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ABSTRACT 

This study investigated the long-term trends in vegetation and rainfall and the extent and rate of 

vegetation change over the Bani river Basin at multiple spatial and temporal scales in relation to 

local and regional drivers. Monthly 8-km Normalized Difference Vegetation Index (NDVI) time-

series data from 1982 to 2011 was derived from 10-day Satellite Pour l’Observation de la Terre 

vegetation product (SPOT-VGT) at 1-km (1998-2011) and 15-day GIMMS (Global Inventories 

Monitoring and Modelling Systems) at 8-km satellite data (1982-2006). Gridded rainfall data at 

8-km grid resolution was created from 40 meteorological stations and complemented with 

Tropical Rainfall Measurement Mission (TRMM) data. A Mann Kendall (MK) trend analysis 

was used to determine the trend for each dataset using monthly and annual time-series. This 

analysis produced some indicators like Kendall’s tau, p-value and Theil-Sen. The p-value 

estimator (p-value less than 0.07) was used in this study to show the significance of the trend. 

Trend analysis revealed that within the study area vegetation greening trends are mostly 

associated with areas where natural vegetation is still well represented. From the results 934 

pixels (49% of the study area) showed a positive trend while 155 pixels (8% of the study area) 

showed a negative trend significant at p-value less than 0.07. During the same period rainfall had 

increased by about 17 mm, translating into a positive trend for almost the entire study area. 

Vegetation productivity in the study area is dependent on rainfall which varies greatly temporally 

and spatially. The linear Pearson correlation was used to estimate the relationship between NDVI 

and rainfall for every pixel at monthly interval for the growing season data. Comparing their 

long-term mean the result showed a good correlation between the two datasets with an R value of 

0.98. Four (4) reference areas were used to explain and cross verify representative areas that 

exhibit either entirely negative MK-trends or entirely positive MK-trends over the monitoring 

period. These reference areas were selected based on their trend in rainfall and NDVI and their 

NDVI long-term departure. Free 30-meter Landsat images were acquired for the four reference 

areas for the following three intervals: 1984 and 1986, 1999 and 2000 and 2009 and 2010. Land 

Use/Land Cover (LULC) change was then quantified and the rate of land conversion was 

determined. LULC variables included urban, Cropland and natural vegetation (Shrublands, 

Steppe, Open Trees and Closed Trees). For the entire period, the class ‘Natural Vegetation’ 

decreased between 22.83% and 63.47% from its initial area for areas (1) and (2), while the 
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decrease was 8.35% for area (3) and 13.39% for area (4). The class ‘Cropland’ increased for 

564.86% in area (3); 62.17% in area (4); 35.79% in area (2) and 16.22% in area (1).  To 

investigate whether there is a relationship between NDVI, rainfall and LULC change, LULC 

variables were correlated with long-term trend in rainfall and NDVI. The results showed there is 

a positive correlation between increases in rainfall and some land cover classes, while some 

classes such as settlements were negatively correlated with vegetation productivity trends. 

Croplands and Natural Vegetation were positively correlated (r=0.89) with rainfall while 

settlements have a negative correlation with NDVI time series trends (r=-0.57). Despite the fact 

that rainfall is the major determinant of vegetation cover dynamics in the study area, it appears 

that other human-induced factors such as urbanisation have negatively influenced the change in 

vegetation cover. The results provide spatially explicit and temporally good and rich information 

of vegetation productivity dynamics and its drivers at landscape scale. This is an important input 

for assessing the impact of climate change on vegetation for biophysical modelling. It also 

improves our knowledge of the drivers of vegetation productivity changes. The study suggests 

that NDVI can be useful for general vegetation cover monitoring and planning. Future studies 

need to also look at the effect of vegetation cover change in regard to other landscape 

components such as specifically population density and soil degradation. 
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1. INTRODUCTION 

1.1. Background 

West African (WA) countries are experiencing rapid changes, specifically climate-driven related 

but also those caused by human-induced activities. These countries are endowed with diverse, 

yet fragile environment. For centuries, humans have been a trivial force in the environmental 

equation, but this changed dramatically in the 20th century, particularly in the last 50 years. As 

West Africans enter the 21st century, environmental changes are predicted to accelerate, with 

unknown and potentially serious implications for both its people and the environment (Tappan 

and Cushing, 2004), which includes changes in water bodies and vegetation cover. 

According to Salim et al (2008), vegetation cover is the most important parameter, used 

frequently in human environmental assessments and it is also used as a proxy (variable) in 

geosphere, biosphere and atmosphere interaction models. Moreover, this variable plays an 

important role in global climate models and assessments. The amount of vegetation controls the 

partitioning of incoming solar energy and the sensible and latent heat fluxes. This inevitably will 

affect the amounts of vegetation locally and globally in a long-term. This in turn will again affect 

the vegetation growth feedback mechanism (Qi et al., 1995). Vegetation has special 

characteristics due to its distinct annual and seasonal changes; thus its productivity and vitality is 

often used as a proxy to assess climate and/or human activity effects, within the context of global 

and local environment change models studies. 

Considerable attention has been given to the use of Normalized Difference Vegetation Index 

(NDVI) to assess the impact of climate change using the National Oceanic and Atmospheric 

Administration – Advanced Very High Resolution Radiometer (NOAA-AVHRR) NDVI images. 
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In a series of papers, (e.g. Anyamba and Turker, 2005; Herrmann et al., 2005; Vlek et al., 2008) 

the authors used and analysed NOAA-AVHRR NDVI using time-series analysis, they concluded 

that there is as consistent trend of increasing vegetation ‘greenness’ (chlorophyll activity) in 

much of the Sahelian region, semi-arid region stretching approximately 5000 km across Northern 

Africa from the Atlantic Ocean in the West to near the Red Sea in the East and extending 

roughly from 12˚N to 18˚N (Anyamba and Tucker, 2005). Increasing rainfall in recent years 

emerges as the dominant causative factor in the dynamics of this vegetation ‘greenness’ 

(Ahmedou et al., 2008; Lacaze and Toulouse, 2011). However, other factors such as Land Use / 

Land Cover (LULC) changes and mass migrations of people, fire regime, atmospheric CO2 may 

also contribute. This point is not well explored and needs further elaboration so that the main 

drivers of vegetation change in this particular area in West Africa can be better explained. This 

research analyses NDVI time-series over 30-year period and rainfall dynamics (inter-annual and 

inter-seasonal variability) and hot spots studies with high resolution satellite which could be the 

appropriate tool to help explain long-term vegetation cover dynamics and trend in West Africa. 

1.2. Problem Statement 

While many regions of the world are subject to dramatic fluctuations in climate, the West Africa 

savannah area is characterised by severe and persistent rainfall deficit that is known to have 

lasted for more than three decades (Ekpoh and Nsa, 2011). The reduction of annual precipitation 

amounts, from 20 to 40% according to Nicholson et al., (2000) is largely due to a general decline 

in the number of rainfall events. Within the same period, LULC changes are rapidly causing a 

decline in natural vegetation. Research results indicated that large tracts of natural savannah, 

woodland were converted to cultivated lands and specifically, grazing lands. The conversion 

process also caused a decline in the quantity of the animal fodder. On the other hand, the total 
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woodland area reduced due to the expansion of farmland (as a result of increasing human 

population, and an increasing demand for food). Also, extensive wood harvesting to meet the 

local people needs for charcoal and other domestic uses have contributed to the changes in the 

forest cover. The sustainable management of the environment poses a challenge as imbalance 

between natural resources (arable land, water quantity and quality, vegetation, etc) and increased 

needs of a rapidly growing population deepens.  

1.3. Aims and Objectives 

This study seeks to verify and explain spatial and temporal vegetation pattern in the Bani River 

Basin by analysing 30 years of remote sensing data. The specific objectives of this study are to: 

- Investigate whether change in vegetation is related to NDVI dynamics and change, 

- Investigate whether precipitation in the region is related to changes in NDVI over the 

time, 

- Identify the main effects of climatic change in relation to vegetation cover dynamics.    

1.4. Limitation  

 

Other than precipitation there are different physical and human phenomena that affect the growth 

of natural vegetation and crops. Among other things temperature, potential evaporation, type of 

soil, the level of soil erosion, slope and aspect, and economic activities affect vegetation 

dynamics. For example available temperature data have been found unsuitable for this study and 

also because of the limited scope of this thesis all other factors other than precipitation are 

excluded. 
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1.5. Organisation of the thesis 

This thesis is divided into ten chapters. Chapter 1 provides the overall scope and objectives of 

the study. In Chapter 2 key background literature pertaining to the characteristics and 

importance of long-term vegetation dynamics as well as the use of space borne data to monitor 

vegetation is reviewed. Chapter 3 presents a detailed description of the study area, its 

specifications and importance in the context of climate change. Chapter 4 focuses on the 

research methods including a detailed description of the datasets used, pre-processing and 

processing methods. The results are presented in Chapter 5 to 9. These chapters include 

comparison of results with previous studies and evaluation of the findings. The conclusion and 

recommendations are presented in Chapter 10. 
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2. LONG -TERM VEGETATION DYNAMICS, CLIMATE CHANGE AND 

LAND USE 

2.1. Introduction 

This Chapter provides a broad overview of different concepts regarding this research. The long-

term environmental is the first to be reviewed. Thereafter the fundamental concept of climate 

change and its characteristics and the global vegetation characteristics, Land Use / Land Cover 

(LULC) changes and their drivers are reviewed as well as the use of remote sensing based data 

for vegetation cover monitoring. 

2.2. Long-Term Environmental Monitoring 

The change in environment is known as a persistent feature occurring all over the world. From a 

few millennia ago, dense vegetation, as well big mammals dominated the North Africa region, 

known to this day as the Sahara Desert (Maley, 1980). Frequently asked questions are: how will 

the change affect precipitation? Will the desert spread or shrink? How will human life or 

livelihood be affected by such changes? These questions can only be answered through the use 

of information obtained over a long period through long-term environmental research (Pickett, 

1989; South African Environmental Observatory Network, 2004).  

In spite of the importance of long-term monitoring of the natural environment, it is often 

regarded as a low-grade, adding little to our understanding of the functioning of the 

environmental systems (Burt, 1994). The objective of long-term ecological monitoring is to 

examine and document changes in essential assets of biological communities. Monitoring of the 

vegetation structure and dynamics has to be done in a scientifically accurate way (e.g. use of 
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remote sensing), while being cost-effective and widely understandable. The methods of 

environmental monitoring can be limited by the cost, training requirements and poor 

repeatability. Therefore, it is essential to identify an appropriate group of rapid, repeatable and 

cost effective methods that reflect various processes and functions (Havtad and Herrick, 2003).  

The past has an influence on the present and future course of an ecosystem. Long-term studies 

document the effects of the past conditions on continuous processes. Therefore the aim of long-

term studies is to document the changing environmental influences and conditions before being 

lost to the historical record (Pickett, 1989; Burt, 1994). 

Method used to gather information for the management decisions on seasonal or annual time 

frame are called short-term monitoring and provide data on vegetation status at specific sites. 

Methods used to gather information that create a ‘trend-record’ are called long-term monitoring. 

Short and long-term monitoring programmes can be integrated in order to achieve management 

objectives (Havstad and Herrick, 2003). Short-term studies are often misleading and without 

long-term data there is a lack of interpretation. Thus long-term datasets are fundamental for 

testing most theoretical constructs of concepts central to environmental studies, but most of these 

concepts are not usually selected either because they are suited for studies limited in time and 

space or they are likely to confirm the theoretical construct. There is consequently an 

unacknowledged excess of unanswered questions in environmental sciences, and hypotheses of 

which the validity is known. Most scientists are only interested in new and intriguing ideas and 

not in supporting long-term testing (Broodryk, 2010). The problem is that concepts are accepted 

and rejected with little experimental foundation. In addition, the need to examine spatial and 

temporal validity, or the application of a process, structure or mechanism, once recognized, has 
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barely any support among environmentalist. Most scientists have been working on long-term 

programmes of abiotic rather than biotic factors. This may be because numerous parameters 

address social needs (weather and climate) and the greater ease in standardising methods in 

abiotic research (Franklin, 1989). Just as long-term studies are vital to environmental sciences, 

they are also important to identify and resolve social issues, such as the sustained productivity of 

forests, agricultural land and fisheries. 

2.3. Climate Change Characteristics 

Climate is described in terms of the variability of relevant atmospheric variables such as 

temperature, precipitation, wind, snowfall, humidity, clouds, including extreme or occasional 

ones, over a long period in a particular region. The classical period for performing the statistics 

used to define climate corresponds to at least 3 decades, and it is designated by “climate normal 

period” (WMO, 2011). As a consequence, the 30-year period proposed by the World 

Meteorological Organisation (WMO) should be considered more as an indicator than a norm that 

must be followed in all cases. This definition of the climate as representative of conditions over 

several decades should, of course, not mask the fact that climate can change rapidly. Climate can 

thus be viewed as a synthesis or aggregate of weather in a particular area and for a long time 

(Goosse et al., 2010). This includes the region's general pattern of weather conditions, seasons 

and weather extremes like hurricanes, droughts, or rainy periods. Two of the most important 

factors determining an area's climate are air temperature and precipitation (Goosse et al., 2010). 

It is also important to take into account the fact that the state of the atmosphere used in the 

definition of the climate given above is influenced by multiple processes involving also the 

ocean, the sea ice, the vegetation, etc. Climate is thus defined in a wider sense as the statistical 
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description of the climate system (Goosse et al., 2010). This includes the analyses of the 

behaviour of its five major components: the atmosphere; the gaseous envelope surrounding the 

earth, the hydrosphere; liquid water, i.e. ocean, lakes, underground water, etc., the cryosphere; 

solid water, i.e. sea ice, glaciers, ice sheets, etc., the land surface and the biosphere (all the living 

organisms) and of the interactions between them (Solomon et al., 2007). 

According to Pidwirny (2006) the factors that affect climate are: the location on the earth, the 

local land features like mountains, the type and amount of plants like forest or grassland, altitude, 

latitude and its influence on solar radiation received, the variations in the earth's orbital 

characteristics, volcanic eruptions, the nearness of large bodies of water, prevailing winds and 

human activities like the burning fossil fuels, farming or cutting down forest.  

The climate of a region will determine what plants will grow there, and what animals will inhabit 

it. The world’s biomass is thus controlled by climate conditions. 

2.4. Global Vegetation Characteristics 

About three-fourths of the earth’s surface is covered by the green biomass (Kulawardhana, 

2008). However, huge variety could be observed in their characteristics which are attributed to 

the changing conditions of climatic as well as geo-morphological characteristics over the earth 

surface. The different types of vegetation communities that exist on earth could be explained in 

terms of biomes. 

A biome is a large geographical area of distinctive plant and animal groupings, which are 

adapted to that particular environment. The type of the biome that could exist in a region is 

determined by the climate and geography of that particular region. Major biomes on earth 
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include deserts, forests, grasslands, tundra, and several types of aquatic environments. Figure 1 

shows the distribution pattern of these biomes on earth. 

 

Figure 1: Distribution of the Earth's eight major terrestrial biomes, (Adapted from: De Blij and 

Miller, 1996). 

A wide variety is found among these different biomes in terms of their vegetation and climatic 

characteristics. For example, tropical rain forests are characterized by greater species diversity. 

Tall trees contribute for more than seventy percent of plants within the forest. The temperature in 

a rain forest rarely gets higher than 93°F (34°C) or drops below 68 °F (20°C); average humidity 

is between 77 and 88%; rainfall is often more than 100 inches a year,  while in a deciduous forest 

the average annual temperature is 50°F and the average rainfall is 30 to 60 inches a year 

(Kulawardhana, 2008). The climate in grasslands is humid and moist. The savannahs are 
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characterised by rainfall-induced seasonality, an herb as woody cover in spatial arrangement, 

which can be found between a tropical rainforest and desert biome. Savannahs have warm 

temperature all year round. Alpine biomes are found in the mountain regions all around the 

world. In the Alpine biomes average temperatures in summer range from 10 to 15°C and it goes 

below freezing in winter (Kulawardhana, 2008). The tundra is the world's coldest and driest 

biomes with an average annual temperatures of about -70°F (-56°C) (Kulawardhana, 2008). Each 

of these biomes consists of many ecosystems whose communities have adapted to small 

differences in climate and the environment inside the biome. Therefore it is evident that any 

change in climatic parameters at global as well as regional scale can have serious consequences 

on the distribution and even the existence of these different communities of vegetations. For 

example, when temperature and precipitation patterns shifts as a result of global climate change, 

the potential vegetation over a region or a pre defined climatic zone will no longer coincide with 

the actual vegetation that exists on the ground. 

Although it is essential to understand the changes in the vegetation cover and their dynamics, 

many deficiencies have appeared in the understanding of the role of vegetation in terrestrial and 

atmospheric systems. Basic data regarding the extents and dynamics of vegetation are still 

missing or disputed (Woodwell, 1984). However, it is now recognized that a better assessment of 

natural or man induced changes in vegetation cover of the earth is needed to understand the role 

of plant communities in climatic, hydrologic and geochemical cycles (Hamilton, 1983, cited in 

Kulawardhana, 2008). 
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2.5. Land Use / Land Cover (LULC) Change Pattern 

In addition to other anthropogenic factors, LULC changes are linked to climate, vegetation and 

weather in complex ways (Getahun, 2012). LULC changes play an important role in global 

environmental change. Land cover refers to the physical characteristics of the earth surface, 

captured in the distribution of vegetation, water, desert, ice and other physical feature of the land 

including those created solely by human activities such as agriculture, forestry and settlement 

(Shrestha, 2008). Land use is a more complicated term. Land use is the action of human 

activities on their environment such as agriculture, forestry and building constructions that alter 

land surface processes including biogeochemistry, hydrology and biodiversity (Shrestha, 2008). 

LULC change can be classified into two broad categories: conversion or modification (Butt and 

Olson, 2002). Conversion refers to the changes from one cover or use to another, e.g. conversion 

of forests to pasture or to Cropland. Modification on the other hand refers to the maintenance of 

the broad cover or use type in the face of changes in its attributes. For example, a forest may be 

retained but significant alterations may be made on its structure or function. The key LULC 

change pathways include deforestation, desertification, wetland drainage and agricultural 

intensification (Butt and Olson, 2002). The pathways can be envisioned as forcing functions, 

which have direction (forest to pasture or pasture to Cropland), magnitude (amount of change), 

and pace (rates of change). LULC change reflects the complex interaction of human activities 

and environmental processes over time. Humans play a key role in contributing to the process 

and are equally affected by these LULC changes. 

Whereas the major reasons for such LULC changes are positive and aim to increase the local 

capacity to support the human enterprise, there are also unforeseen negative impacts that can 
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reduce the ability of land to sustain the human enterprise (Houghton, 1994). For example, 

deforestation can be beneficial through sale of forest products as well as the use of cleared land 

to produce food for the local community. However, deforestation can result in the loss of 

biodiversity and impacts on the hydrological processes, leading to localized declines in rainfall, 

and more rapid runoff of precipitation, causing flooding and soil erosion. Deforestation can 

disrupt the carbon cycle and contribute to greenhouse gases, which contribute to climate change 

(de Sherbinin, 2002). Understanding LULC changes is therefore critical for the design of 

effective land management programmes. 

