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ABSTRACT 

In this thesis, we solve the special differential partial equation, Black-Scholes Equation for 

valuing option pricing through numerical methods. Options considered include European style, 

American style, and the exotic option with major reference to the European style option. The aim 

is to find accurately the value of the various option styles by determining whether a grid point 

not greater than 60 can be used to determine the value of options with reliable accuracy, by 

setting a higher order discretization in space and time as well as grid stretching around the 

interesting region. Whether a highly accurate scheme will also work for the exotic options and 

finally whether implied volatility can be calculated using iterative methods in less iteration. The 

fourth order difference scheme and the grid stretching in space by means of an analytic 

coordinate transformation are employed. By experiment, we showed numerically that a grid size 

or space of 20 to 40 is all that is needed to achieve accuracy in the value of option. A fourth 

order Backward Difference Scheme is sufficient enough to yield accuracy in the exotic options 

and also it is possible to use few iteration to obtain implied volatility. The numerical experiment 

thus confirms the proposed methods. 
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CHAPTER ONE 

INTRODUCTION 

An important way to always solve problems happened in the finance and economics has been the  

involvement of mathematical techniques. Options, a financial instrument that provide the 

individual investor with the flexibility needed in almost any investment situation one may 

encounter are widely used on market and exchanges. In calculating the price of an option the 

famous Black-Scholes Model is a convenient model to use.  

A numerical method will be proposed though the exact solution of Black-Scholes Equation is 

known. This is because for the different types of options, example European, American etc. there 

is the need to create a general numerical model for the different types of the options. For instance 

it is very difficult or impossible to solve American options by means of analytics. However if 

numerical methods works for European style option, then it will be the basis to get American 

option as well as other complex options. 

Although numerical methods based on partial differential equations (PDE’s) is not that popular 

in finance, the possibility of efficiently discretizing the partial differential equations (PDE’s), 

yields an algorithm that’s more efficient. 

Another issue to look at is the implied volatility, which is the natural tendency of the underlying 

security market price to fluctuate either up or down. From stock exchange trends, the volatility of 

assets prices in the future is not known, thus it has to be estimated. Once the value of the option 

price is known the only parameter not known in the Black-Scholes equation is volatility. 

It is of no thought that the sole aim of investors is to either maximum profit, minimize loss or 

invest in a risk free investment. As such for a developing country like Ghana in other for us to 
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maintain and increase the growth rate of investment, options which are traded exchanges must be 

considered looking at the numerous advantages. 

This thesis, as part of it objective seeks to propose the consideration of options in the stock or 

exchange market in Ghana.  

 

1.1 Background 

The Black-Scholes model is a mathematical model employed in a financial market containing 

certain derivative instruments. From the model a formula called Black-Scholes formula is 

generated. This formula gives the price of European style options which of course form the basis 

of American style options as well as other options by using numerical methods. The formula 

gave a boost to the options market across the globe especially Chicago Board Options Exchange. 

Many empirical tests have shown that the Black-Scholes price is fairly close to the observed 

prices despite well-known discrepancies such as in-the-money and out-of-the-money. 

The model was first articulated by Fischer Black and Myron Scholes in their 1973 paper. A 

partial differential equation now called the Black-Scholes equation was derived. This equation 

governs the price of option overtime. The main aim behind the derivative was to hedge perfectly 

the option by buying and selling the underlying security in just right way, thus eliminating risk. 

This hedge forms the basis of conservative strategy used to limit investment loss and implies that 

there is only one right price for the option and it is given by Black-Scholes formula. 

 

1.2 Problem Statement 

Give the this background, it is surprising and interesting to know that options have not yet be 

considered in traded exchanges in Ghana. Currently for an investor to invest in shares or 
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securities in Ghana, the investor must go through the consideration of companies’ performance, 

existing sector conditions in which these companies operate as well as profit growth and 

dividend. 

Moreover, currently the price of share is determine by bids and offers and so the fluctuation of 

share price is by whether bid exceed offer or offer exceed bid. 

As indicated early, options provides the investor with orderly, efficient and liquid market, 

flexibility, leverage, limited risk for buy and guaranteed contract performance. Also despite the 

fact that both option investor and stock investor have the ability to follow trading volume, price 

movement etc., and option investor can quickly and easily learn the price at which his order has 

been executed. This paper thus seeks to contribute to existing literature by providing evidence 

and supports regarding Black-Scholes equation in determine option pricing. 

 

1.3 Objective of the Study 

The objective of this study is to accurately determine the option price of the various option styles 

using numerical method such as solving partial differential equation now known as the Black-

Scholes equation, specifically, we evaluate    

 The possibility of using grid points not greater than 60 to determine the value of an 

option with reliable accuracy, by setting a higher order discretization in space and time 

and also by using grid stretching around interesting region? 

 Whether a highly accurate numerical scheme will also work for other complex options 

with continues final conditions? 

 Can the unknown parameter, implied volatility be calculated using some iterative 

methods in less iteration? 
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1.4 Justification 

Since there are other options aside the European style options, like the American style options 

and other more complex options which cannot be solved analytically, there is therefore the need 

to consider a numerical method to solve these complex option styles by solving partial 

differential equation. It is the hope that this study will give an indication as to how option pricing 

is determined. In addition, the study contributes to existing literature by providing evidence and 

supports regarding Black-Scholes equation in determine option pricing. It is therefore the hope of 

the researcher that readers’ especially traders in the investment market, understanding of this 

subject will be enhanced and thus the need to consider options in the exchange trade in Ghana. 

 

1.5 Methodology 

The methods to be considered in this study involve Black-Scholes Analysis which includes 

stochastic model, partial differential equation, types of options. Discretization of partial 

differential equation in the area of space discretization, coordinate transformation and numerical 

time integration. Validation of discrete systems, Special features of the Black-Scholes partial 

differential equation, and pricing experiment of numerical options. 

 

1.6 Organization of The Study 

The paper is organized into five chapters. Chapter one presents the background of the study, 

problem statement, and objective of study, justification and methodology. This is followed by a 

discussion of the pertinent literature on the subject matter. The methods employed in conducting 

the study is covered in chapter three while chapter four systematically shows the numerical result 

of option pricing. The last session of this research, chapter five, details the conclusions and 
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recommendations made. The researcher is confident that traders in the exchange trade market 

and other stakeholders will find this report informative and helpful for making decisions, 

increasing the growth rate of investors and strengthening investment in the exchange market. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

This chapter focuses on the review of relevant literature on solving partial differential equation 

related option pricing with numerical methods. Thus the concepts, theories and principles 

relevant to the study are captured in this chapter. It must be noted that the researcher did not 

come across any literature which explicitly studied option pricing in Ghana. Even in the 

exchange market, not much was seen and therefore the review for the purposes of this study and 

it proposal was basically done based on theory and studies done on other exchange trade 

elsewhere apart from Ghana. Areas such as stable numerical methods for PDE models of Asian 

options, numerical methods for American option pricing, numerical simulation of American 

options, European put-call options pricing and Black-Scholes equation, partial differential 

equation in finance, Stochastic volatility model in option pricing, and option pricing and partial 

differential equation are captured in this chapter. Thus, the chapter presents the conceptual and 

theoretical basis for the study. 

 

2.2 Stable Numerical Methods for PDE Models of Asian Options 

Asian options, also known as average options are path-dependent option contract which payoff 

depends on the average value of the asset price over some predefined period of time. Through 

these exotic financial instruments, the option holder is provided with enough and suitable 

protection against possible harm caused by implied volatility in the price of the underlying 

security. This especially is the case when movement price is speculatively attempted near the 
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expiry date. For issuer, Asian options simply represent the ability to attain a better forecasting of 

the long and short position and therefore are more relaxed in dealing with the maturity situation. 

The inexistence of general analytical solution for the price of the Asian option has led to the 

development of variety of techniques to analyze the arithmetic average Asian options. In general 

solving partial differential equation in two space dimensions can lead to the price of Asian option 

being found. 

Jan Vecer (2000,2002) in his article or paper unified pricing of Asian option, employed one 

dimensional PDE which is a reduction of two dimension PDE for a floating strike Asian option, 

to provide a simpler and unifying approach for pricing Asian options, for both discrete and 

continuous average. He therefore established that the result of one dimension PDE for the Asian 

price option can be easily implemented to give extremely fast and accurate results. His approach 

also incorporates the cases of discrete and continuous dividends. 

Adam Reherek (2011) in his paper, stable numerical methods for PDE model of Asian option, 

concluded that the Van Leer flux limiter provides more accurate results and thus the most 

convenient method for pricing options related to Asian option, especially with stability as 

concern. This he concluded on after considering either discrete or continuous sampling of price 

of the underlying security, difference between applying arithmetic or geometric averaging, 

period over which average price is calculated and other methods.  

 

2.3 American Option Pricing 

Options in recent times have become extremely important and attractive to investors, both for 

hedging and speculation and also the fact that there is now a systematic way of determining it 

worth.  
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Numerical methods have and always form an important part of pricing of financial derivatives or 

options, especially in the case where there isn’t closed form analytical formula solution to the 

derivatives. This mathematical tool led to the derivation of PDE now called the Black-Scholes 

Equation.   

America option unlike the European option, exercise is permitted at any time during the life span 

of the option. 

S.C. Benbow (2005), in his book, numerical methods of American options, did identify the 

following conditions associated with a European call option as a problem. With these he focused 

his report on the valuation of American options by producing an accurate method for the 

valuation. S.C. Benbow made use of the Black-Scholes model and later it modification based on 

dividend paying asset in other to achieve his aim. He thus concluded that the finite difference 

scheme method applied to the American call problem yielded an undervaluing option. This was 

as a result of the instability of the algorithm by directly applying the derivative to the boundary 

conditions. As a result for stability to be achieved in the valuation of option an approximation of 

the derivative was necessary. 

David Bundi Niwiga (2005), also in his book, numerical method for the evaluation of financial 

derivatives, aimed to introduce a concept of financial derivatives, definitions and mathematical 

tools important in the valuation of options by considering methods such as Black-Scholes model, 

binomial model, finite difference methods and monte Carlo simulation method. He however 

concerns himself with the pricing of options, forwards and futures using the above mention 

mathematical tools. 
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2.4 Numerical Simulation of American Options 

Options, which belong to a group known as financial derivatives are characterize by terms such 

as call option, put option, underlying asset, strike price, maturity, premium, holder and a writer. 

It must be noted that European and American options are just styles of options or exercise right 

and not a geographical classification. Options are put into two main groups; the standard options 

also known as vanillas, these options are traded actively at an exchange and their values may be 

determine “market to market”. While as the second group, exotic options which do not have 

active market and so have their values gained by “market to model”, are specially designed to fit 

the needs of their writers clients. Aside the groups of options, options are also categorized into 

two main purposes. One of such purpose is speculation where asset values are expected to fall in 

the future and so money is made available to buy the asset. The other purpose is hedging. 

Pauly Oliver (2004), published in his book, Numerical simulation of American options, stated 

that a general closed-form analytical solution does not exist for the evaluation of American 

options. This is because the partial differential equation, known as Black-Scholes Equation, 

needs to be solved with a free boundary value. Despite the categorization of approximations into 

Analytical approximations, Stochastically simulation methods and Numerical solutions of the 

Black-Scholes Equation due to the non-existence of a general closed-form solution for American 

options, Pauly Oliver (2004), stated that to deal with this problem is to apply numerical methods. 

He considered in his research, two numerical approaches, which are the Method of Finites 

Differences and Method of Finite Elements for solving constraint partial differential equation 

and also theoretical background of numerical analysis, Practical use of an adopted grid and the 

exploration of B-Spline Finite Element. He therefore concluded that the linear Finite Element 

and the Finite Difference are capable tools to price American options. However he considered 



 

10 

 

the Finite Element as a preferable approach to the Finite Difference due to its lower relative 

errors. 

 

2.5 European Put-Call Option and Black-Scholes Equation   

Option pricing problem has been in existence for some time now, in recent times however quite a 

number of methods, theory and algorithms have been looked at or considered in solving this 

option pricing problem, especially with the creation of more exotic financial derivatives. Black-

Scholes Equation is without thought one of the most significant mathematical tools for the 

financial market for governing the value of financial derivatives precisely options. The Black-

Scholes Equation seeks to solve this problem by constructing a portfolio. The equation also aims 

at completely eliminating risk in a portfolio and derives a precise value for the option, to 

excellently hedge a stock. Manjari Govada (2012), in his work, European put-call option pricing 

and Black-Scholes Equation, he did discuss the derivation of Black-Scholes Equation for 

European put and call options. This he did by employing both analytical and numerical methods. 

The importance of Black-Scholes Equation in pricing options cannot be understated was Manjari 

Govada final statement after his research.  
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CHAPTER THREE 

METHODOLOGY 

3.1 Introduction 

The chapter discusses the method used in accomplishing the aims of this research work. The 

chapter consists of the analysis of the Black-Scholes equation, discretization of the PDE, 

validation of the discrete systems and also some special features of the Black-Scholes PDE is 

considered. These features help us choose the appropriate difference scheme, transformation as 

well as choice of grid. 

 

3.2 Black-Scholes Analysis 

Under this topic the Black-Scholes equation will be derived to obtain the value of an option 

based on the definitions of the options discussed in the previous chapter prior to this chapter 3. 

Conditions such as the boundary and final conditions which distinguish the different types of 

options will be stated for the options. 

