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ABSTRACT 

Malaria is hyper-endemic in Ghana, especially in the Greater Accra Region. It 

remains a major public health problem and requires prompt and effective case 

management. The Bulletin of Health Information: October 2004, 1 (1), reports that 

outpatient attendance over the last 19 years illustrates the increasing burden of 

malaria in the region. While there is an overall consistent decrease of other 

infectious and parasitic diseases (from 31.8% in 1985 to 19.5% in 2003), there has 

been an increase in malaria cases (from 37.1% in 1985 to 44.7% in 2003).  Patterns 

of malaria morbidity and mortality in the region seem consistent with those observed 

in areas with high transmission in Ghana, emphasizing that the challenge of reducing 

malaria burden is still unmet.  

The significance of the malaria burden in the region necessitated a formulation 

of a mathematical model to assess the impact of control strategies on malaria. Our 

model uses ordinary differential equations to simulate the spread of malaria. We 

performed stability analysis and numerical simulations on the model and the results 

show that the model has two equilibria: the disease-free equilibrium which is locally 

asymptotically stable when 𝑅𝑜 < 1 and the endemic equilibrium that is locally 

asymptotically stable when 𝑅𝑜 > 1. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background to the study 

Malaria is a mosquito-borne infectious disease of humans and other animals 

caused by a protozoan of the genus Plasmodium. According to the MOH 2009 

“Guidelines for Case Management of Malaria in Ghana”, there are four species of 

parasites that cause infections in humans but in Ghana, only three are found; these 

are P. falciparum, P. malariae and P. ovale. As noted by the WHO 2009 World 

Malaria Report, Ghana had an estimated 8.3 million malaria cases in 2006 and 3.2 

million in 2008. It is reported that most cases are caused by P. falciparum; 26% of 

the reported cases were confirmed in 2008. The report further noted that there was 

no evidence of a reduction in the number of cases between 2001 and 2007, and the 

number of reported inpatient cases and deaths have increased. It is not known if the 

rise is due to better reporting or a change in the incidence of malaria.  

In the year 1950, Ghana made an attempt to control the spread of malaria. 

Since the health sector alone was assumed to be incapable of controlling malaria, the 

other health-related sectors were involved. Some of the interventions that were put in 

place included indoor residual spraying (IRS), mass chemoprophylaxis with 

pyrimethamine medicated salt and draining of sewage system. With all these 

interventions, malaria continued to be the leading cause of death in Ghana. 

According to the Ghana Health Service 2010 Annual Report, the total number of 

malaria cases seen at the OPD showed an upward trend from 3,694,671 in 2009 to 

3,740,055 for the year under review. The proportion of malaria to total OPD also 

increased from 32.5% to 34% during the year under review whilst the overall case 

fatality rate for malaria also worsened from 1.22 in 2009 to 1.44 in 2010.  
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The Ghana Health Service has been implementing strategies to improve on 

malaria case management.  After successfully changing and revising the Anti-

Malaria Drug Policy (AMDP), focus has been on early case detection and prompt 

treatment at all levels, especially cases in the most vulnerable groups, children under 

five, non-immune visitors and pregnant women. In Ghana, the diagnosis of malaria 

has been predominantly clinical. However, with the rapid scale up of proven 

interventions and their possible impact on malaria epidemiology, expert advice 

through the WHO recommends a parasitological confirmation of all cases prior to 

treatment. There has therefore been the need to scale up laboratory diagnosis either 

by microscopy or Rapid Diagnostic Tests (RDTs). To ensure that malaria cases are 

lab-confirmed before management is started, the training of laboratory staff on 

diagnosis which commenced in the previous year was continued with the training of 

373 peripheral health workers on laboratory diagnosis (microscopy/RDTs). 

According to Moore and Lanier (1961), resistance to chloroquine, an 

effective and safe anti-malarial that formed the first line of treatment, emerged more 

than 30 years ago, and since then malaria parasites have developed resistance against 

most of the widely used anti-malarials, including sulfadoxine-pyrimethamine, as 

noted by Hakim et al. (1996) and Smithius et al. (1997) and mefloquine, in the 

studies conducted by Mockenhaupt (1995), as well as quinine (Benito et al, 1995). 

Indeed, it is now generally believed that the widespread use of a new drug will 

inevitably be followed by the appearance of resistance in the parasite population. 

One critical issue that has attracted the attention of donor agencies, especially 

WHO, World Bank, UNDP and UNICEF, in 1998, in response to the incidence of 

malaria led to the formation of a partnership to create the Roll Back Malaria 

movement, with the welcome and necessary goal of halving malaria deaths by the 
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year 2010 – the first major effort against the disease in four decades. Again, the Roll 

Back Malaria 2000 “Malaria in Africa” Factsheet 3, the need for such an effort is 

abundantly clear: malaria places a huge burden on Sub-Saharan Africa, with 300 

million people suffering acute illness each year, and one million dying, at least 70% 

of whom are children or pregnant women. Reports indicate that in countries with a 

heavy malaria burden, the disease accounts for as much as 40% of public health 

expenditure, 30–50% of inpatient admissions, and up to 50% of outpatient visits. 

According to Holding and Snow (2001), those children who do not die can suffer 

brain damage or experience cognitive and learning deficiencies. In the view of Sachs 

and Malaney (2002), these events of illness and childhood retardation are so 

common in the tropics that entire countries fail to develop economically, cementing 

a future of desperation and poverty that spans generations. 

According to the NMCP 2005 Annual Report, Ghana committed itself to the 

Roll Back Malaria (RBM) initiative in 1999 and developed a strategic framework to 

guide its implementation. Overall, the Ghana Roll Back Malaria emphasizes the 

strengthening of health services through multi and inter-sectoral partnerships and 

making treatment and prevention strategies more widely available. The goal was to 

reduce malaria specific morbidity and mortality by 50% by the year 2010. To 

achieve the goal, four main strategies were being pursued and these include:  

i. Promote multiple prevention which includes promotion of insecticide-treated 

nets usage; chemoprophylaxis in pregnancy and environmental management. 

ii. Improve malaria case management at all levels (from household to health 

facility); 

iii. Encourage evidence-based research to come up with effective interventions  

iv. Improve partnership with all partners at all levels. 
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The emerging and re-emerging diseases have led to a revived interest in 

infectious diseases. It is clear that human or animal invasions of new ecosystems, 

global warming, environmental degradation, increased international travel, and 

changes in economic patterns will continue to provide opportunities for new and 

existing infectious diseases (Martens, 1999).  

Mathematical models have become important tools in analysing the spread and 

control of infectious diseases. The model formulation process clarifies assumptions, 

variables, and parameters; moreover, models provide conceptual results such as 

thresholds, basic reproduction numbers, contact numbers, and replacement numbers. 

Understanding the transmission characteristics of infectious diseases in communities, 

regions, and countries can lead to better approaches to decreasing the transmission of 

these diseases. As observed by Hethcote et al., (1989) and Hethcote and Van Ark 

(1992), epidemiology modeling can contribute to the design and analysis of 

epidemiological surveys, suggest crucial data that should be collected, identify 

trends, make general forecasts, and estimate the uncertainty in forecasts.  

Mathematical models, according to Macdonald (1957) and Dietz (1974) have 

in the past provided a valuable framework for analysing the transmission dynamics 

of malaria. Moreover, MacDonald (1968) suggests that these models have been 

widely used to consider the effect of different strategies such as vector control whilst 

Halloran et al. (1992) and Gupta et al. (1996), emphasised on the use of future 

vaccines on the transmission dynamics of malaria. To produce relevant, robust 

findings, mathematical modelling should at the outset involve partnership and good 

communication between technical experts in mathematical modelling, experts in 

malaria field and laboratory science, and health policy decision-makers. Models 

produce the most useful data when they are formulated with important biological, 
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economic, and practical realities in mind and when their results are interpreted with 

care, making them another useful tool in the fight against malaria. 

Gains in mathematical modelling of malaria: 

Some of the benefits in malaria models include the following: 

i. Models create the mathematical basis that could be used to guide policy 

formulation in the areas of public health. In the case of P. falciparum 

malaria, the policy decisions could be simply a matter of life and death. It 

is therefore important that the model is used to describe the aspects of the 

disease being well thought-out. 

ii. Models have long been applied to malaria control and are particularly 

relevant today in light of rapid country progress in reaching high 

intervention coverage targets and given the intensifying global efforts to 

achieve the malaria-related Millennium Development Goals (MDGs). 

iii. Modelling is especially well-suited to helping inform decision-making 

around malaria control because of the disease's complex biological 

systems, the considerable infrastructural and cost requirements of 

prevention and elimination, and the rapid pace of change in global 

planning and national programming to halt malaria. 

iv. Epidemiology modelling can contribute to the design and analysis of 

epidemiological surveys, suggest crucial data that should be collected, 

identify trends, make general forecasts, and estimate the uncertainty in 

forecasts (Hethcote et al., 1989; Hethcote and Van Ark, 1992). 

v. Mathematical models and computer simulations are useful experimental 

tools for building and testing theories, assessing quantitative conjectures, 
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answering specific questions, determining sensitivities to changes in 

parameter values, and estimating key parameters from data. 

vi. Mathematical models are used in comparing, planning, implementing, 

evaluating, and optimizing various detection, prevention, therapy, and 

control programs. 

Transmission of malaria: 

According to the NMCP 2005 Annual Report, malaria is transmitted through 

the bite of an infected female Anopheles mosquito and three species transmit human 

malaria in Ghana: Anopheles gambiae, Anopheles arabiensis and Anopheles 

funestus.  MacDonald (1957) and Smith & McKenzie (2004) found that a critical 

factor determining the successful transmission of malaria is the longevity of the adult 

mosquito relative to the incubation period of the parasite. The result of the study by 

Patz & Olson (2006), also show that the incubation period varies in the field from 

approximately 10 to more than 20 days, depending on temperature and only a 

relatively small fraction of mosquitoes naturally live long enough to infect humans. 

Thus, techniques that reduce adult survival further, such as indoor residual spraying 

(IRS) with insecticides and the deployment of insecticide-treated nets (ITNs), can 

cause substantial decreases in malaria transmission (Curtis & Mnzava 2000; 

Goodman et al. 2001; Guyatt & Snow 2002; Sharp et al. 2002).  

Additionally, cases that are asymptomatic usually provide a necessary 

reservoir of parasites and they might become gametocyte carriers, which lead to 

malaria transmission (Bousema et al, 2004). Although reports indicate that the 

presence of asymptomatic cases is a big challenge for the management of the 

elimination programme in any malaria endemic area, evidence suggest that to 

achieve a successful elimination, detection of all parasite carriers by active case 
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detection and then treatment of all cases must be considered to interrupt the malaria 

transmission in endemic areas. Several studies have argued that asymptomatic 

malaria infections were frequently described in high and intermediate transmission 

areas including Ghana (Crookston et al., 2010; Owusu-Agyei et al., 2001 ), Kenya 

(Bousema et al., 2004) , Senegal (Males et al., 2008; Le Port et al., 2008), Gabon 

(Klein Klouwenberg et al., 2005; Nkoghe et al., 2011), Nigeria (Eke et al., 2006; 

Achidi et al., 1995), Uganda (Njama-Meya et al., 2004), Thailand (Coleman et al., 

2002), Burma (Richards et al., 2007) and Yemen (Bin Mohanna et al., 2007).  

As countries scale up malaria control efforts and reach high intervention 

coverage targets, they are faced with the question of what to do next. The strategy 

for maintaining and enhancing the achieved reductions in transmission is not 

obvious. It is often not clear whether maintaining current coverage levels would 

continue to reduce transmission, stabilize transmission at a new level, or slowly give 

way to an increase in transmission. Mathematical modelling can build on available 

data, test multiple scenarios and combinations of intervention strategies, and make 

verifiable predictions on what can be expected from these strategies. 

Problems facing the control of malaria in Ghana:  

The health sector, over the years, had been faced with some resource 

constraints, which had adversely affected the full and successful implementation of 

health interventions to accomplish preferred goals. The increased levels of 

partnerships in the area of malaria control provide a solid ground for sound 

coordination of malaria control within the context of planning and management. In 

order to achieve an impact and sustain the gains, emphasis needs to be laid on the 

use of proven cost effective interventions combined with needed local initiatives that 

will ensure success. 
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For instance, children under five years and pregnant women are known to be 

relatively more adversely affected. It contributes to the relatively high maternal 

mortality in Ghana as demonstrated by the estimates that 11% of mortality in 

pregnant women is due to malaria. Almost 30% of deaths in children below 5 years 

are caused by malaria.  There are currently numerous obstacles to malaria control in 

Ghana. Many of these problems were responsible for the failure of the malaria 

eradication plan. Some of these obstacles include the following: 

i. Resistance has developed to several antimalarial drugs, most notably 

chloroquine. 

ii. There are also an increasing number of insecticide-resistant mosquitoes 

(including resistance to dichloro-diphenyl-trichloroethane (DDT)). Many 

mosquitoes have also now learned to altogether avoid insecticide treated 

surfaces, making their control even harder. 

iii. Human activities continually create new breeding sites for mosquitoes 

and human populations have invaded mosquito habitats, thus increasing 

the number of contacts between mosquitoes and humans. 

iv. Overpopulation and urbanization has significantly increased human 

population density in many parts of Ghana, again increasing the number 

of contacts between humans and mosquitoes. 

In spite of the above obstacles, major advances have been made in malaria 

control as a result of the availability of key intervention strategies including 

insecticide-treated bed nets, indoor residual spraying and effective antimalarial 

therapy. However, control efforts remain inadequate, and malaria persists as a huge 

burden for many developing countries. To be most effective, the limited resources 

available for malaria control should be targeted at the populations in which they will 
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have the greatest impact (Caldas et al, 2004; Smith et al 2005; Woolhouse et al, 

1997). Thus, detailed characterization of the risks for malaria among populations 

living in areas where the disease is endemic is an important priority. 

Due to the widespread increase of chloroquine resistance in Africa, ACTs 

(Artemisinin-based Combination Therapies) have become the drugs of choice for 

uncomplicated malaria. According to the MOH’s Revised Anti-Malaria Drug Policy 

for Ghana, 2 Revised Version (2009), Ghana began implementing an ACT-based 

Anti-Malaria Drug Policy (AMDP) in 2004.  Prior to this time, 

Artesunate/Amodiaquine was the only ACT officially recommended for the 

treatment of uncomplicated malaria. The policy however faced challenges because 

no provision was made for those who could not tolerate the recommended drug. 

There was therefore the need for the policy to be revised to include alternate ACTs 

for uncomplicated malaria whilst the options for treatment of severe malaria and of 

malaria in pregnancy were also expanded. 

