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ABSTRACT 

In the study, some algebraic structures and maps (category theory, morphisms and 

functors) that are inherently tied to the calculus of functors (orthogonal calculus) 

were explored. I emphasized on linear polynomial functors and generalized it to the 

n- polynomial functors as in the algebraic and topological settings. Finally some 

structures of the polynomial and homogeneous functors were analyzed in the 

orthogonal calculus of functors.  
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CHAPTER 1 

Introduction 

This chapter talks about the history of functors and the main contributers to the 

development of functors. Also included is the objective of the study as well as the 

general structure of the entire thesis. 

1.1 A Brief Historical Background to the Calculus of 

Functors 

In mathematics especially in the algebraic and di erential topology, the functor 

calculus I.e. the Goodwillie calculus of homotopy functor, the Weiss calculus of 

functor and nally the embedding calculus is a technique to studying functors. These 

functors are well studied by approximating them with sequence of simpler functors. 

These sequence of approximation is almost same as the Taylor series of smooth 

function. 

There are many objects in algebraic and di erential topology which can be seen as 

functors. They maybe functors although but it’s always di cult to analyze directly, so 

we think of replacing them with simpler functors which are su ciently good 

approximation for the functor in question. 

The calculus of functors was developed by a mathematician known as Thomas 

Goodwillie. Goodwillie came out a series of three papers on the calculus of 

functors(Goodwillie, 1990)(Goodwillie, 1991)(Goodwillie, 2003) in the 1990s and 

2000s .He had his inspiration from the work done by Eilenberg and Mac Lane on 

functors in the 1940s. 

This calculus of functors is known as the Goodwillie calculus of homotopy functor 

which has been the source of motivation for the other calculus of functors. 
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Micheal Weiss calculus of functor emerged after the papers of Goodwillie were 

published which is known as the orthogonal calculus of functors, due to (Weiss, 1995) 

, and this theory is closely related to or he had his inspiration from the Goodwillie 

calculus of homotopy functor. The orthogonal calculus of homotopy functor is a 

beautiful tool for calculating the homotopical properties of functors 

from the category of vector spaces to pointed spaces or any space enriched over 

Top∗. With the Weiss calculus we consider covariant funtor from the category of 

vector spaces( nite dimensional) with an inner product to the category of 

spaces(Top∗) instead of functors from spaces to spaces as de ned by 

Goodwillie(Weiss, 1995) 

There are Intriguing examples of such functors and they include classical objects 

in algebraic and geometric topology: 

BAut(V ) 

BTop(V ) 

 

Category of such functors from vector spaces to spaces and natural transformations 

between them will be called ξ0. Orthogonal calculus is based on the notion of n 

polynomial functors (vector spaces at very high dimension), which are well-behaved 

functors in ξ0 and which preserves weak equivalences as well. With These n-

polynomial functors one can often infer the value at some vector spaces from the 

values at vector spaces of higher dimension(Barnes and Oman, 2013) . In general 

sense, orthogonal calculus approximates a functor (locally around) via polynomial 

functors (approximate into sequence of simpler functors that are homotopy 

equivalent to the functor in question) and attempts to reconstruct the global functor 

from the associated in nitesimal information. The orthogonal calculus splits a functor 

F into a Taylor tower of brations, where we can think of the n-th brations to consist 

of an arrow(map) from the n polynomial approximation of F to the (n − 
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1)−polynomial approximation of F. The homotopy ber or layer (the di erence 

between n polynomial and (n − 1)−polynomial approximation) of this map is then an 

n homogeneous functor and is classi ed by an O (n)-spectrum up to homotopy which 

is usually denoted as DnF. 

1.2 Problem Statement 

The calculus of functors (orthogonal calculus) can help in solving a lot of interpolating 

problems from algebraic topology and di erential topology and even in computer 

science. It is also applied in diverse areas such as category theory, operads, moduli 

spaces of graphs, manifolds and even in knot theory as well. The orthogonal calculus 

of functors has many applications, starting with: it giving structure to polynomial 

functors. It’s also used for the construction of the Taylor tower which is 

approximations by polynomials to the functor in question. 

In spite of all this applications, many mathematicians have very little knowledge and 

insight about the orthogonal calculus of functors and its practical usefulness to our 

daily day life. Many Mathematicians and scientists nd it very di cult to study, work 

and apply it to real life situation and other areas of study and hence only 

concentrating on the Goodwillie calculus of functors from space to spaces. Others see 

it to be abstract in nature and mere map or theorem and thus, is of no interest and 

insigni cant to other elds of study. 

In fact, it’s surprising to see some mathematicians and scientist using and applying 

the orthogonal calculus of functors without knowing it and how useful it is, even 

though, some could use it rightly. 
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1.3 Research Aim and Signi cants 

The orthogonal calculus of functors is very important in the area of mathematics, 

physics and even engineering since its applications to certain activities of life are not 

yet realized. 

This project tries to seek the simplest way for people to understand polynomials 

functors in orthogonal calculus and also enlighten people on some structure to 

polynomial and homogeneous functors as well. Since this work is expected to nish 

within limited time, it cannot touch all the areas under orthogonal calculus of 

functors. Therefore, it will be recommended at the end of this work for 

researchers and students for further studies and also develop and obtain formulas 

for taylor approximation to spaces of smooth embedding’s. 

1.4 Objective of The Study 

This work mainly analyzes the structure to polynomial functor in orthogonal 

calculus. 

1.5 Scope and LImitation 

1.5.1 Scope of the Study 

This thesis will make use of published researched papers that are centered around 

the calculus of functors by academicians in a well established journals and bulletins. 

Videos on youtube by well known academicians such as Gregory Arone,Micheal 

Ching, David Barnes and many more from well established 

mathematical conferences will also be accessed. 

The research will also involve a study of works on brations,homotopy ber,bundles( 

ber bundles, vector bundles and sphere bundles), the Yonneda lemma and related 

topics from well acclaimed authors 
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1.5.2 Limitation of the Study 

This research has been encountered with the challenge of in-depth information on 

the orthogonal calculus of functors. 

1.6 Structure of The Thesis 

This research work is in ve(5) chapters 

Chapter one provides a general introduction to the research. 

Chapter two reviews the various literatures of the calculus of functors. 

