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ABSTRACT  

Knapsack problem model is a general resource allocation model in which a single resource is 

assigned to a number of alternatives with the aim of maximizing the total return. Knapsack 

problem has been widely studied in computer science for years. There exist several variants 

of the problem. The study was about how to select contending data/processes to be loaded to 

memory to enhance maximization of memory utilization and efficiency. The instance is 

modeled as 0 – 1 single knapsack problem.  

In this thesis a Dynamic Programming (DP) algorithm is proposed for the 0/1 one dimensional 

knapsack problem. Problem-specific knowledge is incorporated in the algorithm description 

and evaluation of parameters, in order to look into the performance of finite-time 

implementation of Dynamic Programming.  

Computer implementation considerations played an important role in its development. We test 

the presented method with a set of benchmark data and compare the obtained results with 

other existing heuristics. The proposed method appears to give good results when solving 

these problems unravelling all instance considered in this study to optimality in "reasonable" 

computation times. Computational results also shows that the more the number of items or 

processes, the higher the time to produce optimal results.   

Conclusively, when the curse of dimensionality can be dismissed, dynamic programming can 

be a useful procedure for large sequencing problems.   
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CHAPTER ONE  

1.0 Introduction  

Earlier computers had a single-level scheme for memory. Computer evolution has moved from 

gigantic mainframes to small stylish desktop computers and to low-power, ultraportable 

handheld devices with in a relatively short period of time. As the generations keep passing by, 

computers making up of processors, memories and peripherals turn out to be smaller and faster 

with memory prices going up and down. However, there has not been a single main memory 

that was both fast enough and large enough even though computers were becoming faster and 

programs were getting bigger, particularly multiple processes that were simultaneously carried 

out under the same computer system. Though putting more random access memory (RAM) in 

the computer is nearly at all times a good investment, but it is not really advisable to spend 

extra money to get full benefit from the memory you already have, if there is an effective 

algorithm to ensure effective memory utilisation.  

Hard drives sizes are becoming bigger (in four years it moved out from 4Gb to 40Gb as a  

‘reasonable’ hard drive) but memory at all this while is by far highly-priced than storage, so 

operating system desires to utilize free disk space as virtual memory.   

The operation of computers is such that, the more programs execute, the slower the computer 

goes. Not only is the virtual memory on the hard drive a hundred times sluggish than real 

memory, but shambling one lump of information from physical memory into the swap file that 

hoard virtual memory on the hard drive to create storage for the program, a different request is 

seeking for takes time too. Avoiding this problem will only means needed applications should 

be allowed to run. It should be noted that one of the most critical resources that a computer 

wishes to handle is its memory. All software executes in some form of storage and all data is 

stored in some form of memory.  
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Modern computer memory management is for some causes a crucial element of assembling 

current large applications. First, in large applications, space can be a problem and some 

technology is efficiently needed to return unused space to the program. Secondly, inexpert 

implementations can result in extremely unproductive programs since memory management 

takes a momentous portion of total program execution time and finally, memory errors becomes 

rampant, such that it is extremely difficult to find programs when accessing freed memory cells. 

It is much secured to build more unfailing memory management into design even though 

complicated tools exist for revealing a variety of memory faults. It is for this basis that efficient 

schemes are needed to manage allocating and freeing of memory by programs.  

Optimizing current memory management strategies strength is performed by altering the 

space allocated to each task. To achieve high levels of multiprogramming while avoiding 

thrashing such policies vary the load (i.e., the number of active tasks). Additionally, in a 

system that runs out of capacity probably because the system is undersized, several options 

are available. This option includes either upgrading the processor (if possible), reduce 

available functionality, or optimize.   

A great deal of realistic problems where some predefined conditions are respected such that the 

sum of the values of the selected entities is maximized can be represented by a set of entities, 

each having an associated value, from which one or more subsets has to be selected. The most 

ordinary situation is obtained by establishing that the sum of the entity sizes in each subset does 

not exceed some prefixed bound by associating a weight/size to each entity. Knapsack 

problems are generally what these problems are called.  The theory of the knapsack problem is 

such that given a set of items, each with weight and value, whiles keeping the overall weight 

smaller than the limit of the entire pack, settle on which items to pick to maximize the value. 

Putting forward a practical example, suppose a thief invaded a house and inside the house he 

identified the objects as follows:  
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A jug worth $70 and weighs 3 pounds   

A silver nugget worth $45 and weighs 6 pounds   

A work of art worth $55 and weighs 4 pounds   

A reflector worth $30 and weighs 5 pounds  Which 

objects should be picked?   

Considering this set as a small problem, it is evident that the appropriate response is the jug and 

the work of art, for a sum total value of $125, however if there exist a tall list of objects 

calculating the answer would be a herculean task. In such an instance it is obvious that the best 

possible choice of objects to pick may indicate close to the optimal solution of the knapsack 

problem.   

The allocation schemes to handle assigning and releasing of memory efficiently over a time 

period by a process or task is an interesting research topic on itself, but this research work 

will not go into this problem. The problem that will be considered in this thesis is that of 

accepting or rejecting the Process (an occurrence of an executed program) as they come in 

from the process queue to compete for memory space when a user request to run a program.  

The goal is to maximise the number of processes in a limited memory space.    

1.1.1 OS - Memory Management   

The purposefulness of an operating system which holds or controls primary memory is Memory 

management. Memory management oversees each and every memory locality either it is free 

or it is given to some process. When a process is created it verifies how much memory is to be 

allocated to it. It respectively brings up to date the status and tracks when some memory gets 

freed or unallocated and as well as decides the memory to be given to a process and at what 

time.  
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Memory management gives insurance by utilizing two registers, a base register and a limit 

point register.  Whiles the limit register identifies the size of the range, the base register stores 

the smallest legal physical memory address. For instance, if the limit register is 1109000 and 

the base register stores 200000 then, the program through 411999 it can legally access all 

addresses from 200000. The following is the way information and data to memory addresses is 

made   

• compile time binding is employed to produce the absolute code when it is known at compile 

time the location of the process    

• The compiler produces re-locatable code after it has not recognized at compile time where the 

process will be stored in memory. This activity occurs during Load time  

• At run time binding must be delayed to be done if the process can be shifted during its 

implementation from one memory segment to another. This is at the Execution stage. Thus 

under any given condition, data or instructions can be addressed to various memory cell 

locations.  

The primary memory of the PC is productively oversees by the operating system signifying the 

obligation of overseeing processes The memory manager is the part of the operating system 

which takes charge of this duty. The entire system performance is made crucial by the 

performance of the memory manager since in order to execute every process must have some 

amount of primary memory.   

As explained by Infosys Technologies Education Solutions Limited in their book in 1997, “The 

memory manager is in charge of distributing basic memory to processes and for helping the 

software engineer in stacking and putting away the essential’s primary memory.Managing the 

sharing of primary memory and minimizing memory access time are the basic goals of the 

memory manager.”  

A system which runs multiple processes at the same time  has a real challenge of efficiently 

managing memory. The memory manager assigns a fraction of primary memory to every 
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process for its system use since primary memory can be space-multiplexed. Nevertheless, the 

memory manager must establish how to allot and de-allot available memory when new 

processes are started and when completed processes finish execution at same time keeping 

track of which processes are running in which memory locations.  

For their special use dynamic memory allocation is executed by current operating systems. 

They may also carry out as required the same procedure for their applications, or permit the 

applications to allocate and de-allocate memory to programs that may clinch programming 

interface functions (APIs such as malloc). In order to better the performance of the projected 

system, real time operating system uses unlike memory allocation strategies and algorithm.   

Two basic types of memory managements get into attention in Real Time Operating System 

(RTOS), the stack and the heap (Diwase et al 2012). Where memory is given out for mechanical 

variables within functions is considered the stack. A stack performs it operation based on Last 

In First Out (LIFO) basis where a fresh space is assigned and de-assigned at only one “end”, 

called the Top of the stack. During program implementation the memory given out in the stack 

area is used and reused. The heap on the other hand presents more established storage of data 

in favour of a program. For the duration of a program, memory given out in the heap stays in 

existence. Thus, static variables and global variables (storage class external) are assigned on 

the heap. The program until it makes use of memory allocated in the heap area, if started at 

zero at program start will remains unchanged. Therefore the heap area does not need to hold 

garbage.  
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Figure 1.0: Stack versus Heap allocation  

Source: http://www.cs.cornell.edu/  

  

The stack and heap both contain memory that computer program can use. The figure 1.0 above 

shows that they grow in opposite directions. In between the stack and the heap is a free memory 

which can be assigned to the stack or the heap.  

Asma'a Lafi (2013) explained that task control blocks are used in context switching throughout 

stack management where as memory excluding memory used for program code is concerned 

with heap management and it is used for dynamic allocation of data space for system jobs. Real 

time operating system concurs static and dynamic memory management concurs   

1.1.2 Virtual Memory  

Frequently discussion of virtual memory is identified as a way to extend the random access 

memory by means of hard drive as slower, additional, system memory. Through this means 

systems allows the computer to use extra memory than is available physically by using hard 

disk space. Technically, virtual memory permits data to be shuffled from the paging file to 

memory as needed and again to make room for new data, data from memory is moved back 

to the paging file. In particular, the computer system streams onto the hard drive which is 



 

7  

  

used as "virtual" memory once it runs out of memory. Present operating systems refer to this 

as swap space. Swap space comes into attention when the system request for extra memory 

resources and the physical memory (RAM) amount needed is full. By this, dormant pages in 

memory are switched to the swap space (Wienand, 2013).   

"Virtual" as it is called is only because it is not physical memory. It does not mean it is fake 

simply because initially, the thought of using disk to expand RAM is what is meant as virtual 

memory. A problem attributed to disk is that it’s slow to access. If disk is accessed in 

fractions of seconds then registers can be accessed in 1 nanosecond and cache in 5 ns and 

RAM in about 100 ns. It may be 1,000,000 times slower to access disk than a register 

however the disk has the benefit of easy accessibility to a lot of disc space for alittle price  

(Lin 2013).  

Genuine, or physical, memory exists on RAM chips inside the PC. Virtual memory, as prior 

demonstrated, does not actually exist on a memory chip. It is an enhancement strategy and is 

executed by the working framework keeping in mind the end goal to give an application 

program the feeling that it has more memory than really exists.  According to Lin (2003), 

Virtual memory is an old idea. Earlier, PCs had reserve as well as virtual memory. For quite a 

while, virtual memory just showed up on centralized servers. PCs in the 1980s did not utilize 

virtual memory.   

Virtual memory is used as a means of memory protection with current systems. Each program 

utilizes a scope of location called the address/location space. The presumption of working 

system designers is that any client program can not be trusted. Client programs will attempt to 

devastate themselves, other client programs, and the operating system itself. That appears like 

such a negative perspective, in any case, it is the manner by which operating systems are 

composed. Lin (2003) stressed that, it is not obliged that programs must be deliberately hurtful 

yet can be coincidentally (modifying the information of a pointer guiding to garbage 
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memory).Virtual memory help prevent programs from interfering with other programs in 

addition to ensuring programs cooperation and sharing of memory.  

An advantage of virtual Memory system is by permitting a greater number of procedures to 

keep running than the permitted memory size. This is accomplished by just including parts of 

procedures that are obliged to keep running in memory and the remaining on disk. Without a 

doubt the base piece of a procedure that must dependably be in memory is called its working 

set. More often than not, a program does not have to have its whole binary record in memory 

to run when it is performing an errand that just uses some piece of its file. This means, say, a 

16MB system could joyfully keep running on a machine with just 4MB of memory.  

The aggregate size of all procedure location spaces is not constrained by the measure of the 

physical memory when every procedure is dispensed a virtual location space that is not an 

immediate toss of main memory. Every procedure's location space, which for this situation is 

its virtual location space, can be as large as the whole address space in physical memory in the 

event that it needs. The location space of a processor alludes the scope of conceivable locations 

that it can utilize when stacking and putting away to memory. The location space is constrained 

by the registers' width, on the grounds that to stack a location a heap instruction is issued with 

the location to stack from put away area in a register. For instance, registers that are 32 bits 

wide can hold addresses in a register range from 0x00000000 to 0xFFFFFFF.  

2^32 is equivalent to 4GB so a 32 bit processor can load or store to up to 4GB of memory 

(Bottomupcs.com, 2015). In the most recent couple of years, PC processors are as a rule each 

of the 64-bit processors, which as the name infers has registers 64 bits wide giving a centrality 

that there is less or no compelling reason to spare interim variables to memory when the 

compiler is under register pressure incompletely in light of the fact that each program 

aggregated in 64-bit mode needs 8-byte pointers, which can increase code and information size, 

and in this way affect both instruction and data cache intensity.  
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Virtual Memory can be actualized in one of two ways: Paging and Segmentation. Segmented 

Virtual Memory takes into account the assurance and migration of processes' memory sections 

and in addition the sharing of libraries between processes. Paged Virtual Memory moreover 

permits the Virtual Memory's size to surpass the greatest size of the physical memory since it 

puts just parts of a program that are needed for an errand in memory whilst the remaining is 

stored on disk (Cyberiapc.com, 2015). From this perspective, it can noticed that exchange off 

from memory to disk of unmoving or blocked processes can make space for different processes 

that might want to execute and subsequently, is a capable method for using memory.   

According to Nutt (1997), "virtual memory strategies allow a process to use the CPU when 

only part of its address space is loaded in the primary memory”. In this approach, every 

process's location space is apportioned into parts that can be stacked into primary memory when 

they are required and composed back to optional memory otherwise. "Another finished after-

effect of this approach is that the system can run programs which are really bigger than the 

essential memory of the system, consequently the thought of "virtual memory."  

Brookshear (1997) explains how this is accomplished: “Suppose, for example, that a main 

memory of 64 megabytes is required but only 32 megabytes is actually available. To create the 

illusion of the larger memory space, the memory manager would divide the required space into 

units called pages and store the contents of these pages in mass storage. A typical page size is 

no more than four kilobytes. As different pages are actually required in main memory, the 

memory manager would exchange them for pages that are no longer required, and thus the 

other software units could execute as though there were actually 64 megabytes of main memory 

in the machine”. The memory manager stays informed concerning every one of the pages that 

are filled into the primary memory all together for this system to work.   
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1.1.3 Process Concept  

A process is a case of a program in execution. At the point when a PC is running, numerous 

programs are simultaneously sharing the CPU. Every running program, in addition to the data 

structures expected to oversee it, is known as a process. Numerous advanced process ideas 

are communicated as jobs, (e.g. job scheduling), and the two terms are frequently utilized 

reciprocally. For every process there is a Process Control Block, PCB, which stores 

processspecific data (specific information may change from system to system).  

