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ABSTRACT 

Deterministic SIR Models with essential factors such as Susceptible, Infective and 

Removal was formulated. This is to understand the Mechanisms of Hepatitis B Virus 

Infections in the Sunyani Municipality. Deterministic SIR Model without and with 

Demographic turn-over were respectively used to understand HBV Epidemic and 

Endemic situation of the population. An SIR Vaccination Model was included to assess 

the impart of Vaccination. In the first Model, the Reproductive Number was estimated 

as R0 = 1.957 > 1 which shows epidemic population. The Model indicated that, 

modeling with 10 susceptible with an infective, about 90% of the population would 

be infected during the period of epidemic. The Reproductive Number for the second 

Model was estimated as R0 = 1.022 which shows an endemic population. This Model 

has two equilibrium states; the disease-free equilibrium state and the endemic 

equilibrium state. The two equilibrium states were found to be Asymptotically Stable. 

The Vaccination Model shows a decrease in the Infective whiles the group to which 

Vaccination was given increased. The Reproductive Number (Rν) was estimated as Rν 

= 0.511<1.The study shows that Infectious Rate and Reproductive Number play 

important roles in prevalence of disease in the population. Our findings show that an 

increase in Infectious rate produces 

R0 > 1 whiles a decrease in Infectious rate produces R0 < 1. Per the data from Sunyani 

Municipal Hospital, an Infectious rate of at most 1% and Vaccination rate of at least 

60% can curb the situation and eventually eradicate HBV Infection in the Municipality. 

This thesis was written using LaTex Platform whiles MATLAB Code was used for the 

programming. 
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CHAPTER 1 

INTRODUCTION 

1.1 BACKGROUND OF THE STUDY 

“Hepatitis” is a general term used to mean inflammation of the liver and can be caused 

by a variety of viruses such as hepatitis A, B, C, D and E according to Hollinger and Ling 

(2001). It also refers to a group of viral infections that affect the liver. The condition 

can be self - limiting or can progress to fibrosis (scarring), cirrhosis or liver cancer as 

described by Ganem and Prince (2004). 

According to WHO (2014), hepatitis viruses are the most common cause of hepatitis 

in the world. However, other causes of infections are toxic substances (e.g. alcohol, 

some drugs) and autoimmune disease (a disease occurring when the body makes 

antibodies against the liver tissue) can also cause hepatitis. 

The five (5) types viruses (A, B, C, D and E) causing the Hepatitis diseases are of 

greatest concern because of the burden of illness and death they cause, and the 

potential for outbreaks and epidemic spread (Hollinger and Ling, 2001). In particular, 

types B and C lead to chronic disease in hundreds of millions of people and, together, 

are the most common cause of liver cirrhosis and cancer by WHO (2014). Among the 

five (5) viruses causing the Hepatitis, the most common types are the A, B, and C. 

Based on the viruses, we have Hepatitis A, Hepatitis B and Hepatitis C Virus infections. 

For the purpose of this study, we concentrated on the type known as Hepatitis B Virus 

infection. 

Hepatitis A Virus (HAV) infection is a form of viral Hepatitis transmitted in food, 

causing fever and jaundice. This give rise to Hepatitis A (HA) disease. Whereas, 
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Hepatitis C Virus (HCV) infection causes Hepatitis C (HC) disease and is another form 

of viral Hepatitis transmitted in infected blood, causing chronic liver disease, 

according to Owusu-Ansah (2013) 

Hepatitis B Virus (HBV) infection is the most common serious infection of the liver that 

can lead to premature death, liver cancer or liver failure known as Hepatitis B (HB) 

disease. Hepatitis B is a severe form of viral hepatitis transmitted in infected blood, 

causing fever, debility, and jaundice. The disease is also referred to as type B hepatitis, 

serum hepatitis and homologous serum jaundice according to Mahoney and Kane 

(1999). 

In 1965, Dr. Baruch Blumberg discovered Hepatitis B virus. Originally, the virus was 

called the ’Australia Antigen’ because it was named as a result of an Australian 

aborigine’s blood sample that reacted with an antibody in the serum of an American 

haemophilia patient by Wikipedia (2014). 

Dr. Blumberg developed a blood test for the Hepatitis B virus. In 1971, the blood banks 

began using the test to screen blood donations and the risk of Hepatitis B infections 

from blood transfusion decreased by 25% according to Wikipedia (2014). 

HB is a potentially life-threatening liver infection and it is a major global health 

problem. It causes chronic liver disease and chronic infection and puts people at high 

risk of death from cirrhosis of the liver and liver cancer according to WHO (2014). 

The danger of HB is that it is asymptomatic. This means that those living with the 

condition do not show any symptom until their liver is partially or wholly damaged 

(Ganem and Prince, 2004). This not withstanding causes the disease to spread freely 

like wild fire since those affected are not aware of their condition. Besides, the 

condition is about (50-100)% infectious than HIV/AIDS. This implies that the organism 
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which causes Hepatitis-B can be isolated in all body fluids like saliva, sweat, blood etc. 

This makes it possible for the organism to spread through mere sharing of spoons, 

tooth brush, barbering machines, pedicure and manicure procedures, sharing of 

syringes and needles (especially Drug Addicts), kissing and casual sex (Owusu-Ansah 

et al, 2013) 

Any person with a Hepatitis B Virus is a potential source of infection for others that 

are susceptible. The investigation of infected persons can prevent further 

transmission by identifying contacts who require vaccination or other preventive 

interventions and by detecting outbreaks, determining the cause, implementing 

appropriate control measures; CDC (2013). 

1.1.1 Stages of Hepatitis B Virus Infection 

There are two stages of Hepatitis B Virus infections namely Acute Hepatitis B Virus 

infection and Chronic Hepatitis B Virus infection. A new infection is called Acute HBV. 

This may go away on its own in the first six months of infection. Most people do not 

need any therapy at the early stage of the disease. Thus, if an adult gets infected with 

the HBV, there is about 90% chance that the person’s immune system (the body’s 

defense system) will fight the disease off in the first six months (the acute stage) and 

no treatment might be necessary; this according to Shepard and Simard (2006). 

Acute Hepatitis B does not need treatment but with a strong humane immune system, 

the body can clear the virus within six months. The patient needs to follow up with 

blood test to confirm recovery from an acute infection. 

According to Wilson and Carman (1998), people who tested positive for the hepatitis 

B virus for more than six months are diagnosed as having a Chronic Hepatitis B. They 

were not able to get rid of the virus and it still remains in their blood. People with 
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Chronic Hepatitis B live long and healthy life if managed well with the required 

medications. 

1.1.2 Hepatitis B, the Cause and the Transmission 

Lavanchy (2004) said; HBV is a non Cytopathic virus. This means that the virus itself 

does not cause direct damage to liver cells. Instead, it is the immune system’s 

aggressive response to the virus that usually leads to inflammation and damage to the 

liver (hepatitis). However, HBV can cause damage to the genetic material inside the 

liver cells. This can lead to liver cancer which, like hepatitis, can also be fatal. 

HBV is very similar to HIV in the ways it is transmitted; that is through direct blood-to-

blood contact and through sexual activity. However, blood levels of HBV are much 

higher than for HIV or the HCV, making this virus much easier to transmit in certain 

situations (e.g., from mother to child during delivery). 

HBV is present in blood, semen, and vaginal fluids and is transmitted primarily through 

sexual activity. Another major transmission route is sharing injection drug equipment 

(including needles, cookers, tourniquets) and, to a lesser extent, non-injection drugs 

(cocaine straws and crack pipes) due to the possibility of exposure to blood. Pregnant 

women who have hepatitis B can also transmit the virus to their babies, most likely 

during birth. 

1.1.3 Symptoms of Hepatitis B 

Most people do not experience any symptoms; especially children in the case of Acute 

Hepatitis B. However, some people have acute illness with symptoms that last several 

weeks, including yellowing of the skin and eyes (jaundice), fever, Grey-colored stools, 

dark urine, extreme fatigue, nausea, loss of appetite, joint pains, vomiting and 

abdominal pains; according to Diekmann and Heesterbeek (2000). 
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Many people with chronic Hepatitis B do not have symptoms and do not know they 

are infected. Even though a person has no symptoms, the virus can still be detected 

in the blood. Symptoms of Chronic Hepatitis B can take up to 30 years to develop. 

Damage to the liver can silently occur during this time. When symptoms do appear, 

they are similar to acute infection and can be a sign of advanced liver disease 

(Diekmann and Heesterbeek, 2000). 

1.1.4 Hepatitis B Treatments 

Hepatitis B can be treated with medication. It involves taking tablets everyday or 

having an injection under the skin once a week. Treatment may be for 12 months or 

lifelong. The aim of treatment is to make the Hepatitis B virus inactive so that it no 

longer causing damage to the liver. 

One can also maintain a healthy diet (drink plenty of water); reduce or stop alcohol 

intake; avoid medications that may cause further damage to your liver and getting 

plenty of rest most of the time (Diekmann and Heesterbeek, 2000). 

There are treatments for those who have developed Chronic Hepatitis B. Chronic 

Hepatitis B virus may be treated with anti-viral medication such as Adefovir, Entecavir, 

Interferon, Lamivudine, Telbivudine and Tenofovir. Most of these drugs are not 

available or accessible in Ghana. However, lamivudine which is cheaper and accessible 

in Ghana, the body develops resistance to it after two year (Owusu-Ansah et al, 2013). 

Treatment of the Chronic Hepatitis B does not cure the disease but suppress it. 

Chronic Hepatitis B is manageable like Diabetes. The goal of the treatment is to 

improve the quality of life and survival rate of the patients by preventing progression 

of the disease to cirrhosis and end stage of liver disease. 
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1.1.5 Hepatitis B Vaccination 

Vaccination is the administration of antigenic material (a vaccine) to stimulate an 

individual’s immune system to develop adaptive immunity to a pathogen. Vaccines 

can prevent or ameliorate morbidity from infections. 

(en.wikipedia.org/wiki/Vaccination). 