Profile of the Greater Accra Region: 

Accra, the capital city of Ghana, has a total land area of 201sq km. With a 

population of 4,010,054 million people (2010 National Population Census), Accra, 

Ghana’s capital since 1877, is today one of the most populated and fast growing 

Metropolis in Africa with an annual growth rate of 3.22%. The gross population 

density for Accra Metropolitan Area is 10.03 persons per hectare as compared to 

6.23 per hectare in 1970. Accra’s population like that of most urban centres is very 

youthful with 58.3% of the population under the age of 24 years; 51.7% of the 

population are females. Accra is the second most industrialised city in Ghana, 

contributing over 10% to the GDP.  
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The state of sanitation in Accra is currently very unsatisfactory. The city is 

characterised by choked drains, indiscriminate waste disposal and uncollected refuse 

in central waste containers. Even though Accra generates between 1,500 – 1,800 

tonnes of waste per day, it has the capacity to collect only 1,200 tonnes per day. 

Physical and settlement development in Accra is outstripping drainage network. This 

has culminated into seasonal flooding during the wet season the city authority spends 

65-70% of its revenue on sanitation. 

Although health facilities are within physical accessibility of the poor, the 

cost is beyond their scope. Most of them rely on traditional medication and self-

medication for their health needs. The high-income groups rely on both public and 

private health facilities. There is high level private and non-governmental institutions 

participation in health delivery. There are 28 Hospitals in Accra. The major health 

problems of Accra are essentially communicable diseases due to poor environmental 

sanitation, ignorance, and poverty. Malaria has been the number one disease, 

accounting for about 53 per cent of outpatient cases. The major communicable 

diseases are malaria, sexually transmitted infection, diarrhoea, chicken pox, enteric 

fever. The transmission of the 5 major communicable diseases comes from poor 

sanitation, and the residents of the city over the years have been complaining about 

the poor sanitary conditions they are confronted with. 

 

1.2 Statement of the Problem 

Malaria disease is endemic in the Greater Accra Region. It accounts for as 

much as 40% of public health expenditure, 30–50% of inpatient admissions, and up 

to 50% of outpatient visits to an ever-increasing population with resource 

constraints. It continues to claim more lives despite the numerous interventions in 

10 
 



place.  In order to address this problem and advise policy makers in the health sector, 

this study intends to investigate the effects of mathematical modelling on the 

transmission dynamics of malaria in the entire region.  

 

1.3 Objectives of the study   

The main aim of the study is to use mathematical models to analyse and 

describe the dynamics and spread of the malaria in the human population and how 

best it can be controlled.  

The specific objectives are to:  

i. Formulate a mathematical model to control the spread of malaria in the 

Greater Accra region. 

ii. Perform stability analysis of the malaria model. 

iii. Carry out numerical simulations on the model. 

 

1.4 Methodology 

The state of sanitation in Accra is currently very unsatisfactory. The city is 

characterised by choked drains, indiscriminate waste disposal and uncollected refuse 

in central waste containers.  The major health problems of Accra are essentially 

communicable diseases due to poor environmental sanitation, ignorance, and 

poverty. Malaria has been the number one disease, accounting for about 53 per cent 

of outpatient cases and it is the highest among the region’s top ten morbidity and 

mortality cases.  

It is against this background that a malaria transmission model is being 

considered to investigate the effects of mathematical modelling on the transmission 

dynamics of malaria in the entire region. The model divides the human population 
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into four classes: susceptible, exposed, infectious and recovered whilst that for the 

mosquito population is divided into three classes: susceptible, exposed, and 

infectious. Thus, the human population follows a SEIR pattern whilst the mosquito 

vectors follow a SEI pattern. Our model is similar to that by Chitnis (2005), who 

described a compartmental model for malaria transmission, based on a model by 

Ngwa and Shu (2000). We also determine the reproductive number,𝑅𝑜, which is the 

expected number of secondary cases that one infected individual would cause 

through the duration of the infectious period and show the existence and stability of 

disease-free equilibrium points, 𝐸0, and endemic equilibrium points, 𝐸1. 

The data used in the analysis are secondary data and spans a period of 

twelve years; thus 2000 to 2011. The malaria cases and deaths data was obtained 

from the Ghana Health Service and the regional population data was obtained from 

the Ghana Statistical Service. Again, the method used for the numerical simulation 

was MATLAB's ode45.  

 

1.5 Justification 

Malaria is hyper-endemic and so many lives are lost every year especially 

in areas where people live in poor conditions and the successes of preventive 

strategies have been a dream. In view of the above, its study is valuable since it has 

had profound impact on social, political, cultural and economic development in the 

Greater Accra region. It remains a major public health problem and requires focused 

interventions including prompt and effective case management. It is hoped that the 

results of this study will provide relevant guidance for decision makers on which 

intervention to focus on.  
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1.6 Organisation of the study 

The study is arranged into five chapters. The first chapter discusses the 

introductory background, problem statement, objectives, methodology and 

justification of the study. Chapter two covers the literature review. Chapter three 

explains the malaria model while the results of the numerical simulations of the 

model are discussed in chapter four. Chapter five covers the conclusion and 

recommendations as well as future work. 
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CHAPTER TWO 

REVIEW OF LITERATURE 

2.1 Introduction 

Mathematical models are important tools for decision making in the control 

of infectious diseases, and malaria was one of the first infections for which such 

modeling was applied. However, there is still an urgent need for new models that can 

compare the potential impact of a comprehensive range of malaria interventions. The 

simulations of malaria infections are linked to models of interventions and health 

systems, epidemiology to predict the impacts of interventions on infection, 

morbidity, mortality, health services use and costs. An intervention is a method used 

to bring about a change in the state of the simulations (example to reduce 

transmission). Some of these are realistic strategies (e.g. vaccine treatment), some 

are unrealistic (e.g. “uninfect vectors”), whilst others don’t concern themselves with 

transmission (e.g. cohort selection). 

This chapter presents the review of literature on the mathematical models for 

communicable diseases. The literature is vast for example, the survey by Hethcote et 

al. (1982). In most of these models, the assumption of constant total populations is 

often made. Mathematical modelling of malaria has flourished since the days of Ross 

(1911), who was the first to model the dynamics of malaria transmission, and 

Macdonald (1950; 1952; 1957) who expounded on Ross' work, introducing the 

theory of superinfection. Using data from the Garki project (1980), many studies 

have been carried out on the epidemiology of malaria and one of the most 

outstanding is the mathematical model proposed by Dietz (1975) which Nedelman 

(1982) analysed in detail. Further works on the subject include: Singer and Cohen 
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(1980), Gaton et. al. (1980), Aron and May (1982) and the review by Nedelman 

(1985). 

2.2 The Ross-MacDonald model 

Many people have developed malaria models and most of them are either 

directly related to the Ross-MacDonald model (Ross 1909; Macdonald 1957) or 

borrow many of their concepts from this model. Ross began mathematical modeling 

of malaria whilst Macdonald (1957) also made major extensions to the work done by 

Ross and the model later on became known as Ross-Macdonald model. It is defined 

as 

                                  ( ) ( )1dx abM y x rxNdt
= − −                                               (1.1a)                                                                                     

                                  ( )1dy ax y y
dt

µ= − −                                                           (1.1b)                                                                               

where x represents the fraction of infectious humans; y represents the fraction of 

infectious female mosquitoes; a represents the number of bites on humans by a 

single female mosquito per unit time (usually day); b is the probability of 

transmission of infection from an infected mosquito to a susceptible human per bite; 

M represents the total female mosquito population; N represents the total human 

population; r represents the rate of recovery for infectious humans (1 r� ) is the 

average duration of the infectious period); and µ represents the death rate of the 

female mosquito population (1 µ� ) represents the average lifespan of an adult 

mosquito).  

In the view of Aron and May (1982), the properties of this model, including 

the derivation of the reproductive number, Ro, could be described as 

                                
2

o
M a bR
N rµ

= .                                                                          (1.2)                                   
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2.3 The Reproductive Number, oR  

The reproductive number, oR  is defined as the number of secondary 

infections that one infectious person would produce in a fully susceptible population 

through the entire duration of the infectious period. In the study done by Heesterbeek 

(2002), he conducted a review on the history of Ro. Key studies in this area include 

those by Diekmann, Heesterbeek, and Metz (1990); Dietz (1993); Heesterbeek 

(1992); Heesterbeek and Dietz (1996); Roberts and Heesterbeek (2003); Simon and 

Jacquez (2003); Mathematical Biosciences, 180 (2002), which are devoted to the 

calculation of Ro for different models of various diseases, including malaria. 

For simple homogeneous models, the reproductive number, Ro, can be 

defined as the product of the number of contacts that one individual has per unit 

time, the probability of transmission per contact and the duration of the infectious 

period. From equation (1.1) above, it can be deduced that Ro is simply the product of 

the number of mosquitoes that one infectious human infects and the number of 

humans that one infectious mosquito infects, through the duration of their infectious 

periods.  

Considering equation (1.1a) above, (aM
N� ) represents the number of contacts 

with mosquitoes that one human has per unit time; the probability of transmission 

from an infectious human to a susceptible mosquito is assumed to be 1; and 1 r�  is 

the average duration of the infectious period of the human. It can therefore be 

deduced that (M
N� ) (a r⁄ ) is the number of mosquitoes that one human infects over 

the entire infectious period. Similarly, a represents the number of contacts with 

humans that one mosquito has per unit time; b is the probability of transmission from 

an infectious mosquito to a susceptible human; and 1 µ�  is the average duration of the 
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infectious period of the mosquito (note that female mosquitoes are infectious till 

death). It can be deduced that (ab µ� ) is the number of humans that one mosquito 

infects through its infectious lifetime. We can now prove from equation (1.2) that the 

product of the two, ( )( )2

( )
a bM

N rµ , forms the reproductive number: the number of 

humans that one infectious human will infect, through a generation of infectious 

mosquitoes. 

The result of the studies by Aron and May (1982), also added various 

characteristics of malaria, such as an incubation period in the mosquito, a 

periodically fluctuating density of mosquitoes, super-infection and a period of 

immunity in humans, to the model. Also included was the continuum model for 

immunity where the dynamical variables are the population of asexual blood stages 

of Plasmodium in humans, the population of gametocytes (sexual stages of 

Plasmodium in humans), and the level of human immunity. In this system of partial 

differential equations, the variables depend on both time and age. The mosquitoes 

are modeled through V, the vectorial capacity, which is proportional to the mosquito 

density. The study resulted in a model which is a major deviation from the Ross-

Macdonald model (1.1) as it does not keep track of the number of infected humans 

and mosquitoes. Instead, this continuum model measures the number of parasites and 

level of immunity in the average human. This is useful for malaria because there can 

be a large deference in the parasitemia load in different humans, that the Ross-

Macdonald model ignores. 

The studies as noted by Anderson and May (1991) revisit many of the ideas 

discussed by Aron and May (1982). In addition to the above, Anderson and May 

(1991) compile numerous data sets for parameter values, including the latent period 

in mosquitoes and humans, the rate of recovery for humans, the expected adult 
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lifespan of mosquitoes and malaria prevalence data across age distributions for 

humans. Additionally, Anderson and May (1991) study the effect of adding age 

structure to the basic Ross-Macdonald model (1.1). Finally, they look at different 

control strategies, discussing the effects of a vaccine and the reduction of 

transmission rates on the malaria age-prevalence profile of the human population. 

Other reviews on mathematical modeling in malaria include Nedelman 

(1985) and Koella (1991). In the study done by Nedelman (1985), he surveys various 

data sets to statistically approximate parameters such as inoculation rates, rates of 

recovery and loss of immunity in humans, human-biting rates of mosquitoes and 

infectivity and susceptibility of humans and mosquitoes. Koella (1991) also begins 

with the Ross-Macdonald model (1.1) with an additional latent stage for the 

mosquitoes. He then studies the effect of variability of the parameters and adds an 

infection-rate dependent period of immunity. Using this model with immunity, he 

studies the effects of vaccines, comparing those that act on asexual blood stages and 

those that block transmission, to show that the asexual blood stage vaccines are more 

effective. 

2.4 Inclusion of acquired immunity in the model  

An important advance for the mathematical modeling of malaria was the 

inclusion of acquired immunity in the model proposed by Dietz, Molineaux and 

Thomas (1974). In the study by Dietz et al. (1974), he proposed a model with two 

different classes of humans: one without immunity to malaria and one class with 

some immunity. According to Dietz and his colleagues (1974), when the non-

immune class falls sick, some people recover with immunity. The immune class can 

get infected, but does not fall clinically ill and cannot be infectious. The model by 

Dietz et al. (1974) also included super-infection, a phenomenon usually associated 
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with macro parasites. In the study done by Aron and May (1982) and Anderson and 

May (1991), they described that super-infection is a significant increase of the 

parasite load, when an infected person is reinfected from the outside. This is usually 

modeled by making the recovery rate (r in the above equation (1.1)) a (usually 

monotonically non-increasing) function of the inoculation rate. Various models, with 

super-infection, for the recovery rate, r, include: 

           Ross (1991):                       r γ=                                                               (1.3a)                   

           Dietz et al. (1974):         ( )/ exp 1r λλ γ
 = −  

                                       (1.3b)                              

           Macdonald (1957):          
,              

0,                      
r

γ λ γ λ
γ λ

− >
=  ≤

                              (1.3c)                      

where λ is the inoculation rate (defined in (1.1) as ¸ ( )abM yNλ λ=  and  γ  is the  

reinfection-free rate of recovery i.e. 1 γ�  is the average duration of the infectious 

period in the absence of further infection. In another study conducted by Bailey 

(1975), he also described the model for super-infection by Dietz (1993). 

Another proposition put forward by Aron, (1988) reviews the compartmental 

and continuous models for temporary immunity in humans. In compartmental 

models, an additional recovered class is added. In the usual Susceptible-Infectious-

Recovered-Susceptible (SIRS) or Susceptible-Exposed-Infectious-Recovered-

Susceptible (SEIRS) model, the rate of loss of immunity, ρ is a constant parameter. 

However, sustained immunity to malaria requires continuous reinfection; thus in the 

absence of reinfection, immunity is lost quickly, while in the presence of a high 

infection rate, immunity is long-lived. This non-constant period of immunity can be 

modeled by making the rate of loss of immunity, ½, a function of the inoculation rate 

as in the equation below; 
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                  ( )
1

e
e

λτ

λτ

λρ λ
−

−=
−

 ,                                                                                  (1.4)                    

where λ is the inoculation rate and τ is the average duration of the immune period in 

the absence of infection. 

2.5 Inclusion of the effects of environment on the model 

Some of the more recent papers on the mathematical modeling of malaria 

have included environmental effects, according to studies done by Li et al. (2002); 

Yang (2002) and Yang and Ferreira (2000). In the study of Yang (2002), he 

describes a compartmental model where humans follow an SEIRS-type (with more 

than one immune class for humans) pattern and mosquitoes follow a Susceptible-

Exposed-Infectious (SEI) pattern. Additionally, some of the parameters related to 

mosquitoes are now a function of temperature. These include the time taken for 

mosquito eggs to develop into adults and the time taken for Plasmodium 

gametocytes ingested by the mosquito to develop into sporozoites and migrate to the 

salivary glands (the incubation time in the mosquito). Yang defines a reproductive 

number, Ro for this model and shows, through linear stability analysis, that the 

disease-free equilibrium is stable for Ro < 1. He also derives an expression for an 

endemic equilibrium that is biologically relevant only when Ro>1. He uses 

numerical simulations to support his proposition that for Ro > 1, the disease-free 

equilibrium is unstable and the endemic equilibrium is stable. 

