Kwame Nkrumah University of Science and Technology (KNUST) - Kumasi

College of Health Sciences Department of Clinical Microbiology

Viral Agents in Children Presenting with Signs and Symptoms of Respiratory Infections in the Ashanti-Akyem North District of Ghana

CARSHE

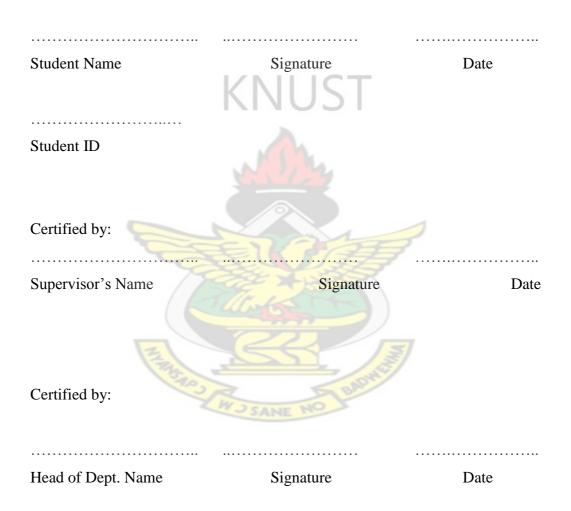
By

Augustina Angelina Annan 2011

VIRAL AGENTS IN CHILDREN PRESENTING WITH SIGNS AND SYMPTOMS OF RESPIRATORY INFECTIONS IN THE ASHANTI-AKYEM NORTH DISTRICT OF GHANA

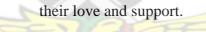
Augustina Angelina Annan BSc. (Hons) Biological Sciences, MPhil Clinical Microbiology

A Thesis submitted to the Department of Clinical Microbiology, Kwame Nkrumah University of Science and Technology in partial fulfillment of the requirements for the degree of


DOCTOR OF PHILOSOPHY

School of Medical Sciences, College of Health Sciences

August 2011


DECLARATION

I hereby declare that this submission is my own work towards the PhD and that, to the best of my knowledge, it contains no material previously published by another person nor material which has been accepted for the award of any other degree of the University, except where due acknowledgment has been made in the text.

This work is dedicated to my adorable son John-Claude, my husband Dr. Justice Sylverken, my parents Mr. and Mrs. John Jude Kwamina Annan and my siblings for

C CARSHEN

v

ACKNOWLEDGEMENTS

I am indebted to my academic supervisor Professor Yaw Adu Sarkodie, Head of Department, Clinical Microbiology of the School of Medical Sciences, College of Health and Allied Sciences, KNUST for supervising this work. I really acknowledge his endless supervision, concern, counsel, co-operation and maximum tolerance which has seen this work through. I remember the countless times I made calls to him and how he gently assured me that everything is under control. Thanks a lot Prof.! I am more than grateful to Prof. Dr. Christian Drosten, my external supervisor and Head of the Virology Department at the University of Bonn, Germany for all contributions to the success of this study and especially for the provision of his laboratory facilities in his institute in Hamburg and Bonn, Germany. I also appreciate his efforts in seeing to the success of this work.

I am highly grateful to Dr. Marcus Panning of the University of Freiburg for the relentless efforts he made in training me in the molecular aspects of this work at the Bernhard Nocht Institute for Tropical Medicine (BNITM), Hamburg, Germany. Many thanks to Drs. Felix Drexler, Marcel Muller and Susanna Pferrele all of the Department of Virology, Bonn, Germany. To all the friends I made at BNITM and University of Bonn, I say thank you for making my stay in Germany an eventful one. What can I say, danke danke!

My sincere thanks to Optimus Foundation, United Bank of Switzerland for providing funds for this study, accommodation in Hamburg during my training and my monthly stipend. To Dr. Jennifer Evans who in her usual self wants to be called JE of the University Hospital in Cardiff, I say thanks for being the driving force behind this work and for encouraging me to take up the PhD position.

