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ABSTRACT 

The most prominent problem facing every investor is to maximize returns and at the same 

time minimize the risk associated with the investment.  Unfortunately, all the efforts by the 

investors to develop a reliable mathematical model to solve this problem optimally for both 

long term and short term in order to maximize profit, have proved futile. The aim of this 

thesis is to develop optimization models based on Dynamic Programming (DP) algorithm 

and Modern Portfolio Theory (MPT), and use them to determine the optimal returns and the 

risk involved. To achieve these aims, secondary data were collected from six financial 

institutions in Sunyani municipality from 2006 – 2011. The price series were normalized 

such that each commodity’s price changes have annualized volatility of ten percent (10%). 

Financial ratio such as coefficient of variation (CV) which measures the relative probability 

of investing in each of the investments was calculated and used to analyze the data. Based on 

this empirical data MPT and DP models were formulated and used to find the risk and the 

corresponding returns involved in various investments. From the analysis, it was found out 

that, the optimal investment return was GH¢1.51x104. Ghana Guinness Limited, 

StateInsurance Company,Zenith BankBarclays Bankwere the prime investments which 

contributed most to the optimal expected return. Government of Ghana’s Treasury bill and 

Ghana Commercial Bank were not profitable since their total contribution to the portfolio 

return were zero. No investor will be interested in investing in these financial institutions. 

There was a strong positive correlation coefficient between the optimal investments portfolio 

and the risk associated with investments. This suggests that short term investments in these 

portfolios are not profitable. 
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CHAPTER ONE 

 

 
1.0 INTRODUCTION 

This introductory chapter deals with investor’s motivation, background of the study, statement of 

the problem, objectives, justification, research methodology, significance, limitation, 

organization and summary of the study.  

1.1 Investors motivation 

In every investment, there are different motives for investment. The most prominent among them 

is to earn a return on investment. However, selecting investments on the basis of returns alone is 

not sufficient. The fact that most investors invest their funds in more than one security suggests 

that there are other factors besides returns which need to be considered. The investors not only 

like returns but also dislike risk. The financial market, despite its benefits and rewards, is a 

complexly volatile industry, which requires critical analysis to adequately evaluate risks relative 

to returns to aid decisions as regards participation in the industry.  

Many possible definitions of risk have been proposed in the literature because different investors 

adopt different investment strategies in seeking to realize their Investment objectives. In some 

sense, risk is a subjective concept and this is probably the main characteristic of risk. Thus, even 

if we can identify some desirable features of an investment risk measure, probably no unique risk 

measure exists that can be used to solve every investor’s problem. One could say that before the 

publication of the paper by (Artzner et al, 1997-1999) on coherent risk measures, it was hard to 

discriminate between “good” and “bad” risk measures. The analysis proposed by the author was 

addressed to point out the value of the risk of future wealth, while most of the portfolio theory 
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was based on the concept of risk in strong connection with the investor’s preferences and their 

“utility function”. 

Investment activity is central to promotion of economic well being, because it is of the most 

important economic activity that businesses, consumers and governments can undertake.  

Investment refers to the concept of deferred consumption, which involves purchasing an asset, 

giving a loan or keeping funds in a bank account with the aim of generating future returns. An 

understanding of the core concepts and a thorough analysis of the options can help an investor 

create a portfolio that maximizes returns while minimizing risk exposure. 

An investment is the current commitment of money or other resources in expectation of reaping 

future benefits (Brodie et al, 1998). Investment is the flow into stock of capital goods. This  flow 

of investment into the stock of capital are divided into two categories of replacement investment 

and net investment (Brodie et al 1998).The two make up gross investment, which is the total 

flow of investment goods into capital stock.      

There are many other risk properties that could be used to characterize investor’s optimal 

choices. For this reason, in this thesis, several risk measures and expected return properties have 

been classified for their financial insight and discussed to show how these properties characterize 

the different use of a risk measure relative to expected return. 

 

 1.2 Background of the study. 

In this section, investment goals, portfolio investment, types of investment, insurance and 

investments are overviewed as part of insurance business as practiced in the portfolio investment. 
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1.2.1 Investment Goal  

People throughout ages have sought to look for avenues to increase their wealth. The best way to 

maintain and improve once wealth is to invest the little that one has. Individuals, entities, 

organizations and cooperate bodies make investments towards the future. One difficulty faced by 

all is where, how, when and for how long to invest, in the mist of all opportunities, to obtain the 

maximum satisfaction from the investment made. Usually investors might have a certain amount 

of money to invest. The investor may have various options of investment based on the returns. 

Any time an investor makes an investment he must decide on the optimal investment strategy. 

Two very important strategies are active portfolio management and Long term investing. The 

strategies that one chooses for an optimal strategy will depend on the investors investment goals. 

 

1.2.2 Portfolio 

In finance, a portfolio is a collection of investments held by an institution or a private individual. 

In building up an investment portfolio a financial institution will typically conduct its own 

investment analysis, whilst a private individual rely on the use of the services of a financial 

advisor or a financial institution which offers portfolio management services. Holding a portfolio 

is part of an investment and risk –limiting strategy called diversification.(Markowitz H. 1959) 

The assets in a portfolio include stocks, bonds, options, warrants, gold certificates, real-estate, 

future contracts, production facilities, or any other item that is expected to retain its value. 

Portfolios tend to consist of variety of investment securities in order to minimize investment risk. 
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1.2.3 Investment portfolio 

Investors throughout ages have sought for ways to increase their wealth. The best way to 

maintain and improve once wealth is to invest the little that one has. Individuals, entities, 

organizations and cooperate bodies make investments towards the future. The problem faced by 

all investors is where, how, when and for how long to invest, in the mist of opportunities, to 

obtain the maximum returns from the investment made. Usually investors might have a certain 

amount of money to invest. The investor may have various avenues of investment based on 

optimal returns. From a historical point of view, the optimal investment decision always 

corresponds to the solution of an “expected utility maximization problem”. Therefore, although 

risk is a subjective and relative concept (Balzer, L A., 2001) we can always state some common 

risk characteristics in order to identify the optimal choices of some classes of investors, such as 

non-satiable and/or risk-averse investors. In particular, the link between expected utility theory 

and the risk of some admissible investments is generally represented by the consistency of the 

risk measure with a stochastic order.  

Portfolio optimization is often called Mean –Variance (MV) optimization. Unfortunately equities 

with high returns correlate with high risk. 

The term mean refers to the mean or expected return of the investment and the variance is the 

measure of risk associated with the portfolio. The problem can be formulated mathematically in 

many ways, but the principal problems can be summarized as follows: 

(i)  minimized risk for a specified expected return 

(ii) maximize the expected returns for a specified risk 

(iii) minimize the risk and maximize expected returns using a specified risk aversion 

factor  
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      (iv)  minimize the risk regardless of the expected returns 

(v)  maximize expected returns regardless of the risk 

The above problems could have linear or non linear constraints, equality and inequality 

constraints. The first three (3) problems are essentially mathematically equivalent and the 

solutions are called Mean-Variance (MV) efficient. The efficient points in the return – risk graph 

are called the efficient frontier. 

The fourth problem gives minimum variance solutions which are for cautious investors. It is also 

used for comparison and benchmark of other portfolios.  

The fifth gives the upper bound of the expected return which can be attained. This is useful for 

comparisons. 

 Any of the above problems can be solved in relation to an existing portfolio or benchmark. 

When market conditions or risk preferences change, it is advisable to rebalance.   

1.2.4 Types of Investment 

The types of investment according to Brodie et al (1998) are; 

   (i) Tangible or fixed asset investment 

  (ii) Inventory investment  

  (iii) Intangible investment  

   (iv) Residential investment in housing 

   (v) Financial investments 

 

 



6 
 

1.2.5     Insurance 

Insurance is a promise of compensation for specific potential future losses in exchange for a 

periodic payment (Daykin et al, 1996). Insurance is designed to protect the financial well-being 

of an individual, company or other entity in the case of unexpected loss. Some forms of 

insurance are required by law, while others are optional. Agreeing to the terms of an insurance 

policy creates a contract between the insured and the insurer .The sum of money that is paid to 

the insurance company (insurer) in order to be insured is called the premium. It is a regular 

periodic payment from the insured person to the company for the protection of the insured 

property or person. Premiums on all types of insurance policies are payable in advance. The 

amount of the premium depends on the type of insurance. 

The amount for which the property or the person is insured is called the risk or the face value of 

the policy. Usually, the insurance company requires that the risk should be a specified percentage 

of the real value of the property.  Below are some of the various types of insurance;  

(i) Fire insurance (houses, stores, factories etc.) 

 (ii) Life assurance (personal insurance, health insurance, etc.) 

 (iii) Accident insurance (car)   

 

1.2.6   Investment as part of insurance Business 

A key feature of insurance is that premiums are received in advanced of the risk being borne 

with afterwards claim payments. In all this, provision needs to be established in respect of the 

expected future liabilities. Additional solvency margins should also be maintained. These 

provisions and reserves should be backed by appropriate assets; having regard to liabilities with 
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reasonable balance between security, liquidity and good investment returns (including interest 

,dividend or rental income and capital gains).  

Insurance companies often have a predominance of short- term liabilities. Their investments tend 

to be mainly in cash, short-term deposits and government or corporate bonds of fairly short 

duration. However, if the cash flow is expected to be positive, more diversified investment 

policy could be beneficial, including property and equity shares. In some jurisdiction, Life 

Companies have a greater degree of investment freedom than Non-Life Companies. There are 

substantial volumes of participation (with profits) in life business. In this case only a part of the 

sum assured may be guaranteed and the balance depends on the performance of investment 

(Daykin et al, 1996). 

 

1.3 Statement of the problem 

The basic premise of economics is that, due to the scarcity of resources, all economic decisions 

are made in the face of trade-offs. The trade-off facing every investor is risk versus expected 

returns. The investment decision is not merely which securities to own, but how to divide the 

investor's wealth amongst securities. The investor’s problem is really how much and where to 

invest in order to maximize the expected returns and at the same time how to minimize the risk 

such as fire outbreaks, theft and terrorist attacks associated with the investment. 

  As a result, financial institutions such as Banks, Insurance Companies and individual investors 

are crusading for a device or model that will enable them solve the above problems optimally for 

both long term and short term in other to maximize their profit.    

Let  𝐹𝑖(𝑥) , 𝑖 = 1, 2, 3, … ,𝑛  denote the return from investments 𝑖  when 𝑥  units of money are 

invested in investment , 𝑖 . 𝑥𝑖  (𝑖 = 1, 2, 3, … ,𝑛)  is defined as the number of units of money 
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invested in investment, 𝑖.  The problem of determining how much  to invest in each investment 

in order to maximize total returns can be approached through a multi-stage decision process by 

modeling a mathematical program to find the optimal policy using Dynamic Programming. 

         Maximize    ∑𝐹𝑖(𝑥𝑖)  

         Subject to    ∑𝑥𝑖 ≤ 𝑏 

                                                  𝑥𝑖 ≥ 0                                                                                   (1.0) 

                                                  𝑖 = 1, 2, 3, … ,𝑛 

Where 𝐹𝑖(𝑥𝑖)  functions of a single variable are are, 𝑏 is a known nonnegative integer and all 

variables (𝑥𝑖′𝑠) are all positive integrals. 

 Markowitz, (1952), measured risk of assets using the variance of each asset return. If each 

component 𝑥𝑖  of the n–vector 𝑥 represents the proportion of an investor’s wealth allocated to 

asset I, then the total return from the portfolio is given by the scalar product of 𝑥 by the vector of 

individual asset returns. Therefore, if  𝑅 = (𝑅1 , … . . ,𝑅𝑛)  denotes the n-vector of expected 

returns of the assets, risk and C can be represented by the expression ∑ 𝑅𝑖𝑥𝑖𝑛
𝑖=1  , and its level of 

risk by ∑ ∑ 𝐶𝑖𝑗𝑥𝑖𝑥𝑗𝑛
𝑗=1

𝑛
𝑖=1 . Markowitz assumes that the aim of the investor is to design a portfolio 

which minimizes risk while achieving a predetermined expected return, say Rexp . 

Mathematically, the problem can be formulated as follows. For any value of Rexp : 

                                                   min    ∑ ∑ 𝐶𝑖𝑗𝑥𝑖𝑥𝑗𝑛
𝑗=1

𝑛
𝑖=1  

                                                         s.t   ∑ 𝑅𝑖𝑥𝑖𝑁
𝑖=1 =   𝑅𝑒𝑥𝑝                                       (1.1) 

                                                                ∑ 𝑥𝑖  𝑛
𝑖=1  

                                                                 𝑥𝑖  ≥ 0   𝑓𝑜𝑟 𝑖 = 1 , … … .𝑛 
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 The first constraint expresses the requirement placed on expected returns .The second constraint, 

called budget constraint, requires that 100% of the budget be invested in the portfolio. The non-

negativity constraints express that no short sales are allowed.    

The return (R) on a risky investment is a random variable. It is natural to take the expectation 

E(R) as the reference value. The variance Var (R) then turns out to be a measure of risk of the 

investment.  In some circumstances the standard deviation 

                                                   σR = [Var (R)]0.5                                                 (1.2) 

  of the return is a more convenient measure of risk. If a quantity is measured in certain units, 

then the standard deviation will be expressed in the same units, so it can be related directly to the 

original quantity, in contrast to variance, which will be expressed in squared units. From the 

above observations, this research work is aimed at developing a Dynamic Programming model to 

determine optimal returns of investment and also use Markowitz’s portfolio model to measure 

the risk involved in some investments made by some banks in the Sunyani Municipality. 

 

1.4 Objective of the study 

   The objectives of this study are:  

(a)  To develop an optimization model based on DP algorithm to determine optimal expected 

return on investment portfolio 

 (b) To determine the minimal risk of an investment portfolio using Markowitz portfolio model 

  (c) To establish the correlation between expected return and risk in investment portfolios 

option. 
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1.5 Justification of the study 

 In real-life situation, many people have a lot of resources and would like to invest, but are not 

sure of where, when and how to put their resources together in order to accrue the maximum 

returns. These indecision problems have become a source of misery to them. To justify the 

products in which to invest, we need to look out for the various forms of investments available, 

the expected returns from each investment, risk involved and the associated cost. Financial 

institutions would like to know where to keep their excess cash flows to make maximum returns. 

All the above can be modeled as a dynamic programming problem. It is known that dynamic 

programming solves problems in stages and is quicker and less time consuming far less than total 

enumeration. Also, the return on a risky investment is a random variable. It is natural to take the 

expectation as the reference value. The variance then turns out to be a measure of risk of the 

investment. To preserve the unit of a quantity to be measured, the standard deviation of the 

return is a more convenient measure of risk. 

 

  1.6 Research Methodology 

This is a quantitative research work and a secondary data, interest rates and yield functions of 

various investments will be collected from selected Banks and Financial Institutions. 

Mathematical methods that will be used in this research work are Dynamic Programming and 

Modern portfolio theory.  Dynamic Programming will be used to determine the optimal returns 

of the investment and the problem analyzed through a multi-stage decision process. The Modern 

Portfolio Theory (MPT) which uses the standard deviation of asset returns as the measure of risk, 

and focuses on maximizing or minimizing it when constructing a portfolio shall be used to 

measure risk of the investments. The standard deviation simply measures the average distance of 
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the returns from its historical mean. This can be interpreted as a measure of how “volatile” the 

price of an asset is. The rest of the thesis will focus on attempts to assess this extreme risk and its 

management. The correlation between expected returns and risk in investment portfolio option 

will also be established. 

 

1.7 Significance of the study 

The problems faced by many investors are; where, when and how to put their resources in order 

to accrue maximum returns and minimize risk. To select the projects in which to invest, there is 

the need to look out for various forms of investments available, the expected returns from each 

investment and its associated risk and cost. Financial institutions would like to know where to 

keep their excess cash flows to make maximum returns. The dynamic programming model will 

serve as an efficient tool for solving potential investor’s problems in stages since its quicker, less 

time consuming and far less than total enumeration. The model will also serve as a tool for 

operation research specialists for analyzing and solving multiple-objectives optimization 

problems. 

 

1 .8 Limitation of the study 

Readiness of Banks, companies and other financial institutions to make available data for this 

project was a challenge. Most insurance companies turned the proposal for data down because of 

competition in the insurance industry .The problem to be considered in this thesis is the 

Bellman’s Principle of Optimality using Dynamic programming (BPDPP). Only six investments 

with six returns; will be discussed this is due to time constraints which will not allow the 

researcher to do total enumeration. 
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1.9.0 Organization of the study 

This chapter deals with the problem statement and objectives of the study. The methodology, 

significance and limitations of the study are also considered.  

Chapter two reviews the related literature of dynamic programming applications and solutions. 

The Markowitz models for analyzing portfolio management will be reviewed.  

Chapter three outlines some algorithm solutions of knapsack problems using total enumeration 

and Dynamic Programming models. It considers cases where there is total enumeration and 

compares the time and stages used in solving a problem. The Markowitz modern portfolio 

selection theory will be analyzed and used to select viable investment and the risk of investment.  

Chapter four deals with collection, analysis and interpretation of the data. The chapter also 

presents the implementation of DP models .The DP will be used to determine optimal investment 

returns. The maximal or minimal risk and the corresponding investments to be selected will be 

made using the proposed model for portfolio selection. 

Chapter five, the final chapter of the study presents the conclusion, summary and 

recommendations of the study. 

 

 1.9.1 Definitions of Terms and Symbols used 

The terms and symbols that have been used in this chapter and those that will be used in the 

subsequent chapters are summarized below  

  Utility function  - the amount of satisfaction or pleasure that somebody gains from consuming a 

commodity, product, or service      
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   Tangible or fixed asset investment    - This is investment in physical, fixed capital such as plant 

and machinery. 

  Inventory investment   -  It is investment in the ‘working capital’ of the firm made up of goods 

produced that are not sold. 

 Intangible investment   - It is the investment in non- physical asset that does not involve the 

accumulation of tangible assets but will help future productivity capacity, such as good will. 