There is a safe and effective vaccine for hepatitis B. More than one million doses have 

been given around the world. The vaccine is a series of three shots given over a six-

month period that will provide a lifetime of protection. You cannot get hepatitis B 

from the vaccine – there is no human blood or live virus in the vaccine. 

The hepatitis B vaccine is recommended for all new born and children up to 18 years 

of age, and all high-risk adults. All infants should receive the first dose of the vaccine 

at birth, or before leaving the hospital. In most states, children need the hepatitis B 

vaccine for school entry. The vaccine is recommended for anyone who lives in close 

contact with, or is a sexual partner of an infected individual. In addition, the vaccine 

is recommended to anyone who is at risk of infection through their job, lifestyle 

choices, or other life circumstances. 

If someone has received the hepatitis B vaccine, then a simple blood test can tell 

whether they are protected. If they have responded to the vaccine series, the blood 

test will show a positive result for the hepatitis B surface antibody (HBsAb+). After the 

first dose of HBV vaccine, there can be up to 50% protection. After the second dose, 

there can be up to 80% protection. It is very important to receive the third shot to 

ensure 100%, long-term protection; CDC (2013). 
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1.1.6 Geographical Distributions 

Hepatitis B prevalence is highest in sub-Saharan Africa and East Asia. Most people in 

these regions become infected with the hepatitis B virus during childhood. The adult 

population ranging between 5–10% is chronically infected; by WHO (2014). 

High rates of chronic infections are also found in the Amazon and the Southern parts 

of Eastern and Central Europe. In the Middle East and the Indian subcontinent, an 

estimated 2–5% of the general population is chronically infected. Less than 1% of the 

population in Western Europe and North America is chronically infected, by WHO 

(2014). 

More than 240 million people have chronic (long-term) liver infections. More than 

780,000 people die every year due to the acute or chronic consequences of hepatitis 

B. A vaccine against hepatitis B has been available since 1982. Hepatitis B vaccine is 

95% effective in preventing infection and its chronic consequences, and was the first 

vaccine against a major human cancer; by WHO (2014). In the year 2014, research 

revealed that viral hepatitis is the eighth (8th) leading cause of death worldwide 

according to WHO (2014). 

Across the country Ghana, millions of Ghanaians are living with Hepatitis B Virus. Most 

people in Ghana are living with the disease. They are neither aware of their status nor 

receiving care and treatment. In every hundred (100) people in Ghana, there is the 

chance of having thirteen (13) people infected with the disease (Owusu-Ansah et al, 

2013). Raising awareness about Hepatitis B is crucial since this would effectively stem 

the tide of new infections, ensuring that those affected receive proper treatment, and 

fighting any societal stigma. 
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Ghana Medical Journal Report, Chronic Hepatitis B is considered an important public 

health problem necessitating high priority strategies for prevention and control. HBV 

infections is endemic in Ghana with sero - prevalence rate ranging from 6.7% to 10% 

in blood donors, 6.4% in pregnant women and 15.6% in children among the general 

population; according to Blankson and Tettey (2005). 

Edington in his study of Hepatitis in Ghana, observed that the commonest disease 

leading to death at autopsy was cirrhosis of the liver. Unpublished data on the cause 

of death over 20 years period from 1980 to the year 2000 from the Department of 

Pathology, Korle Bu Teaching Hospital (KBTH) confirmed this observation (Blankson 

and Tettey, 2005). 

Cirrhosis is characterised by degeneration of the liver cells, inflammation, and 

thickening of tissue (Oxford Dictionary). It is the end stage of Chronic liver disease 

which is generally irreversible. Among other causes of liver diseases like alcoholisms 

in Ghanaian population, Hepatitis B and its Chronic infections if not manage well 

would result to Cirrhosis. 

The Continent Africa is highly susceptible to HBV infection, yet research works to 

understand and control the disease is limited in the region. The use of Mathematical 

Methods in finding solutions to the disease epidemiology, especially Ghana and other 

countries in sub-Sahara Africa where the situation is escalating is also limited. It is 

against this background that this work, formulates a Deterministic SIR Model with the 

use of differential equations to study and understand the mechanisms of HBV 

infection in the Sunyani Municipality. 

Ghana is located in West Africa bordering on the Gulf of Guinea. Ghana is bounded by 

Ivory Coast to the west, Burkina Faso to the north, Togo to the east and the Atlantic 

Ocean to the south. 
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Ghana was formally called the Gold Coast and was first seen by the Portuguese traders 

in 1470. This was followed by the English in 1553, the Dutch in 1595 and Swedes in 

the 1640s. The British was the Country that actually ruled Ghana (Gold Coast) starting 

from 1820. However, their rule was quelled by the resistance of the Ashanti in 1901, 

one of the dominant tribes in Ghana. Ghana finally became an independent country 

in March 6, 1957 and as result of a plebiscite, a republic status was achieved in July 1, 

1960; by Infoplease (2015). 

Ghana has a land area of 88,811 square meters (230,020 sq km); a total area of 92,456 

square meters (239,460 sq km) and a total Population of 25,758,108 (2014 est.). It has 

a growth rate of 2.19%; birth rate of 31.4/1000; infant mortality rate of 38.52/1000 

and life expectancy of 65.75%; according to Infoplease (2015). The country Ghana is 

divided into ten (10) administrative regions which includes Brong Ahafo Region with 

capital Sunyani. 

Brong Ahafo Region shares borders with the Western, Ashanti and Northern Regions. 

It also shares international boundary with the Republic of Ivory Coast. 

It has a large forest area in the places bordering the Western and Ashanti Regions 

whiles areas near the Northern Region have a transitional Savannah vegetative cover. 

Such areas like Atebubu, Yeji, Sene, Tain, Kintampo (some districts and municipal 

assemblies) and others have been captured under the Savannah Accelerated 

Development Authority because they fall in the transition zone of the northern 

ecology; by Wikipedia (2014). 

Sunyani is a city; the capital of Sunyani Municipal and Brong-Ahafo Region of Ghana. 

Sunyani has a population of 248,496 people as of 2012 census. Sunyani is surrounded 

by the forested Southern Ashanti uplands, the city of Sunyani arose as an outpost 

camp for elephant hunters during the 19th century. The name Sunyani was derived 

from the Akan word for elephant "Osono". Although considerably smaller than nearby 
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Kumasi, Sunyani is growing rapidly and has effectually engulfed the suburbs of Fiapre 

and Abesim, amongst others. Sunyani is a clean and well maintained city with a 

thriving economy; according to Wikipedia (2014) 

Sunyani is home to several higher educational institutions in the country, including the 

Sunyani Polytechnic, the University of Energy and Natural Resources, the Catholic 

University College at Fiapre. Other institutions with satellite centres in the city include 

University of Ghana, University of Cape Coast, and the Kwame Nkrumah University of 

Science and Technology- KNUST that holds part-time and long distance programs in 

Sunyani, by Wikipedia (2014). 

The economy of Sunyani is predominantly agrarian with approximately 48% of the 

population engaged in agriculture production. About 24% of the population is 

employed in the service sector, followed by commerce and industry which employed 

15% and 13% of the populace, respectively; by Wikipedia (2014). The city of Sunyani 

has three hospitals, one of which is the Sunyani Municipal Hospital. Eight clinics and 

three maternity homes also operate in Sunyani. 

1.2 PROBLEM STATEMENT OF THE STUDY 

The progress in understanding the natural history of hepatitis B virus made it possible 

the use of Mathematical Models to understand the Mechanisms of HBV infections. 

Transmission from one person to another has increased over the years. This has 

resulted in many deaths worldwide since it is difficult to cure viral diseases. Many 

people in Ghana today have less or no knowledge of HBV infection, the effects, the 

challenges and the burdens it possess to individuals, communities and the nation as 

a whole. HB is potentially life threatening liver disease and is a major global health 

problem. It is a disease which researchers described as next to HIV infection. It is 

however, preventable thanks to the availability of vaccines. 
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In Ghana today, one in every twelve Ghanaians is living with a chronic (life-long) HB, 

and one in four of those living with Chronic HB will die from liver cancer or liver failure. 

The good news is that the effects can be avoided or prevented with appropriate 

education, monitoring and treatments. Therefore, Hepatitis B can be eradicated by 

understanding the mechanisms of infections through research works, thus the Model 

formulation. 

1.3 OBJECTIVES OF THE STUDY 

This thesis work seeks to achieve the following objectives: 

1. To develop a Deterministic SIR Models to study the Mechanism of the Hepatitis 

B Virus (HBV) infections. 

2. To use the Models to analyse the dynamics of HBV infections and to evaluate 

the long-term effectiveness of the vaccination programme. 

3. To understand the implications of these Models in relations to HBV infections in 

Sunyani Municipality. 

1.4 METHODOLOGY 

This thesis work formulated a Deterministic Models through the use of ordinary 

differential equations. The study involves construction of three Models. The first 

Model involves a Deterministic Model for a population without the Demographic turn 

over with analysis of threshold conditions that allowed the epidemics to occur. The 

second Model dealt with Deterministic Model with Demographic turn over. This 

couple with determination of various equilibrium points and stability analysis in each 

case of equilibrium point. A Vaccination Model was included to assess the impart of 

Vaccination in the population coupled with its equilibrium point analysis. The use of 
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Reproduction Number (R0) was crucial to determine epidemic and endemic situation 

of the population. SIR Model with its phase portrait diagrams were also considered. 

Bio Statistic Data on Hepatitis B Virus infection from 2000 to 2014 was obtained from 

Sunyani Municipal Hospital to test the Models with various analyses. Information was 

solicited from printed and electronic form. Search engines like Google and Yahoo were 

used. Simulations of the models were done using Matlab codes to determine the 

behaviour patterns of the Models. 

1.5 JUSTIFICATION 

The use of Mathematical Methods to study disease epidemiology date back since 

1960. Daniel Bernoulli used Mathematical method to study techniques of protections 

against smallpox. In 1927, W.O. Kermack and A.G. McKendrick used differential 

equations to understand cholera epidemic. Since then, many scientists have used 

Mathematical Models to understand dynamisms and mechanisms of diseases; by 

Alfonseca and Torrea (2000). In our part of the world only few researchers study 

diseases with the use of Mathematical Models. 