Many thanks to Dr. Thomas Kruppa, the former Director of the Kumasi Centre for Collaborative and Research into Tropical Medicine (KCCR) for his contributions and support. His encouragement and frequent calls enabled me stay focused on this work. Thanks Dr. Kruppa again for providing me with laboratory space to do my research work. To Dr. Ellis Owusu Dabo, the Deputy Director of KCCR for his advice and help just when I wanted to give up! God bless you Boss! To Dr. Blay Nguah of the Pediatric Emergency Unit (PEU) of the Komfo Anokye Teaching Hospital (KATH) who really helped me with data analysis at the very last minute, I say thanks a lot for your efforts! To Wibke Loag of BNITM, I say thanks for not only introducing me to STATA, but also for your friendship. I remember the good times I shared with you and your husband Martin in Germany and the time both of us spent with my family in Cape Coast. They yearn to have you back so please take some holidays and come to Cape Coast with Martin.

Many thanks to staff of the Agogo Presbyterian Hospital, Dr. Solomon Amemasor, Auntie Grace, Richard and the data entry clerks, who tirelessly contributed to this work. I am also grateful to all staff and students of KCCR for their help in this work; Mr. Mensah Agboh, Henrietta, Michael, Richard, Renate, Sandra, Rita, Robert and everybody at KCCR, for the smiles you continuously put on my face! To Linda, Flora, Doris, Monica, Rhoda, Veronica, Ayeyi, Naomi, Loretta, Gloria, Sandra, the list is endless. What would I have done if you guys were not around! Thanks for your encouragement when I was just about to give up! You've been great friends!

My final gratitude goes to my husband Dr. Justice Sylverken who really pushed me to finish this work. Sometimes there was just no time to see to my work but someway somehow you made it possible. What can I say, mission accomplished! Finally, my sincere thanks goes to my parents Mr. and Mrs. Annan and my siblings,

Dr. John Jude Annan and Ms. Jacinta Martina Annan for their tremendous love and care.

Last but not the least, thanks to all the children who were included in the study. Being swabbed for a nasopharyngeal sample is not easy; I tried it once and it was not very comfortable but you managed to go through sampling. Thanks for your unflinching support.

Finally, finally, to my lovely and adorable son John-Claude, what can I do without you! You always bring me joy and happiness! You are truly a gift to me.

TABLE OF CONTENTS

HEADING

PAGE NUMBER

TITLE	i
DECLARATION	iv
DEDICATION	v
ACKNOWLEDGEMENT	vi
TABLE OF CONTENTS	viii
LIST OF TABLES	xviii
LIST OF FIGURES	xxi
ABBREVIATIONS KNUST	xxiii
ABSTRACT	xxvii
CHAPTER ONE	
1.0 INTRODUCTION	1
1.1 Background information	1
1.2 Rationale of the study	6
1.3 Aims of the study	8
1.4 Main objective	8
1.5 Specific objectives	8
THE AND THE REAL	
CHAPTER TWO	
2.0 LITERATURE REVIEW	9
2.1 Respiratory infections (RIs)	9
2.2 Disease burden	9
2.3 Etiological agents	11
2.3.1 Aetiological agents and Seasonality	14
2.4 Respiratory Syncytial Virus (RSV)	15
2.4.1 General characteristics of RSV	15
2.4.2 Clinical features of RSV	17
2.4.3 RSV in children	18
2.4.4 Epidemiology and seasonal distribution of RSV	20