 Financial investment – It is the purchase of financial instruments and paper assets. 

BPODP – Bellman’s Principle of Optimality using Dynamic Programming  

 MPM - Markowitz Portfolio model 

MPT - Modern Portfolio Theory 

R   - Return of investment  

r   - risk of investment  

DPM   - Dynamic Programming Model 

CAPM – Capital Asset Pricing Model   

CRRA – Constant Relative Risk Aversion  

GMD - Gini’s Mean Difference 

BIS - Bank of International Settlement  

CPA - Continuous Probabilistic Analysis 

CVaR - Conditional Value at Risk 

CML – Capital Market Line 

PS – Portfolio Selection 

MAD – Mean Absolute Deviation 

MV – Mean Variance  
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KKT – Karush –Kuhn -Tucker 

HJB – Hamilton-Jacobi- Bellman 

 

1.9.2    Summary 

   This chapter considers the motives for investment, background of the study and investment 

goals portfolio. It discusses types of investments and how investment forms part of the insurance 

business. It also entails statement of the problem, aims and objectives of the study and 

justification of the study. Research methodology is highlighted as well as the significance of the 

study. Limitation of the study, including the organization of the research study is also dealt with.    

 Terms and symbols used in the subsequent chapters are explained  

 The next chapter presents pertinent and relevant literature review on optimal investment 

portfolio based on models of risk and expected returns using dynamic programming and 

Markowitz portfolio model. 
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CHAPTER TWO 

Related Literature Review on Portfolio Investment 
  2.0 Introduction 

 This section, reviews relevant researches on selection of investment portfolio using dynamic  

programming and Markowitz portfolio models. 

 One of the most popular methods to choose optimal investment portfolio is the method that 

measures the value of risk proposed by Markowitz. This model analyzes different measures of 

risk such as variance, standard deviation, and conditional value at risk. Different measures of risk 

are focusing on the different properties of distribution of rate of return. For example the variance 

measures the dispersion of rate of return and the value-at-risk or conditional value at risk 

measures the probable loss. In this thesis, expected returns for various investments will be 

measured using dynamic programming models while Markowitz portfolio models will be used to 

measure the various risks. The optimal portfolio selected on the bases of proposed models will be 

compared according to level of risk and profitability. 

 

2.1 Dynamic Programming approach 

 This section reviews the Principle of Optimality, Bellman Equation, Ad hoc Methods of 

Rebalancing, Differential dynamic programming and other literature reviews on dynamic 

programming. 
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2.2.1 The Principle of Optimality and Bellman Equation 

 Dynamic programming is both a mathematical optimization method, and a computer 

programming method.  In both contexts, it refers to simplifying a complicated problem by 

breaking it down into simpler sub problems in a recursive manner. While some decision 

problems cannot be dealt this way, decisions that span several points in time do often break apart 

recursively; Bellman calls this the “Principle of Optimality”. In computer science, a problem 

which can be broken down recursively is said to have optimal substructure. If sub problems can 

be nested recursively inside larger problems, so that dynamic programming methods are 

applicable, then there is a relation between the value of the larger problem and the values of the 

sub problems.  In the optimization literature this relationship is called the Bellman equation. 

 

2.2.2 Flexibility of Dynamic programming 

Based on the programming style, Steffen et al, (2005) introduce a generic product operation of 

scoring schemes.  This leads to a remarkable variety of applications, allowing us to achieve 

optimizations under multiple objective functions, alternative solutions and back tracing, holistic 

search space analysis, ambiguity checking, and more, without additional programming effort.  

The authors demonstrated the method on several applications for RNA secondary structure 

prediction. The product operation as introduced here adds a significant amount of flexibility to 

dynamic programming.  It provides a versatile text bed for the development of new algorithmic 

ideas which can immediately be put to practice. 

Below are the works of some authors demonstrating the flexibility of DP as applied to problems 

solving. 



17 
 

 Many institutional fund managers generally rebalance using ad hoc methods such as calendar 

basis or tolerance band triggers.  Sun et al, (2005) proposed a different framework that quantifies 

the cost of a rebalancing strategy in terms of risk-adjusted returns net of transaction costs.  The 

authors then developed an optimal rebalancing strategy that sought to minimize that cost.  They 

used certainty equivalents and the transaction costs associated with a policy to define a cost-to-

go function, and they minimized this expected cost-to-go using dynamic programming.  The 

authors applied Monte Carlo simulations to demonstrate that their method outperformed 

traditional rebalancing.  They also showed the robustness of our method to model error by 

performing sensitivity analyses. 

Jacobson’s, (2003) differential dynamic programming is a technique, based on dynamic 

programming rather than the calculus of variations, for determining the optimal control function 

of a nonlinear system.  Unlike conventional dynamic programming where the optimal cost 

function is considered globally, differential dynamic programming applies the principle of 

optimality in the neighborhood of a nominal, possibly no optimal, trajectory.  This allowed the 

coefficients of a linear or quadratic expansion of the cost function to be computed in reverse time 

along the trajectory: these coefficients may then be used to yield a new improved trajectory (i.e. 

the algorithms are of the “successive sweep” type).  A class of nonlinear control problems, linear 

in the control variables, is studied using differential dynamic programming.  It is shown that for 

the free-end-point problem, the first partial derivatives of the optimal cost function are 

continuous throughout the state space, and the second partial derivatives experience jumps at 

switch points of the control function.  A control problem that has an analytic solution is used to 

illustrate these points.  The fixed-end-point problem is converted into an equivalent free-end-

point problem by adjoining the end-point constraints to the cost functional using Lagrange 
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multipliers: a useful interpretation for Pontryagin’s adjoins variables for this type of problem 

emerges from this treatment.  The above results are used to devise new second- and first-order 

algorithms for determining the optimal bang-bang control by successively improving a nominal 

guessed control functions.   

Herman et al, (2009) developed a multi-period investment portfolio model that includes risky 

farmland, risky and risk-free nonfarm assets, and debt financing on farmland in the presence of 

transaction costs and credit constraints. The model is formulated as a stochastic continuous-state 

dynamic programming problem, and is solved numerically for South-western Minnesota, USA. 

Results show that optimal investment decisions are dynamic and take into account the future 

decisions due to uncertainty, partial irreversibility, and the option to wait. The optimal policy 

includes ranges of inaction, states where the optimal policy in the current year is to wait. The 

risk-averse farmer makes a lower investment in risky farmland reflecting risk-avoiding behavior. 

The authors found that, in addition to risk aversion, the length of the planning horizon affects 

risk-avoiding behavior in investment decisions. Finally, they found that higher debt financing on 

farmland is optimal when risky nonfarm assets ares included in the optimal investment portfolio 

and that the probability of exiting farming increases with the risky nonfarm investment. 

Ghezzi (1997) considered an immunization problem in which a bond portfolio is to be 

periodically rebalanced. Max-min optimal control is applied to the problem. The target is to 

maximize the final portfolio value under the worst possible evolution of interest rates. The 

optimal control law, obtained by means of dynamic programming, turns out to be different from 

any duration-based immunization policy. 
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Jean-Luc Vila et al (1991) used stochastic dynamic programming to study the inter-temporal 

consumption and portfolio choice of an infinitely lived agent who faces a constant opportunity 

set and a borrowing constraint. The authors showed that, under general assumptions on the 

agent’s utility function, optimal policies exist and can be expressed as feedback functions of 

current wealth. They described these policies in detail, when the agent’s utility function exhibits 

constant relative risk aversion.  

Optimal asset allocation deals with how to divide the investor’s wealth across some asset-classes 

in order to maximize the investor’s gain. Pola et al, (2006) considered the optimal asset 

allocation in a multi-period investment setting: optimal dynamic asset allocation provides the 

(optimal) re-balancing policy to accomplish some investment’s criteria. Given a sequence of 

target sets, which represent the portfolio specifications at each re-balancing time, an optimal 

portfolio allocation is synthesized for maximizing the joint probability for the portfolio to fulfill 

the target sets requirements. The approach pursued is based on dynamic programming. The 

optimal solution is shown to conditionally depend on the portfolio realization, thus providing a 

practical scheme for the dynamic portfolio rebalancing. Finally some case studies are given to 

show the proposed methodology. 

Rudoy et al, (2008) studied the problem of optimal portfolio construction when the trading 

horizon consists of two consecutive decision intervals and rebalancing is permitted. It is assumed 

that the log-prices of the underlying assets are non-stationary, and specifically follow a discrete-

time integrated vector autoregressive model.  The authors extended the classical Markowitz 

mean-variance optimization approach to a multi-period setting, in which the new objective is to 

maximize the total expected return, subject to a constraint on the total allowable risk. In contrast 

to traditional approaches, they adopted a definition for risk which takes into account the non-zero 
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correlations between the inter-stage returns. This portfolio optimization problem amounts not 

only to determining the relative proportions of the assets to hold during each stage, but also 

requires one to determine the degree of portfolio leverage. Due to a fixed constraint on the 

standard deviation of the total return, the leverage decision is equivalent to deciding how to 

optimally partition the allowed variance, and thus variance can be viewed as a shared resource 

between the stages. The authors derived the optimal portfolio weights and variance scheduling 

scheme for a trading strategy based on a dynamic programming approach, which is utilized in 

order to make the problem computationally tractable. The performance of this method is 

compared to other trading strategies using both Monte Carlo simulations and real data, and 

promising results are obtained 

Ye, (2007) presented a continuous-time model of optimal life insurance, consumption and 

portfolio is examined by dynamic programming technique. The Hamilton-Jacobi- Bellman (HJB 

in short) equation with the absorbing boundary condition is derived. Then explicit solutions for 

constant relative risk aversion (CRRA in short) utilities with subsistence levels are obtained. 

Asymptotic analysis is used to analyze the model. 

Paolo Battocchio, et al considered a stochastic model for a defined-contribution pension fund in 

continuous time. In particular, we focus on the portfolio problem of a fund manager who wants 

to maximize the expected utility of his terminal wealth in a complete financial market with 

stochastic interest rate. The fund manager must cope with setoff stochastic investment 

opportunities and two background risks: the salary risk and the inflation risk. We use the 

stochastic dynamic programming approach. We show that the presence of the inflation risk can 

solve some problems linked to the use of the stochastic dynamic programming technique, and 

namely to the stochastic partial differential equation deriving from it. The technique, namely  the 
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stochastic partial differential equation deriving from it. We find a closed form solution to the 

asset allocation problem, without specifying any functional form for the coefficients of the 

diffusion processes involved in the problem. Finally, the derivation of a closed form solution 

allows us to analyze in detail the behavior of the optimal portfolio with respect to salary and 

inflation. 

 

2.3 Portfolio Optimization and Risk Management 

This section briefly refers to some of the most outstanding pieces in the literature concerning 

portfolio optimization optimal returns and risk in portfolio investment and its relation with 

(Financial) risk measurement. It also presents some recent results and findings on the outcomes 

of portfolio optimization implementation. 

  

 2.3.1 Modern Portfolio theory: Markowitz, Sharpe and Tobin. 

Modern portfolio theory (MPT) or portfolio theory was introduced by Harry Markowitz with his 

paper "Portfolio Selection," which appeared in the 1952 Journal of Finance? Thirty-eight years 

later, he shared a Nobel Prize with Merton Miller and William Sharpe for what has become a 

broad theory for portfolio selection. Prior to Markowitz's work, the assessment of the risks and 

rewards of portfolios was carried out through the analysis of individual securities independently. 

By formalizing the concept of diversification, he proposed that investors should focus on 

selecting portfolios based on their joint risk-reward features instead of merely compiling 

individually attractive securities regardless of their relation to the other assets on their portfolios. 

Using the historical returns of each asset on a portfolio and statistical measures such as average 

(return), standard deviation and linear correlation it is possible to estimate the expected return 
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and volatility of any portfolio constructed with those assets. Markowitz used volatility and 

expected return as proxies for risk and reward. Within the infinite possible alternatives that an 

investor has to construct a portfolio, Markowitz defined an “optimal” way of doing so by 

balancing the risk and reward features of the portfolio. The set of portfolios constructed in this 

optimal manner conforms to what he called the efficient frontier. The author concludes that an 

investor should select a portfolio that lies on the efficient frontier. 

Tobin (1958) expanded on Markowitz's work by adding a risk-free asset to the analysis. The 

author pointed out that by using leverage or deleverage on the portfolios on the efficient frontier 

it was possible to outperform them in terms of their risk and reward relation. By doing so the 

author introduced the notions of “Capital Market Line” and “super-efficient portfolio”. 

 Sharpe (1964) formalized the Capital Asset Pricing Model (CAPM). Using strong assumptions 

over investors and market behavior, he created a model that led to interesting conclusions. It was 

detected that the “market portfolio” sits on the efficient frontier, and is also actually Tobin's 

super-efficient portfolio. According to CAPM, all investors should hold the market portfolio, 

leverage or de-leverage with positions in the risk-free asset according to their risk aversion 

profile. CAPM also introduced the concept of “beta” and relates an asset's expected return to its 

beta. Portfolio theory provides a broad framework to understand the interactions of risk and 

reward. It has profoundly influenced the way institutional portfolios are managed, and motivated 

what is known as “passive management” investment techniques. The mathematics of portfolio 

theory is widely used in Financial Risk Management and is a theoretical predecessor for more 

recent risk measures. 
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2.3.2 Selection of optimal portfolio according to two measures of risk 

Selection of an optimal investment portfolio can be made according to three criteria: the 

expected rate of return (E ( x )) and two measures of (𝜌1(𝑥),𝜌2(𝑥).   Then the preference relation 

can be as follows: the random variable 𝑅𝑥 𝑖𝑠 𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 to the random variable 𝑅𝑦  if and only if 

𝐸(𝑅𝑥) ≥ 𝐸�𝑅𝑦�,    𝜌1(𝑅𝑥) ≤ 𝜌1𝑅𝑦   𝑎𝑛𝑑  𝜌2 the un-dominated effective solutions are Pareto 

effective of multi-objective problem. In the optimization model of this problem the value of the 

expected rate of return is maximized and both measures of risk ( 𝜌1(𝑥),𝜌2 (𝑥)) are minimized.    

  These multi –objective models can be transformed to a single objective problem. This can be 

done alone by using example method known as, −constraint method" . In this method one 

objective function should be optimized and the remaining objective functions should be 

transformed into constraints. The scenario approach was used to achieve objective model with 

linear constraints.   

 Simple objective models will be used to solve the optimal portfolio problem with two measures 

of risk. In the first model the variance and CVaR will be used as a risk measure. The mean 

variance, CVaR model the variance will be minimized and two remaining criteria will be 

transformed into constraints.  The scenario approach was used to achieve a single-objective 

model with linear constraints. The mean-variance –CVaR model 

 (MVC model) is following Roman D., et al (2007)  

            minimize         𝜎2(𝑅𝑥)       

             𝐸(𝑅𝑥) ≥ 𝑅0 

            𝑣 + 1
𝑇 (1−𝜎)

 ∑ 𝑝𝑖𝑢𝑖𝑛
𝑗=1  ≤ 𝑧𝑐 
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          𝑢1 + ∑ 𝑥𝑗𝑟𝑖𝑗 + 𝑣 ≥ 0     𝑓𝑜𝑟 𝑖 = 1,2, … . . ,𝑇𝑛
𝑗=1  

           

            �𝑥𝑗

𝑛

𝑗=1

 

            𝑥𝑗  ≥ 0          𝑓𝑜𝑟𝑗 = 1,2, … . ,𝑛               …………………                                       (2.0) 

            𝑢𝑖  ≥ 0          𝑓𝑜𝑟 𝑖 = 1,2 … … ,𝑇 

Parameter zc is the value which the Conditional Value –at risk should not exceed the value zc was 

fixed according to results from he mean CVaR model. The mean –CVaR model was used  for the 

different assumed level of rate of return of portfolio to obtain a  different value of objective 

function (value of risk). From all these values was selected the minimum (zcmin ). In mean CVaR. 

As in the above model, the variance will be minimized and the Gini’s Mean Difference and the 

expected rate of return will be changed to constraints. In the scenario approach we can apply 

mean variance GMD model (MVG model) with linear constraints as follows: 

                       min     𝜎2(𝑅𝑥) 

1
2

 � 𝑑𝑖𝑘𝑝𝑖𝑝𝑘  ≤ 𝑍𝐺                                                                                   
𝑇

𝑖,𝑘=1

 

                     

                    𝑑𝑖𝑘  ≥  �𝑥𝑗𝑟𝑖𝑗 − 𝑥𝑗𝑟𝑘𝑗

𝑛

𝑗=1

   𝑓𝑜𝑟 𝑗,𝑘 = 1,2 , … . ,𝑇 

                            𝐸(𝑅𝑥) ≥ 𝑅0 
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                              �𝑥𝑗

𝑛

𝑗=1

= 1  

 

                            𝑥𝑗  ≥ 0      𝑓𝑜𝑟 𝑗 = 1,2, … ,𝑛 

                           𝑑𝑖𝑘 ≥ 0    for i, k = 1,2,….,T……………………                                           (2.1) 

Parameter zG, which limits the value of Gini’s Mean Difference is fixed as the parameter zc but 

in this case results from the mean-Gini’s model are used. 

The optimal portfolio problem with two measures of risk can also be solved by the linear 

optimization models. Models with the Conditional Value –at-Risk and Gini’s Mean Difference 

can be considered as risk measures. In one of these models the Conditional Value-at-Risk will be 

minimized and the Gini’s Mean Difference will be limited. This linear model can be denoted as 

the mean –CVaR- GMD model (MCG model).  