• Process State -, waiting, running etc.,   

• parent process ID and Process ID  

• Program Counter and CPU registers - These should be spared and restored when 

swapping processes all through the CPU  

• CPU scheduling data - Such as priority information and pointers to scheduling 

queues.  

• Memory management data - E.g. segment tables or page tables.  

• Accounting data - account numbers, kernel and user CPU time consumed,  

limits, etc.  

• I/O status information -, Open file tables, devices allocated etc.  

In modern systems a solitary process can be permitted to have various strings of execution, 

which execute simultaneously. All started processes are put away in a job queue as they vie 

for space to be stacked into the memory for CPU scheduling. The job scheduler essential goal 

is to present an adjusted blend of jobs, for example, I/O bound and processor bound. This is 

to guarantee that the CPU is kept occupied at all times and to convey "acceptable" reaction 

times for all programs, especially for intelligent ones. Processes may be in one of 5 states, as 

shown in Figure 1.1.  



 

11  

  

o New - The process is in the phase of being made.  

o Ready - The process has every one of the resources accessible that it 

needs to run, however the CPU is not at present taking a shot at this 

present process' instructions.   

o Running - The CPU is taking a shot at this present process' instructions 

o  Waiting - The procedure cannot keep running right now, in light of 

the fact that it is waiting on some resource to be made accessible or for 

some event to happen. For instance the process may be waiting on 

keyboard information, disc access request, inter-process 

communications, a clock to go off, or a started process to wrap up.  

o Terminated - The process has finished.  

  

Figure 1.1: Diagram of process state   

Source: Operating System Concepts, Ninth Edition  

Processes have memory and their memory is divided into four sections.   

The text area contains the ordered program code, read in from non-unstable capacity when the 

program is started.  

• The data section stores worldwide and static variables allotted and introduced before 

executing primary memory.   
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• The heap is utilized for dynamic memory distribution, and is overseen through calls to 

new, erase, malloc, free, and so on.   

• The stack is utilized for local variables. Space on the stack is held for nearby variables 

when they are announced (at function entrance or somewhere else, dependent on the 

language), and the space is freed when the variables go out of extension.   

When processes are swapped out of memory and later restored, additional information must 

also be stored and restored. Key among them is the program counter and the value of all 

program registers  

  

Figure 1.2: A process in memory  

Source: Operating System Concepts, Ninth Edition  

There are a variety of possibilities when the CPU chooses which process to run. These include:  

o When process transforms from running to waiting. This could be a direct 

result of IO request, wait for started program to end, or wait for 

synchronization operation (like lock acquisition) to finish.   
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o When process changes from running to ready - on culmination of interrupt 

handler, for instance. Basic sample of interrupt handler - clock interrupt in 

intelligent systems. if scheduler changes processes for this situation, it has 

preempted the running process. Another regular case interrupt handle is the IO 

completion handler.  o  When process changes from waiting to ready state 

(on termination of IO or acquisition of a lock, for instance).  o  When a 

process ends.  

1.2 Problem Statement   

In a computer system, a process as soon as created wants to run. There is a number of N 

created processes all contending for memory space to run.  All process want to fill the main 

memory that can hold an aggregate weight of W. If all processes are allowed to run, it will 

lead to system crushes, system running low memory, system underperformance, system 

overheat and difficulty in accessing data. We want to fill the main memory that can hold an 

aggregate weight of W with some blend of data/process from N possible list of data/process 

each with data size 𝑤𝑖 and priority value 𝑣𝑖 so that optimal utilisation of memory of the 

data/processes filled into the System main memory is achieved hence maximized.  

Among the data/processes contending for memory,   

Which of them should be allowed to run and which should not?  

Does the allowable data make optimal use of memory without memory losses?  

The problem considered is a combinatorial optimisation problem which represents a variety of 

knapsack-type problems. The problem identified can be modelled as a 0/1 knapsack problem.  

A mathematically formulation of the 0-1 Knapsack Problem (KP) is stated in the ensuing 

integer linear function.     
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Maximizes   ____ (1.1)   

 _,   

Subject to   ____(1.2)   

  

 = 0 or 1, j = 1... N  

Where,  refers to the value, or worth of item j,  refers to the item j,  refers to the 

relative-weight of item j, with respect to the knapsack and C refers to the capacity, or 

weightconstraint of the knapsack. There exist j = 1…n items, and there is only one knapsack.  

1.3 Objective  

The main objective of the study is to model a real-life computer problem of data loading into 

memory for CPU scheduling as a 0-1 knapsack problem, and determine an effective algorithm 

to solving this problem to achieve optimum memory efficiency.  

1.4 Justification  

PC memory constitutes countless number of flip flops at the physical level. Every flip flop 

comprises of a couple of transistors, and has the capacity store one bit. Individual flip flops are 

addressable by a remarkable identifier so it can be perused and overwrite them. Accordingly, 

thoughtfully, as Humans, we can think about the majority of our PC's memory as only one 

monster cluster of bits. Since as humans, we are not that great at doing the greater part of our 

reasoning and number-crunching in bits, we assemble them into bigger gatherings, which 

together can be utilized to represent numbers. 8 bits are called 1 byte; past bytes, there are 

words (which are infrequently 16, often times 32 bits).   

The computer's memory more often is abstractly regarded as one large (size 232 or so) array of 

bytes. This memory holds a lot of things which comprises the programs' code, including the 

operating systems, other data used by all programs and also all the variables.  

Memory management is taken care of by the working together of the operating system and 

compiler, but as a smart computer user, it is imperative to see what is going on under the hood 
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and to determine if there are more better way to prevent the buying and replacing of hardware 

when new programs which require higher memory are created often resulting in systems not 

only running out of memory but also the frequent crushing of data.   

Assuming process/data are items and memory is a big knapsack and we would like to stack this 

knapsack that can store a sum weight of C with a number of combinations of items from N 

possible list of items each with weight 𝑊𝑖 and value 𝑉𝑖 to ensure that the items value filled into 

the knapsack is increased.  

The identified problem has an included confinement that every item ought to be allotted space 

apart from the reality that it has a linear objective function with a single linear limitation which 

totals the values of the items in a queue. Assuming N is the items total number, then there exist 

2𝑁 subsets of the item collection. “So an exhaustive search for a solution to this problem 

generally takes exponential running time. Therefore, the obvious brute-force approach is 

infeasible. However, specialized algorithms can, in most cases, solve a problem with n 

=100,000 in a few seconds on a mini/micro computer” (Pisinger, 2003). A few correct and 

approximate algorithms, for example, dynamic programming and polynomial estimation 

created by Fayard-Plateau and Balas-Zemel, Horowitz-Sahni's greedy algorithm, meta-

heuristics calculation, among others can be utilized to tackle  the knapsack also called the 

rucksack problem. The knapsack problem is NP-complete to tackle precisely, therefore it is 

normal that no known calculation can be both right and quick (polynomialtime) on all cases, 

and numerous cases that emerge by and by can in any case be explained precisely.   

 In view of these, studies of knapsack problems and their algorithms has been an area of much 

interest in the contribution to academic knowledge due to its occurrence in most daily activities, 

hence the reason for investigating the problem using Dynamic programming.   

Knapsack problems particularly in the last decade have been rigorously studied, dragging both 

theorists and patricians possibly due to its substance to integer programs. “The theoretical 
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interest arises mainly from their simple structure which, on the other hand allows exploitation 

of a number of combinatorial properties and, on the other, more complex optimization problems 

to be solved through a series of knapsack-type sub-problems. From the practical point of view, 

these problems can model many industrial situations: capital budgeting, cargo loading, cutting 

stock.” (Salkim and Derkluyer Knapsack problems and survey). Additionally, Knapsack 

problems are used in all spheres of our daily activities: in financial decision making, bid prices, 

routing of vehicles etc. A binary integer program can be viewed as a knapsack constraint if 

only it has a single constraint.  

1.5 Scope and Limitations of the Study  

This study is within the confines of a Data loading into the memory for CPU scheduling i.e. 

accepting or rejecting a Data as they come in from the process queue to compete for memory 

space.  

The survey will consider a single 0-1 knapsack problem, where a single container is packed 

with best possible subset of items. We will denote the capacity of the container C. The computer 

solution developed in Java programming language will be adapted to work out the single 0-1 

knapsack problem.  

The common situation where a container of n capacities Ci (i = 1,. . . , n ) are presented, often 

referred to as multiple knapsack problems is not considered.   

1.6 Organization of Thesis   

The study is prepared in five chapters.  

Chapter 1 presents background of the Knapsack Problems, the Operating system and memory 

management issues and the problem statement, objective, methodology and justification for 

optimising memory using knapsack algorithm.  

Chapter 2 make available relevant literature review of Knapsack problems applications, 

memory allocation dynamics and the solution approaches being proposed and adopted in  
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literature.   

Chapter 3 is the methodology of this research thesis. It is devoted to the algorithms for the 

solution method. Here the dynamic programming algorithm is introduced and explained   

Chapter 4 provides the implementation of data and outcome of study of simulated data.  

Chapter 5 presents the conclusion and future work.  

1.7 Summary   

In the preceding chapter, a discussion of the formulation of the knapsack problem to the 

solution of data allocation of computer programs, computer memory hierarchies and unit 

issues, the background of the case study area (management of computer memory), and the 

justification of the thesis. In the next chapter, we shall put forward the literature pertinent in 

the area of 0-1 knapsack problems and memory allocation dynamics.  

  

  

  

  

CHAPTER TWO  

LITERATURE REVIEW  

2.0 Introduction  

An integral part of our current technological advancement is memory; whether it is a mobile 

phone, or the electronics in an auto-mobile, an IPod or even a router. These developments 

have been touching and altering modern lives like never before. Memory management for 

several reasons have become a critical area in modern large applications.   

Knapsack problem largely considered as a discrete programming problem has become one of 

the most studied problem. The motive for such attention essentially draws from three facts as 

stated by Gil-Lafuente et al. “ (a) it can be viewed as the simplest integer linear programming 
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problem; (b) it emerges as a sub-problem in many more complex problems; (c) it may signify 

a great number of practical situations” (Gil-Lafuente et al., 2013).   

In this chapter, a review of literature on Memory management processes and Knapsack 

problems and applications is presented.  

2.1 Memory management, Processes and its allocations  

The computer system primary memory management is key. After all, “all software runs in 

memory and all data is stored in some form of memory. Memory management has been 

studied extensively in the traditional operating systems field” (Silberschatz & Peterson, 

1989). Memory management includes giving approaches to dispense bits of memory to 

programs at their request, and liberating it for reuse when not really required.   

Chen et al. (2010), identified possibilities of managing memory in smart home gateways. They 

asserts that “due to different architecture, memory management for software bundles executed 

in home gateways differs from traditional memory management techniques because traditional 

memory management techniques generally assume that memory regions used by different 

applications are independent of each other while some bundles may depend on other bundles 

in a gateway”. By way of contribution, they introduce a service dependency heuristic algorithm 

that is close to the optimal solution based on Knapsack problem but performs significantly 

better than traditional memory management algorithms and also in a general computing 

environment identified the difference between memory management in home gateway and 

traditional memory management problem   

Algorithms in support of memory management bearing garbage collection or explicit 

deallocation (as in C's malloc/free) have gained enough studies. Known for decades, 

regionbased memory management as an alternative approach has not been considered until 

lately. In region-based memory management objects can not be liberated separately; each 

allotted object is positioned in a program-specified region and regions are removed with all 
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their contained objects. In his work, Gay (2001) identified two varieties of memory safety: 

“temporal safety (no accesses to freed objects) and spatial safety (no accesses beyond the 

bounds of objects)” to resolve traditional region-based systems for instance arenas in which 

removing a region might retain dangling pointers that are later accessed increasing memory 

usage. Using a dialect of C with regions that ensures temporal safety dynamically Gay plan, 

execute and assess RC.  

Restricting their consideration to virtual machines (VMs), in a position paper, Singer and Jones 

(2011), looked at how economic hypothesis can be connected to memory management. They 

watched the correspondence between the economic idea of a customer and a request of a virtual 

machine running a single program in a segregated heap. “Economic resource consumption 

corresponds to the virtual machine requesting and receiving increased amounts of heap memory 

from the underlying operating system. As more memory is allocated to a virtual machine's 

heap, there is additional benefit (economic utility) from the extra resource”. They additionally 

examine production and cost capacities, which may help with effective memory allocation 

between different virtual machines that are going after an altered amount of collective system 

memory.   

Modern microprocessors have reached limits in instruction level parallelism and on-chip power 

capacity. On-node concurrency levels have also increased dramatically. “Moore’s law is still 

active and fine but the rising transistor count is now used to build extra processing units instead 

of faster single-threaded cores” (Giménez et al., 2014). To support on-node parallelism, the 

memory architecture has also become more complex. This has severely complicated the task 

of extracting peak performance. Optimizing memory access is critical for execution and power 

effectiveness. To create report of exact expenses of memory accesses at particular locations, 

CPU producers have created sampling-based "Performance units (PMUs)". On the other hand, 
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this information contains an inordinate measure of irrelevant or uninteresting data and is too 

low-level to be seriously understood.   

Adopting a semantic approach, Giménez et al (2014), made a study on-node memory access 

performance. To give data which may contain the connection important to viably decipher 

information, they built up a system and an instrument to assemble fine-grained memory access 

execution data for particular data objects and areas with low overhead and credit semantic data 

to the examined memory access. The tool performs sampling and attribution and discovers and 

diagnoses performance problems in real-world applications. As noted by Gim´enez et al (2014), 

this technique provides “useful insight into the memory behaviour of applications and allows 

programmers to understand the performance ramifications of key design decisions: domain 

decomposition, multi-threading, and data motion within distributed memory systems”.  