2.4.5 Morbidity and Mortality rate of RSV	20
2.5 Human metapneumovirus (hMPV)	21
2.5.1 General characteristics of hMPV	21
2.5.2 Clinical features of hMPV	23
2.5.3 hMPV in children	24
2.5.4 Epidemiology and seasonal distribution of hMI	PV 25
2.5.5 Morbidity and Mortality of hMPV	26
2.6 Influenza A and B	26
2.6.1 General characteristics of influenza	26
2.6.2 Clinical features and symptoms of influenza	28
2.6.3 Influenza in children	28
2.6.4 Morbidity and Mortality of influenza	29
2.6.5 Epidemiology and seasonal distribution of infl	uenza 29
2.7 Parainfluenza (PIV)	30
2.7.1 General characteristics of PIV	31
2.7.2 Clinical features and symptoms of PIV	32
2.7.3 Parainfluenza in children	33
2.7.4 Epidemiology and seasonal distribution of PIV	34
2.7.5 Morbidity and mortality of PIV	36
and the second	
2.8 Enteroviruses (ENT)	37
2.8.1 General characteristics of ENT	38
2.8.2 Clinical features and symptoms of ENT	39
2.8.3 Enteroviruses in children	40
2.8.4 Epidemiology and seasonal distribution of ENT	۲ 41
2.8.5 Morbidity and mortality of ENT	41
2.9 Rhinoviruses	41
2.9.1 General characteristics of RhV	42
2.9.2 Clinical features and symptoms of RhV	43
2.9.3 Rhinoviruses in children of RhV	43

2.9.4 Epidemi	ology and seasonal distribution of RhV	44
2.9.5 Morbidi	ty and mortality of RhV	44
2.10 Adenovi	iruses	45
2.10.1 Genera	al characteristics of AdV	46
2.10.2 Clinica	al features and symptoms of AdV	46
2.10.3 Adeno	oviruses in children	47
2.10.4 Epider	niology and seasonal distribution of AdV	48
2.10.5 Morbi	dity and mortality of AdV	48
2.11 Non-vira	al agents	49
2.11.1 Мусор	olasma pneumoniae	50
2.11.1.1	Clinical features and symptoms	50
2.11.1.2	M. pneumoniae in children	51
2.11.1.3	Epidemiology and seasonal distribution	51
2.11.1.4	Morbidity and Mortality of Mycoplasma	52
2.11.2 Chlam	nydophila pneumoniae/Chlamydia pneumoniae	52
2.11.2.1	General Characteristics of C. pneumoniae	53
2.11.2.2	Clinical features and symptoms	53
2.11.2.3	Chlamydophila in children	54
2.11.2.4	Epidemiology and seasonal distribution	54
2.11.2.5	Morbidity and mortality of C. pneumoniae	55
	W J SANE NO	
2.12 Viral co	-infections	55
2.13 Laborate	ory Diagnosis	56
2.13.1 Sampl	ing	56
2.13.2 Detect	ion methods	58
2.13.2.1	Cell culture	58
2.13.2.2	Shell vial culture	59
2.13.2.3	Direct Examination (Electron Microscopy)	60

2.13.3 Rapid	methods	60
2.13.3.1	Immunological Techniques	61
2.13.3.2	Molecular methods	63
2.13.3.3	Conventional Polymerase Chain Reaction (PCR)	63
2.13.3.4	Real-time Polymerase Chain Reaction (PCR)	64
2.13.3.5	Multiplex RT-PCR (M-RT-PCR)	65

CHAPTER THREE

3.0	MATERIAL AND METHODS	68
3.1	Study area	68
3.2	Study design	71
3.3	Sample size	71
3.4	Ethical Clearance and Collaborating Institutions	72
3.5	Clinical Case definitions	73
3.6	Field/Hospital training	73
3.7	Recruitment methods	73
3.7.1	Study population	74
3.7.2	Inclusion criteria	75
3.7.3	Exclusion criteria	75
	THE AND AND AND	
3.8	Sampling	76
3.8.1	Sample taking	76
3.8.2	Socioeconomic data	78

3.9 **Optimization of a molecular diagnostic system**

3.9.1 Laboratory training	80
3.9.2 Laboratory Methods	80
3.9.2.1 Prevention of PCR contamination	80
3.9.2.2 Viral genomic RNA/DNA extraction	80
3.9.3 Real-time Polymerase Chain Reaction (RT-PCR)	82
3.9.3.1 Literature search and selection criteria	82