 

3.2.1 Geometric Brownian motion 

Research, development of Brownian motion as well as its application to stock price and it 

use to model market behavior has led to the assumption of Black-Scholes model, that security 

prices follow a geometric Brownian motion diffusion process. This assumption implies the 

following 

dS vSdt SdX    (3.0)  

where  

S  = security price at time t 
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dt  = time change 

v  = drift parameter 

  = volatility parameter 

dS  = change in S over time dt  

dX  = Weiner process or standard normal distribution with mean being 0 and variance being 

1 thus (0,1)dX N . 

Geometric Brownian motion therefore assumes that stock price returns are defined by a constant 

drift v  plus the random element by the Weiner process multiply by a constant volatility 

parameter. Rearranging equation (3.0) we have  

dS
vdt dX

S
                                     (3.1) 

Thus returns, which is the change in stock price divided by its original value is given by the 

equation (3.1). It is therefore very clear from equation (3.1) that stock returns follows a normal 

distribution with mean vdt  and volatility parameter dX when assuming Geometric Brownian 

motion. 

 

3.2.2 Stochastic model 

We first describe the price process of stock. And this is model by a stochastic differential 

equation based on the Geometric Brownian motion as describe above. The stock price is the 

price of the underlying of an option. The stock price change is assumed to be a Markov process. 

There are two contributions to the return according to the Samuelson model. These are the 

deterministic contribution and stochastic contribution. If v is the average rate of growth or the 

drift parameter, then the deterministic contribution in time change dt is found to be vdt . The 
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other contribution that is the stochastic contribution relate to the random change in the stock 

prices. With the volatility related to the standard deviation of the returns and dX the Wieners 

process, the contribution is assumed to be dX thus results in the equation (3.1). This is a 

stochastic differential equation. The Wiener process has the following properties 

( ) 0E dX  And 2( )E dX dt . To know that   is proportional to var( )dS , the expectation 

and variances are calculated as follows  

0,

/ ,

0,

S E

payoff Q d E S E d

S E d




   
  

 since ( ) 0E dX  . 

2 2var( ) ( ) ( ( ))dS E dS E dS   

2 2 2 2 2var( ) (( ) ) ( )dS E vSdt SdX vSdX S dX     since 2( ) 0E S dXdt   

The square root of the variance   which is a standard deviation is given by var( )dS

S
  . 

 

3.2.3 Partial differential equation 

From Taylor’s equation, the general option value say ( , )V S t can be express as follows 

2
2

2
1 .........

2

dV dV d V
dV dS dt dS

dS dt dS
             (3.2) 

where the dots indicate the terms which is neglected for 0dt  . From equation 3.1, the drift 

term vdt and the volatility term dX are the dominant terms since for 0dt   they are of 

the size dt  and dt  respectively. It thus follows that 

2 2 2 2 2 2 2 2 2( ) 2dS vSdt SdX v S dt vS dXdt S dX                                         (3.3) 
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By applying ito’s lemma process and the assumption that 2dX dt as 0dt  , with 

probability 1, the equation (3.3) reads to a leading order 
2 2 2dS S dt      (3.4) 

Inserting equation (3.4) into (3.2) follows that  

2
2 2

2
1( )

2

V V V V
dV S dX vS S dt

S S S t
 

   
   

   
                  (3.5) 

Definition 1 Portfolio: A portfolio is the collection of all options, shares and other derivatives 

own by a trader. 

Now, setting up a portfolio consisting of one option with value V and a certain number -  of the 

underlying asset, the portfolio value will be   

V S                (3.6) 

Whereas the change in the portfolio will be  

( )d d V S dV dS                           (3.7) 

Combining equations (3.1), (3.5), (3.6) and (3.7), we have 

2
2 2

2 2
1( ) ( )

2

V V V V
d V dX vS S v S dt

S S S t
 

   
       

   
                 (3.8) 

We therefore chooses 
V

S


 


                                     (3.9) 

to eliminate the main randomness contribution. The portfolio in equation (3.6) is deterministic 

meaning it is instantaneously risk free, by choose of  in equation (3.9). The change in an 

instantaneously risk free portfolio should equal the exponential growth of placing money in the 

bank. Thus, 

2
2 2

2
1( )

2

V V
d r dt S dt

S t


 
    

 
                  (3.10)  
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Finally after substituting equation (3.6) into that of (3.10) and dividing by dt . The famous Black-

Scholes equation for valuing an option with value V is obtained  

2
2 2

2
1 0

2

V V V
S rS rV

t S S


  
   

  
                             (3.11) 

This can be rewritten as 0BS

V
L V

t


 


                              (3.12) 

This equation has some quite a number of properties and also in it analysis, certain assumptions 

are made. This includes the following 

Trading of the underlying stock can take place continuously. 

It is possible to short sell, since asset may be sold without processing them. 

There is no dividend payment for basic model during the options life. 

It is also assumed that there are no arbitrage possibilities. 

Transaction cost associated with hedging is not included. 

 The stock price follows the log normed distribution which rises from equation (3.1). 

The risk-free interest rate r and the volatility   are both known functions of time over life of the 

option. 

Like every model there are some sorts of drawbacks, and so is this model. One of the essential 

drawbacks of this model is that the volatility is assumed to be a constant function. In reality 

however this is not the case, but for many options the Black-Scholes model can still be used 

successfully. There are a lot of researches currently on more accurate modeling of stock price 

processes, see from example chapter 2 [2.5]. These models handle the aspect of non-constant 

volatility more accurately. The improved stock models which are beyond the scope of this thesis 

have an important impact on the equations for option prices. There will be only a slight change to 

the general Black-Scholes equation when a constant dividend payment is assumed. Therefore the 
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function   in equation (3.6) and considering a constant dividend payment S , we change the 

definition of d  as d dV dS S dt                                 (3.13) 

And so, the Black-Scholes PDE in this case reads 

2
2 2

2
1 ( ) 0

2

V V V
S r S rV

t S S
 

  
    

  
                 (3.14) 

This dividend payment which is some ratio of the stock price can be interpreted as some kind of 

interest rate. This dividend payment is mainly useful for options on an index. In that case 

continuous dividend payment can be assumed. Otherwise in the case options in regular stocks, it 

makes sense to include a discrete dividend payment which takes place only once or twice a year. 

 

3.3 Option Types 

In equations (3.11) or (3.14), the parabolic equations are of second order partial differential 

equation in the stock price space say (S) and first order in time space say (t). One final or initial 

condition is a necessity. From the literature of partial differential equation (see in chapter 2[2.6]), 

a diffusion equation of this type is (ill-posed) if it comes with an initial condition. However with 

option problems final conditions exist. The difference between the American and European style 

as well as between put and call and the other types of options is as a result of the final boundary 

conditions. The Black-Scholes equation as seen in equation (3.11) is a convection diffusion 

reaction equation of special form.  For the purpose of this research work, American options style 

will not be that much considered. And so the call and put option values will be denoted as C and 

P respectively. 
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Definition 2 Arbitrage: Is a technique of simultaneously buying at a low price in one market 

and selling at a higher price in another market of a commodity, security, or monies to make a 

profit of the spread between the prices. 

Definition 3 Exotic options: These are derivatives instrument which have features making them 

more complex than commonly traded vanilla, usually relating to determination of payoffs. 

Definition 4 Spread options: These are commonly used within commodity markets as well as 

foreign exchange options to provide a payoff based on the difference between 2 or 3 assets. 

 

3.3.1 European call option 

A call option gives the holder the right to exercise his option at maturity time (T). It makes sense 

to buy the underlying asset at maturity time (T), if the stock/asset price(s) is higher than the 

exercise price (E), thus (S > E). An asset can be bought for E and immediately sell it on the 

market for S. Option is very much worthless if this isn’t the case. The value of the option is thus 

known at maturity time, and it’s either zero (0) or S-E, which is the net amount of profit. So, 

when the final condition of a call is known, the then problem is well-posed problem. The 

boundary conditions it follows from economic arguments. If 0S  , then the value of the call 

option equals zero (0). For S  , the holder will exercise and the value of his option will 

be simply the asset price (S) corrected by the dividend minus the exercise price (E) corrected by 

the case if the holder invest his money in the bank.  

( ) ( )( , ) T t r T tC S t Se Ee      

To summarize the problem we have 

0BS

C
L

t


 


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(0, ) 0C t   

 
( ) ( )lim ( , ) T t T tC S t Se Ee

S

    


                              (3.15) 

,
( , ) max( ,0)

0,

S E S E
C S T S E

S E

 
   



 

The known analytic solution of the Call option reads 

( ) ( )

1 2( , ) ( ) ( )T t r T tC S t Se N d Ee N d            (3.16) 

Where 

2

1

1ln ln ( )( )
2

S E r T t
d

T t

 



    



         (3.17) 

2 1d d T t                             (3.18) 

21
2

1
( )

2

x
N y e dx





            (3.19) 

The probability that the asset price will be above the exercise price is given by 2( )N d . 

A graphical representation of the Call option solution is shown in figure 3.1. Next to the final 

condition at t T , C at 0t   is presented for an option ¢5.00E GH , 0.3  , 0.05r  ,

0.03   and 2.0T   
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Figure 3.1: Showing the final value and solution for European call option with final value, 

and parameters as follows: E=GH¢ 5.00, σ=0.3, δ=0.03, r=0.05 and T=[0,2] 
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3.3.2 European put option 

The put option gives the holder the right to sell the underlying asset for the strike/exercise price 

E at maturity time (T). Unlike call option here the option is worthless if the asset price is more 

than the exercise price, thus S > E P(S,T)=0. On the other hand net profit E-S is realized if the 

asset price is below the exercise price. Once again boundary conditions follow from economic 

arguments. 

0BS

P
L P

t


 


 

( )(0, ) r T tP t Ee   

lim ( , ) 0P S t

S




           (3.20) 

With 1 2, ,d d N  from equation (3.17), (3.18) and (3.19) the analytic solution of the put option 

reads 

( ) ( )

2 1( , ) ( ) ( )r T t T tP S t Ee N d Se N d                         (3.21) 

The graphical representation of the put option solution is seen in figure 3.2 with the same 

parameters as in figure 3.1. 
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Figure 3.2: Showing the final value and solution for European put option. Parameters as in 

Figure 3.1 

 

 

 

The put-call parity establishes a relationship between the put and call option prices, thus 

( ) ( )

2 1( , ) ( ) ( , ) ( )r T t T tC S t Ee N d P S t Se N d              (3.22) 
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The arbitrage principle is the bases for this relationship. At t T the value of both side of the 

equation are certain. 

max( ,0) max( ,0)S E E E S S                  (*) 

Both side of the equation becomes S if S>E, and E if E>S. with this an arbitrage risk free 

portfolio can be composed. 

 

3.3.3 Digital call option 

This option also known as binary option is a type of exotic option, which offers fixed payout. 

There exist a large variety of exotic options now a days and are usually characterized by the 

different boundary or final conditions from the standard and vanilla European option. The 

discontinuity of the digital option payoff is the reason for it studies. The principle here is quite 

simple and can find a place in the tool box of trade average retailer. For digital call the option 

pays, if the value of the stock price is greater or equal the exercise price. If the stock price (S) is 

higher than the exercise price (E), the holder receives a fixed amount Q, which is equal to one (1) 

for pure digital. Example if the holder pay GH¢ 0.40 for a digital call and the asset price is above 

the exercise price, the holder makes a net profit of GH¢0.60. These types of options are not 

useful in the America style option since the options are immediately exercised. The final 

condition for digital call option is the Heaviside function, 

( ) : 1H S C   if S E  and 0C  if  S E . The left boundary is the same as the 

normal call, (0, ) 0C t   and the right boundary is on the payoff amount corrected by 

interest rate. To summarize 

0BS

C
L C

t


 


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(0, ) 0C t   

( )( , ) r T tC S t Qe     as S                                (3.23) 

,
( , ) ( )

0,

Q S E
C S T QH S E

S E


   



 

With 
1,d N from equation (3.17), (3.19), the analytic solution of the digital call option is 

2

( )
( )( , )

r T t
N dC S t Qe

 
                     (3.24) 

Figure 3.3 represent the final value and solution of the European digital call option. There is 

however another type of the digital call option which is available in the American style option 

and is called the asset or nothing call. 

Figure 3.3: Showing the final value and solution for European digital call option with final 

value, and parameters as follows: E=GH¢ 5.00, σ=0.3, δ=0.03, r=0.05 and T=[0,2] 
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Figure 3.4: Showing the final value and solution for asset or nothing call option. Parameter 

Figure 3.3 
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3.3.4 Digital put option 

A digital put option gives the holder a specific amount of the underlying asset if it is below the 

strike price expectation. The summarize equation is as follows 

0
BS

P
P

L
t







 

( )
(0, )

r T t
P t Qe

 
  

lim ( , ) 0P S t

S



 

         (3.25) 

0,
( , ) (1 ( ))

,

S E
P S T Q H S E

Q S E


    



 

With 
2

, Nd  from equation (3.18), (3.19) the analytical solution of the digital put option reads 

( )

2
( )( , )

r T t
N dP S t Qe

 
        (3.26) 

Figure 3.5, the final condition and the solution at 0t   is shown. Just as in digital call, in digital 

put there exists also asset or nothing put a variant of the digital put option type.  
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Figure 3.5: Showing the final value and solution for European digital put option. 