It is an acknowledged fact that, packet switching architecture - distributed shared memory 

(DSM) – has drawn much notice as of late, basically because of  “its ability to triumph over the 

inherent memory-bandwidth limitation of output-queued switches” (Li and Elhanany, 2005). 

DSM execution has been contemplated from a hypothetical perspective by investigating the 

conditions under which it can copy an output-queued switch. “At the core of the DSM design 

is a memory management algorithm that determines the memory units to which arriving packets 

are forwarded. However, the complexity of such algorithms found to date is O(N), where N 

denotes the number of ports in the system, thereby inherently limiting the scalability of the 

scheme”. Li and Elhanany (2005) put forward a fresh pipelined memory management algorithm 

for DSM switches which not just shows how handling and memoryaccess speedup elements 

yield a very versatile DSM switch structural design but additionally offering diminished timing 

density at the expense of settled latency.   

As program advancement is sifting its way into a more extensive programming community and 

more conventional state-based dialects from the practical programming community, “the view 
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that a more disciplined approach to memory management becomes a very important aspect 

(Coquand et al., 1999). For example, web programming languages such as Java and Python 

include garbage collection as part of the language, and there are various packages for 

performing memory management in C and C++”. This therefore calls for a formal 

understanding of memory management. Goguen et al. (2002) developed an incremental tracing 

algorithm to mange memory. They focused on accepting incremental tracing, a principally 

error-prone area of garbage collection. “Tracing is the first two phases in garbage collection 

and consists of a systematic search through memory distinguishing those memory cells that are 

in use by the program from those that are not”. Goguen et al. (2002) stressed that, they adopted 

the incremental algorithm since a few programs can be utilizing memory as the memory 

management system is hunting down the unused cells or de-allotting those that have been 

found. Embedded systems performance is verified by several factors of which the process in 

which memory is managed is an important one of them.  Jingwei et al. (2012) perform a 

research on “optimizing software of memory management on ARM design.” They identified 

and discussed three software optimization methods of memory management based on ARM 

embedded system and embedded Linux. This includes among other experiments, “setting 

memory access permissions in system initialization to improve the reliability of the embedded 

system, using FCSE (Fast Context Switch Extension) to improve the usage efficiency of 

memory and finally, the allocation of memory space by integer times of 4 KB to make more 

processes concurrency possible on embedded system which hardware configuration is 

insufficient.”  Jingwei et al. (2012) concluded that optimizing memory management with any 

or all of the above stated methods improve to a larger extent the efficiency of operation of 

embedded Linux system and ARM.   

Kornaros et al. (2003) describe a fully programmable memory management system optimizing 

queue handling at multi gigabit rates. They argue that “the architecture of a memory manager 

can provide up to 10Gbs of aggregate throughput while handling 512K queues”. They stated 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Dong%20Jingwei.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Dong%20Jingwei.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Dong%20Jingwei.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Dong%20Jingwei.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Dong%20Jingwei.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Dong%20Jingwei.QT.&newsearch=true
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that “two of the main bottlenecks when designing a network embedded system are very often 

the memory bandwidth and its capacity. This is mainly due to the extremely high speed of the 

state-of-the-art network links and to the fact that in order to support advanced quality of service 

(QoS), per-flow queuing is desirable.” In their estimation, their introduced system support a 

full instruction set and trust it can be utilized as a hardware component as a part of any 

appropriate embedded system, especially network SoCs (system on chip) innovation that 

actualize per flow queuing partly because of the way that when outlining this scheme a few 

optimisation techniques were assessed and the most cost and performance efficient ones 

utilized (Kornaros et al., 2003). These strategies minimize both the memory transmission 

capacity and the memory limit required, which is viewed as a fundamental point of preference 

of the proposed scheme.   

In implementing of multimedia applications, it must be created to put together a high memory 

bandwidth, low power, high speed, and large data storage capacity. The support of real-time 

memory de/allocation, processing and retrieving of information is allowed by its run-time 

memory management. Leeman et al. (2005) based their findings on a proficient technique of 

improving and optimising of dynamic memory management for embedded systems in 

multimedia applications. They evaluate the execution of a recently made system-level 

investigation technique to improve the memory management of normal media applications in 

a broadly utilized D recreation image system. Their strategy depends on an examination of the 

quantity of memory accesses, standardized memory footprint1 and energy approximations for 

the system contemplated bringing about a change of standardized memory foot print and the 

evaluated energy dispersal over traditional static memory usage in an Optimized form of the 

driver application. In their final delivery, Leeman et al. (2005) asserted that, their created 

system was able to “scale perfectly the memory consumed in a system for a wide range of input 

parameters whereas the statically optimized versions are unable to do this.”  

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Kornaros,%20G..QT.&searchWithin=p_Author_Ids:37266070300&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Kornaros,%20G..QT.&searchWithin=p_Author_Ids:37266070300&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Kornaros,%20G..QT.&searchWithin=p_Author_Ids:37266070300&newsearch=true
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The vital necessity of a memory management system is to give approaches to dynamically 

assign parts of memory to programs at their request, and liberating it for reuse when no more 

significant. This is crucial to the PC system. “Several methods have been devised that increase 

the effectiveness of memory management. Virtual memory systems separate the memory 

addresses used by a data from actual physical addresses, allowing separation of processes and 

increasing the effectively available amount of RAM using paging or swapping to secondary 

storage”. Vasundhara Rathod and Pramila Chawan (2013) presented a study of memory 

management systems of an operating system and the implementation of clock with adaptive 

replacement. They compared the memory management subsystems of BSD 4.4, Linux 2.6 and 

Windows and then developed a new algorithm clock with adaptive replacement using temporal 

filtering for resourceful usage of memory. They concluded that “the quality of the virtual 

memory manager can have an extensive effect on overall system performance.”   

An important operation of present computer system is computer memory since it keeps program 

instructions or data on a permanent or short-term basis for use in a computer. Nevertheless, 

there is an escalating gap created involving the pace of microprocessors and the pace of 

memory. Zhu and Qiao (2012) presented a survey on computer system memory management 

and optimization techniques. They reviewed together with the hardware designs of the memory 

organization like the memory hierarchical structure and cache design, diverse memory 

management and optimization procedures to ease the gap; virtual memory techniques from an 

old bare-machine process to segmentation and paging approaches and the memory management 

procedures changing from replacement algorithms to optimization techniques.  

In the event of a page error virtual memory system needs productive page substitution 

algorithms to choose which pages to expel from memory. “Over the past years numerous 

algorithms have been recommended for page replacement. Each algorithm tries to decrease the 

page fault rate while sustaining minimum overhead. As newer memory access patterns were 
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discovered, research mainly focused on preparing newer approaches to page replacement which 

could adjust to changing workloads” (Chavan et al., 2011).  

Chavan et al. (2011), attempted to study the latest methodologies such as “CLOCK-Pro, Low  

Inter-reference Recency Set( LIRS), CLOCK with Adaptive Replacement ( CAR) and Adaptive 

Replacement Cache (ARC)” and tried to sum up key page replacement algorithms suggested 

till present thereby taking a look at conventional algorithms such as “CLOCK, Least Recently 

Used( LRU) and Belady’s MIN”.   

2.2 Knapsack problems and applications  

The knapsack problem (KP) is a traditional combinatorial issue used to show numerous modern 

circumstances. It has been concentrated seriously in the previous decade pulling in both 

scholars and experts. The scholars’ interest emerges principally from their basic structure which 

both permits abuse of various combinational properties and allows more perplexing optimiation 

problems to be illuminated through a progression of Knapsack type.   

“Since Balas and Zemel a dozen years ago introduced the so-called core problem as an efficient 

way of solving the Knapsack Problem, all the most successful algorithms have been based on 

this idea. All knapsack Problems belong to the family of NP-hard problems, meaning that it is 

very unlikely that we ever can devise polynomial algorithms for these problems” (Pisinger, 

1994).  

Year  Author  Solution Proposed  

  

1950s  

  

  

1957  

  

Richard Bellman  

  

  

George B. Dantzig  

Produced the first algorithm - dynamic 

programming theory - to exactly explain the 0/1 

knapsack problem.  

.   

He gave an exquisite and productive strategy to 

obtain the answer for the continuous relaxation 

issue, and henceforth an upper bound on z which 

was utilized as a part of all studies on KP in the 

accompanying a quarter century  
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1960s  

  

  

1967  

Gilmore and Gomory  

  

  

Katherine Kolesar  

Among other knapsack-type problems he explored 

the dynamic programming approach to the knapsack 

problem   

Experimented with the first branch and bound 

algorithm of the knapsack problem.  

1970s  

  

  

1973  

  

Horowitz and Sahni   

  

  

Ingargiola and Korsh   

  

The branch and bound methodology was further 

created, turned out to be the main approach fit for 

taking care of issues with a great amount of 

variables.   

Presented the initial reduction formula, a 

preprocessing algorithm which significantly reduces 

the number of variables   

  

1974  

  

1975  

  

1977  

  

Johnson   

  

Ibarra and Kim  

  

Martellon and Toth  

Gave the first polynomial time approximation design 

to solve the problem of the subset-sum; Sahni 

extended the result to the 0/1 knapsack problem.   

They introduce the first completely polynomial time 

approximation design   

Proposed the first upper bound taking over the 

charge of the continuous relaxation.  

The key products of the eighties concern the resolution of mass problems, for which variables 

cataloguing (required by all the most effective algorithms) takes a very high percentage of the 

running time.  

1980  Balas and Zemel  Introduced another way to deal with the issue by 

sorting, much of the time, just a little subset of the 

variables (the core problem). They demonstrated that 

there is a high likelihood for discovering an ideal 

solution in the core, in this way abstaining from 

considering the remaining objects.   

Table 1.0: Core history of Knapsack Problems and Solutions  

The Knapsack problem has been concentrated on for over a century with prior work dating as 

far back as 1897. “It is not known how the name Knapsack originated though the problem was 
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referred to as such in early work of mathematician Tobias Dantzig suggesting that the name 

could have existed in folklore before mathematical problem has been fully defined” (Kellerer, 

2004).  

Confronted with instability on the model parameters, robustness investigation is a suitable way 

to deal with dependable solution. Kalai and Vanderpooten (2006) examined the hearty 

knapsack problem utilizing a maximum-min conditon, and proposed another robustness 

method, called lexicographic α-vigor. The authors demonstrated that “the complication of the 

lexicographic α-robust problem does not augment compared with the max-min version and 

presented a pseudo-polynomial algorithm in the case of a bounded number of scenarios”.  

Benisch et al. (2005) experimented the problem of selecting biased costs for clients with 

probabilistic valuations and a merchant. They demonstrated that under specific suspicions this 

problem can be summary to the “continuous knapsack problem” (CKP). They introduced 

another quick epsilon-optimal calculation for unravelling CKP occurrences with asymmetric 

concave reward capacities. They likewise demonstrated that their calculation can be stretched 

out past the CKP setting to handle pricing problems with covering merchandise (e.g. products 

with normal parts or basic asset necessities), as opposed to indistinct merchandise. They gave 

a structure to taking in dispersions over client valuations from past information that are exact 

and perfect with their CKP calculation, and approved their strategies with trials on evaluating 

prices got from the “Trading Agent Competition in Supply Chain Management (TAC SCM)”. 

Benisch et al. (2005) results confirmed that their method converges to an epsilon-optimal result 

more rapidly in practice than an alteration of an earlier recommended greedy heuristic.  

“Ant Colony optimization (ACO) algorithm” is a novel replicated transformative algorithm, 

which gives another strategy to combinatorial optimization problems. It is a probabilistic 

strategy for tackling computational issues which can be lessen to discovering great ways 

through charts. ACO point is to hunt down an ideal way in a chart in light of the conduct of 

ants looking for a way between their state and a supply of food. Shang et al (2006) solved the 
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Knapsack problem using this algorithm. ACO was enhanced in determination procedure and 

data change so that it can't undoubtedly keep running into the local optimum and can meet at 

the global optimum. Their try-out illustrates the strength and the probable control of this kind 

of meta-heuristic algorithm. Kosuch (2010) presented an “Ant Colony Optimization (ACO) 

algorithm” for the Two-Stage Knapsack case with discretely dispersed weights and limit, using 

a meta-heuristic approach. Two heuristic utility measures were proposed and compared. 

Additionally, the author keeping in mind the end goal to acquire a paradigm for the construction 

termination presented another thought of non-utility measures. The author argued why for the 

proposed measures, “it is more efficient to place pheromone on arcs instead of vertices or edges 

of the complete search graph. Numerical tests show that the author’s algorithm is able to 

produce, in much shorter computing time, solutions of similar quality than CPLEX after two 

hour. Moreover, with increasing number of scenarios the percentage of runs where his 

algorithm is able to produce better solutions than CPLEX (after  

2 hours) increases.” Boryczka (2006) offered a new optimization method for the Multiple 

Knapsack Problem based on Ant colony metaphor. “The MKP is the problem of assigning a 

subset of n items to m distinct knapsacks, such that the total profit sum of the selected items is 

maximized, without exceeding the capacity of each of the knapsacks. The problem has several 

difficulties in adaptation as well as the trail representation of the solutions of MKP or a 

dynamically changed heuristic function applied in this approach.” attainable outcomes showed 

the strength ACO approach for solving the Multiple Knapsack Problem.   

Branch and Bound is a class of accurate algorithm for different optimization problems 

particularly whole number programming problems and “combinational optimization problems” 

(COP). It isolates the solution space into little sub-problems that can be understood 

autonomously (branching). Bounding disposes of sub issues that cannot contain the ideal 

solution, thereby diminishing the solution space size. Branch and Bound was initially proposed 

via Land and Diog in 1960 for tackling whole number programming.   
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The branch and bound algorithm when applied to the Knapsack model which is single 

constrained reduces the total numbers of sub-problems. This approach enhances the 

performance of the algorithm by generating and adding new objective function and constraints 

to the Knapsack model. (Munapo, 2008). The author stated further that “majority of algorithms 

for solving Knapsack problem typically, use implicit enumeration approaches. Different 

bounds base on the remaining capacity of the knapsack and items not yet included at certain 

iterations have been proposed for use in these algorithms.” Comparable routines may be utilized 

for a nested Knapsack problem as long as there is a set up method for testing whether an element 

entered into a Knapsack at one stage can likewise be entered at the next stages.    

