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Abstract 
General insurance under which motor insurance falls is perhaps the fastest 

growing area thus claim numbers and amount are huge (Achieng, 2010). Due to 

the high rate of growth, number of claims are also overwhelming thus creating a 

huge backlog of unsettled claims. The objective of the study was to explore how 

the multistate model underlie the development of motor insurance contracts 

using a three state model, the states being Incurred But Not Reported (IBNR), 

Reported But Not Settled (RBNS) and PAID. The three state model was used to 

derive the expressions for transition probabilities using the generator matrix and 

the Chapman-Kolmogorov forward differential equations. This was done after the 

transition rates had been estimated using the method of maximum likelihood. 

These were then used to compute the number of claims in the development years. 

It was found that losses arrived at the IBNR state at a rate of 105 losses per month 

and then waits for 1.88 months before it transitions to the RBNS state with a force 

of 0.53 claims per month. Claims reported were then seen to be settled (PAID) 

with the force of settlement of 0.17 claims per month. All the claims in the IBNR 

states were moved to the RBNS in the accident year, 80 percent of claim in the 

RBNS state are settled in the accident year with the remaining spread over three 

more years. 44.6 percent and 47.2 percent of the claims are paid in the accident 

and first development year respectively. It was concluded that an average of 6 

claims are reported per year with 2 claims being settled in the same year. The 

claims in the IBNR state are run off after a year, claims in the RBNS and PAID 

states being completely run off after four and five years respectively. Expressions 

for the expected number of claims for the accident year and development years 

were derived. 
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Chapter 1 

Introduction 

1.1 Introduction 

This chapter gives a background to the study which covers motor insurance 

contracts, claims and claim counts and reserving models. The chapter also 

presents the problem, purpose of the study and also limitations of the study. 

1.2 Background of the study 

Motor Insurance which is sometimes also referred to as automobile insurance is 

a form of security which is purchased to protect the buyer of the product from 

future loss (Awunyo-Vitor, 2012). The National Insurance Commission (NIC) 

described the aim of motor insurance as providing compensation for loss or 

damage to one’s motor vehicle. These compensations, usually referred to as 

claims, however aims at providing compensation for injury or death to third 

parties arising from vehicular accidents or the car owner in the event of loss 

arising out of theft of the vehicle or loss from damage caused by fire (NIC, 2015). 

General insurance under which motor insurance falls is perhaps the fastest 

growing area for insurance industries thus resulting in huge amount and number 

of claims (Achieng, 2010). This calls for claim actuaries to be more concerned 

with both the claim amount and number since they are likely to have a great 

impact on the finances of the firm. Due to the fact that data is very important in 

the insurance industry, a lot of insurance companies employ large numbers of 

actuarial analysts to understand the large volumes of claims data. Actuaries 

managing claims need to also concern themselves with the number of claims, the 
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claim amounts the insurance industry will have to pay and the exact situations 

which gives rise to the claim numbers (Boland, 2006). 

A much critical attention to both claim numbers and amounts will enable claim 

managers to develop suitable models which best forecast future claim amounts 

and numbers. This is termed reserve techniques (Orr, 2007). This is sometimes 

referred to as loss reserves, since they are used to forecast and and make 

provision for future liability. Conventional reserving methods addresses the 

problem associated with the prediction of future claims as they develop using 

information readily available (Orr, 2007). The reserving methods consider the 

information available from the previous years and uses it to forecast the overall 

development of the claims. This is done with the assumption that the claim 

development pattern does not change. In practice, factors surrounding the 

historical factors will be taken into consideration for the development years 

(Frees, 2014). 

The techniques include the basic chain ladder, which is one of the simplest as it 

was developed in the pre-computer age and does not involve specialized software 

(Orr, 2007). There are stochastically developed techniques which use 

proportions in estimating claim developments. In this study, a multistate model 

will be used to explore the idea that the development of claims of a motor 

insurance contract is frequently presented as a compressed s-curve of incurred 

(reported) or paid claims over time. The application of multistate models to 

actuarial problems was first introduced by Hoem (1969). Significant 

contributions to the analysis of present values in a multistate model framework 

were made by Waters (1984). Few studies have been conducted over the years 

on the Markov loss reserve model which involves states such as the Incurred but 

not reported (IBNR), Reported but Not Settled (RBNS) and Settled (S). Others 

include states such as Reported but No Case Reserve and Reported and Case 
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reserve. These could either be a time inhomogeneous markov jump chain or time 

inhomogeneous Poisson process (Hesselager, 1995). 

1.3 Data Source 

Claim data of the various motor insurance product was a secondary source data 

obtained from Vanguard Assurance Company Ltd. The data covered losses which 

were reported in 2014 regardless of the cause of loss. The various dates (loss 

incurred, date relevant documents were requested and submitted, date claim was 

settled and date cheque was issued) and also the policy type and cause of losses 

were the main parameters. 

1.4 Problem Statement 

Claim severity forms the largest insurer liability on the insurer’s balance sheet. 

Thus the need for the development of a suitable model, which will consider the 

number of claims managed by the insurance company. 