Parameters as in Figure 3.3 
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Figure 3.6: Showing the final value and solution for asset or nothing put option. 

Parameters as in Figure 3.3 

 

 

 

3.3.5 Linear combinations 

Trading options is usually done with a variety of options and not a single option. Trading a 

combination of options on the same underlying asset is a very common strategy in practice. See 
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the definition of spread in 3.2 (definition 4). In this situation a trader acts as a holder and as a 

writer. All options have the same maturity time. For example a bull spread, is a long position call 

with an exercise price
1

E , and a short position with exercise price
2

E , with
1 2

E E . With   a 

bull spread the profit of the holder and at the same time, the losses for the writer are reduce as 

compared to a single option figure (3.7). 

Suppose a long option call bought for GH¢ 3 with 
1

¢15GHE  and a short position call sold for 

GH¢ 1 with exercise price
2

¢20GHE  . The profit at t=T, defined as the payoff minus the cost 

of the bull spread reads  

1

1 2

2 2

2,

17,

3,

S E

profit S E S E

S E


 


   

 

 

Figure 3.7 shows the solution and payoff for a bull spread. 

Figure 3.7: Solution and final value of bull spread with parameters: 

1 2
15, 20, 0.3, 0.05, 0.03, [0, 0.5]E r TE        . 
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The bear spread happens to be the reverse of a bull spread, in that it is a combination of a long 

position with a higher exercise price 
2

E  and a short position with a lower exercise price
1

E , See 

figure 3.8. Consider as an example a long position call bought for GH¢1 with exercise price 

1
¢20GHE  and a short position call sold of GH¢3 with exercise price

2
¢15GHE  . The 

profit thus is 

1

1 2

2

2,

15 ,

3,

S E

profit S E S E

S E




   
 

 

As compare to a single option loses of the holder are reduce as well as the profit of the writer for 

bear spread. In figure 3.8 the payoff and the solution at 0t  for a bear spread are presented. 
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Figure 3.8: Solution and final value of bear spread with parameters: 

1 2
15, 20, 0.3, 0.05, 0.03, [0, 0.5]E r TE        . 
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2 1 3
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1

1 2

3 2 3

3

0,

,

,

0,

S E

S E E S E
payoff

E S E S E

S E




  
 

  
 

 

In figure 3.9 the payoff function and solution of the butterfly spread is represented. The usual 

European options are more risky than all these spreads.  

Figure 3.9: Solution and final value of Butterfly spread with parameters: 

1
15, 45, 0.3, 0.05, 0.03, [0, 0.5]

3
E r TE        . 
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For a digital spread often called super share. An example is a combination of a long position 

cash-or-nothing call with amount /Q d and exercise price E and a short position cash-or-

nothing call with /Q d and exercise price E d . The payoff thus is  

0,

/ ,

0,

S E

payoff Q d E S E d

S E d




   
  

 

Note that the values of all spreads are described by the Black-Scholes equation, because the 

spread strategies can be seen as linear combinations of single options, and the equation is linear. 

It must also be noted that this research work considers options on only one underlying asset.  

 

3.3.6 Barrier option 

This option belongs to the exotic options as well. The down and out barrier option will be 

discussed in this research work. A down and out option is worthless if S B (barrier amount) 

and therefore the left side boundary condition will change to ( , ) 0V B t   instead of

(0, ) 0V t  . Here the differential equation has to be solved in the region of 

[ , max]S B S  

The exact solution reads 

2
( 1)

) ( , )( , ) ( , ) (
Bk

S

S C tBV S t C S t
 

                                (3.27) 

Where ( , )C S t  denote the solution of the standard European call and 
2

2rk


   
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3.4 The Greeks 

In the derivation of the Black-Scholes equation, the elimination of the randomness in the option 

pricing process is employed to derive the deterministic Black-Scholes equation. One of the 

important parameters in option pricing is 
V

S


 


which is the quantities that eliminate the 

main contribution to randomness in the model. It is the rate of change of the option price with 

respect to the price of the underlying asset. It indicates the number of shares that should be kept 

with each option issued in order to cope with a loss in the case of exercise. 

Another important parameter is the derivation of , that is . This is defined as the rate of 

change of the portfolio   with respect to the price of the underlying asset.  is an indication of 

the sensitivity of  . If  is low, it is only necessary to change sometimes the portfolio. 

However, when it is high, the portfolio under consideration results only for a very short period of 

time in a risk-less scenario. These parameters are known as Greeks and are given by  

V

S


 


              (3.28) 

2

2

V

S




               (3.29) 

V

t


 


             (3.30) 

V








             (3.31) 

V

r






             (3.32) 
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 is defined as the rate of change of the option price with respect to time when all other 

parameters are kept fixed.  is known as vega and define as the rate of change of the option 

price with respect to volatility of the underlying asset while  is defined as the rate of change 

of the option price with respect to the interest rate in the market. The value of   and  are 

investigated in this thesis. 

By working down the analytic solution ofV , the exact solution of the Greeks for European 

options can be determined. 

( )

1
( )

T t
N de

 
   

( ) 1( )T t N d

S T t
e





 


   

1 ( )
( ) ( )1

1 2

( )
) ( )

2( )
(

T t
T t r T td e

e rSe N d
T t

SN
SN d





 

   





    

( ) 1

1
)(

T t
T tNe S d




 
  

( )

2
( )( )

r T t
N dS T t e

 
   

With 
1
( )N x , the derivative of equation 3.19 which is the normal distribution. In figure 3.10 to 

3.11 several Greeks are plotted for the parameter set used in figure 3.1. It is challenging to find 

an accurate approximation of the Greeks numerically, since numerical differentiation usually 

reduces the order of accuracy. Often in numerical experiments, one sees that the accuracy of the 

Greeks is better than expected, probably due to the smoothness of the solutions. With the highly 

accurate discretization’s, however, we expect reasonable accuracy of the hedging parameters.   
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Figure 3.11: Δ of a European call. Parameter as in figure 3.1 

 

 

Figure 3.11: Γ of a European call. Parameter as in figure 3.1 
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3.5 Discretization of the Partial Differential Equation 

To get a fast solution of the Black –Scholes equation a numerical method will be developed. This 

will be the aim of this section. In many practical situations, a second order accurate solution 

which leads to decreasing error quadratically is used. However when needed, a fourth order 

accurate solution will be more preferable as the numerical solution is often obtained faster as 

fewer grid points are necessary for the same accuracy. A powerful technique to get many grid 

points in the region of interest is grid stretching. After the resulting linear algebraic system has 

been solved for each time step, the aim will be to discretize the equation in space and in time. A 

direct method will be used to solve the matrix equation, since a sparse matrix results from a one 

dimensional space discretization. For other exotic operations as well as American options style 

an iterative methods are mandatory. However this will not be considered in this research work. 

Nevertheless later in this chapter and chapter 4, some properties of the matrix will be given, to 

determine which discretization is beneficial for iterative methods. 

 

3.5.1 Space discretization 

A parabolic partial differential equation is a type of second order PDE which describes wide 

range of family of problems. Boundary conditions for parabolic problems are analogous to the 

elliptic case: Eg. Dirichlet.  

Considering the general form of a parabolic PDE with non-constant coefficient, Dirichlet 

boundary conditions and initial conditions, we have 

2

2
( ) ( ) ( ) ( , ) ( , )

u u u
x x x u x t f x t

t x x
  

  
   

  
    (3.32) 

( , ) ( )u a t b t                 (3.33) 
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( , ) ( )u b t R t                 (3.34) 

( ,0) ( )u x x                    (3.35) 

To solve this equation, a numerical method needs to be employed on a grid with N points and a 

constant step size h . Such a grid is called equidistant grid. For an interval[ , ]a b , the step size 

h is ( )b a
h

N


 . Let each point a ib be denoted by, thus

ix a ih  . 

 

3.5.1.1 Second order accuracy 

To numerically solve PDEs, the solution intervals need to be discretized into a set of discrete 

points with u as a function of one or more discrete points in a given neighborhood
jt . 

To obtain the second order central difference scheme, approximation, let’s consider the Taylor’s 

expansions of the given point say 
ix a ih   

( )

i i

i i

i

x x x x

x x x x

x x h

  

  

 

 

( ) ( )iu x u x h   

' 2 '' ( 1) ( 1)

( )

1 1 1
( ) ( ) ( ) ( ) ... ( )

2! ! ( 1)!

n n n n

i i i i i inu x h u x hu x h u x h u x h u x
n n

       


(3.36) 

If h d , then as h increases it approaches zero  

' 2

' 2

( ) ( ) ( ) 0( )

( ) ( )
( ) 0( )

i i i

i i
i

u x h u x hu x h

u x h u x
u x h

h

   

 
 

        (3.37) 

2 ''
'( ) ( ) ( ) ( ) .....

2!
i i i i

h u
u x h u x hu x x                 (*) 
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2 ''
'( ) ( ) ( ) ( ) .....

2!
i i i i

h u
u x h u x hu x x               (**) 

' 2

' 2

( ) ( ) ( ) 0( )

( ) ( )
( ) 0( )

i i i

i i
i

u x h u x hu x h

u x u x h
u x h

h

   

 
 

       (3.38) 

With linear combinations of u at the points
jx , it is possible to get a second order 

approximation of the first and second derivatives. 

(*) (**) yields ' 2( ) ( )
( ) 0( )

2

i i
i

u x h u x h
u x h

h

  
                  (3.39) 

(*) (**) yields '' 2

2

( ) ( ) 2 ( )
( ) 0( )i i i

i

u x h u x h u x
u x h

h

   
      (3.40) 

' 21 1( ) ( )
( ) 0( )

2

i i
i

u x u x
u x h

h

 
         (3.41) 

Hence 
iu is the abbreviation for ( )iu x . It is therefore possible to discretize differential for 

(3.33). In each point 
ix  the factors in front of the differential operator can be evaluated. For the 

second order approximation, the discretized system reads 

1 1 1 1

2

2
( )

2

i i i i i i
i i i i i

u u u u u u
u f t

t h h
        

   


     (3.42) 

This equation is true for 1 1i N N    . There is a need for a special treatment of the 

first and last points. In a matrix form, systems of equation (3.42) read 

( ) ( )
du

Au b t f t
dt

             (3.43) 

Where f is the discretized source function, A  the matrix coefficient and u the discrete 

solution. The vector b  contains the boundary values and may be time dependent function. The 

equation of the first point in the second order accuracy, thus reads 
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2 1 0 2 01
1 1 1 1

2
( )

2
i

u u u u uu
u f t

t h h
  

  
   


      (3.44) 

From (3.33), 
0 ( )u L t   

In the same way, the right boundary in the second order reads 

1 1 2 2
1 1 1 1 12

2

2

N N N N N N
N N N N N

u u u u u u
u f

t h h
     

    

   
   


   (3.45) 

With ( )Nu R t . Vector b reads 

2

2

( ) ( )
( ), 1

2

0,2 2

( ) ( )
( ), 1

2

i

a h a h
L t i

h h

b i N

b h b h
R t i N

h h

 

 

   
  

 
   
       
 

      (3.46) 

And the matrix elements are 

2

2

2

2

1 1

2

1 1

2

ii i i

ii i i

ii i i

a
h

a
h h

a
h h

 

 

 


 

 

 

         (3.47) 

 

3.5.1.2     High order accuracy 

For fourth order accurate discretization, more neighboring points are required or needed for 

Taylor’s expansion. Just as in (3.36), it follows that for the points 2

2

2

2

i i

i i

x x h

x x h





 

 
we have 

' 2 '' ( 1) ( 1)

( )

1 1 1
( ) ( ) ( ) ( ) ... ( )

2! ! ( 1)!

n n n n

i i i i i inu x h u x hu x h u x h u x h u x
n n

       


(3.48) 
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With the assumption that all derivatives exist and also with the same abbreviation ( )i iu u x , 

the fourth order approximations of the derivatives are 

4 ''

2 1 22

1
( 16 30 ) 0( )

12
i i i i iu u u u h u

h
              (3.49) 

4 '

2 1 2

1
( 8 8 ) 0( )

12
i i i iu u u h u

h
              (3.50) 

Combining (3.49) and (3.50), then (3.33) reads 

2 1 1 22

2 1 1 2

1
( 16 30 16 )

12

1
( 8 8 ) ( )

12

i
i i i i i i

i i i i i i i i

u
u u u u u

t h

u u u u u f t
h



 

   

   


      



     

     (3.51) 

At the left boundary, the point 
1x and 

2x  needs a special treatment and the points 
1Nx 

 and 

2Nx 
at the right boundary of the fourth order approximation. 

At the point 2x the equation reads 

2
2 4 3 2 1 02

2 4 3 1 0 2 2 2

1
( 16 30 16 )

12

1
( 8 8 ) ( )

12

u
u u u u u

t h

u u u u u f t
h



 


      



     

     (3.52) 

And that of 1x reads 

1
2 3 2 1 0 12

2 3 2 0 1 1 1 1

1
( 16 30 16 )

12

1
( 8 8 ) ( )

12

u
u u u u u

t h

u u u u u f t
h



 






      



     

                (3.53) 

The value 
1u

can be obtained by extrapolation. The different possibilities are 

2

1 0 12 0( )u u u h                          (3.54) 
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3

1 0 1 23 3 0( )u u u u h                          (3.55) 

4

1 0 1 2 34 6 4 0( )u u u u u h              (3.56) 

5

1 0 1 2 3 45 10 10 5 0( )u u u u u u h                         (3.57) 

For the right boundary the derivation is omitted since the points 
2Nx 

 and 
1Nx 

 goes in a 

similar way as in the left boundary. 