2.6. Climatic versus Anthropogenic Driving Forces of Land Use/ Land Cover Dynamics 

The LULC patterns of a region are an outcome of natural and socio–economic factors and of 

their utilization by man in time and space (Zubair, 2006). Driving forces also referred to as 

factors, can be categorized as natural and human induced. The natural factors may be mostly 

meteorological or geological phenomena like intense rainfall, earthquake, steep relief, soil type 

and climate change. Deforestation, immense agricultural and demographic pressure, as well as 

clearing of natural grass or bush land due to population increase are human factors. In the last 

few decades, conversion of grassland, woodland and forest into Cropland and grazing has risen 

dramatically in the tropics (Shiferaw, 2011). Significant LULC changes since the 1960s were 

identified in the Bani River Basin (Ruelland et al., 2009).The most important changes were lost 

of the natural vegetation through increase in farming activities and expansion of grazing land. 

Vegetation covers as well as crop production show much variability across the globe depending 

on the types of crop, the biome and the region (Kulawardhana, 2008). Vegetation cover on the 

earth’s surface is rapidly changing, and changes are observed in phenology and diversity.  
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Even though vegetation cover analysis does not directly show crop production, many studies 

state that there is also a decrease of crop production related to LULC change and climate 

variability (Crawford, 2001). LULC change and increase of greenhouse gases are two of the 

most interrelated factors associated with climate change and variability. They both tend to 

produce surface warming so that their impact to global ecosystem and society is too difficult to 

resist. Many studies indicated that analysing and modelling of spatial-temporal features of LULC 

change either globally or regionally is significantly important for better environmental 

management in view of sustainable development (Nellemann et al., 2009; Shiferaw, 2011). 

According to Nellemann et al., (2009) past soil erosion in Africa might have contributed to 

significant yield reduction (2-40% compare to the global average).  

Different studies indicate that vegetation condition could affect and change the climatic zones of 

Africa. Changes in vegetation result in alteration of surface properties and the efficiency of 

ecosystem exchange of water, energy and CO2 with the atmosphere (Nellemann et al., 2009). 

According to WMO and the Inter governmental Panel of Climate Change (IPCC) Sub-Saharan 

Africa has the highest rate of land degradation (WMO, 2005). Some of the countries that have 

the worst rate of degradation are Rwanda and Burundi (57%), Burkina Faso (38%), Lesotho 

(32%), Madagascar (31%), Togo and Nigeria (28%), Niger and South Africa (27%) and Ethiopia 

(25%) (Bwalya, 2009 cited in TerrAfrica, 2009). Land degradation in sub-Saharan Africa is 

caused mainly by conversion of forests, woodlands and rangelands to crop production areas, 

overgrazing of rangelands; and unsustainable agricultural practices.  

Sub-Saharan Africa is expected to face the largest challenges regarding food security as a result 

of climate change and other drivers of global change (Easterling et al., 2007). Many farmers in 
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Africa are likely to experience net revenue losses as a result of climate change, particularly as a 

result of increased variability and extreme events. According to Fischer et al., (2005) most 

climate model scenarios agree that Sudan, Nigeria, Senegal, Mali, Burkina Faso, Somalia, 

Ethiopia, Zimbabwe, Chad, Sierra Leone, Angola, Mozambique and Niger are likely to lose their 

cereal production potential by the 2080s. 

2.7.  The Use of Space-borne Data to Assess Vegetation Dynamics  

Satellite derived NDVI is a convenient tool for monitoring vegetation cover at all scales from 

global to local. It enables regular detection of seasonal and inter-annual changes in vegetation 

activity. The NDVI has successfully served as vegetative indicator in many studies on desert 

encroachment and desertification (Tucker and Nicholson, 1999; Wessels et al., 2004; 

Symeonakis and Drake, 2004), drought monitoring (Kogan, 1997; Song et al., 2004), El-Nino 

impacts on ecosystems (Anyamba et al., 2001), global phenology and bioclimatology (Tateishi 

and Ebata, 2004; Chen and Ravallion, 2004). These and other similar studies are motivated by 

the appropriation of NDVI for the analysis of vegetation cover at a wide range of spatial scales 

(i.e. local to regional).  

Also the correlation between NDVI and above-ground biomass is well established (Tucker and 

Sellers, 1986). Satellite derived NDVI can serve as a general surrogate for vegetation conditions 

(Justice et al., 1985; Tucker and Sellers, 1986). Temporal and spatial correlations between NDVI 

and climatic factors are investigated in many research works. Particularly, well correlations in 

arid regions, both spatial and temporal, which show the relationship between NDVI and rainfall 

(Richard and Poccard, 1998; Chen et al., 2004; Weiss et al., 2004; Tateishi and Ebata, 2004),as 

well as the relationship between NDVI and temperature, which were reported to be weaker but 
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also significant (Kowabata et al., 2001; Schultz and Halpert, 1995). According to recent studies, 

precipitation has a strong effect on the inter-annual variability of vegetation activity especially in 

dry regions (Yang et al., 1998; Richard and Poccard, 1998; Wang et al., 2003; Li et al., 2002).  

Numerous studies have suggested a linear relationship between NDVI and climate predictors. 

Theoretically NDVI can be considered as a climatic indicator which depends mainly on rainfall 

condition. This assumption was used in various drought monitoring and drought early warning 

systems (Kogan, 1997; Song et al., 2004). However, the relationship is linear only in a limited 

range of rainfall conditions. The upper thresholds for the linear relationship between NDVI and 

rainfall were reported to be approximately 500 mm/yr for semi-arid Botswana (Nicholson and 

Farrar, 1994), 700-800 mm/yr for Senegal (Li et al., 2004), and 500-700 mm/yr for China (Li et 

al., 2002). Above these limits, NDVI increases with rainfall only at a slower rate.  

The response of NDVI to rainfall and temperature is dependent on vegetation types and varies by 

geographical region. For example, Woodland and forest vegetation shows a lesser correlation 

between NDVI and climatic factors (Propastin et al., 2006). Shrubs and desert vegetation 

patterns are reported to correlate stronger with temporal and spatial variations of climatic factors 

(Propastin et al., 2006). Vegetation patterns in steppe grassland and savannah show evidence of 

the highest correlation with that of rainfall and temperature (Li et al., 2002; Wang et al., 2001, Li 

et al., 2004). However, Nicholson and Farrar (1994) reported that the response of NDVI to 

rainfall relationship is more dependent on soil types than on vegetation types in Botswana.  

Many studies proved a high sensitivity of NDVI to inter-annual rainfall anomalies. Thus NDVI 

can be used as a good proxy for the study of inter-annual climate variability on regional and 

global scales or for identification of climatic signal by evaluation of land degradation (Kowabata 
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et al., 2001; Evans and Geerken, 2004). However, there are limits of rainfall amounts beyond 

which only a weak NDVI sensitivity to inter-annual rainfall anomalies can be found. This 

rainfall limit varies by geographical region, but generally, a minimum of 200-300 mm/y seems 

sufficient to induce NDVI sensitivity to rainfall anomalies (Richard and Poccard, 1998).  

Vegetative cover is the best measurable indicator of environmental change and can be easily 

detected by remote sensing methods. Vegetation cover performance is strongly predicated on 

macro and micro-climatic factors, such as global temperature, rainfall distribution change and 

local topographic characteristics. Therefore, discrimination between different causes of change in 

vegetation cover, climate and human activity is difficult. The neglect of this aspect can lead to 

mistakes by evaluation of land conditions (Binns, 1990; Hellden, 1991). A few recent studies 

have developed methods for discrimination by use of satellite data time-series and time-series of 

climatic variables (Evans and Geerken, 2004; Li et al., 2004). These methods have been based 

on identification of climate signal in inter-annual dynamic of vegetation activity. Once the 

climate signal is identified, it can be removed from the trends in vegetation activity. The 

remaining vegetation changes are attributed to human influence and areas considered to be 

experiencing a human-induced degradation of vegetation cover.  
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3. STUDY AREA 

3.1. Physical Characteristics 

3.1.1. Location and extend of the study area 

The Bani River is the most important tributary of the Niger River. It is principally located in the 

southern part of Mali from latitudes 9˚8ˊ10˝ N to 14˚8ˊ50  ̋ N and longitudes 3˚8ˊ50˝ W to 

8˚8ˊ50  ̋W (Figure 2). With a catchment area of around 130 000 km2 at its confluence with the 

Niger at Sofara, it is one of the longest rivers in West Africa (approximately 700 km). It flows 

into the inner Niger Delta at Mopti and is a large contributor to the annual Niger Inner delta 

flooding (Figure 2). 

3.1.2. Rainfall 

The natural resources of the area have been subjected to substantial pressure during recent 

decades. One reason is rainfall variability in the whole West Africa. Rainfall data showed a 

pronounced decline from the seconds half of the 1960s. This is the most marked short-term 

precipitation trend in any part of the world during the twentieth century (Hulme and Kelly, 1993; 

Nicholson et al., 2000). Figure 3 illustrates the average rainfall time-series and the averaged 

Standardized Precipitation Index from 1982 to 2011 for some stations throughout the study area. 

The region is characterized by a single, strong North-South rainfall gradient; that has 

traditionally been associated with the seasonal movements of the Inter Tropical Convergence 

Zone (ITCZ) while inter-annual rainfall variation has been explained by the latitudinal 

displacement of the ITCZ (Kraus, 1977; Lamb, 1979). The ITCZ is an area of low pressure that 

forms where dry, mid-continental air masses from the northeast meet south-easterly humid, 

maritime air from the Atlantic near the earth’s equator. Dry, dust-laden, cooler air from the 
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northeast is undercut by the wedge of warm, humid air from the Gulf of Guinea. The ITCZ 

moves seasonally and is controlled by the area of most intense solar heating where the surface 

temperatures are highest. 

 

Figure 2: Map showing the Study Area 
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Figure 3: 30-year (1982-2011) annual rainfall and Standardized Precipitation Index SPI for 
Sahelian (Djenne and San), Sudanian (Bougouni and Sikasso) and Sudano-Guinean (Odienne 

and Boundiali). 
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3.1.3. Topography and drainage 

The topography of the study area has low slopes (0-5%) and elevations ranging from 265m at the 

outlet to 702m at the highest zone. As a result the Southern parts represent the major contributor 

to the river flows of the basin. The Bani River has three main tributaries namely: Baoulé, Bagoé 

and Banifing. The Baoulé rises near Odienne in Cote d’Ivoire and passes just South of Bougouni 

district (Mali) and joins the Bagoé around Dioila. The Bagoé rises near Boundiali in Cote 

d’Ivoire and passes through the districts of Korhogo (Cote d’Ivoire), and Kadiolo, Kolondieba, 

Sikasso and joins the Baoulé in Dioila district (Mali). After this junction, the Baoulé-Bagoé 

flows around 20 km and is joined by the Banifing between Dioila and Bla districts. The Banifing 

flows from Banfora (Burkina Faso) and drains the regions around Yorosso, Koutiala and 

Sikasso. 

3.1.4. Soils 

Soils are one of the most valuable natural resource for society since they produce food, fibre and 

fodder, which are basic to our existence. In the Bani River Basin, soils are mainly ferralitic and 

lessivated with high sand and clay content. Sandy hillwash is often found at the surface while 

basal gravelis found in deeper layers of the profile. In the basement, the aquifers are found in two 

types of fissured formation: in the South-West, they have low permeability and a base layer of 

Birrimian mica-schists and metamorphic rocks (60%). In the North-East, they are made of 

Infracambrian sandstone (40%) so that the downstream area of the basin has higher permeability 

and might provide better support for groundwater flows (Brunet-Moret et al., 1986). 
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3.2. Agroclimatic Characteristics 

Three climatic zones, as seen in Figure 4, can be identified in the Basin in the Basin (Ruelland et 

al., 2008a):  

The first is the Sahel zone which has less than 800 mm rainfall per year. It is characterised by a 

single rainy season (June to September) and a total absence of rainfall between November and 

April. The type of vegetation found is arboraceous and/or scrubland steppe, with small trees or 

shrubs. In general, the grass cover is patchy and essentially made up of annual species, which are 

occasionally touched by bushfires.  

The second zone is the Sudanian, which has a rainfall between 800-1200 mm per year. This zone 

is characterised by a rainy season that increases in duration as one approaches the tropics (May 

to October with a maximum in July-August), has the abundance of grasslands. The height of the 

herbaceous cover ranges from 20cm to 1.5m. It consists particularly of Andropogons and 

Pennisetum, which are regularly affected by bushfires. Beside these grasslands, other vegetation 

formations such as shrubs, open woodlands savannas, clear forests, gallery forests, Croplands or 

fallow lands can be found. 

 The third zone is the Sudano-Guinean, with a total annual rainfall greater than 1200 mm and 

characterised by rainfall almost all year round but heavier from March to October, with a 

maximum in August-September. The Sudano-Guinea zone is constituted by a varied mosaic of 

different types of vegetation including those just mentioned as well as groves or wood islands of 

a height of 3m to 8m. The clear forests are made up of trees whose crowns almost join and below 

which land cover and herbaceous cover are very sparse. The wooded savannas and open 
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woodland savannas are formed of dense trees or sparse trees and high grass (especially of the 

Andropogons species) that are easily affected by bushfires. The gallery forests are located along 

the perennial rivers and in the permanently humid valleys or gullies.  

3.3. Problem of Land Degradation 

Human activity is generally organized around water resources, topography, pedology and the 

axes of communication. In this catchment, the population is considered as agro-pastoral (Collet, 

2010). Most of the agricultural areas are located in the Northern area of the basin where the 

hydrographical network is highly developed and a main road runs from Segou to Mopti (see 

Figure 4). In this area agriculture is mainly traditional, located around rivers and with typical 

crops like millet, sorghum, cotton, cassava and peanuts. In the South, the vegetation is denser 

and there are very few cultivated areas (Figure 4). Here, agricultural areas are rapidly expanding 

due to demographic pressure. Recent remote sensing studies (Ruelland et al., 2008b; 2009) 

showed that Sahelian and Sudano-Sahelian areas have been suffering from the rapid extension of 

Croplands and pastureland for 40 years now; this is a result of Mali's growing population. The 

population increased by nearly 3.6% per year according to the report of the last census (RGPH, 

2009). Deforestation has also increased as wood and charcoal remain the prime energy sources 

(Ruelland et al., 2011). Other land-cover changes caused by the growing population have been 

observed. For example soil degradation has sometimes led to increase in erosion (Ruelland et al., 

2011) and woodland has been replaced by pasture in dry season. 
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Figure 4: (a) Climatic zone and (b) Land Cover map of Bani river Basin extracted from the West 

Africa Land cover map at 1-km resolution using the SPOT 4 satellite (Mayaux et al. 2003). 
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4. MATERIALS AND METHODS 

4.1.Introduction  

The methodology of the study could be presented in two (2) major steps. These include the 

description of the datasets used and their pre-processing in the first step and the data analysis in 

the second step.  The next sections give the details about the whole process.   

4.2. Data used in the study and their pre-processing 

This study used rainfall data from meteorological station as well as satellite data from multiple 

sensors. The pre-processing concerned the assessment of gauge rainfall data and updating for 

missing value, the generation of time-series for both Normalised Difference Vegetation Index 

(NDVI) and Rainfall (RF) and geometric correction of Landsat data collected.  

4.2.1. Climate data and their preparation 

The climatic data used in this study are monthly rainfall from rain gauge stations throughout the 

basin. These data have been completed using satellite rainfall estimate from Tropical Rainfall 

Measurement Mission (TRMM 3B43) product. The details are as follows in the section below. 

4.2.1.1. Gauge rainfall data 

Rainfall data were retrieved from the annual statistics by the National meteorological services of 

Mali, Burkina Faso and Cote d’Ivoire. These data contain monthly mean records of 40 

meteorological stations in or around the study area during the period from 1982 to 2001.  
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The monthly rainfall is used for the analysis (monthly mean rainfall total amount in mm). The 

quality of the data was assessed and missing values were either replaced by the long-term mean 

for the missing month or value from the nearest station. The climate stations are irregularly 

distributed over the study area but represent most broad land cover classes. The mean 

characteristics of the climate stations are shown in Table 1.  

Table 1:  Geographical characteristics for the meteorological stations used in the study (1982-
2001 growing season mean rainfall) 

Stations Country 
Longitude 

(dd.) 

Latitude 

(dd.) 

Altitude 

(m) 

Mean rainfall 

(mm) 

Bouguni ML -7.5 11.42 361 1075.87 

Segou* ML -6.15 13.4 288 618.57 

Kadiolo ML -5.77 10.55 348 1044.18 

N'tarla ML -5.75 12.7 327 794.07 

Sikasso ML -5.68 11.35 379 1054.41 

Koutiala ML -5.47 12.4 360 818.85 

San ML -4.9 13.28 291 638.86 

Dioila ML -6.8 12.48 318 779.65 

Djenne ML -4.57 13.9 270 524.29 

Yanfolila* ML -8.15 11.18 364 1117.15 

Mahou ML -4.63 12.13 340 832.19 

Ke-Macina* ML -5.37 13.95 278 513.89 

Kalana* ML -8.2 10.78 393  1055.6 

Beleko ML -6.42 12.48 305 742.38 

Kimparana ML -4.93 12.83 308 718.71 

Sofara* ML -4.23 14.02 273  542.46 

Dionkele N.* BF -4.82 11.77 342  917.80 

Kignan ML -6.02 11.85 347 886.92 

Bobola Z. ML -4.98 12.53 321 805.35 

Fana ML -6.95 12.78 334 763.52 

Misseni ML -6.08 10.32 343 1060.66 

Cinzana ML -5.97 13.25 284 643.77 

Manakoro ML -7.45 10.45 359 1074.66 

Kolondieba ML -6.9 11.1 331 1029.16 

Konobougou* ML -6.76 12.92 330 721.79 

Bla ML -5.77 12.95 292 685.06 
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Klela ML -5.67 11.7 319 914.77 

Loumana* BF -5.35 10.58 322  1083.35 

Odienne CI -7.57 9.5 423 1240.05 

Samo R.* BF -4.93 11.4 363  1012.01 

Kourouma* BF -4.8 11.62 340  965.09 

Dogo B. ML -7.33 11.88 375 994.17 

Tansila* BF -4.38 12.42 439  857.00 

Koumantou ML -6.85 11.42 347 985.34 

Boundiali CI -6.47 9.52 403 1172.72 

Farako ML -5.48 11.22 424 1050.44 

Filamena ML -7.95 10.5 417 1298.01 

Tengrela CI -6.4 10.48 376 1044.55 

Kouto CI -6.42 9.9 368 1078.31 

Minignan CI -7.83 10 398 1178.47 

* Stations outside the catchment in a buffer of 20 km, ML=Mali, BF= Burkina Faso, CI= Cote d’Ivoire. 

