 13,

i R T
. e .
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ure 4.3: A computer simulation of the Deterministic Model with a lower infection rate of

4 Simulations of the Deterministic Model with sufficiently reduced Infection Rate

numencal simulation of the deterministic Model was performed using initial conditions of
.. 0.99, 1(0) =0.01 and the same parameter values except for a much reduced infection rate
=0.2. A plot of S, I against time yielded by the simulation is displayed in Figure 4.4.
;dﬁmninistic model plot of figure 4.4 now shows a much improved situation: With the
'_" ion rate of f = 0.2, the simulation showed that about 92 percent of the population would
suscer ible and about 8 percent of the population would be infected within the time frame of
e . 25 years and the populations would not crossover.

hus the number of infectives permanently be less than the number of susceptibles indicating

at an infection rate of f = 0.2 is sufficiently low.
1 e E /_,...-—-—'-—'—
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figure 4.4: A computer simulation of the Deterministic Model with a lower infection rate of

= 0.2
5 Numerical Simulations of the Stochastic Model

5.1 Simulations of the Stochastic Model with the Original Parameter values

\ numerical simulation of the stochastic model (equations (4.5) and (4.6)) was performed using
nitial conditions of (0) = 0.99 , /(0) =0.01 and the parameter values of p = 0.0875, 8 = 1.5
= 0.029. A plot of §, I against ume yielded by the simulation is displayed in Figure 4.5. We
bserve from the figure that about 90 percent of the population would be infective , 8 percent
yould be susceptible and about 2 percent would be removed, at the end of the time frame of
bout 25 years. The endemic equilibrium point computed in section 4.2.2 is not quite in
preement with this result even with the same set of parameter values. (For the deterministic

1‘_.,-!"

nodel, the endemic equilibrium estimates-that about 8 percent would be susceptible and 72

f cent would be infective in the same time period). The crossover point after which the number
s
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of infectives permanently exceeds the number of susceptibles is also higher for the stochastic

model and occurs at about year §.
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'-_'ure 4.5: A computer simulation of the Stochastic Model with original parameter values
45.2 Simulations of the Stochastic Model with Reduced Infection Rate

A numerical simulation of the stochastic model (equations (4.5) and (4.6)) was performed using
mitial conditions of (0) = 0.99 , /(0) =0.01 and the same parameter values except that the

infection rate is reduced to f = 0.9, A plot of S, I against time yielded by the simulation is

~displayed in Figure 46. The stochastic model plot again shows that about 80 percent of the
' __pulatiun would be infective, 8 percent would be susceptible and about 12 percent would be
.;i_'-:t in the same time frame compared to 68%, 12% and 22% respectively for the
deterministic model.

The crossover point after v_uhich the number of infectives permanently exceeds the number of

TR . f#ff""'_-__

susceptibles is also the same for the stochastic model and occurs at about year 7.

1—-'-"'—#-_
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ire 4.6: A computer simulation of the Stochastic Model with a lower infection rate of
1

3 =09
5.3  Simulations of the Stochastic Model with further reduced Infection Rate

\ numerical simulation of the stochastic Model was performed using initial conditions of
B = 0.99 , 1(0) =0.01 and the same parameter values except for a further reduced infection
ate of B =0.5. A plotof S, I against time yielded by the simulation is displayed in Figure 4.7.
'he stochastic model plot of figure 4.7 now shows slightly different issue: that 60 percent of the
0P ation would be infected, and almost 18 percent would be susceptible, with 22 percent
- oved in 25years. The crossover point after which the number of infectives permanently
sxceeds the number of susceptibles occurs at about year 13 and 1s about the same for the

leterministic model.
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re4.7: A computer simulation of the Stochastic Model with a lower infection rate of

:”=' 0.5
$.5.4 Simulations of the Stochastic Model with sufficiently reduced Infection Rate

A numerical simulation of the stochastic model was performed using initial conditions of
I)' = 0.99, I(0) =0.01 and the same parameter values except for a much reduced infection rate
of #=02. A plotofS, I against time yielded by the simulation is displayed in Figure 4.8
The stochastic model plot of figure 4.8 now shows a much improved situation: With the
infection rate of § = 0.2, the simulation showed that about 82 percent of the population would
be susceptible and about 3 percent of the papulatioﬁ would be infected and 15 percent removed
within the time frame of over 25 years and the populations would not crossover.