The first and last row of the matrix system will change just as the vector b changes. From (3.56) 

and as mentioned earlier on in equation 3.46, here vector b reads 

2 2

2

2

2

( ) ( )
( ), 1

3

( 2 ) ( 2 )
( ), 2

12 12

0,3 3

( 2 ) ( 2 )
( ), 2

12 12

( ) ( )
( ), 1

3

i

a h a h
L t i

h h

a h a h
L t i

h h

b i N

b h b h
R t i N

h h

b h b h
R t i N

h h

 

 

 

 

   
  

 
   
   
 

   
        
 


      
 

     (3.58) 

The matrix element in equation 3.43 reads 

2

1 2

1 2

2 2

2 2

15

4

4 4

3

4 4

3

1 1

12 12

1 1

12 12

ii i i

ii i i

ii i i

ii i i

ii i i

a
h

a
h h

a
h h

a
h h

a
h h

 

 

 

 

 










 

 

 


 


 

        (3.59) 

The corrected first row and second row of the equation (3.59) reads 
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11 2

12 2

13

1, 1 2

1, 2 2

1, 3

2 1
( ) ( ) ( )

2

1 1
( ) ( )

1
( )

6

2 1
( ) ( ) ( )

2

1 1
( ) ( )

1
( )

6

N N

N N

N N

a a h a h a h
h h

a a h a h
h h

a a h
h

a b h b h b h
h h

a b h b h
h h

a b h
h

  

 



  

 



 

 

 


     

   


 


     

   

 

      (3.60) 

Another approach perhaps the second one for the correction of the first and last grid points is to 

use the backward difference scheme at the first and last grid points with different scheme 

40 1 2 3 4

2

3 10 18 6 4
0( )

12

iu u u u u u
h

x h

     
 


       (3.61) 

2
40 1 2 3 4 51

2 2

10 15 4 14 6
0( )

12

u u u u u uu
h

x h

    
 


      (3.62) 

and similarly for the last point 

41 1 2 3 4

2

3 10 18 6
0( )

12

N N N N N Nu u u u u u
h

x h

        
 


     (3.63) 

2
41 1 2 3 4 5

2 2

10 15 4 14 6
0( )

12

N N N N N N Nu u u u u u u
h

x h

          
 


    (3.64) 

the corrected first and last row from the matrix element in (3.59) is now  
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11 2

12 2

13 2

14 2

15 2

1, 1 2

1, 2 2

1, 3

5 5
( ) ( ) ( )

4 6

1 3
( ) ( )

3 2

7 1
( ) ( )

6 2

1 1
( ) ( )

2 12

1
( )

12

5 5
( ) ( ) ( )

4 6

1 31
( ) ( )

3 2

7

N N

N N

N N

a a h a h a h
h h

a a h a h
h h

a a h a h
h h

a a h a h
h h

a a h
h

a b h b h b h
h h

a b h b h
h h

a

  

 

 

 



  

 

 

 

 


     


   

   


   

 


     


   


2

1, 4 2

1, 5 2

1
( ) ( )

6 2

1 1
( ) ( )

2 2

1
( )

12

N N

N N

a h b h
h h

a a h b h
h h

a a h
h

 

 



 

 

  


   

 

      (3.65) 

The only change on vector b is on the first and last elements, thus these element in the vector 

b from (3.58), now reads 

1 2

1 2

5 1
( ( ) ( )) ( )
6 4

5 1
( ( ) ( )) ( )
6 4

N

b a h a h L t
h h

b a h b h R t
h h

 

 

   

   

       (3.66) 

 

3.5.2 Coordinate transformation 

As defined in [12] Coordinate transformation is defined as a process of establishing relationship 

between coordinate systems in order to transform points from one system to the other. In 

numerical solution of PDEs a discrete domain is chosen where algebraic analogues of PDEs are 

solved. The introduction of grid and estimation of values of the unknowns at the grid points 
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though the solutions of these algebraic equations are one standard method used. The local error 

and hence the accuracy of the solution is determined by spacing of the grid points. The spacing 

also determines the number of calculations to be made to cover the domain of the problem and 

thus the cost of the computation. For a well behaved problem, a grid of uniform mesh spacing in 

each of the coordinate directions gives satisfactory results. There are however classes of 

problems where the solution is more difficult to estimate in some regions perhaps due to 

discontinuity or non-differentiation as in option pricing than in others. The reason for using a 

coordinate transformation is to simplify the payoff function. One could use a uniform grid 

having a spacing time enough so that the local errors estimated in these difficult regions are 

acceptable. This approach however is computationally costly. The local refinement near the 

discontinuous payoff conditions seems logically a choice to retain a satisfactory accuracy. The 

local refinement principle is simple, in that one needs to get more points in the neighborhood of 

the grid point where the non-differentiable conditions or discontinuity occurs. This can be done 

by adaptive grid refinement for some regions, based on the error indicator or by a coordinate 

transformation. The most elegant way in our application is the analytic coordinate 

transformation. The derived space discretization in (section 3.5.1) is based on equidistant grid. 

After the analytic transformation, the discretization can still be used as the only coefficients in 

front of the derivatives change. Consider the coordinate transformation ( )i i iy x  with 

inverse 1( )i i ix y . From the principle of chain rule, then first order derivatives of the 

function ( )u x  will read 

 
1

1du du dy du dx du
y

dx dy dx dy dy dy




 
   

 

        (3.67) 

A second order derivative on the equation (4.36) reads 
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1 1 2 32 2 2

2 2 2

d u dx d dx du dx d u dx d x du

dx dy dy dy dy dy dy dy dy dy

             
                       

   (3.68) 

Appling (3.67) and (3.68) to (3.32) the factors ,   and  changes into  

' 2

( ( ))

( ( ))

y

y

 



             (3.69) 

''

' 3

( ( )) ( )
( ( ))

( ) ( ( ))

y y
y

y y

  
  

 
          (3.70) 

( ( ))y               (3.71) 

Here if 0   in the original equation, the transformed equation will contain extra convection 

term. The standard diffusion equation thus turns into a convection-diffusion equation with non-

constant coefficients. PDE is the target transform equation to solve on an equidistant grid. The 

left and right boundary conditions are transformed into ( )a and ( )b . And thus the new step 

size will be 

( ) ( )
new

b a
h

N

 
  With the assumption that  is a monotonically increasing function. 

 

3.5.2.1 Type of transformations 

Considering the two basic transformation types; linear transformation and nonlinear 

transformation and applying the technique of one of the two, a non-differentiable payoff function 

remains only along the independent variable ( )x path. An analytic grid stretching in this 

coordinate direction represents a technique which may cluster grid points in the region of interest 

and this can improve the accuracy of the solution in the case of a payoff function that is non-

differentiable. It preserves the order of functions. It will be of convenience, to use monotonically 
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increasing functions for our transformation. For an option pricing an interesting transformation 

function reads 

1 1

0 0( ) sinh ( ) sinhy s S S S              (3.72) 

For stock price / asset price 
0 ¢10S GH  

Figure 3.12: Representation of transformation function of (3.72) 

 

 

The transformation considered per the aim of this research paper reads, 

1 1

0 0( ) sinh ( ( )) sinh ( )y s S S S              (3.73) 

 = rate of stretching 

Before monotonic: The coordinate of the independent variable x can be written as a function of 

the dependent variable y via the stretching function . 

In many cases the satisfactory value for  is 5  . With (3.73), the grid is refined around 

0S S  

In figure 3.13, the stretching function 1,5,10    has been plotted 
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For the transformation 3.73, the inverse and the derivatives read 

1

0 0

1
( ) sinh( sinh ( ))y y S S 


            (3.74) 

' 1

0

1
( ) cosh( sinh ( ))y y S 


           (3.75)  

'' 1

0

1
( ) sinh( sinh ( ))y y S 


           (3.76) 

We can therefore form a structure of transformation if stretching around more than one point is 

needed  

1

1

( )

( )

y x

x y









2 2 1

2 1 2

( ) ( ( ))

( ) ( ( ))

z y z x

y z x z

  

  

  

  
       (3.77) 

Figure 3.13: Representation of transformation function of (3.73) 
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3.5.3 Numerical time integration 

A system of ordinary time differential equation, which may have been transformed after 

discretization of the equation reads 
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( ) ( )

(0)

du
Au b t f t

dt

u 

  



          (3.78) 

Where A  = generated matrix by the second or fourth order scheme. The vector b contains 

boundary conditions, ( )f t  being the source function and  being the initial transformed 

condition in the equation (3.35). It is known that PDEs of different types which occur in areas 

such as chemical kinetics control theory; electronic solid mechanics etc. are stiff due to the 

presence of different scales. To solve such a problem however, there is the need to use implicit 

methods which is unconditionally stable. A second and fourth order accurate scheme in time is 

thus employed. Given M  intervals the time intervals on M divided and the time step defined as 

T
k

M
 . To get the second 

2 2(0( ))h k  or fourth 
4 4(0( ))h k  order approximation of the 

solution, a time integration of 
20( )k or 

40( )k  is required. 

 

3.5.3.1 Crank Nicolson method 

Crank Nicolson implicit finite difference method is an average of implicit and explicit methods. 

This method is obtained by taking the forward difference from equation (3.37) and backward 

difference from equation (3.38) and averaging. This method has become a very popular finite 

scheme for approximating the Black-Scholes equation. 

In deriving Crank Nicholson scheme we have from [1] the scheme reads 

1 1 11 1 1
( ) ( ) ( )

2 2 2

j j j j j jI kA u I kA u k b b f f              (3.79) 

 With I  being the identity matrix and ju the vector evaluation at time t jk . 
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One draw-back of the Crank Nicholson scheme is that it responds to damp discontinuous in the 

initial condition with oscillations which are weakly damped and therefore may persist for a long 

time. To resolve this however a special damping initialization steps are necessary. 

 

3.5.3.2 Backward difference scheme 

This is another well-known implicit scheme in the sense that the unknown variable cannot be 

easily expressed in terms of the known. This scheme is also 
20( )k  that is second order as seen in 

[8] 

1 1 1 13 1
( ) 2 ( )
2 2

j j j j jI kA u u u k b f                          (3.80) 

Due to its two step method, an initialization step is always necessary. In (section 3.4.3.5) the 

approximate initialization step is described. The fourth order scheme however reads 

1 1 2 1 125 4
( ) 4 3 ( )
12 3

j j j j j jI kA u u u u k b f               (3.81) 

Three steps are needed for this method 

 

3.4.3.3 Implicit Runge-Kutta methods 

Unlike the fourth order scheme described in (3.81) of (section 3.5.3.2) which is a multi-step 

method. Runge-Kutta methods are single-step but multi-stage methods, this simply means that 

more calculations are performed for one time step, but all with explicitly known time value.  

Runge-Kutta method seeks to improve upon the low accuracy level of the Euler Method. The 

most readily used Runge-Kutta method is the four function evaluations per time step and this 

depends on Simpsons Quadrature rule of integration. The use of the implicit method here is 
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because of it more stability and accuracy as compared to the explicit method. The equation 

(3.78) can therefore be rewritten as  

( , )
du

z t u
dt

                          (3.82) 

0 0(0)u u                                     (3.83) 

There are several schemes of Runge-Kutta, however as can be seen in [2], the dynamics of 

Runge-Kutta methods, the general expression of the Runge-Kutta scheme is written as 

1

1

1

( , )

( , )

q
j j

i im m m

m

q
j j j

m m m

m

y u k p z t c k y

u u k w z t c k y







  

  




       (3.84)  

In the equation (3.84) we have to solve a system of equations with unknown vectors of size

1N  . However LU decomposition can be applied to solve this problem if necessary. In this 

research work, the scheme to be used is the 
40( )k  Gauss-Legendre Scheme with parameters.  

1 1 1
3

4 4 6

1 1 1
3

4 6 4

p

 
 

  
  
 

                    (3.85) 

1 1 1 1
3 3

2 6 2 6

T

c
 

   
 

 

1 1

2 2

T

w
 

  
 
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3.5.3.4 Padé approximation 

This is equations of an thM  degree polynomial over 
thN degree polynomial that matches the 

Taylor series of a function of highest order accuracy. 

From [2], the Padé method which starts from the Crank-Nicholson scheme reads 

1

0

( )! ( )!
( 1) ( ) ( )

( )! ( )

N
k k j k j

k k

k

N MM N k M N k
h z u h z u

k kM N M N





      
    

    
                    (3.86) 

Is of order M N . Thus the so called Padé (1,1) method reads  

1
1 1 1 21

( ( ) ) 0( )
2

j
j j j j j ju u

A u u b b f f k
k


  

             (3.87) 

That of Padé (1,2) reads 

1 1 1
1 1 1 1 1 1 31 2 1

( ( ) ( ) ( ( ) ) 0( )
3 3 6

j j j
j j j j j j j j ju u db df

A u b f Au b f k A Au b f k
k dt dt

  
     

          

(3.88) 

And the scheme Padé (2,2) reads 

1
1 1 1

1 1
1 1 1 4

1 1
( ) ( ( ) )

2 12

1
( ( ) ) 0( )

12

j j j
j j j j j j j j j

j j
j j j

u u db df
Au b f Au b f k A Au b f

k dt dt

db df
k A Au b f k

dt dt


  

 
  


         

     

   

(3.89) 

Here the derivative of vector b and the source vector f can easily be computed. The Padé 

methods are implicit and also another multi-stage formula for ordinary differential equation as it 

is seen in the form of (3.82). 