4.2.1.2.Gridded rainfall data 

Mean monthly rainfall data from the TRMM was used in this study. The TRMM instrument 

orbits at an altitude of around 400-km with an inclination of 35° and an orbital period of around 

92.5 minutes, completing approximately sixteen orbits each day (Fleming et al., 2011). The 

primary objective of TRMM is to measure rainfall and energy exchange over the tropical and 

subtropical regions of the world, in particular covering the oceans and unsampled land areas 

(Kummerow et al., 1998, 2000). TRMM provides a variety of products to meet the needs of 

different users. The level 3 products, which are space-time grids representing average rates of 

rainfall over different time scales, and the TRMM (e.g. Huffman et al., 1995; Kummerow et al., 

2000; Huffman et al., 2007) is used in this work. It is a time-series of monthly average rainfall 

(in mm−1, product code 3B43), inferred from data provided by multiple satellites in addition to 

TRMM, as well as rain gauge data provided by the Global Precipitation Climatological Centre 

(GPCC), produced by the German Weather Service and the Climate Assessment and Monitoring 
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System (CAMS) produced by the NOAA. The satellite data is provided by two types of sensors: 

(1) passive microwave data collected by various Low-Earth Orbiting (LEO) satellites, including 

TRMM, the United States (US) Defence Meteorological Satellite Program satellites, and the 

NOAA satellite series; and (2) infrared data collected by an international constellation of 

geosynchronous satellites (Kummerow et al., 2000). The TRMM satellite itself has multiple 

sensors, the most important being the TRMM precipitation radar (TRMM-PR), the passive 

TRMM microwave imager (TMI), and the visible and infrared scanner (VIRS). Each of these 

provides products in its own right for the scientific community. However, the interest of this 

study is only in the 3B43 product because it has been found to be more representatives (e.g. 

Nicholson et al., 2003, Fleming et al., 2011). The 3B43 data is provided as Hierarchical Data 

Format (HDF) on a 0.25° (c.27.8-km) grid resolution that covers the globe between latitudes 

50°N to 50°S. Improving the TRMM products is an ongoing process with superior versions of 

the various products released when appropriate (e.g. Shige et al., 2006).  

4.2.1.3. Generation of rainfall times-series for the study period 

Since the rain-gauge datasets were not available for the stations used up to the year 2000 because 

of many problems, (i.e. political crisis in Cote d’Ivoire since 2002), the satellite estimated 

rainfall was used to complete the rainfall time-series for this study. The monthly rainfall data 

(mm) obtained from the TRMM instrument were compared to the in situ rain-gauge 

measurement for the overlapping time period 1998 to 2002 for 40 meteorological stations. The 

correlation coefficient (r) of the rainfall between the TRMM and rain-gauge data obtained for 

each month is significant (greater than 0.5) for all the stations. This indicates a strong correlation 
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between the two datasets. The rainfall data for the period 2002-2011 were generated using the 

following regression equation developed by Almazroui, (2011):              

)( TRMMRFRFEstimated RFmcRF                                  (1) 

Where RF.Estimated is the rainfall to be estimated, m.RF is the slope, c.RF is a constant and RFTRMM 

is the detected rainfall. The results showed a good linear relationship between gauge rainfall and 

TRMM data with a correlation coefficient up to 0.8 for all the stations used in this analysis. 

4.2.1.4.Preparation of gridded rainfall data 

Rainfall data have been used to interpolate a 0.07˚ gridded (8-km) monthly rainfall time-series 

for the period from 1982 to 2012. The Inverse Distance Weighting (IDW) method was used in 

this study. This method which was found to be the most accurate for the area (Ruelland et al., 

2008b) estimates values at unsampled points by the weighted average of observed data at 

surrounding points. This then can be defined as a distance reverse function of each point from 

neighbouring points (Teegavarupu and Chandramouli, 2005). That means by using a linear 

combination of values at a known sampled point, values at un-sampled points can be calculated. 

IDW relies on the theory that the unknown value of a point is more influenced by closer points 

than by points further away (Ly et al., 2011). The weight λi can be computed by: 
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Di is the distance between sampled and un-sampled points. The d parameter is specified as a 

geometric form for the weight while other specifications are possible. This specification implies 

that if the power d is larger than 1, then the distance-decay effect will be more than proportional 

to an increase in distance, and vice versa. Thus small power d tends to give estimated values as 

averages of observed values in the neighbourhood, while large power d tends to give larger 

weights to the nearest points and increasingly down-weights points further away (Lu and Wong, 

2008). Using a power value of 2 for daily and monthly time steps, 3 for hourly and 1 for yearly 

would appear to minimize the interpolation errors (Dirks et al., 1998). Furthermore, the power d 

is usually set to 2, following Lloyd (2005) and hence inverse square distances are used in the 

estimation. Consequently a power value of 2 was adopted for IDW and the gridded rainfall data 

were made by interpolation based on the longitude and latitude in this study. 

4.2.2. Satellite data 

The satellite data collected and used in this study are the 15-day Global Inventory Monitoring 

and Modelling Systems (GIMMS), the 10-day Satellite pour l’Observation de la Terre 

Vegetation Product (SPOT-VGT) and 30 m resolution Landsat imageries.    

4.2.2.1. Data of coarse resolution 

The most recent studies of changes in vegetation activity at global or regional scales have been 

based on the use of data time-series from AVHRR launched by the NOAA in 1981. The sensor 

has given a continuous spatial cover of the entire earth area on a regular frequency. The coarse 

spatial resolution (1-16 km) and fine temporal frequency have made products from NOAA 

AVHRR indispensable for use in environmental studies on regional to global scale. AVHRR 

derived data have been successfully used for monitoring vegetation activity and environmental 
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changes (Xu et al., 2012), detection of droughts (Bayarjargal et al 2006; Bajgiran et al., 2008), 

desertification and land degradation studies (Hountondji et al., 2006; Fensholt et al., 2013), 

estimation of El-Nino Southern Oscillation (ENSO) and impact on vegetation cover (Anyamba 

and Tucker, 2001; Erasmi et al., 2014). This study used a 15-day GIMMS NDVI dataset 8-km 

grid resolution derived from the NOAA AVHRR sensor, and a 10-day SPOT VGT NDVI 1-km 

grid resolution. Satellite data used and their characteristics are shown in Table 2. 

Table 2: Satellite data used in the study and their characteristics 

Satellite 

system 

Sensor Spatial 

Resolution 

Temporal 

 Resolution 

Equatorial 

Crossing 

Time-period 

Acquisition 

date 

Field of 

View 

NOAA AVHRR 8 000m 15 day ~9 AM- ~6PM 1982-2006 ±55.4˚ 

SPOT  VEGETATION 1 000m 10 day 10:30 AM 1998-2011 ±101˚ 

 

Landsat 

TM 30m 16 days 9:30 AM -10AM 2009/2010  

ETM+ 30m 16 days 10AM - 10:15AM 1999/2000  

TM 30m 16 days 9:30 AM -10AM 1984/1986  

For the purpose of this study monthly averages NDVI values were computed from the 15-day 

GIMMS and 10-day VGT composites to match the monthly temporal resolution for rainfall 

dataset. Monthly data sets were generated using a Maximum Value Composite (MVC) 

procedure, which selects the maximum NDVI value for every pixel (Holben, 1986). This 

procedure is used to reduce noise signal in NDVI data due to clouds or other atmospheric factors. 

The raw data of the two datasets are converted into the -1 to +1 range using the following 

formulae:  
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10000/)( rawGIMMSNDVI                                           (3) 

and 

0.1 - 0.004)(RAW)( VGTSPOTNDVI                         (4) 

4.2.2.2. Fine resolution data 

The Landsat sensor was specifically designed for studies such as land cover mapping. Essentially 

detection of changes in land cover involves the ability to quantify temporal differences using 

multi-temporal data sets. One of the major applications of remotely sensed data obtained from 

earth orbiting satellites is change detection because of repetitive coverage, fine spatial resolution, 

and consistent image quality. For this purpose datasets from two Landsat sensors have been used. 

The Landsat Thematic Mapper (TM) sensor launched in 1982 is an upgrade of the Multispectral 

Scanner Subsystem (MSS) on which efforts were made to incorporate improvements into a new 

instrument. The TM instrument is therefore based on the same technical principal as the MSS, 

but with a more complex design as it provides finer spatial resolution, improved geometric 

reliability, greater radiometric detail and more detailed spectral information. The MSS has four 

broadly defined spectral regions whereas the TM has seven, customized to record radiation of 

interest to specific investigations (Campbell, 1996). On the other hand Landsat Enhanced 

Thematic Mapper Plus (ETM+) sensor carried by Landsat 7, launched in 1999, is an offshoot of 

the TM. The ETM+ sensor offers several enhancements over the Landsat 4 and 5 TM sensors, 

including increased spectral information content, improved geodetic accuracy, reduced noise, 

reliable calibration, the addition of a panchromatic band, and improved spatial resolution of the 

thermal band. The same resolution as the TM bands 1-5 and 7 apply for the ETM+ (Masek et al., 

2001).  
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These imageries were used to check out changes in surface features over the last three decades. 

Concerning the information extraction from the Landsat data, this study was mainly interested in 

identification of changes in spatial patterns of LULC in the study area. Pre-processing of the 

Landsat dataset included common procedures of satellite data treatment such as radiometric and 

geometric correction, rectification and co-registration of all images.  

4.2.2.3. Generation of NDVI time-series data 

Following the concept of Yin et al (2012) and Song et al (2010), a correlation analysis to test the 

linear relationship between different datasets is conducted. SPOT VGT time-series data have 

been spatially resampled to meet the coarser 8-km resolution of GIMMS NDVI time-series by 

spatial averaging. Next representative land cover classes are selected using the Global Land 

Cover 2000 (GLC) map. These land cover classes were: Shrublands, Cropland, Woodland, 

Forest and Savannah. Thirdly the pixel-wise linear correlation coefficient (r) between monthly 

VGT and GIMMS for selected pixels is then calculated for the overlapping period of 1999-2006. 

Lastly a 30-year time-series dataset is generated using GIMMS 1982-2000 and VGT 2001-2011 

(Zhang et al., 2013). 

4.2.2.4.The Global Land Cover 2000 and Globcover 2009 data 

Land cover maps created by Global Land Cover project, whose aims to create a better land cover 

product for the whole globe (Latifovic et al., 2004), show the different types of vegetation as 

well as the surfaces without vegetation to be found in Africa and elsewhere. The dataset used for 

this map were acquired from near to daily SPOT 4 satellite observations. The period of 

observation for the map used in this study covers the interval between November 1999 and 

December 2000 (Fritz et al., 2003; Fritz and Belward, 2004; Mayaux et al., 2003). The 
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vegetation and non-vegetation classification for this map was based on the Land Cover 

Classification System (LCCS) of the Food and Agricultural Organisation (FAO) (Di Gregorio, 

2005). Each class is specifically connected with one land cover type falling into the following 

categories: forests, woodlands, shrublands, grasslands, agricultural lands, bare soil, cities and 

water bodies. These classification results are used in many ecological applications (Defries and 

Townshend, 1999; Kerr and Ostrovsky, 2003; Lu and Weng, 2007). Global land cover 2000 

(Bartholome and Belward, 2005) is a vegetation classification map with a 1-km resolution. In 

order to respond to the dynamics of land cover in a changing environment, other maps of this 

kind have been published, using different methods and satellite data from different sensors 

(Herold et al., 2008). These maps are: International Geosphere-Biosphere Programme (IGBP) 

Discover (Loveland et al., 2000), the Moderate Resolution Imaging Spectroradiometer (MODIS) 

land cover product (Friedl et al., 2002) and University of Maryland (UMD) land cover product 

(Hansen and Reed, 2000). This global product originally contains 20 land cover classes and was 

reclassified into 7 classes (Figure 5): Forest, Woodland, Savannah, Shrublands, Grassland, 

Cropland, and Water bodies are considered. 

Globcover land cover product is the result of the European Space Agency (ESA) Globcover 

project. The objective is the generation of a land cover map of the world using an automated 

processing chain from the 300-m Medium Resolution Imaging Spectrometer (MERIS) time-

series. This project was started in April 2005 by an international consortium and based on 

abundant feedbacks and comments from ESA internal assessment and a large group of partners 

and end users: Joint Research Centre (JRC), Food and Agricultural Organisation (FAO), 

European Environment Agency (EEA), United Nation Environment Programme (UNEP), Global 

Observation of Forest and Land Cover Dynamics (GOFC-GOLD) and IGBP. The Globcover 
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global land cover dataset 2009 contains different land cover classes at 300m ground resolution. 

The land cover map is derived by an automatic and regionally-tuned classification of a time-

series of global MERIS Fine Resolution (FR) mosaics for the year 2009. The global land cover 

map counts 22 land cover classes defined with the United Nations (UN) Land Cover 

Classification System (LCCS). The quality of the Globcover product is highly dependent on the 

reference land cover database used for the labelling process and on the number of valid 

observations available as input (Globcover 2009). 

 

Figure 5: Land Cover map of the Bani River Basin. In red boxes: samples extraction area for 
NDVI comparison (extracted from GLC-2000 map, Mayaux et al. 2003 modified by sstraore for 

this study). 
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4.2.2.5. Ground truth  

During November 2013 to January 2014 corresponding to the end of harvest period in the study 

area, the field data collections were conducted. The first (in November) was allotted to 

preparatory field work (reconnaissance survey), while the second (in January) was the major one.  

By using a Trimble Juno SB Global Positioning receiver (±3-meter positioning accuracy in real 

time), 20 grounds control points (GCPs) per reference site were collected. Although the dates of 

field work did not coincide with the dates of images acquisition (the field work was conducted in 

December and January 2014 and the images were acquired in November –December for the 

respective periods) the collected data were used to determine the major LULC for the area and to 

classify the images. The training sites were distributed throughout the study area taking into 

account the main categories. 

4.2.2.6. Ancillary data 

Ancillary data were used to support the classification. LULC maps from the Project Inventories 

of Ligneous / Terrestrial Resources (PIRL/PIRT) of Mali produced between 1984 and 1990 

using Landsat TM and SPOT data were scanned and geo referenced. These maps of 1/200,000 

scale, which were generated using topographic maps, SPOT imagery and reference data from 

ground survey contain helpful information for land survey and image classification for the area.  

High resolution Google imagery, expert and local knowledge were also used to support the 

image processing. 
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4.3.  Methodology of data analysis  

In this section data analysis procedure of the study could be presented in three (3) major steps. 

These include the analysis of vegetation distribution, variability and change in space and time, 

the investigation of the relationship between NDVI and rainfall and the linkage of vegetation 

productivity change to climate and anthropogenic activities. 

4.3.1. Analysis of vegetation distribution, variability and change in space and time 

This section assessed vegetation distribution and variability using analysis of variance, the 

departure from the long-term mean and the Mann Kendall trend. The details are presented as 

follows.       

4.3.1.1. Simple methods of descriptive statistic   

The analysis of spatial and temporal variability in vegetation cover was based on the use of 

variables of descriptive statistic. This statistical methods and variables are widely used and 

published. The following statistical variables and statistical measures were used: NDVI Mean, 

NDVI Standard deviation and NDVI Coefficient of Variation. The NDVI Mean represents the 

average value of each pixel during the study period. The NDVI Standard deviation (STD) is the 

root mean square (RMS) deviation of the NDVI time-series values from their arithmetic mean. It 

is a measure of statistical dispersion, measuring the spread of NDVI values. The NDVI 

Coefficient of Variation (CoV) represents the dispersion of NDVI values relative to the mean 

value. A positive change in the value of a pixel-level CoV over time relates to increased 

dispersion of values, not increased NDVI; similarly a negative CoV dispersion means decreasing 
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dispersion of NDVI around mean values not decreasing NDVI. The trends in CoV may reflect 

land cover change. 

4.3.1.2.NDVI departure 

Long-term time-series image data provides an opportunity to assess quantitatively and 

qualitatively the vegetation cover status in the past and present. Moreover trends can be used to 

map and assess the ecosystem processes (Nemani and Steve, 1997). An average of 30-year 

NDVI data is computed for each image pixel and departure from its average is then calculated 

for each participating year in order to evaluate a yearly vegetation growth rate or greenness 

visually and statistically. The departure from average is calculated using the algorithm developed 

by Burgan et al., 1996.                           

100 avidep NDVINDVINDVI                                    (5) 

Where NDVIdep is the NDVI departure for a particular year; NDVIi is the Annual NDVI integral 

for year i NDVIav is the NDVI average for the period. 

4.3.1.3. Calculation of time-trends   

Ordinary Least Squares (OLS) regression is the most common method applied for trend analysis 

in long image time-series. However four basic assumptions affecting the validity of trends 

summarized by OLS regression are often violated: i) all the Y-values should be independent of 

each other; ii) the residuals should be random with zero mean and iii) the variance of the 

residuals should be equal for all values of X (De Beurs, 2005). Since time-series of biophysical 

parameters are temporally correlated, OLS regression retrieved trends are not reliable. 
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The approach used in this study relies on Mann-Kendall monotonic trend tests, which have been 

applied in a few previous studies of time-series of remotely sensed data (De Beurs and Henebry, 

2004a; De Beurs and Henebry, 2004b; De Beurs and Henebry, 2005a; De Beurs and Henebry, 

2005b). There are two advantages of using this test. First, it is a non-parametric test and does not 

require the data to be normally distributed. Second, the test has low sensitivity in abrupt breaks 

due to inhomogeneous time-series (Tabari et al., 2011).  Any data reported as non-detects are 

included by assigning them a common value that is smaller than the smallest measured value in 

the data set. According to this test, the null hypothesis H0 assumes that there is no trend (the data 

is independent and randomly ordered) and this is tested against the alternative hypothesis H1, 

which assumes that there is a trend (Oznos and Bayizit, 2003). 

The basic principle of Mann-Kendall (MK) tests for trend is to examine the sign of all pair wise 

differences of observed values (Libiseller and Grimvall, 2002). A Univariate form of such tests 

was first published by Mann (1945), and the theory of multivariate MK tests is due to Hoeffding 

(1948), Kendall (1975), and Dietz and Killeen (1981). During the past two decades, applications 

in the environmental sciences have given rise to several new MK tests. Hirsch and Slack (1984) 

published a test for detection of trends in serially dependent environmental data collected over 

several seasons. 

The MK statistic for monotonic trend in a time series {Zk, k= 1, 2....n} of data is defined as: 
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If no ties are present and the values of Z1, Z2......Zn are randomly ordered, this statistic test has 

expectation zero and variance: 
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Furthermore T is approximately normal if n is large (n >10) – (Kendall, 1975). 

Finally the null trend hypothesis can be rejected at α% confidence level if T (in absolute value) is 

greater than a corresponding threshold, which value is z·√Var (T), retrieved from the standard 

normal distribution table. The level of significance is represented by α and Z and the Z-scores 

and are represented as follow: Z= ±2.576 where α = 0.001, Z= ±1.960 where α =0.05 and Z= 

±1.645 where to α =0.1. 

Besides the Z statistic, the test delivers the p-values of the trend statistic, which yields an 

estimated probability that the observed trend could have occurred by chance. It expresses the 

trend significance. The lower the p-value, the higher is the likelihood that there is a trend in the 

data. In this work, a threshold for the p-value of 0.07 was used to map exclusively strong 

significance trends. 