2.6 Inclusion of effects of global warming 

Other studies, as noted by Yang and Ferreira (2002), use the model by Yang 

(2000) to study the effects of global warming. Using the estimated increase in 

temperature of 1.0oC-3.5oC by the year 2100, they show that it is possible in some 

areas of the world for Ro to increase above 1; for areas to change from a stable 

disease-free endemic state to one with low levels of endemicity and for other areas to 

20 
 



change from low levels of endemicity to high levels. They do, however, conclude by 

saying that economic and social effects are still more important than temperature 

effects and a good health care system with good malaria control techniques can 

overcome the negative effects of an increase in temperature.  

In addition to the findings, Li et al. (2002) derive a model where humans 

move through multiple Susceptible-Exposed-Infectious-Recovered (SEIR) stages, 

where a history is kept of previous infections. They include a sub-model for the 

mosquito population with subdivisions for juveniles and adults. They use the steady 

state value for the adult mosquito population, from this sub-model, as the input into 

their model for malaria transmission. They introduce dependence of the parameters 

for the mosquito population sub-model on an environmental parameter (e.g. 

temperature or rainfall) and calculate the dependence of the reproductive number, for 

the full malaria model, on this environmental parameter. 

2.7 Inclusion of spread of drug-resistant Plasmodium 

Other recent models have included the spread of drug-resistant Plasmodium 

Koella and Antia (2003) and of the evolution of immunity Koella and BoÄete 

(2003). The study by Koella and Antia (2003) discuss a model where, starting with 

the Ross-Macdonald model (1.1) and moving to more complicated models, they 

include a strain of disease that is resistant to treatment. Their results show that in 

their simplest models, there is a threshold value of fraction of infectious humans 

treated, below which there is no resistance to drugs, and above which, resistance to 

treatment spreads. In the more complicated models, this kind of resistance is usually 

not fixed, but there is some level of sensitivity to drugs that is maintained in the 

population. Koella and BoÄete (2003) study a host-parasite evolution model of 
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malaria where the host invests in its immune system over time and the parasite 

invests in its ability to evade the host's immune response. 

The model for malaria transmission that we analyse is an extension of the 

equations introduced by Ngwa and Shu (2000). In the Ngwa and Shu (2000) model, 

humans follow an SEIRS-like pattern and mosquitoes follow a SEI pattern, similar to 

that described by Yang (2000) but with only one immune class for humans. Humans 

move from the susceptible to the exposed class at some probability when they come 

into contact with an infectious mosquito, and then to the infectious class, as in 

conventional SEIRS models. However, infectious people can then recover with, or 

without, a gain in immunity; and either return to the susceptible class, or move to the 

recovered class. A new feature of this model is that although individuals in the 

recovered class are assumed to be “immune”, in the sense that they do not suffer 

from serious illness and do not contract clinical malaria, they still have low levels of 

Plasmodium in their blood stream and can pass the infection to susceptible 

mosquitoes. After some period of time these recovered individuals return to the 

susceptible class. Susceptible mosquitoes get infected and move to the exposed class, 

at some probability when they come into contact with either infectious humans or 

recovered humans. They then pass on to the infectious class. Both humans and 

mosquitoes leave the population through a density dependent natural death rate. This 

allows the model to account for changing human and mosquito populations. 

Variations in mosquito populations are crucial to the dynamics of malaria, and 

constant population models do not account for this. The model also includes human 

disease-induced death as mortality for malaria in areas of high transmission can be 

high, especially in infants. 
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Ngwa and Shu (2000) analyze this model assuming a linear per capita death 

rate. They convert the system to dimensionless quantities and in these new variables, 

define a reproductive number, Ro. They show that when Ro > 1, there exists an 

endemic equilibrium (non-negative solution distinct from the disease-free 

equilibrium), and furthermore, with no disease-induced death, this endemic 

equilibrium is unique. Using linear analysis, they also show that the disease-free 

equilibrium is locally asymptotically stable when Ro=1 and the unique endemic 

equilibrium (for no disease-induced death) is locally asymptotically stable when  

Ro >1. They conclude by using numerical simulations to support their proposition 

that the endemic equilibrium is stable for Ro > 1. 

In a second paper Ngwa (2004) rewrites the reproductive number in terms of 

the original (with dimension) parameters. He also includes a small disease induced 

death rate, using perturbation analysis to evaluate a first order approximation to the 

endemic equilibrium with disease induced death. Finally, he conducts some 

numerical simulations on a stochastic expansion of the model. This profusion of 

models has been driven by the need to understand different aspects of the complex 

malaria epidemiology. In the model we analyze, we aim to capture some of the more 

important aspects of this epidemiology while still keeping it mathematically 

tractable. Some of the important factors that we include are the presence of an 

exposed state in mosquitoes and dynamically changing human and mosquito 

populations, including human immigration and disease-induced death.  

 

 

 

 

 

23 
 



∆ℎ 

∆𝑣 

CHAPTER THREE 

METHODOLOGY 

3.0 Introduction 

This chapter investigates the dynamics of malaria in both human and vector 

populations. The model describes the dynamics of the two populations that interact 

with each other to cause the spread of the disease in the region. We derived threshold 

conditions to better understand the behaviour, trend and dynamics of the disease in 

the population. The model under study is similar to that by Chitnis, (2005) and 

Mwamtobe, (2010) and based on intervention strategies such as natural death, indoor 

residual spraying, and clinical treatment.  

 

3.1 The malaria model: 

Human 𝜓𝑅 

population 

  

 

 

 

 

Mosquito  

population 

 

                    

 

 

Figure 3.1: A diagrammatic representation of the model.  
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Susceptible humans, 𝑆ℎ, get infected when they are bitten by infectious mosquitoes. 

They then progress through the exposed, 𝐸ℎ, infectious, 𝐼ℎ, and recovered, 𝑅ℎ, 

classes, before returning to the susceptible class. Susceptible mosquitoes,  𝑈𝑣 , also 

become infected when they bite infectious humans. The infected mosquitoes then 

move through the exposed,  𝑉𝑣 , and infectious, 𝑊𝑣 , classes.  

 

3.2 Model description and formulation 

This model describes the dynamics of two populations namely: human 

population and vector (mosquito) population, interacting with each other. The model 

divides both populations into compartments and with assumptions about the nature 

and time rate of transfer from one compartment to another. The human population 

(Nh) is divided into four compartments:  susceptible or those at risk to infection (Sh), 

exposed (Eh), infected (Ih) and those who recover from infection (Rh). The vector 

population (Nv) is also divided into three compartments: susceptible vector (Uv), 

exposed vector (Vv) and infected vector (Wv).   

In this model, the human population is recruited at a constant rate,  Δh.  

When an infectious mosquito bites a susceptible human, the parasite is passed on to 

the human and that person will move to the exposed class at the rate µh. Again, the 

individual in the exposed class then move to the infectious class at a rate ρh. After 

some time, the infectious humans recover and move to the recovered class at the 

rate, τ. The recovered humans have some immunity to the disease and do not get 

clinically ill, but they still harbor low levels of parasite in their blood streams and 

can pass the infection to mosquitoes. After some period of time, they lose their 

immunity and return to the susceptible class. Humans leave the population through 

natural death at the rate, λh and the infected humans have an additional disease-
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induced death rate constant, σh. Since most sick people do not travel, we do not 

include immigration of infectious humans. Again, since the number of exposed 

humans is insignificant, we exclude them given the short time of the exposed stage. 

We make the assumption that there is no immigration of recovered humans.  

Female anopheles enters the susceptible class through birth at a rate Δv. The 

mosquito then moves from the susceptible to the exposed (incubating) class at the 

rate µRv and after some time, depending on the humidity and temperature, the 

mosquito progresses at a rate ρv, from the exposed class to the infectious class. The 

mosquito remains infectious for life. Mosquitoes leave the population through a per 

capita natural death rate.  

In other words, new infections occur in both populations where vhβ  and  hvβ  

are the respective rates of infection between susceptible human and infected vector, 

and susceptible vector and infected human. The effective contact rates between the 

two populations, which may be defined as the average number of contacts per day 

that will lead to the infection of one party if the other party was infectious, depends 

on a number of factors: the man biting rate of the mosquitoes, the transmission 

probabilities between the species and the number of individuals in both population.     

We first describe the mathematical model including the definition of a 

domain where the model is mathematically and epidemiologically well-posed. We 

also define the reproductive number and then prove the existence and stability of 

both the disease-free equilibrium point and the endemic equilibrium point. 

 

3.2.1 The state variables and model parameters 

The state variables (Table 3.1) and parameters (Table 3.2) for the malaria 

model (Figure 3.1) satisfy the equations (3.1a and 3.1b). It is to be noted that all the 
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parameters are strictly positive with the exception of the disease-induced death rate,

hσ , which is nonnegative. Also, the mosquito birth rate must be greater than the 

mosquito death rate, to ensure that we have a stable positive mosquito population. 

 

Table 3.1: The state variables for the malaria model 

Parameter Description 

𝑺𝒉 Number of susceptible humans 

𝑬𝒉 Number of exposed humans 

𝑰𝒉 Number of infectious humans 

𝑹𝒉 Number of recovered humans 

𝑼𝒗 Number of susceptible mosquitoes  

𝑽𝒗 Number of exposed mosquitoes  

𝑾𝒗 Number of infectious mosquitoes  

𝑵𝒉 Total human population 

𝑵𝒗 Total mosquito population 

 

 

Table 3.2: Parameters of the model 

Parameter Description 

𝜟𝒉 Recruitment rate of humans. 

𝜟𝒗 Recruitment rate of mosquitoes. 

𝝁𝒉 Progression rate of susceptible humans to exposed individuals. 

𝝁𝒗 Progression rate of susceptible mosquitoes to exposed 

mosquitoes. 
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𝝆𝒉 Progression rate of exposed humans to infected individuals. 

𝝆𝒗 Progression rate of exposed mosquitoes to infected mosquitoes.  

𝝉 Rate of recovery of humans from the infectious state to the 

recovered state – clinical treatment. 

𝝀𝒉 Natural death rate for humans. 

𝜽 Death of mosquitoes due to natural death and indoor residual 

spraying 

𝝈𝒉 Disease-induced death rate for humans.  

𝝍 Rate of loss of immunity. 

𝜷𝒗𝒉 Probability that a bite results in transmission of infection from 

an infectious mosquito to a susceptible human.  

𝜷𝒉𝒗 Probability that a bite results in transmission of parasite from an 

infectious human to a susceptible mosquito. 

𝝑 Mosquito biting rate.  

 

 

3.1.2 Equations of the model: 

The dynamics of the groups described above and as shown in the flow 

diagram (3.1) are described by the system of differential equations given by: 

 

 

 

 

 

                  (3.1a) 
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,                                               (3.1b)                                                                                                       

where vh v
h

h

W
N

β ϑ
µ =

  
is the rate of infection between susceptible human and infected 

vector, and hv h
v

h

I
N

β ϑ
µ =  is the rate of infection between susceptible vector and 

infected human.                      

 

3.3 Basic properties of the malaria model 

The basic properties which are used in proving the stability of the system are 

the invariant region and positivity of solutions. 

 

3.3.1 Invariant region 

The invariant region describes the region in which the solution of the 

system makes biological sense. We can determine the total population sizes 𝑁ℎ and 

𝑁𝑣 from the differential equations of the model system. 

Now, considering the human population in (3.1a), we have 

                    h h h h hdN dS dE dI dR
dt dt dt dt dt

= + + +  
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                                                  Δh h h h h h h h h h hS E I R Iλ λ λ λ σ= − − − − −  

                                                  ( )Δh h h h h h h hS E I R Iλ σ= − + + + −  

   Hence,                       Δh
h h h h h

dN
N I

dt
λ σ= − −                                               (3.2)                              

  Also, considering the vector population of the model system (3.1a), we have     

                                    v v v vdN dU dV dW
dt dt dt dt

= + +  

                                                    Δv v v vU V Wθ θ θ= − − −  

                                                    Δ ( )v v v vU V Wθ= − + +  

Hence,                                 Δv
v v

dN
N

dt
θ= −                                                         (3.3) 

We assume that all the variables and parameters of the model are positive for all

0t ≥ .  In the absence of the disease, ( 0hσ = ), equation (3.2) becomes 

              Δh
h h h h h

dN
N I

dt
λ σ= − −  h h hNλ≤ ∆ −                         

Hence              Δh
h h h

dN
N

dt
λ≤ −                                                    (3.4)                                                           

When we apply both the Birkhoff and Rota (1989) theorem of differential inequality 

and separation of variables of differential inequality on equation (3.4), we get 

       
Δ

h

h h h

dN
dt

Nλ
≤

−
.                                                                          

Integrating both sides of the equation above, we have, 

    
Δ

h

h h h

dN
dt

Nλ
≤

−∫ ∫    
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     ( )1ln  Δh h h
h

N t cλ
λ
−

− ≤ +                                           

                                       ( ) ( )ln  Δh h h hN t cλ λ− ≥ − + . 

Hence,     Δ ht
h h hN Ae λλ −− ≥ ,                                            (3.5)                                                 

where A is a constant. Now, if we apply the initial condition ( ) ( )0
0h hN N= , we have 

    0Δ ( )h h hA Nλ= −                                                                      

Substituting 0Δ ( )h h hA Nλ= −   into equation (3.5), we have  

    0Δ (Δ ( ) )  ht
h h h h h hN N e λλ λ −− ≥ −                                           

Hence,              0Δ Δ ( )
hth h h h

h
h h

N
N e λλ

λ λ
− −

≤ −  
 

.                         (3.6)    

where ( )0hN  represents the value of   the first equation of (3.1b) evaluated at the 

initial values of the respective variables.  Thus as  t ∞→ , we have 
Δ

0 .h
h

h

N
λ

≤ ≤  

This indicates that hN  is bounded and all the feasible solutions of the human only 

component of the model system starting in the region hΩ  approach, enter or stay in 

the region, where                                   

                           ( )
4 Δ

Ω , , , : h
h h h h h h

h

S E I R N
λ

 
= ∈ ≤ + 

 .                                   (3.7)                                           

 Similarly, from equation (3.3) above, we can write 

                                              Δv
v v

dN
N

dt
θ≤ −                                                      (3.8a) 
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Applying both the Birkhoff and Rota (1989) theorem of differential inequality and 

separation of variables of differential inequality on equation (3.8a), we will have 

        
Δ

v

v v

dN
dt

Nθ
≤

−
.                                                                      

Integrating both sides of the equation above, we have 

               
Δ

v

v v

dN
dt

Nθ
≤

−∫ ∫    

              ( )1ln  Δv vN t cθ
θ
−

− ≤ +                                                                  

                                     ( ) ( )ln  Δ .v vN t cθ θ− ≥ − +  

Hence,     Δ t
v vN Be θθ −− ≥ ,                                                (3.8b) 

where B is a constant. Now, applying the initial condition, ( ) ( )0
0v vN N=  we have 

    0Δ ( )v vB Nθ= −                                                                     

Substituting 0Δ ( )v vB Nθ= −  into equation (3.8b), we have  

    0Δ (Δ ( ) )  t
v v v vN N e θθ θ −− ≥ −                                           

               0Δ Δ ( ) tv v v
v

N
N e θθ

θ θ
−− ≤ −   

                              (3.9)  

where ( )0vN  represents the value of the second equation of (3.1b) evaluated at the 

initial values of the respective variables. Thus as  t ∞→ , we have  

                                                    
Δ

0 v
vN

θ
≤ ≤  
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This shows that vN  is bounded and all the feasible solutions of the mosquito only 

component of the model system starting in the region vΩ  approach, enter or stay in 

the region, where 

                               ( )
3 Δ

Ω , , : .v
v v v v vU V W N

θ
 

= ∈ ≤ + 
                                    (3.10)                                                    

Finally, it follows from equations (3.7) and (3.10) that hN  and vN  are bounded and 

all the possible solutions of the model starting in Ω  will approach, enter or stay in 

the  

             

( )
7 Δ Δ

Ω , , , , , , : ; ,h v
h h h h v v v h v

h

S E I R U V W N N
λ θ

 
= ∈ ≤ ≤ + 


                 (3.11)                                                                                                                    

 which is a positively invariant set under the flow induced by the model (3.1). The 

solution of the system (3.1) remains in 𝛺 for all 𝑡 > 0 and thus the model is 

biologically meaningful and epidemiologically well posed in the domain 𝛺. 