Chapter three review some maps or tools that are inherently tied to the 

orthogonal calculus of functors. 

Chapter four presents the de nition of polynomial functors with some examples 

from the algebraic and topological settings. It also gives some insight about the 

classi cation and approximation (crosse ect/suspensions) of the polynomial 

functors. It further reviews the orthogonal calculus of functors and also 

enlightens us on the structures that polynomial functors and homogeneous 

functors take.ie it gives the basic forms that polynomial functors and 

homogeneous functors can take. 

 Chapter ve gives the conclusion and recommendation to the thesis. 

CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

Generally we give a brief review of some important literatures which are relevant to 

the study of the functor calculus. This will include a brief history of functors, 

categories and polynomial functors. 
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2.2 A Brief History on Functors 

In algebraic and geometric topology, Goodwillie, orthogonal and embedding calculus 

is a way for doing calculus on functors. This calculus on functors is done by we 

approximating our functors by a sequence of functors that are simpler to our functor 

in question. 

General functors can be approximated with polynomial functors in two ways: the 

interpolation polynomials and the Taylor polynomial. But we will move with the 

Taylor polynomial. 

This sequence of approximation is almost same as the Taylor series of smooth 

function. There are many objects in algebraic and di erential topology which can be 

seen as functors. They maybe functors although but it’s always di cult di cult to check 

for its connectivity and also to analyze directly, so we think of replacing them with 

simpler functors which are su ciently good approximation for the functor in question 

through the Taylor tower. 

In the nineteen forty’s(1942-1945) there existed two mathematicians known 

as Saunders Mac Lane and Samuel Eilenberg who came up with natural 

transformation, functors and categories, in topology, especially as part of what they 

were studying in algebraic topology. Their study was very useful because it moved us 

from the intuitive and geometric notion on homology to something more axiomatic. 

These mathematicians came out with a paper which clearly showed they were 

working on understanding what the natural transformation was really about. But they 

explained further that before one can understand the natural transformation 

required de ning functors since natural transformations are structure preserving 

maps of functors, and also required understanding categories since functors also 

preserves categories. 

One mathematician Stanislaw Ulam claimed that related ideas of categories, functors 

and the natural transformation were current in the late 1930s. 

Category theory is a continuous work by Mac Lane and Eilenberg from Emmy Noether 

(Mac Lane’s teacher). Emmy Noether studied mathematical structures and came out 
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with the conclusion that if one wants to understand an object of mathematical 

structures then they really have to know the process that holds the structure or 

preserves it.Hence with this statement by Emmy Noether, Mac Lane and Eilenberg 

worked on understanding algebraic structures and how to preserves those structures 

as well. 

2.3 Polynomial Functors 

Polynomial functor is Categori cation of the notion of polynomial function. Depending 

on which properties of polynomial functions exist between the categories, there are 

di erent notions result which might deserve the name 

polynomial functors. 

Polynomial is such a basic concept that is quite easy to understand in mathematics, 

hence not surprisingly that much work have been done on it with people coming up 

with its categori ed versions called the functors which has been applied in di erent 

areas, and in di erent names as well. 

The careful study of polynomial functors has appeared to be very important in 

physics, also in mathematics with special areas like topology (Bisson and Joyal, 

1995)(Pirashvili, 2000) and in algebra (Macdonald, 1998) and also nd it route in 

mathematical logic(Girard, 1988),(Moerdijk and Palmgren, 2000) and computer 

science(theoretical)(Jay and Cockett, 1994), (Abbott et al., 2003), (Setzer and 

Hancock, 2005). 

Since the practical knowledge to polynomial functor is so real and easy to see that is 

why it was discovered by mathematicians many times and has been used to show di 

erent notions and also applied in di erent areas of study. The rst intuitive idea was 

concerned with the category of abelian groups. And was perhaps attributed to 

Eilenberg Mac Lane(Eilenberg and MacLane, 1945) even though there were some 

claim that it existed before Eilenberg and mac lane talked about them. Their goal was 

to understand group homology. 
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They worked on Abelian-valued functors from the category of abelian groups which 

preserves the categories with both initial and terminal object i.e. the zero 

objects. 

They came up with the deviation of such covariant functor, which in some sense can 

be thought of as a di erential quotient; formally it was de ned as a some sort 

of kernel. 

A functor is 1-additive or excisive when its second cross e ect is zero or deviation is 

zero i.e. Cr2 (−,−). 

Polynomial functors is also very useful in the representation theory of symmetric 

groups (Macdonald, 1998). An endofunctors of the category of inner product space 

of nite dimension is called a polynomial if for every vector spaces A,B, the map 

Hom(A,B) → Hom(FA,FB) is a polynomial mapping. 

The usage of polynomial functor usually involves the actions of the orthogonal 

groups. However, there were continuous developments of applying symmetric 

polynomial functors on vector spaces over nite elds. 

Individual intuitions about the viewpoint of polynomial functors came up little by 

little in the 1970s with mathematicians centering on automata ,algebraic theories and 

data types. 

Also category of sets that are abstract in nature was developed by George Cantor to 

help study in nite quantities. The category of sets that are abstract in nature is the 

fundamental or basic setting for the polynomial idea. Contents are de ned, 

respectively, with the right and left adjunction of the pullback functor for the diagram 

below. 

We therefore work with locally Cartesian closed category E which implies, a 

polynomial functor is speci ed by the data 

W ←f X →g Y h→ Z in C. 
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For each arrow f : X → Y we dispose of three functors, the pullback functor f∗set/Y → 

set/X , a left adjoint f! , and a right adjoint f∗ ’. By de nition, a polynomial functor is 

one canonically isomorphic to any 

composite of these kind of functors between slices of E. The 

functor below is then composite 

. 

and the functor can be described as those that are canonically isomorphic to one of 

the functors above. 

CHAPTER 3 

ALGEBRAIC STRUCTURES AND MAPS 

Before looking at polynomials in orthogonal calculus of functors, i will highlight on 

the category theory and functors that are inherently tied to calculus of functors and 

which will commonly be encountered. 

3.1 Category Theory 

Two mathematicians Mac Lane and Eilenberg came up with categories in the 1940’s 

and have been around for about half a century now. Samuel Eilenberg was from 

Poland and was an algebraic topologist and MacLane was an algebraist. 