The Theil-Sen method is also used to estimate the trend strength in NDVI time-series. This 

procedure calculates the linear trend at each pixel using all pair wise combinations of images in 
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time and takes the median of all slopes to create a slope image for each of the greenness 

parameters (Hoaglin et al., 2000). The Theil-Sen slope represents the overall trend of the series 

and is not affected by outlier values, as long as the number of outliers is less than 0.29 times the 

total number of observations in the series (Hoaglin et al., 2000). For example, a conversion of 

forest to urban land cover within one 8-km by 8-km pixel grid would register as potential change 

if dominant (in this case decreasing) trends of NDVI values have persisted for at least 29% (∼8 

out of 26 observations) of total observations in the time-series (Neeti et al., 2012). 

4.3.2. Investigating the relation between NDVI and rainfall  

This section investigates the relationship between NDVI and rainfall. The interannual anomalies 

between them were also compared. The subsequent sections provide detail analysis.  

4.3.2.1.NDVI and Rainfall Greening anomalies 

Measurements from different distributions, describing different variables and populations, can be 

standardised (or normalised) in order to provide a way of comparing them that includes 

consideration of their respective distributions. This is carried out by transforming the original 

observations into Z-scores which are expressed as standardized deviations from their mean. The 

z-score distributions always have a mean of 0 and a standard deviation equal to 1 (Abdi, 2007).  

The z-score, also called the standard score, the normal score, the standard normal variate, the 

standard normal deviate or the standardized score is a dimensionless quantity. It is derived by 

subtracting the population mean from an individual raw score and then dividing the difference by 

the population standard deviation (Snedecor and Cochran, 1980; Hammond and McCullagh, 

1982). The z-score indicates how many standard deviations are above or below the mean. In 
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other words, it represents the distance between the raw score and the population mean in units of 

the standard deviation. When the raw score is below the mean Z is negative and positive when 

above the mean. The standard score is: 

                      

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z                                                 (9)                      

Where                               x is a raw score to be standardised 

                                         σ is the standard deviation of the population, and 

                                        µ is the mean of the population 

The annual variability of NDVI and rainfall as well as their spatio-temporal relationship was 

investigated by calculating yearly NDVI and rainfall anomalies to allow for comparative analysis 

expressing both variables in terms of data converted to z-scores. The z-scores were calculated on 

pixel basis to assess each pixel annual deviation from its long-term mean. 

The anomalies (i.e. z-scores) have certain advantages over absolute values such as annual 

integrated NDVI and total annual rainfall. First of all and due to the standardization procedure 

the z-scores represent an efficient way to visually compare the spatial relationship between 

NDVI and rainfall. Further standard analysis of the relationship between NDVI and rainfall tend 

to be influenced by the presence of spatial auto-correlation (i.e. the phenomenon where 

locational similarity is matched by value similarity), which in essence means that they are merely 

expressing an underlying geographical relationship rather than a true relationship of dependence. 
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The z-scores methodological approach provides a very robust and valid estimate of temporal 

(rather than spatial and geographical transect driven) NDVI and rainfall variability. 

4.3.2.2. Correlation analysis between rainfall and NDVI 

NDVI time-series data for each station was extracted from 30-year NDVI time-series images. 

Correlation coefficient between seasonal mean NDVI and seasonal integral was calculated for 

each station. Generally, there is a time lag between rainfall events and response of vegetation to 

such event. The time interval between a precipitation event and the time when the precipitation 

reach a plant roots and affect growth vary from 1 to 12 weeks depending on the vegetation type 

(Li et al., 2002). Seasonal integral rainfall has been used in this analysis in order to eliminate the 

time lag.  

4.3.3. Linking change in vegetation productivity to climate and LULC change 

Many studies have shown a strong relationship between inter-annual changes in vegetation 

activity and precipitation. Thus it is clear that climate signal in NDVI time-series expected to be 

very strong. Climate should have a substantial control on NDVI through annual precipitation. 

This control however should be predictable in every point of the study area where the 

relationship between NDVI and climate change are statistically significant. Identification and 

quantification of climate signals should help to discriminate between the two major factors of 

vegetation change being climatic and anthropogenic. A number of recent studies have already 

developed monitoring systems for land degradation assessment that separate the dynamics of 

vegetation cover driven by human activity and climate (Li et al., 2004; Evans and Geerken, 

2004; Wessel et al., 2004 and 2007; Propastin et al, 2008; Landmann and Dubovyk, 2014; Zhang 
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et al., 2014). These monitoring system for degradation assessment using remote sensing data are 

not globally suitable. In this study a system of discrimination between climate and human 

driving forces in vegetation change has been utilised. This simple system is based on the concept 

of synchrony and asynchrony of time-trends in vegetation and climate factors. This concept is 

based on the framework developed by Propastin et al. (2008) (Figure 6).  
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Figure 6: Scenarios described to illustrate how the combine used of NDVI and precipitation 

time-series may help to detect a vegetation cover being improved or degraded. A thick broken 

line (Green) and a thick unbroken line (blue) represent respectively NDVI and precipitation 

trends. (After Propastin et al., 2008) 

 Figure 6-a displays improving vegetation cover caused by increase in precipitation; Figure 6-b 

degradation of vegetation cover caused by human impact; Figure 8-c recovering vegetation cover 

caused by human impact and Figure 6-d vegetation degradation due to climate change. In Figure 

6-a, the upward trend in NDVI is synchronous to precipitation. Then, the observed improved 

vegetation cover will be due to increasing precipitation. In Figure 6-d, the downward trend in 

NDVI is synchronous to precipitation. Thus, the decreasing NDVI is driven by a decrease of 

d c 

b a 
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precipitation. In Figure 6-b and Figure 6-c, the trends are asynchronous. NDVI decreases even as 

precipitation increases for one case, and decrease of precipitation did not cause an improvement 

of vegetation cover for the other. This may be the cases when vegetation is recovering or 

degrading due to others factors than climate, probably human induced.   

4.3.3.1. Identification of climate and anthropogenic signals in the vegetation time-series 

Taking into account the relationship between rainfall and NDVI as the key factor for the method 

described earlier in Figure 6, the system will work only in an area where this relationship is 

strong and is statistically significant. Since this relation for this study area is weak, one cannot 

use this criterion for splitting climate and human-induced land degradation in the study area. 

This study combines analysis of long-term trend in vegetation, trend in rainfall, the NDVI 

coefficient of variation and its departure from the long-term mean to map vegetation productivity 

loss or recovery over the period (Table 3). For example, if a pixel shows positive trend in NDVI 

and rainfall with a positive departure from its long-term mean and low variability, this is 

considered to indicate a rainfall driven change vegetation cover. But if the NDVI shows positive 

trend and negative rainfall trend with low variability and a positive departure from long-term 

mean, then it could be considered as a human-impacted recovery. Contrary, if a pixel shows a 

negative NDVI trend and a positive trend in rainfall and negative departure from its long-term 

mean, this could be considered as an anthropogenic-induced degradation, whereas a negative 

NDVI and negative rainfall trend and a negative departure from the long-term mean would 

indicate climatic-induce degradation. 
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Table 3 : Vegetation index and Rainfall characteristics for the subset selection 

Reference 

site # 

NDVI trend 

(p<0.07) 

Rainfall trend NDVI CoV  NDVI 

Departure 

1 

2 

3 

4 

- 

+ 

- 

+ 

+ 

- 

- 

+ 

15 % 

12 % 

6 % 

12 % 

Neg. (-0.22) 

Pos. (+1.43) 

Neg. (-2.50) 

Pos. (+3.13) 

 

4.3.3.2. Using Landsat data to verify land degradation/recovery for selected sites 

A fundamental goal of remote sensing analysis is the classification of an image or scene (Lusch, 

1999). Supervised classification is a widely used technique in satellite image processing (Forkuo 

and Frimpong, 2012) was used to produce LULC classes. The success of the method depends on 

the accuracy of training data as well as field investigation. Supervised classification is the 

procedure most often used for quantitative analysis of remote sensing image data (Richards and 

Jia, 2006). For the purpose of this study a supervised Maximum Likelihood Classification based 

on the spectral distances between different classes was used to quantify the change in land cover. 

Maximum likelihood classification is the most commonly used supervised classification method 

of remotely sensed imagery (Manandhar et al., 2009, Forkuo and Frimpong, 2012). It uses the 

mean and covariance matrix of each class. Sufficient training samples for each spectral class 

must be available to allow reasonable estimates of the elements of the mean vector and the 

covariance matrix to be determined. For an N dimensional multi-spectral space, at least N+1 

samples are required to avoid the covariance matrix being singular. Maximum classifier 
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algorithm computes these equations to classify the image based on training data for each pixel at 

specific location x: 

                   )()|()(
1

ii

M

i

wpwxpxp 


                              (10) 

Where: 

p(x) = Probability of finding a pixel from any class at location x;  M = Total number of class 

1…M; p(x| wi) = Probability that pixel at location x belong to class wi; p(wi) = Probability that 

class wi occurs in the image. 

The p (wi) is called prior probabilities since they are the probabilities with which class 

membership of a pixel could be guessed before classification. By comparison the p (x|wi) is  

posterior probabilities. Then the classification rule is: x ε wi if p(x|wi) p(wi) > p(x|wj) p(wj) for 

all j ≠ I 

4.3.3.3. Accuracy Assessment of the classification  

Accuracy assessment was performed for the three Landsat–based LULC maps. It is important to 

measure the reliability of the classification. This is achieved by making comparison between the 

image classification and validation data, often called ‘ground truth’ or ‘ground control’ data that 

represents verified landscape states and conditions (Weiss and Walsh, 2008). The Overall 

Accuracy and Kappa coefficient are routinely used to assess the accuracy of the classifications. 

The Overall Accuracy is calculated by summing the number of pixels classified correctly and 

dividing by the total number of pixels. The Kappa coefficient (k) is defined as:  
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With N being the total number of pixels in all the ground truth classes, 
kkX  is the sum of the 

confusion matrix diagonals and 
 

x
kk

X  is the sum of the ground truth pixels in a class times the 

sum of the classified pixels in that class summed over all classes.  

At the same time, producer’s accuracy and user’s accuracy were used to estimate the accuracy of 

each individual class. The producer’s accuracy results from dividing the number of correctly  

classified pixels in each category (on the major diagonal) by the number of training set pixels 

used for that category (the column total). This figure indicates how well training set pixels of the 

given cover type are classified (Lillesand and Kiefer, 1994). User’s accuracy is computed by 

dividing the number of correctly classified pixels in each category by the total number of pixels 

that were classified in that category (the row total). This Figure is a measure of commission error 

and indicates the probability that a pixel classified into a given category actually represents that 

category on the ground (Lillesand and Kiefer, 1994). The Accuracy assessment can be affected 

by samples number for each class. As the samples number increases, the accuracy assessment 

becomes more reliable (Richard and Jia, 1999). 

4.3.3.4. Change detection 

After performing the classification of the images for every year, a post-classification comparison 

change detection algorithm was used to determine changes in LULC over three intervals, 

namely: date1 to date2, date2 to date3 and date1 to date3. Post-classification comparison has 

been proven to be the most effective approach for change detection, because each image is 
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separately classified, thereby minimizing the problem of normalizing for atmospheric and sensor 

differences between two dates (Jensen, 2005). The post-classification approach provides ‘‘from–

to’’ change information, for which LULC transformations can be calculated. Cross tabulation 

analysis was carried out to analyze the spatial distribution of different LULC classes and LULC 

changes. The rate of land conversion was computed using this formula: 

               100
1

12
(%) 




AreaD

AreaDAreaD
Change                     (12) 

Change area = D2 –D1, where D1and D2 are the area of the target vegetation cover type at the 

beginning and the end of the study period, respectively. 
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5. ANALYSIS OF RAINFALL TIME-SERIES DATA 

5.1. Introduction   

The network of meteorological stations in the catchment is administrated by national 

meteorological services of Mali (Mali Meteorological Agency), Burkina Faso (General 

Directorate of Meteorology) and Cote d’Ivoire (Operating and Development Company of 

Airport, Aeronautical and Meteorological Data: SODEXAM). The number of meteorological 

stations in the study area is seventy (70). All of these stations, except the ones from Cote 

d’Ivoire, are part of the Interstate Committee for Drought Control in the Sahel (CILSS) rainfall 

network. The CILSS network consists of more than 650 rainfall gauges dispatched in nine (9) 

member countries. These gauges are managed by the national meteorological service for each 

country which report to the centre at the end of the rainy season for managing meteorological 

database.  

This study used only meteorological station in the catchment or at twenty kilometres in the 

boundary. In line with the objectives of this work, all stations with more than three years of 

missing data were removed from the analysis. The quality of the data is assessed and the gaps are 

filled by the long-term mean for each missing month. Finally rainfall data from 40 

meteorological stations (30 stations in Mali, 5 in Burkina Faso and 5 in Cote d’Ivoire) completed 

by the TRMM data were used and analysed. The linear relationship between gauge rainfall and 

TRMM data showed a good relationship between the two data with a correlation coefficient up 

to 0.8 for all the stations used in this analysis. Figure 7 presents this relationship for selected 

stations throughout the study area. From these total, 28 meteorological stations are located in the 

Sudanian zone, while 8 are in Sudano-Guinean zone and 4 in Sahel zone. The general 



 

50 
 

characteristics of these stations are listed the Chapter (4). The spatial distribution of the stations 

is shown in Figure 8. The stations are fairly distributed but the density is lower with a mean 

distance of about 40 kilometres between stations.  

 

   

     

Figure 7: Regression statistics for 3 stations: Macina and Sofara (North, Sahelian zone), 

Bougouni and Sikasso (Centre, Sudanian zone), Boundiali and Odienne (South, Sudano-Guinean 

zone). 
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Figure 8: Map showing the distribution of the meteorological stations used in the study. 

 

Modelling spatial pattern of mean seasonal rainfall time-series is shown in Figure 9. This result 

was obtained using IDW method considering the integral rainfall for the months April to October 

referred to AMJJASO representing the growing season. The rainfall in the study area is typically 

concentrated in the summer months, as a result, this study focussed only on this period. The 

relief has only a minor impact on the rainfall, thus, it has not been used in the modelling of the 

gridded rainfall series. The spatial distribution confirms the North-South gradient in the rainfall 
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pattern. The rainfall amount varies from less than 480 mm in the Northern area to greater 1200 

mm/ season in the Southern and differs from one year to another.  

 

Figure 9: (a) Spatial variation of mean seasonal rainfall (1982-2011) and the Digital Elevation 

Model (b) for the study area. 

5.2.  Distribution of seasonal rainfall 

The rainfall distribution (Figure 10) is characterised by an increase in the amount of precipitation 

and a higher amount from June to September. The contribution of each month to the seasonal 

rainfall is different from one climatic zone to another. For most of the stations August rainfall 

account for more than 25%: 35% in Sahel zone, 26% in Sudanian zone and Sudano-Guinean 

zone. The July, August and September rainfall are critical to the total rainfall because they 
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account for more than 70% in the Sahel to 50% in Sudano-Guinean zone. The contribution of 

April and May are low in Sahel, 1 to 5% and about 7% in Sudano-Guinean zone. 

 

 

 

 

Figure 10: Distribution of rainfall in the growing season for the period 1982-2011 for the Sahel 

(Djenne and San), Sudanian (Bougouni and Sikasso) and Sudano-Guinean (Boundiali and 
Odienne).  
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5.3. Statistical analysis of rainfall data  

5.3.1. The inter-seasonal variability of precipitation   

The arid and semi-arid climates are characterized by high variability of climate parameters from 

one year to another, especially high rainfall variability. The high variability in precipitation 

causes high variability of ecosystem conditions and is the main cause for the difficu lties of 

vegetation and animal survival in the dryland. The variability of rainfall is illustrated with the aid 

of standard deviation (STD) and coefficient of variation (CoV). In this study, standard deviation 

and coefficient of variation were computed for precipitation data for each station. The spatial 

distributions of these parameters are shown in Figure 11 and Table 4 for the station level 

statistic. Throughout the area, the variability in precipitations differs from one area to another.  

Table 4: Rainfall STD and CoV at station level (only stations completely inside the basin are 

presented here) 

Station Pays STD CoV Station Pays STD CoV 

Bougouni ML 151.71 0.15 Misseni ML 108.67 0.1 

Kadiolo ML 124.88 0.14 Cinzana ML 26.91 0.04 

N'tarla ML 118.66 0.18 Manakoro ML 86.92 0.09 

Sikasso ML 94.8 0.1 Kolondieba ML 12.38 0.01 

Koutiala ML 135.8 0.19 Bla ML 91.06 0.16 

San ML 95.79 0.18 Klela ML 14.66 0.01 

Dioila ML 26.29 0.03 Odienne CI 232.78 0.18 

Djenne ML 49.46 0.13 Dogo B. ML 80.96 0.08 

Mahou ML 102.3 0.16 Koumantou ML 57.86 0.06 

Beleko ML 75.21 0.11 Boundiali CI 92.43 0.1 

Kimparana ML 30.04 0.05 Farako ML 82.07 0.09 

Dionkele N. BF 109.74 0.13 Filamena ML 47.82 0.03 

Kignan ML 106.14 0.11 Tengrela CI 118.77 0.11 

Bobola Z. ML 86.08 0.12 Kouto CI 104.08 0.11 

Fana ML 12.25 0.02 Minignan CI 22.93 0.02 
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Figure 11: (a) Standard deviation of Rainfall and (b) coefficient of variation of seasonal rainfall 

(RF) for the period from 1982 to 2011 

The coefficient of variation of the growing season across the study area is spatially shown in 

Figure 11-b. Throughout, the study region the variability in precipitation is mixed. It decreases 

from a mean value of 25% mainly from the North to 0.03% in West and South West.  From 30 

stations considered in this analysis only seven exhibit a high variability. Most of them are located 

in the northern part, except the station of Odienne in South.    

5.3.2. Change in decadal rainfall 

The rainfall time-series for the period from 1982 to 2011 (30 years) is divided into the following 

three sub-sets: 1982-1991 (P1), 1992-2001(P2) and 2002-2011 (P3). These sub-sets are not 
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following any particular climatic period, even though each include years with above and below 

normal rainfall condition. The mean rainfall for the period (in mm), the standard deviation and 

the coefficient of variation is computed using the total seasonal rainfall (Table 5).  