At Vanguard Assurance Company limited, motor policy records an over-whelming 

number of claims in any given period. This implies that there is a tendency for a 

delay in settlement thus claims keep piling up. It is for this reason that there is a 

need to fit a model that does not just focus on the claims being paid to the clients 

but also the number of claims. Fitting this model enables the valuation actuaries 

to best forecast future expected claims and also set reserves which will be 

adequate to curb these losses. 
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In most companies, it takes a longer time to settle a claim once it is reported. This 

creates a huge backlog of unpaid (outstanding) claims . This is a problem as all 

these claims are not settled in the same accident year but are mostly transferred 

and added to the subsequent accident years. 

The Markov model provides a relatively simpler approach to modeling loss 

reserves as compared to the traditional chain ladder approach (Hesselager, 

1995). Thus knowing the distribution of the claim amounts and claim numbers 

will aid the process of summarizing and modeling large amounts of claims data. 

Thus these distributions however are very important to actuaries (Raz, 2000). 

1.5 Objectives 

To explore how the multistate model underlie claim development of motor 

insurance contracts. 

The main objectives of the study are; 

1. To estimate the transition intensities between claim development model. 

2. To derive the expressions for the expected claim numbers in each state 

ateach point in time, t. 

3. To use the multistate model to compute the expected claim counts in 

theaccident and development years. 

4. To identify the run-off year for claims in each state. 



 

6 

1.6 Research Hypothesis 

Given that X is the random variable of the number of losses that arrive in a day, 

the number losses arrive as a Poisson process with parameter λ and is tested by: 

H0:X∼ Poi(λ) 

H Poi(λ) 

1.7 Significance of the study 

The motor insurance policy is very essential because the Third Party Insurance 

Act, 1958 demands that whoever uses a vehicle on any public road must have 

insurance which covers both his liabilities and others which arise from the use of 

the vehicle. This makes general insurance, which covers motor insurance, section 

of the insurance companies is their largest wealth pulling sectors (NIC, 2015). 

This results in large number of claims and claim amounts in each year. Claim 

reserving actuaries who have the task of ensuring claims are taken care of also 

have the task of advising management on the amount needed to be reserved for 

future claims. This study intends to provide claim managers an approach to 

modeling claim reserves which uses volumes of claims in modeling and not just 

claim amounts. This method is an appropriate method for large number of claims 

as in this case. Subsequently, it will help claim actuaries to know how much and 

when claims will be made in the future and also help estimate future losses. 

1.8 Scope of Study 

This research will cover the various motor insurance policies including the 

various vehicle type (commercial or private) and each category of insurance 

policy types (comprehensive, third party ...) of Vanguard Assurance. The number 
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of claims which are not reported (IBNR), those yet to be settled (RBNS) and those 

settled 

(S) 

1.9 Limitations of the study 

The study had the following limitations; 

1. The data organization structure created a limitation as to the number 

ofstates the process (claim development) goes through before finally being 

settled. For that reason, only the three states (IBNR, RBNS and PAID) were 

considered in the study. 

2. Time allocated for the research limited the research to just motor 

insuranceand in just one insurance company. 

3. Data was also a limitation to the study since claims data for just one yearwas 

received. This focused the research on only one accident year. 

1.10 Data Analysis and Presentation 

The data received was sorted into the relevant dates to the three state model such 

as date of loss (accident), date accident was reported and the date the claim was 

paid. Data sorting and analysis was done mainly by the use of Microsoft excel 

(2013), and MATLAB. 
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1.11 Organization 

The thesis will be presented in five major chapters. Chapter one is the 

introduction which presents the background to the study, statement of the 

problem, objective of the study, significance of the study, scope of the study and 

the limitations of the study. Chapter two will present a review of relevant 

literature and comprises the theoretical framework and the different 

perspectives of researchers of the problem related to reserve models. The 

methodology to achieve the objectives is outlined in chapter three and here the 

relationships between the three fundamental traffic variables are developed. 

Chapter four presents the data analysis, modeling results and the accompanying 

discussions. The summary of findings conclusions and recommendations are 

presented in chapter five, then the 

References and appendix 

* 

1.12 Definition of Terms 

1. Claim - A demand or request for something considered one’s due (IFE, 

2013). 

2. Loss - A loss is the injury or damage sustained by the insured in 

consequence of the happening of one or more of the accidents or 

misfortunes against which the insurer, in consideration of the premium, has 

undertaken to indemnify the insured (Marshall, 1810) 

3. Random Variable-A function that associates a unique numerical value with 

every outcome of an experiment (Bendat, 2011). 
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4. Reserve-Provisions for future liabilities which indicate how much money 

should be set aside now to reasonably provide for future pay-outs (Achieng 

2010). 

5. Severity-This can either be the amount paid due to a loss or the size of a 

loss event (Frees, 2014). 

6. Model-An imitation of a real world system or process (Hartmann 1996). 

7. Actuary-An actuary is a business professional who deals with the 

measurement and management of risk and uncertainty (SOA, 2016) . 