They later understood it was the same calculations they were doing from di erent 

areas of mathematics (topology and algebra) and that led them to invent or 

develop category theory. 

De nition 3.1.1 A category ξ consist of 

A collection A,B ∈ ξ where A and B are objects in ξ 
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For all A,B ∈ obj (ξ), a collection ξ (A,B) of maps(arrows) from the object A to 

the object B 

To every map there exist two objects, its source and target. If f is a map with a 

source A and target B, then we indicate this by f : A → B. 

For every object A there exist an associated identity map which is written as 

1A : A → A. 

Further if f : A → B is a map from an object A to the object B and g : B → C, is also a 

map from object B to object C then there will exist a composition gf : A → C, which 

will satisfy the following relations. 

If f : A → B, g : B → C, and h : C → D then h(gf) = (hg)f : A → D: 

Associativity condition 

If f : A → B , then f1A = f = 1Bf : 

Identity Morphism 

Relations such as the associativity and the identity morphism are denoted by 

saying the gures below commutes, 
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Figure 3.1: Associativity relation of category theory 

Figure 3.2: identity morphism of category theory 

3.1.1 Sub-Categories 

De nition 3.1.2 A category ε is a subcategory of category ξ provided: Each obj (ε) 

is in obj (ξ) 

f ∈ ε(A,B), implies f ∈ ξ (A,B) i.e. if f is a map in the sub-category ε implies f is 

also a map in the main category ξ. 

f : A → B and g : B → C in ε , implies gf is a composition of f following 

g in ξ. i.e. composition of maps in sub-categories also holds in the main 

category. 

 If 1A is the morphism(identity) for A in ε , then 1A is also a 

morphism(identity) for A in ξ 

3.1.2 Special Morphism 

Relations among morphisms are often shown with diagrams that commutes, with 

points or block letters to represent objects and arrows to represent maps or arrows. 
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The identity morphisms is a natural map that every object have. 

Aside the natural map(identity) that exist in every type theory, there exist other di 

erent maps that are useful and interesting to study as well. 

i.e. Morphism can have any of the following properties 

An Isomorphism 

If f : A → B is a map from the source A to the target B with f−1f = 1A and 

ff−1 = 1B as inverses. 

If there exist an inverse for f, then it should be unique, to justify the uniqueness of 

the notation f−1. 

To see that f is unique up to isomorphism lets consider g and h to be inverses of 

f, then 

g = 1Ag = hfg = h1B = h. 

We will denote an isomorphism with the symbol ‘∼= ’ and write  to 

show an isomorphism of the morphism f, and will denote an isomorphism of A and B 

as A ∼= B and say A is isomorphic to B" if A and B are isomorphic to each 

other. 

Note: Morphism that is a section and at the same time a retraction is also called an 

isomorphism. 

Endomorphism 

A map g : B → C is an endomorphism if B = C. end(B) denotes the group of 

endomorphism’s of B. 

Automorphism 

An endomorphism that guarantee a return inverse or also an isomorphism is known 

as an automorphism. i.e. is an endomorphism that has left and right inverses. The 

automorphism class of the object C is the group of all automorphism of C. And is 

usually represented with Aut(C). 
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Section And Retract 

The de nition of an isomorphism can be separated into two parts i.e. isomorphism 

have both left and right inverses, which is the same as we saying an isomorphism has 

both a section and a retraction. 

Section 

For any map f : A → B, a section of f is map s : B → A Such that f ◦  s = 1B. 

A section is called a right inverse. 

Retract 

For any map f : A → B, a retraction of f is a map r : B → A,such that r◦ f = 1A. 

A retract is also called a left inverse. 

In any category a section is a monic and a retraction is an epic, but the converses 

are false 

Epimorphism (Epic) 

In any category theory, the map e : A → B is an epimorphism or epic morphism in a 

way that, ∀,f,g : B → C, f ◦  e = g ◦  e implies f = g. 

The equation f ◦  e = g ◦  e implies f and g are two morphism with Source B and 

target C. 

Figure 3.3: Diagrammatic explanation of an epimorphism 

Monomorphism (Monic) 

In any category theory, the map m : B → C is said to be monomorphism or monic 

morphism for the fact that ∀,f,g : A → B, m ◦  f = m ◦  g, impliesf = g. 
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The equation m ◦  f = m ◦  g implies f and g are two maps with the source A and 

the same target point B. 

Figure 3.4: Diagramatic explanation of monomorphism 

3.1.3 Dual Category 

De nition 3.1.3 C been a category, would imply Cop is its dual category and 

its de ned as follows 

They have the same objects as to that of C 

The maps are the reversed version of arrows of C, i.e. for every arrow f : A → 

B,there exist a maorphism f# : B → A in Cop. 

The composition of arrows g# ◦  f# in Cop is nothing but (f ◦  g)# 

3.2 Functors 

Functors or covariant functor is morphism or an arrow that preserves the 

structures between categories. 

Functors are now applied almost everywhere in modern mathematics to relate 

various categories. 

De nition 3.2.1 A covariant functor F : C → D is a map that preserves the 
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structures that exist between categories C and D and also associates each object A in 

category C to an object F(A) in category D; and each morphism f : A → B in category 

C to a morphism 

F (f) : F (A) → F (B) in D, such that 

F (1A) = 1F(A) for every object A in category C; and F (g◦ Cf) = F (g)◦ DF (f) for 

every map f : A → B and g : B → C 

for which compositions ◦ C and ◦ D are de ned in categories C and category D. 

Diagramatic explanation of a functor is giving below: 

 

Figure 3.5: diagramatic explanation of a functor 

Where we represent the categories with dashed rectangles, and the functors are 

represented with F0 and the functor arrows between morphisms are omitted. 

Composition of Functor and functor isomorphism are de ned analogously to 

morphisms (above). 

I.e. the functor composition of F : C → D and G : D → E is the functor 

G ◦  F : C → E sending all the objects A in category C to objects G ◦  F (A) ∈ E 

; and morphisms f : A → B ∈ C to morphisms, 

G ◦  F (f) : G ◦  F (A) → G ◦  F (B) 
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such that identity morphism and composition holds. 