 

3.3.2 Positivity of solutions 

The positivity of solutions describes non-negativity of solutions of system.  

Theorem 1:  Let the initial conditions for the model system (3.1) be  

( ) ( )( ) ( ) ( ) ( ) ( ) ( ){ }0 ,  0 0, ( 0 , 0 , 0 , 0 , 0 ) 0 Ωh v h h h v vS U E I R V W> ≥ ∈ . Then, the 

solution set { }( ), ( ), ( ), ( ), ( ), ( ), ( )h h h h v v vS t E t I t R t U t V t W t  of the system (3.1) is 

positive for all 𝑡 > 0. 

Proof 1: Considering equation (3.1a) of the model,  

         ( )h
h h h h h

dS
R S

dt
ψ λ µ= ∆ + − + ( )h h hSλ µ≥ − +  
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Hence,                   ( )h
h h h

dS
S

dt
λ µ≥ − +                             (3.12) 

Integrating equation (3.12) by separation of variables gives 

                                          ( )h
h h h

dS
S

dt
λ µ≥ − +∫ ∫  

                               ( )h
h h

h

dS
dt

S
λ µ≥ − +∫ ∫  

                               ( )h h hlnS dtλ µ≥ − +∫  

            ( )h h dt
hS e λ µ− +∫≥                                                        (3.13)                                                  

Applying the initial conditions to equation (3.13), we will have  

                           ( )( )  (0) 0h h dt
h hS t S e λ µ− +∫≥ ≥  

Similarly, from equation (3.1b) of the model,   

                                          ( ) ( )h
h h h h h h h h

dE
S E E

dt
µ λ ρ λ ρ= − + ≥ − +   

          ( )h
h h h

dE
E

dt
λ ρ≥ − +                                 (3.14)

       

Integrating equation (3.14) by separation of variables leads to 

                                       ( )h
h h h

dE
E

dt
λ ρ≥ − +∫ ∫  

                            ( )h
h h

h

dE
dt

E
λ ρ≥ − +∫ ∫  

                              ( )h h hlnE dtλ ρ≥ − +∫  

          ( )h h dt
hE e λ ρ− +∫≥                                                            (3.15)                                                      

Applying the initial conditions to (3.15) gives 
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                            ( )( )  (0) 0.h h dt
h hE t E e λ ρ− +∫≥ ≥  

Therefore, it can be shown that the remaining equations of the model system (3.1) 

are positive for all 𝑡 > 0. 

 

3.4 Analysis of the model 

3.4.1 Existence and stability of steady-state solutions  

Let ( , , , , , ),h h h h v v vE S E I R U V W◊ ◊ ◊ ◊ ◊ ◊ ◊  be the equilibrium points of the model system 

(3.1). The equilibrium points can be obtained by setting the right hand side of (3.1) 

equal to zero. That is, 

                                   

( )
( )

( )

( )
( )

       

 
          ( )
   

0

0

0

       Δ

       
                 

0  
0

0
0 

h h h h h

h h h h h

h h h h h

h h h

v v v

v v v v

v v v

R S

S E

E I
I R

U

U V
V W

ψ λ µ

µ λ ρ

ρ τ λ σ
τ ψ λ

µ θ

µ ρ θ
ρ θ

∆ = 


= 
= = 
=

+ − +

− +

− + +

− +

− +

− +

−


=


= 

                                                       (3.16) 

 

3.4.2 Existence of Disease-Free Equilibrium point, 𝑬𝒐 R  

The disease-free equilibrium points of a disease model are its steady-state 

solutions in the absence of disease or infection. We define the “diseased” classes as 

the human or mosquito populations that are either exposed or infectious. In the 

absence of disease, we have 0)(   0,   0,   0,   0   h h h v vE I R V andW◊ ◊ ◊ ◊ ◊= = = ==  , and this 

reduces equation (3.16) to  

                                                    
 –  0         

 
Δ   0           

h h h

v v

S

U

λ

θ

◊

◊

=

− =

∆





                                     (3.17)                                              
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The positive disease-free equilibrium for human and vector populations for the 

model system are h
h

h

N
λ
∆

=  and v
vN

θ
∆

= . 

Hence,                                      
Δ

, 0, 0, 0,   , 0, 0h v
o

h

E
λ θ
 

=  
 



.                                (3.18)                                            

This is the disease-free equilibrium point and there is virtually no disease in this 

state. 

 

3.4.3 The Basic Reproduction Number, 𝑹𝒐  

The basic reproduction number, according to Diekmann et al. (2000) and J.D. 

Murray (2002), is the expected number of secondary cases produced, in a completely 

susceptible population, by a typical infective individual. It helps us to set the 

threshold in the study of the disease both for predicting its outbreak and for 

evaluating its control strategies. Thus, the reproduction number, 𝑅𝑜, simply enables 

us to know whether a disease has died out or is persistent in a community. 

We use 1oR =  as a threshold below which the generation of secondary cases 

is insufficient to maintain the infection with human community. If 1oR <  it implies 

that, on average an infected individual produces less than one new infected 

individual during the infectious period and the infection can be wiped out. 

Conversely, if   1oR > , then infectious individuals can cause more than one 

secondary infection.  Hence the disease will spread in the community whereas a 

large number of Ro is an indication of a major epidemic. Therefore it is advised that 

the effectiveness of health control strategies should lower 𝑅𝑜 to less than zero.  

The reproductive number 𝑅𝑜 is computed using the next generation operator 

approach by van den Driessche and Watmough (2002) which is described in 
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Appendix A. From the system (3.1), we rewrite the equations starting with infectious 

classes for both the human and vector populations: , , ,h h v vE I V W  and the rest follow;          

 

( )

( )

( )

( )

Δ ( )

h vh v
h h h h

h

h
h h h h h

v hv h
v v v

h

v
v v v

h vh v
h h h h

h

h
h h h

v hv h
v v

h

dE W
S E

dt N
dI

E I
dt
dV I

U V
dt N

dW
V W

dt
dS W

R S
dt N

dR
I R

dt
dU I

U
dt N

β ϑ
λ ρ

ρ τ λ σ

β ϑ
ρ θ

ρ θ

β ϑ
ψ λ

τ ψ λ

β ϑ
θ

= − +

= − + +

= − +

= −

 
= ∆ + − + 

 

= − +

=



















− +






                                                             (3.19).   

The next generation matrix method was used to show the rate of appearance of new 

infection in compartments 𝐸ℎ and 𝑉𝑣, from the system (3.19); 

 

                          
 
0

0

vh v h

h

hv h v

h

W S

U
N

F

N

I

β ϑ

β ϑ

 
 
 
 

=  
 
 
 
 

                                                                      (3.20a)                                               

The Jacobian matrix of ℱ at 
Δ

,0,0,0, ,0,0h

h

v
oE

λ θ
 

=  
 

∆
 where  h

h
h

N
λ
∆

≤   and 

Δv
vN

θ
≤   to form the Jacobian matrix, 
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                         Δ
Δ

0 0 0
0 0 0 0

0 0 0

0 0 0 0

vh

hv v h

h

F

β ϑ

β ϑ λ
θ

 
 
 
= 
 
 
  

                                              (3.20b)   

Also, the transfer of humans out of the compartments of the model system by all 

other means 

              

( )
( )

( )

h h h

h h h h h

v v

v v v

E

V
I E
V

W V

λ ρ
τ λ σ ρ

ρ θ
θ ρ

 
 
 =


+
+


 
 

+ −
+
−

                                                  (3.21a)                               

Jacobian matrix of V is given by  

                    
( )

( )

0 0 0
0 0

0 0 0
0 0

( )
– 



h h

h h h

v

v

V

ρ λ
ρ τ λ σ

ρ θ
ρ θ

 
 
 =
 
 


+



+
+ +

−

                              (3.21b)          

The inverse of matrix V is given by 

                                     

( )( ) ( )

( )

( )

1

0 0 0

0 0

0 0 0

0 0

1
( )

1
 

1

 
1

h h

h

h h h h h h

v

v

v

V

ρ λ
ρ

ρ λ τ λ σ τ λ σ

ρ θ

ρ
θ ρ θ θ

−

 
 
 
 
 
 
 =
 


+

+ + + + +

+

+


 
 
 
 
 

                    (3.21c) 

 

The product of  𝐹 𝑎𝑛𝑑 𝑉−1 is given by 
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( )( ) ( )

( )

( )

1

0 0 0

0 0 0 0 0
0 0 0 0

0 0 0
0 0 0

0 0 0 0

1
( )

1
 

1Δ
Δ

 
10 0

h h

hvh

h h h h h h

hv v h

vh

v

v

FV

ρ λ
ρβ ϑ

ρ λ τ λ σ τ λ σ

β ϑ λ
ρ θθ

ρ
θ ρ θ θ

−

+

+ + + + +

+

+

 
 
 
  
  
  
  =
  
  
     
 
 
   

 

    

( )

( )( ) ( )

1

 

0

Δ Δ

0 0

0 0 0

00

0 0 0 0

Δ Δ
 

vh v vh

v

h hv v h hv v h

h h h h h h h h

FV

β ϑρ β ϑ
θ ρ θ θ

ρ β ϑ λ β ϑ λ
θ ρ λ τ λ σ θ τ λ σ

−

+

+ + +

 
 
 
 
 =  
 
 

 

+



+



                  (3.22)                                   

           

          

We let 
( )( )

Δ
Δ

h hv v h

h h h h h

s
ρ β ϑ λ

θ ρ λ τ λ σ+ + +
= , 

( )
Δ

,
Δ

hv v h

h h h

t
β ϑ λ

θ τ λ σ
=

+ +
 

( )
,vh v

v

q
β ϑρ

θ ρ θ
=

+
 and

 
 .vhr
β ϑ
θ

=   

If we substitute s, t, q and r into equation (3.22), we have 

                   1

0 0
0 0 0 0

0 0
0 0 0 0

q r

FV
s t

−

 
 
 =
 
 
 

.                                                          (3.23)                                           

We now calculate the eigenvalue of equation (3.23) to determine the reproduction 

number, 𝑅0, defined as the spectral radius (dominant eigenvalue) of the matrix. The 

eigenvalues of 1FV −  are computed from  1 0.D FV Iλ−= − =  
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0
0 0 0

0
0

λ
λ

λ0 0
0 λ

q r

D

s t

−
−

−
−

= = .                                              (3.24)                         

 

The eigenvalues of the matrix (3.24) is 

Δ Δ
( )( )( )( )( ) ( )( )( ) ( )

Δ Δ
( )( )( )

0
0
0

( )( )( )

i
hv v h hv v h

h h h h v vh h v h h h h v vh h v
h h

h h h h v h h h h v

λ
β ϑ λ β ϑ λ

ρ λ τ λ σ ρ θ θ β ϑρ ρ ρ λ τ λ σ ρ θ θ β ϑρ ρ
θ θ

λ ρ τ λ σ ρ θ θ ρ λ τ λ σ ρ θ θ

 
 
 
 
 
 
 
 
 

=

+



+ + + + + + +
−

+ + + + + + + +

  

                                                                                                     (3.25) 

The reproductive number, 𝑅𝑜 is given by                            

                 
( ) ( ) ( )

2

2 2 2 2

( )( )( )( ) Δ
( )Δ

h h h h v hv vh h v v h

h h h h h
o

v

R
ρ λ τ λ σ ρ θ θ β β ϑ ρ ρ λ

ρ λ τ λ σ ρ θ θ θ

+ + + +

+ + + +
=  

             
2

2

Δ
( )( )( ) Δ

hv vh h v v h

h h h h v h
oR

β β ϑ ρ ρ λ
ρ λ τ λ σ ρ θ θ+ + + +

=                 (3.26)                        

where, 

� 𝜌ℎ
𝜌ℎ+𝜆ℎ

� − is the probability of survival of individual from exposed stage to 

infectious stage. 

� 𝜌𝑣
𝜌𝑣+𝜃

� − is the probability of survival of mosquitoes from the exposed stage to 

infectious stage. 

� 𝛽𝑣ℎ𝜌𝑣𝜗
𝜃(𝜌𝑣+𝜃)

� − is the number of humans that one mosquito infects during the lifetime it 

survives as infectious, when all humans are susceptible.  
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� 𝛽ℎ𝑣𝜗𝜌ℎ
(𝜌ℎ+𝜆ℎ)(𝜏+𝜆ℎ+𝜎ℎ)

� − is the number of mosquitoes that are infected through contacts 

with one infectious human, while the human survives as infectious, assuming no 

infection among vectors.  

The threshold number, oR  is the product of  ohR  and ovR . We define ohR  as 

the number of humans that one mosquito infects through its infectious lifetime, 

assuming all humans are susceptible and ovR  is also defined as the number of 

mosquitoes that one human infects through the duration of the infectious period, 

assuming all mosquitoes are susceptibles. Our reproductive number is a square root 

since it includes the generation of infections of two populations.  We manipulate  𝑅𝑜 

to get 

                                              2

Δ
Δ ( )( ) ( )o

vh h h hv v v

h h h h h v

R
β ρ ϑλ β ρ ϑ

ρ λ τ λ σ θ ρ θ
  
  + + +

=
+    

Hence,                                                 o oh ovR R xR=  

where                              

                                          
Δ ( )( )oh

vh h h

h h h h h

R
β ρ ϑλ

ρ λ τ λ σ+ + +
=                                  (3.27)                                    

and 

                                          
Δ

( )( )
hv v v

v
ovR

β ρ ϑ
θ ρ θ θ+

= .                                                    (3.28)                                                           

The number of latent infections produced by an infectious human during the average 

infectious period is    

                                              .
Δ ( )

vh h

h h h

β ϑλ
τ λ σ+ +

 

Also, the number of latent infections produced by an infectious vector during the 

average infectious period is                     
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                                                    2

Δhv vβ ϑ
θ

.                                                                           

Infection of malaria occurs in a community owing to contact between the 

humans and mosquitoes. In this regard, it can be seen from (3.26) that the mosquito 

biting rate, 𝜗, appears twice since it controls the spread from mosquitoes to humans 

and from humans to mosquitoes. The magnitude of the basic reproduction number, 

𝑅0 determines whether the disease still persists or is wiped out. 