3.9.3.2 Selec	ction of design of primers and probes	83
3.9.3.3 Selec	ction of existing flourophores	84
3.9.4 Real-T	Time Reverse Transcription (RT)	
and PC	CR assays	87
3.9.4.1 Prepa	aration for Real-time RT-PCR	87
3.9.4.2 Preca	autions taken	87
3.9.4.3 Mone	oplexing/Single test format RT-PCR	88
3.9.4.3.1	Master mixture for single test formats	88
3.9.5 Multip	lexing	89
3.9.5.1 Influ	enza A and B multiplexing	89
3.9.5.2 Mult	iplexing for RSV/hMPV	90
3.9.5.3 Parai	nfluenza 1/2/3 multiplex	90
3.9.6 DNA a	amplifications	91
3.9.6.1 Aden	novirus, Mycoplasma and Chlamydophila	91
	ELEN BOT	
3.10 Prepara	ation of RNA transcripts	
for po	sitive controls	92
3.10.1 Purif	ication of PCR products	92
3.10.1.1	Cloning of DNA	92
3.10.1.2	Clone screening	93
3.10.1.3	Gel electrophoresis	94
3.10.1.4	Plasmid production and extraction	94
3.10.1.5	Clone screening of plasmid DNA	95
3.10.1.6	Gel electrophoresis	96
3.10.1.7	Orientation	96
3.10.1.8	Purification of PCR	96
3.10.1.9	In vitro transcription	97
3.10.1.10	RNA clean up	97

3.10.2 Quantification of invitro transcripts	98
3.10.3 Assay validation	98
3.10.3.1 Specificity	98
	98 99
3.10.3.2 Sensitivity/ accuracy	99
3.11 Laboratory Methods at KCCR- Technology transfer	
/Implementation of the diagnostic methodology	100
3.11.1 Prevention of PCR contamination	100
3.11.2 Viral genomic RNA extraction	100
3.11.3 Real-time PCR assays on clinical samples	101
3.12 Data Management and analysis	101
3.12.1 Real-time PCR - Data management and analysis	101
3.12.1.1 Monoplex and multiplex results	103
3.12.2 Cross-sectional study – Data management and analysis	103
3.12.2.1 Data Management	103
3.12.2.2 Data analysis	103
3.12.2.3 Modeling - Prediction	104
CHAPTER FOUR	
4.0 RESULTS	105
4.1 Optimization of a molecular diagnostic system	105
4.1.1 Selection of appropriate PCR reagents for	
the single test format	105
4.1.1.1 Selection of appropriate primer volume	
for RT-PCR	106
4.1.1.2 Gel electrophoresis	108
4.1.2 Multiplexing	109
4.1.2.1 Selection of reagents for multiplexing	109

4.1.2.2 RSV/hMPV multiplex	110
4.1.2.3 Influenza A/B multiplex	111
4.1.2.4 Parainfluenza 1/2/3	111

4.1.3 Determination of limits of detection (LOD)	113
4.1.3.1 Preparation of transcripts	113
4.1.3.2 Visualization of the inserts	115
4.1.4 Analytical sensitivity - Limiting dilution series	115
4.1.5 Specificity of the primers and probes	118

EVALUATION OF THE DIAGNOSTIC METHODOLOGY USING CLINICAL SAMPLES

4.2	Descriptive analysis of respiratory	
	agents in the children	119
4.2.1	Study population	119
4.2.2	Age of the study population	119
4.2.3	Prevalence and actiology of respiratory agents	120
4.2.4	Co-infections in the study population	121
4.2.5	Clinical signs and symptoms of the study participants	122
4.2.6	Clinical presentation of the children and respiratory agents	123
	THE AND	
4.3	Association between baseline socio-demographic	
	variables and respiratory agents	125
4.3.1	Gender distribution and respiratory-infected children	127
4.3.1	.1 Associations between the gender of	
	the children and respiratory agents	127
4.3.2	Age distribution of virus-infected participants	128
4.3.2	.1 Age of the children and infection with RSV/hMPV	128
4.3.2	.2 Children's age and RhV infection	129
4.3.2	.3 Age of the study participants and infection with PIV 1-3	130
4.3.2	.4 Association between age of the children and influenza A/B	131
4.3.2	.5 Age of the study children and infection with AdV	132
4.3.2	.6 Age and the presence of ENT in the children	133