 

3.5.3.5 Initialization 
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An initialization step is needed for the backward formula for the second order accuracy. To do 

this, one step of Crank Nicolson method should be taken. In the case of non-smooth initial 

conditions, such a condition should be treated by another initialization step, which thus exhibit 

damping. For that method, two step of the Backward Euler scheme of the first order can apply as 

seen below. 

1 1 1( ) ( )j j j jI kA u u k b f                          (3.90) 

Several possibilities for the initialization of backward difference formula of the fourth order can 

be given. However the multi-staging of the implicit Padé method and the Runge-Kutta method 

makes this single step method complicated. To handle the Runge-Kutta method, matrix equations 

have to be inverted. While with Padé approximation both matrix multiplication as well as 

inversion must be performed. Combining the fourth order method describe in the previous 

sections is the best way to handle this methods. First we take the first step of the Guass Lagendra 

method and continue with the fourth order backward difference formula. Another approach will 

be to start with the second order backward difference scheme and continue by the third order and 

finally the fourth order. The third order backward difference formula reads 

1 1 3 1 111 3 1
( ) 3 ( )

6 2 3

j j j j j jI kA u u u u k b f               (3.91) 

For this research work, we prefer the combination of the Backward Euler (3.90) and Crank-

Nicolson (3.79) for the second order solution and the combination of Runge-Kutta (3.84) and 

with the fourth order backward difference formula for the fourth order solution. 

 

3.5.4 Numerical differentiation: The Greeks  
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The Greeks are computed by numerical differentiation as mentioned earlier on in (section 3.4). 

This is done by using the different scheme for discretization of the Black-Scholes equation. 

Given the solution of the problem ( , )iu x t , then the derivative with the second order accurate 

scheme is given by 

1 1

2

i i
i

u uu

x h

 
  


           (3.92) 

2

1 1

2 2

2i i i
i

u u uu

x h

  
  


          (3.93) 

and the fourth order accurate scheme reads 

2 1 1 28 8

12

i i i i
i

u u u uu

x h

      
  


        (3.94) 

2

2 1 1 2

2 2

16 30 16

12

i i i i i
i

u u u u uu

x h

       
  


      (3.95) 

The derivatives at the boundaries are known for Black-Scholes, but with the fourth order 

accurate scheme, one need the backward difference formula to find the derivatives in the points 

1u and 1Nu  . The derivative in those points reads 

0 1 2 3 4
1

3 10 18 6

12

u u u u uu

x h

    
  


                  (3.96) 

2

0 1 2 3 4 5
1 2 2

10 15 4 14 6

12

u u u u u uu

x h

    
  


      (3.97) 

1 2 3 4
1

3 10 18 6

12

N N N N N
N

u u u u uu

x h

   


    
  


      (3.98) 

2

1 2 3 4 5
1 2 2

10 15 4 14 6

12

N N N N N N
N

u u u u u uu

x h

    


    
  


                (3.99) 
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,T i i

i

d

dy


                 (4.0) 

2 32

, 2T i i i

i i

d d d

dy dy dy

  
 

   
       

   
              (4.1) 

When the transformation is used, the derivative of the same scheme will now read as seen in 

(4.0) and (4.1), then these derivatives of the transformation are known in each point.   

 

3.6 Validation of discrete systems 

In validating our discrete system, some reference tests are performed with diffusion type of 

equation and an analytic solution in a polynomial form. Here the fourth order scheme is tested, 

where the numerical error is given the maximum norm as .


 or 2L - norm as seen below.  

 ,max : 1...ex i ex iu u u u i N 
               (4.2) 

2

2 ,2
1

1
( )

N

ex i ex i

i

u u u u
N




              (4.3) 

where u is the numerical solution and exu  is the exact solution. 

NB: ,i ex iu u  is the error made at the point x a ih   on the grid with N  point. The step size 

h  is given by 
( )b a

h
N


  with the interval[ , ]a b . In applying the discretization describe earlier in 

(section 3.5) to the Black-Scholes equation, the value a  will be set to zero and all calculation 

shall be performed in the interval[0, ]b . 

 

3.6.1 Constant coefficients test problem 
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Parabolic differential equation with constant coefficient should be the first problem to test the 

fourth order discretization and space and time. 

2

2

5

5

5

5 4 3

1
( , ) ( , )

2

(0, )

( , ) ( )

( ,0)

( , ) ( ) 10( ) 10( )

u u u
u x t f x t

t x x

u t t

u b t b t

u x x

f x t x t x t x t

  
   

  

 

 



     

         (4.4) 

The exact solution is given by 

5( , ) ( )u x t x t               (4.5) 

For 1, 1, 10, 10T b N M    with extrapolation at the boundaries. 

The matrix for (4.4) reads 

 

-106  60  0  0  0  0  0  0  0 

 60 -126  73.33 -5  0  0  0  0  0  

-3.33  60 -126  73.33 -5  0  0  0  0 

 0 -3.33  60 -126  73.33 -5  0  0  0 

   0  0 -3.33  60 -126  73.33 -5  0  0 

   0  0  0 -3.33  60 -126  73.33 -5  0 

   0  0  0  0 -3.33  60 -126  73.33 -5 

   0  0  0  0  0 -3.33  60 -126  73.33 

   0  0  0  0  0  0  1.67  40 -96 
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A test with different numbers of space and time steps was performed for (4.4). The convergence 

order in both infinite norm .


 and 2L -norm as well as the errors are presented in table 3.1 

below.    

Table 3.1: Results of test problem (4.4) with b = 1; T = 1 and extrapolation at the 

boundaries. 
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By applying backward difference scheme at the boundaries in the first and last row the matrix 

form changes as shown below and the result in table 3.2 

 

-71.83 -1.67  53.33 -24.17  4.17  0  0  0  0 

 60 -126  73.33 -5  0  0  0  0  0  

-3.33  60 -126  73.33 -5  0  0  0  0 

 0 -3.33  60 -126  73.33 -5  0  0  0 

   0  0 -3.33  60 -126  73.33 -5  0  0 

   0  0  0 -3.33  60 -126  73.33 -5  0 

   0  0  0  0 -3.33  60 -126  73.33 -5 

   0  0  0  0  0 -3.33  60 -126  73.33 
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   0  0  0  0  4.17 -25.83  63.33 -31.67 -55.17 

  

 

Table 3.2: Results of test problem (4.4) with b = 1; T = 1 and backward difference at the 

boundaries. 
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From table 3.1 and 3.2 it could be notice that the errors with backward difference scheme at the 

boundaries is smaller than that with extrapolation. 

 

3.6.2 Non-constant coefficients test problem 

Due to the non-constant coefficient of the Black-Scholes equation, there is a need for a test to be 

performed with the non-constant coefficients.  

The parabolic equation used for the test is as below 

2
2

2

5

5

5

5 4 4 3

1
( , ) ( , )

2

(0, )

( , ) ( )

( ,0)

( , ) ( ) 5( ) 5 ( ) 10( )

u u u
x x u x t f x t

t x x

u t t

u b t b t

u x x

f x t x t x t x x t x t

  
   

  

 

 



       

              (4.6) 
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5( , ) ( )u x t x t   gives the solution of (4.6). In both infinite norm .


 and 2L -norm, the 

order of convergence and errors are presented with backward difference at the boundaries as seen 

in the table 3.3 

Table 3.3: Results of test problem (4.6) with b = 1; T = 1 and backward differencing at 

boundaries. 
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Just like the previous result in table 3.1 and 3.2, the convergence behavior is again 

asymptotically of fourth order. However the errors are larger than previous equations. 

 

3.6.3 Transformed test problem 

With grid transformation as describe earlier on in (section 3.4.2), the matrix for 10N  space 

and 10M  time steps, with the given parameters 01, 1, 5, 0.5T b x    , the extrapolation 

at the boundaries reads 
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-3.03  2.03 -0.23  0  0  0  0  0  0 

 2.37 -9.88  7.10 -0.59  0  0  0  0  0  

-0.30  8.94 -25.66  17.36 -1.35  0  0  0  0 

 0 -0.93  33.33 -49.50  31.38 -2.31  0  0  0 

   0  0 -2.38  33.33  -72.98  43.45 -3.03  0  0 

   0  0  0 -2.38  41.27 -84.23  47.50 -3.16  0 

   0  0  0  0 -2.47  40.82 -79.96  43.40 -2.79 

   0  0  0  0  0 -2.14  34.66 -66.85  35.58 

   0   0   0  0  0  0  0.09  20.08 -41.96 

 

and that of the Backward difference reads 

 

-2.97  1.81  0.11 -0.22  0.06  0  0  0   0 

 2.37 -9.88  7.10 -0.59  0  0  0  0  0  

-0.30  8.94 -25.66  17.36 -1.35  0  0  0  0 

 0 -0.93  33.33 -49.50  31.38 -2.31  0  0  0 

   0  0 -2.38  33.33  -72.98  43.45 -3.03  0  0 

   0  0  0 -2.38  41.27 -84.23  47.50 -3.16  0 

   0  0  0  0 -2.47  40.82 -79.96  43.40 -2.79 

   0  0  0  0  0 -2.14  34.66 -66.85  35.58 

   0  0  0  0  1.72 -10.35  24.32 -7.68 -26.32 
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Table 3.4 and 3.5 gives the result for the errors and order of convergence. 

Table 3.4: Results of transformed test problem (4.6) with 01, 1, 5, 0.5T b x    and 

extrapolation at the boundaries 
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Table 3.5 Results of transformed test problem (4.6) with 01, 1, 5, 0.5T b x     and 

backward differences 
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For further test the influence of  in our transformation is checked. The only parameter we vary 

in the same test problem is  by choosing 1   and 10   since it has already been established  
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in (section 3.4.2.1) that 5   in many cases yields a satisfactory value. Table 3.6 and 3.7 

represents the convergence results. 

Table 3.6 Results of transformed test problem (4.6) with 01, 1, 1, 0.5T b x    and 

backward differences 

          ‖     ‖        ‖     ‖2       

     10 

        

        

     80 

            

            

            

            

 

      

      

      

            

            

            

            

 

      

      

      

 

 

Table 3.7 Results of transformed test problem (4.6) with 01, 1, 10, 0.5T b x    and 

backward differences 

          ‖     ‖        ‖     ‖2       

     10 

        

        

     80 

            

            

            

            

 

     

     

      

            

            

            

            

 

     

     

      

 

 

As can been seen from the test experiment, it follows that equidistant grid converges in fourth 

order but for transformed grid this is observed mainly asymptotically. However errors made are 
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fewer when a proper   is chosen. From our result in table 5.5, 5.6 and 5.7 it could be seen that 

10   have a lower convergence which is probably due to severe stretching.  

For Black-Scholes, 0x  will be chosen close to E  and the parameter   will play an import role in 

determining the error and convergence. The absent of singularities makes the transformation not 

that useful in the test problems discussed in this chapter. 

 

3.7 Special features of Black-Scholes PDE 

Discussion of some topics of Black-Scholes will be looked at under this section in order to 

choose the proper difference scheme, transformation as well as choice of grid. In this discussion, 

the techniques to smoothen the final condition will also be discussed. 

 

3.7.1 Difference method and time integration 

Local refinement (see section 3.4.2) can be use near singularities in the final conditions. In doing 

this the time direction must first of all be transformed to obtain a forward difference problem 

with an initial condition. Letting   be the new time, we have T t   . From (3.15) we have a 

new equation with our new time T t    

2
2 2

2

1
( ) ( , )

2

(0, ) 0

( , )

,
( ,0) max( ,0)

0,

r

C C C
S r S rC S

S S

C

C S Se Ee

S E S E
S S S E

S E

 

  




  

  
   

  



 


   



         (4.7) 

This is a well posed system which can easily be solved by numerical schemes as described in 

(section 3.5). For easy work, the time will be replaced with t . Now applying the grid stretching 
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transformation as in (3.73) to the initial condition, with 
0x  which is chosen close to E for Black-

Scholes,
0x E , thus 11

( ,0) max( sinh( sinh ),0)C y y E


           (4.8) 

In doing this the sharp edge in the initial condition of Vanilla options disappears while that of the 

exotic options shows that a discontinuous payoff remains a discontinuity in the transformed case.  

 

3.7.2 Smoothing initial conditions 

In many financial problems non-smooth initial conditions or data such as time, which can cause 

convergence problems for numerical method, exist. Some type of smoothing of that data must 

however be performed. In doing so the discontinuous initial condition must be treated carefully 

when applying a time integration scheme. 

In [7] it was suggested that when discontinuities occur midway between grid points, by shifting 

the grid, accuracy increases. Using Crank-Nicolson method type, which can theoretically attain 

second order convergence for any volatility structure, it means that by applying one or more first 

order time steps as initialization for Crank-Nicolson, initial condition is smoothen. A possibility 

for initialization for fourth order time scheme is to start with Runge-Kutta method as seen in 

(section 3.5.3.3). 

For our interest we will use this for the discontinuous initial condition. 