Florios et al. (2009) tackled an example of the “multi-objective multi-constraint (or 

multidimensional) knapsack problem (MOMCKP)”, with three target capacities and three 

limitations. The creators requested for an accurate and approximate algorithm which is a 

legitimately altered form of the “multi-criteria branch and bound (MCBB) algorithm”, further 

tweaked by suitable heuristics. Three branching heuristics and a more universally useful 

composite branching and construction heuristic were worked out. Moreover, the same issues 

were unravelled utilizing standard “multi-objective evolutionary algorithms (MOEA)”, to be 

specific, the SPEA-2 and the NSGA-II. The outcomes from the definite case demonstrate that 

the branching heuristics incredibly enhance the execution of the MCBB algorithm, which turns 

out to be quicker than the versatile ε - constraint. With respect to execution of the MOEA 

algorithms in the particular problems, SPEA-2 beats NSGA-II in the level of estimate of the 

Pareto front, as measured by the scope metric (particularly for the biggest occurrence).  In the 

middle of the 1970s “several good algorithms for Knapsack Problem (KP) were developed 

(Horowitz and Sahni 1974), (Nauss 1976), and (Martello and Toth 1977). The starting point of 

each of these algorithms was to order the variables according to nonincreasing profit-to-weight 

(pj/wj) ratio, which was the basis for solving the Linear KP.” From this explanation, appropriate 

upper and lower bounds were derived, making it possible to apply some rational analysis to fix 
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several variables at their optimal limit. Finally the KP in the remaining variables was solved by 

branch and bound techniques. This approach was applied by Essandoh (2012) to model site 

development for solid waste disposal in SekondiTakoradi metropolis as a 0-1 knapsack 

problem. His method could be adopted for any land site management problem to obtain an 

optimum refuse disposal management. Most prominent adopters to his study were district 

assembly for refuse disposal management and waste management companies.  

Given a knapsack of limit, Z, and n dissimilar items, Caceres and Nishibe (2005) algorithm 

resolved the single Knapsack problem using local computation time with communication 

rounds. With dynamic programming, their algorithm solved locally pieces of the Knapsack 

problem. The algorithm was implemented in Beowulf and the obtained time showed good 

speed-up and scalability (Robert and Thompson 1978).   

Jan et al. (2006) with a constriction for server-based adaptive web systems took to Web content 

adaptation with a bandwidth. The problem can be stated as follows: “Given a Web page P 

consisting of n component items d1, d2, … , dn and each of the component items di having Ji 

versions di1,di2,…,diJi, for each component item di select one of its versions to compose the Web 

page such that the fidelity function is maximized subject to the bandwidth constraint”. They 

invented this problem as a “linear multi-choice knapsack problem (LMCKP)” and changed the 

LMCKP into a knapsack problem (KP) and afterward introduced a dynamic programming 

approach to calculate the KP. A numerical sample demonstrates the method and showed its 

viability.  

A general indication of the latest methods for taking care of hard Knapsack Problems, with 

unique stressing on the expansion of cardinality limitations, dynamic programming, and simple 

divisibility where computational results, looking at all late algorithm, were exhibited has been 

given (Martello et al., 2000).  

“An approach, based on dynamic programming, can be used for solving the 0/1 multiobjective 

knapsack problem. The main idea of the approach relies on the use of several complementary 
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dominance relations to discard partial solutions that cannot lead to new nondominated criterion 

vectors” (Bazgan et al., 2007). This way, they acquired a productive technique that outflanks 

the current schemes both in terms of CPU time and size of tackled situations. Broad numerical 

trials on different sorts of examples of multidimensional task were accounted for. A correlation 

with other precise strategies was likewise performed. “The data association problem consists 

of associating pieces of information emanating from different sources in order to obtain a better 

description of the situation under study. This problem arises, in particular, when, considering 

several sensors aimed at associating the measures corresponding to the same target” (Hugot et 

al., 2006). This problem widely in literature is frequently expressed as a 16 multidimensional 

task problem where a state model is upgraded. While this methodology appears to be tasteful 

in effortless circumstances where the danger of confounding targets is generally low, it is a 

great deal harder to get a right description in denser circumstances. Hugot et al (2006) proposed 

to address this subject in a several criteria framework by means of a second integral model, in 

view of the recognizable proof of the objectives. Because of the problem specificities, a trouble-

free and effective methodology can be utilized to produce non-dominated solutions. Moreover, 

they showed that “the accuracy of the proposed solutions is greatly increased when considering 

a second criterion. A bi-criteria interactive procedure is also introduced to assist an operator in 

solving conflicting situations”.  

Silva et al. (2008) managed the issue of incorrectness of the solutions produced by 

metaheuristic methodologies for combinatorial optimization bi-criteria knapsack problems. A 

version of the “stochastic knapsack problem with normally distributed weights, the two-stage 

stochastic knapsack problem” was studied by Kosuch and Lisser (2009). Contrary to the single-

stage knapsack problem, “items can be added to or removed from the knapsack at the moment 

the actual weights become known (second stage). In addition, a chance-constraint is introduced 

in the first stage in order to restrict the percentage of cases where the items chosen lead to an 

overload in the second stage”. According to the authors, “there is no method known to exactly 
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evaluate the objective function for a given first-stage solution, and therefore proposed methods 

to calculate the upper and lower bounds. These bounds are used in a branch and bound 

framework in order to search the first-stage solution space. Special interest is given to the case 

where the items have similar weight means with numerical results presented and analyzed”.  

As more complex as it has become, Zhong and Young (2009) explained the exploits of an 

integer programming tool, “Multiple Choice Knapsack Problem (MCKP)”, to present ideal 

results to transportation programming - a procedure of selecting projects for financing given 

spending plan and different constraints-problems in situations where substitute variants of 

projects are considered. Optimization methods for utilization in the transportation 

programming procedure were analyzed and after that the procedure of building and taking care 

of the optimization problems examined. The ideas about the utilization of MCKP were 

exhibited and a real-world transportation programming illustration at different budget levels 

were given. They gave convenient arrangements in transportation programming practice as 

well as outlined how the utilization of MCKP addresses the current complexities.   

 Lin and Yao (2001) investigated a Knapsack problem where every one of the weight 

coefficients are “fuzzy numbers”. The work was based on the assumption that “each weight 

coefficient is imprecise due to the use of decimal truncation or rough estimation of the 

coefficient by the decision maker. To deal with this kind of imprecise data, fuzzy sets provide 

a powerful tool to model and solve this problem.” Their work was expected to wiped out the 

first Knapsack problem into a more universal problem that would be valuable in viable 

circumstances. As a result, their study showed that “the fuzzy Knapsack problem is an 

extension of the crisp Knapsack problem in a special case of the fuzzy knapsack problem”.  

A number of stochastic and mathematical techniques have been produced in a bid to solve 

“multi-objective problems”. The techniques worked in view of scientific models while much 

of the time these models are radically simplified images of real world issues. A study conducted 

by Gholamian et al. (2007) as an alternative to mathematical models exploit a hybrid intelligent 
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system i. The chief core of the scheme is fuzzy rule base which links from a solution space (X) 

to decision space (Z). “The system is designed on non-inferior region and gives a big picture 

of this region in the pattern of fuzzy rules. Since some solutions may be infeasible; then 

specified feed forward neural network is used to obtain non-inferior solutions in an exterior 

movement”. In addition, “numerical examples of well-known NP-hard problems (i.e. multi-

objective travelling salesman problem and multi-objective knapsack problem)” were given to 

illuminate the exactness of created system (Boyd and Cunningham, 1988).   

There are studies of income maximization in the dynamic and stochastic knapsack problem 

(Gallego et al. 1994), and (Gershkov et al. 2009), “where a given capacity needs to be allocated 

by a given deadline to sequentially arriving agents. Each agent is described by a two-

dimensional type that reflects his capacity requirement and his willingness to pay per unit of 

capacity”. Dizdar et al. (2010) performed one of the studies and characterize implementable 

policies. They solved “the revenue maximization problem for the special case where there is 

private information about per-unit values, but capacity needs are observable after deriving two 

sets of additional conditions on the joint distribution of values and weights under which the 

revenue maximizing policy for the case with observable weights is implementable, and thus 

optimal also for the case with two-dimensional private information”. In particular, they 

investigated “the role of concave continuation revenues for implementation”. They also created 

a “simple policy for which per-unit prices vary with requested weight but not with time, and 

prove that it is asymptotically revenue maximizing when available capacity/ time to the 

deadline both go to infinity”. This draws attention to the significance of nonlinear as compared 

to dynamic pricing.   

The multidimensional 0/1 knapsack problem is a combinatorial optimization problem, which 

is NP-hard and occurs in countless fields of optimization. The multidimensional 0/1 knapsack 

problem is a standout amongst the most surely understood integer programming problems and 

has gotten wide consideration from the operational exploration community amid the most 
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recent four decades. Albeit late advances have made conceivable the results of medium size 

cases, tackling this NP- hard problem remains an exceptionally fascinating test, particularly 

when the quantity of limitations increments.  Fréville and Plateau (2004) surveyed the main 

results published in the literature and focused on the “theoretical properties as well as 

approximate or exact solutions of this special 0–1 program”. The multidimensional 0/1 

knapsack problem, characterized as a knapsack with multiple resource limitations, is surely 

understood to be a great deal more complex than the single limitation description. Freville and 

Plateau (2004), designed an efficient pre-processing procedure for large-scale instances. Their 

algorithm “provides sharp lower and upper bounds on the optimal value, and also a tighter 

equivalent representation by reducing the continuous feasible set and by eliminating constraints 

and variables”. This plan was appeared to be exceptionally compelling through a great deal of 

computational investigations with test problems of the literature and large scale randomly 

created cases.   

The “Knapsack sharing problem” (KSP) is put together as an addition to the usual knapsack 

problem. It is an NP-Hard combinatorial optimization problem, acknowledged in several real 

world situations. “In the KSP, there is a knapsack of capacity, c and a set of n objects, namely  

{\cal N}, where each object j ,j = 1… n, is associated with a profit pj and a weight wj . The set 

of objects {\cal N} is composed of m different classes of objects. The aim is to determine a 

subset of objects to be included in the knapsack that realizes a maximum value over all classes”. 

Yamada et al. (1998) solved the knapsack sharing problem to optimality by presenting a 

“branch and bound algorithm and a binary search algorithm”. These algorithms are executed 

and computational tests are done to break down the conduct of the created algorithms. As a 

result, they found that “the binary search algorithm solved KSPs with up to  

20,000 variables in less than a minute in their computing environment”.   
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Important classes of combinational optimization problems are the “Multidimensional 0-1 

Knapsacks and various heuristic and exact methods” have been formulated to give response to 

them.   

The traditional knapsack problem and a variation in which an upper bound is forced on the 

quantity of items that can be chosen are tackled. It is established that suitable combinations of 

adjusting procedures yield novel and further dominant ways of rounding. Moreover, a “linear-

storage polynomial time approximation scheme (PTAS) and a fully polynomial time 

approximation scheme (FPTAS) that compute an approximate solution, of any fixed accuracy, 

in linear time” is also presented. These linear complexity bounds offer a considerable progress 

of the best once known polynomial bounds (Huttler and Mastrolilli, 2006).  

Heuristic algorithms experienced in literature that can generally be named as population 

heuristics include; “genetic algorithms, hybrid genetic algorithms, mimetic algorithms, scatter-

search algorithms and bionomic algorithms”. Among these, Genetic Algorithms have risen as 

a dominant latest search paradigms (Chu and Beasley, 1998).  

Genetic Algorithms (GA) are PC algorithms that hunt down fine solutions to a problem from 

among countless solutions. They are versatile heuristic search algorithm in view of the 

evolutionary thoughts of natural selection and hereditary qualities. “These computational 

paradigms were inspired by the mechanics of natural evolution, including survival of the fittest, 

reproduction, and mutation. This algorithm is an intelligent exploitation of random search used 

in optimisation problems” (Sinapova Lydia 2014).   

Works using genetic algorithms to solve the knapsack problem with inaccurate weight 

coefficients has been investigated. “The work is based on the assumption that each weight 

coefficient is imprecise due to decimal truncation or coefficient rough estimation by the 

decision-maker. To deal with this kind of imprecise data, fuzzy sets provide a powerful tool to 

model and solve this problem”.   
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Lin (2008) examined the likelihood of genetic algorithms as a part of taking care of the fuzzy 

knapsack problem without characterizing participation capacities for each inexact weight 

coefficient. Lin’s proposed approach replicated a fuzzy number by allocating it into several 

partition points. “A genetic algorithm was used to evolve the values in each partition point so 

that the final values represented the membership grade of a fuzzy number. The empirical results 

show that the proposed approach can obtain very good solutions within the given bound of each 

imprecise weight coefficient than the fuzzy knapsack approach. The fuzzy genetic algorithm 

concept approach is different, but gave better results than the traditional fuzzy approach” (Lin, 

2008).  

Works on how to how to demonstrate an accurate determination of parameters and search 

mechanisms prompted an execution of Genetic Algorithms that yield top notch solutions   

(Hoff et al., 1985). The methods were “tested on a portfolio of 0/1 multidimensional knapsack 

problems from literature and a minimum of domain-specific knowledge is used to guide the 

search process. The quality of the produced results rivals and in some cases surpasses the best 

solutions obtained by special-purpose methods that have been created to exploit the special 

structure of these problems”.  

Bortfeldt and Gehring (2001) presented a hybrid genetic algorithm (GA) for the container 

packing problem with boxes of unlike sizes and one container for stacking. “Generated stowage 

plans include several vertical layers each containing several boxes. Within the procedure, 

stowage plans were represented by complex data structures closely related to the problem. To 

generate offspring, specific genetic operators were used that are based on an integrated greedy 

heuristic. The process takes several practical constraints into account. Extensive test 

calculations including procedures from other authors vouch for the good performance of the 

GA, above all for problems with strongly heterogeneous boxes”.  
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A general labelling algorithm for locating all non-dominated results of the “multiple objective 

integer knapsack problems” (MOIKP) was made accessible by Figuera et al. (2009). They 

presented algorithms for creating four network models, mostly demonstrating the MOIKP.  