This study serves as an aid to understand the mechanisms of HBV infections in the 

case study area. The study would afford health practitioners the opportunities in 

learning new ideas in controlling the mechanisms of Hepatitis B virus infections. 

It also serves as awareness creation for the people in the Sunyani Municipalities and 

its environs. Like HIV/AIDS, it is difficult to tell who is the carrier of Hepatitis B disease. 

The study area would benefit immensely from some critical analysis involved in the 

study of HBV infections. It would help decision makers to evaluate the effectiveness 

of interventions put in place to combat the HB disease. 



 

13 

The Municipal Directorate monitoring system for HBV infection if put in place would 

be provided with a crucial tool for revealing changes in the pattern of the disease in 

the community through this work. 

Finally, this piece of academic work is an addition to the few available one’s and it is a 

source of reference for Mathematicians and other Research Scientists for further 

studies. 

1.6 THESIS ORGANISATION 

The thesis was organised into five (5) chapters. The Chapter One introduces the 

Background to the study. It also talked about the Problem Statement,the Objective of 

the study, Methodology, Justification and as well as the Organization of the thesis 

presented. Chapter Two presented the review of relevant works that have been done 

previously in HBV infections and its related issues. The use of differential equations to 

model epidemiology of HBV infections by other writers and academic researchers 

were dealt with in this chapter. This comes with various supported relevant 

references. Chapter Three deals with Methodology. It explained the Mathematical 

Models selected, and reasons for selection. It also discussed Mathematical methods 

used in analyzing various data. The Chapter Four dealt with the analysis of results of 

model estimations using data obtained and the various theories. The use of Matlab 

code to stimulate models for better understanding of the thesis work was captured. 

Chapter Five put together the major findings from the entire thesis work. It 

summarised and highlighted the most salient points discovered followed by 

conclusions, recommendations and a topic suggested for further studies. 

CHAPTER 2 

LITERATURE REVIEW 
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2.1 INTRODUCTION 

This section concentrated primarily on the review of empirical related literatures on 

Hepatitis B infection. It also includes various types of models and the methods used. 

The focus is on models with particularly intervention analysis. We also emphasised on 

data, findings and conclusions of the related subject matter. 

2.2 EMPIRICAL REVIEW OF RELATED LITERATURE 

To start with, Momoh and Ibrahim (2011) developed a Mathematical Model that was 

described as MSIR Model, to understand the effect of combining passive 

immunisation with treatment of infectious Hepatitis B in controlling the spread of 

Hepatitis B disease. The MSIR Model was partitioned into four compartments of 

passively immune infants (M), susceptible individuals (S), infected individuals (I) and 

removed individuals (R). 

The immunised compartment changes due to the fact that the proportion of 

immunised individual child reduces due to the expiration of duration vaccine efficacy. 

Another assumption of the changes in the immunised compartment is that of the 

natural death rate. The susceptible population increases due to the coming of the 

individual from the immunised compartment due to the expiration of duration of 

vaccines efficacy. The susceptible again reduces due to natural death rate and 

infection within. In the same way the population dynamic of the infectious class grows 

with the incidence rate and also reduces by natural death rate and successful cure of 

infectious hepatitis B patients. Lastly, the dynamics of the removed with immunity 

class increases with successful cure of infectious hepatitis B patients at a rate and 

decrease by natural death as well. 
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The administration of the HBIG (Hepatitis B Immune Globulin) vaccines at birth 

protect children from early infections of Hepatitis B but the efficacy of the vaccines 

expires with time. After establishing the existence of equilibrium state and also 

analysing the epidemic equilibrium state, they discovered from their models that, the 

epidemic equilibrium state is stable when the contact rate is less than 0.8 and 

becomes unstable at a contact rate of 0.8 and above. 

They concluded that effort must be made to bring down the contact rate and 

increasing the duration of efficacy of vaccines used in passive immunisation 

programmes. This is the responsibility of Governments and immunisation partners. 

Sutton and Edmuds (2006) explained that it is the individuals that make up the 

injecting drug user (IDU) population in England and Wales. These people are at risk 

from blood - borne viruses due to the sharing of injecting paraphernalia. A vaccination 

programme was introduced offering HBV vaccine at reception into prison at some 

selected prisons in England and Wales. 

They considered the impart of prison vaccination on the incidence and prevalence of 

HBV in the injecting drug user population of England and Wales. A dynamic 

Mathematical Model of the transmission of HBV in IDUs was developed with key 

model assumptions and parameters being subject to sensitivity analyses. 

The Model was developed with the assumptions that the vaccination coverage on 

prison reception is 5% in 2002, 10% in 2003 and then increases linearly up to 50% of 

prison receptions being vaccinated by 2006. 

In a typical epidemiological model of HBV natural history and transmission dynamics, 

the IDU population is stratified into six groups as the basis of the model development. 
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There were those susceptible to infection (S), those infected but were not yet 

infectious (L), acute infection (A), that is, are in the initial highly infectious stage. The 

carriers (C); vaccinated (V), that is, those that have been vaccinated and immune from 

infection; and those with protective immunity (R), this is due to recovery from either 

carrier or acute stages of infection. The model includes an injecting carrier length 

dependent force (FOI) defined as per the capita rate at which susceptible become 

infected. 

The IDUs enters the model at the start of the year into the first injecting carrier length 

cohort. The individuals change cohort at the beginning of each new year. The rates of 

parameters were with respect to both injecting carrier length and time at which 

individual flow from one epidemiological state to another. These were explained by a 

system of differential equations. 

The analyses of their Model showed that the incidents of HBV in IDUs might be 

reduced by almost 80% in 12 years. The Model further estimated that the HBV 

prevalence may be reduced from approximately 18% in 2002 to 7% in 2015. They 

empasised that the Model developed demonstrated that HBV vaccination on prison 

reception can have a significant impart on the prevalence and incidence of HBV in the 

IDU population over time. 

In discussion of findings as estimated by the Deterministic Model, it was realised that 

HBV vaccination programme in prisons on the incidence and prevalence of HBV in the 

IDU has much impart on the population of England and Wales. 

Molaei and Waezizzdeh (2012) developed an epidemic Model for hepatitis of type B 

where the essential factors for the epidemic appeared. They described the factors of 

the epidemic as susceptibility, expose factor, vaccination, infection and recovery. Their 
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investigation covered the following; • Asymptotic stability in disease free equilibrium 

points. 

• Asymptotic stability in endemic equilibrium point. 

• Equilibrium point that is not asymptotic. 

They described the model by regarding the five factors as five boxes, that is, 

susceptible, latent or exposed, infections, vaccination and recovery box. By these 

factors they described their epidemic Model abbreviated as SEIVR Model which is a 

typical modification of standard SIR Model. 

In notations, N represent the total population in time t for the model. The factors of 

the HBV epidemic according to their study, expressed the factors as S(t)+E(t)+I(t)+V 

(t)+R(t) = N(t). They used various parameters to denote the following; transmission 

rate, the natural mortality rate and the birth rate. Also the recovery rate in the I class 

and the leaving rate of the exposed class were denoted by some other parameters. In 

the research, all the various parameters were determined. The combinations of the 

values of these parameters gave the various equilibrium points and stabilities. A 

system of Ordinary Differential Equations were used to deduce the Mathematical 

Model. 

In the analyses, Asymptotic Stability means there was no vaccination in the population 

before an endemic outbreak and it is the disease free equilibrium point of the Model. 

At this state, the reproductive number R0 is less than one (1). That is, R0 < 1, the SEIVR 

Model is asymptotically stable. At the endemic equilibrium point, the Model SEIVR 

has no equilibrium point and is also said to be asymptotically stable. 

Molaei and Waezizzdeh (2012) tried identifying another equilibrium point for HBV 

Model which never was. For this, it was described as been the situation where there 
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were no disease death. That is, the birth rate and natural mortality rate are equal. In 

this they said the model is not asymptotically stable. 

Zhao and Lu (2000) in a research work explained that in 1986, China was a region 

endemic with HBV infection. It was before the universal infant immunisation was 

introduced. There was about 60% prevalence rate of infection in the population and 

10% chronic HBV carriers. 

Zhao and Lu (2000) developed a Mathematical Model to predict the dynamics of HBV 

transmission and evaluate the long – term effectiveness of vaccination programme in 

China. A compartmental model expressed by a set of partial differential equations 

based on the characteristic of HBV infection was used. Parameters in the model were 

expressed as a non – linear function of age and time since vaccination. Data from sero 

– survey was used to estimate these parameters used in the model. 

The entire population was divided into five compartments. These are susceptible 

S(a,t), latent period L(a,t), temporary HBV carriers T(a,t) chronic HBV carriers C(a,t) 

and the immune I(a,t). The 0a0 represents the age whiles 0t0 represents the length 

time of follow – up. 

According to the natural history of HBV, a susceptible individual acquires an acute HBV 

infection through effective contact with a temporary or a chronic HBV carrier, and 

shifts to the next compartment called the latent period. The individual becomes 

temporary (acute) HBV carriers after persistent latent period. The acute infection 

either get cleared or progressed to the chronic state of HBV. If the acute infection get 

cleared the individual recovers and becomes immune which is also lifelong state. 

The Model had it that, if all new-borns are vaccinated according to schedule, the rate 

of HBV carriage will decline sharply over time to 0.2% in 70 years. At that point, the 
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ratio of acute hepatitis B will be less than 0.5% and the chronic hepatitis B will be 

around 5%. 

Zhao and Lu (2000) concluded that China can control HBV infections in just one 

generation, and eventually eliminate it. According to them, the Model shows that 

vaccination coverage was the most important indicator for the elimination of HVB 

transmission. There should be higher coverage, that is the key controlling factor to 

eliminating HBV infection. Also another possible means is to find ways to immunise 

all infants throughout the country, especially in poor rural areas. 