8. Maximum Likelihood Estimate-is a method of estimating the parameters 

of a statistical model given data (Myung, 2003). 

9. Insurance-is the equitable transfer of the risk of a loss, from one entity to 

another in exchange for money. It is a form of risk management primarily 

used to hedge against the risk of a contingent, uncertain loss. An insurer, or 

insurance carrier, is selling the insurance; the insured, or policyholder, is 

the person or entity buying the insurance policy (Chi-Chi, 2013).  
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Chapter 2 

Literature Review 

 2.1 Introduction 

Non-life modeling of claims is one of the most researched areas in the field 

of actuarial science. This chapter reviews literature on reserve models, the 

Markov process, and other models for modeling claim reserves. 

 2.2 Theoretical Review 

The conceptual framework on which this work was done was the Markov 

process. The Poisson process was used in modeling the claim development 

process from time loss was made through time it was reported until final 

settlement. 

 2.3 Markov Process 

Many actuarial calculations involve a multistate setup (Frees, 2014). Many 

authors have therefore used multistate models to analyse actuarial 

problems (Jones, 1994). IFE (2013) defines a Markov process as a discrete 

state stochastic process which has the Markov property and states that the 

probability of a being in a state depends only on the probability of being in 

the current state. The process can either be a chain or a jump chain 

depending on the nature of the time component (i.e discrete or continuous). 

Jones (1994) in a paper on Actuarial Calculations using a Markov model 

represented the states of an individual at time (age) t ≥ 0 by X(t) and the 

stochastic process by X(t),t ≥ 0 . For a finite state space 1,2,...,k , defined the 
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stochastic process. X(t),t ≥ 0 as a Markov process if ∀s,t > 0 and i,j,x(u) ∈ 

1,2,...,k, 

PrX(s + t) =| X(s) = i,X(u) = x(u),0 ≤ u ≤ s (2.1) 

Pr(X | s + t) = j | X(s) = i (2.2) 

The above equation represents the Markov property. He further explains 

that the future of the process (after time s) depends only on the state at time 

s and not the history of the process up to time s. 

Bovier (2012) described Markov processes as the most important 

stochastic processes that are used to model real life phenomena. He 

classified the Markov processes into the following categories: 

(a) Discrete time, finite state 

(b) Discrete time, countable state space 

(c) Discrete time, general state space 

(d) Continuous time, countable state space 

(e) Continuous time, general state space 

 2.4 Claim Development Process 

Wang (2008) studied Modeling Claim Development Processes. The purpose 

of the report was to suggest a theoretical account that could be applied to 

analyse active claims side by side with finalised claims for pricing purposes. 

The processes claims were to break through were; a delay process that 

models the time between each successive update to the incurred claims cost 

variable; a binary process that models, whether the claims cost is revised 

upwards or down at each successive update; a positive process that models 
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the size of the revision. These operations were then modelled and a more 

robust inference based on all available claims information, rather than only 

a subset was created. 

Antonio (2012 and 2014) studied Micro-level stochastic loss reserving for 

general insurance. This study looked at the use of Position Dependent 

Marked Poisson Processes and statistical tools for recurrent events, a 

dataset was analysed with liability claims from a European insurance 

company. Detailed data on the time of the occurrence of the claim, delay 

between the occurrence and reporting to the insurance company and also 

the occurrences of payments and their sizes and final resolution. The model 

was calibrated to historical data and was used to visualise the future 

development of open claims. The resolutions from the case study analysis 

showed that the microlevel model outperforms the results obtained with 

traditional loss reserving methods for aggregate information. 

Van (2015) studied on Micro-level stochastic loss reserving models for 

timediscrete data. The paper focused on the development of future cash 

flows on a claim-by-claim basis. A multiple state framework was adopted 

by the study such that, the claim development process could be 

reconstructed as a series of transitions between a given set of states. The 

claim sizes were modeled by means of a multinomial distribution the 

probability is determined that the claim size of a certain claim pertains to 

the slice of interest. 

 2.5 Multistate Reserving Model 

Norberg (1986) in his paper titled A contribution to modeling of IBNR, 

claims presented some relatively simple structural ideas about how 

probabilistic modeling, and in particular, the modern theory of point 
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processes and martingales could be used in estimation of claim reserves. He 

assumed accidents occurred as a Poisson process and reporting delays 

were iid. His study supported the use of Bayesian paradigm and the 

Poisson-gamma conjugate distributions for the estimation of number of 

claims in each state. 

Hesselager (1995), studied a markov model for loss reserving. In his 

research studied the claims generating process for non-life insurance 

portfolio, which was modelled as a Poisson process where the marker 

associated with an incurred claim described the development of that claim 

until final resolution. The Markov principle governed an unsettled claim at 

any period in time assigned to a state in some state space. He, however 

developed separate expression for the IBNR and RBNS reserves and the 

corresponding 

prediction errors. 

Orr (2007) aimed at exploring how a simple, common process may underlie 

the growth of claims rising from a portfolio of insurance contracts. This 

study used a simplified claim number multi state model of three states. 