Their algorithm is based on fathoming the “multiple objective shortest path problems” on a 

principal network. “Each network is composed of layers and each network algorithm, working 

forward layer by layer, identifies the set of all permanent non-dominated labels for each layer. 

The effectiveness of the algorithms is supported with numerical results obtained for randomly 

generated problems for up to seven objectives while exact algorithms reported in the literature 

solve the multiple objective binary knapsack problem with up to three objectives. Extensions 

of the approach to other classes of problems including binary variables, bounded variables, 

multiple constraints, and time-dependent objective functions are possible”. Maya and Dipti 

(2011) also solved the 0-1 Knapsack Problem (KP) by means of Genetic Algorithms (GAs) in 

a research project  

Modified GA generates outcomes that are better in quality than other driving heuristic (which 

are for the most part, in view of tabu search) for the KP (Chu and Beasley 1998). However, GA 

is much slower than other heuristics. Hence, there is a trade-off often seen in or between quality 

of solution and computer time consumed.   

GAs often calls for the creation and assessment of lots of dissimilar children. However, “GAs 

are capable of generating high-quality solutions to many problems within reasonable 

computation times”. (Beasley and Chu, 1996; Chu and Beasley, 1997, 1998; Chang et al.,  

2000; Beasley et al., 1999). Additionally, “while performing search in large state-space or 

multi-modal state-space, or n-dimensional surface, a genetic algorithm offers significant 

benefits over many other typical search optimisation techniques like  linear programming, 

heuristic, depth-first, breath-first”.  

Simoes and Costa( 2001) performed an empirical study and evaluated the exploits of the 

“transposition A-based Genetic Algorithm (GA) and the classical GA for solving the 0/1 
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knapsack problem”. Obtained results showed that, just like in the domain of the function 

optimization, transposition is always superior to crossover. The process of settling on 

allocations in business procedures to get the most out of profit includes: “collecting profit data 

for a plurality of classes in the business operation, where each class includes an allocation 

having a cost function and each allocation belongs to the group consisting of physical 

allocations and economic allocations; determining profit functions for the allocations from the 

profit data; formulating a Multiple Choice Knapsack Problem to maximize profit from the 

profit functions, the cost functions, and a cost constraint; and solving the Multiple choice 

Knapsack Problem to determine values for the allocations” (European Patent Application 

EP1350203).  

Elhedli (2005) considered a class of “nonlinear Knapsack problems with applications in service 

systems design and facility location problems with congestion”. The author gave two 

linearization and their individual solution methodologies. The first is calculated specifically 

utilizing a business solver and the second method provides a piecewise linearization that is 

explained by “cutting plane Method”. The two dimensional Knapsack problem (2KP)  

intended at loading a max-profit subset of rectangle picked from a known set into a different 

rectangle is addressed (Caprara and Monaci 2004). They considered “the natural relaxation of 

2KP given by the one dimensional KP with item weights equal to the rectangle areas, proving 

the worst-case performance of the associated upper bound, and presented and compared 

computationally four exact algorithms based on the above relaxation, showing their 

effectiveness”.  

The objective of the “multi-dimensional knapsack problem” (MKP) is to discover a subset of 

items with higher value that fulfils various knapsack limitations. For several decades, many 

researches on methods of solving MKP, heuristic and exact together have been done. Fleszar 

and Hindi (2009) introduced a number of quick and compelling heuristics for MKP that depend 

on unravelling the LP relaxation of the problem. Enhancing systems were proposed to fortify 
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the consequences of these heuristics. Furthermore, the heuristics were kept running with 

suitable deterministic or randomly generated limitations forced on the linear relaxation that 

permit creating various superior results. All algorithms were tried on a generally utilized set of 

benchmark problem examples to demonstrate that they contrasted positively and the best-

performing heuristics accessible in literature.   

The constrained compartmentalised knapsack problem is an extension of the classical integer 

constrained knapsack problem which can be stated as the following hypothetical situation: “a 

climber must load his/her knapsack with a number of items. For each item a weight, a utility 

value and an upper bound are given. However, the items are of different classes (food, 

medicine, utensils, etc.) and they have to be loaded in separate compartments inside the 

knapsack (each compartment is itself a knapsack to be loaded by items from the same class). 

The compartments have flexible capacities which are lower and upper bounded. Each 

compartment has a fixed cost to be included inside the knapsack that depends on the class of 

items chosen to load it and, in addition, each new compartment introduces a fixed loss of 

capacity of the original knapsack. The constrained compartmentalised knapsack problem 

consists of determining suitable capacities of each compartment and how these compartments 

should be loaded, such that the total items inside all compartments does not exceed the upper 

bound given. The objective is to maximise the total utility value minus the cost of the 

compartments.” Problems of this nature  appear in real world situations such as steel cutting or 

paper reels. Arenales and Marques (2007) modelled this problem as an “integer non-linear 

optimisation problem” and designed a heuristic approach and finally examined their approach 

by using computational experiments.  

Computational networks are distributed systems comprising of heterogeneous computing 

reserves which are conveyed geologically and administratively. These very adaptable systems 

are intended to meet great computational requests of numerous clients from scientific and 

business orientations. In any case, there are issues identified with the processing’s resources 
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which is made out of a grid. Vandester (2008) study the design of a Pan-Canadian grid. The 

design exploits “the maturing stability of grid deployment toolkits, and introduces novel 

services for efficiently allocating the grid resources. The changes faced by this grid deployment 

motivate further exploration in optimizing grid resource allocations. By applying this model to 

the grid allocation option, it is possible to quantify the relative merits of the various possible 

scheduling decisions”. With this model, the allocation problem was prepared as a “knapsack 

problem”. Definition in this way takes into account quick solution times and brings about 

almost ideal allocations.   

E-trade and web-administrations in the territory of web applications particularly in the Last 

decades have seen exponential development. An imperative characteristic of service metric for 

web applications is the response time for the client. Web application ordinarily has a multi-

level structure and a request may need to cross through every one of the levels before 

completing its processing.  For that reason, a request’s sum response time is the whole of 

response time at all the levels. Since the normal response time at any level relies on the quantity 

of servers assigned to this level, a wide range of setups (number of servers designated to every 

level) can give the same value of service guarantee in terms of aggregate response time. 

Logically, one might want to discover the design which minimizes the aggregate system cost 

and fulfils the aggregate response time guarantee. This was modelled as an integer optimization 

problem (Zhang et al., 2004).   

The knapsack problem (KP) is summed up to the situation where items are somewhat requested 

through a set of priority relations. As in common KPs, every item is connected with benefit and 

weight, the knapsack has a permanent limit, and the problem is to settle on the set of items to 

be filled in the knapsack. Be that as it may, every item can be acknowledged just when all the 

preceding items have been input into the knapsack. The knapsack problem with these extra 

restrictions is known as “the precedence-constrained knapsack problem (PCKP)” 

(Samphaiboon and Yamada 2000). To explain PCKP precisely, “a pegging approach, where 
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the size of the original problem is reduced by applying the Lagrangian relaxation followed by 

a pegging test” (Yamada and You 2007). By this technique, they found themselves able to 

fathom PCKPs with a large number of items within a couple of minutes on a common 

workstation.   

A promising solution approach called Meta-RaPS was presented by Moraga et al. (2005) for 

the 0-1 Multidimensional Knapsack Problem (0-1 MKP). “Meta-RaPS construct feasible 

solutions at each iteration through the utilization of a priority rule used in a randomized fashion. 

Four different greedy priority rules are implemented within Meta-RaPS and compared. These 

rules differ in the way the corresponding pseudo-utility ratios for ranking variables are 

computed. In addition, two simple local search techniques within Meta-RaPS' improvement 

stage are implemented. The Meta-RaPS approach is tested on several established test sets, and 

the solution values are compared to both the optimal values and the results of other 0-1 MKP 

solution techniques. The Meta-RaPS approach outperformed many other solution 

methodologies in terms of differences from the optimal value and number of optimal solutions 

obtained” (Moraga et al. 2005). Test results obtained by Moraga et al. (2005) confirmed that 

the Meta-RaPS technique is simple to comprehend and simple to  

execute hence its ability to attain fine results.   

Babaioff, Kleinberg and Immorlica (2007) presented a model for “the multiple-choice secretary 

problem in which k elements need to be selected and the goal is to maximize the combined 

value (sum) of the selected elements”. The authors also carried out the matriod secretary 

problem in which the elements of a weighted matriod enter in an irregular request. As every 

element is monitored, the algorithm settles on an unavoidable choice to pick it or skip it, with 

the limitation that the selected element must constitute a free set. The goal is to augment the 

consolidated weight of the selected element. The authors proposed an “integer programming 

algorithm” for this problem.   
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Aggarwal and Hartline (2006) also designed tactical auctions program which the competition 

for revenue is high when the auctioneer is constricted to select managers with private values 

and with weights openly identified that fit into the knapsack.  

According to Chekuri and Hanna (2005) the “multiple Knapsack problems (MKP) is a natural 

and well-know generalization of the single Knapsack and is defined as follows: Supposing a 

set m items and n bins (Knapsacks) are given such that each item i has a profit p(i) and a size 

s(i) and each bin j has a capacity C(i).The goal is to find a subset of items of maximum profit 

such that they have a feasible packing in the bins”. MKP is a unique instance of the 

generalized assignment problem (GAP) where the benefit and a size of an element can shift 

taking into account particular container that is allocated to GAPS is APX-hard and a 

2approximation, for it is contained in work of Shmoy and Tardos (1990). This approach tends 

to be a fine approximation for MKP. Shmoys and Tardos (1994) central result for MKP is a 

“polynomial time approximation scheme (PTAS)”. Aside its innate theoretical significance as 

a typical generalization of the well-studied knapsack and bin packing problems it gives off an 

impression of being the most grounded exceptional instance of GAP that is not, APX hard 

They authenticate them by demonstrating that a small simplification of MKP is APX-hard. 

As a mater of fact, their outcome aided to segregate the border at which request of GAP 

become APX-hard. An exciting feature of this strategy is PTAS-“Preserving reduction from 

an arbitrary instance of MKP to an instance with MKP to an instance with 0(log n) distinct 

sizes and profit”. Standard heuristics in operations research, (for example, greedy, tabu search 

and Simulated  

Annealing) takes a shot at enhancing a lone current solution. Residents’ heuristics utilize 

various current solutions and join them together to produce new solutions.  

Hybrid approach which consolidates systematic and heuristic schemes was proposed to 

decrease that incorrectness in the backdrop of a scatter search method. (Gomes da Silva.,  
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2007). Gomes da Silva stated that “the component of this method is used to determine regions 

in the decision space to be systematically searched. Comparisons with small and medium size 

instances solved by exact methods are presented. Large size instances are also considered and 

the quality of the approximation evaluated taking into accounts the proximity to the upper 

frontier, devised by the linear relaxation, and the diversity of the solutions”. He compared the 

performance to other two well-known meta-heuristics. The outcomes demonstrated the 

viability of the proposed approach for both small/medium and large size cases. A decisive event 

tabu search strategy which explores both sides of the possibility limit has demonstrated viability 

in taking care of the multidimensional knapsack problem. This was applied to “the 

multidimensional knapsack problem with generalized upper bound constraints” (Li and Curry, 

2005). Li and Curry (2005) showed the benefits of utilizing surrogate control information 

versus a Lagrangian relaxation plan as decision standards for the problem class. A limitation 

normalization technique was introduced to reinforce the surrogate control information and 

enhance the computational results. The merits of escalating the pursuit at key solutions were 

additionally illustrated.   

Hanafi and freville, (1998) illustrated another way to deal with Tabu Search (TS) emphasising 

on tactical oscillation and surrogate control information that gives stability between escalation. 

Heuristic algorithm like Tabu Search and Genetic algorithm have also appeared in recent times 

for the solution of Knapsack problems. Chu et al. (1998), proposed a genetic algorithm for the 

multidimensional Knapsack problem.  

Employing an approximate solution method based on tabu search, Hifi et al (2002) worked on 

the Knapsack Sharing Problem (KSP). First, “they described a simple local search in which a 

depth parameter and a tabu list were used. Next, they enhanced the algorithm by introducing 

some intensifying strategies.” The two versions of the algorithm produce acceptable result 

within logical computational time. Broad computational testing on problem examples taken 

from the literature demonstrated the adequacy of the proposed approach. Eager about making 
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use of a easy heuristic scheme (simple flip) for answering the knapsack problems, Oppong 

(2009) offered a study work on  the application of usual zero-1 knapsack trouble with a single 

limitation to determination of television ads at significant time such as prime time news, news 

adjacencies, breaking news and peak times. Television (television) stations all over the world 

time table their programmes mixed with adverts or commercials which are the principal sources 

of income of broadcasting stations. The intention in scheduling classified ads is to attain wider 

viewers satisfaction and making maximum earnings from the classified ads or adverts. It was 

once shown that the outcome from the heuristic system compares favourably with the well-

known meta-heuristic approaches akin to Genetic Algorithm and Simulation Annealing.   

A few present approximation algorithms for the minimization variation of the predicament and 

a proposed scaling centered on completely polynomial time approximation scheme for the 

minimal knapsack trouble has been studied. Islam (2009) evaluated the performance of this 

algorithm with current algorithms. His experiments exhibit that, the suggested algorithm runs 

fast and has an excellent performance ratio in nature. He additionally conducts extensive 

experiments on the data furnished through Canadian Pacific Logistics options for the duration 

of the MITACS internship program. The writer proposed a scaling situated 

varepsilonapproximation scheme for the multidimensional (d -dimensional) minimal knapsack 

crisis and checks its efficiency with a generalization of a greedy algorithm for minimum 

knapsack in d- dimensions. The writer’s experimentation showed that the varepsilon-

approximation scheme displays excellent efficiency ratio in nature.  

 Probably the most effective algorithms for fixing the binary-criterion {0,1} knapsack problem 

are found on the core concept (i.e. based on a small number of principal variables). However 

this proposal should not be utilized in problems with two or more criterion. Gomes da Silva et 

al (2008) certified the existence of one of these set of variables in bi-criteria {0,1} knapsack 

circumstances. Numerical experiments were carried out on five types of {0,1} knapsack 

situations. The outcomes were made accessible for the supported and nonsupported solutions 
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as well as for the complete set of efficient solutions. An outline of an approximate and a 

specified process was additionally presented.   