Thus the number of infectives would be permanently less than the number of susceptibles

icating that an infection rate of f = 0.2 is sufficiently low for the stochastic model as well.

.-o-"f ’—',__-.’——'__-_-_
—-—-—._'_'_'-
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Figure 4.8: A computer simulation of the Stochastic Model with a lower infection rate of

.. = 0 -2

Summary of Discussion on Simulations %

'.'| he stochastic model simulations are generally in agreement with the deterministic model ones
in terms of the population crossovers. The dynamics of the HIV disease are represented by
deterministic model figures 4.1, 4.2, 4.3. 4.4 and the stochastic model figures 4.5, 46, 4.7, 4.8.
The graphs showed that at the outbreak of the disease, the infected population starts small, and
then as we have random and constant interaction between the infectives and the susceptibles,
more people get infected and hence the infectives curve rises quickly. The susceptible curve
decreases as a result of more people becoming infected and moving from the susceptible class to
the infective class. The graphs showed that in the long term the infected individuals do not
vanish from the population, and this corresponds to the endemic equilibrium. To investigate the
effect of varying tfeji;lfe;iiun ramdei, f was given different sets of values. The

plots showed-that an increase in the infection rate increases the number of infectives in the

population, and a decrease in the infection rate decreases the number of infectives.
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With the infection rate of B = 0.2, both the deterministic and the stochastic model simulations
‘showed that over 80 percent of the population would be susceptible, and under 10 percent of the

‘population would be infected, with about 10 percent of the population removed, and the curves

“would not crossover.




CHAPTER 5

CONCLUSION AND RECOMMENDATIONS
5.1 INTRODUCTION

The work began with a study of the epidemiology of HIV disecase. We then reviewed
mathematical models of infectious diseases. The dynamics of dynamical systems of differential
equations were then discussed, with the interest in equilibrium points, phase portrait and solution
paths, since these are important tools in describing solutions of Differential equations
analytically. This was then applied to our model, the SIR epidemic model. Stochastic version of

the SIR epidemic model was then introduced and analyzed.
5.2 SUMMARY

The selected models considered here were motivated by the general nature of HIV and
dynamical modeling initiatives and is not our desire to present a comprehensive account of
mathematical models available till date. There was an urgent need for extensive mathematical
models of AIDS incidence and spread so as to enable informed efficient investments in
preventive therapeutic measures. Our work concentrates on spread of HIV in Ghana.

From our epidemiological perspective Ry is an important indicator of the initial causes of HIV,
and the infection rate has large effect on the spread of HIV in Ghana. The computer-simulated

results can be adapted to project future occurrence of the disease.

m—— _r"_,-—-""'"__-_ ¢
Our deterministic plot of figure 4.1 showed that about 72 percent of the population would be

infective,—8-percent would be susceptible and about 20 percent would be removed, within the

time frame of over 25 years.
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The endemic equilibrium point confirmed this result with the same set of parameter values. The

endemic equilibrium estimates that about 8 percent would be susceptible and 70 percent would
be infective in the same time period.

Again with the same set of parameter values, but different infection rate of B = 0.9 , the
deterministic plot of figure 4.2 shows slightly different issue. A lower percentage of the
population would be infected, and higher percentage would be susceptible in the same period of
time. Thus 68 percent would be infected and about 13 percent would be susceptible whilst about
19 percent be removed.

When the infection rate was changed to f = 0.5, the computer-simulated results showed that 62
percent of the population would be infected, and almost 22 percent would be susceptible ,with 16
percent removed within the time frame of over 25 years.

With sufficiently lower infection rate of § = 0.2, the simulation showed that about 92 percent of
the population would be susceptible and about 8 percent of the population would be infected and
the population would not crossover.

The stochastic simulations have apparent stochastic behavior and that the overall trend of the
trajectories follows the same path as that of the deterministic ones. This means that even though
fluctuations occur, they result in the same behavior as the deterministic model. The deterministic
approach has limitations that the stochastic approach handles in a more realistic way.