Hepatitis B is the most common serious viral infection and a leading cause of death in 

mainland China according to Zou and Ruan (2009). A total of 130 million people in 

China are carriers of HBV, this is almost a third of the people infected with HBV 

worldwide. This could also be said to represent 10% of the general population of 

China. Among them 30 million are chronically infected and 300,000 people die from 

HBV – related disease in China every year. Statistically, this accounted for 40% to 50% 

of HBV related deaths worldwide. China HBV prevalence rate was still high despite an 

effective vaccination programme for new - born babies since 1990s even though there 

was an improvement (Zou and Ruan, 2009). 

They developed a Mathematical Model to understand the transmission dynamics and 

prevalence of HBV infection in China. The Model was constructed based on the 

characteristics of HBV transmission in China. They considered six epidemiological 

groups: the proportion susceptible to infection S; those latently infected L; acute 

infections A; carriers C; recovered with protective immunity R; and immune following 

vaccination V . They assumed that population of new - born carriers born to carriers 

are less than the sum of the death of carriers and the population moving from carrier 

to immune state. Based on the six epidemiological groupings, six ordinary differential 

equations were developed. 
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In the analysis, they estimated the basic reproductive number R0 to be R0 = 2.406. The 

implication is that hepatitis B was endemic in China and was approaching its 

equilibrium with the current immunisation and control measures. They suggested 

that the optimal control strategies are a combination of immunisation of new - born 

babies, retroactive immunisation of susceptible adults, and reduction of contacts by 

individuals. These must be done with a wide coverage area in order to succeed the 

fight against hepatitis B. 

A continuous simulation of Mathematical Models were proposed for two different 

epidemic situations; HB in a cohort of new-borns followed for life, and one of the 

danger groups in the current AIDS epidemic by Alfonseca and Torrea (2000). 

Alfonseca and Torrea (2000) in their paper, used differential equations to model 

Hepatitis B among a cohort of the total population, and AIDS restricted to a 

homosexual population where the parameters used can be viewed as a mathematical 

expectations of random variables subject to a Poisson distribution. The systems of 

differential equations generated were solved numerically by an object oriented 

computer language OOCSMP. The OOCSMP compiler automatically generates C++ or 

Java codes that include a graphic simulation environment that makes it very easy to 

test different alternatives of the values of the parameters used. This enabled the 

developed Model to obtain the most appropriate approximation for the behaviour of 

the affected populations compatible with the existent data. 

Alfonseca and Torrea (2000) concluded that the set of differential equations used has 

proved useful to model the development of different epidemics and to test the effect 

of different policies for prevention and treatment. It was also found that the model is 

very powerful tool that can be used to compare alternatives and estimate costs and 

effectiveness. 
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Min and Kuang (2002), Based on the anti – HBV infection therapy clinical data of the 

Peginterferon Alfa – 2a plus placebo for HBeAg – Positive chronic Hepatitis B patients, 

a Mathematical Model was developed. The Model consists of three systems of 

differential equations which were used to describe and understand the dynamics host 

cells, viruses, the immune system, as well as predict the long term curative effects. 

A system of equations comprising three differential equations were proposed for the 

first 56 days of the Peginterfero Alfa – 2a treatment. During the next 286 days of the 

Peginterferon Alfa – 2a treatment, another set of differential equations was 

developed to describe the scenario. Again another set of equations was developed 

after 24 weeks of treatment for follow – up. All the parameters of the systems of 

equations were determined. This was followed by determining two equilibrium 

points. The two equilibrium points represent patient’s recovery and patient’s 

persistent HBV infection. 

Min and Kuang (2002) Mathematical Model shows that numerical simulations 

indicates that patients whose plasma HBV DVA levels equal the mean HBV DVA levels 

of all patients will need to prolong their treatment time for 19 years in order to 

completely eliminate the HBV virus in infected hepatocytes. They proposed that their 

research supports the use of Peginterferon Alfa – 2a as a first – line therapy for 

patients with HBeAg – positive chronic Hepatitis B. 

The HBV infects the liver cells (hepatocytes) and usually cause both acute and chronic 

disease. It is however believed that host factors, in particular immune responses, are 

responsible for determining whether the infection is cleared or becomes Chronic HBV 

infection; this is according to Stanca and Perelson (2007). 
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They developed dynamic models to analyse the changes in Hepatitis virus level during 

drug therapy. Their models typically considered uninfected (T), Infected (I) and 

hepatocytes and free virus (V). They assumed target cells susceptible to infection are 

produced at a constant rate λ, die at per capita rate d, and become infected at a rate 

kTV . This is proportional to both the target cell concentration and the virus 

concentration. Infected hepatocytes are thus produced at rate kTV and are assumed 

to die at constant rate δ per cell. Upon infection, hepatocytes produce virus at rate p 

per infected cell, and virus is cleared at rate c per virion. They also used differential 

equations to establish the dynamics of the system in which the models were 

developed. 

They validate the model against experimental data to determine how well it 

represents the biological system and, consequently, how useful are its predictions. 

They found that a cell – mediated immune response plays an important role in 

controlling the virus after the peak in viral load. 

According to Elaiw and Aly (2013), Modeling, analysis, and control of HBV infection 

have attracted the interests of Mathematicians during the recent years. The several 

existed Mathematical Models, have adequately explained the dynamics of HBV 

infections as well as the effect of antiviral drug therapies. Upon the achievement of 

these various Mathematical Models, none completely exhibit all that is observed 

clinically and account for the full course of infection. In addition to the inaccuracies 

that HBV dynamics suffer from, some disturbances / uncertainties may arise in the 

modeling process. 

In their paper, they used a system of nonlinear ordinary differential equations to 

describe the dynamics of HBV. The disturbances or uncertainties were modeled in the 

dynamic model of HBV as additive bonded disturbances. They try to inhibit viral 
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production and prevent new infections by incorporating two types of drug therapies 

in the model. 

The Model was described as nonlinear control system with control input; defined to 

be dependent on the drug dose and drug efficiency. They also described a treatment 

schedules for infected patients by using multi - rate model predictive control (MPC). 

The MPC method help in determining the optimal treatment schedules and help 

stabilising the HBV infection system around the uninfected steady state. 

2.3 CONCLUSIONS & REMARKS ON LITERATURE REVIEW 

The review was about the use of Mathematical Models to explain the dynamics and 

mechanisms of HBV infections. The Models were based on the characteristics of HBV 

infections. Whiles some based the process of infections on the standard SIR model, 

others based theirs on variations of the standard SIR model. 

The Reproductive Number R0 was used in the analyses and to determine basis of 

having endemic HB population or otherwise. 

This work looked at the mechanisms of Hepatitis B Virus infections by using a 

deterministic models based on standard SIR model developed by Kermack and 

Mckendrick; Kermack and MacKendrick (1927). 

CHAPTER 3 

METHODOLOGY 
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3.1 INTRODUCTION 

In this Chapter, the focus is on Deterministic SIR Models. The models, represented by 

ordinary differential equations (ODE) captured the characteristics of Hepatitis B virus 

infection. The characteristics include Susceptible (S), Infectious (I) and Removal (R), 

which were assumed to be groups formed out of the population (N). Dynamics of 

ordinary differential equations were reviewed and applied to the formation of the 

Deterministic SIR Model. Equilibrium points were determined coupled with its 

stability. 

In disease epidemiology, Basic Reproductive Number (R0) is very important in 

investigating the qualitative dynamics of a deterministic model with solution paths 

and phase portraits. Thus, we involved in our study; the Basic Reproductive Number 

and how it is applied. Finally, the study incorporated Vaccination Model to understand 

the impact of Vaccination in the population. 

3.2 DIFFERENTIAL EQUATION (DE) 

In order to apply mathematical methods to physical or real life problems, the 

dynamics/mechanisms of HBV infections were formulated in mathematics terms as 

being the Mathematical Model for this problem. Since rates of change are 

represented mathematically by derivatives, the models consist of system of equations 

relating an unknown function and one or more of its derivatives. Such equations are 

called differential equations. In oder words, an equation containing the derivatives of 

one or more unknown function (dependent variables), with respect to one or more 

independent variables, is said to be a differential equation (DE) according to Zill and 

Cullen (2009). 
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3.2.1 Ordinary Differential Equation 

An Ordinary Differential Equation (ODE) is a differential equation for a single variable. 

An ODE contains ordinary derivative (Zill and Cullen, 2009). ODE have been used in 

various forms of studies. It is used for; Population Dynamics, Newton’s Law of Cooling 

/ Warming, Chemical Reactions, Mixtures Draining in a tank, Falling bodies, Spread of 

diseases and many others. 

An equation of the form; 

dy dt = f(t,y) or y˙ = f(t,y) (3.1) 

Where f : R2 −→ R is a function of two or more variables. The mathematical notation 

 dydt or y˙ represents the derivative of the variable y (dependent variable) with 

respect to t (independent variable). The expression in Eqn.3.1 is called ordinary 

differential equation (ODE). 

Differential equations can be classified as first order, second order etc. depending on 

the highest derivatives that appeared in the equation. Thus, the Eqn.(3.1) is a first 

order derivative. A notation  contains in a differential equation makes the equation 

a second order derivative. The equation is nth order derivative if it contains . 

The Degree of Differential Equation is the power of the highest ordered derivatives of 

the equation. Thus, (dy dt )2−3y = 0 is an ODE of second degree whiles Eqn.(3.1) is of 

first degree. 

3.2.2 Solution of Ordinary Differential Equation 

A solution to a differential equation is a function y that satisfies a given differential 

equation. Given a differential equation below: 
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 (3.2) 

on the interval α < t < β is a function of ϕ such that ϕ0,ϕ00,...,ϕn exist and satisfies the 

equation ϕ(n)(t) = f[t,ϕ(t),ϕ0(t),...,ϕ(n−1)] (3.3) for every t in α < t < β. 

If Eqn.(3.1) is a real – valued function, then y = ϕ(t) is a real – valued solution. 

For example;  has the solution to be R = ϕ(t) = cekt, −∞ < t < ∞, 

where c is a constant and can be determined. If ϕ(t) = cekt, then ϕ0(t) = ckekt. The 

expression  holds. This implies that ϕ(t) = cekt is a solution of 

. 