I.e. G ◦  F (1A) = 1G◦ F(A) and 

G ◦  F (g◦ Cf) = (G ◦  F (g))◦ E (G ◦  F (f)) 

3.2.1 Contravariant Functor 

A functor(contravariant) from category C to category D is a functor from Cop to 

D.Also we can say, F is a contravariant functor if F sends 

objects A ∈ ob(C) to object FA ∈ ob(D) 

F sends morphisms f ∈ C (A,B) to morphisms Ff ∈ D (FB,FA) 

The identities are preserved 

F (f ◦  g) = Fg ◦  Ff 

3.2.2 Forgetful/Underlying Functors 

A functor is de ned as an underlying functor or forgetful functor if it drop some or all 

the input structure or properties. 

Examples of forgetful functors are 

The functor U : Top∗ → Top which embeds the category of pointed 

topological space into the category of topological space by forgetting that the 

topological space is pointed. 

The functor U : Group → Set which forgets that a group have more 

structure than just the underlying set it captured or remembered. 

Similarly there exist a functor U : Ab → Grp de ned by U(A) = A for A been an 

abelian group. This functor forgets the property that abelian groups are 

abelian. 

The forgetful functors in this example forget the property on the objects.  
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CHAPTER 4 

POLYNOMIAL FUNCTORS 

Polynomial functor is just Categori cation of ‘polynomial functions’. 

Depending on the properties of polynomial functions one takes as guideline for the 

Categori cation, di erent notions result which might deserve to be called 

polynomial functors. 

A continuous function f : R → R is linear if f (a + 

b) = f (a) + f (b) for all a,b ∈ R. 

To be precise, we might think of a function been a ne linear if f (a + 

b) − f (a) − f (b) + f (0) = 0 

equivalently 

f (a + b) − f (0) = (f (a) − f (0)) + (f (b) − f (0)). 

One of the nice properties of functions of real numbers is the property that 

f (a + b) − f (a) − f (b) + f (0) = 0 

implies that f is actually an a ne linear polynomial in the sense that if we take f (x) = 

mx + c for some real numbers m and c 

Conversely, a function f (x) = mx + c is known as polynomial of degree 1 

4.1 Polynomial Linear Functor 

Algebraic Setting 

Theorem 4.1.1 F is additive i 

rstly it takes the no object in C to the no object in D. 

i.e. F (0C) = 0D 
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Secondly if it preserves nite product or co product i.e. 

 

Example 4.1.1 Given C and D as categories which are both abelian. Thus we can think 

of C and D as abelian categories of modules over some commutative rings. (ModR ). 

A covariant functor F : C → D is additive if it respects the enrichment of C and D in 

abelian groups. 

If we look at Hom(A,B) F→ Hom(FA,FB) is an Abelian group homomorphism for every 

A and B. 

i.e. The covariant functor F is an enriched over the category of Abelian group. 

Topological Algebraic Settings 

Theorem 4.1.2 lets think of C to be pointed category with co-products, and D be an 

Abelian group. 

F : C → D Is additive if it preserves 

F (0C) = 0D and 

∼= 

 F (A`B) → F (A) + F (B) 

Example 4.1.2 The reduced homology 

 

. 

I.e.  and . 

satis es this property 

Remark. The additivity of the reduced homology group is captured by 

Figure 4.1: Pushout squares of pointed category with coproduct and abelian groups 

Which preserves this kind of pushout? 
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Hence is additive when the reduced homology group preserves this kind of 

pushout. 

Homology also has interesting property when applied to di erent types of pushout 

squares produces the Mayer-victoris sequence. 

 

Figure 4.2: homotopy pushout to Mayer Victoris Sequence 

This is a stronger property than pure additivity condition. 

Hence is excisive since it has the Mayer-victoris sequence for homotopy pushout 

squares. 

Topological Settings (Goodwillie Case) 

Example 4.1.3 Consider the homotopy functor F : Top∗ → sp (f weq ⇒ Ff 

weq). 

F is additive (reduced degree ≤ 1) if 

F (∗) = ∗ 

∼ 
 F (A)νF (B) → F (AνB) 

Excisive condition. 
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The covariant functor F is 1-excisive if it preserves homotopy pushout squares. 

Equivalently F takes homotopy pushout squares to homotopy pullback squares. (in 

this case  has the Mayer-Victoris sequence ) 

Example 4.1.4 A homotopy functor F : Top∗ → Top∗ is excisive if the covariant functor 

F takes homotopy pushout to homotopy pullback squares. (If we take homotopy 

group of the functor F this will have the Mayer- victoris sequence a rming the excisive 

condition of the functor F). 

Manifold Calculus 

Example 4.1.5 A contravariant functor F : ϑ(Rn) → Top. Where we can think of F to be 

a functor on the category of open subsets of Rn. 

Hence F is is excisive or degree≤ 1 if we consider the homotopy pushout of this 

category. 

 

Figure 4.3: excisive diagram of manifold calculus 

Hence the contravariant functor F is 1-excisive since it preserves the homotopy 

pushout squares. Equivalently F takes homotopy pushout squares to homotopy 

pullback squares. 
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4.2 Constructing Approximation 

4.2.1 Approximation Via Cross-E ect 

Example 4.2.1 Considering the settings F : C → D with C being pointed with co-product 

and D as Abelian group. 

F : C → D Reduced implies F (0C) → 0D. The second cross-e ect measures the 

failure of F to be additive. 

Hence we can de ne the linear cross-e ect of the covariant functor F : C → D as 

Cr2F (A,B) := ker (F (AνB) → FA + FB) 

∴ F (AνB) ∼= FA + FB + Cr2F (A,B) 

Therefore F is additive i Cr2F (A,B) = 0,∀A,B ∈ C. 

Example 4.2.2 Considering F : Top∗ → Sp. 

We can de ne the linear cross-e ect of the functor F : Top∗ → Sp as 

Cr2F (A,B) = hofiber (F (AνB) → FAνFB) 

∴ F (AνB) ∼= FAνFBνCr2F (A,B) 

Hence F is additive i Cr2F (A,B) = 0 

4.2.2 Approximation Via Suspension (To get Excisive 

Functors) 

Example 4.2.3 Considering F : Top∗ → Top∗ reduced homotopy functor. Want 

to naively force F to be 1-excisive or excisive. 

Note. The di erence between additive functors and excisive functors is that one can 

take push out squares that don’t just have the initial object in this top hand 
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corner. 