Table 5: Differences in the mean and coefficient of variation of annual rainfall  

Stations* Mean 
RF P1 

CoV P2-P1 
Mean 
RF P2 

CoV P3-P2 
Mean 
RF P3 

CoV P3-P1 

Bougouni 1093.24 16.12 -12.66 1080.58 19.31 -26.78 1053.80 18.44 -39.44 

Kadiolo 931.24 14.60 132.95 1064.19 16.12 72.93 1137.12 9.83 205.88 

Ntarla 679.10 14.97 176.85 855.96 24.03 -8.81 847.15 19.38 168.05 

Sikasso 978.75 13.97 75.75 1054.50 20.09 75.49 1129.99 12.48 151.25 

Koutiala 762.29 18.88 75.97 838.25 26.05 17.75 856.00 21.23 93.71 

San 618.43 21.84 7.21 625.64 25.37 46.88 672.52 21.23 54.09 

Dioila 746.79 17.46 25.73 772.53 27.86 47.09 819.62 23.10 72.82 

Djenne 448.61 21.48 86.73 535.34 22.26 53.57 588.91 24.63 140.30 

Mahou 734.05 16.09 127.55 861.60 19.05 39.31 900.92 17.32 166.87 

Beleko 666.79 9.68 108.49 775.28 22.69 9.79 785.07 23.20 118.28 

Kimparana 667.16 15.51 56.37 723.52 27.57 41.91 765.44 19.67 98.28 

Kignan 881.01 10.29 30.18 911.19 26.14 -42.63 868.56 16.44 -12.45 

Bobola Z. 720.35 15.45 99.12 819.46 22.40 56.78 876.24 17.14 155.89 

Fana 713.80 10.09 57.97 771.77 26.94 33.24 805.01 21.02 91.21 

Misseni 1060.62 9.71 45.81 1106.44 16.56 -91.52 1014.92 12.67 -45.71 

Cinzana 601.50 11.89 89.55 691.05 22.28 -52.27 638.78 21.41 37.28 

Manakoro 1058.71 11.83 76.92 1135.63 17.86 -105.99 1029.63 19.37 -29.08 

Kolondieba 965.87 14.16 69.74 1035.61 15.64 50.38 1085.99 14.58 120.12 

Bla 610.57 14.49 117.11 727.68 17.13 -10.75 716.93 15.74 106.36 

Klela 846.48 12.02 85.96 932.44 11.97 32.96 965.39 14.42 118.91 

Odienne 1163.61 15.77 67.32 1230.93 15.73 94.66 1325.59 10.62 161.98 

Dogo B. 947.34 10.01 61.54 1008.88 15.83 17.40 1026.28 25.35 78.94 

Koumantou 977.43 11.81 -55.86 921.57 19.74 135.43 1057.00 16.89 79.57 

Boundiali 1121.51 16.77 108.85 1230.37 19.77 -64.08 1166.28 14.38 44.77 

Farako 951.18 11.52 95.55 1046.73 12.68 106.68 1153.41 12.59 202.23 

Filamena 1203.20 5.78 174.77 1377.97 15.75 -65.11 1312.86 20.61 109.66 

Tengrela 923.84 12.36 99.53 1023.37 24.60 163.06 1186.43 15.60 262.60 

Kouto 1070.10 11.61 34.04 1104.14 18.57 -43.45 1060.69 10.96 -9.41 
Minignan 

 
1178.50 

 
10.38 

 
78.89 

 
1257.39 

 
12.75 

 
-157.85 

 
1099.54 

 
20.02 

 
-78.96 

 

* Only Stations located within the catchment are presented here. 
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Comparing the periods P1 and P2, the seasonal rainfall amount showed an increase for all of the 

stations used except of Koumantou and Bougouni station where a decrease of 56 mm and 12 mm 

respectively where recorded. Between the second period P2 and the third period P3, the rainfall 

amount in 11 stations showed a decline in their seasonal total. 

5.3.3. Trends in rainfall time-series 

The seasonal precipitations over the study area for the period from 1982-2011 include drought 

year, normal years and to some extend also extremely dry condition. The seasonal series include 

the rainfall for the months April to October. The Mann Kendall test was applied to seasonal 

rainfall time-series for trend test and p-value was used for the strongly trend significance 

estimation. The spatial distribution of the Kendall tau (MK-z) and p-value of significance is 

shown in Figure 12. As shown in the result (Figure 12-a), the rainfall spatial pattern exhibits an 

increase for the majority of the area.  

The precipitation amount increased for about 17 mm during the study period for most of the 

rainfall station used. In contrast the results of significance test applied reveal only a few portions 

in the study area with a significant positive trend (p-value < 0.7) (Figure 12-b). These areas are 

the Northern, Eastern and Odienne area in the Southern corner.    
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Figure 12: (a) Mann Kendall trend in growing season rainfall and (b) Areas showing significant 

trend at p<0.07  

5.4. Discussion  

Climate is the most important determinant of vegetation density and dynamics within semi-arid 

ecosystems which are characterised by high inter-annual variability. The most important climate 

variable over West Africa is rainfall, and hence many sectors of the economy depend on water as 

a resource.  The high variability and change in African and especially West African rainfall have 

been investigated in several research studies (Le Barbé et al., 2002; Nicholson et al., 2000; 

Nicholson, 2013). This section examined the rainfall time-series in the study area and creates a 
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basis for further analysis of vegetation dynamic and its relationship with climatic factors 

represented by rainfall in this study. The spatial rainfall distribution, variability and trend over 

the 30-year have been investigated using an 8 km gridded rainfall time-series data for the study 

area. 

The precipitation is characterized by the seasonal movement of the Intertropical Convergence 

Zone (ICTZ) and the main factors influencing it distribution are associated with the sea surface 

temperature and the El Nino-Southern Oscillation (ENSO) (Koumare, 2014). The rain band 

resides offshore the Guinean coast during December to February when it is the weakest of the 

year. During the spring, as its moves onshore and strengthens, this rain band becomes part of the 

West African Monsoon (WAM). The evolution of the WAM rainfall undergoes several stages 

(Le Barbé et al., 2002). The first is the intensification of a quasi-stationary rain band along the 

Guinean coast during April to June. This is followed by a sudden change of the rain band 

northwards to the Sahelian region in late June and July (Sultan and Janicot, 2000), where it 

becomes quasi-stationary again until October. After that, the rain band weakens gradually while, 

in contrast to the sudden northward change in July, moving southwards smoothly to its weakest 

position offshore in the boreal winter. 

Rainfall in the study area is seasonal with most of the rain falling between April and October 

with the maximum occurring in August. The total rainfall varies across the catchment with the 

Southern area receiving 1200 mm per year while the Northern area receiving only 480 mm year 

for the period 1982-2011. For the spatial pattern of the entire study area, the variability in 

growing season precipitation amounts to 26%. For the individual station, the coefficient of 

variation ranged from 1% (Kolondieba station) to 19% (Koutiala station).  
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The results of trend analysis in rainfall time-series exhibited low statistic inference of trend for 

most for the area. Although all stations exhibited upward trend in growing season precipitation, 

only a few portion showed a trend, which were significant at p-value less than 0.07. These results 

are in agreement with Bégué et al. (2011), who observed a similar no significant rainfall trend in 

the same area during the period from 1982 to 2005 for almost the whole catchment.  
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6. TREND ANALYSIS IN NDVI TIME-SERIES DATA 

6.1. Introduction 

Trend is the overall temporal trajectory of an indicator. Time-trends are reference points that are 

easily understood by stakeholders and generally are not biased in an obvious way (O’Malley and 

Wing, 2006). The direction of trend can be increasing, decreasing, or stable. However, if a trend 

is not considered in regards to a reference, the results may be misleading (O’Malley and Wing, 

2006). The establishment of a benchmark and the subsequent analysis of trend allow assessment 

of ecological resilience i.e. the response and recovery of an ecosystem in relation to a 

disturbance (Westman, 1985). A time-series of data allows examination of specific 

characteristics of resilience including for example, elasticity (time to recovery) and amplitude 

(the magnitude of the initial departure of a measurement indicator from the benchmark state). 

Roughly 30-year duration of NDVI data is good to discriminate between significant changes due 

to variation caused by seasonal and interannual climatic variation. In this regard, the following 

sections investigates the long-term trend in vegetation dynamic in Bani river basin using a 30-

year (1982-2011) NDVI time-series data. 

There are many methods to investigate time-series data. The details were introduced in Chapter 

4. Considering the larger dataset, the study employs a MK trend test on monthly and annual 

NDVI time-series for the study period. 
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6.2. Comparison of GIMMS and SPOT VGT dataset for 1998-2006 

The linear modelling between the GIMMS and the SPOT VGT datasets using some reference 

land use / land cover types showed good relationship between the two dataset (Figure 13) with a 

mean correlation coefficient of 0.83 for the study area. The highest correlation (r   0.9) between 

GIMMS and SPOT VGT NDVI was found in savannah, whereas the lowest correlation (r   

0.75) was found in forest and Shrublands.  

 

Figure 13: NDVI seasonal profile of VGT (solid line) and GIMMS (dotted line) and correlation 

coefficient. 
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The GIMMS data explains about 79 to 85 % of the variance in SPOT VGT in very high 

correlation areas (Woodland, Savannah and Cropland) and about 55% in high correlation areas 

(Forest and Shrublands). 

6.3. Trends in monthly NDVI 

The Mann Kendall trend of long-term monthly NDVI value for the period 1982-2011 is shown in 

Figure 14. It can be seen from the map patches with increasing NDVI representing greening 

trend and patches with negative trend as a browning trend. Greening trend are mainly located in 

central parts as well as the Northern corner, whereas browning trend are sparse and located 

mainly in the North Western part.  

The Northern area of the catchment is characterised by an accumulation of pixels displaying 

significant negative trends, which might be triggered by two different processes: expansion of 

agricultural land and high population densities. The concentration of population and economic 

activities in this area has severely impacted local ecosystems. NDVI values are influenced by the 

loss of vegetation cover due to large clearing of vegetation for agricultural expansion. The 

region’s main agricultural products are cotton, sorghum, millet and maize. 

In contrast the Central part of the catchment is characterised by large patches of positive trend.  

Three types of land cover changes can be used to explain NDVI increases from Cropland or 

sparsely vegetated area to natural vegetation or from sparsely vegetated area to Cropland with a 

presence of an important number of trees in the agro-ecological system.  

Comparing the spatial trend patterns (Figure.14-a) with the aggregated land cover map (Figure 

14-b), reveals that most of pixels with browning trend are related to Woodland zone and or 
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mosaic of Cropland and savannah, while the pixels showing negative trend are located in areas 

dominated by Cropland for more than 70% of the area and with sparse vegetation.  The general 

trends of LULC change between 2000 and 2009 are shown in Table 6. These are extracted from 

moderate satellite data from the whole study area and as can be seen from Table 6, showing a 30 

% increase in Cropland the initial area and 89% increase in grassland increased for 89%. On the 

contrary the mosaic of savannah with Croplands, woodland and forest area decreased 

respectively by 11%; 8%; and 20% during the same period.  

 

Figure 14: (a) Mann Kendall Monthly NDVI and (b) Modified Globcover LULC map 2009 for 

the study area.  
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Table 6: LULC change from medium resolution data for the whole watershed  

 

Bare area 
(ha) 

Cropland 
(ha) 

Forest 
(ha) 

Grassland 
(ha) 

Mosaic  

Sav-Crp* 
(ha) 

Water 
(ha) 

Woodland 
(ha) 

2000 - 2956607.72 1192057.62 197261.52 4498913.06 3183.19 4129276.80 

2009 9113.64 3829951.04 948611.86 372333.00 4011439.98 1320.76 3790506.22 

Change (%) - 29.54 -20.42 88.75 -10.84 -58.51 -8.20 
* Savannah-Cropland 

6.4. Trend in annual integral NDVI 

The long-term inter-annual trend analyses of annual summed NDVI values for the same period 

(Figure 15-a) shows similar patterns as the monthly time-series. Greening is the dominant 

process in the central parts, as well as in the Northern corner, whereas the North-Western of the 

basin is characterized by browning, i.e., a decrease in NDVI values. 

The values of the Theil-Sen slope (Figure 15-b) are given in total units of annually accumulated 

NDVI change per year and range between -0.025 and +0.024 with a mean slope of 0.0209. 

However, the 95% confidence interval spreads very tight around the mean from 0.0205 to 0.0213 

per year. The Theil-Sen slope showed a similar pattern as the Kendall tau.   
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Figure 15:  (a) Mann Kendall monotonic trend and (b) Theil-Sen slope in annual NDVI time-

series 1982-2011 

6.5.  Significance in monthly NDVI time-series 1982-2011  

The Figure 16 showed (a) the Mann Kendall z significance and (b) the p-value of monthly NDVI 

time-series. The Mann-Kendall significance (MK-z) expresses the significance of a Mann-

Kendall trend, also used as a trend test for the Theil-Sen median slope operator as well. As 

mentioned earlier, the significance α and the Z-scores of trend test are: Z = ± 2.576 refers to α = 

0.01, Z = ± 1.960 refers to α = 0.05 and Z = ± 1.645 refers to α = 0.1. For example, if a certain 

region expresses a MK-z of +2.576, it means that the calculated Mann-Kendall trend is positive 
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and with a significance level α of 0.01. In the following, areas with a MK-z between -1.960 and 

+1.960 (corresponds to α ≥ 0.05) are referred to as no trend areas. The p-value significance less 

than 0.07 was used as a threshold of significance for the monotonic trend, thus, the areas with p-

value higher than this threshold were masked. 

 

Figure 16: Mann-Kendall significance (a) and p-value (b) of monthly NDVI time-series.  

All these two tests of significance confirm the trend associated in these areas for the period of 

study. The total pixels affected by significant decrease in monotonic trend at p-value less than 

0.07 is 155 while 934 pixels showed a significant positive trend at the same threshold. The Z-

estimator revealed that 79 pixels were associated with negative trend and 651 pixels with 
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positive trend at significant at α= 0.01; 138 pixels were associated with negative trend and 866 

pixels with positive trend significant at α= 0.05, while 180 pixels were associated with negative 

trend and 1016 pixels with positive trend significant at α= 0.1.  

6.6. Relationship between NDVI trends and Precipitation 

One of the key limiting factors of vegetation growth in tropical semi arid regions is precipitation. 

Consequently, the inter-annual trends in vegetation greenness, as described above, are mainly 

explained by the availability and spatio-temporal variability of rainfall. This assumption was 

computed using a linear correlation coefficient at pixel level for monthly rainfall and NDVI 

series for the growing season from 1982 to 2011. The strength of this relation between rainfall as 

independent variable and NDVI the dependant variable is shown in Figure 17.  

Results from the Pearson correlation showed a positive correlation between NDVI and rainfall 

indicating the major role of rainfall in vegetation productivity. In most of the basin, the positive 

correlation indicated that productivity is mostly limited by rainfall even though only a few areas 

show significant positive correlation.  However, the low r coefficient can be explained by many 

factors, such as the time lag in the response of the vegetation to changes in rainfall, seasonal 

rainfall distribution (Martiny et al., 2006) or low signal-to-noise ratio (Camberlin et al., 2007) or 

a lack of sensitivity of the NDVI to variations in rainfall. The non-significance of the Pearson 

correlation can be explained by the lack of sensitivity of NDVI to variation of rainfall at a certain 

stage. In the Southern part of the catchment, negative correlation between rainfall and the NDVI 

could be due to signal saturation above certain biomass values, to a deficit of solar radiation used 
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for the photosynthesis because of cloud (Camberlin et al., 2007), or due to residual atmospheric 

contamination of the images (Li et al., 2004). 

 

Figure 17: Pearson correlation coefficient between integrated seasonal rainfall and mean NDVI 

6.7.  Discussion 

In this chapter the long-term trend of NDVI have been analysed using a Mann Kendall test. The 

suitability of Mann Kendall analysis to detect long-term trend in time-series data has been well 

documented by scientific communities (e.g. De Beurs and Henebry, 2004a, Neeti et al., 2012). 
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The method allows computing the long-term trend and its significance.  The response of seasonal 

NDVI to rainfall were by computing a correlation coefficient between rainfall and NDVI. Some 

previous studies indicated a different time lag between rainfall and vegetation, here only the 0 

time lag were considered for the analysis. 

The results showed a large band with significance positive trend located in the central area of the 

catchment while the Northern presented significant negative trend. The comparison of this result 

with land cover data demonstrated that the trend was significant in areas where the natural 

vegetation was still well represented. The major land cover classes identified in this area were 

mixed Cropland - savannah and woodland. In contrast to the area showing significant negative 

trend, the land cover was dominated by Cropland (> 70%) and mixed grassland/shrublands.    

Even though rainfall controls a large part of spatial and temporal variation of vegetation dynamic 

at regional scale, the results showed that there is a considerable variation in response of 

vegetation to rainfall at local scale. According to Diouf and Lambin (2001), this could be 

explained by the soil type, the inter-annual variation in rain-use efficiency, the vegetation 

communities and floristic composition, land use practices and seasonal distribution of rainfall. 

The Pearson correlation indicated a good relationship between NDVI and rainfall at monthly 

time scale for the same month, but only a few pixels showed a strong correlation. However, 

strong relationships between NDVI and rainfall over different regions have been reported from 

earlier studies (Hermann et al., 2005). Hermann et al., (2005) studied the relationship between 

NDVI and rainfall over the Sahel for the period from 1981-2000 and reported a positive and 

significant average correlation coefficient of 0.78 between precipitation and vegetation response. 

The absence of such strong relationship over the study area as reported in this chapter could be 
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explained by some negative factors that influence negatively the correlation between NDVI and 

rainfall. Among these factors are severe changes in rainfall time pattern where for most of the 

time a large volume of monthly rainfall is obtained in a short time and the resulting floods exit 

rapidly from the regions (Hashemi, 2011).   
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7. INTER SEASONAL PATTERN AND CHANGE IN NDVI AND ITS 

RELATION TO CLIMATE 

7.1. Introduction  

For the past few decades, the Sudano-Sahelian regions have experienced a lasting drought, which 

started at the end of 1960s and culminated in 1980s with a rainfall deficit of 15-30% compared to 

the 1950-1960s (Nicholson et al., 1998; Le Barbé et al., 2002). This might have had a strong 

impact on the vegetation dynamic in the area. In this Chapter, the changes in inter seasonal 

vegetation activity were assessed using the 8-km NDVI time-series. Spatially averaged time-

series of mean NDVI, and total precipitation over the growing season (April to October), were 

generated for all pixels. Correlation between growing season NDVI and precipitation were 

computed to investigate climate effects on inter-seasonal change in vegetation activities. In order 

to quantify the inter-annual variability, the average NDVI value for the growing season has been 

computed for each year. From this the NDVI standard deviation (NDVIstd) and coefficient of 

variation (NDVICoV) have been calculated for each pixel.  