Also, if y00 − y = 0, assuming ϕ(t) = et, then ϕ0(t) = et and ϕ00(t) = et, it implies that 

y00 = y holds. Hence ϕ(t) = et is a solution of y00 − y = 0. 

3.2.3 Initial Condition(s) 

It is sometime the case that one is interested in only one solution among all solutions 

to a differential equation. One way to select one particular solution of a differential 

equation is to require that y(t0) = y0, that is, the solution at a given point t0 takes the 

given value y0. The point t0 is usually called the initial point, and the condition y(t0) = 

y0 is called the initial condition. 

An initial value problem for the equation with constants t0,y0. 

The function y0s solution is that; . 

3.2.4 General Solution 

This is the general form that the solution to a differential equation can take and does 

not take any initial conditions for the given differential equation. 
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3.2.5 Particular Solution 

This is a specific solution to a given differential equation; it does not satisfies the 

differential equation only, but also satisfies a given initial condition(s). 

3.3 ANALYSIS OF NON-LINEAR SYSTEM 

A continuous differential equation of non – linear system of nth - order is represented 

in the form; 

y˙1(t) = f1(x1(t),x2(t),...,xn(t)) y˙2(t) = 

f2(x1(t),x2(t),...,xn(t)) 

y˙3(t) = f3(x1(t),x2(t),...,xn(t)) (3.4) 

................................................ 

................................................ 

y˙n(t) = fn(x1(t),x2(t),...,xn(t)) 

which can be expressed in matrix form as shown below 

Y (t) = f(Y (t),t) (3.5) where   and  . In 

this, T means transpose; 

according to Lungu and Kgosomore (2007) 

In analyzing non - linear systems, the nature of the system is given by the non - linear 

equations. This thesis involves non – linear equations; since real life problems may 

only be modeled by non – linear systems. Therefore, in analyzing, we considered 

equilibrium points, linearisation and stability as tools for analyzing non – linear 

systems (Lungu and Kgosomore, 2007). 



 

28 

3.3.1 Equilibrium Points 

Suppose the F(x,y) = f(x,y) ∈ R2 has an equilibrium point (µ,ν), then f(µ,ν) = 0. This 

means that (x,y) = (µ,ν) is a solution at all time t. We determine the equilibrium point 

by solving the equation f(x,y) = 0. 

Consider modeling of a dynamic system by the differential equations below: 

F(x,y) = −4y + 2xy − 8 (1) 

G(x,y) = 4y2−x2 (2) 

In determining the equilibrium point(s), we assumed 

(3.6) 

F(x,y) = 0 and G(x,y) = 0 (3.7) 

In solving Eqn.(3.7) simultaneously, we obtained its solutions. The solutions are the 

equilibrium point(s) and also known as the critical point(s). These points are (−2,−1) 

and (4,2). 

3.3.2 Linearizing Non – Linear Systems 

Non – linear systems are linearised by employing the techniques of Jacobian Matirix. 

For example, consider the system in Eqn.(3.6); The Jacobian Matrix J is given as; 

, that is, 

So that the linearized form of the system in Eqn.(3.6) is given as 

   

 2y 2x − 4 

J(F,G) =   (3.8) 
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 −2x 8y 

Substituting the equilibrium points (-2,-1) and (4,2) into Eqn.(3.8) gives the coefficient 

matrix which is still the linearized form of Eqn.(3.6) and more analysis can be 

performed. 

Thus, the coefficient matrices for the equilibrium points (-2,-1) and (4,2); we have 

   

−2 −8 

J(−2,−1) = A =   

   

−4 −8 

(1)  

   

 4 4 

J(4,2) = B =   

   

 −8 16 (2) (3.9) 

3.3.3 Stability of a System 

Stability properties describe how a system behaves if its state is initiated close to, but 

precisely at a given equilibrium point. 

Consider the system; 

 and  

Where f,g are differentiable with continuous partial derivatives and they both vanish 

at the point (x0,y0). Considering the Jacobian Matrix as described above at the point 

(x0,y0); 

   

 

Every Jacobian Matrix has coefficient matrix at a given equilibrium point say 

(x0,y0). The characteristic equation is determined follow by eigenvalues. 
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3.3.4 Eigenvalues and Critical Points 

A scalar λ is called an eigenvalue of the n × n matrix ’A’ if there is a nontrivial solution 

x of Ax = λx. Such an x is called an eigenvector corresponding to the eigenvalue λ. The 

scalar λ(a real or complex number) can be determined as well as x which is a vector. 

For a scalar λ, there exist a vector x such that (Ax = λx) holds for some x 6= 0. The 

vector is called an eigenvector of ’A’ corresponding to the eigenvalue λ. Therefore, Ax 

= λx. 

The eigenvalue λ can be determined using the relation: 

|A−λI| = 0 (3.10) 

Where I is n × n identity matrix. 

Conditions for Eigenvalue and Stability 

 

• If all eigenvalues (λ) of J (evaluated at the point (x0,y0)) have negative real part, 

then (x0,y0) is stable. 

• If all eigenvalues (λ) have positive real part, the point (x0,y0) is considered to be 

unstable point. 

• If eigenvalues have opposite signs, then the point (x0,y0) is considered to be 

unstable saddle. 

Critical points are related to eigenvalues. That is, they are the solutions to the 

characteristic equations called the eigenvalue. The solutions to the characteristic 

equation λ = λ1 and λ = λ2 are derived by using the relation in Eqn.(3.10). 

 

a11 

Consider the matrix A =  

 

a21 

   

a12 1 

 with  

 I =  

   

a22 0 

 

0 

 

 

 

1 
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Using the relation |A − λI| = 0, we have; 

 

a11 − λ 

det(A − λI) =  

 

a21 

We let 

 

a12 

= λ 

 2 − (a11 + a22)λ + a11a22 − a12a21 = 0 

 

a22 − λ 

u = (a11 + a22) called the Trace of Matrix A. v = a11a22 − 

a12a21 known as the determinant of A. 

This gives the characteristic (quadratic) equation λ2 − uλ + v = 0, whiles u, v are the 

coefficients. 

We defined 4 as the discriminant and it is expressed as 4 = u2 − 4v. 

The solution of the characteristic equation is given by 

 and  

The product and addition representation of the quadratic equation is given by 

λ2 − uλ + v = λ2 − (λ1 + λ2)λ + λ1λ2 = 0 

The u and v are the sum and product of the eigenvalues. 

u = λ1 + λ2 v = λ1λ2 and 4 = (λ1 − λ2)2 

We summarized this into the table below; 

Table 3.1: Eigenvalue criteria for Critical Points 

Name Trace of A Determinant of A Discriminant Comments on λ1λ2 

 u = λ1 + λ2 v = λ1λ2 4 = (λ1 − λ2)2  
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Node  v>0 4 ≥ 0 Real, Same Sign 

Saddle Point  v < 0  Real, Opposite Sign 

Center u = 0 v > 0  Pure Imaginary 

Spiral Point u 6= 0  4 < 0 Complex, Imaginary 

Example: 

Consider the coefficient matrix (1) of Eqn.(3.9); using |A − λI| = 0, the characteristic 

equation is λ2 − (traceA)λ + det(A) = 0 =⇒ λ2 + 10λ − 16 = 0, where traceA = (−2 + 

−8) = −10 and detA = −16. Hence λ1 = −11.4 and 

λ2 = 1.4. 

Therefore, the equilibrium point (-2,-1) is unstable (saddle) due to the opposite signs 

of the eigenvalues. The point (4,2) is also unstable. The eigenvalues (λ) are positive. 

Critical points may also be classified in terms of their stability. Stability means, that a 

small disturbance of a system changes the behaviour of the system only slightly at all 

future time t. A critical point (x0,y0) of the system is called stable if all trajectories of 

the system that are close to (x0,y0) remain close to (x0,y0) at all future time. 

Table 3.2: Stability criteria for Critical Points 

Types of Stability u = λ1 + λ2(Trace) detv = λ1λ2 

Stable & Attractive u < 0 v > 0 

Stable u ≤ 0 v > 0 

Unstable u > 0 v < 0 

• If v = λ1λ2 > 0, then both eigenvalues are positive, negative or complex 

conjugates. 

• If u = λ1 + λ2 < 0, then both eigenvalues are negative or have a negative real part. 

Hence the given point is stable and attractive. 
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• If 4 < 0, then the eigenvalues are complex conjugates, thus λ1 = b + iβ and λ2 = b 

− iβ, and 

• If u = λ1+λ2 < 0, then this gives a spiral point that is stable and attractive. 

The Phase Plane (Phase Portrait) 

 

It is a graphical representation of the nature of the solution of a given system of 

differential equation. The Cartesian plane where the phase portrait resides is called 

the phase plane. The parametric curves traced by the solutions are called trajectories. 

It is the stability of the equilibrium or critical point that determines the kind of phase 

plane to have. 

Consider the following examples that are useful in this work. 

1. Consider the system of equations below: 

 x˙ = −4x + y (1) 

 y˙ = 2x−3y (2) (3.11) 

The Jacobian Matrix is 

 

The coefficient matrix of Eqn.3.11 is given as; 

   

 −4 1 

 J(x,˙ y˙) =   

   

 2 −3 

Using the relation |A − λI| = 0; we derived the characteristic equation as; 

λ2 + 7λ + 10 = 0. 
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The eigenvalues are: λ1 = −2 and λ2 = −5. 

The eigenvalues of Eqn.(3.11) are negative, thus Eqn.3.11 is a Stable System 

known as the Improper Node. 

The Phase Portrait diagram of the system in Eqn.(3.11) is shown below. 

Figure 3.1: Stable (Improper Node) Phase Portraits 

 

Generated using dfield8 and pplane8 of Matlab with axes; x-axis: −3 

≤ x ≤ 5 and the y-axis: −3 ≤ y ≤ 5. 

Where x0 = x and y0 = y. 

2. Below is our next system; 

x˙ = 7x − 4y (1)  

y˙ = 5x−2y (2) (3.12) 
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Following the same procedure in example 1 above, the eigenvalues are given λ1 

= 2 and λ2 = 3. This is Unstable System since the λ values are positive. 