For any base space X, there is a nice homotopy pushout that takes the form 

below, 

Figure 4.4: Homotopy pushout of excisive functors 

Where CX is the cone and PX is the suspension(reduced). 

And from de nition of excisive functors, a functor is excisive if it takes homotopy 

pushout squares to homotopy pull back squares. 

Hence if F is excisive then the output of the gure 9 will be a pullback and FX will be 

equivalent to the pullback of the remaining parts of the square. 

Hence FX should be a pullback of the remaining square 

I.e. 

If F is excisive then F ∼→ T1F. But T1F need not be excisive. 

However T1F is closer to being excisive than the original functor FX. 

If we iterate this construction then we will eventually be arriving at something 

excisive. 
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Thus the essence of Goodwillie construction. 

Hence P1F = hocolim(F → T1F → T1T1F → ...). 

F → P1Fis an excisive approximation. 

4.2.3 Higher degree polynomial 

A continuous function f : R → R is quadratic if f (+y + z) = f (x + y) + f (y + z) + f 

(z + x) − f (x) − f (y) − f (z) + f (0) 

4.2.4 Higher Cross-E ects 

We have talked about the second cross-e ect being the basic object of additivity. 

Hence to talk about the higher versions of additivity we would need higher cross e 

ect to measure the failure of the functor being n-additive. 

From the setting F : C → D where C was pointed with co-product and D being 

an abelian group. 

Hence we can de ne the nth cross-e ect of the functor F : C → D as 

CrnF (A1,.....An) = Cr2 (Crn−1F (A1,...An−2,−)(An−1,An)). 

Then 

F (A1ν...An) ' Q Cr|S|F({Ai})i∈S 
S={1,...n} 

F is degree ≤ n (n-additive) if Crn+1F ' 0.  
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4.3 Orthogonal Calculus 

Introduction 

There exist another brand of functors Calculus, which emerged after the papers of 

Goodwillie were published, which is known as the orthogonal calculus of functors, 

due to Weiss, and this theory is closely related to or he had his inspiration from the 

Goodwillie calculus of homotopy functor. 

The orthogonal calculus of functor is a beautiful tool for calculating the 

homotopical properties of functors from the category of inner product space spaces 

to pointed spaces or any space enriched over Top∗. 

Interesting examples of such functors abound and include classical objects in 

algebraic and geometric topology: 

1. . 

2. BAut(V ) 

3. Emb(M × N,N × V ) 

4. BTop(V ). 

Category of such functors from vector spaces to spaces and natural 

transformations between them will be call ξ0 

These functors satisfy an extrapolation condition, which allows one to identify the 

value at some vector space from the values at vector spaces of greater 

dimension.(Barnes and Oman, 2013) 

Orthogonal calculus is based on the notion of n polynomial functors (vector spaces at 

very high dimension), which are well-behaved functors in ξ0 and which preserves 

weak equivalences as well. 

With These n-polynomial functors one can often infer the value at some vector spaces 

from the values at vector spaces of higher dimension. 
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In geometric sense, orthogonal calculus approximates a functor (locally around R∞) 

via polynomial functors (approximate into sequence of simpler functors that are 

homotopy equivalent to the functor in question) and attempts to reconstruct the 

global functor from the associated in nitesimal information. 

The orthogonal calculus splits a functor F in ξ0 into a Taylor tower of 

brations, where our n-th brations will consist of maps from the n .polynomial 

approximation of F to the (n − 1)−polynomial approximation of F. 

The homotopy ber or layer (the di erence between n polynomial and (n − 

1)−polynomial approximation) of this map is then an n homogeneous functor and is 

classi ed by an O(n)−spectrum up to homotopy which is usually denoted as 

DnF.(Barnes and Oman, 2013) 

4.3.1 Continuous Functors 

Let consider = to be the category of vector space with an inner product and that is 

nite dimensional with linear maps to preserve the internal structure of the 

vector space. 

To see our category is nitely small let’s assume our vector spaces belongs to some 

larger space R∞ , since orthogonal calculus is based on the notion of n polynomial 

functors (vector spaces at very high dimension), which are well-behaved functors in 

ξ0 and which preserves weak equivalences as well.(Barnes and Oman, 2013) With 

These n-polynomial functors one can often infer the value at some vector spaces from 

the values at some vector spaces of higher dimension. 

Orthogonal calculus is concerned with covariant functors that are continuous i.e. 

E from = to spaces. A functor been Continuous implies 

I.e. ev:mor (V,W) × E (V ) → E (W) 

is continuous, for every V,W ∈ =. (Weiss, 1995) 

Some examples are 

E(V ) = BO(V ),E(V ) = BTop(V ),E(V ) = BG(S(V )), 
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Suggesting that orthogonal groups are associated with classical spaces, like BO, BTop, 

BG equipped with a sophiscated ltration indexed by nite dimension linear subspaces 

V of R∞. 

4.3.2 The Tower And The Classi cation 

For a covariant functor F ∈ =0Top, Weiss calculus constructs the n-polynomial 

approximations TnF and the n-homogeneous approximations DnF. These can be 

clearly shown in a tower of brations. For all n ≥ 0 there exist a sequence of bration 

DnF → TnF → Tn−1F, 

Which can be arranged as below?  
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Figure 4.5: Tower of Fibration 

For this tower of bration to be useful we must understand the functor F, the 

polynomial approximation of the functor F and also the homogeneous functors as 

well. (Barnes and Oman, 2013) 

4.3.3 Derivatives Of A Functor 

We will denote R∞ with µ (as in nite-dimensional vector space with a positivede nite 

inner product) with the standard inner product, and regard all nite dimensional 

vector spaces Rn as subspaces of µ, inheriting its inner product. 

Througout our work we will denote our nite dimensional vector spaces with 

object U,V,W and denote the one point compacti cation of V with V C. 
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We write Rn ⊗ V to mean n.V . 

Let’think of Rn to be a suitable subspace of R∞, so that 

R0 ⊂ R1 ⊂ R2 ⊂ 3.....R∞ then 0 · V ⊂ 1 · V ⊂ 2 · V ⊂ 3 · V ⊂ ....n · V 

this will also denote the one point compacti cation. 

Let’s consider mor(V,W) to be a linear isometries from V to W which preserves the 

inner product. Also lets consider the category = of vector spaces preserving inner 

product with objects been U,V,W such that mor(V,W) is the set of maps 

from V to W. 