Simulated annealing is a probabilistic strategy for discovering the global minimum of a cost 

function that may have a numerous local minima. It lives up to expectations by imitating the 

physical procedure whereby a solid is gradually cooled so that when in the end its structure is 

"frozen", this happens at a minimum energy configuration. Proposed in Kirkpatrick, Gelett and 

Vecchi (1983) and Cerny (1985), simulated annealing maintain a temperature variable to create 

heating process. The temperature is earlier set high and after that allows to gradually "cool" as 

the algorithm runs. While this temperature variable is high the algorithm will be permitted, 

with more recurrence, to accept solutions that are more awful than the present solution. This 

gives the algorithm the capacity to hop out of any local optimums it discovers itself on early 

on in execution. As the temperature is decreased so is the possibility of tolerating more awful 

solution, thus permitting the algorithm gradually focusing on a zone of the search space in 

which ideally, a near ideal solution can be found.  

Fubin and Ru (2002) put forward a “Simulated Annealing (SA) algorithm” for the 0/1 

“multidimensional knapsack problem”. Problem-specific information is included in the 

algorithm explanation and assessment of parameters. Keeping in mind the end goal to 

investigate the abilities of finite-time implementation of SA, computational results 

demonstrated that SA performs creditable than a genetic algorithm in term of solution time, 

whilst requiring just a reserved loss of solution quality.  

There is a variant of the typical binary knapsack problem termed the “fixed-charge knapsack 

problem, in which sub-sets of variables (activities) are associated with fixed costs. These costs 

may represent certain set-ups and/or preparations required for the associated sub-set of 

activities to be scheduled” (Akinc, 2006). Akinc, discussed problem extensions as well as 

numerous potential real-world applications. He stated that “the efficient solution of the problem 

is facilitated by a standard branch-and-bound algorithm based on (1) a non-iterative, 
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polynomial algorithm to solve the LP relaxation, (2) various heuristic procedures to obtain good 

candidate solutions by adjusting the LP solution, and (3) powerful rules to peg the variables”. 

Computational experience demonstrates that the proposed branch-and-bound algorithm 

indicates superb potential in the solution of a wide range of large fixed-charge knapsack 

problems (Akinc, 2006).   

Index selection for relational databases is a significant problem which has been studied quite 

comprehensively (Gholamian 2007). With index selection algorithms for relational databases 

from literature, at most one key is regarded as a candidate for every attribute of a relation. 

“However, it is possible that more than one different type of indexes with different storage 

space requirements may be present as candidates for an attribute. Also, it may not be possible 

to eliminate locally all but one of the candidate indexes for an attribute due to different benefits 

and storage space requirements associated with the candidates. Thus, the algorithms available 

in the literature for optimal index selection may not be used when there are multiple candidates 

for each attribute and there is a need for a global optimization algorithm in which at most one 

index can be selected from a set of candidate indexes for an attribute”. Gholamian (2007) 

presentation on the multiple choice index selection problems showed that it is NP-hard, and 

offers an algorithm which provides roughly an optimal solution within a client specified error 

bound in a logarithmic time order.   

Another critical issue in almost all sectors is the allocation of resources among different 

activities which has lead to a multitude of research on this topic. Work on non-linear Knapsack 

problems Zoltners and Sinha (1975) provided a review of a conceptual framework for sealed 

resources allocation modelling. They developed general model for sales resource allocation 

which simultaneously account for multiple sales resources, multiple items period and carry 

over several actual applications of the model in practice, which illustrates the practical value 

of their integer programming models.  
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The problem of resource allocation among different activities such as allocating a marketing 

budget among sales territories is analyzed by Luss and Gupta (1980). The authors assumed that 

the return function for each territory uses different parameters and derives single-pass 

algorithms for different concave pay off functions based on the Karush-Kuhn-Tuncker (KKT) 

condition in order to maximize total returns for a given amount of effort.  

Carlo Vercellis (1994) argues that a “Lagrangean decomposition technique for solving 

multiproject planning problems with resource constraints” tends out to be useful and therefore 

described an alternative mode of executing every activity in the project. The disintegration can 

be valuable in a number of ways; from a side, “it provided bounds on the optimum, so that the 

quality of approximate solutions can be evaluated. Furthermore, in the context of branch and 

bound algorithms, it can be used for more effective fathoming of the tree nodes.  

Finally, in the modelling perspective, the Lagrangean optimal multipliers can provide insights 

to project managers as prices for assigning the resources to different projects”.   

Allotment of resources under uncertain conditions is an exceptionally regular problem in some 

genuine situations. Managers need to choose whether or not to contract applicants, not knowing 

whether future competitors will be more grounded or more alluring. Machines need to choose 

whether to acknowledge employments without information of the significance or profitability 

of future occupations. Counselling organizations must choose which occupations to tackle, not 

knowing the income and resource connected with potential future request (Owusu-Bempah, 

2013).   

All the more as of late, online auctions have turned out to be an imperative resource allocation 

issue. Promoting auctions specifically give the main source of monetization for a  an array of 

web administrations including web crawlers, online journals, and social networking sites. 

Furthermore, they are the primary source of client acquisition for a wide exhibit of small online 

business, of the networked world. In offering for the privilege to show up on a website page, 

(for example, an internet searcher), sponsors need to exchange off between huge quantities of 
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parameters, including essential words and viewer attributes. In this situation, a publicist may 

have the capacity to assess precisely the offer required to win a particular auction, and benefit 

either in direct income or name recognition to be picked up, yet may not think about the trade 

off for upcoming auctions. These problems include an online situation, where an algorithm 

needs to settle on choices on whether to acknowledge an offer, based exclusively on the 

required resource investment (or weight) and anticipated estimation of the present offer, with 

the aggregate weight of all chosen offer not surpassing a given spending plan. Moshe et al 

(2008) studied this model as a knapsack problem.   

When the weights are even and equivalent to the weight limitation, the problems above tends 

to represent the popular secretary problem which was first introduced by Dynkin (1963).   

Many theoretical studies of Knapsack problems have been intended and applied to real life 

problems. far more than a decade now in computer science, Knapsack problem has been widely 

studied.   

Many that were mostly application oriented made researchers and practitioners look for better 

and faster solutions to cope with vast industrial and financial management problem. There are 

a lot of variations of the problem but the zero-one maximum knapsack in single dimension is 

the simplest. Loads of industrialized problems can be stated as Knapsack problem examples 

includes spending plan control Payload stacking, cutting stock, project election etc.   
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CHAPTER THREE  

METHODOLOGY  

3.1.0 Introduction   

In this chapter the study deals with the methodology. The fundamental theory of Dynamic 

Programming with regards to its definition and formulation, component, objectives and the 

method of analysis of data to arrive at the objective will be discussed in this chapter  

3.1.1 Terminologies in Dynamic Programming   

Every Dynamic model consists of a set of decision variable which represents the decisions to 

be made; a contrast to a problem data, where values are either given or can be simply 

calculated from what is given.    

3.1.2 Decision Variables   

Decision variables portray the amounts that the decision makers might want to focus. They are 

the questions of a scientific programming model. Normally, it ideal qualities with an 

optimization strategy can be resolved. In a general model, decision variables are given algebraic 

assignments, for example, 𝑥1,𝑥2,𝑥3,… … .𝑥𝑛. The quantity of decision variables is n, and 𝑥𝑗 

is the name of the jth variable. In some particular circumstance, it won't be strange to utilize 

different names, for example, 𝑥𝑖𝑗 or 𝑦𝑘 or 𝑧𝑖𝑗. An allocation of values to all variables in a 

problem is known as a solution.  
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3.1.3 Objective Function   

The objective function assesses some quantitative model of direct significance, for example, 

expense, benefit, utility, or yield.   

The general linear objective function can be composed as  

 
Here  is the coefficient of the jth choice variable. The condition chosen can be either 

augmented or minimized. Here Z can be described as the immediate importance where as  is 

the weight and  is the profit of the item.  

3.1.4 Parameters   

The collection of coefficients (z, c, , ,  ) for all values of the lists i and j are known as the 

model's parameters. For the model to be totally decided all parameter values must be  

stated.   

3.1.5 Non-Negativity Restrictions  

For the most part handy problems are necessitated to be nonnegative variables;   

This exceptional kind of restriction is known as a non-negativity restriction. Once in  

a while variables are required to be non-positive or, actually, may be unlimited (permitting any 

real value).   

3.1.6 Knapsack Algorithm  

The knapsack problem is a standout amongst the most concentrated on issues in combinatorial 

optimization, with some genuine applications. Thus, numerous unique cases and 

generalizations have been analyzed. The Knapsack problem is a traditional problem with a 

single limitation. Various types of Knapsack Problems happen, contingent upon the items 

distribution and knapsack and additionally partly because of their extensive variety of 

applicability. Variations includes the “0 – 1 Knapsack Problem, Bounded Knapsack Problem, 
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Multiple-choice Knapsack Problem, Multiple Knapsack Problem, Multi-constrained Knapsack 

Problem, Integer, linear and non-linear Knapsacks, deterministic and stochastic  

Knapsacks,” multidimensional Knapsack and so on.  

This thesis solve the variation of binary 0 – 1 knapsack problem  

 3.1.7 The 0-1 Knapsack Problem   

This is a clean integer programming with a single check which forms an essential class of whole 

number programming. It confines the number  of duplicates of every sort of item to zero or 

one and the relating aggregate is boosted without having the data size total to surpass the limit 

C. The 0-1 Knapsack Problem (KP) can be mathematically stated through the succeeding 

integer linear programming.  

“Let there be n items,  to where  has a value  and data size .  is the number of 

copies of the item , which, must be zero or one. The maximum data size that we can carry in 

the bag is C. It is common to assume that all values and data sizes are nonnegative.” To make 

simpler the illustration, we also presume that the items are scheduled in increasing order of data 

size  

  

 _,   

 

    

  

 = 0 or 1, j = 1,...,n  

Increase the summation of the items values in the knapsack so that the addition of the data sizes 

must be not exactly or equivalent to the knapsack's limit.  
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3.1.8 Existing Heuristics of Optimising Memory   

Without loss of generality, authors, programmers and proponents of PCs attempt to answer 

the subsequent questions: “which kind of application data should be loaded and to which kind 

of memory?” With a specific end goal to take care of this question, data placement could be 

conducted on one hand by the components of the considered memory (access speed, energy 

cost, huge number of miss access cases, and so forth.), by profiling benchmarks (number of 

times that data is accessed, data size, access frequency, etc.) and then again by the data 

gathered either analyzing statistically the benchmark’s code or profiling benchmarks 

dynamically (“number of times that data is accessed, data size, access frequency, and so 

on.”). Because of the restricted size of memory spaces, one needs to attempt to ideally assign 

data in it all together not to end up running low memory or squashes of some PC 

applications. In this perspective, the greater part of the creators, software engineers and 

advocates of computers tend to utilize one of these three following strategies.   

Load data into memory by size:  all smaller data/process are stacked into memory allotment 

space as there is space accessible else held in RAM.   

Load data into memory by number of accesses: the most repeatedly accessed/used data are 

apportioned memory space as there is space accessible else held in RAM.   

Load data into memory by number of accesses and size: this is in some way a blend of the 

two earlier strategies. The goal here is to join their merits. In the event that we consider the 

example of a structure in which just a section is the most frequently accessed/used, we 

consider average number of access to this structure. This maintains a strategic distance from 

granularity issues. Here, data are sorted by proportion (access number/size) in downward 

order. The data with the most elevated proportion is stacked first into memory space as there 

is space a accessible else it is held in RAM.  

In this thesis, the third strategy is referred to as the basis for our memory optimizations.  The 

problem that this strategies listed try to solve is a problem of combinatorial optimization 
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which represent the old fashioned but popular knapsack problem. Assuming data are items 

and memory is a huge knapsack. We wish to load this knapsack that can hold an aggregate 

weight of W with some items combination from a record of N probable item each with 

weight 𝑤𝑖and value 𝑣𝑖 so that the items value loaded into the knapsack is augmented. A 

crucial investigation of this problem demonstrates that this problem has a sole linear 

limitation, a linear objective function which totals the items value in the knapsack, and the 

included constraint that every item will be in the knapsack or not - representing the 

legendary binary knapsack problem.  

As earlier indicated, this research paper makes use of the dynamic programming algorithm to 

investigate the problem.  

As “Knapsack Problems are NP-hard” there is no recognized exact solution technique than 

possibly a greedy approach or a possibly complete enumeration of the solution space. However 

quite a lot of effort may be saved by using one of the following techniques: These are “Branch-

and-Bound and dynamic programming” methods as well as meta-heuristics approaches such as 

“simulated annealing, Genetic algorithm, and Tabu search” which have been employed in the 

case of large scale problems solution.   

3.2.0 Dynamic Programming  

This is an approach for responding to an unpredictable problem by reducing it into a set of 

simpler sub-problems It is appropriate to problems displaying the properties of overlying 

subproblems and optimal substructure. Dynamic Programming (DP) is an effective procedure 

that permits one to take care of a wide range of sorts of problems in time O(𝑛2) or O(𝑛3) for 

which an innocent methodology would take exponential time. Dynamic Programming is a 

general way to deal with a sequence of interrelated choices in an optimum way. This is a 

general approach to taking care of problems, much like “divide-and-conquer” aside from that 

unlike divide-and-conquer, the sub-problems will normally overlap. Most in a general sense, 
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the approach is recursive, similar to a PC schedule that calls itself, adding data to a stack 

every time, until certain ceasing conditions are met. Once ceased, the solution is solved by 

expelling data from the stack in the best possible sequence.   

With a specific end goal to take care of a given problem, utilizing a dynamic programming 

method, we have to tackle different parts of the problem (sub-problems), and after that 

consolidate the results of the sub problems to achieve a general solution. Regularly when 

utilizing a more guileless approach, a considerable lot of the sub-problems are created and 

solved many times. The dynamic programming methodology tries to take care of every 

subproblem just once, therefore diminishing the quantity of calculations: once the answer for a 

given sub-problem has been registered, it is kept or "memoized": whenever the same solution 

is required, it is basically looked up. This methodology is particularly valuable when the 

quantity of rehashing sub-problems develops exponentially as a size's function of the input.  