 

3.4.4 Local stability of the disease-free equilibrium, Eo 

We now examine the stability of the disease-free equilibrium point, 

Δ
,0, 0, 0,  ,0, 0h v

o
h

E
λ θ

 
=  
 



. The local stability of 𝐸𝑜 is determined based on the signs 

of the eigenvalues of the Jacobian matrix. The disease-free equilibrium point, (𝐸𝑜) is 

locally asymptotically stable if the real parts of these eigenvalues are all negative, 

otherwise it is unstable.  

Theorem 3: The disease-free equilibrium point, Eo for the system (3.1) is locally 

asymptotically stable if Ro < 1 and unstable if Ro > 1. 

Proof: We differentiate each equation in the model system (3.1) with respect to the 

state variables   , , , , ,h h h v v vE I R U V W . We redefine the system as 

                        

( , , , , , ( )
( , , , , , ( )
( , , , , , ( )
( , , , , , Δ ( )
( , , , , , ( )
( , , , ,

)
)
)

,

)

)
)

h h h v v v h h h h h

h h h v v v h h h h h

h h h v v v h h h

h h h v v v v v v

h h h v v v v v v v

h h h v v v v v v

a E I R U V W S E
b E I R U V W E I
c E I R U V W I R
d E I R U V W U
e E I R U V W U V
f E I R U V W V W

µ λ ρ
ρ τ λ σ
τ ψ λ

µ θ
µ ρ θ
ρ θ

− +
− + +

−

=
=
=
=
=

− +

=

+

− +
−











      

Hence, at the steady states, the Jacobian , , , , ,a b c d e f  with respect to 

  , , , , ,h h h v v vE I R U V W  is given by 

42 
 



                                            
h v

h v

a a
E W

f f
E W

∂ ∂ 
 ∂ ∂ 
 
 ∂ ∂ 
 ∂ ∂ 



  



 

which becomes 

 

        

( )
( )

( )

( )

0 0 0 0
0 0 0 0

0 0 0 0

  

0 0 0 0

   τ    
    

Δ

0 0 0 0

0

Δ
Δ

  
Δ

0 0  0

h h vh

h h h

h

hv v h

h

hv v h
v

h

v

ρ λ β ϑ
ρ σ λ

τ ψ λ
β ϑ λ

θ
θ

β ϑ λ
ρ θ

θ
ρ θ

− +
− + +

− +
−

−

 
 
 
 
 
 
 
 
 
 

 −

− +



                 (3.29) 

The third and fourth columns have diagonal entries ( )   hψ λ− +  and θ−  which are 

two of the eigenvalues of the Jacobian. We exclude these columns and the 

corresponding rows to calculate the remaining eigenvalues. 

                

( )
( )

( )

 
   τ    

Δ
    

Δ

0 0
0 0

0 0

0 0

h h vh

h h h

hv v h
v

h

v

A

ρ λ β ϑ
ρ σ λ

β ϑ λ
ρ θ

θ
ρ θ

 
 
 
 =
 
 
  

− +
− + +

− +

−

                         (3.30)                     

If we let 𝜆 be the eigenvalues of matrix A, then   0A Iλ− =  where 𝐼 is a 4 4x  

identity matrix. Then, 

( )
( )

( )

0 0
0 0

0
0

 
   τ

0

  
  Δ

    
Δ

0 0 )(

h h vh

h h h

hv v h
v

h

v

A I

ρ λ β ϑ
ρ σ λ

λ β

λ
λ

λ

λ

ϑ λ
ρ θ

θ
ρ θ

− +
− +

+
++

− =
− + +

− +

=             (3.31) 
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These eigenvalues are the solutions of the characteristic equation of the reduced 

matrix of dimension four which is given by 

      ( )( )( )( )
2

    τ        0hv vh h v v h
h h v h h

h

ϑ β β ρ ρ λ
θ λ ρ λ λ ρ θ λ σ λ λ

θ
∆

+ + + + + + + + − =
∆

             (3.32) 

Now, letting ( ) ( ) ( )0 1 2 3    ,    ,       and τ    h h v h hp p p pθ ρ λ ρ θ σ λ= = + = + = + + , we 

substitute into 

                                 
2

2
2

Δ
( )( )( ) Δ

hv vh h v v h
o

h h h h v h

R
β β ϑ ρ ρ λ

ρ λ τ λ σ ρ θ θ
=

+ + + +
   

 to get    

                                      
2

2

0 3 2 1

Δ
  Δ

hv vh h v v h
o

h

R
p p p p

β β ϑ ρ ρ λ
θ

= . 

We can expand and simplify (3.32) to get                                 

                                4 3 2
3 2 1 0 0q q q qλ λ λ λ+ + + + =               (3.33)                                            

where 

                            

( )( )
( )

3 1 3 0

2 3 1 0 0 2 1 3

1 0 3 2 1 3 0 0 1 2

2
0 0 1 2 3

2
2

2
Δ
Δ

v

v

v

v h
h v hv vh

h

q p p p
q p p p p p p p

q p p p p p p p p p

q p p p p

ρ
ρ

ρ
λ

ρ ρ β β ϑ
θ

= + + + 
= + + + + 

= + + + 

= −


                                  (3.34) 

The Routh-Hurwitz conditions (Murray, 1991), ensure that all roots of the 

polynomial given by (3.33) have negative real parts. For this polynomial, the Routh-

Hurwitz conditions are 
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0 1 20,   0,  0q q q> > > , 3 0q >   and 1 3 0H q= >  

                                        

3

1 2 3

0 1 2

1  0    0  0 
1 0

     0 0

0 0     0   0   

n

n

q
q q q

H q q q

q

 
 
 
 =
 
 
  







     



,  

where 𝑞𝑗 = 0 𝑖𝑓 𝑗 > 𝑛.    

                                             1 3 0H q= >  

                                                        3
2

1 2

1
0

q
H

q q
= >  

                                                        
3

3 1 2 3

0 1

1 0
0

0

q
H q q q

q q
= >  

                                                       

3

2 31
4

0 1 2

0

1 0   0 
1

0 
0
0 0 0  

q
q qq

H
q q q

q

= >  

We can clearly see that 4 0 3H q H= . Since 0 1 2 30,    0, 0,  0p p p p> > > >  we have 

0iq > ,  1, 2, 3.i =  Again, if 𝑅𝑜 < 0,  it follows that 𝑞0 > 0 and therefore 𝐻2 > 0 and 

𝐻3 > 0.  

Clearly,  

                                                 ( ) 2
3 1 3 2 1 0 3H q q q q q q= − −  

 and  

                                                 2 3 2 1H q q q= − .  

Using Maple, we can see that 

                                                 2 3 2 1  H q q q= −    
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( ) ( )
( ) ( )

2 2
2 3 0 2 1 2 3 0 2 1 0 3 1 2

2 2
1 0 2 3 0 1 3 2 2 1 0

2

2 2   )

          2 ( )

0

(H p p p p p p p p p p p p p

p p p p p p p p p p p

H

= + + + + + + + +

+ + + + + + +

>

   (3.35)          

and 

                          ( ) 2
3 1 3 2 1 0 3H q q q q q q= − −                                                                        

( )( )( )( )( )( ) 2
3 3 0 0 2 3 2 1 0 3 1 1 2

Δ
    ) 0

Δ
v h

h v hv vh
h

H p p p p p p p p p p p p
λ

ρ ρ β β ϑ
θ

= + + + + + + + >         

which is clearly a positive quantity.                                                                   (3.36)                                                                                                                           

Therefore, all of the eigenvalues of the Jacobian matrix have negative real parts 

when 1oR < . On the other hand, 1oR >  means that 0oq < , and since all the 

coefficients 1 2 3( ,    )q q and q  of the polynomial (3.33) are positive, not all roots of 

this polynomial can have negative real roots. Hence, when 1oR > , the disease-free 

equilibrium point is unstable. 

 

3.4.5 Endemic equilibrium point, 𝑬𝟏 

In the presence of infection, that is, 𝐸 ≠ 0 and 𝐼 ≠ 0, the model system (3.1) has 

non-trivial equilibrium point, 𝐸1, called the endemic equilibrium point which is 

given by  

                           ( )1      ,   ,   ,   ,   ,   ,  0h h h h m m mE S E I R U V Wε ε ε ε ε ε ε= ≠  

where 

                            ( )   ,    ,    ,    ,    ,    ,   0.h h h h m m mS E I R U V Wε ε ε ε ε ε ε >  

According to Mwamtobe (2010), for the existence and uniqueness of endemic 

equilibrium, its coordinates should satisfy the following conditions   
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( )
( )

( )
( )
( )
( )

0

       0

 0

          0

           Δ 0

          0

                     0

h h h h h

h h h h h

h h h h h

h h h

v v v

v v v v

v v v

R S

S E

E I

I R

U

U V

V W

ε ε

ε ε

ε ε

ε ε

ε

ε ε

ε ε

ψ λ µ

µ λ ρ

ρ τ λ σ

τ ψ λ

µ θ

µ ρ θ

ρ θ

+ − + =

− + =

− + + =

− + =

− + =

− +

∆












=

− =

                                                    (3.37) 

We derive the endemic equilibrium point by solving equation (3.37) in terms of the 

forces of infection, vh v
h

h

W
N

εβ ϑ
µ =    and   hv h

v
h

I
N

εβ ϑ
µ = . 

From equation the second equation of (3.37), we have 

                            
( )

h h
h

h h

S
E

ε
ε µ

λ ρ
=

+ ( )
vh v h

h h h

W S
N

ε εβ ϑ
λ ρ

=
+

                                               (3.38)                          

From the sixth equation of (3.37), we have         

                            
( )

v v
v

v

U
V

ε
ε µ

ρ θ
=

+ ( )
hv h v

h v

I U
N

ε εβ ϑ
ρ θ

=
+

                                                  (3.39)                          

and from the seventh equation of (3.37), we can write 

                            
  v v

v
V

W
ε

ε ρ
θ

=                                                                              (3.40)                       

 Substituting (3.39) into (3.40), we get  

                            vW ε =
( )

 
 v hv h v

v h

I U
N

ε ερ β ϑ
θ ρ θ+

                                                                (3.41)           

From the fifth equation of (3.37), we have  

                            
( )

Δv h
v

hv h h

N
U

I N
ε

εβ ϑ θ
=

+
                                                            (3.42a)                          
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Substituting (3.42a) into (3.41), we have 

                            
( )( )

  Δhv v v h
v

v hv h h

I
W

I N

ε
ε

ε

β ρ ϑ
θ ρ θ β ϑ θ

=
+ +

                                           (3.42b)                                                                                                     

 From equation (3.27), we have 2

Δ
( )

hv v v
ov

v

R
β ρ ϑ
θ ρ θ

=
+

. Substituting into (3.42b), we  

have                   
( )

ov h
v

hv h h

R I
W

I N

ε
ε

ε

θ
β ϑ θ

=
+

                                                              (3.43) 

From the second equation of (3.37), we can write 

                             ( ) 0vh v
h h h h

h

W
S E

N

ε
ε εβ ϑ

λ ρ− + =                                                 (3.44)                                        

Substituting equation (3.43) into equation (3.44), we have 

                            
( ) ( ) 0ov h vh

h h h h
hhv h h

R I
S E

NI N

ε
ε ε

ε

θ β ϑ
λ ρ

β ϑ θ
− + =

+
                            (3.45)                          

From the third equation of (3.37), we have 

                                                ( ) 0h h h h hE Iε ερ τ λ σ− + + =       

 It implies that                         ( )h h h
h

h

I
E

ε
ε τ λ σ

ρ
+ +

= .      

Substituting  ( )h h h
h

h

I
E

ε
ε τ λ σ

ρ
+ +

=   into equation (3.45), we have  

              
( ) ( ) ( )

0h h hov h vh
h h h

h hhv h h

IR I
S

NI N

εε
ε

ε

τ λ σθ β ϑ
λ ρ

ρβ ϑ θ

+ +
− + =

+
                  (3.46a)          
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Multiplying through (3.46a) by ( ) ( )hv h h h hI N Nεβ ϑ θ ρ+  we get, 

                ( ) ( )( )( ) 0ov vh h h h h h hv h h h h h hR S I I N N Iε ε ε εθβ ϑ ρ λ ρ β ϑ θ τ λ σ − + + + + =   

Hence,    ( )( )( )( ) 0ov vh h h h h hv h h h h h hR S I N N Iε ε εθβ ϑ ρ λ ρ β ϑ θ τ λ σ− + + + + =  

It implies that either  

           0hI ε =   

 or    

          ( )( ) ( ) 0ov vh h h h h h h h hv h hR S N I Nε εθβ ϑ ρ λ ρ τ λ σ β ϑ θ− + + + + =              (3.46b)                     

From equation (3.46b) above, we can write 

                   
( )( ) ( ) 0ov vh h h

hv h h
h h h h h

R S
I N

N

ε
εθβ ϑ ρ

β ϑ θ
λ ρ τ λ σ

− + =
+ + +

                           (3.46c)            

But        
Δ ( )( )

vh h h
oh

h h h h h

R
β ρ ϑλ

ρ λ τ λ σ
=

+ + +
  , 

Δh
h

h

N
λ

≤    and 2
o oh ovR R xR=    

Rewriting equation (3.46c) by substituting the values we have                                                                                                         

 
Δ

0
Δ ( )( )

vh h h h
ov h hv h

h h h h h h

R S Iε εβ ρ ϑλ
θ β ϑ θ

ρ λ τ λ σ λ
   

− + =  + + +   
                                      

It implies that          
Δ

0h
oh ov h hv h

h

R R S Iε εθ β ϑ θ
λ

− − =  

                                 2 Δ
0h

o h hv h
h

R S Iε εθ β ϑ θ
λ

− − =                     
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Solving for hS ε  of the equation above, we have                                                           

          2

Δhv h h h
h

h o

I
S

R

ε
ε β ϑλ θ

λ θ
+

=                                                            (3.47) 

From the fourth equation of (3.37), we have  

                                      ( ) 0h h hI Rε ετ ψ λ− + =                                    

 Solving for hRε  we have  
( )

h
h

h

I
R

ε
ε τ

ψ λ
=

+
                                                           (3.48a) 

We also have    
( )

vh ov h
h

h hv h h

R I
N I N

ε

ε

β ϑ θ
λ

β ϑ θ
=

+
                                               (3.48b)                                

From the first equation of (3.37), we have          

                                       ( ) 0h h h h hR Sε εψ λ µ+∆ + − =                                          (3.49) 

Now, substituting equations (3.47), (3.48a) and (3.48b) into (3.49), we can solve for  

𝐼ℎ𝜀 as follows:          

( ) ( ) 2

Δ
    0h vh ov h vh v hv h h h

h
h h h oh hv h h

I R I W I
N RN I N

ε ε ε ε

ε

τ β ϑ θ β ϑ β ϑλ θ
ψ

ψ λ λ θβ ϑ θ

       +  ∆ + − + =      +  +        
              

                                     (3.50) 

The endemic equilibrium (3.50) satisfy the equation 

                                2( ) 0h hA I BI Cε ε+ + = ,                                                         (3.51)                              

where 

( )2

2
0

vh hv ov h
hv h

R
A N

R
β ϑ β ψ λ

β ϑτψ
 +

= − 
  

                                                      (3.51a)                           
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( ) ( ) 2
1 3 02

Δ
Δ ( 2 )vh h ov h

hv h h h h v
h o

R
B N N p p p

R
β ϑθ ψ λ

β ϑ ψ λ ψτθ ρ
λ

+ 
= + − + − + + + 
 

            

              (3.51b) 

 ( )( )2 2 2 1h h h h oC N Rλ θ ψ λ+∆= −                                                                        (3.51c)                              

Solving (3.51) as a quadratic in 𝐼ℎ𝜀, we have 

                          
2 2     4   – 4   Ω

2 2h
B B AC B B ACI

A A
ε − ± − + −
= = =                                                          

Hence,              ΩhI ε =                                                                                          (3.52)                                 

It is to be noted that 𝐼ℎ𝜀  is positive because we cannot have the rate of infection as 

negative epidemiologically.  