Also let =n be of the same object as = with the category of objects U,V, W.... and with 

morn (U,V ) as the set of maps from U to V. 

=n is considered as a topological category which is pointed with class of objects that 

are discrete. 

The morphisms set are topological spaces that are pointed. Just as the non 

equivariant case, we can form inclusions =0 ⊂ =1 ⊂ =2 ⊂ =3 ⊂ ..... and a notion 

of derivatives. 

More that =0 di ers slightly from =, such that mor0 (V,W) is mor(V,W) with an added 

base point. 

We now concentrate on functors that are continuous; i.e. if E is a covariant functor 

=0 → (Top∗) pointed spaces, then it has a derivative E(1) : =1 → Top∗ which itself has a 

derivative E(2) : =2 → Top∗ which will also have the derivative E(3) : =3 → Top∗ and so 

on as in the non equivariant case. 

The derivative is de ned in terms of the adjoint to the restriction functor. Thus 

restriction from ξn to ξm for m,n with m ≤ n gives us a natural transformation 

. we can think of m,n as positive integers. 

more generally we can obtain a restriction map  for m ≤ n by 

successive composition. 
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There exist a map which helps to transform one functor to the other or preserves the 

structure of functor which is known as the natural transformation. Hence the natural 

transformation above will be continuous if it is invertible and a homomorphism. E.g. 

is continuous. 

Proposition 4.3.1 A functor  has 

 

as its right adjoint, and its de ned as 

 

With the right hand side denoting the topological space of the morphism between 

two objects of εm. 

Proposition 4.3.2 For all V and W ∈ =0 and all n ≥ 0 there is a natural 

homotopy co ber sequence 

Morn (R ⊕ V,W) ∧ Sn → Morn (V,W) → Morn+1 (V,W). 

Proof. Identifying Sn as the closure of the subspace 

(i,x) ∈ γn (V,R ⊕ V ), 

where i is the standard inclusion, the composition map 

Morn (R ⊕ V,W) ∧ Morn (V,R ⊕ V ) → Morn (V,W) 

Restricts to a morphism 

Morn (R ⊕ V,W) ∧ Sn → Morn (V,W). 

The homotopy co ber of the restriction is then the quotient of 

[0,∞] × γn (R ⊕ V,W) × Rn 

The desired homeomorphism, away from the base point, is indeed by the 

association below. 

Consider a quadruple 
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(t ∈ [0,∞],f ∈ Mor (R ⊕ V,W),y ∈ Rn ⊗ (W − f (R ⊕ V )),z ∈ Rn) 

We send this to the element 

(f|v,x) ∈ Morn+1 (V,W) Where x = y 

+ (f|R∗)(z) + tω (f|R∗ (1)), And 

ω : W → Rn+1 ⊗ W 

Identi es 

W ∼= (Rn ⊗ W)⊥ ⊂ Rn+1 ⊗ W 

From this co ber sequence we can make a ber sequence by applying the functor Natεn 

(−,F) for F ∈ εn. 

Lemma 4.3.0.1 For all V ∈ =n and F ∈ εn, 

there is a natural homotopy ber sequence 
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4.4 Structure to polynomial functors 

Which functor E in =0Top deserves to be called polynomial functors of degree ≤ n? 

This question has to be certainly answered at some point in time if we want do 

calculus. One easy to see requirement of the n-polynomial functor is that it’s (n + 1)-

Th derivative of the functor E should vanish. 

However this does not hold for all cases especially the case n = 0 shows that this de 

nition is not enough. 

A functor E deserves to be called polynomial of degree 0 i E(f) is a homotopy 

equivalence for all nonzero morphisms f in =0. 

4.5 Polynomial Functor 

We want to study a well-behaved collection of functors in ξ0; those whose 

derivatives are eventually trivial. By analogy with functions on the real numbers, we 

call these functors polynomial. 

In this section we introduce this class of functors and examine their structures. 

De nition 4.5.1 For E ∈ =0Top or for E ∈ ξ0 de ne 

τnE (V ) = holim E (U ⊕ V ) 

06=U⊂Rn+1 

We can think of the covariant functor E to be n-polynomial if the canonical map ρnE 

(V ) : E (V ) → τnE (V ). 

Is homotopy equivalence for every genre vector space V of =. 

CommentThe non-zero linear subspace U ⊂ Rn+1 form a poset P where T ≤ U means 

T ⊂ U. 

With the above theorem we sometimes think of such functor E to be n-polynomial. 
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The value of the functor E which is n-polynomial at the vector space V is determined 

up to homotopy by the values E (U ⊕ V ) and the arrows between them for the 

nonlinear subspace U ⊂ Rn+1. 

This de nition captures the idea of the value of the functor E at some vector space V 

being recoverable from the value of E at vector spaces of higher dimension. 

I.e. we can think of the n-polynomial functor as one where it is possible to extrapolate 

the information of E(V ) from the spaces E (U ⊕ V ). The homotopy ber of ρnE (V ) : 

E (V ) → τnE (V ) 

measures how far E is from being n-polynomial, its always helpful for us 

identifying what the bers are. Also 

let’s recall that a sphere bundle 

ρ 
Sγn+1 (V,W) → mor (V,W), if we x V and vary W, we will get a 

natural transformation 

Sγn+1 (V,−) → mor (V,−), We then have a map ρ∗ : 

nat(mor (V,−),E) → nat(Sγn+1 (V,−),E) Hence by 

the yonneda lemma we get ρ∗ : E (V ) → nat(Sγn+1 

(V,−),E) And its polynomial of degree ≤ n i ρ∗ : E (V 

) → nat(Sγn+1 (V,−),E) is homotopy equivalence for 

all V. 