Minimize    V + 1
𝑇( 1−𝛼)

 ∑ 𝑝𝑖𝑢𝑖𝑇
𝑖=1   

                  U1+ ∑ 𝑥𝑗𝑟𝑖𝑗   + 𝑣 ≥ 0  𝑛
𝑗=1        𝑓𝑜𝑟 𝑖 = 1 ,2 , … ,𝑇 

               
1
2

 � 𝑑𝑖𝑘𝑝𝑖𝑝𝑘 
𝑇

𝑖,𝑘=1

 ≤  𝑍𝐺                                                                                                                        

  

       𝑑𝑖𝑘  ≥  � 𝑥𝑖𝑟𝑖𝑗 − 𝑥𝑗𝑟𝑘𝑗     𝑓𝑜𝑟 𝑖,𝑘 =
𝑛

𝑗=1𝑆

1 ,2, … ,𝑇 

           𝐸(𝑅𝑥 ) ≥  𝑅0                                                                                                                                                              
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                     �𝑥𝑗                                                                                                                                              (2.2)
𝑛

𝑗=1

 

 

     𝑥𝑗 ,𝑑𝑖𝑘 , 𝑣  ≥ 0        𝑓𝑜𝑟 𝑗 = 1 ,2, … ,𝑇                                                                                                 

These single objective models prove that the optimal solution of the single objective problem is 

also a Pareto optimal solution of the original multi-objective problem. 

 In this thesis, the Markowitz portfolio models swill be used to estimate and evaluate the risk 

features of a given portfolio and establish the correlation between expected returns and risk in 

portfolio investment options. 

 

2. 3.3 Extreme Risk Measures 

Extreme risk is usually related to the (joint) losses in the value of an asset (or portfolio of assets) 

bore during “extreme” situations. Extreme situations can be taught as the worst case scenarios 

that one could expect with respect to the value of the assets held. Various measures of extreme 

risk are around, but the most renown is the Value-at-Risk (VaR). This measure is used by the 

capital adequacy directive of the Bank of International Settlement (BIS) in Basle (Basle 

Committee 1996), that determined that, banks must have a capital cushion sufficient to cover 

losses on the bank's trading portfolio over a ten-day holding period in 99% of occasions. 

  However, Artzner, Delbaen, Eber and Heath. (1997, 1999) pointed out some drawbacks of the 

VaR as a market risk measure. First, they show that VaR is not necessarily ‘sub-additive’ and 

explain why this may cause serious problems if the risk-management system of a financial 

institution is based in VaR-limits for individual books. Furthermore, VaR gives only an upper 

bound on the losses that occur with a given frequency; VaR tells us nothing about the potential 

size of the loss given that a loss exceeding this upper bound has occurred. Artzner et al. (1997, 
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1999) proposed the use of the so-called Expected Shortfall instead of VaR, which addresses the 

issue of the potential size of a loss in extreme scenarios. 

 

2.3.4 Value at Risk 

According to Jorion (2000), the Value at Risk (VaR) estimates the maximum loss (or worst loss) 

that a portfolio can have within a determined time horizon and a given confidence level. For a 

horizon of N days and a confidence level 0 %, the VaR is the loss corresponding to the (100- 0) 

quartile in the distribution of the variations of a portfolio’s value during the next N days. 

In this thesis, the VaR of a portfolio is estimated using Extreme Value Theory and compared to 

estimates based on Gaussian assumptions. Portfolio optimization is done using as risk measure 

the expected shortfall, as suggested by Artzner et. al. (1997,1999 ). 

 

2.3.5 Expected Shortfall 

The expected shortfall (ES) or tail conditional expectation, according to McNeil and Frey 

(2001) is a risk measure that gives some information about the size of the potential losses given 

that a loss bigger than VaR has occurred. The tail conditional expectation measures the expected 

loss given that the loss L exceeds VaR; in mathematical terms it is given by E[L | L > VaR]. This 

risk-measure has the advantage over the VaR that is a coherent measure under the Artzner et.al. 

(1997, 1999). criteria. 
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CHAPTER TRHEE 

METHODOLOGY 
3.1Dynamic Programming 

Dynamic Programming is a technique that can be used to solve many optimization problems. In 

most applications, dynamic programming obtains solutions by working backward from the end 

of a problem toward the beginning, thus breaking up a large, unwieldy problem into a series of 

smaller, more tractable problems. 

In mathematics and computer science, dynamic programming is a method for solving complex 

problems by breaking them down into simpler sub problems. It is applicable to problems 

exhibiting the properties of overlapping sub problems which are only slightly smaller and 

optimal substructure (described below). When applicable, the method takes far less time. 

The key idea behind dynamic programming is quite simple. In general, to solve a given problem, 

we need to solve different parts of the problem (sub problems), then combine the solution of the 

sub problems to reach an overall solution. Often, many of these sub problems are really the 

same. The dynamic programming approach seeks to solve each sub problem only once, thus 

saving a lot of computation. This is especially useful when the number of repeating sub problems 

is exponentially large. 

Top-down dynamic programming simply means storing the results of certain calculations, which 

are later used again since the completed calculation is a sub-problem of a larger calculation. 

Bottom-up dynamic programming involves formulating a complex calculation as a recursive 

series of simpler calculations. 
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The term dynamic programming was originally was used in the 1940s by Richard Bellman to 

describe the process of solving problems where one needs to find the best decisions one after the 

other. By 1953, he refined this to the modern meaning, referring specifically to nesting smaller 

decision problems inside larger decisions. There after, the field was recognized by the IEEE as a 

systems analysis and engineering topic. Bellman’s contribution is remembered as Bellman 

equation, a central result of dynamic programming which restates an optimization problem in 

recursive form. 

The word dynamic was chosen by Bellman because it sounded impressive, not because it 

described how the method worked. The word programming referred to the use of the method to 

find an optimal program, in the sense of a military schedule for training or logistics. This usage 

is the same as that in the phrases linear programming and mathematical programming, a 

synonym for optimization. 

Finding the shortest path in a graph using optimal substructure; a straight line indicates a single 

edge; a wavy line indicates a shortest path between the two vertices it connects (other nodes on 

these paths are not shown); the bold line is the overall shortest path from start to goal. 

Dynamic programming is both a mathematical optimization method and a computer 

programming method. In both contexts it refers to simplifying a complicated problem by 

breaking it down into simpler sub-problems in a recursive manner. While some decision 

problems cannot be taken apart this way, decisions that span several points in time do often 

break apart recursively; Bellman called this the “Principle of Optimality”. Likewise, in computer 

science, a problem which can be broken down recursively is said to have optimal substructure. 
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If sub-problems can be nested recursively inside larger problems, so that dynamic programming 

methods are applicable, then there is a relation between the value of the larger problem and the 

values of the sub-problems. In the optimization literature this relationship is called the Bellman 

equation. 

 

3.1.1Dynamic Programming in Mathematical Optimization 

In terms of mathematical optimization, dynamic programming usually refers to simplifying a 

decision by breaking it down into a sequence of decision steps over time. This is done by 

defining sequence of value functions V1, V2,…Vn, with an argument y representing the state of 

the system at times I from 1 to n. The definition of Vn(y) is the value obtained in state y at the 

last time n. The values Vi at earlier times I = n-1,…, 2,1 can be found by working backwards, 

using a recursive relationship called the Bellman equation. For i = 2,…n, Vi-i for those states. 

Finally, V1 at the initial state of the system is the value of the optimal solution. The optimal 

values of the decision variables can be recovered, one by one, tracking back the calculations 

already performed. 

 

3.1.2 Dynamic Programming in Computer Programming 

There are two key attributes that a problem must have in order for dynamic programming to be 

applicable. They are optimal substructure and overlapping sub problems which are only slightly 

smaller. 
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When the overlapping problems are, half the size of the original problem the strategy is called 

“divide and conquer” rather than “dynamic programming”. This is why merge sort, quick sort, 

and finding all matches of a regular expression are not classified as dynamic programming 

problems. 

Optimal substructure means that the solution to a given optimization problem can be obtained by 

the combination of optimal solutions to its sub problems. Consequently, the first step towards 

devising a dynamic programming solution is to check whether the problem exhibits such optimal 

substructure. Such optimal substructures are usually described by means of recursion. For 

example, given a graph G = (V, E), the shortest path p from a vertex u to a vertex v exhibits 

optimal substructure: take any intermediate vertex w on this shortest path p. If p is truly the 

shortest path, then the path p1 from u to w and p2 from w to v are indeed the shortest paths 

between the corresponding vertices (by the simple cut-and-paste a argument described in CLRS). 

Hence, one can easily formulate the solution for finding shortest paths in a recursive manner, 

which is what the Bellman-Ford algorithm does. 

Overlapping sub problems means that the space of sub problems must be small, that is, any 

recursive algorithm solving the problem should solve the same sub problems over and over, 

rather than generating new sub problems. Let us, consider for example the recursive formulation 

for generating the Fibonacci series: Fi = Fi-1 + Fi-2, with base case F1=F2=1. Then F43 = F42 + F41, 

and F42 = F41 + F40. Now F41 is being solved in the recursive sub trees if both F43 as well as F42. 

Even though the total number of sub problems is actually small (only 43 of them), we end up 

solving the same problems over and over if we adopt a naïve recursive solution such as this. 

Dynamic programming takes account of this fact and solves each sub-problem only once. 
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This can be achieved in either of two ways 

(i) Top-down approach: 

This is the direct fall-out of the recursive formulation of any problem. If the solution to 

any problem can be formulated recursively using the solution to its sub problems, and if 

its sub problems are overlapping, then one can easily memorize or store the solutions to 

the sub problems in a table. Whenever an attempt is made solve a new sub problem, the 

table must first be examined to see if it is already solved. If a solution has been recorded 

it can be used directly, otherwise the sub problem can be solved and its solution added to 

the table. 

(ii) Bottom-up approach: 

This is the more interesting case. Once the solution to a problem is formulated 

recursively as in terms of its sub problems, it can be reformulated in a bottom-up fashion: 

by solving the sub problems first and using their solutions to build-on and arriving at 

solutions to bigger sub problems. This is also usually done in a tabular form by iteratively 

generating solutions to bigger sub problems by using the solutions to treat small sub 

problems. For example, if we already know the values of F41 and F40, we can directly 

calculate the value of F42.  

 

3.1.2 Characteristics of Dynamic Programming Applications 

There are a number of characteristics that are common to all problems and all dynamic 

programming problems. 
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1. The problem can be divided into stage with a decision required at each stage.  In capital 

budgeting problem the stages were the allocations to a single plant and the decision was how 

much to spend.  

2. Each stage has a number of states associated with it.  The states for a capital budgeting 

problem correspond to the amount spent at that point in time.  In the shortest path problem 

the states were the node reached. 

3. The decision at one stage transforms from state into a state in another stage.  The decision 

of much to spend gave a total amount spent for the next stage.  The decision of where to go 

next defined where one arrived in the next stage. 

4. Given the current state, the optimal decision for each of the remaining state does not 

depend on the previous states or decisions.  In the budgeting problem, it is not necessary to 

know how the money was spent in previous stages but to know how much was spent.   

In the shortest path problem, it is not necessary to know how you got to a node but to 

know how you did. 

5. There exists a recursive relationship that identifies the optimal decision for stage 𝑗, given 

that stage 𝑗 + 1 has already been solved. 

6. The final stage must be solvable by itself.  The last time properties are tied up in the 

recursive relationship given above. 
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3.1.3 Computational Efficiency of Dynamic Programming 

In smaller networks it would be a matter of determining the shortest path form on point to 

another by enumerating all the possible paths (after all there are only a few paths).   

In larger networks however, complete enumeration is practically impossible and the use of 

dynamic programming is much more efficient in determining the shortest path.   

In a network where there  are five stages with:  stage1 – 1 state, stage 2 – 3 state, stage 3 – 3 

state, stage 4 – 2 state and stage 5 – 1 state.  Total enumerate will result in 1(3)(3)(2)(1) = 18 

paths while DP with result in 1(3)(3)(2)(1) = 18 path.   

If in another network there are seven stages with 5 states each. The total enumeration gives 5(55) 

paths.   

However DP require 4(25) + 5 = 105 addition = DP requires 105 = 0.00 7 times as many 

additions are explicit enumeration. 

 

3.1.4 Applications of Dynamic Programming 

Dynamic programming can be used to solve many types of Integer Programming-consumption 

and savings problems, shortest path problem, The Knapsack Problem, Network Problems, 

Inventory Problems, Equipment replacement problems, Resource Allocation Problems etc. 
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3.1.5 Integer Programming 

An Integer Programming problem (IP) is a Linear Programming (LP) problem in which some or 

all the variables are required to be non- negative integers. An Integer programming in which all 

variables are required to be integers is a Pure Integer Programming problem. 

 Many problems can be modeled as an Integer Programming problem. The model is; For a 

maximization problem   

        Maximize  𝑍 = ∑ 𝑟𝑖(𝑎𝑥𝑖 + 𝑏)𝑛
𝑖=1  

       Subject to           ∑ 𝑥𝑖𝑛
𝑖=1 ≤ 𝑐𝑖                                                                       (3.0)                  

                                            𝑥𝑖 ≥ 0, 1, 2, 3, 4 … … … .𝑁 

 

3.1.6 Optimal Consumption and Saving Problems 

A mathematical optimization problem that is often used in dynamic programming to economists 

concerns a consumer who lives over the periods    t = 0, 1, 2, ..., T and must decide how much to 

consume and how much to save in each period. 

Let ct be consumption in period t, and assume consumption yields utility u(ct) = ln(ct) as long as 

the consumer lives. Assume the consumer is impatient, so that he discounts future utility by a 

factor b each period, where 0 < b < 1. Let kt be capital in period t. Assume initial capital is a 

given amount k0 > 0, and suppose that this period's capital and consumption determine next 

http://en.wikipedia.org/wiki/Utility
http://en.wikipedia.org/wiki/Discounting
http://en.wikipedia.org/wiki/Capital_(economics)
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period's capital as 𝑘𝑡 + 1 = 𝐴𝑘𝑡𝑎 − 𝑐𝑡, where A is a positive constant and 0 < a < 1. Assume 

capital cannot be negative. Then the consumer's decision problem can be written as follows: 

               Maximize   𝑍 = � bt𝑇
𝑡=0 𝐼𝑛 (𝑐𝑡) 

                Subject to         𝑘𝑡+1 = 𝐴𝑘𝑡𝑎 − 𝑐𝑡 ≥ 0                                                  (3.1) 

   for all t = 0,1,2,...,T 

Written this way, the problem looks complicated, because it involves solving for all the choice 

variables 𝑐0, 𝑐1, 𝑐2, … , 𝑐𝑇  and 𝑘1,𝑘2, … ,𝑘𝑇+1  simultaneously. (Note that k0 is not a choice 

variable—the consumer's initial capital is taken as given.) 

The dynamic programming approach to solving this problem involves breaking it apart into a 

sequence of smaller decisions. A sequence of define a sequence of value functions 𝑉𝑇(𝑘), for 

𝑡 = 0, 1, 2, … ,𝑇,𝑇 + 1 which represents the value of any amount of capital k at a time t. Note 

that 𝑉𝑇+1(𝑘) = 0, that is, there is (by assumption) no utility from having capital after death. 

The value of any quantity of capital at any previous time can be calculated by backward 

induction using the Bellman equation. In this problem, for each 𝑡 = 0, 1, 2, … ,𝑇 the Bellman 

equation is 𝑉t(𝑘𝑡) =    max (1n (𝑐𝑡) + 𝑏𝑉t+1(𝑘𝑡+1)  

                                     subject to       𝐴𝑘𝑡𝑎 − 𝑐𝑡 ≥0                                    (3.3)                               

This problem is much simpler than the one stated earlier because it involves only two decision 

variables, 𝑐𝑡  and  𝑘𝑡+1 . Intuitively, instead of choosing his whole lifetime plan at birth, the 

http://en.wikipedia.org/wiki/Backward_induction
http://en.wikipedia.org/wiki/Backward_induction
http://en.wikipedia.org/wiki/Bellman_equation
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consumer can take things one step at a time. At time t, his current capital 𝑘𝑡 is given, and he only 

needs to choose current consumption ct and saving 𝑘𝑡+1. 

To actually solve this problem, one must work backwards. For simplicity sake the current level 

of capital is denoted as 𝑘. 𝑉𝑇+1(𝑘) is already known, using the Bellman equation to calculate 

lifetime. In other words, once 𝑉𝑇−𝑗+1(𝑘), is known, 𝑉𝑇−𝑗(𝑘), can be calculated which is the 

maximum of ln (𝑐𝑇−𝑗) + 𝑏𝑉𝑇−𝑗+1(𝐴𝑘𝑎 − 𝑐𝑇−𝑗), where 𝑐𝑇−𝑗 is the choice variable and working 

backwards, it can be shown that the value function at time t = T − j is where each 𝑉𝑇−𝑗 is a 

constant, and the optimal amount to consume at time t = T − j  can be simplified to  

𝑐𝑇(𝑘) = 𝐴k𝑎,  and  𝑐𝑇−1(𝑘) = 𝐴𝑘𝑎

1+𝑎𝑏
 ,  and  𝑐𝑇 − 2(𝑘) = 𝐴𝑘𝑎

1+𝑎𝑏+𝑎2𝑏2
                                          (3.4) 

This is optimal to consume a larger fraction of current wealth as one gets older, finally 

consuming all the remaining wealth in period T, the last period of life. 

 

3.1.7 The Knapsack Problem 

Knapsack problems typically involve an upper limit on some sort of capacity (e.g the weight 

capacity that can be carried in a knapsack, and a set of discrete items that can be chosen each of 

which has a value, but also a cost in terms of the capacity (e.g. it has weight) the goal is to find 

the selection of items that have the greatest total value while still respecting the limit on the 

capacity. Mathematically, the 0-1-knapsack problem can be formulated as : 

Let there be n items, 𝑥𝑖 to 𝑥𝑛  where 𝑥𝑖 has a value 𝑣𝑖  and weight 𝑤𝑗. The maximum weight that 

can be carried in the bag is W. It is common to assume that all values and weights are 
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nonnegative. To simplify the representation, we also assume that the items are listed in 

increasing order of weight. 