The deterministic approach gives the same result every time the simulation is run with the same

initial values. This might be mathematically correct, but this is not the case in a real epidemic

-
o

situation. This is-due to the fact thatthere may exist many parameters which we cannot model

entirely realistically; by modeling them deterministically we lose some of the complexity of the
e ———

system. It is therefore appropriate to assume a stochastic behavior.
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Our stochastic simulation of figure 4.4 shows that 90 percent of the population would be

infected, and 8 percent would be susceptible and about 2 percent would be removed in the same
time frame as the deterministic one.,

When the infection rate was changed to B = 0.9, the stochastic simulation reveals that 80 percent
would be infected, about 8 percent would be susceptible, and about 12 percent would be
removed within time frame of 25 years.

The stochastic plot again shows that about 60 percent of the population would be infective, 18
percent would be susceptible and about 22 percent would be removed when the infection rate is
p =0.5 in the same time frame.

With sufficiently lower infection rate of 8 = 0.2, the stochastic simulation showed that about 82
percent of the population would be susceptible , about 3 percent of the population would be
infected, 15 percent of the population would be removed, and the population would not
Crossover.

The stochastic simulations seem to give a higher percentage of infective population with the
same set of parameter values as compared to the deterministic simulations. This is due to the fact

that the deterministic model is insensitive to stochastic variation which occurs in actual

population naturally.

5.3 CONCLUSION

In this thesis, we studied epidemiological models of HIV for both Deterministic and Stochastic

approaches. Since equilibrium points are important tools in performing stability analysis of

i
-

infectious disease models, we determined the two equilibrium points. Thus the disease-free

equilibrium and the endemic equilibrium point for the deterministic model and the disease-free
-
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equilibrium point for the stochastic model. The stability of these equilibrium points were then

~ determined.

In order to make our model reflect reality, our parameter values were obtained from Ghana and

were fitted into the model, and their stability at the equilibrium points was then determined.

The results showed an unstable disease-free equilibrium and a stable endemic equilibrium. This
is true.in this case, since for the disease-free to be stable Ry <1 and Ry > 1 for the endemic

equilibrium to be stable. Our results showed R, for both the disease-free and endemic to be

greater than 1.

Hence, we see the importance of the mathematical model as they can be used to explore and
identify the types of data that needs to be collected and the parameter values that need to be

accessed.

To conclude, we say that, though it is practically impossible to achieve a disease-free state in
Ghana, yet efforts have to be made in eradicating HIV/AIDS, since many talented individuals
and vibrant manpower have been lost due to the disease. The model showed that if we could
reduce the inf-ectinn rate drastically, then more people can be prevented from getting infected.
Since reducing the infection rate reduces the inff:c-tive population. The model showed that it will
be difficult to get to discase-free state. This is due to the fact that the disease-free was unstable
and that there is always a constant and random interactions between the susceptible and infected
individuals, and that each individual have equal chance of contacting any other individual in the

whole pnpulatiﬂﬁ during a given time period, as individuals move rapidly and at random

throughout the population. The models also allowed us to determine the spread of HIV and the
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I stability of AIDS in Ghana. It also allowed us to have an

insight about the future occurrence of

the disease and also to put in place strategic policies to avert the spread of the disease.

Bs4

RECOMMENDATIONS

The model did not include the endemic equilibrium of the stochastic model since it was a
bit complicated. Even though the endemic equilibrium of the stochastic model was not
determined, its numerical simulation was performed in order to compare with the
deterministic simulation. We therefore recommend that further research is to be extended
to include the stochastic endemic equilibrium.

The model assumed a homogenous constant population. We recommend that further
research would be extended to include a heterogeneous mixing pattern in the population,
because several studies have shown that averaging, the mixing patterns of heterogeneous
population can cause R, to decrease or remain unaltered. Thus . if we determine the
mixing patterns in population, we can obtain better estimates of R, This result can help
modelers predict the severity of an outbreak and the best means of containing it.