De nition 4.5.2 FOR E ∈ ξ0, we de ne τnE ∈ ξ0 

Such that 

 

We also have natural transformation of self- functors on ξ0 : 

ρn : Id → τn 

This natural transformation comes from the map 

Sγn+1(V,W)+ → Mor0 (V,W) And by 

yonneda lemma. 
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By Michael Weiss there is another description of 

Sγn+1 (−,−) 

. It is the homotopy colimit: 

, 

Where the right hand side is the Bous eld-Kan formula for the homotopy colimit of 

the functor U → Mor0 (U ⊕ V ) as U varies over the topological category of nonzero 

subspace of Rn+1 and inclusions. Thus we see that 

τnE (V ) = holim E (U ⊕ V ) 
06=U⊂Rn+1 

We choose to de ne τn in terms of 

Sγn+1 (−,−) 

and we then de ne polynomial functors in terms of τn . [Barnes and Oman 2013] 

Proposition 4.5.1 For any E ∈ ξ0 , and any n ∈ N, the sequence, 

 

Is a bration sequence up to homotopy? Hence 

vanishes if E is a 

polynomial of degree ≤ n. Proof Let’s de ne 

 

then for the natural co- ber sequence 

Sγn+1(V,A)+ → Mor0(V,A)+ → Morn+1 (V,A) 

Which is natural in A with respect to =0. This converges to give a co ber sequence of : 

=0 − spaces. 
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Sγn+1(V,−)+ → Mor0 (V,−) → Morn+1 (V,−) 

Considering the induced maps of spaces 

 → Natξ0 (Mor0 (V,−),E) → 

Hence the above can be identi ed with 

 

Which is a bration sequence up to homotopy for all vector space V? 

(Barnes and Oman, 2013) 

Proposition 4.5.2 If E in ξ is polynomial of degree ≤ n−1, then it is polynomial of ≤ n 

degree . 

Proof. We will actually show that any Sn−equivalence is an Sn−1−equivalence. Thus we 

are to prove that 

 

is an Sn−1 − equivalence for any V. We can reduce this to 

proving that the map α : Sγn(V,−)+ → Sγn+1(V,−)+ is an Sn−1 -

equivalence. 

The standard inclusion Rn → Rn+1 induces a map of vector bundles γn 

(V,W) → γn+1 (V,W) and hence a map of their respective unit spheres 

bundles: 

α : Sγn(V,−)+ → Sγn+1(V,−)+ 

We can write Sγn+1(V,−)+ as the berwise product over Mor0 (V,−) (denoted 

⊗) of Sγn(V,−)+ and Sγ1(V,−)+. 

Thus we can write Sγn+1(V,−)+ as the homotopy pushout of the following 

diagram 
 ρ1 ρ2 
Sγn (V,−) ← Sγn (V,−) ⊗ Sγ1 (V,−) → Sγ1 (V,−). 
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Where ρ1 and ρ2 are the projection maps. Now we can identify the codomain ρ2 with 

the stiefel manifold Mor (R ⊕ V,−), and in fact ρ2 itself is just the bundle. Writing ∈n 

for the n-dimensional trivial bundle, it clear that there is a pullback 

square: 

Figure 4.6: pullback squares diagram 

The projection map ρ2 can be identi ed with 

S(∈n ⊕ γn (R ⊕ V,−))+ → Mor0 (R ⊕ V,−). 

Hence the vector bundle 

Sγn+1(V,−)+ is the homotopy 

pushout of 

Sγn(V,−)+ ← S(∈n ⊕ γn (R ⊕ V,−))+ ρ→2 Mor0 (R ⊕ V,−). 

If ρ2 is an Sn−1 -equivalence, then so is its homotopy pushout, which is α. The unit 

sphere of the Whitney sum of vector bundles is equal to the berwise join of the unit 

sphere bundles. 

Hence we can write domain of ρ2 as the homotopy pushout 

. 

The map δ is an Sn−1 -equivalence, hence the top map in the commutative diagram 

below is an Sn−1 -equivalence: 

Figure 4.7: Sn−1 equivalence 
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Since the diagonal map is an element of Sn−1, it follows that ρ2 is an Sn−1 - 

equivalence, as desired.(Barnes and Oman, 2013) 

Proposition 4.5.3 Let g : F → E be a map in ξ0, such that  is object 

wise contractible and F in n-polynomial. 

Then the covariant functor 

 h g i 

V 7→ hofiber F (V ) → E (V ) 

Is also polynomial of degree ≤ n. 

Comment.In particular, it proves that the homotopy ber of a map between 

n-polynomial objects is n-polynomial. 

Proposition 4.5.4 We say that a functor E ∈ ξ0 is connected at in nity if the 

space  is connected. 

Comment. Polynomial functors can be determined by their behaviour at very 

high dimension. 

i.e. by considering the behaviour of the vector space V at a very high dimension and 

which is always the best possible approximation to the functor in question. If a 

functor E is polynomial functor of degree ≤ n, then all morphisms in the 

diagram 
 ρ ρ ρ 
E → τnE → τnτnE → ... 

are equivalences. 
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For arbitrary E in ξ0 , the space 

 

And the spectra 

ΘE(1),ΘE(2),ΘE(3),... 

are determined up to homotopy equivalence by the behaviour of E at in nity. 

Proposition 4.5.5 For a morphism g : E → F in ξ0 such that 

h g i hofiber E (V 

) → F (V ) 

is contractible for all V. lets think of F to be connected at in nity, and that the covariant 

functors E and F are polynomial of degree ≤ n. 

Then g is a homotopy equivalence. 

Proof. The problem lies in the fact that at each stage of V, the homotopy ber is de ned 

via a xed choice of base point in F(V), but we need an isomorphism of homotopy 

groups between E(V) and F (V) for all choices of base points. Let Fb (V ) be the 

Subspace of F(V) consisting of only the basepoint component of F(V). 

We prove that 

Fb → F 

is an equivalence after applying the functor . Note that since E and F 

are n polynomial, the maps E → τnE and F → τnF are objectwise weak 

equivalences. 

Consider the map 

. 

For each choice of basepoint, the homotopy ber of  is empty or 

contractible. 

If C is some component in , then because f is connected at 

in nity, there is some l such that the image of C in  is in the basepoint 

component. 
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This holds since  is de ned using only the terms F (V ⊕ U) for U of 

dimension greater than or equal to l. 

Hence C is contained in  and there can be no empty bers. 

We thus have objectwise weak equivalences TnFb → TnF. Consider the map TnE (V ) 

→ TnF (V ) and choose some basepoint x in TnF (V ), then we see that  

for some k. 

As k increases, eventually x is in the same component as the canonical basepoint 

of  . 

Hence by our assumptions, the homotopy bre for this choice x is contractible. 