Dynamic programming algorithms are used for optimization (for instance, discovering the most 

limited way between two ways, or the speediest approach to multiply numerous matrices). A 

dynamic programming algorithm will look at the earlier tackled sub-problems and will 

consolidate their answers for give the best answer for the given problem.   

3.2.1 The basic idea of Dynamic Programming  

Basic Idea (version 1): Given the problem, by one means or another separate it into a sensible 

number of sub-problems (where "sensible" may be somewhat like 𝑛2) in a manner that the ideal 

solution for the smaller sub-problems can be utilized to give ideal solutions for the bigger ones.   

Basic Idea (version 2): Assume a recursive algorithm for a few problem gives a truly terrible 

recurrence like T(n) = 2T (n − 1) + n. In any case, assume that a large portion of the subproblems 

you achieve as you go down the recursion tree are the same. At that point you would like to get 

a major savings if the calculation is kept so that each distinctive subproblem is processed just 



 

54  

  

once. The solution can be kept in an array or hash table. This perspective of Dynamic 

Programming is regularly called memoizing.   

A description of a lot more important characteristics of dynamic programming is illustrated 

next  

• The problem can be separated into stages: In some dynamic programming applications, the 

stages are related to time, hence the name dynamic programming. These are often dynamic 

control problems, and for reasons of efficiency, the stages are often solved backwards in 

time, i.e. form a point in the future back towards the present. This is because the paths that 

lead from the present state to the future goal state are always just a subset of all the paths 

leading forward from the current state. Hence it is more efficient to work backwards along 

this subset of paths.  

• Every stage has quantity of states: Most usually, in solving a small problem at a stage this 

is the information needed.  

• The choice at a stage informs the condition at the stage into the condition for the next stage.  

• Given the present state, the optimal choice for the outstanding stages is independent of 

choices made in earlier states: This is the primary dynamic programming rule of optimality. 

It implies that it is alright to break the problem into smaller pieces and fathom them 

separately.   

• There is a recursive connection linking the value of choice at a stage and the value of the 

optimum choices at earlier stages: In other words, the optimum choice at this stage utilizes 

the already discovered optima. In a recursive connection, a function emerges on both sides 

of the equation.  

3.2.1 Outline of Dynamic Programming  

1. Define a small piece of the entire problem and locate an ideal solution for this small 

part.  
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2. Enlarge this small part a little and locate the ideal solution  for the new problem utilizing 

earlier found ideal solution  

3. Keep on with Step 2 until you have discovered that the present problem incorporates 

the first problem.  At the point when this problem is understood, the stopping conditions 

will have been met.  

4. Track back the answer for the entire problem from the ideal solutions to the small 

problems to unravel along the way  

3.3 Implementation of the 0-1 Kp Using Dynamic Programming  

Recall knapsack Problem  

Formal description: Given two n-tuples of positive numbers  

(𝑣1, 𝑣2 … 𝑣𝑛)𝑎𝑛𝑑 (𝑤1, 𝑤2 … 𝑤𝑛) 𝑎𝑛𝑑 𝐶 > 0 we wish to determine the subset 𝑇 ⊆ 

{1, 2, … 𝑛} that  

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ 𝑣𝑖                          _____(3.3)  
𝑖∈𝑇 

𝑤ℎ𝑖𝑙𝑒 ∑ 𝑤𝑖 ≤ 𝐶                     ________(3.4)  
𝑖∈𝑇 

The problem identified is an “optimization problem” which can be solved using Dynamic 

programming. The thought is to register the answers for the subsub-problem once and store the 

solution in a table, so they can be reclaimed (more than once) later.    

3.3.1 The Idea of Developing a DP Algorithm  

1. Structure: Distinguish the structure of an ideal solution.   

Break down the problem into smaller problems, and discover a connection between 

the structure of the ideal solution of the first problem and the solution of the smaller 

problems.    

2. Principle of Optimality: Recursively identify the value of an ideal solution. Express 

the solution of the first's problem as ideal solutions for smaller problems.   
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3. Bottom-up calculation: Work out the value of the best solution in a base up style by 

utilizing a table structure.  

4. Construction of ideal/best solution: create an ideal/best solution from processed data   

Steps 1-3 outline the premise of a dynamic-programming response for a problem.  

3.3.2 Dynamic Programming Algorithm for Knapsack:  

A set of n items is given where i  = item z = the storage 

limit.  

𝑤𝑖 = size or data weight  

𝑣𝑖 = profit  

C = maximum capacity (size of the knapsack)  

The target is to locate the subset of items of maximum sum value so much that the total of their 

sizes is at most C (“they all fit into the knapsack”).  

Step 1: Break up the problem into smaller problems.  

Constructing an array V[0. . . n, 0 . . .C].  

For 1 ≤ 𝑖 ≤ 𝑛 and 0 ≤ 𝑧 ≤ 𝐶, the entry V[i ,z] will keep the maximum (combined)  

computing value of every subset of items {1,2, . . ., i} of (combined) size largely z.  

If we calculate all the entries of this array, then the array entry V[n, C] will hold the highest 

computing items value that can fit into storage, that is, the solution to the problem.  

Step 2: Recursively describe the worth of an ideal solution in terms of solutions to smaller 

problems.  

Initial settings: Set  

𝑉[0, 𝑧] =  0  for  0 ≤ 𝑧 ≤ 𝐶,   no item  

    𝑉[0, 𝑧] = −∞   for     𝑧 < 0,       illegal  

Recursive step: Use  

𝑉[𝑖, 𝑧] = 𝑚𝑎𝑥(𝑉[𝑖 − 1, 𝑧], 𝑣𝑖 + 𝑉[𝑖 − 1, 𝑧 − 𝑤𝑖])  
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 for  1 ≤ 𝑖 ≤ 𝑛, 0 ≤ 𝑧 ≤ 𝐶,      

Remember: V[i, z] stores the maximum (combined) computing value of any subset of items 

{1,2, . . . , i} of (combined) size at most z, and item i has size, 𝑤𝑖 (units) and has a value 𝑣𝑖, C  

(units) is the maximum  storage.  

To compute V[i , z] there are only two choices for item i:  

Leave item i from the subset: The best that can be done with items {1, 2, . . . i  - 1} and storage 

limit z is V[i – 1, z].  

Take item i (only possible if 𝑤𝑖 ≤ 𝐶): This way we gain 𝑣𝑖 benefit, but have spent 𝑤𝑖 bytes of 

the storage. The best that can be done with the remaining items {1, 2, . . ., i – 1} and storage 

limit, z - 𝑤𝑖 is V[i – 1, z - 𝑤𝑖].  

End product is 𝑣𝑖 + V[i – 1, z - 𝑤𝑖].   

If 𝑤𝑖> z, then 𝑣𝑖 + V[i – 1, z - 𝑤𝑖] = −∞  

Step 3: Using Bottom up computing V[i, z]   

Bottom: V[0, z] = 0 for all 0 ≤ 𝑧 ≤ 𝐶.   

Bottom-up computation:  

𝑉[1, 𝑧] = 𝑚𝑎𝑥   (𝑉[𝑖 − 1, 𝑧], 𝑣𝑖 + 𝑉[𝑖 − 1, 𝑧 − 𝑤𝑖]) 𝑟𝑜𝑤 𝑏𝑦 𝑟𝑜𝑤.  

 
 Table 3.1 Bottom up computation  up  

  

The dynamic programming pseudo code is as follows:  

“// Input:  
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// Values (stored in array v)  

// Data sizes (stored in array w)  

// Number of distinct items (n)  

// Knapsack capacity (C) // Storage limit (z) for j 

from 0 to C do   m[0, z] := 0 end for  for i from 1 

to n do   for z from 0 to C do     if w[i] <= j then       

m[i, z] := max(m[i-1, z], m[i-1, z-w[i]] + v[i])     

else       m[i, z] := m[i-1, z]     end if   end for end 

for ”  

An extended variation of the pseudo code of the Dynamic programming is illustrated below.  

“// Recursive algorithm: either we use the last element or we don’t. Value (n, C)   

// z = space left or storage limit,   

// n= # items still to choose from,  

//  i= # items,  

//  w_n = size or data size of item  

// Knapsack capacity (C)  

{ if (n == 0) return 0; if (w_n > z) result = Value(n-1,z); 

  // can’t use nth item else result = max{ Value(n-1, z), 

v_n + Value(n-1, z-w_n), }; return result;  

}”  

From the equation, this takes exponential time. However, there are simply O(nC) dissimilar 

couples of values the arguments can probably take on, hence ideal for “memoizing”. 

“Value(n,C)  

{ if (n == 0) return 0; if (arr[n][z] != unknown) return 

arr[n][z];  // <- added this if (w_n > z) result = Value(n-

1,z); else result = max{ Value(n-1, w) , v_n + Value(n-1, z-

w_n) };  

arr[n][z] = result;         // <- and this 

return result;  

}”  
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Given that any known couple of arguments to Value can go through the array test just once, 

and in doing so generates at most two recursive calls, we have at most 2n(C +1) recursive calls 

summation, and the sum time is O(nC).  

The above discussion results in computing the value of the optimal solution. To obtain the 

actually items involved in the computing of the value of the optimal solution, it is work 

backwards: if arr[n][z] = arr[n-1][z] then we do not use the nth item so we just recursively work 

backwards from arr[n-1][z]. Otherwise, we did use that item, so we just output the nth item and 

recursively work backwards from arr[n-1][z-w_ n].  

3.3.3 A simple Test Case  

Imagine a number of data in a queue, all waiting to be allocated memory space with limited 

memory capacity. We want to maximize the number of allocated processes ensuring that there 

is optimal utilisation of memory without exceeding the memory capacity. The data/processes 

are labelled A through G. Which data/process should be loaded into memory? In a bid to 

respond to this problem, information is gathered either statistically by examining the 

benchmark’s code or dynamically by benchmarks profiling (“number of times that data is 

accessed, data size, access frequency,” etc.). Because of the limited size of memory spaces, one 

has to try to optimally allot data in a bid not to end up running low memory or crushes of some 

computer data. The dynamic profiling benchmark features of “number of times that data is 

accessed and data size” is adopted and used as parameters to implement the Dynamic 

programming method.  

 Thus each data has a “value” (Number of times data is accessed) and a “data size” (Size) in  

bytes. For instance, assuming the values and size for this case are:  

Data  1  2  3  4  

Value (Number of times 

data is accessed), 𝑣𝑖  

3  4  5  6  
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Size (Data size),  𝑤𝑖 in kb  2  3  4  5  

Table 3.2 Example of Bottom up computation  

Let say the computer memory space (capacity of Knapsack, C) is 5 kilobytes. Which data(es) 

should be loaded into memory?  

The knapsack problem can be solved in exponential time by attempting all probable subsets.  

With Dynamic Programming, the problem can be reduced to time O(nC).  

This is done top down by beginning with a simple recursive solution and after that attempting 

to “memoize” it. It is started by simply working out the best possible sum value, and then the 

actual extract of the items needed can be seen. Given a set of n items, let i  = item z = the 

storage limit.  

𝑤𝑖 = size or data weight  

𝑣𝑖 = profit  

C = maximum capacity (size of the knapsack)  

Data (data size, value) = {(2, 3), (3, 4), (4, 5), (5, 6)}.   

Initial settings  

 𝑉[0, 𝑧] =  0  for  0 ≤ 𝑧 ≤ 𝐶,             (1)  

  𝑉[0, 𝑧] = −∞   for     𝑧 < 0,                 (2)  

𝑉[𝑖, 𝑧] = 𝑚𝑎𝑥   (𝑉[𝑖 − 1, 𝑧], 𝑣𝑖 + 𝑉[𝑖 − 1, 𝑧 − 𝑤𝑖]) 𝑟𝑜𝑤 𝑏𝑦 𝑟𝑜𝑤 (3)  

  

V[i, z]  z = 0  1  2  3  4  5  

i = 0  0  0  0  0       0  0  

Table 3.3 Solution space i = 0  

This is true because of (1)  

 The i = 1 case   {(2, 3), (3, 4), (4, 5), (5, 6)}.  

Using item (2, 3), compute the values of row 3   

𝑣𝑖 = 3, 𝑤𝑖 = 2, i = 1;  
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𝑉[𝑖, 𝑧] = 𝑚𝑎𝑥 (𝑉[𝑖 − 1, 𝑧], 𝑣𝑖 + 𝑉[𝑖 − 1, 𝑧 − 𝑤𝑖])  

V[1,0] = max (V[0, 0], 3+ V[0, 0-2] = max(0, −∞) = 0  

V[1,1] = max (V[0, 1], 3+ V[0, 1-2] = max(0, −∞) = 0  

V[1,2] = max (V[0, 2], 3+ V[0, 2-2] = max(0, 3) = 3 V[1,3] 

= max (V[0, 3], 3+ V[0, 3-2] = max(0, 3) = 3  

V[1,4] = max (V[0, 4], 3+ V[0, 4-2] = max(0, 3) = 3  

V[1,5] = max (V[0, 5], 3+ V[0, 5-2] = max(0, 3) = 3  

  

V[i, z]  z = 0  1  2  3  4  5  

i = 0  0  0  0  0  0  0  

1  0  0  3  3  3  3  

 Table 3.4: computation of i = 1 case solution    

 The i = 2 case   {(2, 3), (3, 4), (4, 5), (5, 6)}.  