                                                   Maximize ∑ 𝑣𝑖𝑥𝑖 𝑛
𝑖=1                                                                (3.5)   

                                                     𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑤𝑖𝑥𝑖 ≤ 𝑊,      𝑥𝑖  ∈ {0 , 1}𝑛
𝑖=1  

Maximize the sum of the values of the items in the knapsack so that the sum of the weights will 

be less than the knapsack’s capacity. The bounded knapsack problem removes the restriction that 

there is only one of each item but restricts the number xi of copies of each kind of item to an 

integer value cj . 

Mathematically the bounded knapsack problem can be formulated as : 

                                    Maximize ∑ 𝑣𝑖𝑥𝑖 𝑛
𝑖=1   

                                      Subject to  ∑ 𝑤𝑖𝑥𝑖  ≤ 𝑊,𝑛
𝑖=1  𝑥𝑖 ∈ {0 , 1 , … . , 𝑐𝑖 }                               (3.6) 

The unbounded knapsack problem (UKP) places no upper bound on the number of copies of 

each kind of item and can be formulated as above except for that the only restriction on xi  is that 

it is a non-negative integer . If the example with the colored bricks above is viewed as an 

unbounded knapsack problem, then the solution is to take three yellow boxes and three grey 

boxes. 

Example 

 Let's consider the knapsack problem which involves just 3 possible items, whose weight (wj) 

and value (vi) are summarized in the table below. The traveler has a traveling bag (knapsack) that 
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takes b(kg) of items. How many pieces of items should be placed in the knapsack so as not 

exceed the maximum weight of b (kg) and will provide a maximum total value to the traveler? 

         Item                                                      weight (kg)                                         value 

     1.    A                                                           w1                                                         v1 

     2.    B                                                            w2                                                        v2 

     3.    C                                                             w3                                                       v3    

 

This problem is formulated as Integer linear programming problem: 

       Maximize  𝑣1𝑥1 + 𝑣2𝑥2 +  𝑣3𝑥3                                

          Subject to   𝑤1𝑥1 +  𝑤2𝑥2 + 𝑤3𝑥3  ≤ b                                                                            (3.7) 

    Where  𝑥1 , 𝑥2 , 𝑥3  ≥ 0   𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟    

   Let’s now formulate this knapsack problem for dynamic programming solution. 

 Step (i)  

Stages: The natural breakdown in this case is by item. Since we are practicing backwards 

recursions, we will work in the order item, C, B, or A. We will first consider just C, then B and 

C, then A, B and C.  

Step (ii) State at a stage: The state at a stage is the amount of carrying capacity remaining in the                 

knapsack. 

Step (iii) Decision at a stage: We must decide how many of the items to be considered at the    

current stage. 
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Step (iv) Decision update to the state: The number of the items taken reduces the carrying 

capacity for the future stages in an obvious way. 

Step (v) Recursive value relationship: First, let’s define a few functions and variables: 

(a)  is the current stage (1,2,3,indicating A, B, or C) 

(b)   𝑑𝑡 is the carrying capacity remaining when we reach stage t. 

(c)   𝑥𝑡 is the decision ,i.e the number of items t that we decide to take 

(d)    𝑣𝑡   is the value of one of item t 

(e)    𝑓𝑡(𝑑𝑡) is the maximum value obtainable when we enter stage t with remaining carrying  

capacity of 𝑑𝑡,considering only stages t, t+1,…..,3 

(f)  The recursive value relationship is  

𝑓𝑡(𝑑𝑡) = max {vtxt + ft+1(dt − wtxt)} where  0 ≤ 𝑥𝑡  ≤
𝑑𝑡
𝑤𝑡

 and integer.              (3.8) 

Note now f(.)  appears on both sides of the recursive relationship .The optimum for stage t to 

stage 3 depends on two things : the value of the current decision at at stage t (i.e. 𝑣𝑡𝑥𝑡) , and the 

value of the previously found optimum  𝑓𝑡+1(. ). Note also that  

ft+1 (.)  is calculated with a remaining carrying capacity of 𝑑𝑡− 𝑤𝑡𝑥𝑡 meaning that the weight of 

the items taken at stage t has reduced the carrying capacity 𝑑𝑡 with which you entered stage t. 

 

3.2 Dynamic Programming Model for Selection of optimal investment portfolio 

We present our proposed DP Model for selecting optimal investment portfolio as follows 
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Define 𝑀𝑗(𝑖) = the best return beginning in stage 𝑗 and state 𝑖.  

             𝑑𝑗(𝑖) = Decisions taken at state that achieves 𝑀𝑗(𝑖)   

We note that 𝑀𝑗(0) = 0 and 𝑑𝑗(0) = 0 

 The model for solving the above is: 

Maximize:      𝑍 = 𝑓1(𝑥) + 𝑓2(𝑥) + 𝑓3(𝑥) + 𝑓4(𝑥) + 𝑓5(𝑥) + 𝑓6(𝑥) 

Subject to                  𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 + 𝑥6 + 𝑥7 + 𝑥8 + 𝑥9 ≤ 𝑤𝑖                   (3.9) 

This model can be transformed into Integer Linear Programming problem as  

Max z = ∑ 𝑓𝑖(𝑥𝑖)𝑛
𝑖                                                                                                          (3.10) 

s.t  ∑ 𝑥𝑖𝑛
𝑖  ≤  𝑤𝑖 , where 

𝑥𝑖  ≥ 0 ,𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑎𝑛𝑑 𝑤𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑡  

which can easily be solved by Matlab software.  

 

3.3 Markowitz Portfolio Theory of Portfolio Selection 

3.3.1 Introduction 

 This section reviews the essential parts of the Markowitz's portfolio selection theory and other 

portfolio selection models. 

  Markowitz identified the trade-off facing the investor: risk versus expected return. The 

investment decision is not merely which securities to own, but how to divide the investor's 

wealth amongst securities. This is the problem of “Portfolio Selection;” hence the title of 

Markowitz's seminal article published in the March 1952 issue of the Journal of Finance. In that 
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article and subsequent works, Markowitz extends the techniques of linear programming to 

develop the critical line algorithm. The critical line algorithm identifies all feasible portfolios that 

minimize risk (as measured by variance or standard deviation) for a given level of expected 

return and maximize expected return for a given level of risk. When graphed in standard 

deviation versus expected return space, these portfolios form the efficient frontier. The efficient 

frontier represents the trade-off between risk and expected return faced by an investor when 

forming his portfolio. Most of the efficient frontier represents well diversified portfolios. This is 

because diversification is a powerful means of achieving risk reduction. Markowitz developed 

mean-variance analysis in the context of selecting a portfolio of common stocks. Over the last 

two decades, mean-variance analysis has been increasingly applied to asset allocation. Asset 

allocation is the selection of a portfolio of investments where each component is an asset class 

rather than an individual security. In many respects, asset allocation is a more suitable 

application of mean-variance analysis than stock portfolio selection. Mean-variance analysis 

requires not only knowledge of the expected return and standard deviation on each asset, but also 

the correlation of returns for each and every pair of assets. Whereas a stock portfolio selection 

problem might involve hundred of stocks (and hence thousands of correlations), an asset 

allocation problem typically involves a handful of asset classes (for example stocks, bonds, cash, 

real estate, and gold). Furthermore, the opportunity to reduce total portfolio risk comes from the 

lack of correlation across assets. Since stocks generally move together, the benefits of 

diversification within a stock portfolio are limited. In contrast, the correlation across asset classes 

is usually low and in some cases negative. Hence, mean-variance is a powerful tool in asset 

allocation for uncovering large risk reduction opportunities through diversification. 
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3.3.2 Assumptions  

As with any model, it is important to understand the assumptions of mean-variance analysis in 

order to use it effectively. First of all, mean-variance analysis is based on a single period model 

of investment. At the beginning of the period, the investor allocates his wealth among various 

asset classes, assigning a nonnegative weight to each asset.   

During the period, each asset generates a random rate of return so that at the end of the period, 

wealth is influenced by the weighted average of the returns. In selecting asset weights, the 

investor faces a set of linear constraints, one of which is that the weights must sum up as one. 

Based on the game theory work of Von Neumann and Morgenstern, economic theory postulates 

that individuals make decisions under uncertainty by maximizing the expected value of an 

increasing concave utility function of consumption. In a one period model, consumption is end of 

period wealth. In general, maximizing expected utility of ending period wealth by choosing 

portfolio weights is a complicated stochastic nonlinear programming problem. To summarize the 

assumptions:  

(i) Investors seek to maximize the expected return of total wealth.  

(ii) All investors have the same expected single period investment horizon. 

(iii) All investors are risk-adverse, that is they will only accept greater risk if they are  

     compensated with a higher expected return. 

(iv) Investors base their investment decisions on the expected return and risk.  

(v). All markets are perfectly efficient (e.g. no taxes and no transaction cost).  

The utility function is assumed to increase and concave. In terms of the approximating utility 

function, this translates into expected utility increasing in expected return (more is better than 
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less) and decreasing in variance (the less risk the better). Hence, of all feasible portfolios, the 

investor should only consider those that maximize expected return for a given level of variance, 

or minimize variance for a given level of expected return. These portfolios form the mean-

variance efficient set. 

 

3.3.3 Konno -Yamazaki Model 

 Konno and Yamazaki (1991) proposed a new model using mean absolute deviation (MAD) as 

risk measure to overcome the weaknesses of the mean-variance model proposed by Markowitz. 

One of the most significant problems being the computational difficulty associated with solving 

a large scale quadratic problem associated with a dense covariance matrix. They introduced the 

risk function  

w(x) = E[�∑ 𝑅𝑗𝑥𝑗 − 𝐸[∑ 𝑅𝑗𝑥𝑗]𝑛
𝑗=1

𝑛
𝑗=1 �]                                                                                    (3.11) 

Where,  

 Rj = Random variable representing the rate of return on asset Sj  

xj = Amount invested in Sj  

M0 = Total fund amount  

E [.] = Expected value of random variable in bracket  

They then go on to state and prove the following theorem:  

If (R1,……..Rn) are multivariate normally distributed , then  

w(x) = �2
𝜋
 𝜎(𝑥)                                                                                                                        (3.12) 

Where 𝜎(𝑥) = Standard deviation   

They proved that these two measures (w(x) and Ri) are the same if (R1…Rn) are multivariate 

normally distributed.  
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So the Model becomes the following;  

Min w(x) E[ �∑ 𝑅𝑗𝑥𝑗 − 𝐸[∑ 𝑅𝑗𝑥𝑗]𝑛
𝑗=1

𝑛
𝑗=1 �] 

 s.t    

       �∑ 𝐸[𝑅𝑗]�𝑥𝑗�𝑛
𝑗=1

� ≥ 𝜌𝑀0  

               ∑ 𝐸[𝑅𝑗]𝑥𝑗𝑛
𝑗=1  ≥  𝑀0                                                                                                  (3.13) 

                ∑ 𝑥𝑗 = 𝑀𝑛
𝑗=1   

                         0 ≤ 𝑗 ≤ 𝑢𝑗   , 𝑗 = 1, … .𝑛          

Konno and Yamazaki assumed that the expected value of the random variable can be 

approximated by the average from the data.  

Therefore,  

 𝑟𝑗 = 𝐸� 𝑅𝑗� = ∑ 𝑟𝑗𝑡/𝑇𝑇
𝑡=1   

Now,  

E[�∑ 𝑅𝑗  𝑥𝑗𝑛
𝑗=1 − 𝐸[∑ 𝑅𝑗𝑥𝑗]𝑛

𝑗=1 �] = 1
𝑇
∑ �(𝑟𝑗𝑡 − 𝑟𝑗)𝑥𝑗�𝑇
𝑗=1                                                           (3.14) 

Let  

 𝑎𝑗𝑡 = 𝑟𝑗𝑡 − 𝑟𝑗,     j= 1,…….,n;    t=1,…..,T . 

Model in 3.11 can be stated as,  

Min  ∑ �∑ 𝑎𝑗𝑡𝑥𝑗𝑛
𝑗=1 �/𝑇𝑇

𝑡=1         

st    �
∑ 𝑟𝑗𝑥𝑗 ≥ 𝜌𝑀0,𝑛
𝑗=1
∑ 𝑥𝑗 = 𝑀0     𝑛
𝑗=1

0 ≤ 𝑥𝑗 ≤ 𝑢𝑗 , 𝑗 = 1, … … . ,𝑛
�                                                                                             (3.15) 

which is equivalent to the following linear program:  

Min  ∑ 𝑦𝑡
𝑇

𝑇
𝑡=1  

 𝑦𝑡 + ∑ 𝑎𝑗𝑡𝑥𝑗 ≥ 0, 𝑡 = 1, … … . ,𝑇,𝑛
𝑗=1  
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𝑦𝑡 −�𝑎𝑗𝑡𝑥𝑗 ≥ 0, 𝑡 = 1 , … … ,𝑇
𝑛

𝑗=1

 

         �𝑟𝑗𝑥𝑗 ≥ 𝜌𝑀0,
𝑛

𝑗=1

 

        ∑ 𝑥𝑗 =  𝑀0                                                                                                  
𝑛
𝑗=1                                                        (3.16) 

     0 ≤ 𝑥𝑗 ≤ 𝑢𝑗 , 𝑗 = 1, … … … , 𝑛 

Konno-Yamazaki states the following advantages over Markowitz’s model:  

(1). No need to calculate the covariance matrix.  

(2). Solving their linear program is much easier compared to solving a quadratic program.  

(3)  The optimal solution size is smaller  

(4). T can be used as a control variable to restrict the number of assets in the portfolio. 

 

3.3.4 Young Portfolio Selection Model 

 Young (1998) proposed a principle for choosing portfolios based on historical returns. Young 

used minimum return rather than variance as a measure of risk. He defined the optimal portfolio 

as one that would minimize the maximum loss over all past historical periods, subject to a 

restriction on the minimum acceptable average return across all observed time mean-variance 

analysis. If returns data are skewed, or if the portfolio optimization problem involves a large 

number of decision variables, his model would be advantageous to use. The model is: 

𝑀𝑎𝑥𝑀𝑃,𝑊 𝑀𝑃 

st �
∑ 𝑤𝑗𝑁
𝑗=1 𝑦𝑗𝑡 − 𝑀𝑝 ≥ 0 , 𝑡 = 1, … . .𝑇

∑ 𝑤𝑗𝑁
𝑗=1 𝑦𝚥� ≥ 𝐺,
∑ 𝑤𝑗𝑁
𝑗=1 ≤ 𝑊,

�                                                                                  (3.17)                            
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   𝑤𝑗 ≥ 0 , 𝑗 = 1, … … ,𝑁. 

Where,  

𝑦𝑗𝑡 = Return on one dollar invested in security j in time period t  

 wj= Portfolio allocation to security j  

 𝑦𝚥�  = Average return on security j  = 1
𝑇

 ∑ 𝑦𝑡𝑗𝑇
𝑡=1  

𝑦𝑝𝑡 = Return on portfolio in time period t = ∑ 𝑥𝑗𝑦𝑗𝑡𝑁
𝑗=1  

𝐸𝑝 = Average return on portfolio = ∑ 𝑥𝑗𝑦𝚥�𝑁
𝑗=1   

𝑀𝑝 = Minimum return on portfolio = 𝑚𝑖𝑛𝑡𝑦𝑝𝑡  

The optimum portfolio maximizes Mp under imposed restrictions,  

(i). Ep (average return) exceeds a minimum level G  

(ii). Net asset allocations does not exceed total budget allocation W   

Thus, Mp represents the portfolio’s minimum return at the end of each time period and since Mp 

is being maximized, the portfolio will take on the maximum value of the minimum returns. 

According to Young, this model presents logical advantages over other portfolio optimization 

models if asset prices are not normally distributed and similar results when they are.  

He states an equivalent model that seeks to maximize expected return, subject to a restriction that 

the portfolio return exceeds some threshold H in each observation period:  

𝑚𝑎𝑥𝑤         𝐸 = �𝑤𝑗

𝑁

𝑗=1

𝑦𝚥�  

st      �
∑ 𝑤𝑗𝑦𝑗𝑡 ≥ 𝐻 , 𝑡 = 1, … . . ,𝑇𝑁
𝑗=1

∑ 𝑤𝑗 ≤ 𝑊 ,𝑁
𝑗=1

𝑤𝑗 ≥ 0, 𝑗 = 1, … . .𝑁

�                                                   (3.18) 
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This model has considerable advantage as it is a linear program and allows the model to treat 

additional complexities such as:  

(a). transaction costs  

(b). logical side constraints like   

(i). inclusion or exclusion of both assets a and b  

(ii). holding more than ¢d worth of asset a  

Thus the minimum or maximum model is capable of incorporating a large number of modeling 

complexities and variations. 

 

3.3.5 Problem of selection of optimal investment portfolio  

 To determine the optimal investment portfolios we use the mean-risk models. Let’s consider a 

set of n securities denoted by Rj the rate of return of j security at the end of the investment period. 

Rj is a random variable because the future price of security is unknown. By the vector 

 x= (x1,x2 , …,xn ) the portfolio where xj  expresses the weights defining portfolio x. The rate of 

return of portfolio x is a random variable defined as RX=x1R1+x2R2+…+xn Rn  The distribution of 

this random variable is defined by the function F(r)=P(RX≤ 𝑟) and is dependent on the choice of 

X = (x1,x2,.., xn ). The component s of the vector x (weights) must satisfy two of the following 

conditions: all components should sum up to  

�𝑥𝑗

𝑛

𝑖=1

= 1 

  and all weights should be non negative  
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 𝑥𝑗 ≥ 0 , 

       Which means the short sales are not allowed? 