The states being IBNR (State 0), State 1 for Reported But Not Settled (RBNS) 

claims and paid claims being absorbed into State 2. Losses arrived at the 

first state as la Poisson process. Using the R statistical package, the 

estimated number of claims were obtained from the simulated data. 

Outcomes from the survey demonstrated that simulation of the simplified 

claims number model was established to generate plausible data, to which 

existing reserving techniques may be used. Alternative estimation 

approaches using least squares and Bayesian approaches were established 

to create similar effects. Though it was not tried out in a material world, the 
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model was considered to have supplied an alternative base for the 

estimation of claim development. 

Hurlimann (2015) conducted a study on the topic Old and New on some 

IBNR Methods. This study considered three main categories of the IBNR 

methods being the: the standard IBNR methods, that is, chain-ladder, Cape 

Cod, Bornhuetter-Ferguson, the IBNR loss ratio method and the stochastic 

IBNR methods. This study focused on the stochastic chain ladder models 

which included the multivariate setting, distribution based reserving 

models and multistate reserving models. This study assumed that the IBNR 

followed a log-Laplace distribution and used numerical examples to show 

that it is comparable in accuracy to the standard and loss ratio IBNR 

methods. 

 2.6 Other Reserving Models 

Renshaw (1998) studied on the topic a stochastic model underlying the 

chain-ladder technique. This study presented a statistical model underlying 

the chain-ladder technique. The statistical models used here were the 

generalized linear model and a quasi-likelihood approach to the chain 

ladder technique. Results from this study showed that the method was able 

to process negative incremental claims. Conclusion from the study revealed 

that the chain-ladder technique represented a very narrow view of the 

possible range of models. 

The Bootstrap methodology in claim reserving was considered by Pinheiro 

(2003). In the article, the bootstrap technique was used to obtain prediction 

errors for different claim-reserving methods, namely, the chain ladder 

technique and methods based on generalized linear models. de Andres-
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Sanchez (2007) studied claim reserving with fuzzy regression and Taylor’s 

geometric separation method. The paper developed a claim reserving 

method that combined Ishibuchi and Nii’s extension. Data analysis was by 

Fuzzy probabilistic linear models. Fuzzy Regression Analysis with the 

scheme for claim reserving proposed was conducted and a statistical 

testing of a non-life insurance run-off model was performed. 

Studies on Bayesian estimation of outstanding claim reserves was 

conducted by De Alba (2002). The paper presented a Bayesian approach to 

forecasting outstanding claims, that is, either the total number of claims or 

the total claim amount. The assumption made here was that there was 

complete information for one or two past years of origin and partial 

information for some development years of other years of origin. He 

presented two different models. One for the claim numbers (intensity) and 

the other on claim amounts (severity). He then derived the complete 

predictive distribution of the reserve requirements, from which point 

estimates as well as probability intervals and other summary measures, 

such as mean, variance, and quantiles were obtained 

Pettere (2006) modelled incurred but not reported claim reserving using 

copulas. The purpose of the study was to calculate IBNR reserve directly 

without total outstanding reserve. Copula was used as a tool for modelling 

different dependence structures has been intensively. This was done in six 

steps and results showed that there was one very large and not traditional 

paid sum 5000 and the real paid out amount of claims was 21481.28 LVL. If 

this large amount had not occurred, the amount paid out would have been 

16481.28 LVL. 
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Dahms (2008) conducted a study on a loss reserving method for incomplete 

claim data. A stochastic model of an additive loss reserving method based 

on the assumption that the claim reserves are good measures for the 

remaining exposure was presented. This method was was seen to even 

work for incomplete triangles. The estimators for the total necessary 

reserves and estimators for the corresponding standard error were found 

and further discussions to distinguish between property damage and bodily 

injury claims. 

Jing (2009) conducted a study on the topic claim reserving: performance 

testing and the control cycle. In his study, estimates of claim liabilities were 

forecast subjects to estimation errors. Performance testing of alternative 

methods was used to provide a formal assurance of the usage of the best 

methods for the given circumstance, and also to provide insight into the 

appropriate weight to give to the indications produced by each method. 

This was however an integral part of the actuarial control cycle associated 

with the loss reserving process. 

Bjorkwall (2009) studied on non-parametric and parametric bootstrap 

techniques for age−to−age development factor methods in stochastic claims 

reserving’. The aim of the study was to investigate existing bootstrap 

techniques and suggest two alternative bootstrap procedures, one 

non−parametric and one parametric, by which the predictive distribution of 

the claims reserve can be found for other age−to−age development factor 

methods than the chain−ladder, using some rather mild model assumptions. 
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Chapter 3 

Methodology 

 3.1 Introduction 

This chapter presents the methods used in arriving at the results. It 

presents any underlying assumptions made in the work and also the 

sources of data and data analysis and presentation. 

 3.2 Research Design 

This research was based on a Poisson process and a Markov jump process. 