Below is the Phase Portrait diagram. 

Figure 3.2: Unstable (Proper Node) Phase Portraits 

 

Generated using dfield8 and pplane8 of Matlab with axes; x-axis: −3 ≤ x ≤ 5 and 

the y-axis: −3 ≤ y ≤ 5. Where x0 = x and y0 = y. 

3. Finally, we consider another form of stability where eigenvalues (λ) have 

opposite sign. This is called Unstable Saddle. Consider system of differential 

equations in Eqn.(3.13) below. 

 x˙ = 3x + y (1) 

 y˙ = −y (2) (3.13) 
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This system also gives eigenvalues of λ1 = −3 and λ2 = 1. 

The Phase Portraits diagram is shown below; 

Figure 3.3: Unstable Saddle Phase Portrait 

 

Generated using dfield8 and pplane8 of Matlab with axes; x-axis: −3 ≤ x ≤ 5 and 

the y-axis: −3 ≤ y ≤ 5. Where x0 = x and y0 = y. 

4. Spiral is a form of stability where the eigenvalues (λ) derived from the 

characteristic equation are complex numbers. 

5. Center is another form of stability, and it is the case where the eigenvalues (λ) 

are zero. 

3.4 DETERMINISTIC MODELS 

A Deterministic Model is specified by a set of equations that describe exactly how the 

system will evolve over time. This is a Mathematical Model in which outcomes are 
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precisely determined through known relationships among states and events, without 

any room for random variation. In such models, a given input will always produce the 

same output, such as in a known chemical reaction. 

Mathematically, a Deterministic Model for a system dynamics is represented as: 

dy dt = y˙ = f(t,y) (3.14) 

Where f(t,y) is a function depending on parameters that are random variables on its 

own. So that Eqn.(3.14) allows you to make predictions of y˙ based on the random 

variable (t,y). The "prediction" does not necessarily occur in the past, future, or even 

the present. It is simply a hypothetical, "what-if" statement. 

A Deterministic Model identifies what would be the outcome if we were to use a 

particular value of (t,y). For example, what would be the maximum stress y˙ that a 

bridge could bear, if we were to use (t,y) – thickness of concrete. Answers to these 

types of "what-if" questions help to make plans accordingly. This type of model is 

"deterministic" because y˙ is completely determined if we know the value(s) of the 

random variables (t,y). 

3.4.1 Basic Reproductive Number 

Basic Reproductive Number is defined as the expected number of new infections from 

a single infected individual placed into a population of fully susceptible individuals. 

An important part of disease modeling is to determine the Basic Reproductive 

Number, denoted as R0. The Basic Reproductive Number is important since it tells us 

if a population is at risk from a disease or not. The parameter provides significant 

insight into the transmission dynamics of a disease and can be a guide to develop 

strategies to control the spread of disease. 
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The R0 is affected by the infectious rate and removal rate. In this research, we denote 

infectious rate by β and removal rate by γ. Therefore; . 

In a typical epidemiology analysis, R0 > 1 shows increase occurrence of disease in the 

chosen population of study. In simple term, there will be epidemic. 

According to Earn (2008), the situation where R0 < 1 shows a decrease occurrence of 

disease, and will eventually be eliminated. A single infected individual introduced into 

the population will die, without being not able to replicate itself by new infection. 

However, R0 = 1 is the case of constant occurrence of disease or endemic. 

Basic Reproductive Number also helps us to predict who will not become infected at 

all. This is done by looking at how the SIR model behaves as time t → ∞. According to 

Keeling (2001), Mathematicians Kermack and McKendrick came up with the equation 

S∞ = exp(S∞ − 1)R0, where S∞ is the number of people who will always remain in the 

susceptible group in the population. 

3.4.2 Deterministic SIR Model (Without Demography) 

In a total population N individuals, we model HBV infections using compartmental SIR 

Model. The compartments are susceptible (S), HBV infected (I) and removed (R). So 

that at any point in time , the population N is made up with this three compartments 

as in Eqn.(3.16) below: 

St +It +Rt = N (3.16) 

where S,I,R ≥ 0; represent the compartmentalized of individual in the population. 
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Model Formulation 

Classical SIR Model assumes that individuals that leave one compartment must enter 

another. It is assumed that the population is that of epidemic. We considered the 

following assumptions: 

• The individuals in susceptible compartment is infected by contact with an 

infected individuals from the HBV infected compartment. This explains how the 

infective(I) compartment was recruited. 

• The individuals, once infected either die, isolated or recover with immunity. 

This formed the removal compartment. 

• Age, sex, social status, race do not affect the probability of infection. 

• There is no inherited immunity. 

• The members of the population mix homogeneously (have the same 

interactions with one another to the same degree). 

The following notations represent proportion of the total population N. 

; fraction of the population Susceptible. 

; fraction of the population Infective. 

 ; fraction of the population Removed. Thus; 

st+it+rt = 1 (3.17) 

The model does not consider demographic turnovers (birth and death) and remains 

constant, however, all infections are assumed to end with recovery. 

Further, we assume that; 
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• The rate of contact between susceptible and infective is proportional to the 

product of number of Susceptible (S) and Infective (I). The generation of new 

infection is βSI, where β > 0 is a parameter for infectious rate. 

• The infective are removed to the removed class at a rate proportional to the 

number of infective, thus γI where γ > 0 denotes removal/recovery rate. 

• This research did not consider incubation period, that is, a susceptible who 

contracts the disease is infective right away. 

Figure 3.4 below is the flowchart of SIR Model of the dynamics of HBV infections. 

Figure 3.4: Flowchart of SIR Model without Demography 

 

Flowchart of SIR Model of a Population without Demographic turn-over. 

The differential equations governing the models are; 

(1) 

 (2) (3.18) 

(3) 

Where   and   are the initial fraction of susceptible, 

infective and removal respectively. 

The removal (r) does not appear in the first two equations of Eqn.(3.18), thus, the 

model is reduced to two equations below by neglecting the third equation. 



 

41 

(1) 

 (2) (3.19) 

We derived the term (product differential) by combining (1) and (2) of 

Eqn.(3.19), this gives: 

 (3.20) 

Simplifying Eqn.(3.20) gives the equivalent equation; dsdi = −1 + βs  γ . But the 

Reproduction Number by definition and according to our model is given as  

where  the average infectious period. Therefore, we have; 

 (3.21) 

Integrating Eqn.(3.21) and simplifying gives; log(S∞) = R0(S∞ − 1). 

Thus, R0 can be expressed as; 

 (3.22) 

Threshold Phenomenon and R0 

 

Initial stages after I(0) = 0 infectives introduced into the population of S(0) = 0 

susceptibles, epidemic can occur or invasion of disease can fade off. From (2) of 

Eqn.(3.19), we have; . 

If , then we should expect . The disease dies or fade off from 

the population. This is because susceptible must exceed a critical threshold condition 

for an epidemic to occur in the population by Kermack and McKendrick, 1927. That 

is, everyone in the population is initially assumed to be susceptible so that S(0) = 1 

and R0 > 1 for an epidemic. 



 

42 

Condition for Epidemic 

 

Epidemic occurs if the number of infected individuals in the population increases. 

Thus, dtdi > 0 =⇒ βsi − γi > 0, so that,  

At the outset of an epidemic, nearly everyone is susceptible. So we can say 

s ≈ 1, hence we take s = 1, so that . 

This gives the condition of epidemic situation, where the Basic Reproductive 

Number; R0 > 1. Conversely if R0 < 1, then there is no epidemic. 

3.4.3 Deterministic SIR Model (With Demography) 

In this case, we consider demographic turnover of the population. The three 

compartments remain the same in the formulation of this model. The assumption is 

that the individuals in any of the compartments suffer natural mortality in a given rate 

α. Historically, α is also crude birth rate which is an addition to the susceptible 

compartment to keep total population constant. Thus; 

 (3.23) 

The schematic diagram for the model in this instance is equivalent to an endemic 

model. Thus, our SIR model assumed the form below: 

Figure 3.5: Flowchart of SIR Model with Demography 

 

Flowchart of SIR Model of a Population with Demographic turn-over. 
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Parameters have the same meaning as in the SIR Model without Demographic turn-

over above. The α denotes birth and death rate of the population. We assumed that 

birth rate is the same as death rate to keep the population fix. 

The SIR Model is described by the system of differential equations below: 

dsdt = α − αs − βsi s(0) = s0 ≥ 0 (1) 

 (2) (3.24) 

(3) 

Consider (1) and (2) of Eqn.(3.24) since r does not affect s and i. This gives; 

(1) 

 (2) (3.25) 

so that r(t) = 1 − s(t) − i(t) according to Eqn.(3.17). 

Assuming the entire population is susceptible, the Reproduction Number R0 for the 

endemic model is given as; . This is so because now there are two possible 

reasons for leaving the infectious state; recovering and dying. 

If R0 > 1 and γ < 1, then limt→∞I(t) = I0 > 0. There is an epidemic from the onset; 

, then limt→∞I(t) = 0, disease would eventually die off. 

3.4.4 Equilibrium Points 

In studying the Stability of the Model, we determined the equilibrium points of the 

differential equations governing the Model. These points are disease-free, where i = 

0 and endemic, where i 6= 0. 

In determining these points, Eqn.(3.25) was allowed to vanish, that is,  and 

. This system of equations is solved simultaneously for s and i. Thus; 

α − αs − βsi = 0 (1)  

βsi−(α+γ)i = 0 (2) (3.26) 
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From (2) of (3.26), we have [βs − (α + γ)]i = 0. 

Therefore, i = 0 and βs − (α + γ) = 0 =⇒ i = 0 and . But . 

Therefore, equation (2) of Eqn.(3.26) has solution i = 0 and . 

Substituting i = 0 and  into (1) of Eqn.(3.26) produces the equilibrium points; 

(s,i) = (1,0) and  respectively. The equilibrium 

point (s,i) = (1,0) is the disease-free equilibrium since i = 0, and the point 

 is endemic equilibrium since i 6= 0. 