4.3.2.7 Children's age and Mycoplasma infection	134
4.3.2.8 Age of the study participants and	
infection with Chlamydia	134
4.4 Medical history of the study children	
and respiratory agents	136
4.4.1 Clinical information on the children	136
4.4.1.1 Immunization	136
4.4.1.2 Clinical data and respiratory agents in the children	137
4.4.2 Clinical presentations of the children and respiratory agents	140
4.4.3 Other factors relating to the clinical presentation	
of the children	143
4.4.3.1 Cough related-symptoms as presented by the children	
and respiratory agents	143
4.4.3.2 URTI symptoms as presented by the children	
and respiratory agents	144
4.4.3.3 LRTI symptoms as presented by children	
with respiratory agents	145
4.4.3.4 Gastrointestinal symptoms as risk factors	
of respiratory agents	146
4.5 Maternal factors and respiratory agents	148
4.5.1 Maternal factors and respiratory agents in the children	148
4.5.2 Maternal feeding practices and infection with	
respiratory agents	149
4.6 Association between socio-economic factors	
and respiratory agents	152
4.6.1 Associations between parental education, job and income	
status and the risk of respiratory agents in the children	152
4.6.2 Associations between respiratory agents and accessibility	
to health facilities	157
4.6.3 Association between management of sick children and	

the risk of respiratory agents in the children	160		
4.6.4 Association between basic amenities, sanitary conditions			
and respiratory agents	159		
4.7 Seasonal distribution of respiratory agents	167		
4.7.1 Monthly distribution of respiratory agents in			
the study children	167		
4.7.2 Respiratory agents and rainfall			
4.7.3 Seasonal distribution of the individual viruses	169		
4.8 Predictors of respiratory agents	172		
KNUST			
CHAPTER FIVE			
5.0 DISCUSSION			
5.1 Optimization of a molecular diagnostic system 174			
5.2 Prevalence and actiology of respiratory			
agents in the children	182		
5.3 Association between socio-demographic variables			
and respiratory viral infections	189		
5.4 Clinical presentations of the study children and			
respiratory agents	193		
5.5 Maternal factors and respiratory agents			
in the children	197		
5.6 Association between socio-economic factors			
and respiratory agents	200		
5.7 Seasonal distribution of respiratory agents	204		
5.8 Predictive modeling of respiratory viral infections	206		

CHAPTER SIX

6.0	CONCLUSIONS, LIMITATIONS AND RECOMMENDATION	ONS
6.1	Conclusions	208
6.2	Limitations	211
6.3	Recommendations/future outlook	212

REFERENCES

213

APPENDICES

270

LIST OF TABLES

TABLE	PAGE
Table 2.1 Some clinically significant respiratory viruses	12
Table 2.2 Characteristics of common respiratory viruses	14
Table 2.3 Clinical features of influenza and RSV infection	18
Table 3.1 Literature optimized and used in the laboratory	
for RT-PCR	83
Table 3.2 List of references for primers and probes	84
Table 3.3 Characteristics and sequences of primers and probes	01
for all the respiratory agents RT-PCR assays	85
for an the respiratory agents RTT ere assays	05
Table 4.1: Comparison of Cts for Qiagen one-step RT-PCR	
reagents and Qiagen multiplex reagents	110
Table 4.2 Comparison of Ct of positive controls for RSV/hMPV in	
single and multiplex RT-PCR reactions	110
Table 4.3 Comparison of Ct of positive controls for influenza A/B	
in single and duplex RT-PCR reactions	111
Table 4.4 Comparison of Ct of positive controls for PIV 1-3 in	
single and multiplex RT-PCR reactions	112
Table 4.5 The individual detection limits of various	
respiratory viruses	116
Table 4.6 Co-infections of respiratory agents in the study children	122
Table 4.7 Clinical symptoms as presented by the children and	
respiratory agents	124
Table 4.8 Association between socio-demographic variables and	
respiratory agents	126
Table 4.9 Associations between the gender of the children and	
respiratory agents	128