7.2. Spatio temporal patterns in NDVI and rainfall 

The spatial NDVI anomaly patterns for the study area are shown in Figure 18. The spatial data 

were binned into moderate 1)((| i : AM+ for positive moderate anomaly and AM- for 

negative moderate anomaly), large 1)(( i ; AL+ for positive large anomaly and AL- for 

negative large anomaly) and extreme 2)(( i ; AE+ for positive extreme anomaly and AE- for 

negative extreme anomaly) deviation (Xu et al, 2012). These series of maps show the NDVI 

deviation from the long-term mean.  
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In 1982 the majority of the study area (Figure 18) showed above-normal condition overall, 

indicating widespread greenness, the below-normal vegetation condition is observed in the 

South-Eastern part indicating stress condition. In contrast, most of the area from 1983-1984 

showed below-normal vegetation conditions, with some departure from moderate negative 

anomaly to negative large anomaly. These years are associated with lowest rainfall condition 

during the period of study. In 1985 a slightly positive anomaly contrast is observed in the Eastern 

and Central part, whereas the Northern and Southern showed a relative negative condition. The 

vegetation situation in 1986 changed greatly compared to the last three years, especially showing 

a substantial above-normal condition. In 1987, only the Western portion showed a below-normal 

condition which stretched over most of the Western part in 1988.  The year 1989 was marked by 

an above-normal vegetation condition in the Northern part, and stretched over the whole study 

area in 1990 and 1991 with below-normal in the South in 1991. This above-normal in vegetation 

condition is showed for the whole area in 1992 and 1993. In 1994 the Southern part highlights an 

extreme negative condition whereas the Northern showed the opposite. From 1995 to 1999, the 

general condition showed a positive condition for most of the area. It is generally observed that 

the period from 2000 to 2010 highlighted a moderate below-normal condition in mostly the 

Southern and Northern part and a moderate to extreme above normal condition for the rest of the 

study area. The situation in 2011 was mixed with the below-normal condition in the Western part 

and above normal in the Eastern part. According to the rainfall anomaly (Figure 19), the years 

1984, 2001 and 2002 were associated with dry to very dry condition in the study area.  
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Figure 18: Evolution of vegetation condition in the in the study area during 1982-2011 using 

rowing season NDVI anomaly patterns. 
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Figure 19: Standardized anomalies in precipitation in the study area for 1981-2011 using 
integrated precipitation for the growing season (April-October).   
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7.3. Inter-annual relationship between NDVI and rainfall  

7.3.1. Analysis of spatially averaged NDVI versus precipitation 

The correlation result shows strong linear relationship between NDVI and rainfall in the region 

with an r value of 0.98 and a residual standard error of 0.000002 for the period from 1982 to 

2011. The scatter plot, as seen in Figure 20, indicated that the correlation between precipitation 

and NDVI are positive and exhibits a clear spatial pattern. Precipitation and temperature directly 

influence water balance, causing changes in soil moisture regime which, in turn, influences plant 

growth. The coefficient of determination R2 indicated that 96.92% of the variation in vegetation 

productivity is explained by rainfall in most of the period. 

 

Figure 20: Overall correlation between NDVI and rainfall for the rainy season (mean 1982-2011)  
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7.3.2. Spatial patterns in inter-annual NDVI-rainfall relationship   

Figure 21 showed the mean annual evolution of NDVI and rainfall respectively. The illustration 

provides a generalized overview of annual evolution of the study area rainy season. 

Approximately between 90 to 95% of annual rainfall falls between April and October.  

The spatial pattern of NDVI study area seems to be influenced by the South-North direction of 

rainfall due to ITCZ movement.   

 

Figure 21: Averaged (a) Rainfall and (b) NDVI for the growing season (1982-2011) 

Considering the average season rainfall and NDVI pattern for the entire area for the period from 

1982 to 2011, it can be seen from the Figure 21, that there exist a good relationship between 
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NDVI and rainfall. As rainfall increases to 1245 mm (Figure 21-a), NDVI increases and reaches 

up to a range of 0.6 (Figure 21-b). 

7.4. Quantifying temporal variability in vegetation conditions   

7.4.1. NDVI Standard deviation  

The standard deviation is one of the simplest methods to characterize a time-series of data and to 

estimate variability of these data through the time. The standard deviation of NDVI values 

displays the scope of values calculated for individual years from the mean value having been 

calculated for the whole period. Low NDVIstd indicates a good density of values of individual 

years around the mean value. On the contrary, high value of NDVIstd is associated with a wide 

scattering of the year values from the mean value. This means a higher variability of NDVI over 

the time.   

The results of the spatial variability of NDVI across the study area are presented in Figure 22-a. 

The Southern West corner of the study area displayed the highest value of NDVI  standard 

deviation (0.05-0.13) while the low values are displayed in the central part. The standard 

deviation is good to estimate the variability of a temporal over a time period data but is less 

accurate for comparison between vegetation classes. The value of the standard deviation is 

strongly dependant on NDVI value, which is individually determined as a ‘lumped’ ratio for 

each pixel. Therefore it is not helpful to make some comparison using NDVI standard deviation. 

Therefore the coefficient of variation was used to compare variability for the study area between 

individual pixels. The coefficient of variation is discussed in the next section.       
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Figure 22: Map showing the NDVI (a) standard deviation and (b) coefficient of variation  

7.4.2. Variance of NDVI value over the study period 

NDVI interannual coefficient of variation (CoV) has been used to assess vegetation activities and 

changes in arid and semi-arid regions (Tucker et al., 1991, Weiss and Milich 1997, Vicente-

Serrano et al. 2006). Milich and Weiss (2000) reported that high CoV embedded among larger 

areas of much lower CoV may be associated with rapid, dynamic and irreversible (on human 

timescales) land degradation. Therefore the NDVI CoV was computed and compared with the 

results of vegetation dynamics. 
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In order to investigate the variability of vegetation through the entire study period  the coefficient 

of variation for the spatially averaged growing season NDVI values over the period 1982-2011 

have been calculated (Figure 22), as well as these values for every pixel in the study area. 

Coefficient of variation is commonly calculated to compare the amounts of variation (in % from 

the mean value) in different sets of data and enables the evaluation of the robustness of 

vegetation to variability in climatic predictors. Thus, the coefficient of variation have been 

calculated for inter-annual time-series of growing season, which also indicate the response of 

vegetation cover to inter-annual climate variability. The lower the variation coefficient of NDVI, 

the lesser the sensitivity of vegetation covers to climatic variations.   

7.5. Discussion   

In this Chapter the inter-annual change in NDVI and its relationship with rainfall was examined 

for the period 1982-2011 for the whole catchment. Low to strong temporal correspondence 

between anomalies in rainfall and vegetation were observed. The correlation between aggregated 

NDVI (Figure 20) with rainfall was found to be higher than the correlation using monthly NDVI 

and rainfall for the growing season (Figure 17) at time lag 0.  

As mentioned previously, climate in general and rainfall particularly is an environmental factor 

determining vegetation production and growth in an area. Aggregated rainfall amount and its 

impact on vegetation covers were quantified by statistical analysis. The results indicate a high 

correlation between aggregated mean seasonal NDVI and rainfall during the study period 1982-

2011.  

Temporal variation in NDVI value over the period 1982-2011 has been studied using simple 

techniques of descriptive statistic. The results showed high variability of NDVI in the study area. 
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The coefficient of variation (CoV) for the monthly NDVI varied between 0.03 to 35%. The 

highest CoV was observed in the Northern part of the study area where the rainfall variability is 

also high. This study concluded that the high variability of NDVI in the study area is explained 

by climate using rainfall data. The results presented high strong correlation between CoV for 

NDVI and CoV for rainfall (Figures: 12 and 22). 

However, it can be noted that at around 750 mm of rainfall NDVI almost saturates and there is 

no further increase in NDVI, despite rainfall increase up to a range of 2450 mm that eventually 

occurs in the South. NDVI does not respond well to these rainfall events and still remain below 

(0.5). Since most of the rainfall (83%) occurs between July-October with the maximum in 

August, therefore averaging NDVI data for these months fairly represents the growing season for 

the region (Anyamba and Tucker, 2005). 
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8. ANALYSIS OF LULC CHANGE FROM 1980s TO 2010 IN SELECTED 

AREAS 

8.1. Introduction 

This study uses multi-temporal imageries to monitor the dynamic of LULC in some selected 

pixels. Therefore comparisons of LULC classification using multi-temporal datasets are often 

found to improve the accuracy of classification (Chen et al., 2008). It offers more opportunities 

for complete description of LULC classes than what could be achieved with single date imagery. 

Most of the images used in this study were acquired in the end of the growing season, considered 

as the suited period for distinguishing various LULC classes in the study area (Ruelland et al., 

2009). The study was conducted in four (4) selected pixels of 8-km by 8-km, used as reference 

subset within the study area. The basis of selection of these references subsets is described in the 

following section. 

8.2. Hot spots pixels selection 

Several pixels with the same general trend (positive or negative) can be identified in the trend 

maps on which four subset pixel (8-km   8-km) were selected for the study of land cover 

change. The spatial location of the selected subset is shown in Figure 23. Table 7 shows the 

selection criteria.  

These were: negative NDVI and RF trend (subset #1), positive NDVI and negative RF trend 

(subset #2), negative NDVI and positive RF trend (subset #3) and at last positive NDVI and RF 

trend (subset #4). These hot spots were analysed with high resolution satellite data to evaluate 

the reliability of identified anomalous behaviour and provide an interpretation of these hot spots.  
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Table 7: NDVI and RF characteristics for the subsets selected and underlying hypothesis 

Subset # NDVI trend 

(p<0.07) 

Rainfall trend NDVI CoV NDVI Departure  

1 - + 15% Negative 

Human 

2 + - 12% Positive 

3 - - 6% Negative 

Climate 

4 + + 12% Positive 

 

Figure 23: Map showing the reference subsets for LULC change detection within the study area 
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8.3.  Accuracy Assessment Reports 

The Kappa statistics, as mentioned previously, provides a statistically valid assessment of the 

quality of classification and was used to assess overall class accuracy (Tottrup and Rasmussen, 

2004). According to Pontius (2000), a Kappa value higher than 0.5 can be considered as 

satisfactory for modelling of LULC change. Landis and Koch (1977) characterised agreement for 

the Kappa coefficients as follows: values greater than 0.79 are excellent, values between 0.6 and 

0.79 are substantial and values of 0.59 or less indicate moderate or poor agreement. 

The overall classification accuracy is the percentage of correctly classified samples of an error 

matrix. It is computed by dividing the total number of correctly classified samples by the total 

number of reference samples. It can be expressed by 

                                
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Where: “a” is the individual cell values, “k+a” is the total row, “k a+” is the column total, “n” 

the number of classes and “N” the total number of samples. 

The mapping accuracy of each LULC class was derived from the calculated producer’s accuracy 

and user’s accuracy (Story and Congalton, 1986; Congalton and Green, 1999) using the 

following equations: 
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Where: “aii” is the number of sample correctly classified, “ai+” the column total for classi and 

“a+i” the row total for classi.  

The confusion matrix, the producer's and the user's accuracy are calculated for each class, as well 

as the overall accuracy and the accuracy estimate that removes the effect of random change on 

accuracy, referred to as the Kappa statistic (Skidmore, 1999). 

Tables 8 to 10 show the complete set of statistics for the categories of LULC classes based on the 

comparison between the ground truth pixels and the classified pixels in the region of interests 

(ROI) respectively for subset areas 1 to 4.  

For the 1st period, accuracy assessment results showed an overall accuracy of 81.69% and a 

kappa coefficient of 0.86 with a producer’s accuracy and user’s accuracy of 88% and 77.6% 

respectively for subset (1). Subset (2) showed an overall accuracy of 92.95% and a kappa of 0.90 

with a producer accuracy of 93.3% and a user accuracy of 86.5%.  For subset (3) the kappa was 

0.90 and the overall accuracy was 93.08% with a user accuracy and producer accuracy of 

respectively 87.4% and 90.50%. Subset (4) exhibited a kappa of 0.93 and an overall accuracy of 

95.49% with a user and producer accuracy of 85.4% and 94.8% respectively. 

During the second period, the kappa and overall accuracy were 0.78 and 86.05% for subset area 

(1) with a user and producer accuracy of 70.5% and 85%. These values were 0.86 for the kappa, 

89.68% for the overall accuracy, 89.9% for the user accuracy and 88.7% for the producer 

accuracy for subset (2). Subset (3) showed a kappa of 0.95 and an overall accuracy of 97.07% 
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with user accuracy and producer accuracy of 97% and 97.7% respectively. Subset (4) exhibited a 

value of 0.86 for the kappa and 89.27% for the overall accuracy while the user and producer 

accuracy were 84.8% and 91.6% respectively. 

Lastly during the third period, the overall accuracy and the kappa were 92.02% and 0.89 for 

subset (1), while the user and producer accuracy were respectively 97.6% and 98.1%.  Subset (2) 

showed 90.40% for the overall accuracy and 0.86 for kappa statistic, the user and producer 

accuracy were 85.5% and 92.9%. Subset (3) showed an overall accuracy of 90.34% and a kappa 

of 0.87; the user and producer accuracy was 99.4% and 97.9% respectively. For subset (4) the 

kappa was 0.92 and 94.68% for the overall accuracy, while 98.8% and 87.3% were respectively 

for the user and producer accuracy. 
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Table 8: Accuracy assessment results of the LULC map produced from Landsat for the subset #1 

 
1984 

 
1999 

 
2009 

 

  
Ground 

pixels 
Com. 

% 
Om. 

% 

Prod. 
Acc. 

% 
User 

Acc.% 
Ground 

pixels 
Com. 

% 
Om. 

% 

Prod. 
Acc. 

% 

User 
Acc. 

% 
Ground 

pixels 
Com. 

% 
Om. 

% 

Prod. 
Acc. 

% 

User 
Acc. 

% 

BL 228 31.1 18.4 81.6 68.9 82 77.2 19.5 80.5 22.8 820 13.1 23.2 76.8 86.9 
CRP 1051 1.1 1.3 98.7 99.0 2229 3.3 13.1 86.9 96.7 1289 10.2 4.3 95.7 89.8 
ST 1219 4.7 16.7 83.3 95.3 2014 7.9 15.3 84.7 92.1 1052 8.3 5.8 94.2 91.7 
OT 524 9.2 15.1 84.9 90.8 727 29.6 12.2 87.8 70.4 1031 3.0 4.9 95.2 97.0 
Shr 587 18.9 6.1 93.9 81.2   

   
    

    WT 29 69.8 10.3 89.7 30.2   
   

  367 2.4 1.9 98.1 97.6 
O.Acc. 89.61 86.05 92.02 
Kappa  0.86 0.78 0.89 

BL: Bare Land, CRP: Cropland, WT: Water bodies, OT: Open Trees, SHB: Shrublands, ST: Steppes. 

Table 9 : Accuracy assessment results of the LULC map produced from Landsat for the subset #2 

 
1984 

 
1999 2010 

  
Ground 
pixels 

Com. 
% 

Om. 
% 

Prod. 
Acc. 

% 
User 

Acc.% 
Ground 
pixels 

Com. 
% 

Om. 
% 

Prod. 
Acc. 

% 

User 
Acc. 

% 
Ground 
pixels 

Com. 
% 

Om. 
% 

Prod. 
Acc. 

% 

User 
Acc. 

% 
BL 100 46.6 7.0 93.0 53.5 230 6.4 23.9 76.1 93.6 285 21.6 11.9 88.1 78.4 
BA 398 5.5 5.0 95.0 94.5 488 6.7 5.5 94.5 93.3 200 0.5 1.5 98.5 99.5 
CRP 1181 1.0 6.9 93.1 99.0 404 17.4 5.0 95.1 82.6 1593 2.2 2.9 97.1 97.9 
OT 1059 4.6 11.0 89.1 95.5 905 11.5 9.8 90.2 88.5 597 14.3 31.5 68.5 85.7 
CT 991 9.8 3.8 96.2 90.2 1045 8.5 12.1 87.9 91.5 645 19.5 7.1 92.9 80.5 
O.Acc. 92.95 89.68 90.45 
Kappa  0.9 0.86 0.86 

BL: Bare Band, BA: Burn Area, CRP: Cropland, OT: Open Trees, CT: Closed Trees. 
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Table 10: Accuracy assessment results of the LULC map produced from Landsat for the subset #3 

 
1986 

 
1999 2010 

  
Ground 
pixels 

Com. 
% 

Om. 
% 

Prod. 
Acc. 

% 
User 

Acc.% 
Ground 
pixels 

Com. 
% 

Om. 
% 

Prod. 
Acc. 

% 

User 
Acc. 

% 
Ground 
pixels 

Com. 
% 

Om. 
% 

Prod. 
Acc. 

% 

User 
Acc. 

% 

BL 55 41.9 21.8 78.2 58.1 116 0.9 1.7 98.3 99.1 120 32.8 0.8 99.2 67.2 
BA 794 0.1 0.9 99.1 99.9 1581 1.3 1.4 98.6 98.7 469 21.1 14.7 85.3 78.9 
CRP 798 3.8 18.4 81.6 96.2 662 8.3 0.3 99.7 91.7 613 1.7 4.9 95.1 98.3 
OT 910 14.4 5.6 94.4 85.6 1156 2.2 7.6 92.4 97.8 805 8.9 16.5 83.5 91.1 
CT 638 2.8 0.6 99.4 97.2 405 2.4 0.3 99.8 97.6 520 0.6 2.1 97.9 99.4 
O. Acc. 93.08 97.07 90.34 
Kappa  0.9 0.95 0.87 

BL: Bare Land, BA: Burn Area, CRP: Cropland, OT: Open Trees, CT: Closed Trees. 

Table 11: Accuracy assessment results of the LULC map produced from Landsat for the subset #4.  

  
1984 

    
2000 

     
2010 

  

  
Ground 

pixels 
Com. 

% 
Om. 

% 

Prod. 
Acc. 

% 
User 

Acc.% 
Ground 

pixels 
Com. 

% 
Om. 

% 

Prod. 
Acc. 

% 

User 
Acc. 

% 
Ground 

pixels 
Com. 

% 
Om. 

% 

Prod. 
Acc. 

% 

User 
Acc. 

% 

GRS 642 0.2 1.6 98.4 99.8 86 21.2 4.7 95.4 78.9 31 74.5 22.6 77.4 25.5 
OT 146 8.3 2.1 98.0 91.7 268 5.5 10.1 89.9 94.5 303 9.6 0.3 99.7 90.4 
CT 181 15.4 0.0 100.0 84.6 780 1.7 1.0 99.0 98.3 1070 0.7 6.6 93.4 99.3 
BA 259 0.0 11.2 88.8 100.0 838 1.9 24.0 76.0 98.2 1157 3.4 2.0 98.0 96.6 
CRP 896 0.9 5.8 94.2 99.1 297 31.1 3.0 97.0 68.9 450 6.1 6.9 93.1 94.0 
BL 28 62.7 10.7 89.3 37.3 181 30.1 7.7 92.3 69.9 370 1.2 12.7 87.3 98.8 
O. Acc. 95.49 89.27 94.68 
Kappa  0.93 0.86 0.92 

GRS: Grassland, BL: Bare Land, BA: Burn Area, CRP: Cropland, OT: Open Trees, CT: Closed Trees. 
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8.4. Land Use/ Land Cover (LULC) change 

The LULC class or categories refer to the dominant class in the delineated polygon. The 

following seven (7) classes presented in Table 12 were used as reference nomenclature for this 

study.  

Table 12: Description of LULC classes used in this study. 

Land cover types Description Code 

1. Bare Land 

 

Areas with sparse or no vegetation cover due to prolonged 
drought or degradation (This class also encompassed roads and 

build up areas) 

BL 

 

2.Cropland 

Cultivated formations with or without scattered trees (canopy 

coverage 20%) These areas are characterized by annual crops 
(mainly millet and sorghum), harvested in October–November, 

followed by a period of bare soil with crop residues 

CRP 

3.Shrublands 

Land covered with approximately > 20% herbaceous vegetation 

and with woody vegetation covering approximately < 20% of 
the delineated polygon. 