Now, substituting equation (3.52) into equation (3.47), we have 

                                2

Ω Δhv h h
h

h o

S
R

ε β ϑλ θ
λ θ

+
=                                                  (3.53) 

Also, substituting equation (3.52) into the third equation of (3.37), we get 

                                ( )Ωh h
h

h

Eε τ λ σ
ρ

+ +
=                                                 (3.54) 

Substituting equation (3.52) into the fourth equation of (3.37), we have 

                               
( )

Ω
h

h

Rε τ
ψ λ

=
+

                                                            (3.55) 

Moreover, solving for the susceptible, exposed and infected mosquitoes in a malaria 

endemic area using equation (3.52), using equation (3.42), we can write 
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( )

Δ
Ω

v h
v

hv h

N
U

N
ε

β ϑ θ
=

+
                                                 (3.56) 

From equation (3.39), we have      

                                          
( ) ( )

Δ
Ω

hv h v h
v

v h hv h

I N
V

N N

ε
ε β ϑ

ρ θ β ϑ θ
=

+ +
   

It implies that                    
( )

2
 Ω 
Ω 

ov
v

v hv h

R
V

N
ε θ

ρ β ϑ θ
=

+
                                           (3.57)                      

From equation (3.43)       
( )

  Ω  
 Ω
ov

v
hv h

R
W

N
ε θ

β ϑ θ
=

+
                                                (3.58)                          

When we examine (3.51) critically, we can show that there is a unique 

endemic equilibrium point if 0B <  and 20    4 0C or B AC= − = . There are two 

endemic equilibria if 0,  B<0C > and 2 4 0B AC− > , otherwise there is none. It is 

also to be noted that the coefficient A is always positive and C is positive if and 

negative if. This leads to the following result: 

a. There is a unique endemic equilibrium if 0 1oC R< ⇔ > , 

b. There is a unique endemic equilibrium 20    0    4 0B and C or B AC< = − = , 

c. There are two endemic equilibria 2  0 ,  0 and  4 0C B B AC> < − > , 

d. No endemic equilibrium otherwise.  

 

3.4.6 Local Stability of the Endemic Equilibrium 1E  

We can determine the stability of the endemic equilibrium by computing the 

eigenvalues of the Jacobian matrix and then evaluate it at the endemic equilibrium. 

This can be done by using Centre Manifold Theory as presented in Chavez and 
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Song, 2004. The system (3.1) is rewritten by introducing the dimensionless state 

variables of the basic malaria model as follows; let 

                      1 2 3 4 5 6 7, ,   ,   ,   ,   ,  h h h h v v vl S l E l I l R l U l V l W= = = = = = =  

Rewriting equation (3.1) in vector form, we have 

                                                       ( )i
i

dL
G L

dt
=    

where  

                   1 2 7( ,  , , )T
iL l l l= … , 1 2 7( ,   , ,  )TG g g g= … ,  Γ vhβ=  from equation (3.26). 

The system of equations (3.1) becomes 

                                    

( )

( )

( )

( )

7 11
4 1 1

7 12
2 2

3
2 3 3

4
3 4 4

5 3 5
5 5

6 3 5
6 6

7
6 7 7

Γ
   

Γ
 



  


Δ

  

 

h
h h

h

h
h h

h

h h h

h

hv h
v

h

hv h
v

h

v

l ldl
l l g

dt
l ldl

l g
dt
dl

l l g
dt
dl

l l g
dt
dl l l

l g
dt
dl l l

l g
dt
dl

l l g
dt

λ ϑ
ψ λ

ϑλ
λ ρ

ρ τ λ σ

τ ψ λ

β ϑλ
θ

β ϑλ
ρ θ

ρ θ

= ∆ − + − =

= − + =

= − + + =

= − + =

= − −


∆ 

∆ 






=

= − + =



∆

∆


= − =








                                          (3.59)      

 

where,  

                                          
1 2 3 4

5 6 7

, 



h

v

N l l l l

N l l l

= + + +

= + +
  

                                            Γ vhβ= ,  

where Γ  is the bifurcation parameter.  
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We linearise (3.59) at disease-free equilibrium point oE  when *Γ Γ=   with 1oR = .  

Substituting 1oR =  into (3.26), we have 

                                   
2

2

Δ
( )( )( ) Δ

hv vh h v v h
o

h h h h v h

β β ϑ ρ ρ λ
ρ λ τ λ σ ρ θ θ

=
+ + + +

      

      

Hence,                        ( )( )( )2
*

2

 
Γ

Δ
h h h h v h

v h v hv h

θ ρ λ τ λ σ ρ θ
ρ ρ β λ ϑ

+ + + + ∆
=  

We have zero being the simple eigenvalue of the following Jacobian matrix, with the 

application of the bifurcation parameters. 

                    ( )

0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

Γ
Γ

  

( )0 0 0 0 0
0 0 0 0    0  

h

h

h

v

v

G

H
J

K
λ ψ ϑ

ϑ
ρ

τ ψ λ
θ

ρ θ
ρ θ

 
 
 
 
 
 
 
 
 
  

− −

− +
−

− +
−

                    (3.60)              

where 

  ( )  h hG τ λ σ= − + + ,  
Δhv h v

h

H
β ϑλ

θ
−

∆
= ,   

Δhv h v

h

J
β ϑλ

θ∆
=    and     ( )   h hK ρ λ= − +

. 

The association between the right eigenvector with the eigenvalue zero is 

( )1 2 7, ,...,x x x x= . 

 Solving gives the system    
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( )
( )
( )

1 4 7

2 7

2 3

3 4

3 5

3 6

6 7

  Γ       0
     Γ      0

         0

                 0
Δ

        0

Δ
  ( )    0

                         0

h

h h

h h h

h

hv h v

h

hv h v
v

h

v

x x x
x x

x x

x x

x x

x x

x x

λ ψ ϑ
ρ λ ϑ

λ τ λ σ

τ ψ λ
β ϑλ

θ
θ

β ϑλ
ρ θ

θ
ρ θ



− + − = 
− + + =

− + + =
− + = 

− − =


− + =



− =

∆



∆



                                                      (3.61) 

We get a right eigenvector by solving the system (3.61) 

                                              

( )

( )

4 7
1

7
2

2
3

3
4

3
5 2

3
6

7 7

Γ
 

Γ
 
(   )

 



  

Δ
  

Δ
( )

 
    0

h

h h

h

h h

h

hv h v

h

hv h v

h v

x x
x

x
x

x
x

x
x

x
x

x
x

x x

ψ ϑ
λ
ϑ

ρ λ
λ

τ λ σ
τ
ψ λ
β ϑλ

θ
β ϑλ
θ ρ θ

−
=

=
+

=
+ +

=
















∆ 



∆ 




+

= −

=
+

= >

                                             (3.62)                          

The left eigenvector satisfying *    1 u x=  is ( )1 2 7    ,  ,  , u u u u= … .  

Now, we transpose matrix (3.60)   to find the left eigenvector associated with the 

eigenvalue 0. This will give us the matrix leftJ , 
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                 ( )

0 0 0 0 0 0
0 0 0 0 0
0 0 0

0 0 0 0 0
0 0 0 0 0 0
0 0 0 0

  

( )
Γ  

0
0 0 0Γ 0   

h

h

h

v v

G H J
K

λ
ρ

τ
ψ ψ λ

θ
ρ θ ρ

ϑ ϑ θ

 
 
 
 
 
 


−

− +
− 


− +

−

 −




 

                       (3.63)              

where 

         ( )  h hG τ λ σ= − + + , 
Δ

,hv h v

h

H
β ϑλ

θ∆
= − ( )Δ

       hv h v
h h

h

J and K
β ϑλ

ρ λ
θ

= − +
∆

= . 

We then calculate the following system 

   

( )

( )

1

2 3

3 4 5

                                                                                   0
                                                             0

Δ
       

h

h h h

hv h v hv
h h

h

u
u u

u u u

λ
ρ λ ρ

β ϑλ β
τ λ σ τ

θ

− =

− + + =

−
∆

+ + + − +

( )

6

1 4

5

Δ
    0

                                                                 0
                                                                                    0
                     

h v

h

h

u

u u
u

ϑλ
θ

ψ ψ λ
θ

=

− + =

− =

∆

6 7

1 2 7

                                    ( )     0
                                                  Γ    Γ         0

v vu u
u u u
ρ θ ρ

ϑ ϑ θ








− + + =
−






=



+ −






                      (3.64)                                           

From the left eigenvector we have the following results 

1

2 2

                                                                                     0
                                                                               0

                           

u
u u

=
= >

( ) 2
3

4
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+

=

=
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


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
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
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We have provided the theorem in Chavez and Song, (2004), in Appendix B to prove 

the local stability of the endemic equilibrium point near 1oR = .  

 

3.4.6.1 Computation of a and b 

We use the same procedure as shown in Driessche and Watmough to determine the 

conditions at which the endemic equilibrium point is stable or unstable. The 

associated non-zero second order partial derivatives (at DFE) for the system (3.59) 

are given by  

                              ( ) ( )
2 23 7

, , 2 , , 6

   0 , 0     0 , 0          k k
k i j k i j

k i j k i ji j i j

g g
a u x x u x x

l l l l= =

∂ ∂
= +

∂ ∂ ∂ ∂∑ ∑
 

and 

                             ( ) ( )
2 23 7

, 2 , 6

   0 , 0    0 , 0   
Γ Γ
k k

k i k i
k i k ii i

g g
b u x u x

l l= =

∂ ∂
= +

∂ ∂ ∂ ∂∑ ∑                        (3.66) 

Now,   𝑢1 =  𝑢4 =  𝑢5 = 0  for  𝑘 = 1, 4, 5.  

Considering 𝑘 = 2, 3, 6, 7, we can compute   𝑎   and   𝑏    from the system (3.59), to 

get 

                                ( )7 1
2 2

Γ
         

Δ
h

h h
h

l l
g l

ϑλ
ρ λ= − +  

                                     ( ) ( )7
2 3 2

Γ
              

Δ
h

h h h
h

l
N l l l

ϑλ
ρ λ= − − − +  

 Hence,                    ( )7 7 2 7 3
2 2

Γ Γ Γ
            

Δ Δ Δ
h h h h

h h
h h h

l N l l l l
g l

ϑλ ϑλ ϑλ
ρ λ= − − − +

        
 

Again,                    

                                3 5
6 6    ( )

Δ
hv h

v
h

l l
g l

β ϑλ
ρ θ= − +  
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                                     ( )3
6 7 6        ( )  

Δ
hv h

v v
h

l
N l l l

β ϑλ
ρ θ= − − − +  

Hence,                 3 3 6 3 7
6 6   ( )

Δ Δ Δ
hv h m hv h hv h

v
h h h

l N l l l lg lβ ϑλ β ϑλ β ϑλ ρ θ= − − − +
 

Hence, the non-zero partial derivatives at the disease-free equilibrium are 
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∂ ∂
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∂ ∂
 

                                                         
2

6

7 3

 
Δ

hv h

h
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Therefore,  

  
2 22 2

6 62 2
2 2 7 2 3 7 6 6 3 6 7 3

2 7 3 7 6 3 7 3

     
g gg g

a u x x u x x u x x u x x
l l l l l l l l

∂ ∂∂ ∂
= + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 

              

2 2 7 2 3 7 6 6 3 6 7 3

 

Γ   Γ  
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h h h h
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= − + − + − + −       
       
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Δ

h
hv

h

u x x x u x x x
ϑλ

β− + + +    

( ) ( ) ( ) ( ) ( )
2

2 2
2 7 7 6 3

    Δ Γ
Γ 1

       Δ  
 

h h h h hv h v h
hv

v h h h hh h h h h

a u x u x
ϑλ τ λ σ ρ β ϑ λ ρ

ϑ β
ψω β θ τ λ σ ρ λρ λ τ λ σ

  
   + + +  = − + +    + + + ++ + +   
   

                                                                                                                              (3.67) 

Since the sign of  a  is negative, it implies that 0a < .  
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For the sign of b, we can show that the associated non-vanishing partial derivatives 

are                      7 12  
Γ Δ

h

h

l lg ϑλ∂
=

∂
 

                              
2

12

7

Δ
        .        

Γ Δ Δ
h h h

h h h

lg
l

ϑλ ϑλ
ϑ

λ
 ∂

= = = ∂ ∂  
 

We can find from the above expression that                                                  

                              
2

2
2 7 2 7

7

      0  
Γ

g
b u x u x

l
ϑ

∂
= = >

∂ ∂                                                               
(3.68) 

It implies that the sign of  b  is positive, thus 0b > .
 

In view of the above, the theorem holds that the model system (3.1) has unique 

endemic equilibrium which is locally asymptotically stable when 0 1R <  and 

unstable when 0  1R > . 

 

Summary 

We formulated a model of the transmission dynamics of malaria which have 

changing human population with recruitment of new individuals in the susceptible 

class. The model was analysed to show the existence of a domain in which the model 

is epidemiologically meaningful and mathematically well-posed. In addition, the 

existence and stability of the disease-free and endemic equilibrium points were 

analysed. 

Moreover, the next generation method was used to calculate the reproduction 

number, oR  as an important parameter that plays an immense role in the control of 

malaria infection. We also proved that the disease-free equilibrium 𝐸0 is locally 

asymptotically stable if   1oR < , and when 1oR > , the endemic equilibrium 𝐸1 

appeared. 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

4.1 Introduction 

This chapter presents the results and discussion of the study. The presentation 

follows the order of the study objectives as written in chapter one. They include 

formulating a mathematical model for the region, performing stability analysis of the 

model and carrying out numerical simulations on the model. 