Table 4.10 Association between children's age and RSV/hMPV	129
Table 4.11 Association between the ages of the participants	
and RhV	130
Table 4.12 Association between age and PIV 1-3 viruses	131
Table 4.13 Association between children's age and influenza A/B	132
Table 4.14 Association between the age of the children	
and AdV	133
Table 4.15 Relationship between age of the children	
and ENT	133
Table 4.16 Association between age and Mycoplasma	134
Table 4.17 Association between the ages of the children	
and Chlamydia	135
Table 4.18 Immunization status of the study children	
and respiratory agents	137
Table 4.19 Clinical data and respiratory agents in the study children	139
Table 4.20 Associations between clinical signs and	
symptoms and respiratory agents	141
Table 4.21 Association between cough-related presentations	
and respiratory agents	143
Table 4.22 Associations between factors related to URTI	
symptoms and respiratory agents	144
Table 4.23 Associations between LRTI symptoms and	
respiratory agents	146
Table 4.24 Associations between GI signs and symptoms and	
respiratory agents in children	147
Table 4.25 Association between maternal factors and	
respiratory agents	149
Table 4.26 Associations between nutritional status and	
respiratory agents	150

Table 4.27 Education/ Job and Income of the parents and	
respiratory agents in the children	154
Table 4.28 Association between accessibility to health	
facilities and respiratory agents	159
Table 4.29 Management of sick children and respiratory agents	161
Table 4.30 Accessibility to basic amenities and sanitary	
conditions and respiratory agents in the children	164
Table 4.31 Seasonal distribution of respiratory agents	171
Table 4.32 Factors associated with respiratory viral infections	
in children who present with signs and symptoms	
of respiratory infection- multivariate analysis	173

LIST OF FIGURES

FIGURE

PAGE

Figure 2.1 Structure of RSV virus	16
Figure 2.2 Electron micrograph of hMPV virus	22
Figure 2.3 Structure of influenza virus	27
Figure 2.4 Electron micrograph of PIV-3	32
Figure 2.5 Structure of Enterovirus virus	39
Figure 2.6 Rhinovirus virus	43
Figure 2.7 Structure of adenovirus	45
Figure 3.1 Map of study area	70
Figure 3.2 Potential study participants with their parents/	
guardians at the OPD	75
Figure 3.3 Nasopharyngeal sample being taken from a study patient	77
Figure 3.4 Nasopharyngeal swab from a study patient	77
Figure 3.5 Flow chart of the overall study design	79
Figure 3.6 Flow chart of RNA extraction	101
Figure 4.1 RT-PCR using Biorad RT- reagents	105
Figure 4.2 RT-PCR using Qiagen one-step RT-PCR reagents	106
Figure 4.3 A picture of RT-PCR on the Light Cycler instrument	
using 2µl primer volume	107
Figure 4.4 A picture of RT-PCR on the Light Cycler instrument	
using 1µl primer volume	107
Figure 4.5 A 2% agarose-stained in ethidium bromide gel	
electrophoresis picture	108
Figure 4.6 Visualization of AdV amplicons after electrophoresis	109
Figure 4.7 Schematic representation of cloning cDNA	
into a topo vector	114

Figure 4.8 A gel picture showing the orientation of a negative-	
stranded RNA virus	115
Figure 4.9 Limiting dilution series showing the least dilution	
point for RSV/hMPV	117
Figure 4.10 Limiting dilution series showing the least dilution	
point for influenza A/B	117
Figure 4.11 Different RNA samples tested with RSV/hMPV	
primers and probes	118
Figure 4.12 Age distribution of the study population	120
Figure 4.13 Prevalence (%) of the respiratory agents in the study	121
Figure 4.14 Frequency of clinical signs presented by the children	123
Figure 4.15 Monthly distribution of respiratory agents	168
Figure 4.16 Respiratory agents and rainfall pattern	169