 

3.6.3 Distance field boundary 

Unlike numerical solution which has fixed boundaries, for Black-Scholes there is a boundary 

condition at infinity. What it means is that maxS  must be chosen as large as possible, though this 

may be difficult for numeric scheme as the number of grid points may grow excessively. 
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In [8], the proper size of the domain is proposed after a careful analysis. The distance field 

boundary reads 

2

max max(2 , ( 2 ln100))S E Exp T      (4.9) 

 Plays an important role in the relationship between E and maxS . With (4.9), a solution can be 

computed with an accuracy of at least 
1100 E

 and the minimal size of the domain is 2E . In 

practical cases however, brokers would like to have an accuracy of at least GH¢0.01, so 

experimental results from [12] yields the formula 

2

max max( , ( 2 ln100))S RE EExp T      (4.10) 

In the case that volatility is high, equation (4.78) is also valid and 2R   is necessary. In an 

equidistant grid, there will be many points without any financial interest in the region

[2 , ]S E RE . As the number of point in [2 , ]S E RE  is minimized, the strength of the 

transformation is noticed. 

 

3.7.4 Choice of grid 

From Pooly,D. in [8], it was known that the exact position of a discontinuity in the initial 

condition related to the position of the grid point have an influence in increase accuracy. Test 

result in [8] shows that if E  is not exactly between two grid points when applying a numerical 

scheme to a digital option described in (3.23), a satisfactory accuracy will not be obtained. There 

two algorithm that can be applied to get E  on the right position. 
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3.7.4.1 E on the grid 

A proposal method to get E  on the grid point after transformation is made. Assume that the 

maximal value on the grid will be related to E , according to (4.9), in the sense that maxS RE , 

with 2R   and assume a grid of N  points. To satisfy both properties, maxS  must be translated 

to the right side. In the equidistant grid, there are about 
N

R
 points on the left side of E  and the 

others are at the right side of E . The neighboring grid point to E  reads  

N

R
               (4.11) 

Thus the step size will be  

E
h


              (4.12) 

The new maximal value of the grid is the maxS Nh  

The transformation (3.73), which is not linear, requires another treatment. In the case of stretch 

grid, the property maxS RE  transform into max ( )y q E  with  

( )

( )

RE
q

E




             (4.13) 

Combining (4.13) with (4.11), the nearest grid points reads 

N
T

q
               (4.14)  

And new step size will be 
E

h
T




           (4.15) 
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3.6.4.2 E  between two grid points 

Just a slight modification in the step size definition, is enough to get E  in the middle between 

two grid points say ( nx  and 1nx  ). The points now on the grid are 
1

2
E h  and 

1

2
E h  from  

(4.12) 

1

1
12 (1 )

2

E
E

h h
  





              (4.16) 

And with transformation and (4.15), we have 

1

1
( )

( ) 12 (1 )
2

E h
E

h h
T T T




  





           (4.17) 

 

3.7.5 Lagrange interpolation 

With the transformation, many points are in the region around E , but sometimes values in the 

neighborhood of E  which are not on the grid must be calculated. A typical example is the 

requirement of option values near the present asset price
0S . An appropriate way to do this is 

through Lagrange interpolation. The interpolation polynomial for calculating the point x  given 

the set [ : 1..... ]ix i n  and :i ix x   is given by 

1 1

( )
nn

k
i

i i i k
i k

x x
p x x

x x 






            (4.18) 

For a second order interpolation, only two points 1 2[ , ]x x x  are necessary 

2 1
1 2

1 2 2 1

( )
x x x x

p x x x
x x x x

 
 

 
          (4.19) 
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And for fourth order 

3 32 4 1 4
1 2

1 2 1 3 1 4 2 1 2 3 2 4

31 2 4 1 2
3 4

3 1 3 2 3 4 4 1 4 2 4 3

( )
x x x xx x x x x x x x

p x x x
x x x x x x x x x x x x

x xx x x x x x x x x x
x x

x x x x x x x x x x x x

    
  

     

    


     

     (4.20) 

We can only apply this formula to the unknown ( )y x and is also necessary for volatility search. 

 

3.7.6 Implied volatility 

Option prices obtained from the Black-Scholes model are functions of the parameters: 

 time t , the strike price E , the risk-free rate r , the current underlying price S  and the market 

volatility  . The only unknown parameter that is not directly observed from the market is the 

volatility of the market and it has to be estimated. Estimation of volatility from the historical data 

of the underlying is called the historical volatility. Black-Scholes model namely the volatility, 

there is a one-to-one correspondence between the value of any financial derivative contract, such 

as an option, and the volatility of its underlying asset. In general, the more volatile the asset, the 

more the derivative contract is worth. Thus, when a market has set the price for a contract, it is 

often the case that this price corresponds to a unique implied volatility. Suppose we use the 

Black-Scholes model to infer the volatility used by option traders to price the option. We search 

for volatility such that the model represents an option price that corresponds to the market price. 

The volatility obtained this way is called the implied volatility. The Black-Scholes model 

assumes that the implied volatility is constant and homogeneous for options on the same 

underlying with different strikes and maturities. However, in practice the implied volatility of 

call or put options at a given time t is a function of the strike price and the time to maturity T ¡t. 
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often deeply out of the money or deeply in the money options have significantly higher implied 

volatilities than options at the money. 

 

3.7.6.1 The bisection method 

Below are the procedures to calculate the solution of  imp  

1. Take two values of : high high and low low in such a way that if marketC = 

( )impC   

then ( )impC   < C(
high ) and C( imp ) > C( low ) due to the monotonicity of C( ), 

we can setup a root finding procedure. It is trivial that imp  ( low ; high ). 

2. Take  
1

( )
2

mid low high     

3. Calculate ( )midC   

4. Calculate Q = ( marketC - ( )midC  ) X ( marketC - C ( high )). 

5. If Q < 0 then low  = mid , otherwise, if Q > 0 then high  = mid  and repeat from point 

2 until the desired accuracy is reached 

This slowly converging method for practical application is very robust 

 

 3.7.6.2 Inverse quadratic interpolation method 

Considering the general Black-Scholes equation solution as a function of   and subtracting the 

unknown market price, ( ) marketV V  . Where ( )V  is nonlinear and the derivative is 

generally not known. The inverse quadratic interpolation method to determine   is as follows 
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1.  Choose three 's , called a , b  and c  

2. Calculate aV = ( )aV  - marketV , bV = ( )bV  - marketV and cV = ( )cV  - marketV  

3. Define ,b b

c a

V V
u v

V V
   and 

a

c

V
w

V
  

4. Define ( ( )( ) (1 )( )c b b ap V W u w u          and ( 1)( 1)( 1)q u v w     

5. Then , ,c a a b b b

p

q
          and ,c a a bV V V V   and compute the new iterant  

bV = ( )bV  - marketV  

6. If bV   then market b  . Otherwise repeat from 3 

The advantage here is that only one calculation of the option price must be done. 
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CHAPTER FOUR  

NUMERICAL RESULT OF OPTION PRICING 

4.1 Introduction 

In this chapter, the numerical experiment will be related to option pricing problem talk about in 

chapter 3 and also the search for volatility. This experiment or better still numerical solution is 

heavily based on the European option style as the reference option. The values assign to the 

option pricing parameters that will be used is as below 

Strike price (E) = 15 

Volatility ( ) = 0.3 

Interest rate (r) = 0.04 

Dividend payment ( ) = 0.02 

Maturity time in half year (T) = 0.5 

Any change in parameter along the line will be explicitly stated. 

 

4.2 European Vallina Options  

The computation of the plain vanilla call gives some insight in the properties of the numerical 

scheme. The availability of analytic solution makes it possible for the properties of the numerical 

scheme to be investigated. As can be seen in the previous section 3.6 of chapter 3, the use of 

backward difference scheme will be a better option since it gives a better accuracy at the 

boundaries as compare to extrapolation. The available analytical solution is the basis for 

comparison as the numerical solutions are computed. These numerical solutions are performing 

on equidistant grids, transformed grids, and the European put option. The error reduction factors 
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are defined in the tables below. The aim for accuracy is for small number of grid point not 

greater than 80 x 80 points. 

 

4.2.1 Equidistant grid 

Here a test result base on Crank Nicolson scheme for both second and fourth order accuracy is 

performed. Table 4.1, 4.2, 4.3, 4.4 shows the two test result for both second and fourth order 

accuracy. 

Table 4.1: Crank Nicolson solution of the European calls with maxS  and E  on a grid point 

with 2R  using equation (4.10) 

          ‖     ‖        ‖     ‖        ‖     ‖        
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Table 4.2: Crank Nicolson solution of the European calls with maxS  and E  between two 

grid points with 2R  using equation (4.10) 

          ‖     ‖        ‖     ‖        ‖     ‖        

        

        

        

        

            

            

            

            

 

     

     

     

            

            

            

            

 

     

     

     

            

            

            

            

 

     

     

     

 

 

Table 4.3: Fourth order solution of European call with E  on a grid point using equation 

(4.10) 

          ‖     ‖        ‖     ‖        ‖     ‖        
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Table 4.4: Fourth order solution of European call with E  between two grid points using 

equation (4.10) 

          ‖     ‖        ‖     ‖        ‖     ‖        

        

        

        

        

            

            

            

            

 

     

     

     

            

            

            

            

 

     

     

     

            

            

            

            

 

     

     

     

 

 

The test result for the second order accuracy indicates in table 4.2 where E  is place exactly 

between two grid points that, there is a loss of convergence. Therefore apply 3R   just as in that 

of the fourth order accuracy, the table shows the result of retained convergence. 

Table 4.5: Crank Nicolson solution of European calls with E  between two grid points with 

3R  using equation (4.10) 

          ‖     ‖        ‖     ‖        ‖     ‖        
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Therefore the result in table 4.5 should be preferred. Also the result for the fourth order accuracy 

as seen in table 4.3 and table 4.4 is not of any highest accuracy as compare to the second order 

accuracy on the equidistant grid. It follows that the fourth order accuracy is not performing better 

than the second order. At the point of non-differentiability, where S E , the error and 

convergence error as shown in table 4.6 indicate a better accuracy if E  is place between two grid 

point. 

Table 4.6: Crank Nicolson solution of a call point S E  with 2R   using equation (4.10) 

                    

                 
 

                
                 

       

        

        

        

        

            

            

            

            

 

     

     

     

            

            

            

            

 

      

      

     

 

 

4.2.2 Grid transformation 

Under this section only fourth order scheme will be considered since second order just remains 

second order accurate after transformation. In table 4.7 to table 4.9 the transformation different 

values of   can be seen. Just as it was with the equidistant grid, the maxS is determine from (4.10) 

with 3R  . The values for   is given as 1,5, 10and  . 
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Table 4.7: Fourth order solution of the European call with 3R   and 1   using (4.10) 

          ‖     ‖        ‖     ‖        ‖     ‖        

        

        

        

        

            

            

            

            

 

      

      

     

            

            

            

            

 

     

      

      

            

            

            

            

 

     

      

      

 

 

Table 4.8: Fourth order solution of the European call with 3R   and 5   using (4.10) 

          ‖     ‖        ‖     ‖        ‖     ‖        

        

        

        

        

            

            

            

            

 

      

      

      

            

            

            

            

 

     

      

      

            

            

            

            

 

     

     

      

 

 

 

 

 

 

 

 

 



 

77 

 

Table 4.9: Fourth order solution of the European call with 3R   and 10   using (4.10) 

          ‖     ‖        ‖     ‖        ‖     ‖        

        

        

        

        

            

            

            

            

 

      

      

      

            

            

            

            

 

      

     

      

            

            

            

            

 

     

     

      

 

 

From table 4.7 to 4.9 the error for 20 x 20 points is less than 0.01 with the transformation for

1,5  . This result is satisfactory. With 5   and E  place on a grid and between exactly two 

grid points, table 4.10 and 4.11 shows the result of the next test. 

Table 4.10: Fourth order solution of the European call with  E  on a grid point 

          ‖     ‖        ‖     ‖        ‖     ‖        
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Table 4.11: Fourth order solution of the European call with E  between two grid points. 

          ‖     ‖        ‖     ‖        ‖     ‖        

        

        

        

        

            

            

            

            

 

      

      

      

            

            

            

            

 

      

     

      

            

            

            

            

 

      

      

     

 

 

For completeness, table 4.12 below presents the error and the convergence at the point of non-

differentiability. With the available 3 outcome concerning the position of E  on the grid points, 

only 20 x 20 points are sufficient for the required accuracy as seen in table 4.12. The number of 

grid points is highly influence by a higher  . In figure 4.1 the stretch grid and solutions are 

displayed. It thus follows that the fourth order accuracy in combination with the transformation 

will be a preferred choice. With this accession the result of the next in the thesis will be based on 

fourth order accuracy. 

 

Table 4.12: Fourth order solution of a call the point of non-differentiability and 5  . 
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4.2.2.1 Unknown E position 

Unlike the previous test where the position of the parameter E of the reference option is either on 

the grid or between two grids, here the position of the parameter E  is unknown. Using (4.10), 

the parameter assumes an initial value of 0.15 and then increase with a constant value of 10 as   

decreases with the same value. The test result is seen in table 7.13 to 7.16 

Table 4.13: European call with 0.15E  , and 500, 3R   . 