3.4.5 Disease – Free Equilibrium 

We determine the stability of the system at disease – free equilibrium by evaluating 

the Jacobian of the Eqn.(3.25) at the disease – free equilibrium point of (s,i) = (1,0). 

We re – write equation Eqn.(3.25) as shown below: 

X(s,i) = α − αs − βsi 

Y (s,i) = βsi − (α + γ)i 

Hence the Jacobian of X and Y is given as; 

 

Therefore, at equilibrium point (s,i) = (1,0), we have; 

   

 −α −β 

J(s,i) = J(1,0) =   

   

 0 β − (α + γ) 

   

 −α −β 

If we let A =  , then using |A − λI| as in equation 3.10, 

   

 0 β − (α + γ) 
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we have; 

   

−α − λ −β det(A − λI) = 

  = 0. 

   

 0 β − (α + γ) − λ 

Since the Jacobian matrix is diagonal, the eigenvalues are given as: 

λ1 = −α and λ2 = β − (α + γ). 

Stability Analysis of Disease-free Equilibrium Point 

 

• The equilibrium point is Asymptotically Stable means, both eigenvalues must 

be negative. λ1 = −α < 0, and λ2 = β − (α + γ) < 0, given that, (α + γ) > β. The 

implication is that, a small population of infective introduced into the system 

would not cause a persistent infections, and that the population would return 

to disease-free state after some time. 

Consider , that is, R0 < 1 showing that the 

population is near disease - free equilibrium. 

• Unstable disease free equilibrium point, also known as Unstable Saddle. In this 

situation, both eigenvalues must be of opposite signs. λ1 = −α < 0, a negative 

value; it means that λ2 = β −(α+γ) > 0, which is positive, given that (α + γ) < β. 

The explanation is that an introduction of infective will result in a persistent 

infection. Hence, a disease-free population will result back to endemic 

population. 

We show the endemic situation by considering λ2 = β − (α + γ) > 0 =⇒ 

 , that is, R0 > 1 which is endemic population as shown by the 

parameter R0. 
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3.4.6 Endemic Equilibrium 

We identified the equilibrium point   to be the endemic 

equilibrium point. We evaluate the Jacobian Matrix given above at the endemic 

equilibrium point. This is given below: 

 
Applying the characteristic equation according to Eqn.(3.10), we have; 

 

Stability Analysis of Endemic Equilibrium 

 

In the equation above, the eigenvalues values; λ1 and λ2 are negative, since the 

trace, −αR0 < 0, and the determinant, , which means eigenvalues λ1 and 

λ2 are negative values. This satisfies that the endemic equilibrium is asymptotically 

stable (if R0 > 1). The disease is always persistent in the population as long as R0 > 1 

without re – introduction of infective. 

However, in the condition where R0 < 1, it would become unstable endemic 

equilibrium. The implication is; the endemic situation is not feasible; and would result 

to disease – free equilibrium that is stable. 

3.4.7 SIR Vaccination Model with Rν 

Vaccination was introduced into the Susceptible(S) compartment to stimulate the 

group members’ immune system; to develop adaptive permanent immunity against 

HBV infection. We used ν to denote a portion of susceptible (µS) That goes to the 

removed(R) compartment directly. Parameter ν is also the group to which vaccination 
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is given at the rate of µ. Parameters have the same meaning as in previous Models. 

The SIR Vaccination Model is as below: 

Flowchart of SIR Model of a Population with Vaccinated Segment. 

The Vaccinated SIR Model is described by system of differential equations below: 

(1) 

(2) 

 (3) (3.37) 

(4) 

Figure 3.6: Flowchart of SIR Vaccination Model 

 

Equilibrium Points 

 

We ignored (4) and consider (1), (2) and (3) of system of equations in Eqn.(3.37). The 

three equations are set to zero and solved simultaneously for s, i and ν to determine 

the equilibrium points. Thus; 

α − αµ − βsi − αs = 0 (1) 

βsi−γi−αi = 0 (2) (3.38) 

αµ − αν = 0 
(3)  

Two equilibrium points are identified: 

1. The Disease-free Equilibrium Point; (s,i,ν) = (1 − µ,0,µ) 
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2. The Endemic Equilibrium Point;  

Analysis of Equilibrium Point 

 

• The point (s,i,ν) = (1−µ,0,µ) is disease free for the fact that infection is non 

existence; i = 0 and Rν < 1. 

• Conversely, the point  is endemic because 

i 6= 0. We show that Rν ≥ 1. 

We solve for i in (1) and substitute into (2) of Eqn.(3.38) which produces; 

 (3.39) The discriminant of Eqn.(3.39) is 

given as; 

 

However, for positive solution of Eqn.(3.39), 4 ≥ 0. Therefore, 

, and Rν ≥ 1, where Rν = R0(1 − µ); the Reproductive 

Number during vaccination. 

Again, consider the fact i > 0 for endemic situation. This means that; 

, that is,  

, that is, Rν > 1 as required. 

The vaccination has an impact on the existence of the two equilibrium points. This is 

because the susceptible (S) compartment is reduced by the vaccination rate µ. The 

Reproductive Number is given as Rν = R0(1 − µ) according to the SIR Vaccination 

Model, where R0 is the Reproductive Number Endemic Model. 
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CHAPTER 4 

ANALYSIS OF MODELS AND SIMULATIONS 

4.1 INTRODUCTION 

We focused on testing our models with data obtained. Parameter values were 

estimated from the data and fitted into the Models. The stability of the equilibrium 

points of these Models were then determined. 

The Models were simulated to explore its behaviour pattern as we relate to the 

population of study. 

Table 4.1: HBV Cases in the Sunyani Municipality(2010 - 2014) 

Years 2000 2001 2002 2003 2004 2005 2006 2007 

No. Cases 34 18 17 81 142 27 31 22 

Years 2008 2009 2010 2011 2012 2013 2014 2015 

No. Cases 171 204 191 145 211 351 355 - 

Source: Sunyani Municipal Hospital. 

Table 4.2: Parameters and Values 

Description Parameters Values 

Birth Rate α 0.085 

Infectious Rate β 0.182 

Recovery Rate γ 0.093 

Vaccination Rate µ 0.5 

Source: Estimated from Data above. 

Figure 4.1: Trend of HB Cases in Sunyani Municipality 
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4.2 POPULATION WITHOUT DEMOGRAPHY 

The Reproductive Number of the population of Sunyani Municipality without 

demographic turn-over was given as; . Hence, . 

Sunyani Municipality of constant population without demography is Epidemic. 

This is because Reproductive Number R0 = 1.957 > 1. Averagely, one hepatitis B 

patient introduced into the population contacts/infects approximately 2 susceptible 

in the population of the Sunyani Municipality. That is, epidemic occurs when 

infectious rate (β) is greater than recovery rate (γ). 

The equations of SIR Model without demography with parameter values are; 

dsdt = −0.182si dtdi = 0.182si − 0.093i drdt = 0.093i. 

Figure 4.2: Epidemic Graph of Susceptible, Infective and Removal 
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In Figure 4.2, we model a population of 10 healthy people and one infective whiles 

we allowed time to run from 0 to 10 months. The graph depicts the behaviour of the 

population of Sunyani Municipality with parameter(β and γ) values. Notice how 

infective initially picks up steam and spreads quickly taking about 90% of the 

population. The susceptible population quickly drops to zero in the 5th week. Six out 

of a population of 11 people recovered. We modeled with (s,i,r) = (10,1,0) given a 

situation of (s,i,r) = (0,5,6) in the tenth month. The infectious/contact rate (β) 

contributed heavily to R0 = 1.957; epidemic situation. 

4.3 DETERMINISTIC MODEL FORMULATION 

Model Equations were populated with parameter values to enable analyses. 

4.3.1 Deterministic Model with Demography 

Consider Eqn.3.25, we have; 

(1) 

 (2) (4.1) 
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Substituting the parameter values from Table 4.1 above produces; 

 (1) 

 (2) (4.2) 

In endemic situation of the population, the Reproductive Number is given as; 

, that is,  

The result of R0 = 1.022 shows the presence of the disease in the population. The 

value of R0 is very close to one (1) indicating that the disease is not significantly fading 

out nor increasing. This is possible because infective compartment reduces through 

death (α) and recovery (γ) leaving the population to become endemic. 

4.3.2 Equilibrium Points 

Applying the equilibrium conditions, we allowed Eqn.4.2 to vanish while we solved 

simultaneously for the values of s and i. This produces; 

0.085 − 0.085s − 0.182si = 0 (1)  

0.182si − (0.085 + 0.093)i = 0 (2) (4.3) 

From (2) of Eqn.(4.3), we have; i = 0 and s = 0.978. 

Substitute i = 0 and s = 0.978 into (1) of Eqn.(4.3) produces the diseasefree equilibrium 

point (s,i) = (1,0) and the endemic equilibrium point (s,i) = (0.978,0.011). 

4.3.3 Analysis of Equilibrium Points 

We determine the stability of the two equilibrium points by evaluating the Jacobian of 

Eqn.4.2 at these two equilibrium points. 

Re-write Eqn.(4.2) as shown below: 

X(s,i) = 0.085 − 0.085s − 0.182si 

Y (s,i) = 0.182si − (0.178)i 
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Hence the Jacobian matrix for X and Y is given by 

   

 −0.085 − 0.182i −0.182s 

J(X,Y ) =   (4.4) 

   

 0.182s 0.182s − 0.178 

Disease-Free Equilibrium 

 

We evaluate the Jacobian Matrix (4.4) at the disease - free equilibrium point of 

(s,i) = (1,0). 

   

−0.085 −0.182 

J(1,0) =   = A. The characteristic equation is; 

   

 0 0.004 

   

 −0.085 − λ −0.182 

det(A − λI) =   = λ2 + 0.081 − 0.0034 = 0 

   

 0 0.004 − λ 

Therefore, the eigenvalues are, 

λ1 = −0.0405 + 0.00352i and λ2 = −0.0405 − 0.00352i. 