We recommend that public health campaigns should increase in order to make people
informed about the need of abstinence, condom use, and faithfulness in order to reduce
the infection rate to as low as f = 0.2 , iﬁ order to prevent population crossover. The
simulations showed that an infection rate of f = 0.2 would prevent the populations from
crossing over. This is due to the fact that as the infection rate increases, more percent of

population get-infected, and as the infection rate reduces, the percentage of the infectives

—_— "'..-'-F-—#-.-—-_ - ]
in the population also reduces. Hence the need to reduce the infection rate.

e —The government must put in place legislation on some health care delivery to control the

spread of HIV/AIDS through opportunistic sex, unhygienic instrument, blood transfusion
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etc. the cost evaluation suggest that huge amount of money is needed to support small
percentage of the infectives in any given population with the HIV/AIDS

We recommend that intensive educational program and proper policy decisions would be
carried out which may include the promotion of the widespread availability of
prophylactics and the increased availability of drugs such as AZT in order to increase the

removal rate through better medical treatment of the infected individuals.
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APPENDIX

Existence and Uniqueness of Stochastic Differential Equation
Theorem: Suppose that b and B are continuous and satisfy the following conditions
a) [b(x,t) = b(x,t)| < L|x — x|

|B(x,t) —B(x%,t)| < Llx —%|, foral 0 < t < T, x,% € R"

b) |b(x,t)| < L1 + |x])

|B(x,t)| < L(1 + |x|), forall0 <t < T,x € R™

For some constant L, let x, be any R™-valued random variable such that

c) E(|xo]*) <
and

~
d) xgis indepé“nﬁéhf of W*(m) is s given m-dimensional Brownian motion, then

_there exists a unique solution x € Ln?(0,T) of the stochastic differential

equation:
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[c'lx- b(x,t)dt + B(x,t)dw 0 <t <T
(0) = x, (L.1)

Proof 1: Uniqueness

Suppose x and x are solutions of equation (1.1), then for all 0<St<sT x(t)-z(t)=

.f: b(x,s) — b(x,s)ds + j; B(x,s) - B(x,s)dw

Since (a + b)? < 2a® + 2b? then we can estimate

P
E(lx(t) — x(t)|?) < ZE( )

¢ |
I b(x,s) — b(x, s)ds
0

2

+2E( )

t
f B(x,5) - B(k s)dw
0

the Cauchy-Schwarz inequality implies that

-

forany t > 0 and f: [0, t] = R™. We use this to estimate

<t ||f|%ds
!

t
E( ) < TE( J; |b(x,s) = b(x,s)|*ds)

[ 4
] b(x,s) — b(x, s)ds
0

[ 4 -: "’-—-—_—-ﬂ
< I2T I E(lx — x|®)ds
0

—#—_
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Furthermore

d

 #
) f E(lx — x|®)ds
0

3
f B(x,s) — B(x,s)dw
0

‘£ t
) = E(f |B(x,s) — B(x,5)|%ds
0

Therefore for some appropriate constant k gives
s t A . .
E(|x(8) —x(t)|*) < k [, E(lx = x(t)|*)ds , provided 0 < t < T .

Setting u(t) = E(|x(t) — x(t)|?) , gives u(t) < kf:,u(s)ds forallo<t<T.

By gronwall’s lemma, if k, = 0,implies 4 = 0.Thus x(t) = %(¢t) for all 0 <t <T, and so
x(r) = x(r) for all rational 0 < r < T,except for some set of probability zero. As x and x have

continuous sample paths almost surely.
Hence p(maxy<,<|x(t) — x(t)| > 0) = 0.
Proof 2: Existence

Define iteratively

22(8) =2,
[x““(t) = xo + f; b(x™(s)k, s)ds + J'; B(x™(s),s)dw

Forn=01.. .. —ad0<t<E—

Defineatsc

d™(t) = E(lx™*1(2) —x"(t)|*
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We claim that
Mt LES]
d"(t) SST-?W foralln=0,..0<t<T

For some constant M depending on L, T and x, and for n = 0, we have
d°(t) = E(|x* () — x°(2))?)

2

=E( )

f b(x,5)ds + f B(xos)dw

szs(

< tM.

: ¢
) + ZE(I L*(1 + |xo)*)ds
0

4
0

For some large enough constant M this confirms the claim forn = 0
Next assume the claim is valid for some n — 1.
Then

d™(t) = E(|x"*'(¢t) — x"(0)I?

i

)

o G R

IE(

L
I b(x",s) — b(x""1,5)ds + I B(x",s) — B(x""},s)dw
0 0

- —-. ,.--"""_--—__
< 2TLRE([,|x" - x™~"|?ds)

;—

+ S iy il -

I.'
| < 213(1+T) [{ *==ds by induction
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Mn+1 tn+1

]

: = (n+ 1)!

|

Provided we choose M > 2L%(1 + T).this proves the claim.