Let’s consider two portfolios X= (x1  ,x2,…, xn) and Y = (y1, y2, …,yn ), with the rates of return 

RX=x1R1+x2R2+….+ xnRn and RY= y1R1+y2R2+…..,ynRn respectively . To decide which portfolio 

of x or y is better we can use the appropriate preference relation. If 𝜌(∙) is a measure of risk and 

𝐸(∙) is the expected rate of return of portfolio (mean) then the portfolio x is preferred to y if and 

only if E(RX)≥  E(RY) and 𝜌(𝑅𝑋 ) ≤ 𝜌(𝑅𝑦) with at least one strict inequality . To choose an 

optimal portfolio according to this relation we can use the bi-criteria optimization model where 

risk is minimized and expected rate of return of portfolio is maximized. Usually a single 

objective mean risk model is used where the value of risk is minimized and the expected rate of 

return is constant: 

                                           minimize      𝜌(𝑅𝑥) 

                                           𝐸(𝑅𝑥) ≥ 𝑅0                                                    (3.19) 

                                            

�𝑥𝑗 = 1
𝑛

𝑗=1

                                                       

                                              

                                 xj ≥ 0 𝑓𝑜𝑟 𝑗 = 1,2, … . . ,𝑛 

R0 denote the required level of rate of return of portfolio and is defined by the investor. 
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It is also possible to maximize the expected rate of return and the value of the risk imposed 

restrictions. 

In the model, such as the above, many different measures of risk were used. The most important 

measure is standard deviation or variance defined as 𝜎2(x) = 𝐸[𝐸(𝑅𝑥) − 𝑅𝑥]2. It is a standard 

risk measure and it measures the dispersion of rate of return. The mean-variance model (MV 

model) is as follows: 

                                           minimize        𝜎2(𝑅𝑥) 

                                             𝐸(𝑅𝑥)  ≥ 𝑅0 

                                             

        �𝑥𝑗 = 1                                                               3.20)
𝑛

𝑗=1

 

 

                                   xj ≥ 0 𝑓𝑜𝑟 𝑗 = 1,2, … , 𝑛 

The other measures of risk which can be applied in model like the above are the conditional 

value at Risk and the Gini’s mean difference. Using the scenario approach we can receive the 

mean-risk model with  both measures in the linear form. In practice very often we assume that 

the rates of return of portfolio are discrete variables. These variables can be described by the 

realizations for T periods. For this purpose we can generate scenario or use the historical data. 

Let pi denote the probability of scenario I (for i=1,2,….,T and j=1,2,…..,T  ) and ∑ 𝑝𝑖  = 1.𝑇
𝑖=1   

Random rates of return can be defined in discrete probability space. Let rij is the rate of return of 

security j in scenario I (for i=1,2 …T and j=1,2,….,n ). This random variable R j represents rate of 
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return of security j by finite distribution { r1j, r2j,…rTj  } with probability p1, p2 ,...,pT. Random 

variable Rx ={ R x1, Rx2 ,….,.Rx T }represents rate of return of portfolio x=( x1 , x2  ,…, xn ).Rxi is a 

rate of return of portfolio in period i and is defined in the following way : RXi =x1ri1+ 

x2ri2+…..+xnrin. 

The conditional Value –at-Risk measures the expected loss corresponding to a number of worst 

cases, depending on the chosen confidence level 𝛼. The conditional Value at-Risk for portfolio x 

can be defined as 

       CVaR 𝑅𝛼(RX ) = min𝐹𝛼 (𝑥, 𝑣 )  ,       V𝜖𝑅 

Where 𝐹𝛼 (𝑥, 𝑣) = 𝑣 + 1
𝑇(1−𝛼)

 𝐸{[-Rx –v] +} 

  [u]+ = �   𝑢 𝑓𝑜𝑟 𝑢 ≥ 0 
0  𝑓𝑜𝑟 𝑢 < 0                 

�                                                                                             (3.21) 

In the case when RX  is discrete random variable, function 𝐹𝛼 (x,v) can be written as follows 

     𝐹𝛼  (𝑥, 𝑣 ) = 𝑣 + 1
𝑇(1−𝛼)

 ∑ 𝑝𝑖  [−∑ 𝑥𝑗𝑟𝑖𝑗 − 𝑣 ]𝑛
𝑗=1

𝑇
𝑖=1  +                                                                  (3.22) 

By introducing the additional variables ui defined by the condition 𝑢𝑖 +  ∑ 𝑥𝑗𝑟𝑖𝑗𝑛
𝑖,𝑗=1 +  𝑣 ≥ 0, 

We obtain the mean-CVaR model (MCmodel) in the linear form:  

                    𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒     𝑣 + 1
𝑇(1−𝛼)

 ∑ 𝑝𝑖𝑢𝑖𝑇
𝑖=1    

                  𝐸(𝑅𝑋 ) ≥  𝑅𝟎 

              𝑢𝑖  +  ∑ 𝑥𝑗𝑟𝑖𝑗𝑛
𝑗=1  + v ≥ 0  𝑓𝑜𝑟 𝑖 = 1,2, … . . ,𝑇 
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             𝑢𝑖 ≥ 0      𝑓𝑜𝑟 𝑖 = 1,2 … …𝑇 

               �𝑥𝑗

𝑛

𝑗=1

= 1                                                                                                                                    3.23 

                                          

           xj≥ 0   𝑓𝑜𝑟 𝑗 = 1,2, … . .𝑛 

 where x1 ,x2,…,xn, u1, u2, ….,uT  are decision variables.  

Mean-risk model in which risk is expressed by the Gini’s Mean Difference can also be presented 

in the linear form. The Gini’s Mean Difference (T) for security j is defined as: 

Γ=1
2
 ∑ �𝑟𝑖𝑗 − 𝑟𝑘𝑗�𝑇

𝑖,𝑘=1 𝑝𝑖 𝑝𝑘                                                                                                       (3.23) 

To calculate the Gini’s Mean Difference (GMD) for portfolio x the following formula is used 

Γ=1
2

 ∑ ∑ �𝑥𝑗𝑟𝑖𝑗 − 𝑟𝑖𝑘�𝑛
𝑗𝑘 𝑝𝑗𝑇

𝑖=1  𝑝𝑘 

Let’s introduce the additional variables defined as 𝑑𝑖𝑘 ≥  𝑥𝑗𝑟𝑖𝑗 − 𝑥𝑗𝑟𝑘𝑗  (for I, k=1,2,….,T).For 

the scenario data the model with the Gini’s Mean Difference (MG model) is the following : 

            Minimize Γp= 1
  2

 ∑ 𝑑𝑖𝑘𝑝𝑖𝑇
𝑖,𝑘=1 𝑝𝑘  

               𝑑𝑖𝑘  ≥  ∑ 𝑥𝑗𝑟𝑖𝑗𝑛
𝑗=1 − 𝑥𝑗𝑟𝑗𝑘  𝑓𝑜𝑟 𝑖, 𝑘 = 1,2 , … . ,𝑇    

                  𝐸(𝑅𝑥) ≥ 𝑅0 

                 

                 �𝑥𝐽

𝑛

𝑗=1
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                𝑥𝑗  ≥ 0 𝑓𝑜𝑟 𝑖,𝑘, = 1,2, … . ,𝑛 

                𝑑𝑖𝑘 ≥ 0  𝑓𝑜𝑟 𝑖,𝑘 = 1,2, … . ,𝑇                                                                             (3.25) 

Using both models for different value of assumed level of rate of return we can receive the 

effective optimal solution. 

 

3.3.6 Market equilibrium returns  

The Black and Lettermen (1998), model uses the market equilibrium weights or capital asset 

pricing model (CAPM) as the basis. CAPM is developed by forming the efficient frontier of the 

market portfolios and tracing the capital market line (CML). The CML is tangent to the efficient 

frontier at the market portfolio. Therefore; there is no other combination of risky and riskless 

assets that can provide better returns for a given level of risk. CAPM:  

E (𝑟𝑖) = 𝑟𝑗 + 𝜎𝑖
𝜎𝑚

 (𝑟𝑚 − 𝑟𝑗)  

        = 𝑟𝑗 + 𝛽𝑖 �𝑟𝑚 − 𝑟𝑗 �,                                                                                                          (3.26) 

where E (𝑟𝑖) = Expected return on asset i  

          𝑟𝑓  = Risk free asset return  

         𝑟𝑚  = Return on market portfolio  

          𝜎𝑖   = Standard deviation of returns on asset i  

           𝜎𝑚   = Standard deviation of returns on market portfolio  

              𝛽 𝑖   = 𝜎𝑖
𝜎𝑚

                                                                                                                    (3.27) 
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The model uses CAPM in reverse. It assumes market portfolio is held by mean-variance 

investors and it uses optimization to back out the optimal expected returns. They define market 

equilibrium returns as:  

  𝜋 = 𝜆∑𝜔                       

  where, N = Number of assets  

    𝜋= Vector of implied excess returns (N,1)  

     𝛴 = Covariance matrix of returns (N, N)  

      𝜔 = Vector of market capitalization weights of the assets (N,1)  

        λ = Risk aversion coefficient =  (𝑟𝑚−𝑟𝑗)
𝜎𝑚2

                                                                            (3.28) 

 

 

3.3.6.1 Investor views  

The views of the investors are incorporated into the model in the following form: 

 

                  Q1                               𝜀1 

  Q+𝜀   =         ⋮               +                 ⋮                                                                                                                                                             (3.29)                      

                        QK                              𝜀𝐴 

Where,  

K= Number of investor views  

Q = Vector of investor views  

𝜀 = Error term  
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If 𝜀 = 0 that means the investor has 100% confidence in his views. 𝜔 denotes the variance of 

each error term. Assuming that each error term is independent of each other the covariance 

matrix 𝛺 is a diagonal matrix with the following form: 

               Ω=�
𝜔1  0 ⋯ 0
⋮ ⋱ ⋮

0  ⋯ 0  𝜔𝑘

�                                                                                              (3.30)    

 Using the above formulation the model incorporates both absolute as well as relative views of 

the investors. 

 

   3.4 Proposed Mathematical Models for Portfolio Selection. 

 We present the mathematical model for portfolio selection based on expected return and risk. 

First, we give the necessary definitions and propositions. 

 

 

 3.4.0 Definitions and Propositions 

  Definition 3.4.1 

A portfolio is a vector (x1(n), . . . , xm(n), y(n)) indicating the number of shares 

and bonds held by an investor between times n − 1 and n. A sequence of portfolios indexed by n 

= 1, 2, . . . is called an investment strategy. The wealth of an investor or the value of the strategy 

at time n ≥ 1 is  V (n) =  ∑ 𝑥𝑗(𝑛)𝑠𝑗(𝑛) +𝑚
𝑗=1 𝑦(𝑛)𝐴(𝑛)                                                           (3.31) 

At time n = 0 the initial wealth is given by V (0) ==  ∑ 𝑥𝑗(1)𝑠𝑗(0) +𝑚
𝑗=1 𝑦(1)𝐴(0)               (3.32) 

This means that the contents of a portfolio can be adjusted by buying or selling some assets at 

any time step, as long as the current value of the portfolio remains unaltered. 
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Definition 3.4.2 

An investment strategy is called self-financing if the portfolio constructed at time n ≥ 1 to be 

held over the next time step n + 1 is financed entirely by the current wealth V (n), that is ,      

           

  �𝑥𝑗(𝑛 + 1)𝑠𝑗 + 𝑦(𝑛 + 1)𝐴(𝑛) = 𝑉(𝑛)                                                                                       (3.33)
𝑚

𝑗=1

 

                                 

Definition 3.4.3 

An investment strategy is called predictable if for each n = 0, 1, 2, . . . the portfolio 

(x1(n + 1), . . . , xm(n + 1), y(n + 1)) constructed at time n depends only on the nodes of the tree 

of market scenarios reached up to and including time n. 

The next proposition shows that the position taken in the risk-free asset is always determined by 

the current wealth and the positions in risky assets. 

Proposition 3.4.4 

Given the initial wealth V (0) and a predictable sequence (x1(n), . . . , xm(n)), n = 1, 2, . . . of 

positions in risky assets, it is always possible to find a sequence y(n) of risk-free positions such 

that (x1(n), . . . , xm(n), y(n)) is a predictable self-financing investment strategy. 

Proof 

Put  y(1) = 𝑉(0)−𝑋1(1)𝑠1(0)− …−𝑥𝑚𝑠𝑚(0)
𝐴(0)

   and then compute 

V (1) = 𝑋1(1)S1(1) + · · · + xm(1)Sm(1) + y(1)A(1). 

Next,    y(2)=  𝑉(1)−𝑥1(2)𝑠1(1)−⋯−𝑥𝑚(2)𝑠𝑚(1)𝐴(1)
𝐴(1)
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V (2) =  x1(2)s1(2) + · · · + xm(2)Sm(2) + y(2)A(2),and so on. This clearly defines a self-financing 

strategy. The strategy is predictable because y (n + 1) can be expressed in terms of stock and 

bond prices up to time n.  

 

Proposition 3.4.5 

The return RSv on a portfolio consisting of two securities is the weighted average 

Rv  = w1R1 + w2R2                                                                                                           (3.34) 

where w1  and w2 are the weights and R1 and  R2 the returns on the two components. 

 

3.5 Risk and Expected Return on a Portfolio 

The expected return on a portfolio consisting of two securities can easily be 

expressed in terms of the weights and the expected returns on the components, 

E(Kv ) = w1 E ( R1) + w2 E( R2 )                                                                                 (3.35) 

This follows at once from (3.32 by the additive of mathematical expectation 

Proof 

Suppose that the portfolio consists of x1 shares of security 1 and x2 shares of 

security 2. Then the initial and final values of the portfolio are 

V (0) = x1S1(0) + x2S2(0), V (1) = x1S1(0)(1 + R1 + x2S2(0)(1 + R2) 

= V (0) (w1(1 +  R1 + w2(1 +  R2 )) . 
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As a result, the return on the portfolio is 

 Rv = 𝑣(1)−𝑣(0)
𝑣(0)

= 𝑤1𝑟1 + 𝑤2𝑟2  

 

Theorem 3.5.1 

The variance of the return on a portfolio is given by 

Var(Rv ) = 𝑤12Var(R1) + 𝑤2
2 Var(R2 ) + 2w1w2 Cov ( R1, R2).                                              (3.36) 

Proof 

Substituting Rv = w1 R1 + w2 R2 and collecting the terms with 𝑤12, 𝑤2
2 and w1 w2, we compute 

Var(Rv ) = E(𝑅𝑣)2 − E(Rv )2 

  =  w1
2 [E(R1

2 ) − E(R1)2] + w2
2 [E(R2)2 ) − E(R2)2]+2w1 w2 [E(R1R2 ) − E(K1 )E(K2 )]   

 = w1
2 Var( R1

 ) + 𝑤2
2 Var( R2 ) + 2w1 w2 Cov( R1 R2 ). 

To avoid clutter, we introduce the following notation for the expectation and variance of a 

portfolio and its components: 

μV = E R1  ), σv  =�𝑉𝑎𝑟(𝑟𝑣)  

𝜇1 = E( R1  ) , σ1  =�𝑉𝑎𝑟( 𝑟1)  

 𝜇2= E( R2),   𝜎2 = �𝑣𝑎𝑟(𝑟2) 

We shall also use the correlation coefficient 

𝜌12  =  𝑐𝑜𝑣 (𝜎1𝜎2)
𝜎1𝜎2

     .                                                                                                                  (3.37) 

Formulae (5.4) and (5.5) can be written as 

μV =  w1 μ1 + w1 μ2                   (5.7) 

σv
2 = w1

2𝜌 12 + w2 σ1
2  + 2w1 w2 ρ12 σ1 σ2.                                                                               (3.38) 
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3.6 Mathematical Formulation of the Proposed Model  

The basic formulation which can solve the optimal portfolio selection problem is  

  Min {𝐶𝑇𝑋 − 𝑋𝑇𝐶𝑋 } 

st  �𝐴𝑋 = 𝑏
𝑥 ≥ 0

�                                                                                                                           (3.39) 

  Consider the Karush – Kuhn – Tucker conditions. KKT conditions provide the necessary 

conditions for optimality.  

For,  

Minimize        f(x)  

st.   �𝑔𝑖(𝑥) ≥ 0   ,   𝑖 = 1, … … ,𝑚 
𝑥 ≥ 0 ,

�     

 The necessary conditions for optimality of x*: 

−∇𝑓(𝑥∗) + ��𝜆𝑖∇𝑔𝑖(𝑥∗)� ≤ 0
𝑚

𝑖=1

 

[−∇𝑓(𝑥∗) + ∑ �𝜆𝑖∇𝑔𝑖(𝑥∗)� ≤ 0𝑚
𝑖=1 ]]𝑥∗= 0 

+∑ �𝜆𝑖∇𝑔𝑖(𝑥∗)� = 0𝑚
𝑖=1                                                                                                     (3.40) 

𝜆∗ ≥ 0 

The above stated conditions are sufficient too, if f(x) is convex and, 𝑔1,…….. . ,𝑔𝑚, are concave.  

Using the KKT conditions, we get the following conditions for x to be optimal in the set of 

equations in (1) was obtained 

c – 2Cx + AT λ + v = 0  

vT x = 0  

v >= 0  
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For the sake of conversion into a standard form λ can be expressed  

as a sum of two non –negative integers:  

λ = λ+  - λ-  

λ +, λ- >= 0  

Substituting the above equations in the KKT necessary conditions,  

c – 2Cx + AT λ- - AT λ-  - + v = 0  

Now, the problem is to find λ, x, V which satisfies the following formulation,  

Min ∑ 𝑢𝑖𝑛
𝑖=1 ui  

Ax = b  

st  – 2Cx + AT λ+ - AT λ-  + v + Fu = - c                                                     (3.41) 

x, λT , λ -,v, u >= 0  

Where F is a diagonal (n x n) matrix F(i,i)= � 1, 𝑖𝑓𝑐(𝑖) ≥ 0
−1, 𝑖𝑓𝑐(𝑖) < 0

� 

 Markowitz’s portfolio selection model based on risk was presented. From the theory of portfolio 

selection based on risk, the standard deviation or the variance measures the dispersion of the rate 

of returns. Hence, this can be used to measure the risk of portfolio investment. 