 

4.2 Data collection 

Data was obtained mainly from secondary sources. The secondary data was 

obtained from both the Centre for Health Information Management of the Ghana 

Health Service and the Statistical Service as well as published materials from books, 

journals and related studies on mathematical modelling of malaria.  

 

4.2.1 Greater Accra population data: 

Table 4.1 presents the data on population of the Greater Accra region from 

the year 2000 to 2011. The data was obtained from the Ghana Statistical Service. 

However, the 2000 and 2010 population values for the region were obtained from 

the population and housing census conducted in 2000 and 2010 respectively. The 

rest were projected using the regional growth rate of 3.22. 

 

Table 4.1: Greater Accra population from 2000 - 2011 

Year Population  Year Population  Year Population 

2000 2905726 2004 3298607 2008 3744608 

2001 2999326 2005 3404862 2009 3865230 
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2002 3095940 2006 3514540 2010 4010054 

2003 3195667 2007 3627750 2011 4139226 

Source: Ghana Statistical Service 
 

 

4.2.2 Lab-confirmed malaria cases and deaths: 

The data on lab-confirmed malaria cases and deaths of Greater Accra region 

is illustrated in Table 4.2. It was obtained from the Centre for Health Information 

Management of the Ghana Health Service. It spans a period of twelve years. 

 

Table 4.2: Greater Accra lab-confirmed malaria cases and deaths 

Year Cases Deaths   Year Cases Deaths 

2000 374015 2548 2006 492658 4028 

2001 398524 2719 2007 512087 4653 

2002 420115 2987 2008 559653 4963 

2003 458025 3018 2009 629537 5167 

2004 478254 3529 2010 702599 6572 

2005 479985 3897 2011 928220 7389 

Source: CHIM, Ghana Health Service 

 

4.2.3 Data for mosquitoes’ population: 

The data for the mosquito population are as presented in Table 4.3. The 

number constituting the dwelling units in Accra was obtained from the 2010 

Population and Housing Census whilst the latent and incubation periods were 

obtained from the study done by Chitnis (2005). The other values were estimated.  
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Table 4.3: Data for mosquitoes’ population 
Parameter Value Source 

Total number of dwelling units in the Greater Accra 
Region 

1,090,397 GSS (2010) 

Estimated number of female Anopheles mosquitoes in 
each dwelling unit 

15 Estimated 

Total female Anopheles mosquitoes population, 𝑵𝒗 16356000 Estimated 

Mosquito life expectancy  25 Esteva and 

Vargas (2000) 

Latent period in mosquitoes 11 Chitnis (2005) 

Incubation period of malaria 14 MOH (2009) 

 

 

4.2.4 Data for the human population: 

Table 4.4 presents the data for the human population. The initial population 

and life expectancy were obtained from the 2000 and 2010 Population and Housing 

Census respectively by the Ghana Statistical Service.  

 

Table 4.4: Data for human population 
 

Parameter Value Source 

Initial Population, 𝑵𝒉 2906000 GSS (2000) 

Life expectancy  64 UNICEF (2012) 

Number of days for humans to recover from 
malaria infection 

7 MOH (2009) 

Number of days for humans to lose immunity 90 Blayneh, et al. 
(2009) 
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4.3 Estimation of parameters 

Table 4.5 presents the parameter of the model system and their corresponding 

values. These are estimated average values of the population and the rates are given 

per day. 

Table 4.5: Parameter values of the model system 

Description Symbol Value Source 
 

Humans recruitment rate 𝛥ℎ 0.0322
365

 
GSS (2010) 

Natural death rate for humans 𝜆ℎ 1
(64 365)x

 
UNICEF (2012) 

Progression rate of exposed 
humans to infected individuals 

𝜌ℎ 1
14

 
MOH (2009) 

Rate of loss of immunity 𝜓 1
90

 
Blayneh, et al. 
(2009) 

Probability of  a susceptible human 
being infected 

𝛽𝑣ℎ 0.0655 Niger et al. 
(2008) 

Recruitment rate of mosquitoes 𝛥𝑣 0.071 Niger et al. 
(2008) 

Natural death rate of mosquitoes 𝜃 1
25

 
Esteva and 

Vargas (2000) 

Disease-induced death rate for 
humans 

𝜎ℎ 0.0000027 World Malaria 
Report (2010) 
Ghana 

Progression rate of exposed  
mosquitoes to infected mosquitoes 

𝜌𝑣 1
11

 
Chitnis (2005) 

Probability of a susceptible 
mosquito being infected 

𝛽ℎ𝑣 0.42 Miranda et al. 
(2009) 

Rate of recovery of humans 𝜏 1
7

 
MOH (2009) 

Mosquito biting rate 𝜗 0.4 Chitnis (2005) 
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4.4 Data processing 

4.4.1 SEIR data of the Greater Accra Region: 

Table 3 provides the overview of the SEIR data of the human population. 

The infected data represents the number of lab-confirmed malaria cases. Data of the 

columns labelled susceptible, exposed and recovered were computed as shown:   

a.    –  Recovered Infected Deaths=  

b. 2
365

Exposed Infected= ×  

c. ( ) Susceptible Total population Infected Recovered Exposed= − + +  

Using the year 2000 as an example, we can compute the recovered, exposed and 

susceptible data as follows:  

a. 374015 2548 371467Recovered = − =  

b. 2374015 2049
365

Exposed = × =  

c. ( )2905726 374015 371467 2049 2158195Susceptible = − + + =  

Table 4.6: SEIR data of the Greater Accra Region 

Year Total 
population 

Deaths Susceptible Exposed Infected Recovered 

2000 2905726 2548 2158195 2049 374015 371467 

2001 2999326 2719 2202813 2184 398524 395805 

2002 3095940 2987 2256395 2302 420115 417128 

2003 3195667 3018 2280126 2510 458025 455007 

2004 3298607 3529 2343007 2621 478254 474725 

2005 3404862 3897 2446159 2630 479985 476088 

2006 3514540 4028 2530552 2699 492658 488630 

2007 3627751 4653 2605424 2806 512087 507434 

2008 3744608 4963 2627199 3067 559653 554690 
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2009 3865230 5167 2607873 3450 629537 624370 

2010 4010054 6572 2607578 3850 702599 696027 

2011 4139226 7389 2285089 5086 928220 920831 

Source: GHS, GSS and other calculated values 

 

4.5 Model for both human and mosquito populations: 

The initial conditions are: 𝑆ℎ(0) = 2159000, 𝐸ℎ(0) = 2000, 𝐼ℎ(0) = 374000, 

𝑅ℎ(0) = 371000, 𝑈𝑣(0) = 10750000, 𝑉𝑣(0) = 350000,  𝑊𝑣(0) = 5256000 and 

the total population sizes are 𝑁ℎ = 2906000 people and   𝑁𝑣 =

 16356000   mosquitoes. 

Substituting the parameter values into the model systems (3.1a) and (3.1b), we 

respectively have 

       

( )

0.344
0.000088 0.011111 0.000043

0.344
0.000043 0.071429

0.071429 0.142903

0.142857 0.011154
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.071 0.04
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h
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v h
v
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dU I
U
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 
= + − + 

 

= − +

= −

= −

 
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 
 

= 
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
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
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
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

                           (3.69) 
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And the model for total human and mosquito populations are as follows: 

        

           
0.000088 0.000043 0.0000027

0.071 0.04

h
h h

v
v

dN
N I

dt
dN

N
dt

= − − 

= −


                                                (3.70) 

  

4.5.1 Disease-free equilibrium point 

From Table 4.5, we have Δℎ = 0.000088, 𝜆ℎ = 0.000043,  Δ𝑣 = 0.071 

and  𝜃 = 0.04.  If we substitute the into the expression,
Δ

, 0, 0, 0,   , 0, 0h v
o

h

E
λ θ
 

=  
 



 

and multiply through by the initial conditions, we have the disease-free equilibrium 

point of the model system in the region to be 

                                       ( )0 4449290,  0,  0,  0, 1  9081250,  0,  0E = . 

 

4.5.2 Basic reproductive number 

The basic reproductive number, 𝑅𝑜 , which enables us to know whether a 

disease has died out or is persistent in the region, is computed as follows:                     

    

2

( )( )

Δ
    

Δ ( )( ) ( )

o oh ov

vh h h hv v v

h h h h h v

R R R

β ρ ϑλ β ρ ϑ
ρ λ τ λ σ θ ρ θ

=

  
=   + + + +  

             

Substituting the parameter values into the above expression, we have  

                    2

1(0.42)( )(0.4)(0.071)(0.0655)(0.07143)(0.4)(0.000043) 11
(0.000088219)(0.07147)(0.1429) (0.04 )(0.1309)oR

   =     
    

                         ( )(0.088916915 5.177) 442878=  
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Hence,        0.6785oR =  

Since 0.6785 1oR = < , we can conclude that malaria can be wiped out of the Greater 
Accra Region. 

 

4.5.3 Local stability of the disease-free equilibrium 

From equation (3.31), we have 

 
( )

( )

( )

0             0               
   τ              0                0   

Δ
       0               0           0

Δ
0  0                             ( )

vhh h

h hh

hv v h
v

h

v

A I

β ϑρ λ λ
σ λ λρ

β ϑ λ
λ ρ θ λ

θ
ρ θ λ

− + +
− + + +

− = − + + =

− +

   

If we substitute the parameter values into the above matrix, we have   

 

( )
( )

( )

0             0              0.02620.07147
   0.1429            0                   0  0.07143

     0 0.1447    0.1309         0            0
0  0                  0.091         (0.04 )

A I

λ
λ

λ λ
λ

− +
− +

− = − + =
− +

               

The characteristic equation of the matrix is given by    

                            

( )( )( )( )0.07147  0.1429  0.1309 0.04 0.000024643 0λ λ λ λ+ + + + − =  

Solving the above quartic equation, we got the real parts of the eigenvalues to be

{ }0.178209,  0.0127 8 2λ = − − . Now, since the real parts of the eigenvalues are all 

negative, the disease-free equilibrium point is asymptotically stable. 
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4.5.4 Endemic equilibrium point 

From equation (3.51a), we have 

                       

( )2

2
0

vh hv ov h
hv h

R
A N

R
β ϑ β ψ λ

β ϑτψ
 +

= − 
  

 

Substituting the parameter values into the above equation, we have  

0.0655 0.16 0.42 5.177443 0.111540.42 0.4 0.1429 0.01111 2906000 
0.46036

x x xA x x x xx = −    

                         775.083A =
 

Also, from equation (3.51b), we have   

 
( ) ( ) 2

1 3 02

Δ
Δ ( 2 )vh h ov h

hv h h h h v
h o

R
B N N p p p

R
β ϑθ ψ λ

β ϑ ψ λ ψτθ ρ
λ

+ 
= + − + − + + + 
 

        

Substituting the parameter values into the above equation, we have   

[ ]

[ ]2

0.0655 0.4 0.04 0.000088 5.177442878 0.0111540.42 0.4 0.000088 2906000 0.011154
0.000043 0.46036225

      0.011111 0.142857 0.04 2906000 0.385279

x x x x xB x x x x
x

x x x

 = −   
 + − 

 

                         
85.36174 10B x=  

Finally, 

                         ( )( )2 2 2 1h h h h oC N Rλ θ ψ λ+∆= −   

Substituting the parameter values into the above equation, we have    

                        
2 0.000043 0.16 2906000 0.000088 0.011154 (0.6785 1)C x x xx x= −  

                        1  8.3347C = −                     

Now, substituting the values of A, B and C into 2( ) 0h hA I BI Cε ε+ + = , we have 

                       2 8775.083( )  5.36174*10 1  8.3347 0h hI Iε ε+ − =            

Solving the above equation as a quadratic in hI ε ,  we have 

68 
 



                        8( 691763,  3.41954x1 )0hI ε −= −         

⟹             83.41954x10hI ε −=                               

Again, we compute the susceptible, exposed and recovered humans as well as the 

susceptible, exposed and infected mosquitoes in the malaria endemic area as follows: 

                2

Ω Δhv h h
h

h o

S
R

ε β ϑλ θ
λ θ

+
=  

                      
( ) ( )

( )

80.42 0.4 0.000043 3.41954*10 0.000088 0.04
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x x x x

x x
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=                  

                      4.44544=                                                

                ( )h hτ λ σ Ω
h

h

Eε

ρ
+ +

=  

           
80.1429 3.41954*10

0.071429
x −

=   86.84109 10x −=    

                
( )

Ω
h

h

Rε τ
ψ λ

=
+

  

           
8

70.142857 3.41954*10 4.37964*10
0.011154

x −
−= =             
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Δ
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v h
v

hv h

N
U

N
ε

β ϑ θ
=

+
 

          
( )8

0.071 2906000 1.775
0.42 0.4 3.41954 10 0.04 2906000

x
x x x x−

= =
+

        

                
( )

2
 Ω 
Ω 
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v hv h

R
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N
ε θ

ρ β ϑ θ
=

+
         

          

( )
8 2
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5.177442878 3.41954 10 0.04 2.68065 10
0.090909 0.42 0.4 3.41954 10   0.04 2906000

x x x x
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−
= =
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( )

  Ω   
 Ω
ov

v
hv h

R
W

N
ε θ

β ϑ θ
=

+
 

                     
( )

8
14

8

5.177442878 0.04 3.41954 10 6.09239 10
0.42 0.4 3.41954 10 0.04 2906000

x x x x
x x x x

−
−

−
= =

+
 

Therefore the endemic equilibrium point is given by 

( )8 8 7 14 14
1 4.44544,   6.84109 10 ,  3.41954x10 ,  4.37964x10 ,  1.775,  2.68065x10 ,   6.09239 10E x x− − − − −=

 

If we multiply through by the initial conditions, the endemic equilibrium point is 

given by 

( )6 7 9 7
1 9.5977 10 ,   0.000137,  0.012789,  0.162485,  1.90813 10 ,  9.38228 10 ,   3.20216 10E x x x x− −=

 

Also, since the sign of C is negative, i.e. 1  8.3347 0C = − < , it implies that the 

Greater Accra Region has precisely one unique endemic equilibrium. 

 

4.5.5 Local stability of the endemic equilibrium 

Using the bifurcation parameter, ( )( )( )2
*

2

 
Γ 14.1927

Δ
h h h h v h

v h v hv h

θ ρ λ τ λ σ ρ θ
ρ ρ β λ ϑ

+ + + + ∆
= =  

we can compute the right eigenvectors as follows: 
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0.000043

Γ 14.1927 0.4 1    79.433
(   ) 0.07147
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


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
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

 

Using equation (3.65), we can compute the left eigenvector as follows: 
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Finally, we now determine the signs of a and b to find out the local stability of the 

endemic region. Using equation (3.67) we have,

( )( ) ( )( )( )
2

2 2
2 7 7 6 3

    Δ Γ
  Γ 1

       Δ  
 

h h h h hv h v h
hv

v h h h hh h h h h

a u x u x
ϑλ τ λ σ ρ β ϑ λ ρ

ϑ β
ψω ρ θ τ λ σ ρ λρ λ τ λ σ

  
   + + +  =− + +    + + + ++ + +   

  
 

 Substituting the parameter values into equation above, we have                               
                    ( ) ( )0.194582 80.5731 20.9858    0.989501 0.014002 1a = − + +    
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Hence,                      329.212  a = −  

 

Also, from equation (3.68), we have  

                              
2

2
2 7 2 7

7

      0  
Γ

g
b u x u x

l
ϑ

∂
= = >

∂ ∂
      

 Substituting the parameter values into equation (3.68) above, we have 

                              
2

2
2 7

7

  1  1 0.4
Γ
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b u x x x

l
∂

= =
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Hence,                  0.4b =  

We conclude that the model system (3.1) has a unique endemic equilibrium which is 

locally asymptotically stable. It implies that malaria would persist in the region. 