Shr 

4.Steppe 

Discontinuous grassy formations (10–40% plant cover year-

round) with or without scattered bushes/tall shrubs (canopy 

coverage, 10%). The rest of the land cover consists of erosional 
surfaces of indurated gravelly ferralitic clay-silt soils with 

almost no vegetation 

ST 

5.Open Trees with 

herbaceous 
vegetation 

Mixed class. Land with herbaceous vegetation and woody 

cover covering approximately > 20% and < 70% of the 
delineated polygon 

OT 

6.Closed Trees / 
woodland 

Mixed class. Land with herbaceous vegetation and a woody 

cover covering. Land with a dense cover of trees covering 

approximately >70% of the delineated polygon. 

CT 

7.Water bodies  Permanent or temporary water bodies, rivers or streams WT 
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In subset 1, six LULC categories were identified and mapped (Figure 26); these classes were 

Bare Land, Cropland, Shrublands, Steppe, Open Trees and Water. Figure 24 showed that the 

most extent area in 1984 for this area was Cropland with 3280.81 ha (50.77%). This is followed 

by Shrublands with 1679.10 ha (25.98%), Steppe with 813.17 ha (12.58%), Open Trees with 

487.76 ha (7.55%) and Bare Land with 201.80 ha (3.12%).  

 

Figure 24: Result of LULC classification and change area for the subset # 1 

The Cropland was the dominant LULC class in 1999 with 3604.42 ha (55.78%) followed by 

Open Trees with 912.95 ha (14.13%), Shrublands with 894.80 ha (13.85%), Bare Land 782.46 ha 

(12.11%), and Steppes 190.35 ha (2.95). In 2009 the dominant LULC class was Cropland with 

3816.50 ha (59.05%), followed by Bare Land 1377.67 ha (21.32%), Shrublands 774.26 ha (11.98 

ha) and Steppes 312.08 ha (4.83%). The changes in coverage for these LULC classes during the 

three intervals were presented in Figure 24. It showed that Bare Land and Cropland increased for 

1175.87 ha and 535.70 ha while Open Trees disappeared, steppe and Shrublands were decreased 

1984 1999 2009 1984-1999 1999-2009 1984-2009 

BL 201.80 782.46 1377.67 580.66 595.21 1175.87 

Crp 3280.81 3604.42 3816.50 323.61 212.08 535.70 

Stp 813.17 190.35 312.08 -622.82 121.73 -501.09 

OT 487.76 912.95 0.00 425.19 -912.95 -487.76 

Shr 1679.10 894.80 774.26 -784.30 -120.53 -904.84 
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for 501.09 ha and 904.84 ha from 1984 to 2009. The area covered by one of the Settlement in the 

study area (Bla), were 80.23 ha, 289.07 ha and 485 ha for 1984, 1999 and 2009. There are added 

to Bare Land statistics for the respective years. 

In subset area (2), four LULC classes were identified and mapped (Figure 27) for the years 1984, 

1999 and 2010; these were Bare Land, Cropland, Open Trees and Closed Trees. Figure 25 

showed that the most extensive LULC category of this subset as at 1986 was Open Trees which 

covered about 2458.52 ha (38.03%). The second most extensive LULC category was Cropland 

which 2163.45 ha (33.47%). Closed Trees covered about 1709.15 ha (26.44%), followed by the 

Bare Land, which covered 79.98 ha (1.24%) of the total area of study. 

 

Figure 25: Result of LULC classification and change area for subset # 2 

1984 1999 2010 1984-1999 1999-2010 1984-2010 

BL 79.98 185.38 233.75 105.39 48.38 153.77 

Crp 2163.45 2590.37 2943.70 426.92 353.33 780.26 

OT 2458.52 2706.12 2260.12 247.60 -446.01 -198.41 

CT 1709.15 962.50 952.85 -746.64 -9.66 -756.30 
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Figure 26: LULC change maps for subset area #1 

   

 
Figure 27: LULC change maps for subset #2
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Moreover as shown in Figure 25 the order of magnitude of the spatial extent of the LULC 

categories in 1984 was almost the same for 1999. In 1999 the most extensive LULC was 

consistently Open Trees with 2706.12 ha (41.87%). It is followed by Cropland which covered 

around 2590.37 ha (40.07%). The Closed Trees and Bare Land covered respectively 962.50 ha 

(14.89%) and 185.38 ha (2.87%). The order of magnitude of the extent of coverage of the LULC 

changed a bit in 2010, with the most extensive cover being Cropland, which covered 2943.70 ha 

(45.54%), followed by Open Trees with 2260.12 ha (34.97%), Closed Trees with 952.85 ha 

(14.74%) and Bare Land with 233.75 ha (3.62%).  Figure 25 also summarizes the overall change 

between LULC classes from 1984 to 2010.  It can be seen from Figure 25 that Open Trees and 

Closed Trees decreased for 198.41 ha and 756.30 ha respectively between 1984 and 2010 while 

the Cropland and Bare Land increased for 780.26 ha and 153.77 ha.  

Figure 29 shows the LULC change maps for the years 1986, 1999 and 2010 for the third subset 

area.  As in subset 2, the LULC classes identified and mapped were Cropland, Bare Land, Open 

Trees and Closed Trees. Figure 28 shows that the most extensive LULC class in 1984 was Open 

Trees with 2968.47 ha (46.27%). This is followed by Closed Trees with 1409.59 ha (21.97%), 

Cropland with 323.33 ha (5.04%) and Bare Land with 102.95 ha (1.60%). 25.11 % of the area 

was burned representing 1610.85 ha so excluded from the statistics.  
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Figure 28: Result of LULC classification and change area for the subset # 3 

The spatial extent of LULC classes in 1986 was different from that in 1999. In 1999, the most 

extensive was always Open Trees with 3529.59 ha (55.02%). It was followed by the Cropland 

with 1437.04 ha (22.40%), the Closed Trees with 628.69 ha (9.80%) and Bare Land with 35.34 

ha (0.55%) and 784.51 Burned (12.23%). The order and magnitude of the extent of coverage of 

the LULC in 1999 was different from 2010. The most extensive LULC class in 2010 remained 

Open Trees with 3115.36 ha (48.56%), followed by Cropland with 2190.58 ha (34.15%), Closed 

Trees 886.17 ha (13.81%) and Bare Land with 111.90 ha (1.74%).  The overall change from 

1986 to 2010 showed that Closed Trees lost 523.42 ha from its initial area in 1984.  The 

Cropland increased for about 1987.25 ha and the Open Trees for 146.89 ha. 

 

 

1986 1999 2010 1986-1999 1999-2010 1986-2010 

BL 102.95 35.34 111.90 -67.61 76.56 8.95 

Crp 323.33 1437.04 2190.58 1113.71 753.54 1867.25 

OT 2968.47 3529.59 3115.36 561.13 -414.24 146.89 

CT 1409.59 628.69 886.17 -780.89 257.47 -523.42 
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Figure 29: LULC changes maps for subset area #3 

   

 
Figure 30: LULC changes maps for subset area #4
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The result of LULC classification for subset (4) from 1984 to 2009 is presented in Figure 30. In 

this area five LULC categories were identified and mapped. These were Bare Land, Cropland, 

Open Trees, Closed Trees and Shrublands. Figure 31 showed that the most extensive LULC class 

in 1984 was Open Trees with 2224.53 ha (34.77%) followed by Shrublands with 1999.77 ha 

(31.26%), Cropland with 1004.28 ha (15.70%), Closed Trees with 541.40 ha (8.46%) and Bare 

Land with 16.20 ha (0.25%). 

 

Figure 31: Result of LULC classification and change area for the subset #4 

In 2000, the most dominant LULC class was Shrublands with 2248.19 ha (35.14%), followed by 

Open Trees with 1802.54 ha (28.18%), Cropland with 1314.80 ha (20.55%), Closed Trees with 

208.04 ha (3.25%), and Bare Land with 146.59 ha (2.29%). 11.58% of the area (676.80 ha) was 

Burned (removed for the statistic). In 2009 Open Trees was the most dominant LULC with 

2122.32 ha (33.18%) followed by Cropland with 1646.09 ha (25.73%), Closed Trees with 

1984 2000 2009 1984-2000 2000-2009 1984-2009 

BL 16.20 146.59 102.70 130.39 -43.88 86.50 

Crp 1004.28 1314.80 1646.09 310.51 331.29 641.80 

OT 2224.53 1802.54 2122.32 -421.99 319.78 -102.20 

CT 541.40 208.04 1074.58 -333.37 866.55 533.18 

Shr 1999.77 2248.19 920.39 248.42 -1327.80 -1079.38 
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1074.58 ha (16.80%), Shrublands with 920.39 ha (14.39%), and Bare Land with 102.70ha 

(1.61%). Burned Area covered 530.86 ha (8.30%). The overall change from 1984 to 2009 

showed that the Closed Trees and Open Trees classes decreased by 1079.38 ha and 102.20 ha 

respectively from their initial spatial extent of 1984. 

8.5.  Discussion 

The rate of LULC changes in the references subset pixels within the Bani River Basin were 

determined using 30-meter Landsat data for 30-year monitoring period (1984/86 to 2009/10). 

The results confirm the potential of multi-temporal Landsat data to provide accurate and 

economical analyses of land cover change over time that can be used as input to land 

management, hydrological modelling as well policy decisions. Across subset common LULC 

change features include Cropland expansion, deforestation in all subsets, and urbanization.  

Pattern and dynamics of LULC change differed markedly between the four subset areas. In 

subset 1, Cropland increased subsequently and occupied 59.5% of the subset in 2009. The 

second dominant land cover class was Bare Lands which include also Settlement covering 

21.32% of the area in the same date. At the same time, Steppe and Shrublands decreased by 

respectively 501.09 ha and 904.84 from their initial value while Open Trees disappeared 

completely in 2009. In Subset 2, Cropland was the most dominant LULC class covering 45.54% 

of the box in 2010. Open Trees and Closed Trees formations decreased respectively by 199.41 ha 

and 756.30 ha between 1984 and 2010. In Subset 3, Open Trees was the dominant LULC class in 

2010 and occupied 48.56 % of the total area in 2010. Cropland increased for 1867.25 ha, while 

Closed Trees decreased for 523.42 ha during the period 1986-2010. In subset 4, the major LULC 

class was Open Trees and occupied 33.18% of the total area, even though this class decreased by 
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102.20 ha between1984 and 2009. Cropland displayed an increase and occupied 25.73% of the 

total area in 2009. Closed Trees decreased for 533.18 ha while Shrublands decreased by 1069.38 

ha during the same period. 

The results indicated a general decrease in areas under natural vegetation and an increase in areas 

under agricultural land. These results are in conformity with Tappan and McGahuey, (2007) and 

Ruelland et al., (2009). Ruelland et al., (2009) observed that area under agricultural land 

increased over the last decades in the area. This increase in Cropland is in response to the 

increased demand of land to produce more food for the increasing human population.  

According to Boakye et al., (2008) changes in LULC are related to population growth and 

rainfall decline. It is highly unlikely that rainfall decline plays any major role in LULC change 

over the study area for the [1984/86-2009/10] period considered, which coincides with a fairly 

monotonic positive rainfall trend across West Africa. In contrast, there is considerable evidence 

that increasing anthropogenic pressure leads to significant impacts, both negative and positive, 

on terrestrial agro-ecosystems of the region.  
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9. LINKING CHANGE IN VEGETATION PRODUCTIVITY TO 

CLIMATE AND LULC CHANGES 

9.1.Introduction 

Vegetation productivity and land degradation are of global concern and have far reaching 

consequences for agricultural yields, biodiversity and as a whole the ability of a landscape to 

sustain ecosystem service provisions (Le et al., 2012; Fensholt and Proud, 2012). Satellite 

derived vegetation productivity observations have a long heritage in global change studies (Le et 

al., 2012; Lambin and Ehrlich., 1997). By linking the remote sensing phenology trend to 

concurrently available data metrics on rainfall and rate of LULC change, integrative assessments 

of vegetation responses to climate and anthropogenic activities can be effectively performed. In 

this section, statistical agreement between long-term trend in vegetation productivity, 

corresponding rainfall and rate of LULC change from Landsat time-series were used to discern 

and explain climate versus human induced vegetation cover change. 

9.2. Quantification of land conversion  

The land cover classes as defined in Chapter 8 were grouped to Cropland, natural vegetation, 

settlement and others. The Cropland represent the formations with or without scattered trees 

(canopy coverage 20%). These areas are characterized by annual crops (mainly millet, cotton and 

sorghum), harvested in October-November, followed by a period of bare soil with crop residues. 

Natural vegetation category regroups all areas with perennial or temporal vegetation cover that 

would have been growing in the absence of man. The categories “others” include area identified 

as burn area, water bodies/stream or bare land from the original classification. The settlement 

was not considered in subset 2; 3 and 4 because this class covered less than 1% of these areas. 
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To assess the change from one date to another, each raster cell from 1980/1986 was compared 

with the corresponding cell in the 1999/2000, the 1999/2000 with the 2009/2010 and the 

1984/1986 with the 2009/2010 for the overall period. This procedure creates a table showing the 

initial value of each cell of 1984/1986 and the final value of each cell of 1999/2000 for the first 

period, and 1999/2000 to 2009/2010 for the second period. Similarly for the overall period, the 

initial value is 1984/1986 cell value and the final value is the 2009/2010 cell value (Table 13 to 

15).  Also a change matrix with initial year data in the rows and the final year data in the 

columns was created for the three periods (1984/1986-1999/2000); (1999/2000-2009/2010) and 

(1999/2000-2009/2010). In the matrix Tables the total at the beginning indicates the initial stage 

image total area of each LULC classes and the total end represents the final stage area of LULC 

classes. The difference is the total net change of the two time images. The negative image 

difference indicates that a certain LULC is in a state of decrement and the positive value 

indicates increment. The change indicates the total areas of each LULC classes that were 

transformed to other land cover types. In Tables 13 to 15, the values on the diagonal are the areas 

that had not changed during the period. 

Table 13 showed the transformation of LULC types between 1984 and 2000. The image 

difference indicated that the vegetation decreased by 994.36 ha; 518.67ha; 219.97 ha and 499.79 

ha respectively in subset 1 to 4 during this period. Settlement increased by 152.58 ha for subset 1 

where it has been considered as a major LULC class. Cropland increased by 333.16 ha; 424.48 

ha; 1114.21 ha and 298.30 ha respectively in subset 1 to 4. During this period in subset 1, 

vegetation cover lost 1375.59 ha in the profit of Cropland, 11.08 ha for settlement and 246.32 for 

the class ‘others’, the remaining unchanged area covered 1354.23 ha. It could be seen in the 

result that 554.05 ha have been converted from Cropland to vegetation cover, 144.67 ha for 
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settlement and 368.15ha for the class ‘others’. From the total area of vegetation cover in subset 2 

during the same period, 1142.67 ha were converted to Cropland and 143.48 ha to ‘others’. 

 On the other hand the vegetation cover class and the ‘others’ class gained respectively 672.71 ha 

and 60.93 ha from Cropland. In subset 3; 782.98 ha from vegetation cover were converted to 

Cropland and 532.15 ha to others. From the Cropland initial area, 146.42 ha were converted to 

vegetation cover and 37.34 ha to ‘others’. In subset 4, the stable area for Cropland and vegetation 

were respectively 474.04 ha and 3343.14 ha. From vegetation covered initial area, 786.38 ha 

were converted to Cropland and 637.79 ha to ‘others’ while 454.47 ha and 84.08 ha were 

converted from Cropland to respectively vegetation cover and ‘others’. 
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Table 13: Conversion matrix of LULC types in the 4 subsets between 1984/1986 and 1999/2000 (ha).  

Subset #1 (1984-1999)   Subset #2 (1984-1999) 

    Others SETT CRP VG 
Total. 
Beg. 

Rate 
(%)   Others SETT CRP VG 

Total. 
Beg. 

Rate 
(%) 

Others   16.61 0.20 20.17 84.45 121.43 419.71   22.98 ‘’ 15.45 94.77 133.21 70.70 

SETT   0.00 77.13 3.26 0.10 80.49 189.56   ‘’ ‘’ ‘’ ‘’ ‘’ ‘’ 

CRP   368.15 144.67 2207.91 554.05 3274.78 10.14   60.93 ‘’ 1431.10 672.71 2164.75 19.61 

VG   246.32 11.08 1375.59 1354.23 2987.22 

-33.29 

  143.48 ‘’ 1142.67 2880.58 4166.74 

-

12.45 

Total End.   631.09 233.07 3606.94 1992.83 6463.93 

 

  227.40 ‘’ 2589.22 3648.08 6464.70 

 

 

Change 

 

614.47 155.94 1399.09 638.60 

 

 

 

204.42 

 

1158.12 767.49 

 

 

Difference 

 

509.65 152.58 332.16 -994.39 

 

 

 

94.19 

 

424.48 -518.67 

 

 

    

Subset #3 (1986-1999)    Subset #4 (1984-2000)  

Others   252.07 ‘’ 515.00 948.74 1715.81 -52.12   104.30 ‘’ 50.47 469.92 624.69 32.25 
SETT   ‘’ ‘’ ‘’ ‘’ ‘’ ‘’   ‘’ ‘’ ‘’ ‘’ ‘’  

CRP   37.34 ‘’ 139.37 146.42 323.14 344.81   84.08 ‘’ 474.04 454.47 1012.59 29.46 

VG   532.15 ‘’ 782.98 3061.89 4377.02 

-3.86 

  637.79 ‘’ 786.38 3343.17 4767.34 

-

10.48 
Total End.   821.56 ‘’ 1437.35 4157.05 6415.96    826.17 ‘’ 1310.88 4267.56 6404.62  

Change 

 

569.49 

 

1297.98 1095.16 

 

 

 

721.87 

 

836.85 924.39 

 

 

Difference 

 

-894.25 

 

1114.21 -219.97 

 

 

 

201.49 

 

298.30 -499.79 
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Table 14 showed the transformation of LULC types between 1999 and 2010. Vegetation 

decreased by 902.12 ha for the subset 1; 449.91 ha for the subset 2; 160.33 ha for the subset 3; 

138.48 ha for the subset 4 respectively. Cropland increased by 240 ha for subset 1; 396.32 ha for 

subset 2; 758.50 ha for the subset 3 and 331.26 ha for subset 4. The increasing demand for 

cultivation of land must have contributed to the deterioration of natural vegetation.   

Looking at the conversion matrix given in Table 13, of total areas under vegetation cover, 903.22 

ha were transformed to Cropland, 36.19 ha to settlement and 323.55 to others, while 729.87 ha 

remained unchanged in subset 1 from 1999 to 2009. During the same period, 308.03 ha; 158.91 

ha and 483.15 ha initially Cropland were converted respectively to vegetation cover, settlement 

and ‘others’. In subset 2, of a total of vegetation cover in 1999, 1143 ha were converted to 

Cropland and 221.14 ha to ‘others’ while 2283.19 remained stable. In other hand the vegetation 

cover and others gained respectively 757.61 ha and 64.64 from Cropland initial area. From the 

initial area of vegetation cover in subset 3, 985.70 ha were converted to Cropland and 91.93 ha to 

others while the stable area covered 3079.42 ha. Cropland lost 386.39 ha to vegetation cover and 

45.44 ha for others. For subset 4, the unchanged area for vegetation cover and Cropland were 

3091.69 ha and 765.88 ha respectively. From the initial total of vegetation in 2000; 703.24 ha 

were converted to Cropland and 472.63 ha to others. Vegetation cover and others gained 

respectively 460.37 ha and 84.64 ha from Cropland initial area. 
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Table 14: Conversion matrix of LULC in the 4 subsets between 1999/2000 and 2009/2010 (area in ha).  