Let’s consider the portfolio  

X= (  𝑥1,  𝑥2 , … … … … … . 𝑥𝑛) and the return from x be 

R= ( 𝑅1  ,𝑅2  ,   …………          ,𝑅𝑛  )  

The Var(x) subject to the expected returns was minimized as follows:  

                              Min Var(x) 

                                 s.t     𝐸(𝑅𝑥) ≥ 𝑅0                                                     
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                                ∑ 𝑥𝑗 = 1𝑛
𝑗=1                                                                                                      

                               xj≥ 0 𝑓𝑜𝑟 𝑗 = 1,2, … . . ,𝑛 

Where Var(x) = 𝐸[𝐸(𝑅𝑥) − 𝑅𝑥]  2   and  𝑅0  denote the required level of rate of returns of 

portfolio 

 

3.6 Summary 

This chapter discusses the research methodology of the study.                   

The next chapter shall put forward the data collection and the analysis of the study and 

implement the proposed model.  
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CHAPTER FOUR 

DATA COLLECTION, ANALYSIS AND IMPLEMENTATION OF MODEL 
 

 4.0 Introduction 

This chapter presents the description and collection of data and analysis of the data. The chapter 

also presents the proposed model used on the data and its implementation. 

 

4.1 Data description and collection 
 
In this chapter, six investment features are considered in order to test the performance of the 

trading strategy and returns. Data was collected on the six investments –Government of Ghana’s 

Treasury Bills, Barclays Bank Ghana, Ghana Commercial Bank, Zenith Bank Limited, Guinness 

Ghana Limited and State Insurance Company, Sunyani. Sample period ranges from 2006 to 

2011. We normalize the price series such that each commodity’s price changes have annualized 

volatility of 10%. Each commodity characteristic is its past returns at various time horizons. As 

such, in order to predict the one-year return factors for the commodities, pooled panel regression 

on the data set is run to obtain the annual returns. Based on the data collected, DP model and 

MPM were developed in chapter three. The DPM is then used to determine the optimal 

investment returns and the corresponding investments to be made, while the MPM is used to 

compute the risk of each investment. 
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   Table 4.1: Average  amount invested and corresponding returns in GH₵1× 𝟏𝟎𝟐   

          Investment                                        Returns 

              𝑓1(𝑥)               0       10         20       25       33       35        40        45       55        60 

              𝑓2(𝑥)              0       15        30       40      45         50         55        70       80        90 

              𝑓3(𝑥)              0       12        22        32     35         40        50         60        65       70 

              𝑓4(𝑥)               0       18        40        50     55          65       70        70        85       95 

              𝑓5(𝑥)               0       20        28       38      50          75       75        80         80       85 

             𝑓6(𝑥)                0       21       25        35      41          53        60       70          76      84                          

Amount Invested        0      100      200     300    400       500       600     700       800     900            

     Key: 

 Government of Ghana’s Treasury Bill, [𝑓1(𝑥)] 

 Barclays Bank Ghana, Sunyani, [𝑓2(𝑥)] 

Ghana Commercial Bank, [𝑓3(𝑥)] 

 Zenith Bank, Sunyani, [ 𝑓4(𝑥) ]  

 Ghana Guinness Limited, Sunyani,[ 𝑓5(𝑥)] 

State Insurance Company, Sunyani, [𝑓6(𝑥)] 
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4.2 Preliminary analysis of data 

The continuous Probabilistic Analysis (CPA) was used for the analysis of the optimal returns of 

the various investments. The variability of the project outcomes which result from the variability 

of the individual optimal investment portfolio enabled the researcher to make a probability 

assessment of the likelihood of the various optimal returns and the variability (risk) of using D.P 

and Markowitz models. 

The most useful measure for statistical purposes is the standard deviation. Initially the mean of 

the returns over the period 2006 – 2011 was computed. It was afterwards followed by the 

dispersion and variance of the investment returns. The S.D is obtained by combining S.D’s of 

individual investment returns, using what is known as the statistical sum. Having calculated the 

means and S.D’s of various investment returns, the relative variability of the distribution of 

investment returns were computed, using the formula; 

Coefficient of variation = 𝜎𝑖
𝑥

 × 100%,𝑤ℎ𝑒𝑟𝑒 x is the mean of investment returns. 

The results were compared and recorded in table 4.2 

   Table 4.2: Distribution of investments 

Investment                        M                     Var                          S.D                           CV 

 𝑓1(𝑥)                                 32.3                  325.44                       18.04                          55.9 

 𝑓2(𝑥)                                 47.5                  711.29                       26.67                          56.1 

𝑓3(𝑥)                                  38.6                  480.05                       21.91                          56.8 

𝑓4(𝑥)                                   54.8                 769.51                       27.74                          50.6  

𝑓5(𝑥)                                   53.1                 820.82                       28.65                          54.0 

𝑓6(𝑥)                                   46.5                 649.23                       25.48                          54.8       
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     M = Mean,     S. D  = Standard Deviation , Var = Variance and   CV= Coefficient of variation                                                                                                                                               

The result in Table 4.2 enabled the researcher to make probability statements about the 

investment portfolio returns, which reflect the variability expected in each investment and the 

distribution of  the competing investment to be compared favorably in terms of risk.  

 

4.3 Implementation of the proposed models 

Chapter three, we develop the DP model and MPM based on the data collected from various 

investments. The models are implemented in the subsequent subsections. 

4.3.1     Dynamic Programming Model (DPM) 

    The model for solving optimal investment portfolio based on expected returns using DPM is 

stated below: 

Define 𝑀𝑗(𝑖) = the best return begining in stage j and state i 

𝑑𝑗(𝑖) = decisions taken at state that achieves Mj(i) 

 Wi = maximum investment available 

It is noted that Mj(0) = 0 and dj(0) = 0 

                                         ∑ 𝑓𝑖𝑛 
𝑖=1 𝑥𝑖    is then maximized 

                                       s.t     ∑ xi ≤ Wi   , where xi ≥ 0,      an integer.n
i=1                            (4.1) 
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4.3.2 Solution of DPM using DP algorithm 

The solution is provided at last stage of the process, stage 6. It is assumed that the previous 

stages have been completed and the allocation of money to the investment 6 completed since it is 

not known how much was allocated to the previous investment (investment 5), the available 

units for investment 6 are unknown. As such many possibilities can be considered.   

Iteration I: (Bottom up approach) 

From investment 6; using model (4.1), we have 

𝑀6(9) = max [𝑓6(0),𝑓6(1),𝑓6(2),𝑓6(3),𝑓6(4),𝑓6(5),𝑓6(6),𝑓6(7),𝑓6(8),𝑓6(9)]   

           = max [ 0, 21, 25, 35, 41, 53, 60, 70,76, 84]       𝑀6(9) = 84 With 𝑑6(9) = 9 

𝑀6(8) = max [𝑓6(0),𝑓6(1),𝑓6(2),𝑓6(3),𝑓6(4),𝑓6(5),𝑓6(6),𝑓6(7),𝑓6(8)]   

           = max [ 0, 21, 25, 35, 41, 535, 60, 70, 76]    𝑀6(8) = 76 With 𝑑6 (8) = 8 

        𝑀6(7) = max [𝑓6(0),𝑓6(1),𝑓6(2),𝑓6(3),𝑓6(4),𝑓6(5),𝑓6(6),𝑓6(7)]   

                     𝑚𝑎𝑥 = [0, 21, 25, 35, 41, 53, 60, 70]                    𝑀6(7 ) = 70   With d6 =7 

 𝑀6(6) = max [𝑓6(0),𝑓6(1),𝑓6(2),𝑓6(3),𝑓6(4),𝑓6(5),𝑓6(6)]   

           = max [0, 21, 25, 35, 41, 53, 60]        𝑀6(6) = 60 with 𝑑6(6) = 6 

𝑀6(5) = max [𝑓6(0),𝑓6(1),𝑓6(2),𝑓6(3),𝑓6(4),𝑓6(5)]   

           = max [0, 21, 25, 35, 41, 53]         𝑀6(5) = 53 with 𝑑6(5) = 5 

𝑀6(4) = max [𝑓6(0),𝑓6(1),𝑓6(2),𝑓6(3),𝑓6(4)]   
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           = max [0, 21, 25, 35, 41]      𝑀6(4) = 41  with 𝑑6(4) = 4 

𝑀6(3) = max [𝑓6(0),𝑓6(1),𝑓6(2),𝑓6(3)]   

           = max [0, 21, 25, 35  ]       𝑀6(3) = 35 with 𝑑6(3) = 3 

𝑀6(2) = max [𝑓6(0),𝑓6(1),𝑓6(2)]   

           = max [0, 21,25 ]                                                        𝑀6(2 ) = 25 𝑤𝑖𝑡ℎ 𝑑6 = 2    

𝑀6(1) = max [𝑓6(0),𝑓6(1)]   

           = max [0, 21]                                            𝑀6(1) = 21 𝑤𝑖𝑡ℎ 𝑑6(1) = 1        

𝑀6(0) = max [𝑓6(0)]   = max [0]                     𝑀6(0) = 0 with  𝑑6(0) = 0 

 

Iteration II 

From investment 5: 

𝑀5(9) = max [𝑓5(0) + 𝑀6(9), 𝑓5(1) + 𝑀6(8), 𝑓5(2) + 𝑀6(7),     𝑓5(3) + 𝑀6(6),

𝑓5(4) + 𝑀6(5), 𝑓5(5) + 𝑀6(4), 𝑓5(6) + 𝑀6(3), 𝑓5(7) + 𝑀6(2),

𝑓5(8) + 𝑀6(1), 𝑓5(9) + 𝑀6(0)] 

𝑀5(9) = max [0 + 84, 20 + 76, 28 + 70,    38 + 63, 50 + 53,

75 + 41, 75 + 35, 80 + 25, 805 + 21, 85 + 0] 

        𝑀5(9) = max [84,   96,    98,     101,     103,     116,       110,      105,     101,      85] 

                𝑀5(9) = 116 with  𝑑5(9) = 5 
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𝑀5(8) = max [𝑓5(0) + 𝑀6(8), 𝑓5(1) + 𝑀6(7), 𝑓5(2) + 𝑀6(6),     𝑓5(3) + 𝑀6(5),

𝑓5(4) + 𝑀6(4), 𝑓5(5) + 𝑀6(3), 𝑓5(6) + 𝑀6(2), 𝑓5(7) + 𝑀6(1),

𝑓5(8) + 𝑀6(0)] 

𝑀5(8) = max [0 + 76, 20 + 70, 28 + 63,    38 + 53, 50 + 41, 75 + 35,

75 + 25, 80 + 21, 80 + 0] 

        𝑀5(8) = max [76,    90,    91,      91,    91,     110,       100,     101,      80] 

                𝑀5(8) = 110 with 𝑑5(8) = 5 

𝑀5(7) = max [𝑓5(0) + 𝑀6(7), 𝑓5(1) + 𝑀6(6), 𝑓5(2) + 𝑀6(2),     𝑓5(3) + 𝑀6(4),

𝑓5(4) + 𝑀6(3), 𝑓5(5) + 𝑀6(2), 𝑓5(6) + 𝑀6(1), 𝑓5(7) + 𝑀6(0)] 

𝑀5(7) = max [0 + 70, 20 + 63, 28 + 53,    38 + 41, 50 + 35, 75 + 25,

75 + 21, 80 + 0 ] 

        𝑀5(7) = max [70    83,     81,      79,      85,      100,     96,     80], 𝑀5(7) = 100 with     

           𝑑5(7) = 5 

𝑀5(6) = max [𝑓5(0) + 𝑀6(6), 𝑓5(1) + 𝑀6(5), 𝑓5(2) + 𝑀6(4),     𝑓5(3) + 𝑀6(3),

𝑓5(4) + 𝑀6(2), 𝑓5(5) + 𝑀6(1), 𝑓5(6) + 𝑀6(0)] 

𝑀5(6) = max [(0 + 63), (20 + 53), (28 + 41), (38 + 35), (50 + 25), ( 75 + 21),

(75 + 0)] 

        𝑀5(6) = max [63,    73,     69,     73,     75,      96,     75] 

                𝑀5(6) = 96 with  𝑑5(6) = 5 
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𝑀5(5) = max [𝑓5(0) + 𝑀6(5), 𝑓5(1) + 𝑀6(4), 𝑓5(2) + 𝑀6(3),     𝑓5(3) + 𝑀6(2),

𝑓5(4) + 𝑀6(1), 𝑓5(5) + 𝑀6(0) ] 

𝑀5(5) = max [0 + 53, 20 + 41, 28 + 35,     38 + 25, 50 + 21, 75 + 0] 

𝑀5(5) = max [53,    61,     63,     63,      71,    75]               𝑀5(5) = 75 with 𝑑5(5) = 5 

𝑀5(4) = max [𝑓5(0) + 𝑀6(4), 𝑓5(1) + 𝑀6(3), 𝑓5(2) + 𝑀6(2),     𝑓5(3) + 𝑀6(1),

𝑓5(4) + 𝑀6(0)] 

       𝑀5(4) = max [0 + 41, 20 + 35, 28 + 25,     38 + 21, 50 + 0]  

       𝑀5(4) = max [41,    55,     53,      59,     50],    𝑀5(4) = 59 with  𝑑5(4) = 3 

𝑀5(3) = max [𝑓5(0) + 𝑀6(3), 𝑓5(1) + 𝑀6(2), 𝑓5(2) + 𝑀6(1),     𝑓5(3) + 𝑀6(0)] 

       𝑀5(3) = max [0 + 35, 20 + 25, 28 + 21,     38 + 0]  

       𝑀5(3) = max [35 ,   45,    49,     38]                𝑀5(3) = 49  with 𝑑5(3) = 2 

       𝑀5(2) = max [𝑓5(0) + 𝑀 6(2), 𝑓5(1) + 𝑀6(1), 𝑓5(2) + 𝑀6(0)]  

       𝑀5(2) = max [0 + 25, 20 + 21, 28 + 0]  

       𝑀5(2) = max [25,    41,    28]                      𝑀5(2) = 41  with 𝑑5(2) = 1 

𝑀5(1) = max [𝑓5(0) + 𝑀6(1), 𝑓5(1) + 𝑀6(0)]  

       𝑀5(1) = max [0 + 21, 20 + 0]                  𝑀5(1) = max [21,    20] 

                𝑀5(1) = 25 with 𝑑5(1) = 1 

𝑀5(0) = max [𝑓5(0) + 𝑀6(0)]  
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       𝑀5(0) = max [0 + 0]  

       𝑀5(0) = max [0]                𝑀5(0) = 0 with  𝑑5(0) = 0 

Using the algorithm above through iterations I- VI, the optimal returns from the various 

investments are shown in Table 4.3 below. The computations for the optimal returns for 

investment - 4 to investment – 1 can be found in Appendix A 

 

4.3.3 Allocations of investment 

The optimal return from the investment is GH¢1.51 x 104 which is obtained by starting the 

allocation from stage 1, and later to stage 2 and then to stage 6 as follows: 

(i)    With GH¢9.0 x 104, available allocate to stage 1, 𝑑1(GH¢9.0 x 104) = 0 leaving          

GH¢9.0 x 104 – 0 = GH¢9.0 x 104 

(ii)   With GH¢9.0 x 104, available allocate to stage 2, 𝑑2(GH¢9.0 x 104) = 𝐺𝐻¢1.0 x 104 

leaving GH¢9.0 x 104 – GH¢1.0 x 104 = GH¢8.0 x 104 

(iii) With GH¢8.0 x 104, available allocate to stage 3, 𝑑3(GH¢8.0  x 104) = 0 , leaving 

GH¢8.0 x 104 – 0 = GH¢8.0 x 104 

(iv) With GH¢8.0 x 104, available allocate to stage 4, 𝑑4(GH¢8.0 x 104) = 𝐺𝐻¢2.0 x 104 

leaving GH¢8.0 x 104 – GH¢2.0 x 104 =GH¢6.0 x 104. 

(v) With GH¢6.0 x 104, available allocate to stage 5, 𝑑5 = GH¢6.0 x 104) = GH¢5.0 x 104, 

leaving = GH¢6.0 x 104 – GH¢5.0 x 104 =GH¢1.0 x 104 



71 
 

 (vi) With GH¢1.0 x 104, available allocate to stage 6, 𝑑6(GH¢1.0 x 104) = 𝐺𝐻¢1.0 x 104, 

leaving GH¢1.0 x 104 – GH¢1.0 x 104 = 0 

 

Table 4.3; Optimal Returns    

Investment         𝑓𝑖𝑥𝑖                      1                2             3                 4               5                 6                               

Amount invested (x102)           0           100         0             200         500          100        

Optimal returns (x102)               0                  15        0                40               75               21      

 

4.3.4 Interpretation of results  

Table 4.3 shows that with GH¢9.0 x 104 available for investment and given its corresponding 

annual returns from various financial institutions it becomes unattractive to invest in Government 

of Ghana’s Treasury Bills and Ghana Commercial Bank.  One should however invest GH¢1.0 x 

104 in Barclays Bank to get GH¢1.5 x 103, GH¢2.0 x 104 in Zenith Bank, Sunyani to get GH¢4.0 

x 103, GH¢5.0x104 in Ghana Guinness Limited, Sunyani for a return of GH¢7.5 x 103 and 

GH¢1.0 x 104 in State Insurance Cooperation Limited, Sunyani for a return of GH¢2.1 x 103.              