ABBREVIATIONS

RI	Respiratory infection
RVI	Respiratory Viral infection
RTIs	Respiratory tract infections
LRT	Lower respiratory tract
URT	Upper respiratory tract
URTIs	Upper respiratory tract infections
LRTIs	Lower respiratory tract infections
LRI	Lower respiratory infection
AdV	Adenovirus
RSV	Respiratory syncytial virus
PIV	Parainfluenza virus
RhV	Rhinoviruses
ENT	Enteroviruses
hMPV	Human metapnuemovirus
MYC	Mycoplasma
CHL	Chlamydophila
HAdV	Human adenovirus
HIV	Human immunocompromised virus
EKC	Epidemic Keratoconjunctivitis
ТВ	Tuberculosis
SARS	Severe Acute Respiratory Syndrome
COPD	Chronic Pulmonary Disease
WBC	White Blood Cell
M - gene	Matrix gene

N - protein	Nucleoprotein
G - protein	Glycoprotein
HA-gene	Hemagglutinin gene
NCR	Non-coding region
5'-UTR	5'- untranslated region
DNA	Deoxyribonucleic acid
cDNA	complementary DNA
RNA	Ribonucleic acid
cRNA	Carrier RNA
mRNA	messenger RNA
S	Sense
AS	Antisense
dNTPs	deoxynucleoside triphosphates
ATP	Adenosine triphosphate
GTP	Guanosine triphosphate
CTP	Cytidine triphosphate
TTP	Thymidine triphosphate
BSA	Bovine Serum Albumin
EDTA	Ethylenediaminetetraacetic acid
NaCl	Sodium Chloride
KCl	Potassium Chloride
MgCl ₂	Magnesium Chloride
LB	Luria-Bertani
TBE	Tris- Hydroxymethyl-amino methane, Boric acid
	and Ethylenediamine tetraacetic acid Na 2- salt dehydrate

GPS	Gene Power Supply
UV	Ultra violet
β-ΜΕ	β-mercaptoethanol
FRET	Fo [°] rster resonance energy transfer
CPE	Cytopathic Effect
EM	Electron microscopy
EIA	Enzyme immunoassay
IFA	Indirect immunofluorescence
IgA	Immunoglobulin A
CAP	Community-acquired pneumonia
OPS	Oropharyngeal swab
NPS	Nasopharyngeal swab
NPW	Nasopharyngeal washing
NPA	Nasopharyngeal aspirate
CDC	Centers for Disease Control
WWW	World wide-web
EPA	Environmental Protection Agency
EPI	Expanded Programme for Immunization
САН	Child and Adolescent Health and Development
UNICEF	United Nations International Children Educational Fund
IMCI	Integrated Management of Childhood illnesses
CDC	Centre for Diseases Control
USA	United States of America
WHO	World Health Organization
DFA	Direct immunofluorescent antibody

FA	Fluorescent-Antibody
PCR	Polymerase Chain Reaction
RT-PCR	Real-time Polymerase Chain Reaction
RT-PCR	Reverse transcription Polymerase Chain Reaction
RT-RT-PCR	Real time-Reverse transcription Polymerase Chain Reaction
OR	Odds Ratio
CI	Confidence interval
KNUST	Kwame Nkrumah University of Science and Technology
SMS	School of Medical Sciences
CHRPE	Committee on Human Research, Publications and Ethics
APH	Agogo Presbyterian Hospital
GCP	Good Laboratory Practice
BNITM	Bernhard Nocht Institute for Tropical Medicine
OPD	Out-patients department
CWC	Child Welfare Clinic
CRF	Case Reporting Form
HPLC	High performance liquid chromatography
FAM	6-carboxy-fluorescein
MGB	Minor Groove Binder
TAMRA	6-carboxy-tetramethyl-rhodamine
MGBNFQ	Minor Groove Binder non-fluorescent Quencher
KCCR	Kumasi Centre for Collaborative Research in Tropical
	Medicine

ABSTRACT

Respiratory Infections (RIs) constitute one of the major causes of morbidity and mortality among the pediatric population of developing countries. When caused by viruses, their manifestations are very difficult to detect on clinical grounds and most importantly by conventional diagnostic methods. Whilst studies on the viral causes of RIs are well documented in developed countries, there exist scanty information on them in most developing countries. The main aim of this study was to optimize and establish molecular diagnostic systems which are able to simultaneously detect several pathogens per clinical sample for respiratory viral infections. The viral aetiology and determinants of respiratory viral infections in children were also evaluated.