The study applied Markov application of multistate models to actuarial 

problems which was introduced by Hoem (1969). From IFE (2013), 

[N(S,t)]t>0 (an increasing integer valued process with starting from 0 with λ 

> 0) was said to be a Poisson process since the following conditions could 

be applied to the process; 

(a) The holding times, T0,T1,T2,...Tn−1 of [N(S,t)]t ≥ 0 were independent 

exponentially distributed random variables with parameter λ and 

NT0+T1+...+Tn−1 = n 

(b) It was a Markov transition rates were given by: 



 

18 

 

 

−λ 

ij 
µ = λ 

 0 

ifj = i ifj = 

i + 1 

otherwise 

This study was primarily based on Markov process applications to 

actuarial problems (Frees, 2014). 

 3.2.1 The Markov Jump Processes 

Let Γ be the set of all states of a system and x,y ∈ Γ the states of the system. 

A jump process is a random variable X(t) with parameters time t ∈ (0,∞). 

This random variable starts in an initial state x0 at time t = 0 and stays in 

this state until time t1 when it makes transition to a different state xi. 

It stays until a later time t2 > t1 at which it jumps to a different state. Then if 

t1,t2,... are the set of jump times, then X(t) = x0 for t ∈ (t1,t2), and so on. This 

defines a Markov Jump process X(t). We assume that limn→∞ tn = ∞, so the 

jump process X(t) is defined for all non negative value of t. 

 3.2.2 The Poisson Process 

The Poisson process is the simplest example of the Markov jump process in 

continuous time. The standard time − homogeneous Poisson process is a 

counting process in continuous time, Nt, t ≥ 0, where Nt records the number 

of occurrences of some type of event within the time interval from 

000to 0t0. The events of interest occur singly and may occur at any time. IFE 

(2013) 
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The probability that an event occurs during the short time interval from 

time t to time t+h is approximately equal to λh for small h; the parameter λ 

is called the rate of the Poisson process. It is very commonly used to model 

the occurrence of unpredictable incidents, such as car accidents or arrival 

of claims at an office. 

 3.3 The Model 

The model was discrete state space, continuous time Markov jump process 

with arrival following a Poisson process. The model was a three state model 

namely IBNR as State 0, RBNS as State 1 and PAID as state 2. The state space 

was IBNR, RBNS, PAID or 0, 1, 2. Hesselager (1994) and Orr (2007) have 

discussed similar models and applied to modeling actuarial problems.  
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Figure 3.1: The Expected Model 

Figure 3.1 The Multistate Model 

The above model shows that losses (accidents) arrive as a Poisson process 

with parameter(λ). These losses arrive at a state IBNR which is often 

referred to as unreported claims. These losses are now claims which are to 

be reported to the claims department for processing. They are reported in 

state RBNS at a rate of µ01 = a. These claims are therefore the outstanding 

claims the claims department has to pay. These claims are then absorbed 

into the PAID at a rate of µ12 = b. The rate at which claims move from state 

0 to state 1 are referred to as force of reporting. The ratio at which reported 

claims are paid was also referred to as force of settlement. 

Assumptions made 

(a) Only losses and claim numbers in each state were considered. 

Thisimplies that claims which were considered at any point in time 

were found in either states. 

(b) Losses were assumed to arrive following a Poisson process with a 

constant rate of arrival λ with exponential waiting times .This is 

because claim arrivals are rare events.(Orr, 2007). 

(c) Claims are assumed to be absorbed only in the PAID state; all 

claimsreported will eventually be paid. PAID state is therefore an 

absorbing state which implies that all claims which are incurred will 

finally be absorbed into the state and will not transit to any other state. 
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(d) The Markov property holds. The states that the probability of a beingin 

a state depends only on the probability of being in the current state. 

 3.4 Estimation transition intensities 

Orr (2007) defined the transition intensities as; 

01 P(Claim in State 1 at t+h|Loss in state 0 at t) µ = 
lim  

 h→0 h 

= force of reporting = a 

12 P(Claim in State 2 at t+h|Loss in state 1 at t) µ = 
lim  

 h→0 h 

= force of reporting = b 

 3.4.1 Maximum likelihood estimators (transition in- 

tensities) 

Let 

N1 = Number of losses in the ith month . Thus 

 

V1 = Waiting time of ith loss in the IBNR state . Thus 

N 

V = XVi 
i=1 

W1 = Waiting time of ith loss in the RBNS state . Thus 

N 
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W = XWi 

i=1 

R1 = The number of transitions from IBNR to RBNS by ith claim. Thus 

N 

R = XRi 

i=1 

S1 = The number of transitions from RBNS to PAID by ith claim. Thus 

N 

S = XSi 
i=1 

L(µ01,µ12) = L(a,b) = e−ave−bwarbs 

(e−avar)(e−bwbs) 

(a) Log likelihood is 

lnL = −av − bw + r lna + slnb 

(b) Differentiating this with respect to a and b gives 

 

(c) Setting each of these derivatives to 0 gives; 

 

 

(d) Using the second derivative to check for maxima gives 
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Hence the negatives denotes the maximum likelihood estimates of a 

and b 

 

 

 3.4.2 Maximum likelihood estimators (Arrival rate) 

The maximum likelihood method was applied to estimate the expected 

rates of diagnoses of various items as stated above. 