4.3.5 Further analysis of optimal investment  

In order to carry out post optimal analysis on optimal investment the optimal returns was used to 

formulate the objective function on account of the various investments returns, and thus 

formulate the entire process as integer linear programming. Matlab package was used for the 

analysis as follows  
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Max Z= 0𝑥1 + 15𝑥2 + 0𝑥3 + 40𝑥4 + 75𝑥5 +  21𝑥6 

s.t            10𝑥1 + 15𝑥2 +  12𝑥3 + 18𝑥4 +  20𝑥5 + 21𝑥6   ≤   100   

               20𝑥1 +  30𝑥2 +  22𝑥3 + 40𝑥4 +  28𝑥5 +  25𝑥6  ≤  200  

               25𝑥1 +  40𝑥2 +  32𝑥3 + 50𝑥4 +  38𝑥5 +  35𝑥6   ≤ 300 

                 33𝑥1 +  45𝑥2 +  35𝑥3 +  55𝑥4 +  50𝑥5 +  41𝑥6  ≤ 400 

              350𝑥1 +  50𝑥2 +  40𝑥3 +  65𝑥4 +  75𝑥5 +  53𝑥6  ≤ 500 

                 405𝑥1 +  55𝑥2 +  50𝑥3 + 70𝑥4 +  75𝑥5 + 60𝑥6  ≤  600  

               45𝑥1 +  70𝑥2 + 60𝑥3 + 70𝑥4 +  80𝑥5 +  70𝑥6  ≤ 700 

               55𝑥1 + 80𝑥2 +  65𝑥3 +  85𝑥4 +  80𝑥5 + 76𝑥6  ≤  800 

               60𝑥1 +  90𝑥2 +  70𝑥3 +  95𝑥4 + 80𝑥5 +  84𝑥6  ≤ 900 

                                𝑥𝑖  ≥ 0 , 𝑖𝑛𝑡𝑒𝑔𝑒𝑟  ,𝑤ℎ𝑒𝑟𝑒 𝑖 = 1 , 2 ,3 , … … . ,6 

Using matlab package we have; 

                                      f = [0    -15    0    -40    -75    -21] 

10    15    12    18    20    21 

20    30    22    40    28    25 

25    40    32    50    38    35 

                                       A =          33    45    35     55    50     41 

35    50    40    65    75    53 

40    55    50    70    75    60 

45    70    60    70    80    70 

55    80    65    85    80    76 

60    90    70    95    80    84 
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b = [ 100   200   300   400   500   600   700   800   900] 

The syntax is:  [x, fval, exit flag, output] = bintprog (f, A, b) 

Table 4.4: The solution to the ILP problem 

  Decision          Solution             Unit             Total                                 Reduced         

  Variables          Variables           Cost            Contribution                       Cost                 

        𝑥1                          0                         0                          0                                              0              

        𝑥2                          1                       15                        15                                          

        𝑥3                          0                         0                           0                                              0              

       𝑥4                          1                         40                        40 

                                        
       𝑥5                           1                         75                        75                                         

       𝑥6                           1                          21                        21                                     

  

Optimal value = GH¢1.51 x 104 

Number of iterations = 4 and time = 1.35724sec 

 

4.3.6 Interpretation of the results 

From table 4.4 above, it can be inferred that returns from investments 1 (f1x1) and investment 3 

(f3x3) have an optimal portfolio value of zero since the solution variables x1 = x3 =0. On the other 

hand, returns from investment 5 (f5x5) contributed most to the optimal value. This is followed by 

returns from investment 4, investment 6 and investment 2 respectively since the solution 

variables x2 = x4 = x6 = x5 = 1. 

The results from ILP clearly shows that DP is very efficient in allocating resources for optimal 

investment returns from a portfolio since the results from both ILP and DP gave a maximum 

optimal value of   GH¢1.51x104. 
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4.3.7 Implementation of proposed model for portfolio selection based on risk.  

 The proposed model for portfolio selection based on risk was formulated in chapter three as: 

                             Min Var(x) 

                                 s.t     𝐸(𝑅𝑥) ≥ 𝑅0                                                     

                                            ∑ 𝑥𝑗 = 1𝑛
𝑗=1                                                                                                      

                                           xj ≥ 0 𝑓𝑜𝑟 𝑗 = 1,2, … . . ,𝑛 

where Var (x)= 𝐸[𝐸(𝑅𝑥) − 𝑅𝑥]  2   and  𝑅0  denotes the required level of rate of returns of 

portfolio.                   

Substituting the values of tables 4.1 and 4.2 into this model, we have; 

min Var(x) = 325.44𝑥1 + 711.29𝑥2 + 480.05𝑥3 + 769.51𝑥4 + 820.82𝑥5 + 649.23𝑥6  

   s.t           10𝑥1 + 15𝑥2 +  12𝑥3 + 18𝑥4 +  20𝑥5 + 21𝑥6 ≤   100   

               20𝑥1 +  30𝑥2 +  22𝑥3 + 40𝑥4 +  28𝑥5 +  25𝑥6  ≤  200  

               25𝑥1 +  40𝑥2 +  32𝑥3 + 50𝑥4 +  38𝑥5 +  35𝑥6   ≤ 300 

                33𝑥1 +  45𝑥2 +  35𝑥3 +  55𝑥4 +  50𝑥5 +  41𝑥6  ≤ 400 

              350𝑥1 +  50𝑥2 +  40𝑥3 +  65𝑥4 +  75𝑥5 +  53𝑥6  ≤ 500 

                405𝑥1 +  55𝑥2 +  50𝑥3 + 70𝑥4 +  75𝑥5 + 60𝑥6  ≤  600  

               45𝑥1 +  70𝑥2 + 60𝑥3 + 70𝑥4 +  80𝑥5 +  70𝑥6 ≤  700 

               55𝑥1 + 80𝑥2 +  65𝑥3 +  85𝑥4 +  80𝑥5 + 76𝑥6  ≤   800 

               60𝑥1 +  90𝑥2 +  70𝑥3 +  95𝑥4 + 80𝑥5 +  84𝑥6  ≤  900 

                                𝑥𝑖  ≥ 0 , 𝑖𝑛𝑡𝑒𝑔𝑒𝑟  ,𝑤ℎ𝑒𝑟𝑒 𝑖 = 1 , 2 ,3 , … … . ,6 
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4.3.8 Solution of the proposed model 
 

Table 4.4 : The solution to the  ILP problem  

  Decision          Solution           Unit                 Total                                 Reduced         

  Variables          Variables          Cost              Contribution                       Cost                 

        𝑥1                          1                       325.44                 325.44                                    0              

        𝑥2                          1                       711.29                  711.29                                          

        𝑥3                          1                        480.05                  480.05                                   0              

       𝑥4                          1                         769.51                 769.51 

                                        

       𝑥5                             1                         820.82                 820.82                                        

       𝑥6                           1                         649.23                 649.23                                      

  

Optimal risk value = GH¢3.75630 x 105 

Number of iterations = 6 and time = 1.52884se 

 

4.3.9 Interpretation of the results 

The optimal solution 𝑥1 = 𝑥2 = 𝑥3 = 𝑥4 = 𝑥5 = 𝑥6 = 1 and the objective function value          

Z= GH¢3.75630 x 105. Since variance is a measure of risk, it follows that the investor will invest 

where there is minimum risk and highest return. However, from table 4.4, the maximum return 

from the investment portfolio is associated with the highest risk. All investors are risk-adverse. 

That is, they will only accept greater risk if they are compensated with a higher expected return. 
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The correlation coefficient of portfolio investment always satisfies −1 ≤ 𝜌𝑖𝑗 ≤ 1  the next 

proposition is usually concerned with two typical cases when 𝜌𝑖𝑗 assumes one of the extreme 

values 1 or -1, which means perfect or negative correlation between the investments. 

From DP analysis, investments 𝑓2, 𝑓4, 𝑓5  𝑎𝑛𝑑 𝑓6 were selected to be invested. The correlations 

coefficient between the expected returns of these investments and risk involved is then computed 

as shown in the table 4.5 

          Table 4.5 Correlations between investment Returns and Risks  

          Investment             Returns                   Risks                correlation coefficient  

            𝑓1                                      0                             325.04  

            𝑓2                                15                         711.29 

           𝑓3                                  0                          480.82             

            𝑓4                                 40                         769.51                        }  0.9286 

            𝑓5                                75                          820.82 

           𝑓6                                 21                         649.23 

 

From table 4.5, correlation between expected returns and risk of investment is 0.9286.This 

suggested that there is a strong positive correlation between expected returns and the risk of 

investment. High expected returns can be attributed to high risk of investment. This means short 

term investments should be adopted in any of the investments. That is portfolio with long term 

investment is strictly not allowed.    

4.4.0 Findings 
 

From the DP, MPT algorithms and correlation coefficient analysis, it was found out that, the 

optimal investment return was GH¢1.51x104. Investments five, six, four and two were the prime 
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investments which contributed most to the optimal expected return. Investment one and three 

were not profitable since their total contribution to the portfolio return was zero. No investor will 

be interested in investing in these financial institutions. 

One obvious observation about these investments is that they all have high risk of investment. 

Also, the returns from these investments are very high. There is a strong positive correlation 

between expected returns and risk of the investments.  This seems to suggest that, any rational 

investor will be interested in a situation where there is a higher expected return with relative high 

risk of investment. .  

4.5 Summary  
 

In this chapter, the proposed model formulated was implemented and output results were 

discussed. The last chapter of this project presents the summary, conclusions of the whole work, 

and recommendations of the study. 
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CHAPTER FIVE 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

5.1 Introduction 

This final chapter, present the summary, discussions, conclusions and recommendations of the 

study.  

5.2 Summary 

The primary aims of this thesis are; to develop optimization models based on DP algorithm and 

MPT, and use them to determine the optimal returns of investments and the risks involved. The 

thesis also seeks to find the correlation between expected returns and risk of investments.  

To achieve these aims, secondary data was collected from six financial institutions in the 

Sunyani municipality from 2006 – 2011. The price series were normalized such that each 

commodity’s price changes had annualized volatility of ten percent (10%). Financial ratio such 

as coefficient of variation (CV) which measures the relative probability of investing in each of 

the investment was calculated and used to analyze the data. Based on this empirical data, MPT 

and DP models were formulated and used to find the risk and corresponding returns involved in 

various investments. 

From the literature, DP was found to be more efficient algorithm for determining how much to 

invest in each investment portfolio than the Knapsack algorithm.  
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Through the analysis of the investments, Barclays Bank, Zenith Bank, Ghana Guinness Limited 

and State Insurance Company were respectively selected because they had high optimal returns 

[see table 4.3]. 

 One obvious observation about these investments is that they all have high risk of investment. 

Also, the returns from these investments are very high. There is a strong positive correlation 

between expected returns and risk of the investments.  This seems to suggest that, any rational 

investor will be interested in a situation where there is a higher expected return with relative high 

risk of investment 

 

5.3 Discussions and Conclusions 

The use of DP in investment portfolios analysis helps to decide whether to accept or reject an 

investment with more realism. There are two main points to note. One is the proposition that DP 

in investment portfolios allows to relax the low-before-high fare order of arrival bookings. The 

problem can be solved from any direction without any particular arrangement of the investments. 

However, the optimal solution was obtained by a backward substitution. The DP provided the 

optimal policy for the portfolio problem by evaluating the whole tree of possibilities and making 

at each point in time the decision that would imply higher future expected revenues, and 

processing backward recursion. The darker side was the increase in the computation difficulties 

according to the dimension of the problem.  

Through DP algorithm a maximum return of ¢1.51 x 104 was obtained from an investment of 

GH¢9.0 x 104. This optimal maximum return of GH¢1.51 x 104, did not include the contributions 

from Government of Ghana Treasury bill and Ghana Commercial Bank. This is because the DP 
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algorithm rejected these investments.  Any attempt to invest in these investments will seriously 

affect returns and as such no investor would be ready to risk his hard won resources. 

The MPT based on measure of risk, helped the researcher to take realistic decisions based on 

account of expected returns from the DP algorithm.  Normally, an investor will invest where 

there is minimum risk and very high returns. In this case, the investor is interested in investing in 

a portfolio where there is a higher risk with the highest returns. This confirms the fact that all 

investors are risk-adverse, That is, they will only accept greater risk if they are compensated with 

higher expected return, [see tables 4.4 and 4.5].  There is a strong positive correlation between 

expected returns and risk of the investments. The higher the risk the better the expected returns.  

5.4 Recommendations   

It has emerged from the conclusion that the use of scientific methods such as DP and MPT to 

solve the investor problem of where and how much to invest should adopt these models in their 

allocations of funds for optimum investment portfolio in areas where they are sure to get 

optimum returns with minimal risk.  

Secondly, it is recommend that investment companies and other financial institutions be 

educated to use scientific methods such as the mathematical models to help them select viable 

investment instead of relying on  ad hoc or judgmental approach to investment..  

Lastly, it is recommended that investors should not invest too much money in a single 

investment. One should always divide the resources available in bits to invest in different 

investments. 
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Appendix A 

DP Iterations   

Iteration I (Bottom up approach) 

From investment 6; using model (4.1), we have 

M6(9) = max [f6(0), f6(1), f6(2), f6(3), f6(4), f6(5), f6(6), f6(7), f6(8), f6(9)]   

           = max [ 0, 21, 25, 35, 41, 53, 60, 70,76, 84]    𝑀6(9) = 84 with 𝑑6(9) = 9 

M6(8) = max [f6(0), f6(1), f6(2), f6(3), f6(4), f6(5), f6(6), f6(7), f6(8)]   

           = max [ 0, 21, 25, 35, 41, 535, 60, 70, 76]    𝑀6(8) = 76 with 𝑑6 (8) = 8 

          𝑚𝑎𝑥 = [0, 21, 25, 35, 41, 53, 60, 70]                    𝑀6(7 ) = 70 𝑤𝑖𝑡ℎ  𝑑6 = 7  

M6(6) = max [f6(0), f6(1), f6(2), f6(3), f6(4), f6(5), f6(6)]   

           = max [0, 21, 25, 35, 41, 53, 60]        𝑀6(6) = 60 with 𝑑6(6) = 6 

M6(5) = max [f6(0), f6(1), f6(2), f6(3), f6(4), f6(5)]   

           = max [0, 21, 25, 35, 41, 53]         𝑀6(5) = 53 with 𝑑6(5) = 5 

𝑀6(4) = max [𝑓6(0),𝑓6(1),𝑓6(2),𝑓6(3),𝑓6(4)]  = max [0, 21, 25, 35, 41]  𝑀6(4) = 41  with 

𝑑6(4) = 4 

M6(3) = max [f6(0), f6(1), f6(2), f6(3)]   = max [0, 21, 25, 35  ]  M6(3) = 35 with d6(3) = 3 

M6(2) = max [f6(0), f6(1), f6(2)]    = max [0, 21,25 ]       M6(2 ) = 25 with d6 = 2    
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M6(1) = max [f6(0), f6(1)]   = max [0, 21]     M6(1) = 21 with d6(1) = 1   

      M6(0) = max [f6(0)]   = max [0]    M6(0) = 0 with  d6(0) = 0 

Iteration II 

From investment 5: 

M5(9) = max [f5(0) + M6(9), f5(1) + M6(8), f5(2) + M6(7),     f5(3) + M6(6),

f5(4) + M6(5), f5(5) + M6(4), f5(6) + M6(3), f5(7) + M6(2),

f5(8) + M6(1), f5(9) + M6(0)] 

M5(9) = max [0 + 84, 20 + 76, 28 + 70,    38 + 63, 50 + 53,

75 + 41, 75 + 35, 80 + 25, 805 + 21, 85 + 0] 

        𝑀5(9) = max [84,   96,    98,     101,     103,     116,       110,      105,     101,      85] 

𝑀5(9) = 116 with  𝑑5(9) = 5 

M5(8) = max [f5(0) + M6(8), f5(1) + M6(7), f5(2) + M6(6),     f5(3) + M6(5),

f5(4) + M6(4), f5(5) + M6(3), f5(6) + M6(2), f5(7) + M6(1),

f5(8) + M6(0)] 

𝑀5(8) = max [0 + 76, 20 + 70, 28 + 63,    38 + 53, 50 + 41, 75 + 35,

75 + 25, 80 + 21, 80 + 0] 

M5(8) = 110         M5(8) = max [76,    90,    91,      91,    91,     110,       100,     101,      80] 

with 𝑑5(8) = 5 
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M5(7) = max [f5(0) + M6(7), f5(1) + M6(6), f5(2) + M6(2),     f5(3) + M6(4),

f5(4) + M6(3), f5(5) + M6(2), f5(6) + M6(1), f5(7) + M6(0)] 

M5(7) = max [0 + 70, 20 + 63, 28 + 53,    38 + 41, 50 + 35, 75 + 25,

75 + 21, 80 + 0 ] 

        𝑀5(7) = max[70    83,     81,     79,     85,     100,    96,   80] 𝑀5(7) = 100 with 𝑑5(7) = 5 

M5(6) = max [f5(0) + M6(6), f5(1) + M6(5), f5(2) + M6(4),     f5(3) + M6(3),

f5(4) + M6(2), f5(5) + M6(1), f5(6) + M6(0)] 

𝑀5(6) = max [(0 + 63), (20 + 53), (28 + 41), (38 + 35), (50 + 25), ( 75 + 21),

(75 + 0)] 

        𝑀5(6) = max [63,    73,     69,     73,     75,      96,     75]      𝑀5(6) = 96 with  𝑑5(6) = 5 

M5(5) = max [f5(0) + M6(5), f5(1) + M6(4), f5(2) + M6(3),     f5(3) + M6(2),

f5(4) + M6(1), f5(5) + M6(0) ] 

𝑀5(5) = max [0 + 53, 20 + 41, 28 + 35,     38 + 25, 50 + 21, 75 + 0] 

𝑀5(5) = max [53,    61,     63,     63,      71,    75]               𝑀5(5) = 75 with 𝑑5(5) = 5 

M5(4) = max [f5(0) + M6(4), f5(1) + M6(3), f5(2) + M6(2),     f5(3) + M6(1),

f5(4) + M6(0)] 

       𝑀5(4) = 𝑚𝑎𝑥 [0 + 41, 20 + 35, 28 + 25,     38 + 21, 50 + 0]  

       𝑀5(4) = 𝑚𝑎𝑥 [41,    55,     53,      59,     50]    𝑀5(4) = 59 with  𝑑5(4) = 3 

M5(3) = max [f5(0) + M6(3), f5(1) + M6(2), f5(2) + M6(1),     f5(3) + M6(0)] 
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       𝑀5(3) = 𝑚𝑎𝑥 [0 + 35, 20 + 25, 28 + 21,     38 + 0]  