Subset #1 (1999-2009)   Subset #2 (1999-2010) 

    Others SETT CRP VG 
Total. 
Beg. 

Rate 
(%)   Others SETT CRP VG 

Total. 
Beg. 

Rate 
(%) 

Others   266.69 63.58 248.30 52.51 631.09 70.60   22.20 ‘’ 47.83 157.37 227.40 35.44 

SETT   3.26 226.94 2.57 0.30 233.07 108.36   ‘’ ‘’ ‘’ ‘’ ‘’ ‘’ 

CRP   483.15 158.91 2656.85 308.03 3606.94 5.66   64.65 ‘’ 1766.97 757.61 2589.22 14.26 

VG   323.55 36.19 903.22 729.87 1992.83 

-45.27 

  221.14 ‘’ 1143.75 2283.19 3648.08 

-

12.33 

Total End.   1076.66 485.63 3810.94 1090.70 6463.93 

 

  307.99 ‘’ 2958.54 3198.17 6464.70 

 

 

Change 

 

809.97 258.68 1154.09 360.83 

 

 

 

285.79 

 

1191.57 914.98 

 

 

Difference 

 

445.58 252.55 204.00 -902.13 

 

 

 

80.59 

 

396.32 -449.91 

 

 

 

 

 

Subset #3 (1999-2010)    Subset #4 (2000-2009)  

Others   86.02 ‘’ 204.63 530.91 821.56 
-72.81 

  76.12 ‘’ 173.02 577.03 826.17 
-

23.33 

SETT   ‘’ ‘’ ‘’ ‘’ ‘’ ‘’   ‘’ ‘’ ‘’ ‘’ ‘’ ‘’ 

CRP   45.44 ‘’ 1005.52 386.39 1437.35 52.77   84.64 ‘’ 765.88 460.37 1310.88 25.27 

VG   91.93 ‘’ 985.70 3079.42 4157.05 -3.86   472.63 ‘’ 703.24 3091.69 4267.56 -3.24 
Total End.   223.40 ‘’ 2195.84 3996.72 6415.96    633.39 ‘’ 1642.14 4129.08 6404.62  

Change 

 

137.37 

 

1190.33 917.30 

 

 

 

557.27 

 

876.26 1037.40 

 

 

Difference 

 

-598.17 

 

758.50 -160.33 

 

 

 

-192.78 

 

331.26 -138.48 
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From the year 1984/86 to 2009/10 the LULC structure in the 4 reference areas obviously 

changed and reciprocal conversion between different types of LULC took place frequently. The 

dynamic of LULC in the subsets is characterised mainly by decrease of vegetation cover, 

increase of Cropland in all the subsets and increase of residential (settlement) in subset 1. The 

natural vegetation decreased from 2979.81 ha to 1088.46 ha for subset 1; from 4167.81 ha to 

3216.6 ha for subset 2; from 4362.84 ha to 3998.52 ha for subset 3 and 4767.34 ha to 4129.08 ha 

for subset 4 (Table 15).  

It could be observed from Table 15 that about 407.46 ha of vegetation were converted to 

Cropland, and settlement in subset 1. Out of the total 2979.81 ha, only 681.39 ha remained 

unchanged, 1708.38 ha converted to Cropland, 442.26 ha to others and 147.78 ha to settlement. 

Looking into Cropland, 2079.9 ha remained unchanged while 370.08 ha have been transformed 

to vegetation cover as a process of recovery, 576.81 ha to ‘others’ and 255.24 ha to settlement. In 

subset 2, of the total area of vegetation cover (4167.81 ha), 2593.08 ha remained unchanged, 

while 1357.38 ha have been converted to Cropland, and 217.35 ha to ‘others’. From an initial 

total of 2165.31 ha, the unchanged area for Cropland covered 1548.63 ha, while 571.95 ha were 

converted to vegetation cover and 44.73 ha to ‘others’. In subset 3, Cropland and ‘others’ gained 

respectively 1262.56 ha and 132.84 ha from vegetation cover, while 2962.44 ha remained 

unchanged. In subset 4, the unchanged area of vegetation cover was 3368.36 ha, while 1015.02 

have been converted to Cropland and 383.97 ha to ‘others’. From the total Cropland area at the 

initial stage (1012.29 ha), 410.65 have been converted to vegetation cover and 56.93 ha to 

‘others’.  
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Table 15: Overall (1980s-2009/10) matrix and rate of LULC conversion for the 4 subsets pixels 

Subset #1 (1984-2009)   Subset #2 (1984-2010) 

    Others SETT CRP VG 
Total. 
Beg. 

Rate 
(%)   Others SETT CRP VG 

Total. 
Beg. 

Rate 
(%) 

Others   55.35 0.63 27.54 36.99 120.51 791.56   45.18 ‘’  34.47 51.57 131.22 134.15 

SETT   0 80.55 0 0 80.55 501.12   ‘’  ‘’ ‘’ ‘’ ‘’ ‘’ 

CRP   576.81 255.24 2079.9 370.08 3282.03 16.22   44.73  ‘’ 1548.63 571.95 2165.31 35.79 
VG   442.26 147.78 1708.38 681.39 2979.81 -63.47   217.35 ‘’  1357.38 2593.08 4167.81 -22.82 

Total End.   1074.42 484.2 3815.82 1088.46 6462.9 

 

  307.26  ‘’ 2940.48 3216.6 6464.34 

 

 

Change 
 

1019.07 403.65 1735.92 407.07 
 

 
 

262.08 
 

1391.85 623.52 
 

 

Difference 

 

282.86 403.65 533.79 

-

1891.35 

 

 

 

176.04 

 

775.17 -951.21 

 

 

    

Subset #3 (1986-2010)    Subset #4 (1984-2009)  

Others   79.74  ‘’ 793.08 850.41 1723.23 -87.01   192.50  ‘’ 82.11 350.07 624.69 1.39 
SETT   ‘’ ‘’ ‘’ ‘’ ‘’ ‘’   ‘’ ‘’ ‘’ ‘' ‘’ ‘’ 

CRP   11.25 ‘’ 133.02 185.67 329.94 564.86   56.93 ‘’ 545.01 410.65 1012.59 62.17 

VG   132.84 ‘’ 1267.56 2962.44 4362.84 -8.35   383.97 ‘’ 1015.02 3368.36 4767.34 -13.39 

Total End.   223.83 ‘’ 2193.66 3998.52 6416.01    633.39 ‘’ 1642.14 4129.08 6404.62  

Change 

 

144.09 

 

2060.64 1036.08 

 

 

 

440.89 

 

1097.13 760.72 

 

 

Difference 

 

-1499.4 

 

1863.72 -364.32 

 

 

 

8.7 

 

629.55 -638.27 
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9.3. Overall rate of land conversion 

Table 16 shows the rate of land conversion for the entire period of study. The vegetation index 

(NDVI) and the rainfall (RF) for the subset pixels were scored following their positive or 

negative trend. The general picture showed a decrease of vegetation cover in the 4 subsets pixel. 

The total area lost in natural vegetation cover was about 63.47% and 22.83% for subset 1 and 2 

while it was 8.35% for the subset 3 and the subset 4 for 13.39%. The Cropland showed an 

increase pattern in all the areas. This was estimated as 564.86% for subset 3; 62.17% for subset 

4; 35.79% for subset 2 and 16.22% for the subset 1. Except for the subset 3 where the class 

‘others’ decreased for 87.01%, it increased for 791.12% for subset 1; 134.15% for subset 2 and 

only 1.39% for subset 4. 

Table 16: NDVI and Rainfall trend associated with rate of LULC change in the 4 references area  

  

 
Land cover change in % (1984/86-2009/10) 

Sites # NDVI Rainfall 
 

Others Settlement Cropland Vegetation 

Subset 1 -2 -2 
 

791.56 501.12 16.22 -63.47 

Subset 2 2 -2 
 

134.15 0 35.79 -22.82 

Subset 3 -2 2 
 

-87.01 0 564.86 -8.35 

Subset 4 2 2 
 

1.39 0 62.17 -13.39 

 

9.4. Development of statistical agreement between NDVI, Rainfall and LULC conversion 

Spearman's rank correlation coefficients were generated between the long-term vegetation 

indexes (NDVI), rainfall (RF) and rate of LULC conversion during the study period to test the 

hypotheses that there exist associations between them. The rank correlation coefficient was used 
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because the data did not satisfy the normal distribution assumption. The values for the rank 

correlation coefficient range between -1 and +1, where -1 and +1 indicate a perfect negative and 

positive linear relationship between the ranks of the two variables.  The vegetation and rainfall 

indexes for the subset pixels were scored following their positive or negative trend. Table 17 

shows the statistical distribution of variables used in spearman rank correlation. The observation 

data consisted of the 4 subsets. Table 18 summarized the spearman correlation matrix between 

NDVI, RF and rate of LULC change for the selected subsets.  

Table 17: Basic statistic of parameter used for correlation 

Variables Obs. without missing data Minimum Maximum Mean Std. deviation 

NDVI 4 -2.000 2.000 0.000 2.309 

Rainfall 4 -2.000 2.000 0.000 2.309 

Others 4 -87.010 791.560 210.023 398.203 

Settlement 4 0.000 501.120 125.280 250.560 

Cropland 4 16.220 564.860 169.761 264.072 

Vegetation 4 -63.470 -8.350 -27.007 25.038 

 

Table 18: Spearman rank correlation matrix between NDVI, RF and rate of land cover change 

Variables NDVI Rainfall 

NDVI 1 0.000 

Rainfall  0.000 1 

Others (Bare land and Burn Area) 0.000 -0.894 

Settlement -0.577 -0.577 

Cropland 0.000 0.894 

Vegetation 0.000 0.894 

 

According to Table 17, the spearman correlation confirmed a negative correlation but not 

significant at 0.05 between vegetation trend and increase in urbanisation. This suggested that an 

increase of human settlement impact negatively on vegetation production. The analysis 
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confirmed also a better correlation between Cropland and natural vegetation with rainfall trend. 

This means, an increase in rainfall was accompanied by an increase of vegetation productivity 

and Cropland area.   

  9.4 Discussion 

In Subset 1, (negative NDVI anomaly), the general trend of human-induced change involve 

shifts from natural vegetation types to cultivation area and urban area. This subset is located 

along the national road Segou-Mopti or Segou Sikasso [x; y:-5.769163; 12.986464]. Vegetation 

is characterised by Steppes interspersed with annual herbaceous species. These Steppe areas are 

in general degraded. Locally Open Trees can be observed along the area. Agricultural activities 

are dense and concerns Cotton, the main cash crop, Sorghum, Millet and Maize. It should be 

noted that Bla, the main town of the area with 21915 habitants (RGPH, 2009) occupies a sizeable 

portion of this reference area. This city located at the junction of the national road Segou-Mopti 

and Segou-Sikasso, significantly increased in both size and population because of its strategic 

position. The statistics of temporal trajectories (Table 14), showed that 45% (2897.19 ha) in 

subset 1 did not change and 6% (407.07 ha) was changed by natural forces to vegetation between 

1984 and 2009. The human-induced change occupied 49% (3158.6 ha), including cultivation 

(1735.92 ha) and urbanisation (403.65 ha), thus a case of human-induced vegetation productivity 

decline. This result is in agreement with Defries et al., (2010), who mentioned urbanisation as 

one of the poles of vegetation degradation and more specifically of deforestation. Therefore, the 

decrease in vegetation cover and increase in agricultural land and urban area was consistent with 

the long-term trend in vegetation productivity for this subset, confirmed by the spearman rank of 

-0.57 on Table 18. 
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The subset 2 (positive NDVI trend) is located around Kignan, the main town in the area [x; y: -

6.072697; 11.868181] and drained by the Wenye river, a tributary of Bani. The vegetation cover 

is mostly dominated by Open Trees (Open Woodland with shrubs) and Closed Trees (Woody 

Savannah). Agricultural activities are concentred on cash crop (cotton) and food cropping 

(sorghum, millet, maize and rice) in the rainy season. The particularity of this subset is the 

presence of an inland valley (about 328.28 ha) which is intensively used by the local people for 

Rice production during the season and Potato/ Sweet Potato in the dry season. From the statistic 

of conversion trajectories (Table 14), the non-change areas represent 64.8% (4186.83 ha); 9.7% 

(623.52 ha) were changed by natural forces to vegetation cover. The human-induced changes 

concerned about 25.5% (1653.93 ha in which 1391.85 ha to agricultural land). The intensive use 

of the valley land allowed having an important quantity of green biomass that might have 

influenced the long-term value of NDVI in the pixel, considered as a human-induced greening, 

confirmed with the spearman rank value of 0.89 (Table 18).  

The subset 3, [x; y: -7.435937; 10.409089], a negative NDVI anomaly hot spot, is located along 

the border between Mali and Cote d’Ivoire and drained by the Degou river. Vegetation is 

characterised by Open Trees (Open Woodland with shrubs) and Closed Trees (Closed 

Woodland/ Woody Savannah or Open Forest). The agricultural activities are focussed on cereal 

production during the uni-modal rainy season. From the statistics on Table 14; 49.5% (3175.2 

ha) of the total area have not changed during the period of study. The vegetation area recovery 

by natural process represents 16% (1036.08 ha). The human-induced change concerned 34.5% 

(2212.73 ha) in which 2060.64 ha have been converted to Cropland.  Ruelland et al., (2009) 

mentioned a decrease of the proportion of woody formation in the same agro climatic zone for 

about 55% during the period 1986-2007. The same authors reported a high dynamic of Cropland 
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caused by deforestation of new field and abandonment of old field. Most of the plots farmed in 

1986 were no longer being formed in 2007. The decline in rainfall trend in the area during the 

last 30-year can be an explanation for such negative anomaly hot spot.  

In subset 4, positive NDVI anomaly hot spot [x; y: -5.678636; 11.122660], the main vegetation 

cover are Open Trees (Open Woodland with shrubs) and Closed Trees (Closed Woodland/ 

Woody Savannah or Open Forest) and shrublands with various herbaceous species. Cotton, 

Maize, Sorghum and Millet are the main crop in the area. The results showed that the areas 

which have been unchanged during the study period represent 64% (4105.87 ha) of this reference 

area. The vegetation recovery area represent 11.90% (760.72 ha) while 24% (1538.02 ha) have 

been modified by human action (1097.13 ha converted to Cropland). Considering the rainfall 

trend (Chapter 5), this subset has experienced a significant positive trend that may impact the 

vegetation dynamic in the area.  
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10.    CONCLUSIONS AND RECOMMENDATIONS 

10.1. Conclusions 

Analysis and monitoring of long-term vegetation dynamics still represents a challenge from the 

remote sensing point of view. Presence of clouds, high humidity and the particular dynamics of 

the land cover of such areas are challenging for mapping. Anthropogenic activities that modify 

the dynamics of these areas make comprehensive analysis more complex. As a result of the 

importance of vegetation cover in the carbon cycle and the high population pressures which 

impact it, it is important to have better methods to evaluate and monitor vegetation over a long 

period. 

 Long-term trend in NDVI and rainfall have been characterized using a MK trend test and the p-

value for strongly significance estimation. The results showed a large area with positive NDVI 

trend mostly located in the central zone of the study area while areas with negative NDVI trend 

were observed in the Northern zone where natural vegetation has been significantly affected by 

human activities. Generally the rainfall pattern showed a positive trend for almost the entire 

study area but, only a few portions showed a significant positive trend. The study demonstrated 

that satellite based vegetation reflectance data can serve as a good proxy for studying variability 

and change of vegetation cover. 

The relationships between NDVI and rainfall have been assessed by computing a Pearson 

correlation using monthly and long-term mean datasets. The study highlighted a high temporal 

variability of vegetation and rainfall in the study area during the last three decades. The 

phenology of vegetation is closely reflected by the seasonal cycle of rainfall. At monthly time 
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scale the results showed a good but not significant relationship between the two datasets at zero 

(0) time lag for the entire study area. The aggregated datasets showed a high correlation. The 

per-pixel based interannual anomaly of NDVI versus annual precipitation showed some similar 

pattern. The NDVI data revealed substantial sensitivity to the climatic signal both in time and 

space and allowed the investigation of the influence of climate and human activity.  

Based on a supervised classification with maximum likelihood algorithm, multi-temporal 

Landsat images for 1984/86; 1999/00 and 2009/10 were classified to determine LULC change. 

The images were chosen for four (4) reference areas according to their long-term trend in both 

NDVI and rainfall. These areas were checked carefully to prove their anthropogenic or climatic 

cause.  A multi-temporal post classification change detection algorithm was used to determine 

change in LULC for the three periods and a kappa statistic for accuracy assessment. The 

common LULC change features include Cropland expansion, urbanization and decrease in 

natural vegetation. The rate of change is different from one class to other and from one site to 

another.  

Statistical agreements between long-term trends in vegetation productivity, corresponding 

rainfall and rate of LULC change from Landsat time-series imagery was used to discern climate 

versus human-induced vegetation cover change. Spearman correlation was used to assess the 

relationship between metrics of vegetation, rainfall trends and LULC categories. Human impact 

was seen to be a major driving force for changes in vegetation cover for some reference areas 

during the study period. As shown, the negative trends can be linked to conversion of vegetation 

cover to settlement and cultivated land as well. Changes in vegetation cover for other subsets are 

assumed to be a climate influenced vegetation cover changes. The positive trend in rainfall 



 

114 
 

condition during the past years has positively impacted these areas where the natural vegetation 

is still well represented. The study results improve the understanding of the nature and 

mechanisms of the ecosystem dynamics in the Bani River Basin and provide the basis for 

predicting changes in productivity that accompany changes in climate and human activity.  

10.2. Recommendations 

In the course of this research some issues were not addressed mainly due to resource and time 

constraints. A few of these issues are presented below for future research: 

- The approaches used in this study showed usefulness and applicability, but require 

further validation and refinement, and ideally the inclusion of additional climatic and landscape 

components like temperature and soil types and soil degradation information.  

- Earth observation can considerably contribute to the monitoring of vegetation conditions 

over time. The obtained remote sensing based results highlighted hotspots of significant change 

that need subsequent detailed investigation on the ground. 

- Although the generation of NDVI time-series data using the MVC techniques was able to 

minimize the effect of clouds, the images can still be affected by the presence of clouds. It is  

possible to expect that the cloud free data over the long-term period would provide more stronger 

and realistic relationships between variables. 

- It will be good to integrate population dataset into the analysis for in depth analysis of the 

role of population dynamics and pressure as drivers of vegetation conditions indicated by the 

NDVI.  
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