The likelihood function of Poisson model in estimating the parameter λ 

(a) Log likelihood is 

 

 

(b) The log likelihood of the likelihood function was then determined 

forthe parameter estimates 

! 

(c) Differentiating this with respect λ 

 

(d) Setting the derivative to 0 gives; 
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(e) Using the second derivative to check for maxima gives 

 

Hence the negatives denotes the maximum likelihood estimates of λ 

 

3.4.3 Average waiting time in each state 

The average waiting times in each state were found by the reciprocal of the 

transition rates since the waiting times follow an exponential distribution. i.e. 

Average waiting time in IBNR was 

 

and that for RBNS was 

 

and 

 

for average loss arrival time. 

3.4.4 Deriving expressions for the expected claim numbers 

The expressions for expected number of losses in each state (S), at each point in 

time (t), for the accident year and the subsequent development run-off years. 

During the accident year (t 6 1) 
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Orr (2007) in his method gave the following; 

E[N(S,t)] = λt ∗ π(1) 

π(1) = [α(0,t)α(1,t)α(2,t)] 

Where π(1) is the probability vector of remaining in each state within the accident 

year. 

State 0 

The expected number of losses in state 0 at an arrival rate of λ at time 0s0 and the 

probability of staying in state 0 under the force of reporting a was given by; 

 

 

 

State 1 

The expected number of claims in state 1 by time 1t0 with losses arriving at time 

                                                        
1 s0 and being reported at time 0r0 is given by; 
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State 2 

Lastly, the expected number of claims in state 2 by time 0t0 with losses arriving at 

time 0s0 which are then being reported at time 0r0 and settled in time 0q0 is given 

by; 

 

 

After the accident year (t > 1) 

There were no further losses that arrived, thus the multi-state Markov jump chain 

was used to estimate. The Generator matrix, A, was derived from the transition 

intensities and then used to derive the transition probabilities using the 

Chapman-Kolmogorov forward differential equation. This method was also 

discussed by Orr (2007). 

 

−a 
a 

−b 

0 

 

0 
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 A 

=  0 

 

 

0 

 
b  

 
 

0 

The expected number of claims in each state is given as; 

E[N(S,t)] = λπ(1)p(t − 1) 

where 

 

P00(t − 1) 
 P(t − 

1) =  0 

 

 

0 

P01(t − 1) 

P11(t − 1) 

0 

 

P02(t − 1) 

 

P12(t − 

1)  

 

 

1 

Applying the Chapman-Kolmogorov foward differential equation 

 

where δij(t) is the transition rate from state i to j. 

3.4.5 Computations from the model 

The expressions derived above were then used to compute the expected number 

of claims in each state from time t = 1,2,3,4. 
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Chapter 4 

Data Ananlysis and Results 

4.1 Introduction 

This chapter presents results from data analysis performed based on the 

methodology stated in the previous chapter. 

4.2 Preliminary analysis of losses 

Table 4.1: Cause of Loss 
Cause of Losses Frequency Percentage 

Own Damage 965 76.5 

TP Bodily Injury and Death 134 10.6 

Total Loss 54 4.3 

TP Property Damage 31 2.5 

Theft/Fire-own vehicle 28 2.2 

Partial Theft 23 1.8 

T P Liability 11 0.9 

Accident to Passengers 5 0.4 

Fire 5 0.4 

Damage to property 3 0.2 

Others 2 0.2 

Total 1261 100 

Table 4.1 above shows the cause of claims for the accident year. The table shows 

that own damage was the most frequent (965) Third party bodily injury and 

death, Total loss and Third party property damage were also frequently causes of 

claims with frequencies 134, 54 and 31 respectively. 
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Table 4.2: Descriptive Statistics 
Statistic Number 

Sample size 267 

Range 15 

Mean 4.723 

Variance 7.547 

Std. Deviation 2.747 

Coef. of Variation 0.17272 

Std. Error 0.168 

Skewness 0.4558 

Excess Kurtosis -0.173 

Table 4.2 above is the descriptive analysis of the daily claim arrivals of the 

insurance company. It is revealed that the average claims reported per day was 

4.7 claims with a minimum of zero claims per day and a maximum of 15 claims in 

a particular day. The data has a skewness of 0.4558 and variance of 7.547. 

Hypothesis Test 

H0:λ=7.54 

H0:λ6= 7.54 

The normal approximation to the Poisson gave a Z-score of 1.299 which is less 

than the Z0.05 which is 1.96 thus we fail to reject the null hypothesis. Thus the 

mean and variance are equal. 



 

31 

 

Figure 4.1: Distribution of losses in months 

Figure 4.1 shows how the losses are incurred per month. The months with the 

highest number of losses are March (132) and February (120). June and October 

recorded 111 losses with December recording the least number of losses of 89. 

These losses follow a Poisson process with a mean of 105 losses per month. 