       𝑀5(3) = 𝑚𝑎𝑥 [35    45,    49,      38]                𝑀5(3) = 49  with 𝑑5(3) = 2 

       M5(2) = max [f5(0) + M 6(2), f5(1) + M6(1), f5(2) + M6(0)]  

       M5(2) = max [0 + 25, 20 + 21, 28 + 0] M5(2) = max [25,   41,   28] M5(2) = 41  with 

        d5(2) = 1 

M5(1) = max [f5(0) + M6(1), f5(1) + M6(0)]  

       M5(1) = max [0 + 21, 20 + 0]     M5(1) = max [21,    20]   M5(1) = 25 with d5(1) = 1 

M5(0) = max [f5(0) + M6(0)]  

       𝑀5(0) = 𝑚𝑎𝑥 [0 + 0]        𝑀5(0) = 𝑚𝑎𝑥 [0]           𝑀5(0) = 0 with  𝑑5(0) = 0 

       M5(2) = max [f5(0) + M6(2), f5(1) + M6(1), f5(2) + M6(0)]  

       𝑀5(2) = 𝑚𝑎𝑥 [0 + 29, 25 + 24, 33 + 0]    𝑀5(2) = 𝑚𝑎𝑥 [29,    49,    33]    𝑀5(2) = 49 

 with    d5(2) = 1 

M5(1) = max [f5(0) + M6(1), f5(1) + M6(0)]   M5(1) = max [0 + 24, 25 + 0]  

       M5(1) = max [24,    25]       M5(1) = 25  with   d5(1) = 1 

M5(0) = max [f5(0) + M6(0)]    M5(0) = max [0 + 0]    M5(0) = max [0]   M5(0) = 0 with     

  d5(0) = 0 

 

 



88 
 

Iteration III 

From investment 4; 

M4(9) = max [f4(0) + M5(9), f4(1) + M5(8), f4(2) + M5(7),     f4(3) + M5(6),

f4(4) + M5(5), f4(5) + M5(4), f4(6) + M5(3), f4(7) + M5(2),

f4(8) + M5(1), f4(9) + M5(0)] 

M4(9) = max [0 + 116, 18 + 110, 40 + 100,    50 + 96, 55 + 75,

65 + 59, 74 + 57, 70 + 49, 85 + 21, 95 + 0] 

    M4(9) = max [116,    128,    140,      146,     130,     124,       131,      119,     106,      95] 

          M4(9) = 146  with     d4(9) = 3 

M4(8) = max [f4(0) + M5(8), f4(1) + M5(7), f4(2) + M5(6),     f4(3) + M5(5),

f4(4) + M5(4), f4(5) + M5(3), f4(6) + M5(2), f4(7) + M5(1),

f4(8) + M5(0)] 

M4(8) = max [0 + 110, 18 + 100, 40 + 96,    50 + 75, 55 + 59, 65 + 49,

70 + 41, 70 + 21, 85 + 0] 

    𝑀4(8) = 𝑚𝑎𝑥 [110,    118,    136,      125,     114,     114,       111,     91,   85]    𝑀4(8) = 136 

 with  𝑑4(8) = 2 

M4(7) = max [f4(0) + M5(7), f4(1) + M5(6), f4(2) + M5(5),     f4(3) + M5(4),

f4(4) + M5(3), f4(5) + M5(2), f4(6) + M5(1), f4(7) + M5(0)] 

M4(7) = max [0 + 100, 18 + 96, 40 + 75,    50 + 59, 55 + 49,65 + 41,70 + 21, 70 + 0] 
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    M4(7) = max [100, 114, 115,109, 104, 106, 91, 70]    M4(7) = 115 with   d4(7) = 2 

𝑀4(6) = 𝑚𝑎𝑥 [𝑓4(0) + 𝑀5(6), 𝑓4(1) + 𝑀5(5), 𝑓4(2) + 𝑀5(4),     𝑓4(3) + 𝑀5(3),

𝑓4(4) + 𝑀5(2), 𝑓4(5) + 𝑀5(1), 𝑓4(6) + 𝑀5(0)] 

𝑀4(6) = 𝑚𝑎𝑥 [0 + 96, 18 + 75, 40 + 59,    50 + 49, 55 + 41, 65 + 21, 70 + 0] 

      𝑀4(6) = 𝑚𝑎𝑥 [96, 92,    99,    99,   96,     86,      70]     𝑀4(6) = 99 with   𝑑4(6) = 2 

𝑀4(5) = 𝑚𝑎𝑥 [𝑓4(0) + 𝑀5(5),𝑓4(1) + 𝑀5(4),𝑓4(2) + 𝑀5(3),   𝑓4(3) + 𝑀5(2),

𝑓4(4) + 𝑀5(1), 𝑓4(5) + 𝑀5(0)] 

𝑀4(5) = 𝑚𝑎𝑥 [0 + 75, 18 + 59, 40 + 49,    50 + 41, 55 + 21, 65 + 0] 

      𝑀4(5) = 𝑚𝑎𝑥 [75,    77,     89,    91,    76,   65]          𝑀4(5) = 91 with  𝑑4(5) = 3 

 

M4(4) = max [f4(0) + M5(4), f4(1) + M5(3), f4(2) + M5(2),     f4(3) + M5(1),

f4(4) + M5(0)] 

       𝑀4(4) = 𝑚𝑎𝑥 [0 + 59, 18 + 49, 40 + 41,    50 + 21, 55 + 0]  

        𝑀4(4) = 𝑚𝑎𝑥 [59,    67,   81,    71,     55]     𝑀4(4) = 81with   𝑑4(4) = 2 

M4(3) = max [f4(0) + M5(3), f4(1) + M5(2), f4(2) + M5(1),     f4(3) + M5(0)] 

𝑀4(3) = 𝑚𝑎𝑥 [0 + 49,     18 + 41,    40 + 21,      50 + 0]            

𝑀4(3) = 𝑚𝑎𝑥 [49,     59,   61,   50]    𝑀4(3) = 61 with   𝑑4(3) = 2 

          M4(2) = max [f4(0) + M5(2), f4(1) + M5(1), f4(2) + M5(0)]  
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          M4(2) = max [0 + 41,   18 + 21,       40 + 0]  M4(2) = max [41,   29,   40] 

                M4(2) = 41  with   d4(2) = 0 

           M4(1) = max [f4(0) + M5(1), f4(1) + M5(0)]  

          M4(1) = max [0 + 21, 18 + 0]  

          𝑀4(1) = 𝑚𝑎𝑥 [21,    18]    𝑀4(1) = 21 with  𝑑4(1) = 0 

M4(0) = max [f4(0) + M5(0)   ]   M4(0) = max [  0   ]  M4(0) = 0  with     d4(0) = 0 

Iteration IV 

From investment 3; 

M3(9) = max [f3(0) + M4(9), f3(1) + M4(8), f3(2) + M4(7),     f3(3) + M4(6),

f3(4) + M4(5), f3(5) + M4(4), f3(6) + M4(3), f3(7) + M4(2),

f3(8) + M4(1), f3(9) + M4(0)] 

M3(9) = max [0 + 146, 12 + 136, 22 + 115,    32 + 99, 35 + 91, 40 + 81,

50 + 61, 60 + 41, 65 + 21, 70 + 0] 

    𝑀3(9) = 𝑚𝑎𝑥 [146,    148,       137,     131,     126,       121,      111,     101,      86,     70] 

                𝑀3(9) = 148  with       𝑑3(9) = 1 

M3(8) = max [f3(0) + M4(8), f3(1) + M4(7), f3(2) + M4(6),     f3(3) + M4(5),

f3(4) + M4(4), f3(5) + M4(3), f3(6) + M4(2), f3(7) + M4(1),

f3(8) + M4(0)] 
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𝑀3(8) = [0 + 136, 12 + 115, 22 + 99 , 32 + 91, 35 + 81 , 40 + 61 , 50 + 41 , 60 + 21 ,65

+ 0] 

    𝑀3(8) = 𝑚𝑎𝑥 [136,    127,       121,     123,     116,      101,     91,   81,     65]   (8) = 136 𝑤 ith  

      𝑠𝑑3(8) = 0 

 

M3(7) = max [f3(0) + M4(7), f3(1) + M4(6), f3(2) + M4(5),     f3(3) + M4(4),

f3(4) + M4(3), f3(5) + M4(2), f3(6) + M4(1), f3(7) + M4(0)] 

M3(7) = max [0 + 115, 12 + 99, 22 + 91,    32 + 81, 35 + 61  40 + 41, 50 + 21,

60 + 0] 

    M3(7) = max [115,      111,       113,       113,      96,      81,      71,       60] 

                M3(7) = 115 with  d3(7) = 0 

𝑀3(6) = max [f3(0) + M4(6), f3(1) + M4(5), f3(2) + M4(4),     f3(3) + M4(3),

f3(4) + M4(2), f3(5) + M4(1), f3(6) + M4(0)] 

M3(6) = max [0 + 99, 12 + 91, 22 + 81,    32 + 61, 35 + 41, 40 + 21,

50 + 0] 

      M3(6) = max [99,       103,        103,       93,      76,        61,       50]    M3(6) = 103 with  

        d3(6) = 1 

𝑀3(5) = 𝑚𝑎𝑥 [𝑓3(0) + 𝑀4(5), 𝑓3(1) + 𝑀4(4), 𝑓3(2) + 𝑀4(3),     𝑓3(3) + 𝑀4(2),

𝑓3(4) + 𝑀4(1),          𝑓3(5) + 𝑀4(0)] 
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𝑀3(5) = 𝑚𝑎𝑥 [0 + 91, 12 + 81, 22 + 61,    32 + 41, 35 + 21, 40 + 0] 

      𝑀3(5) = 𝑚𝑎𝑥 [91,       93,      83,    73,      56,       40]  𝑀3(5) = 93 with  𝑑3(5) = 1 

 

M3(4) = max [f3(0) + M4(4), f3(1) + M4(3), f3(2) + M4(2),     f3(3) + M4(1),

f3(4) + M4(0)] 

M3(4) = max [0 + 81, 12 + 61,    22 + 41, 32 + 21, 35 + 0] 

        𝑀3(4) = 𝑚𝑎𝑥 [ 81,      73,        63,       53,      35]      𝑀3(4) = 80 with  𝑑3(4) = 0 

M3(3) = max [f3(0) + M4(3), f3(1) + M4(2), f3(2) + M4(1),     f3(3) + M4(0)] 

M3(3) = max [ 0 + 61, 12 + 41,       22 + 21, 32 + 0] 

        M3(3) = max [61,      53,      43,        32]     M3(3) = 61 with d3(3) = 0 

M3(2) = max [f3(0) + M4(2), f3(1) + M4(1), f3(2) + M4(0)]     

            M3(2) = max [0 + 41, 12 + 21, 22 + 0]   M3(2) = max [41,       33,       22]     

M3(2) = 41 with     d3(2) = 0 

M3(1) = max [f3(0) + M4(1), f3(1) + M4(0)]  

𝑀3(1) = 𝑚𝑎𝑥[0 + 21, 12 + 0]  𝑀3(1) = 𝑚𝑎𝑥 [21 ,     12] 𝑀3(1) = 21 with 𝑑3(1) = 0 

M3(0) = max [f3(0) + M4(0)]  M3(0) = max [0 + 0] M3(0) = max [0]  

                M3(0) = 0  with    d3(1) = 0 
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Iteration V 

From investment 2: 

M2(9) = max [f2(0) + M3(9), f2(1) + M3(8), f2(2) + M3(7),     f2(3) + M3(6),

f2(4) + M3(5), f2(5) + M3(4), f2(6) + M3(3), f2(7) + M3(2),

2(8) + M3(1), f2(9) + M3(0)] 

𝑀2(9) = 𝑚𝑎𝑥 [0 + 148, 15 + 136, 30 + 115,    40 + 103, 45 + 93,

50 + 81,55 + 61, 70 + 41, 80 + 21, 90 + 0] 

    𝑀2(9) = 𝑚𝑎𝑥 [148,    151,       145,     143,     138,       131,      116,     111,     121,     90] 

                𝑀2(9) = 151 with   𝑑2(9) = 1 

M2(8) = max [f2(0) + M3(8), f2(1) + M3(7), f2(2) + M3(6),     f2(3) + M3(5),

f2(4) + M3(4), f2(5) + M3(3), f2(6) + M3(2), f2(7) + M3(1),

2(8) + M3(0)] 

𝑀2(8) = 𝑚𝑎𝑥 [0 + 136, 15 + 115, 30 + 103,    40 + 93, 45 + 81,

50 + 61,55 + 41, 70 + 21, 80 + 0] 

    𝑀2(8) = 𝑚𝑎𝑥 [136,    130,       133,     133,     126,       111,      96,     91,     80] 

                𝑀2(8) = 136 with  𝑑2(8) = 0 

M2(7) = max [f2(0) + M3(7), f2(1) + M3(6), f2(2) + M3(5),     f2(3) + M3(4),

f2(4) + M3(3), f2(5) + M3(2), f2(6) + M3(1), f2(7) + M3(0)] 
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𝑀2(7) = 𝑚𝑎𝑥 [0 + 115, 15 + 103, 30 + 93,    40 + 81, 45 + 61, 50 + 41,

55 + 21, 70 + 0] 

    𝑀2(7) = 𝑚𝑎𝑥[115,   118,    123,    121,   106,   91, 76,   70] 𝑀2(7) = 123 with  𝑑2(7) = 2 

M2(6) = max [f2(0) + M3(6), f2(1) + M3(5), f2(2) + M3(4),     f2(3) + M3(3),

f2(4) + M3(2), f2(5) + M3(1), f2(6) + M3(0)] 

𝑀2(6) = 𝑚𝑎𝑥 [0 + 103, 15 + 93, 30 + 81,   40 + 61, 45 + 41, 50 + 21,55 + 0] 

    𝑀2(6) = 𝑚𝑎𝑥 [103,    108,     111,   101,    96,   71,    55]   𝑀2(6) = 111𝑤ith  𝑑2(6) = 2 

M2(5) = max [f2(0) + M3(5), f2(1) + M3(4), f2(2) + M3(3),     f2(3) + M3(2),

f2(4) + M3(1), f2(5) + M3(0)] 

M2(5) = max [0 + 93, 15 + 81, 30 + 61,    40 + 41, 45 + 21, 50 + 0]  

𝑀2(5) = 𝑚𝑎𝑥 [93,    96,       91     81,       66,       50]    𝑀2(5) = 96 with  𝑑2(5) = 1 

M2(4) = max [f2(0) + M3(4), f2(1) + M3(3), f2(2) + M3(2),     f2(3) + M3(1),

f2(4) + M3(0)] 

𝑀2(4) = 𝑚𝑎𝑥 [0 + 81, 15 + 61, 30 + 41 ,   40 + 21, 45 + 0] 

    𝑀2(4) = 𝑚𝑎𝑥 [81,     76,       71,      61,        45]     𝑀2(4) = 81 with  𝑑2(4) = 0 

M2(3) = max [f2(0) + M3(3), f2(1) + M3(2), f2(2) + M3(1),     f2(3) + M3(0)] 

      M2(3) = max [0 + 61, 15 + 41  30 + 21,    40 + 0]      

𝑀2(3) = 𝑚𝑎𝑥 [61,      56,      51,       40]      𝑀2(3) = 61 with    𝑑2(3) = 0 
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M2(2) = max [f2(0) + M3(2), f2(1) + M3(1), f2(2) + M3(0)]  

M2(2) = max [0 + 41, 15 + 21, 30 + 0]    

M2(2) = max [41,      36,        30]     M2(3) = 41 with    d2(2) = 0 

M2(1) = max [f2(0) + M3(1), f2(1) + M3(0)]  

M2(1) = max [0 + 21, 15 + 0]    

M2(1) = max [21,     15]      M2(1) = 21 with  d2(1) = 0 

M2(0) = max [f2(0) + M3(0)]  

M2(0) = max [0 + 0]   M2(0) = max [0] ,      M2(0) = 0 with   d2(0) = 0 

Iteration VI 

From investment 1: 

M1(9) = max [f1(0) + M2(9), f1(1) + M2(8), f1(2) + M2(7),     f1(3) + M2(6),

f1(4) + M2(5), f1(5) + M2(4), f1(6) + M2(3), f1(7) + M2(2),

f1(8) + M2(1), f1(9) + M2(0)] 

𝑀1(9) = 𝑚𝑎𝑥 [0 + 151, 10 + 136, 20 + 123,    25 + 111, 33 + 96 , 35 + 81,

40 + 61, 45 + 41, 55 + 21, 60 + 0] 

M1(9) = max [151, 146, 143,   136, 129,116, 101, 86, 76, 60]  M1(9) = 151  with d1(9) = 0 

Hence the optimal investment is GH ₵1.51x104. 
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Appendix B 

Matlab code for DP Algorithm 

Input: values v and weights w for item 1 to n ; number of distinct items n; knapsack capacity W 

For w from 0 to w do 

     T[0,w] :=0  

end for 

for i from 1 to n do 

        for j from 0 to W do 

            if j >= 𝑤[𝑖] then  

              T[i,j] : = max (T[i-1,j] ,T[i,j-w[i]] +v[i]) 

          else 

                    T [ i , j]  : = T[i-1,j] 

              end if 

       end for 

end for 

The maximum of the empty set is taken to be zero. Tabulating the results from m [0] up through 

m[W] gives the solution. Since the calculation of each m[w] involves examining n items, and 

there are W values of m[w] to calculate, the running time of dynamic programming solution is  
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O(nW). Dividing w1 , w2 ,. . ., wn , W by their greatest common divisor is an obvious way to 

improve the running time.   

The O(nW) complexity does not contradict the fact that the knapsack problem is NP –complete, 

since W ,unlike n ,is not polynomial in the length of the input to the problem. The length of W 

input to the problem is proportional to the number of bits in Wlog, not to W itself 
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