          ‖     ‖        ‖     ‖        ‖     ‖        

        

        

        

        

            

            

            

            

 

      

      

      

            

            

            

            

 

     

      

      

     

            

            

            

 

     

     

      

 

 

Table 4.14: European call with 1.5E  , and 50, 3R   . 

          ‖     ‖        ‖     ‖        ‖     ‖        
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Table 4.15: European call with 15E  , and 5, 3R   . 

          ‖     ‖        ‖     ‖        ‖     ‖        

        

        

        

        

            

            

            

            

 

      

      

      

            

            

            

            

 

     

      

      

            

            

            

            

 

     

     

      

 

 

Table 4.16: European call with 150E  , and 0.5, 3R   . 

          ‖     ‖        ‖     ‖        ‖     ‖        

        

        

        

        

     

            

            

            

 

      

      

      

            

            

            

            

 

     

      

      

            

            

            

            

 

     

     

      

 

 

4.2.3 European put 

For the relation put-call parity to be authenticated, result for the call option must be valid for the 

put option. From (4.10) a test for the put option is performed with outer boundaries, with the 

position of  E  unknown. These test results is seen in table 4.16 
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Table 4.17: European put with 15E  , and 5, 3R   . 

          ‖     ‖        ‖     ‖        ‖     ‖        

        

        

        

        

            

            

            

            

 

      

      

      

            

            

            

            

 

     

     

      

            

            

            

            

 

      

     

     

 

Figure 4.1: Plots of option price of a call with the stretched grids 
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4.3 Digital Option 

Digital option as discussed earlier on is characterized by it different boundary or final condition. 

It is also known to have a discontinuous payoff, and thus proper time integration is needed. Here 

the parameters in which the numerical oscillations may occur with improper numerical time 

integration are the Greeks. Using Crank Nicolson scheme with 100N   and 10M  and option 

parameters being 40, 0.3, 0.05, 0.5E r T    . The numerical solution of these 

options shows that 

1: Figure 4.2, where the numerical solution of the option C presented is pure Crank Nicolson 

discretization and a fourth order discretization with backward difference formula and grid 

stretching. 

2. The numerical solution of the option  also has the Crank Nicolson scheme preceded by two 

steps of backward Euler. 

3. A test with E  on a grid and between two grids is shown in table 4.18, 4.19, 4.20, 4.21, 4.22. It 

must be noted that with this option the position of E  is very important due to it discontinuity. 

It is also noted that only Crank Nicolson discretization gives numerical oscillation in . 

Table 4.18: European digital call with E  on a grid, 1.875  . 

          ‖     ‖        ‖     ‖        ‖     ‖        
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Table 4.19: European digital call with E  between two grid point, 1.875  . 

          ‖     ‖        ‖     ‖        ‖     ‖        

        

        

        

        

            

            

            

            

 

     

      

      

            

            

            

            

 

     

     

      

            

            

            

            

 

     

     

      

 

 

Table 4.20: European assert-or-nothing call, 1.875  . 

          ‖     ‖        ‖     ‖        ‖     ‖        
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Table 4.21: European put, 1.875  . 

          ‖     ‖        ‖     ‖        ‖     ‖        

        

        

        

        

            

            

            

            

 

     

      

      

            

            

            

            

 

     

     

      

            

            

            

            

 

     

     

      

 

 

Table 4.22: European assert-or-nothing put, 1.875  . 

          ‖     ‖        ‖     ‖        ‖     ‖        
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Figure 4.2: Plots of solution C of a digital call option (N = 100;M = 10) 

 

 

4.4 Linear Combination 

In providing numerical solution for the various option types, equation (4.10) together with grid 

transformation has been used. Difficulties however will be encountered if same approach is used 

for spread option, and grid stretching will not be the same for the separate options. This means 

that the S  coordinates for the separate options are not the same and thus the need to adjust the 

vectors to each other. 

 

4.4.1 Butterfly spread 

Due to the difficulties explain in section 4.4.1, Lagrange interpolation of the fourth order 

accuracy will be used for the test of the spread type. Parameters 

1 2 315, 20, 25, 3.E E E R    result for this test is seen in table 4.23 
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Table 4.23: Solution of butterfly spread. 
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4.4.2 Bull spread 

Once again Lagrange interpolation of fourth order is used for this test with parameters 

1 215, 20, 3.E E R   Result seen in table 4.24. 

Table 4.24: Solution of bull spread. 
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In both test for butterfly and bull spread 40 x 40 grid points yield a satisfactory result. The 

Lagrange interpolation mapping of regions with many grid points to regions with a few grid 

points is but one of the reasons for the irregular convergence. 

 

4.5 Volatility Search 

The Black Scholes discretization on a stretch grid with fourth order accuracy is used in the 

search for volatility. In cases where the underlying asset price is not too far from the exercise 

price, a few grid points will be enough to cover the option price. The stopping criteria for the 

implied volatility method are defined by an error tolerance. 

( )imp marketC C  Error Tolerance 

For both bisection and quadratic inverse interpolation, the error tolerance for the search methods 

comparison is 31 10X  and 51 10X  . The convergence result for the bisection method as well as 

the quadratic inverse interpolation is shown in the table 4.25 and 4.26 respectively. Parameters 

are  
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Table 4.25: Volatility search with bisection method. 
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Table 4.26: Volatility search with quadratic interpolation and parameters 

0.2, 0.4, 0.6a b c      
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Comparing the test result of the bisection method to the inverse quadratic interpolation, the 

inverse quadratic interpolation shows a fast convergence reaching the error tolerance of 31 10X   

in just 3 iterations and 51 10X   in 4 iterations. It is also observed that to accurately recover the 

volatility, more grid points will be needed, that is grid point beyond 20. With 40 grid points the 

numerical convergence is found to be 0.3 

While with 20 grid points is 0.2988. The convergences of both methods are plotted in figure 4.3 

and 4.4.  

The number of iteration increases if the initial underlying asset 
0( )S  happens not to be in the 

neighborhood of E . Suppose an option price 4.05C  and the initial underlying asset price 

0( )S =19.23, for 40 grid point, the convergence result is seen in table 4.27 and 4.28 below. 

Table 4.27: Volatility search of second test with bisection 
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Table 4.28: Volatility search of second test inverse quadratic interpolation 

                            |            | 

  

  

       

       

            

            

 

 

Figure 4.3: Convergence of the bisection method 
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Figure 4.4: Convergence of the inverse quadratic interpolation method 
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATION 

5.1 Introduction 

In this thesis, the special partial differential equation is solved to evaluate the financial derivative 

option contract. The various option styles such as European style, American style and many of 

the exotic style were considered, with major reference given to the European style. In 

determining the accuracy of the value of the mention option styles, unlike the European style 

with a known exact solution, for the American and exotic styles a numerical experiment is 

necessary. Numerical experiment of the options covered the areas of European Vanilla option, 

Digital option and implied volatility. 

 

5.2 Conclusion 

European Vanilla forms the basis of the reference option. In this thesis the fourth order scheme 

was preferred for a further test to the second order scheme. This preference is due to the facts 

that second order scheme remains second order after transformation. Thus test beyond 

equidistant grid is done with fourth order scheme. This thesis thus propose the fourth order 

accurate space and time discretization using grid stretching by means of analytical coordinate 

transformation. In urgency, a small discretization error with a few grids stretching parameter  is 

needed. In order to achieve this, a proper grid stretching parameter and 20 to 40 grid space will 

be sufficient enough to achieve an accuracy of (0.01). Thus for our reference option, a sufficient 

accuracy of the hedge parameter is observed. 

Digital options, which has a non-differentiable final condition is but one of the exotic options. 

Here Crank Nicolson scheme and the fourth order backward difference scheme have been 
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employed. Apart from Crank Nicolson scheme which gives oscillations in the hedge parameter

 , all other results are satisfactory. For the accuracy of the numerical solution, the position of 

E with respect to the grid is very important due to it non differentiability at the final condition. 

Implied volatility, with its importance in valuing an option can be found in less than 10 iterations 

by using the inverse quadratic interpolation method. 

One can therefore say that to obtain an accuracy of (0.01), by using grid stretching and highly 

discretize scheme only 20 to 40 grid size and time step is needed as well as the great influence of 

 .The scheme also works well for the exotic options. It is also observed that volatility can be 

obtained in less than 10 iterations. 

 

5.3 Recommendation 

The proposed scheme can be generalize to a higher dimensional problem, as in options of more 

assets. Based on our findings we therefore do recommend with all reasons the finite difference 

scheme on stretch grid for solving partial differential equation related to option pricing using 

numerical methods. This is so because from experiment it is proven that this proposed scheme 

yields high level accuracy in determining the value of options by reducing errors, thus the 

reliability of the proposed scheme. 
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APPENDIX: Matlab Code for plotting figures 

European Call and Put: Figure 3.1 and 3.2 

Data source: Virtual data 

function [X] = BlackScholesEuro(CallPut, P, K, R,T,D, Volatility) 
clc 
clear 
Volatility =input('Enter Volatility:'); 
%T=input('Enter exercise time:'); 
R=input('Enter interest rate :'); 
D=input('Enter dividend value:'); 
K =input('Enter strike price:'); 
T=input('Enter maturity time:'); 
callput=input('enter 1 for call option and 0 for put option:'); 
if (callput>1|| callput<0) 
    disp('you have entered wrong entry:'); 
callput=input('enter 1 for call option and 0 for put option:'); 
end 
for S=0:1:30 
dt = Volatility * sqrt(T);                                 
df = R - D + 0.5 * Volatility ^ 2;   

  
d1 = (log( S / K ) + df *T ) / dt;              
d2 = d1 - dt;                                                
nd1 = normcdf(d1); 
nd2 = normcdf(d2); 
nnd1 = normcdf(-d1); 
nnd2 = normcdf(-d2); 

  
if (callput==1) 
    callprice = (S * exp(-D*T) * nd1) - (K * exp(-R * T) * nd2);  
    X=callprice; 
end 

  
if (callput==0) 
    putprice= (K * exp(-R * T) * nnd2) - (S * exp(-D * T) * nnd1); 
    X=putprice; 
end 
plot(S,X,'-*'); 
hold on 
grid on 
legend(['Maturity time(T)=' num2str(T)]) 
end 
if(callput==1) 
%title(['Volatility=' num2str(Volatility),', Interest Rate=' num2str(R),', 

Strike Price=' num2str(K),', Dividend=' num2str(D),', Maturity Time=' 

num2str(T) ]) 
title('European Call Option') 
xlabel('Asset/Stock Price') 
ylabel('C') 
end 
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if(callput==0) 
%title(['Volatility=' num2str(Volatility),', Interest Rate=' num2str(R),', 

Strike Price=' num2str(K),', Dividend=' num2str(D),',  Maturity Time=' 

num2str(T) ]) 
title('European Put Option') 
xlabel('Asset/Stock Price') 
ylabel('P')  

  
end 

 

Binary and Digital Options: Figure 3.3 and 3.5 

Data source: Virtual data 

function [X] = BlackScholesEuro(CallPut, P, K, R,T,D, Volatility) 
clc 
clear 
Volatility =input('Enter Volatility:'); 
%T=input('Enter exercise time:'); 
R=input('Enter interest rate :'); 
D=input('Enter dividend value:'); 
K =input('Enter strike price:'); 
T=input('Enter maturity time:'); 
callput=input('enter 1 for call option and 0 for put option:'); 
if (callput>1|| callput<0) 
    disp('you have entered wrong entry:'); 
callput=input('enter 1 for call option and 0 for put option:'); 
end 
for S=0:1:30 
dt = Volatility * sqrt(T);                                 
df = R - D + 0.5 * Volatility ^ 2;   

  
d1 = (log( S / K ) + df *T ) / dt;              
d2 = d1 - dt;                                                
%nd1 = normcdf(d1); 
nd2 = normcdf(d2,0,1); 
%nnd1 = normcdf(-d1); 
nnd2 = normcdf(-d2,0,1); 

  
if (callput==1) 
    callprice = exp(-R * T) * nd2;  
    X=callprice; 
end 

  
if (callput==0) 
    putprice= (exp(-R * T) * nnd2) ; 
    X=putprice; 
end 
plot(S,X,'-*'); 
hold on 
grid on 
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legend(['Maturity time(T)=' num2str(T)]) 
end 
if(callput==1) 
%title(['Volatility=' num2str(Volatility),', Interest Rate=' num2str(R),', 

Strike Price=' num2str(K),', Dividend=' num2str(D),', Maturity Time=' 

num2str(T) ]) 
title('European Call Option') 
xlabel('Asset/Stock Price') 
ylabel('C') 
end 
if(callput==0) 
%title(['Volatility=' num2str(Volatility),', Interest Rate=' num2str(R),', 

Strike Price=' num2str(K),', Dividend=' num2str(D),',  Maturity Time=' 

num2str(T) ]) 
title('European Put Option') 
xlabel('Asset/Stock Price') 
ylabel('P') 

  
end 

 