 

Figure 4.2: Arrival rate per month of losses 

Claims arrive as losses (105 per month) as a Poisson process in the accident year 

1. 
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4.3 Development of multi-state model 

Table 4.3: Transition of claims within states 
Transition(intensity Number of transitions Total Waiting time 

IBNR-RBNS(a) 1459 2742.53 

RBNS-PAID(b) 109 626.2 

Table 4.3 above shows the transitions and the waiting times within each state. A 

total of 1459 transitions are made from the IBNR state to the RBNS state and 109 

from RBNS to paid. The total waiting times in the IBNR and RBNS states are 

2742.53 months and 626.2 months respectively. 

Table 4.4: Force of transition of claims 
Transition Transition Name Rate per month Rate per year 

IBNR-RBNS Force of Reporting 0.53 6.36 

RBNS-PAID Force of Settlement 0.17 2.04 

The transition from IBNR to RBNS (force of reporting) claims was 0.53 and that 

from the RBNS to PAID state being 0.17. 

Table 4.5: Average waiting times for losses or claims 
Event Average waiting times for losses or claims 

Loss(s) 0.01 

Reported claims(r) 1.88 

Paid claims(q) 5.74 

Losses are expected to take 0.01 months before they arrive at IBNR state. They 

take an average of 1.88 months before they are reported and also an average of 

5.74 months before they are settled (paid).  
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Figure 4.3: The multi-state model 

Figure 4.3 above gives a clear description of the claim development process. 

Claims are seen to enter the IBNR state as losses at a rate of 105 claims per month. 

These claims are then transitioned to the RBNS state at a rate of 0.53 claims per 

month. Transition rate from state RBNS to PAID state was 0.17. 

4.4 Computation from Multistate model 

4.4.1 Expected Number of claims within accident year 

Accident Year 1, Time t = 1 

IBNR State 

 

RBNS State 

 

PAID State 

 
Estimated number of claims at end of accident year 

State Expected number of claims 

IBNR 198 

RBNS 500 

PAID 562 

The expected number of claims in the IBNR, RBNS and PAID states at the end of 

the year respectively are 198, 500 and 562 claims. Thus 
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The probability vector (π) above shows that the probability of being in the IBNR 

state after the accident year were 0.16 for IBNR, 0.4 for RBNS and 0.44 for PAID. 

Thus there is a higher probability of being paid after the accident year. At 

subsequent accident years (time t > 1) 

Generator matrix 

 

−6.36 

 A 

=  0 

 

 

0 

6.36 

−2.04 

0 

 

0 

 

 

2.04  

 

 

0 

4.4.2 Expressions for transition intensities 
 

P00(t − 1) 
 P(t − 

1) =  0 

 

 

0 

P01(t − 1) 

P11(t − 1) 

0 

 

P02(t − 1) 

 

P12(t − 

1)  

 

 

1 

P00(t − 1) = e−6.36(t−1) 

P01(t − 1) = 1.472(e−2.04(t−1) − e−6.36(t−1)) 

P02(t − 1) = 1 − e−6.36(t−1) − 1.472(e−2.04(t−1) − e−6.36(t−1)) 

P11(t − 1) = e−2.04(t−1) 

P12(t − 1) = 1 − e−2.04(t−1) 

4.4.3 Expected Number of claims after accident year, E[N(S,t)], 
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(t > 1) Development year 

Year 1, Time t = 2 

 

0.02 
 

P(2) =  0 

 

 

0 

Development year 2, time t = 3 

0.189 

0.1 

0 

 

0.809 
  

0.9  
 

 

1 

 

0 
 

P(3) = 0 
 

 

0 

Development year 3, time t = 4 

0.025 

0 

0 

 

0.975 

 

 

1  

 

 

1 

 

0 
 

P(4) = 0 

 

 

0 

Development year 4, time t = 5 

0.003 

0 

0 

 

0.997 

 

 

1  

 

 

1 

 

 0 0 
 

P(5) = 0 0 
 

 

 0 0 

 

1 
 

 
1  

 
 

1 

Table 4.6: Expected number of claims in the IBNR state for the accident year and 

development years 

Year Number Cumulative Number Percentage 

1 198 198 100 

Total 198 100.0  
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Table 4.6 above estimates the number of claims in the IBNR state in and after the 

accident year. The expected number of claims at the end of the first was 198 

representing 100o/o. This implies that claims were fully run off in the IBNR state 

after the first year.  
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Table 4.7: Expected number of claims in the RBNS state for the accident year and 

development years 

Year Number Cumulative Number Percentage 

1 500 500 84.3 

2 87 587 14.7 

3 5 592 0.8 

4 1 593 0.2 

Total 593  100.0 

500 (84.3o/o) of the claims in the RBNS state were in the first year, however, the 

number in the second to fourth years were 87, 5 and 1 respectively, thus the claim 

numbers in the RBNS state were fully run off after the fourth year.  
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Table 4.8: Expected number of claims in the PAID state for the accident year and 

development years 

Year Number paid Cumulative Number paid Percentage paid 

1 562 562 44.6 

2 610 1172 48.4 

3 83 1255 6.6 

4 4 1259 0.3 

5 1 1260 0.1 

Total 1260  100.0 

Table 4.8 above indicates that claims are fully run off after the fifth year. 44.6o/o 

of the claims were settled in the accident year, 48.4o/o settled in the first 

development year with the remaining paid from the second and fourth 

development years. Thus claims were fully paid at the end of the fifth year.  
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Chapter 5 