So TnE → TnF is an objectwise weak equivalence and it follows that E → F is 

a objectwise weak equivalence. 

Now we show from Weiss that τm preserves n polynomial functors. The proof is simply 

that homotopy limits commute, (τnτm = τmτn) and that homotopy limits 

preserve weak equivalences. 

Lemma 4.5.0.1 If E is an n-polynomial object of ξ0, then so is τmE for any m ≥ 0. (Weiss, 

1995) 

Proof. We Start by showing that the canonical map 

 

Is a homotopy equivalence, for all generic object V in = target can 

be written as 

holim holim E (W ⊕ U ⊕ V ) 
06=W⊂Rm+1 06=U⊂Rn+1 

4.6 Homogeneous Functors 

When working with actual smooth functions, the n-th Taylor approximation (around 

0) to f : R → R is giving by  

In particular, the di erence between two consecutive Taylor approximations is giving 

by 
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The analogue of taking the di erence , when working with (stable) ∞-categories, is to 

nd the ber of the map TnF → Tn−1F. 

The classi cation of homogeneous functors takes a similar form. It is the space of 

sequence of a bration whose bers are the derivatives F(k) (φ) with orthogonal 

group actions. 

Let’s consider some examples of homogeneous functors and also de ne what it means 

for a functor to be homogeneous and consider some examples and also de ne what 

makes a functor homogeneous. 

De nition 4.6.1 Let F : =0 → Top∗ be a functor. De ne DnF to be the ber of the natural 

transformation TnF → Tn−1F, then DnF is a homogeneous functor of degree n. 

If it is a polynomial functor of degree ≤ n and Tn−1F (V ) is contractible for every 

V ∈ =0 

i.e. Tn−1DnF (V ) ' ∗ for all V ∈ =0. 

Comment. For contravariant functor F, choose a basepoint in =0. This bases F(V) for 

all V ∈ =0. 

This is then a homogeneous functor of degree n. That is the polynomial of degree ≤ 

n. 

To see that Tn−1DnF (V ) ' ∗ for every V, rst observe that Tn−1 commutes with 

homotopy bers and next observe that Tn−1TnF ' Tn−1F. 

Theorem 4.6.1 The full subcategory of n-homogenous functors inside Ho(=0Top) is 

equivalent to the homotopy category of spectra with the orthogonal group action on 

n. 

For a given spectrum ΨE with orthogonal group action on n the functor below is an n-

homogeneous functor of =0Top. 
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We can think of, SRn⊗V from the theorem as the one-point compacti cation of Rn ⊗ V 

. 

This has orthogonal group action(O(n)-action) induced from the regular 

representation of the smash product is equipped with the diagonal action of O(n),ΨE 

indicates a spectrum with the orthogonal group action O(n). O(n) 

denotes homotopy orbits alias the Borel construction. 

We now look at how to obtain the spectra ΨE. We begin by recalling that = denotes 

the category of nite dimensional inner product space with maps the linear maps that 

preserves the internal structures. Let de ne a vector bundle over =(U,V ), for U,V ∈ = 

γn (U,V ) = {(f,x)|f : U → V,x ∈ n ⊗ (V − f (U))}. 

The total space of the vector bundle has a natural action of O(n) due to the Rn factor. 

We assume =n (U,V ) := Tγn (U,V ), the associated Thom space. Hence this is the co 

ber in the sequence: 

Recall that 

T (Rn → ∗) = Sn and T (X = X) = X+ 

as de ned already. In particular if we choose n = 0, then 

=0 (U,V ) = =(U,V )+ 

When looking at the vector bundles there exist a natural composition 
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Where 

(Rn ⊗ g) : Rn ⊗ (V − f (U)) → Rn ⊗ W. 

This composition induces associative and unital maps 

=n (V,W) ∧ =n (U,V ) → =n (U,W) 

Which are O(n) equivariant and functorial in the inputs.(?) 

CHAPTER 5 

CONCLUSION AND RECOMMENDATION 

This chapter gives a summary of the result of the study, also discussing the 

conclusions arrived at and nally giving recommendation that would be necessary for 

further research in the orthogonal calculus of functors 

5.1 Conclusion 

Orthogonal calculus of homotopy functors is important in diverse areas of study more 

precisely in algebraic and di erential topology. The applications to the calculus of 

functor (orthogonal calculus) are realistic in computer science, engineering, physics 

and many other elds. 

The study explains that calculus is not only about derivatives or uxions but is also 

about approximation by polynomials. 

The study focuses on linear polynomial functors. I.e. the study explained 

polynomial functors in the algebraic and topological settings with the topological 

setting focusing on the Goodwillie case, the embedding case and the orthogonal 

case.(thus concentrating on the linear case and generalizing it to the n-polynomial 

case) 
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The study reviewed continuous functors, Taylor Tower of Fibrations, derivatives of 

orthogonal calculus of functors by concentrating on categories of vector spaces to 

pointed spaces or any space that is enriched over Top∗ . 

Finally our research work has reviewed some structures of polynomial and 

homogeneous functors in the orthogonal calculus. 

5.2 Recommendation 

It is recommended that future research can be geared towards developing and 

obtaining a formula for Taylor approximation to spaces of smooth embedding’s.  
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APPENDIX A 

We require E to be continuous mor (V,W) × E (V ) → E (W) 

EXAMPLE OF FUNCTORS 

1. O(n) 

2. BO(V ) 

3. conf(n,V ) 

4. Emb(M,N) 

5. Ω∞ (V c ∧ θ) 

6. Ω∞((Rn ⊗ V )c ∧ θ)hO(n) 

De nition 
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Let ε = cat(=,Top). E ∈ ε is a polynomial of degree n, if Figure 5.1: Universality of Tn 

Remark 

a. Every polynomial of degree n − 1 ⇒ it is polynomial of degree n 

b. TnE is a polynomial of degree n 

c. If E is a polynomial of deg n, then ηn : E → TnE is an equivalence 

d.  is an equivalence 
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Figure 5.2: Existence 

Figure 5.3: Uniqueness condition 
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Corollary . E is homogeneous of degree n if EτnE and Tn−1E ' ∗ Figure 5.4: Taylor Tower 

De nition E(n+1) = hofib(E (V ) → τnE (V )) 

E1 (V ) = hofib(E (V ) → E (V ⊕ R)) 