 

NUMERICAL SOLUTION OF THE MODEL 

In this section, we illustrate the analytical results of the work by carrying 

out numerical simulations of the model using a set of parameters values given in 

Table 4.5. The model system is simulated using ODE solvers coded in Matlab 

programming language. We simulate the malaria model with intervention strategies, 

and find out the effects of varying each intervention parameter. All figures are 

plotted using the parameter values presented in Table 4.5 and the following initial 

conditions: (0) 2159000hS = , (0) 2000hE = , (0) 374000hI = , (0) 10750000vU = ,

(0) 371000hR = , (0) 350000vV =  and   (0) 5256000vW = . Also, the total population 

sizes are 𝑁ℎ = 2906000 people and   𝑁𝑣 =  16356000   mosquitoes.  
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Numerical results: 

4.6.1 Simulation of the human population with time 

The simulation of the susceptible, exposed, infected and recovered human 

populations are conducted to find out the dynamics of the disease in the population 

in order to ascertain whether we can reduce or eradicate the disease. 

 

              Figure 5.1: Illustrates the behaviour of the human population with time.  

From Figure (5.1), we can observe that the susceptible population decreases 

with time and then increases exponentially due to the interventions being practised. 

This shows that the susceptible population will be free from the disease.  With Ro<1, 

the plasmodium cannot multiply since there is a means of reducing or eradicating it. 

Also, the infected population decreases due to a decrease in the exposure to the 
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disease. We conclude that the control measures in place have positive impact in 

reducing or eradicating the spread of malaria disease. 

4.6.2 Simulation of the behaviour of the vector population 

The relationship of the susceptible, exposed and infected vector populations 

are considered in the figure below. 

 

             Figure 5.2: Illustrates the changes in the three state variables of the vector 

population in the model with time. 

From figure (5.2) above, we can observe that there is an exponential 

decrease in all the vector populations with time. The susceptible population will 

decrease and as such, a lot of the population will not be exposed to the disease.  In 

view of this, the exposed population will decrease. This implies that the plasmodium 

cannot multiply since there is a means of reducing or eradicating it. This is an 
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indication that with the current preventive measures, the disease can be eradicated 

from the region. 

4.6.3 Plot showing the prevalence in the model 

We now take a look at the prevalence in the population. We define 

prevalence as the ratio of the number of cases of a disease in a population to the 

number of individuals in the population at a given time. 

   Figure 5.3: Represents changes of prevalence with time 

The graph just increases slightly for a while and then drops asymptotically 

to 0 in the year 2600. This happens as a result of a reduction in the number of 

susceptible individuals who are affected by the disease with time. Subsequently, this 

leads to a reduction in the exposed mosquito population and then a corresponding 

decrease in the infectious vector population. This reduces the prevalence of the 

disease in the region with time. 
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4.6.4 Plot showing the behaviour of the biting rate of vectors with time 

The susceptible mosquito population, the exposed mosquito population and 

the infected mosquito population graph, are shown below. This is to enable us to 

know whether a reduction in the biting rate leads to decrease in the spread of 

malaria. 

 

Figure (5.4): Illustrate the dynamics of vector population with time 

 

The susceptible mosquito population, the exposed mosquito population and 

the infected mosquito population graph, Figure (5.4), shows the decreasing survival 

probability of a mosquito as more humans are covered by insecticide-treated bed 

nets and indoor residual spraying. These control measures reduce the availability of 

hosts, and kill mosquitoes that are attempting to feed, in such way reducing the 

spread of malaria. 
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4.7 Discussion 

Our main objective was to analyse and describe the dynamics and spread of 

the malaria in the human population and how best it can be controlled in the Greater 

Accra Region. We formulated a malaria model to control the spread of malaria and 

performed stability analysis of the model. We used Matlab ode45 to simulate the 

model which enabled us know the dynamics of the disease in the region.  

The basic reproduction number, Ro, was computed and we did a qualitative 

analysis of the model which showed that model has both a disease-free and endemic 

equilibria, and the two equilibrium points are locally asymptotically stable. We 

computed the disease-free-equilibrium to be 

( )0 4449290,  0,  0,  0, 1  9081250,  0,  0E = , the reproduction number, 0.6785oR =  

and the endemic equilibrium point was found to be 
 

( )6 7 9 7
1 9.5977 10 ,   0.000137,  0.012789,  0.162485,  1.90813 10 ,  9.38228 10 ,   3.20216 10E x x x x− −=

 

Numerical results showed that if more people tend to reduce the contact rate of 

the human and mosquito populations through the use of insecticide-treated bed nets 

and indoor residual spraying, then the region can reduce or eradicate malaria disease. 

It can therefore be concluded that if we really want to control the spread of the 

disease, then we must focus our attention on reducing the biting rate through the use 

of insecticide-treated bed nets and indoor residual spraying. 

 

 

 

 

 

77 
 



CHAPTER FIVE 
 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Introduction 

The summary of the findings as well as the conclusions and 

recommendations of the study are presented in this chapter. The study sought to 

analyse and describe the dynamics and spread of the malaria in the human 

population and how best it can be controlled in the Greater Accra Region. 

 

5.2 Conclusions 

We considered a malaria model to know the transmission dynamics of the 

disease in the Greater Accra region. The human population was varied to include 

recruitment of new individuals through birth or immigration, into the susceptible 

(vulnerable) class. Our model was shown to be epidemiologically and 

mathematically well-posed. We also computed the reproduction number, Ro, and the 

model was analysed for the existence and stability of disease-free and endemic 

equilibria. The disease-free equilibrium was proven to be locally asymptotically 

stable. Numerical analysis of the model recommended a two-pronged approach 

based on 

a. vector control through indoor residual spraying (IRS) and insecticide-treated 

bed nets. 

b. effective case management (diagnosis and treatment).  

This is a strategic approach to reduce the transmission of the parasite from infected 

to uninfected individuals. Malaria case management is based on early detection and 

effective treatment to control the parasite 
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5.3 Recommendations 

Based on the conclusions of the study, the following recommendations are 
made: 

a. People who are exposed to malaria should be encouraged to use insecticide 

mosquito treated bednets (ITNs) and indoor residual spray (IRS) since this 

lead to a decreasing survival probability of a mosquito as more humans are 

covered. 

b. It is recommended that prevention measures must be maintained to reduce or 

eradicate the disease. This can be achieved by lowering the exposed and 

infected members of each population. 

c. More health centres should be established in many parts of the region to 

ensure that many people can easily attend hospital for diagnosis and 

treatment. 

 

5.4 Recommendations for further studies 

In view of the fact that this study was limited to only the Greater Accra 

region, future research should examine similar study countrywide to expand the 

evidence base and support informed decision-making in this area. Furthermore, it is 

important to have a comprehensive research done in order to explore new control 

strategies and access the impact of the existing ones.  
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APPENDICES 

Appendix A 

The Next Generation Operator Approach 

Let  ℱ𝑖 equals the rate of appearance of new infections in compartment 𝑖; 

 𝒱𝑖 = 𝒱𝑖−−𝒱𝑖+ be the difference between the rate of transfer of individuals out of 

compartment i, (𝒱𝑖−), by all other means and the rate of transfer of individuals in the 

compartment i, (𝒱𝑖+) by all other means; and 𝑥0 be the disease-free equilibrium 

point. According to Diekmann and Heesterbeek (2000), we call ℱ𝒱−1 the next 

generation matrix for the model and we set,  

                                 𝑅𝑜 = 𝜌(ℱ𝒱−1), 

where   ℱ = �𝜕ℱ𝑖(𝑥𝑜)
𝜕𝑥𝑗

�  and   𝒱 = �𝜕𝒱𝑖(𝑥𝑜)
𝜕𝑥𝑗

�
−1

 with 1 ≤ 𝑖, 𝑗 ≤ 𝑚 for the infected 

compartments only. 𝜌(A) denotes the spectral radius of a matrix A, ℱ is nonnegative 

and 𝒱 is non-singular M-matrix and both are 𝑚 𝑥 𝑚 matrices, where 𝑚 is the 

number of infected classes. 

Consider an infected individual introduced into compartment k of a disease-

free population. The (𝑖, 𝑗) entry of ℱ is the rate at which an infected individual in 

compartment j produces new infections in compartment i and the (𝑗,𝑘) entry of 𝑉−1 

is the average time an infected individual spends in compartment 𝑗 during its lifetime 

in compartment k. Hence, the (𝑖, 𝑘) entry of the product F𝑉−1 is the expected number 

of new infections in compartment 𝑖 produced by the infected individual originally 

introduced into compartment k, (van den Driessche and Watmough, 2002). 
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Appendix B 

Castillo-Chavez and Song 

 Consider the following general system of ordinary differential equations with a 

parameter  Γ .   

𝑑𝑥
𝑑𝑡

= ℎ(𝑥 ,𝛤 )  ,ℎ:ℝ𝑛 × ℝ⟶ ℝ   𝑎𝑛𝑑  ℎ ∈ ℂ2(ℝ𝑛 × ℝ) 

where   0   is an equilibrium point of the system, that is,  h( 0, Γ ) ≡ 0 for all   Γ  and  

• 𝐴 = 𝐷𝑥ℎ(0,0) =  �𝜕ℎ𝑖
𝜕𝑥𝑖

(0, 0)�  is the linearization matrix of the system 

around the equilibrium  0  with   Γ   evaluated at 0 . 

• Zero is a simple eigenvalue of A and other eigenvalues of A have negative 

real parts. 

• Matrix A has a nonnegative right eigenvector w and a left eigenvector v 

corresponding to the zero eigenvalue. 

Let   hk  be the   kth  component of h and 

 a =  � vkwiwj
∂2hk
∂xi ∂xj

( 0 , 0)   
n

k,i,j=1

 

and 

 b =  � vkwi

n

k,i=1

∂2hk
∂xi ∂ Γ

( 0 , 0) 

then, the local dynamics of the system around   0   is totally determined by the sign 

of  a  and  b . 

1)   a > 0 , b > 0 , when   Γ  <   0   with    | Γ|   << 1 , 0  is locally asymptotically 

stable and there exists a positive unstable equilibrium; when   0 <   Γ << 1  , 0  is 

unstable and there exists a negative, locally asymptotically stable equilibrium. 
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2)   a < 0 , b < 0,  when   Γ  <   0   with    | Γ|   << 1 , 0  is unstable; when   0 <

  Γ << 1  , 0   is locally asymptotically stable, and there exists a positive unstable 

equilibrium. 

3)   a > 0 , b < 0,  when   Γ  <   0   with    | Γ|   << 1 , 0   is unstable, and there 

exists a locally asymptotically stable negative equilibrium; when   0 <   Γ << 1  ,

0  is stable, and a positive unstable equilibrium appears.  

4)     a < 0 , b > 0,  when   Γ    changes from negative to positive,   0   changes its 

stability from stable to unstable. Correspondingly a negative unstable equilibrium 

becomes positive and locally asymptotically stable. 

 

 
Appendix C 

Matlab Code 

a) The M-function files 
function dydt = malmod(t,y) 
dydt=zeros(size(y)); 
a1=(0.0322/365);a2=0.000042808;a3=(1/14);a4=(1/90);a5=0.0655;a6=0.071; 
b1=0.04;b2=0.0000027;b3=(1/11);b4=0.42;b5=(1/7);b6=0.4; 
Sh=y(1); 
Eh=y(2); 
Ih=y(3); 
Rh=y(4); 
Uv=y(5); 
Vv=y(6); 
Wv=y(7); 
Nh=Sh+Eh+Ih+Rh; 
%The rates of infection are as follows 
r1=a5*b6/Nh; r2=b4*b6/Nh; 
%The equations of the malaria model system 
dydt(1)=a1+a4*Rh-a2*Sh-r1*Wv*Sh; 
dydt(2)=r1*Wv*Sh-(a2+a3)*Eh; 
dydt(3)=a3*Eh-(b5+a2+b2)*Ih; 
dydt(4)=b5*Ih-(a4+a2)*Rh; 
dydt(5)=a6-r2*Ih*Uv-b1*Uv; 
dydt(6)=r2*Ih*Uv-(b3+b1)*Vv; 
dydt(7)=b3*Vv-b1*Wv; 
%The reproduction number for the malaria model is 
Ro=sqrt((a5*a3*b6*a2*b4*b3*b6*a6)/(a1*(a3+a2)*(b5+a2+b2)*b1*b1*(b3+b1))) 
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b) The executive file for behaviour of susceptible, exposed, infected and 

recovered individuals 
tspan=[0 800]; 
y0=[2159000 2000 374000 371000 10750000 350000 5256000] 
[t,y]=ode45(@malmod,tspan,y0); 
plot(t,y(:,1),'r',t,y(:,2),'b',t,y(:,3),'g',t,y(:,4),'y','Linewidth',2) 
title('Simulation of Human Population vrs Time') 
xlabel('Time in years') 
ylabel('Individuals') 
legend('Susceptible','Exposed','Infectious','Recovered',2)  
  
 

c)  The executive file to determine the behaviour of susceptible, exposed and 
infected vector populations 

tspan=[0 800]; 
y0=[2159000 2000 374000 371000 10750000 350000 5256000] 
[t,y]=ode45(@malmod,tspan,y0); 
plot(t,y(:,5),'r',t,y(:,6),'b',t,y(:,7),'g','Linewidth',2) 
title('Plot of Vector Population vrs Time') 
xlabel('Time in years') 
ylabel('Vectors') 
legend('Susceptible','Exposed','Infectious',2) 
 

d) The executive file for prevalence in the model 
tspan=[0 800]; 
y0=[2159000 2000 374000 371000 10750000 350000 5256000]; 
[t,y]=ode45(@malmod,tspan,y0); 
T1=(y(:,1)+y(:,2)+y(:,3)+y(:,4)); 
plot(t, (y(:,2)+y(:,3)+(y(:,4))./T1,'r','Linewidth',2) 
title('Simulation of Prevalence vrs Time') 
xlabel('Time in years') 
ylabel('Prevalence') 
 
 

e) Executive file for biting rate of vectors 
tspan=[0 600]; 
y0=[2159000 2000 374000 371000 537500 21880 262800] 
[t,y]=ode45(@malmod,tspan,y0); 
plot(t,y(:,5),'r',t,y(:,6),'b',t,y(:,7),'g','Linewidth',2) 
title('Simulation of Biting Rate of Vectors vrs Time') 
xlabel('Time in years') 
ylabel('Vector population') 
legend('Susceptible','Exposed','Infectious',2) 
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