Discussion, Conclusions and Recommendations 

5.1 Discussion 

General insurance under which motor insurance falls is perhaps the fastest 

growing area for Actuaries thus resulting in huge amount and number of claims 

(Achieng, 2010). This however calls for claim actuaries to be more concerned 

with both the claim amount and number since they are likely to have large control 

on the finances of the firm (Boland, 2006). Companies controlling large amount 

of claims need to be concerned about a model for claim numbers also. The 

purpose of this study was however to explore how the multistate model underlie 

claim development of motor insurance contracts of Vanguard Assurance 

Company Limited. The study considers claims in three states; IBNR, RBNS and 

PAID. 

The time homogeneous Markov jump process is the main framework underlying 

this study. The Poisson process also underlies the study since claim counts are 

under study. There has however been a lot of studies on reserve models but very 

few on multistate claim reserving model of claim development. Studies by Orr 

(2007) constructed a model which was a strapped down version of the claim 

development by Hachemeister (1980). Norberg (1986) made a contribution to 

the IBNR model in estimation of claim reserves based on a Poisson process. 

Bootstrap methodology in claim reserving was considered by Pinheiro (2003) 

and Bjorkwall (2009). Other models used were on Bayesian estimation of 

outstanding claim reserves was conducted by De Alba (2002). 
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Claims data obtained from Vanguard Assurance was used in this study were the 

claim numbers and dates of occurrences were used in the modeling process. 

Claims were assumed to arrive as losses following a Poisson distribution. The 

losses that arrived at IBNR state at a rate λ waited in the state and transitioned to 

the RBNS state with a force 0a0. These claims are then absorbed into the PAID 

state at a rate 0b0. The three state model is used to construct closed form 

expression of transition probabilities in future years using the generator matrix 

and the Chapman Kolmogorov forward differential equations. These were then 

used in simulation of expected future development of claims. 

It was found that losses which arrive at the rate of 105 losses per month arrive at 

the IBNR state where its waits for 1.88 months then transitions to the RBNS state 

with a force of 0.53 claims per month before they arrive at the PAID state at a 

force of 0.17 claims per month (Table 4.4). This however implies that there were 

more reported claims in a month than that of settled. This means that it takes a 

longer time for reported claims to be paid than incurred to be reported. Thus 

creating room for more outstanding claims. However the losses take the least 

time to arrive.The ratio of reported to settled claims was however computed to 

be 3 to 1. This means that to every paid claim, there were 3 of them that were 

reported. The estimates of the future claim developments from the model shows 

that the claims in the IBNS state are fully run off after 2 years whilst that in the 

RBNS and PAID states are fully run off after 4 years. 

5.2 Conclusions 

An average of 6 claims are reported per year with 2 claims being settled in the 

same year. The numbers in the IBNR state are run off after a year, claims in the 

RBNS and PAID states being completely run off after four and five years 
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respectively. Expressions for the expected number of claims for the accident year 

and development years were derived. The percentages of claims in each state 

presents a relatively easier way of predicting when claims are paid more and how 

many expected.The process which provided a means by which claim development 

from the current year provided a means of estimating future claim development. 

5.3 Recommendations 

From the studies the accumulative nature of the claims outstanding gave rise to 

huge numbers in the subsequent year, it is however recommended that the claims 

department reduce the outstanding claims which creates the need for huge 

reserves thus making the claim process faster and commendable by the clients. 

The amounts associated with the claim numbers in each of the states creates a 

good opportunity coupled with this model to efficiently manage reserves which 

will go a long way to safeguard the company against unexpected losses. Thus the 

need for a similar model of claim amounts. 

The researcher recommends that the data associated with claim development 

process be properly organized and monitored to enable the application of the 

model to future changes in loss arrivals thus easing the process of developing the 

model. The process of claims development should also be made known to the 

clients thus reducing false anticipation. This is to say that the clients should be 

made away of the expected times for claim development hence to develop 

packages which will give room for clients to pay for the process to be hastened. 

For instance, a product where by claim could be processed and settled the same 

day which will attract a fee. This will help generate more revenue for the claims 

department. 

Recommendations for future studies was to develop the multistate model which 

includes states which reflects further how most of the claims are developed. For 

instance including states of complicated claims and/or modified claims. Future 
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studies could also consider modeling claim amounts which will give a clearer 

picture of the actual reserve.  
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7.1 Excerpts of Data 

 

Figure 7.1: Claim data 

 

Figure 7.2: Claim data 
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7.2 Waiting times 

 

Figure 7.3: waiting times in days 
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Figure 7.4: waiting times in days 