Three real time multiplex Polymerase Chain Reaction (m-RT-PCR) and five monoplex real-time polymerase chain reactions (RT-PCR) were optimized and established for the detection of twelve respiratory agents during the study. The three m-RT-PCRs included two duplexes for the simultaneous detection of respiratory syncytial virus and human metapneumovirus (RSV/hMPV), influenza A and B (influenza A/B) and a triplex for parainfluenza 1, 2 and 3 (PIV 1-3). The five monoplexes included three assays for Rhinoviruses (RhV), Enteroviruses (ENT), Adenoviruses (AdV) and two for non-viral agents *Mycoplasma pneumoniae* (MYC) and *Chlamydophilia pneumoniae* (CHL).

Nasopharyngeal swabs were taken from children who presented with at least two signs and symptoms suggestive of respiratory infection to the out patient department of Agogo Presbyterian Hospital in the Asante Akim North district in the Ashanti Region of Ghana between February 2008 and March 2009. Also collected were their sociodemographic, socioeconomic and clinical data. A predictive algorithm for the viral causes of respiratory infection was then developed.

A total of 1,191 children were enrolled in the study. The developed assays detected 476 pathogens in 429 (36.5%) children. RSV/hMPV was the most frequently detected pathogen in 154 (13.1%), RhV in 93 (7.9%), PIV 1-3 in 83 (7.1%) and influenza A/B in 68 (5.8%) of the children. Furthermore, AdV and ENT were

detected in 40 (3.4%) and 29 (2.4%) respectively whilst MYC was found in 6 (0.5%) of the children. CHL was detected in only 1 (0.1%) child. More than one respiratory agent was detected in 47 (3.9%) of the study participants.

Despite the differences in the symptoms presented, most viral agents could not be associated with specific clinical signs or symptoms. The risk for RVIs decreased steadily with increasing age (OR=0.57, 95% CI: 0.49-0.67, p<0.05) with the youngest children (up to 12 months) at highest risk (OR=0.87, 95% CI: 0.69-1.10). This was true for RSV/hMPV, PIV 1-3 and AdV (p<0.05). For influenza A/B, there was an increased risk with increasing age (p<0.05). With an overall male-to-female ratio of 1.2:1, gender (p=0.99), religion (p=0.89) and ethnicity (p=0.56) were not associated with RVIs.

High temperature (\geq 37.6°C) was also a significant determinant for viral respiratory infections (p<0.05). With the exception of maternal age (p=0.02) and nutrition (p<0.05), none of the maternal factors studied turned out to be predictors of RVIs in the children. Similarly, apart from associations between accessibility to health facilities (p<0.05), none of the socioeconomic factors were determinants of RVIs. While RSV/hMPV and influenza viruses were detectable during the rainfall seasons, PIV, RhV, ENT and AdV were detected sporadically throughout the year.

This study has defined the epidemiology of specific respiratory viruses and the clinical presentation of children with signs and symptoms of respiratory infection. With the advent of molecular diagnostic techniques such as multiplex RT-PCR, this study provides valuable information to clinicians and virologists confronted with children suffering from respiratory tract illnesses of viral etiology for possible understanding of the viral causes of these infections.

APPENDICES

Appendix 1: Ethical approval form

Appendix 2: Informed consent form

Appendix 3: Virology laboratory reporting form

Appendix 4: Case Reporting Form (CRF)

Appendix 5: Socioeconomics information form