The complex conjugate eigenvalues indicated spiral disease - free equilibrium point. 

The stability is determined by the real parts. 

Therefore, the equilibrium point (s,i) = (1,0) is asymptotically stable. It is an indication 

that a small population of infective introduced into the population of Sunyani 

Municipality would not cause a persistent infections. The population would 

eventually return to disease-free state after some time. 
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Endemic Equilibrium 

 

The equilibrium point (s,i) = (0.978,0.011) is endemic because i 6= 0. We study its 

stability by using the Jacobian Matrix of Matrix(4.4) evaluated at the endemic 

equilibrium point. Therefore, we have; 

   

 −0.0870 −0.178 

J(0.978,0.011) =  =B 

   

 0.002 0.000004 

The characteristic equation is given as; 

   

 −0.0870 − λ −0.178 

det(B − λI) =   

   

 0.002 0.000004 − λ 

=⇒ λ2 + 8.7004 × 10−2λ − 3.563 × 10−4 = 0 

Therefore, eigenvalues are: λ1 = −4.309 × 10−3 and λ2 = −8.2695 × 10−2 

The endemic equilibrium is also a stable equilibrium point due to the negative 

eigenvalues. The Hepatitis B disease is neither fading nor progressive, it is just present 

in the Municipality. The endemic situation of the population is also proven by the 

Reproductive Number R0 = 1.022 ' 1. 

4.4 SIR VACCINATION MODEL 

The Reproductive Number of the Vaccination Model is Rν = R0(1−µ). The R0 is the 

Reproductive Number of the Endemic Model above. Thus Rν = 0.511. 

The equations of the Vaccination Model with parameter values are given as; 
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(1) 

 (2) (4.11) 

(3) 

(4) 

4.4.1 Equilibrium Points 

We set the first three(3) equations to zero (0) whiles ignoring equation (4) and solve 

for s, i and ν. 

Thus; 

0.043 − 0.182si − 0.085s = 0 (1)  

0.182si − 0.178i = 0 (2) (4.12) 

0.043 − 0.085ν = 0 
(3)  

There are two equilibrium points, these are: 

1. The Disease-free Equilibrium Point (s,i,v) = (0.506,0,0.50) 

2. The Endemic Equilibrium Point (s,i,v) = (0.978,0.225,0.50) 

4.4.2 Analysis of Equilibrium Points 

The effect of vaccination is easily seen on the existence of the two equilibrium points. 

Because in the SIR Vaccination Model, Susceptible was affected by the Vaccination 

parameter µ. That is, the susceptible compartment has been reduced by the 

vaccination rate (µ). The Infective has also reduced drastically leading to Rν = 0.511 < 

1. 

4.5 NUMERICAL ANALYSIS AND SIMULATION 

We simulate the three Models (Deterministic Model with and Without Demography, 

and the Vaccination Model) by considering numerical values of the parameters used 
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in this research work. We discuss the simulated equilibrium points in each case if 

necessary. 

4.5.1 Simulation of Deterministic Model without Demography 

In the Epidemic Model, a high infectious rate (β) reduces the Susceptible drastically 

whiles Infective goes high. We modeled with 10 Susceptible and an infective while 

time was allowed from 0 to 10 months. The correspondent Epidemic Equilibrium 

points are shown in each case on Figure 4.3 below. The conclusion is that the graphs 

provided a pictorial view of the population responses to changes in the infectious rate 

(β). 

Figure 4.3: Simulation of Deterministic Model without Demography 
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4.5.2 Simulation of Deterministic Model with Demography 

In the Endemic situation, more contacts within the population produces high 

infections. Notice how infective initially picks up steam and eventually reduces. 

This is shown in the two equilibrium points on the graphs in each case below. 

Figure 4.4: Simulation of Deterministic Model with Demography 

 

4.5.3 Simulation of Vaccination Model 

Figure 4.5: Simulation of Vaccination Model 
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In the simulation of the Vaccination Model, we vary the value of µ (Vaccination rate). 

The higher value of µ decreases Infective and increases Vaccinated group. 

CHAPTER 5 

SUMMARY AND CONCLUSION 

5.1 SUMMARY 

The Deterministic Model without Demographic turn-over can be describe as 

Epidemic Model for the fact that the Reproductive Number R0 = 1.957 > 1. The 

Epidemic graph in Figure 4.2 depicts the fact that 90% of the population was infected 

during epidemic. This was because of the high infectious rate (β). Whiles the rate of 

infection in the population was 0.182, the rate of recovery was as low as 0.093. The 

high infectious rate contributed to the value of the Reproductive Number (R0). It is 

very important to implement control measures to reduce infection rate in the 

population whiles increasing the recovery rate. 

In the Deterministic Model with Demography, the Reproductive Number is 

R0 = 1.022. This was an indication of Endemic Population because R0 ' 1. The Epidemic 

Population arises as a result of more infected people leaving the Infective group as 

compared to the Epidemic Model. The Reproductive Number in this case was 

contributed to by death rate (α) and recovery rate (γ). 

Two equilibria were identified; Disease-free Equilibrium and Endemic Equilibrium. 

Both equilibria were stable based on Model analysis with data. Efforts should be made 

to maintain the equilibrium status of Disease-free whiles changing that of Endemic 

equilibrium. This is the work of Health Professional in the Municipality and other 

stakeholders in the sector. 
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The Vaccination Model’s Reproductive Number is Rν = 0.511 < 1. The Reproductive 

Number in this case shows that the rate of infection is fading out. This is attributed to 

the impart of Vaccination in the Population. The simulated Vaccination Model 

indicates that a high Vaccination Rate (µ) turn to decrease Infective and increase the 

Vaccinated population. This must be encouraged to eradicate Hepatitis B disease in 

the Municipality. 

5.2 CONCLUSION 

The Deterministic Model with Demographic turn - over, Deterministic Model without 

Demographic turn-over and Vaccination Model were Models discussed. The effect of 

Hepatitis B infection on the population is largely influenced by the Reproductive 

Number (R0). The Deterministic Model without Demographic turn-over is Epidemic 

Model since R0 ≥ 1 otherwise, there was no Epidemic situation. The R0 = 1 indicates 

that the Deterministic Model with Demographic turn-over described an Endemic 

situation of the population. 

A high infectious rate(β) leads to a high Reproductive Number. If the sum value of 

death(α) and recovery(γ) rates approaches the value of infectious rate(β), then 

Reproductive Number is likely to have the value one(1). This means that Epidemic and 

Endemic situation of the population can be avoided by keeping contact / infection 

rate (β) very low to avoid the HBV infections that leads to death sometimes. 

The Reproductive Number(Rν) in the case Vaccination Model drastically changed (Rν 

≤ 1) implying the impart of Vaccination on the Population. The simulation of 

Vaccination Model confirmed Vaccination effect on the Infective population (I) which 

was reduced as a result of reduced infectious rate(β). 
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Thus, we conclude that infection rate(β) and the Reproductive Number(R0) play a very 

important roles in occurrence of both Epidemic and Endemic situation of the 

population. This can be controlled by Vaccination. 

Based on the data used during this research work, Hepatitis B Virus infections can be 

curbed and eradicated completely in the Sunyani Municipality. This is possible if the 

following suggestions are observed: 

1. Infectious rate (β) must be kept below 1%. 

2. The rate of Vaccination (µ) must be at least 60% of the Susceptible. 

• mass educating and sensitizing the populace is crucial in this fight against 

HBV infections. 

Further Studies 

We propose further studies particularly, a Mathematical Model that encompasses 

mechanisms of Acute-Chronic HBV infection.  
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APPENDIX A 

Matlab Codes for Modeling 

Variables: s=x(1), i=x(2), r=x(3) and v=x(4) 

Parameters: β = 0.182, γ = 0.093, α = 0.085 and µ = 0.013 

1. Hepatitis B Model without Demographic turn over f = 

@(t,x)[−0.182 ∗ x(1) ∗ x(2); 

0.182 ∗ x(1) ∗ x(2) − 0.093 ∗ x(2); 

0.093 ∗ x(2)] 

[t,xa] = ode45(f,[0 10],[10 1 0]); plot(t,xa(:,1)) 

hold on 

plot(t, xa(:,2), ’k’) 

plot(t, xa(:,3), ’r’) hold 

off 
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legend(’S’,’I’,’R’); title(’β = 0.182: (Modeling of Hepatitis B Infected Population)’, 

’FontSize’,10) xlabel(’Time in Months’) ylabel(’Population of Susceptible, Infective 

and Removal’) 

2. Hepatitis B Model with Demographic turn-over f = 

@(t,x)[0.085 − 0.085 ∗ x(1) − 0.182 ∗ x(1) ∗ x(2); 

0.182 ∗ x(1) ∗ x(2) − 0.178 ∗ x(2); 

0.093 ∗ x(2) − 0.085 ∗ x(3)] 

[t,xa] = ode45(f,[0 10],[10 1 0]); 

plot(t,xa(:,1)) 

hold on 

plot(t, xa(:,2), ’k’) 

plot(t, xa(:,3), ’r’) hold 

off 

legend(’S’,’I’,’R’); title(’β = 0.182: (Modeling of Hepatitis B Infected Population)’, 

’FontSize’,10) xlabel(’Time in Months’) ylabel(’Population of Susceptible, Infective 

and Removal’) 

3. Hepatitis B Vaccination Model. 

f = @(t,x)[0.083 − 0.182 ∗ x(1) ∗ x(2) − 0.085 ∗ x(2); 

0.182 ∗ x(1) ∗ x(2) − 0.178 ∗ x(2); 

0.001 − 0.085 ∗ x(4)] 

[t,xa] = ode45(f,[0 10],[10 1 0]); plot(t,xa(:,1)) 

hold on 

plot(t, xa(:,2), ’k’) 

plot(t, xa(:,3), ’r’) hold 

off 
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legend(’S’,’I’,’R’); title(’β = 0.182: (Modeling of Hepatitis B Infected Population)’, 

’FontSize’,10) xlabel(’Time in Months’) ylabel(’Population of Susceptible, Infective 

and Vaccinated’) 