Asset or nothing call and put options: Figure 3.4 and 3.6 

Data source: Virtual data 

function [X] = BlackScholesEuro(CallPut, P, K, R,T,D, Volatility) 
clc 
clear 
Volatility =input('Enter Volatility:'); 
%T=input('Enter exercise time:'); 
R=input('Enter interest rate :'); 
D=input('Enter dividend value:'); 
K =input('Enter strike price:'); 
T=input('Enter maturity time:'); 
callput=input('enter 1 for call option and 0 for put option:'); 
if (callput>1|| callput<0) 
    disp('you have entered wrong entry:'); 
callput=input('enter 1 for call option and 0 for put option:'); 
end 
for S=0:1:30 
dt = Volatility * sqrt(T);                                 
df = R - D + 0.5 * Volatility ^ 2;   

  
d1 = (log( S / K ) + df *T ) / dt;              
d2 = d1 - dt;                                                
nd1 = normcdf(d1); 
%nd2 = normcdf(d2,0,S); 
nnd1 = normcdf(-d1); 
%nnd2 = normcdf(-d2,0,S); 

  
if (callput==1) 
    callprice = (S * exp(-D*T)) * nd1;  
    X=callprice; 
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end 

  
if (callput==0) 
    putprice= (S * exp(-D * T) * nnd1); 
    X=putprice; 
end 
plot(S,X,'-*'); 
hold on 
grid on 
legend(['Maturity time(T)=' num2str(T)]) 
end 
if(callput==1) 
%title(['Volatility=' num2str(Volatility),', Interest Rate=' num2str(R),', 

Strike Price=' num2str(K),', Dividend=' num2str(D),', Maturity Time=' 

num2str(T) ]) 
title('Asset or nothing Call Option') 
xlabel('Asset/Stock Price') 
ylabel('C') 
end 
if(callput==0) 
%title(['Volatility=' num2str(Volatility),', Interest Rate=' num2str(R),', 

Strike Price=' num2str(K),', Dividend=' num2str(D),',  Maturity Time=' 

num2str(T) ]) 
title('Asset or nothing Put Option') 
xlabel('Asset/Stock Price') 
ylabel('P') 

  
end 

 

 

Butterfly Spread Option: Figure 3.9 

Data source: [4] 

function [X] = BlackScholesEuro(P, K1,K3, R,T,D, Volatility) 
clear all 
close all 
clc 
Volatility =input('Enter Volatility:'); 
R=input('Enter interest rate :'); 
D=input('Enter dividend value:'); 
K1 =input('Enter strike price for long position call E1:'); 
K3 =input('Enter strike price for long position call E3:'); 
T=input('Enter maturity time:'); 
K2=0.5*(K1+K3); 
%clc 
%St    = 92;     % Stock price 
%K1    = 15;    % Exercise price for long call 
%k2    = 20;    % Exercise price for short call, K1<K2 
%T     = 1;      % Time to expiration, i.e. 0.25 for quarter of year 
%sigma = 0.3;    % Volatility 
%r     = 0.05;   % Interest rate 
    K = [K1,K2,K3]'; 
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    %Calculate the terms for the BS option prices 

     
    for St=0:2:30 
        dt = Volatility * sqrt(T);                                 
        df = R - D + 0.5 * Volatility ^ 2;   
        d1 = (log( St / K ) + df *T ) / dt;              
        d2 = d1 - dt;                                                

  
        %d1  = (log(St./K) + (r+Volatility.^2/2).*T)/(Volatility.*sqrt(T)); 
        %d2  = d1-Volatility.*sqrt(T); 
        %Set the coordinates 
        x=[0;K1;K2;K3;K3+K1];  
        cal = []; 
        nd1 = normcdf(d1); 
        nd2 = normcdf(d2); 

  
        %Calculate to plain vanilla call option prices 
        for i = 1:3 
            cal(i) = St.*nd1(i) - K(i).*exp(-R.*T).*nd2(i); 
            %cal(i) = St.*normcdf(d1(i)) - K(i).*exp(-r.*T).*normcdf(d2(i)); 
        end 
        %Value of plain vanilla options at time T 
        cal_T  = cal.*exp(R*T); 
        %Calculate the payoff at each coordinate 

         
        y1=[(-cal_T(1))*exp(R*T);(-cal_T(1))*exp(R*T);(-

cal_T(1))*exp(R*T)+(K2-K1);(-cal_T(1))*exp(R*T)+(K3-K1);(-

cal_T(1))*exp(R*T)+K3]; 
        

y2=2*[cal_T(2)*exp(R*T);cal_T(2)*exp(R*T);cal_T(2)*exp(R*T);cal_T(2)*exp(R*T)

-(K3-K2); cal_T(2)*exp(R*T)-(K1+K3-K2)]; 
        y3=[(-cal_T(3))*exp(R*T);(-cal_T(3))*exp(R*T);(-cal_T(3))*exp(R*T);(-

cal_T(3))*exp(R*T);(-cal_T(3))*exp(R*T)+K1]; 
         %Determine the strategy payoff 
        y=y1+y2+y3; 
      end 
    %Plot strategy 
    plot(x,y,'-r','LineWidth',2) 
    hold on 
    grid on 
    legend(['Maturity time(T)=' num2str(T)]) 
    xlabel('Stock price','FontSize',11,'FontWeight','Bold') 
    ylabel('Payoff','FontSize',11,'FontWeight','Bold') 
    %xlim([0,40]) 
    %ylim([0,6]) 
    title('Butterfly Spread Calls','FontSize',11,'FontWeight','Bold') 
    set(gca,'LineWidth',1.6,'FontSize',11,'FontWeight','Bold'); 
    box on 
    %Plot plain vanilla option payoff profiles 
    plot(x,y1,'-k','LineWidth',2) 
    plot(x,y2,'-k','LineWidth',2) 
    plot(x,[0,0,0,0]','-k','LineWidth',2)  
    text(2,10,'Long Call E1','FontSize',11,'FontWeight','Bold') 
    text(2,1,'Long Call E3','FontSize',11,'FontWeight','Bold') 
    hold off 
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Bull Spread and Bear Spread (reverse of bull spread): Figure 3.7 and 3.8 

Data source: [4] 

function [X] = BlackScholesEuro(P, K1,K2, R,T,D, Volatility) 
clear all 
close all 
clc 
Volatility =input('Enter Volatility:'); 
%T=input('Enter exercise time:'); 
R=input('Enter interest rate :'); 
D=input('Enter dividend value:'); 
K1 =input('Enter strike price for long call:'); 
K2 =input('Enter strike price for short call:'); 
T=input('Enter maturity time:'); 
%clc 
%St    = 92;     % Stock price 
%K1    = 15;    % Exercise price for long call 
%k2    = 20;    % Exercise price for short call, K1<K2 
%T     = 1;      % Time to expiration, i.e. 0.25 for quarter of year 
%sigma = 0.3;    % Volatility 
%r     = 0.05;   % Interest rate 
    K = [K1,K2]'; 
    %Calculate the terms for the BS option prices 

     
    for St=0:1:25 
        dt = Volatility * sqrt(T);                                 
        df = R - D + 0.5 * Volatility ^ 2;   
        d1 = (log( St / K ) + df *T ) / dt;              
        d2 = d1 - dt;                                                

  
        %d1  = (log(St./K) + (r+Volatility.^2/2).*T)/(Volatility.*sqrt(T)); 
        %d2  = d1-Volatility.*sqrt(T); 
        %Set the coordinates 
        x   = [0;K1;K2;K1+K2]; 
        cal = []; 
        nd1 = normcdf(d1); 
        nd2 = normcdf(d2); 

  
        %Calculate to plain vanilla call option prices 
        for i = 1:2 
            cal(i) = St.*nd1(i) - K(i).*exp(-R.*T).*nd2(i); 
            %cal(i) = St.*normcdf(d1(i)) - K(i).*exp(-r.*T).*normcdf(d2(i)); 
        end 
        %Value of plain vanilla options at time T 
        cal_T  = cal.*exp(R*T); 
        %Calculate the payoff at each coordinate 
        y1 = [-cal_T(1);-cal_T(1);K(2)-K(1)-cal_T(1);K(2)-cal_T(1)]; 
        y2 = [cal_T(2);cal_T(2);cal_T(2);-K(1)+cal_T(2)]; 
        %Determine the strategy payoff 
        y = y1+y2; 
    end 
    %Plot strategy 
    plot(x,y,'-r','LineWidth',2) 
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    hold on 
    grid on 
    legend(['Maturity time(T)=' num2str(T)]) 
    xlabel('Stock price','FontSize',11,'FontWeight','Bold') 
    ylabel('Payoff','FontSize',11,'FontWeight','Bold') 
    %xlim([0,40]) 
    %ylim([0,6]) 
    title('Bull Call Spread','FontSize',11,'FontWeight','Bold') 
    set(gca,'LineWidth',1.6,'FontSize',11,'FontWeight','Bold'); 
    box on 
    %Plot plain vanilla option payoff profiles 
    plot(x,y1,'-k','LineWidth',2) 
    plot(x,y2,'-k','LineWidth',2) 
    plot(x,[0,0,0,0]','-k','LineWidth',2)  
    text(2,10,'Short Call','FontSize',11,'FontWeight','Bold') 
    text(2,1,'Long Call','FontSize',11,'FontWeight','Bold') 
    hold off 

 

Greek Delta: Figure 3.10 

Data source: Virtual data 

function [X] = BlackScholesEuro(CallPut, P, K, R,T,D, Volatility) 
clc 
clear 
Volatility =input('Enter Volatility:'); 
%T=input('Enter exercise time:'); 
R=input('Enter interest rate :'); 
D=input('Enter dividend value:'); 
K =input('Enter strike price:'); 
T=input('Enter maturity time:'); 
%callput=input('enter 1 for call option and 0 for put option:'); 
%if (callput>1|| callput<0) 
%    disp('you have entered wrong entry:'); 
%callput=input('enter 1 for call option and 0 for put option:'); 
%end 
for S=0:2:30 
dt = Volatility * sqrt(T);                                 
df = R - D + 0.5 * Volatility ^ 2;   

  
d1 = (log(S / K) + df *T ) / dt;              
d2 = d1 - dt;                                                
nd1 = normcdf(d1); 
nd2 = normcdf(d2); 
%nnd1 = normcdf(-d1); 
%nnd2 = normcdf(-d2); 

  
%if (callput==1) 
    nnd1 = exp(-d1 * d1 / 2) / sqrt(2 * 3.1429); 
    callprice = exp(-D*T)*nnd1/(S*Volatility*sqrt(T)); 
    X=callprice; 
%end 
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%if (callput==0) 
%    putprice= K * exp(-R * T) * nnd2 - S * exp(-D * T) * nnd1; 
%    X=putprice; 
%end 
plot(S,X,'R--','LineWidth',2); 
hold on 
grid on 
end 
%if(callput==1) 
title('Gamma of European Call','FontSize',11,'FontWeight','Bold') 
xlabel('Asset/Stock Price') 
ylabel('Gamma') 

 

 

Greek Gamma: Figure 3.11 

Data source: Virtual data 

function [X] = BlackScholesEuro(CallPut, P, K, R,T,D, Volatility) 
clc 
clear 
Volatility =input('Enter Volatility:'); 
%T=input('Enter exercise time:'); 
R=input('Enter interest rate :'); 
D=input('Enter dividend value:'); 
K =input('Enter strike price:'); 
T=input('Enter maturity time:'); 
%callput=input('enter 1 for call option and 0 for put option:'); 
%if (callput>1|| callput<0) 
%    disp('you have entered wrong entry:'); 
%callput=input('enter 1 for call option and 0 for put option:'); 
%end 
for S=0:2:30 
dt = Volatility * sqrt(T);                                 
df = R - D + 0.5 * Volatility ^ 2;   

  
d1 = (log(S / K) + df *T ) / dt;              
d2 = d1 - dt;                                                
nd1 = normcdf(d1); 
nd2 = normcdf(d2); 
%nnd1 = normcdf(-d1); 
%nnd2 = normcdf(-d2); 

  
%if (callput==1) 
    nnd1 = exp(-d1 * d1 / 2) / sqrt(2 * 3.1429); 
    callprice = exp(-D*T)*nnd1/(S*Volatility*sqrt(T)); 
    X=callprice; 
%end 

  
%if (callput==0) 
%    putprice= K * exp(-R * T) * nnd2 - S * exp(-D * T) * nnd1; 
%    X=putprice; 
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%end 
plot(S,X,'ro-','LineWidth',2); 
hold on 
grid on 
end 
%if(callput==1) 
title('Gamma of European Call','FontSize',11,'FontWeight','Bold') 
xlabel('Asset/Stock Price') 
ylabel('Gamma') 
 

 

Transformation Function without stretch parameter: Figure 3.12 

Data source: Virtual data 

function [Y] = TransformationStretch(S0) 
clc 
clear 
S0=input('Enter assets prices:'); 
U=input('Enter stretch parameter:'); 
for S=0:5:30 
    callprice = asinh(S - S0) + asinh(S0); 
    Y=callprice; 
plot(S,Y,'ro-'); 
hold on 
grid on 
legend('asinh(S - S0) + asinh(S0)') 
end 
xlabel('S') 
ylabel('Y') 
 

 

 

Transformation Function with stretch parameter: Figure 3.13 

Data source: Virtual data 

function [Y] = TransformationStretch(S0,U) 
clc 
clear 
S0=input('Enter assets prices:'); 
U=input('Enter stretch parameter:'); 
for S=0:5:30 
    callprice = asinh(U*(S - S0)) + asinh(U*S0); 
    Y=callprice; 
plot(S,Y,'ro-'); 
hold on 
grid on 
legend('asinh(U(S - S0)) + asinh(U*S0)') 
end 
xlabel('S') 
ylabel('Y') 