Using item (3, 4), compute the values of row 4 , 𝑣𝑖 = 4, 𝑤𝑖 = 3, 1 = 2;   

𝑉[𝑖, 𝑧] = 𝑚𝑎𝑥 (𝑉[𝑖 − 1, 𝑧], 𝑣𝑖 + 𝑉[𝑖 − 1, 𝑧 − 𝑤𝑖])  

V[2,0] = max (V[1, 0], 4+ V[1, 0 - 3] = max(0, −∞) = 0  

V[2,1] = max (V[1, 1], 4+ V[1, 1- 3] = max(0, −∞) = 0 

V[2,2] = max (V[1, 2], 4+ V[1, 2- 3] = max(3, −∞) = 3  

V[2,3] = max (V[1, 3], 4+ V[1, 3- 3] = max(3, 4) = 4  

V[2,4] = max (V[1, 4], 4+ V[1, 4- 3] = max(3, 4) = 4  

V[2,5] = max (V[1, 5], 4+ V[1, 5- 3] = max(3, 4+3) = 7  

  

V[i, z]  z = 0  1  2  3  4  5  

i = 0  0  0  0  0  0  0  

1  0  0  3  3  3  3  
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2  0  0  3  4  4  7  

Table 3.5: computation of i = 2 case solution   

 The i = 3 case     

Using item (4, 5), compute the values of row 5, 𝑣𝑖 = 5, 𝑤𝑖 = 4, 1 = 3;   

𝑉[𝑖, 𝑧] = 𝑚𝑎𝑥 (𝑉[𝑖 − 1, 𝑧], 𝑣𝑖 + 𝑉[𝑖 − 1, 𝑧 − 𝑤𝑖])  

V[3,0] = max (V[2, 0], 5+ V[2, 0 - 4] = max(0, −∞) = 0  

V[3,1] = max (V[2, 1], 5+ V[2, 1 - 4] = max(0, −∞) = 0  

V[3,2] = max (V[2, 2], 5+ V[2, 2- 4] = max(3, −∞) = 3  

V[3,3] = max (V[2, 3], 5+ V[2, 3 - 4] = max(4, −∞) = 4  

V[3,4] = max (V[2, 4], 5+ V[2, 4 - 4] = max(4, 0 + 5) = 5  

V[3,5] = max (V[2, 5], 5+ V[2, 5 - 4] = max(7, 0 + 5) = 7  

  

V[i, z]  z = 0  1  2  3  4  5  

i = 0  0  0  0  0  0  0  

1  0  0  3  3  3  3  

2  0  0  3  4  4  7  

3  0  0  3  4  5  7  

 Table 3.6 computation of i = 3 case solution    

 The i = 4 case     

Using item (5, 6), compute the values of row 6  

𝑣𝑖 = 6, 𝑤𝑖 = 5, 1 = 4;   

𝑉[𝑖, 𝑧] = 𝑚𝑎𝑥 (𝑉[𝑖 − 1, 𝑧], 𝑣𝑖 + 𝑉[𝑖 − 1, 𝑧 − 𝑤𝑖])  

V[4,0] = max (V[3, 0], 6+ V[3, 0 - 5] = max(0, −∞) = 0  

V[4,1] = max (V[3, 1], 6+ V[3, 1 - 5] = max(0, −∞) = 0  
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V[4,2] = max (V[3, 2], 6+ V[3, 2 - 5] = max(3, −∞) = 3 

V[4,3] = max (V[3, 3], 6+ V[3, 3 - 5] = max(4, −∞) = 4  

V[4,4] = max (V[3, 4], 6+ V[3, 4 - 5] = max(5, −∞) = 5  

V[4,5] = max (V[3, 5], 6+ V[3, 5 - 5] = max(7, 6) = 7  

  

 
  

To find the particular items to be included in the knapsack that makes the optimal subset, 

Let i = n and k = z  if V[i, k] ≠V[i-1, k] then, mark the ith item to be included in the 

knapsack   

i = i-1, k = k - 𝑤𝑖 , else  i 

= i-1  

From the completed solution table 3.7  

Let i = 4, k = 5, 𝑣𝑖 = 6, 𝑤𝑖 = 5   

V[i,k]  and V[i-1, k]  

V[4,5] = 7 and V[4-1, 5] =7   

Since V[i, k] = V[i – 1, k], item 4 should not be included in the knapsack.   
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 Table 3.8: Finding the optimal subset. i = 3 case    

Consider, i=3, k = 5, vi = 6 and wi = 5  

V[i, k]  and V[i-1, k]   

 V[3, 5] = 7  , V[3-1, 5] = 7  

Since V[i, k] = V[i-1, k], so item 3 cannot be part of the knapsack   

 Consider, i = 2, k = 5, vi = 4, and wi = 3     

  

  

  

  

  

 
  

Table 3.9: Finding the optimal subset. i = 2 case  
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V[i, k]  and V[i-1, k]   

V[2, 5] = 7 and V[2-1, 5] = 3.   

Since V[i, k] ≠ V[i-1,k], then the item 2 should be included in the knapsack  k 

– 𝑤𝑖  = 2, Now consider, i = 1, k = 2, 𝑣𝑖 = 3 and 𝑤𝑖 =2  

 
 Table 3.10: Finding the optimal subset. i = 1 case    

V[i, k] , V[i-1,k]    

V[1, 2] = 3 and V[1-1, 2] = 0  

Since V[i, k] ≠ V[i-1,k], then item 1 can be part of the knapsack.   

k – 𝑤𝑖 = 0, Again, consider i = 0, and k = 0  
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Consequently, the optimal solution is 7 which is arrived at by choosing items with number, i = 

{1, 2}  

From table 3.2, Item 1 has a value 3, a data size of 2 and that of item 2 has a value 4 and data 

size of 3. Together their value will be 7 and data size is 5 equalling the total capacity of the 

knapsack.  

3.3.4 Computerised Solution  

Knapsack Algorithm Finding the Optimal Subset   

Input: v[1…n] value (Number of times data is accessed), w[1…n] storage vector or size, n 

number of data, C max capacity and z storage limit.  

Output: V[n, C]: the maximum computing value of any subset of  data {1, 2, . . ., n} of  

(combined) size at most C  

“Function Knapsack(v, z, n, C)  

1: for z = 0 to C do  

2: V[0, z] ⟵ 0    

3: end for  

4: for i = 1 to n do  

 5:   for z = 0 to C do  

6:     if w[i ] ≤ 𝑧 then  

7:       V[i , z] = max (V[i – 1, z], v[i ] + V[i – 1, z - w[i ]])  

8:       keep[i ,z] = true   # ith item (data) is selected in V[i , z]  

9:     else  

10:       V[i , z] = V[i – 1, z]  

11:       keep [i ,z] = false   # ith item (data) is NOT selected in V[i ,z]  

12:     end if  

13:   end for  

14: end for  

15:   𝐾 ← 𝐶  

16: for i = n down to 1 do  

 17:   if keep[i ,K] = true then  

 18:     output i  
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 19:     𝐾 ← 𝐶 − 𝑤[𝑖]  

 20:   end if  

21: end for 22: 

return V[n,C] 

end function”  

  

The above Algorithm stores record of the subset of items that result in the optimal solution. To 

calculate the actual subset, extra supplementary Boolean array keep[i , z] which is true if we 

come to a decision to pick the ith data in V[i , z] and false otherwise.  The value of the storage 

limit z, is given to Knapsack, k to store.  

Ultimately it is prudent to note that dynamic programming, though mind-numbing to carry to 

complete by hand, is very effective contrasted with a brute force listing of every promising 

combination to locate the optimum one.  

3.4 Importance of Dynamic Programming  

Dynamic programming is an optimization technique and obtains solutions from a set of 

options of individual elements. It enables one to develop sub solutions of a large program 

whiles ensuring that the sub solutions are easier to maintain, use and debug. Additionally, it 

possesses overlapping that means they can be reuse. These sub solutions are optimal solutions 

for the problem.   

Dynamic programming calculates its solution (bottom up) by combining them from smaller 

sub-solutions, and by attempting numerous potential outcomes and decisions before it lands 

at the ideal/best set of decisions. It moreover, stores its past values to keep away from 

multiple computations   

There is a litmus test for Dynamic Programming, called The Principle of Optimality. 

Dynamic programming can be connected to any issue that examine the principle of 

optimality. Generally expressed, “partial solutions can be optimally extended with regard to 

the state after the partial solution instead of the partial solution itself”. A problem is said to 
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fulfil the Principle of Optimality if the sub-solution of the finest solution of the problem are 

themselves ideal solution for their sub-problems. For instance, to choose whether to broaden 

an estimate string matching by a substitution, insertion, or deletion, we don't require to know 

precisely which succession of operations was performed to date. The fact is, there may be a 

lot of distinctive edit sequence that accomplish a cost of C on the first p characters of pattern  

P and t characters of string T. Future choices will be made in light of the outcomes of past 

choices, not the actual choices themselves.   

  

  

  

  

  

  

  

  

CHAPTER FOUR  

DATA IMPLEMENTATION AND ANALYSIS  

4.0 Introduction  

In this chapter, we shall consider a computational study of dynamic programming applied to 

knapsack instance. Consideration is given to the 0-1 or binary knapsack problem (KP) where 

given a set of n items and a knapsack with   

       𝑝𝑗 = value of item j,    

In this research work, we name 𝑝𝑗 Number of times data is accessed of item j and Item as 

Data  

       𝑤𝑗 = 𝑤𝑒𝑖𝑔ℎ𝑡 of item j,   
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In this research work, data size of item j is memory size  

       𝐶 = capacity of the knapsack,  

The problem is to select a subset of the data/process whose total memory space does not 

exceed the knapsack capacity C, and whose total value, in this case Number of data access is 

at maximum.  

Thus select a subset of the items so as to   

  

  

𝑥𝑗 = 0 or 1, j ∈ 𝑁 = {1, … , 𝑛},   

 Where          

Without loss of generality it is assumed that all input data are positive integers.  

The objective function (equation 4.1) is to find a subset of the possible items (i.e. the vectors 

of items); where the sum of the Number of data access of these items is maximised, according 

to constraints presented in equation 4.2. Equation 4.2 states, that the sum of the memory size 

(relative-weights) of the vector of items chosen is not to be greater than the capacity of the 

knapsack. Equation 3 refers to the notion that we wish to generate a vector of items, of size n 

(j = 1, . . . , n items), whereby a 0 at the ith index indicates that this item is not in the chosen 

subset and a 1 indicates that it is.  

In modern computers many processes run at once. All program that is executing on the 

computer, either noticed or unnoticed, consume some computer resources. But before a 

data/process runs it needs to be created and then given all the resources accessible that it 

requests to run (i.e. set to ready queue in the ready state) before the CPU work on this process's 
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instructions – run state. A current created program is place in the ready queue. Data/processes 

stays in ready queue for CPU allocation. Active processes are placed in a run queue and load 

them into memory for execution. Multiprogramming operating system permits a lot more 

process to be carried into the executable memory at one time and process that are loaded use 

the CPU by means of some scheduling algorithm.  

 For each Process that wants to be allocated space to run, it carries CPU scheduling information 

and Memory Management information such as Number of times data is accessed information 

and memory usage respectively to be allocated to page tables or segment tables. When CPU is 

ready to execute a Process, it picks up the data item from the run queue based on the system 

information it carries: in this case, the Number of times data is accessed and checks if it has 

available memory space for that Process.   

 In this research work the system information a process carries is implemented using integers 

within a fixed range, with 10 being the highest possible Number of times data is accessed 

value/figure.  

4.1 Data Collection  

As already indicated all created Process that wants to be allocated space to run, carries resources 

- CPU scheduling information and Memory Management information. These resources are 

gathered either statistically by examining the benchmark’s code or dynamically by benchmarks 

profiling (“number of times that data is accessed, data size, access frequency,” etc.).  

This research work uses the data collected dynamically from a process – “number of times data 

is accessed and data size” to represent the value and weight of an item by assigning randomized 

personal data - to model the knapsack problem and solve the problem of Computer systems 

ending up running low memory by employing a dynamic programming approach.   

Category A: The table below shows a computer system with a total of 15 created processes, all 

with their system information in figures. The computer memory can accommodate capacity of 

32mb.   
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Processes No  data size/mb  
Number of times data is  

accessed  

1  6  6  

2  4  5  

3  8  8  

4  6  2  

5  6  9  

6  7  4  

7  5  7  

8  7  9  

9  3  6  

10  10  2  

11  3  9  

12  6  10  

13  9  9  

14  5  8  

15  3  6  

  Total 88    

Table 4.1: Data values of Category A  

Source: Authors survey  

Category B: The table below shows system information of a total of 32 data/processes in 

figures. The memory capacity of this system is 512mb.   

Processes No  Memory data size/mb  
Number of times data is  

accessed  

1  25  6  

2  52  5  

3  100  7  

4  86  9  

5  36  5  

6  76  3  

7  12  4  

8  56  7  

9  128  7  

10  96  7  

11  160  8  

12  120  3  

13  82  2  

14  68  4  

15  92  6  

16  48  5  

17  128  4  
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18  160  8  

19  24  6  

20  64  2  

21  96  1  

22  124  3  

23  65  2  

24  12  3  

25  45  7  

26  56  6  

27  86  7  

28  82  3  

29  98  7  

30  134  8  

31  142  4  

32  200  5  

  Total 2753    
Table 4.2: Data values of Category B  

Source: Authors survey  

  

  

  

4.2 Data Implementation  

The system’s main goal is to pick from a pool of data (processes), some Process that should be 

loaded into memory for system execution by the CPU taking into account some notable 

constraints.  

4.2.1 Graphical User Interface  

The user interface show the parts of the Program which communicate with the user directly.  

It introduces a warm page with a file menu.  The file menu introduces the main program, the  

ProcessMaster. ProcessMaster has two tabs are available: PCalculate and intermediate output. 

A tabbed pane was used to allow for a general interface to contain the changing panel. The user 

selects which component to see by choosing the tab matching to the required component.   
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4.2.2 PCalcuate Panel   

The Program has five sections.   

The Start section: user input the total number of items or process. Be it as it may for the system 

utilisation to be calculated, the system needs to take certain parameters as inputs from the user, 

and execute validity checks to ensure that the input taken is valid  

• Capacity of the system: which will determine the limit of the memory space of 

processes  

• Number of Processes: which identify the number of items that needs to be entered into 

the Program. It have to be entered as a non-negative number.  

The Data entry section: where user input the various process memory usage and “Number of 

times data is accessed”. The user click on the Start Algorithm button to initiate this process. It 

displays a table of two items:  

• Memory – Enter memory usage of each Process. Have to be input as a non-negative  

digit  

• Number of times data is accessed: Enter the Number of times data is accessed of each 

Process. Have to be input as a non-negative digit  

• The compute button: Once these parameters have been entered and verified, a click on 

this button loads the output section.   

The Save to File button: Data entered into the program can be saved for later reference and 

usage. The system allows files to be saved only in xls/xlsx format.  

System input section: where user can generate random values to test the system or browse for 

a file which may have input data for the Program or from a saved file. Two main buttons are 

found here:  

 Browse for File: Data can be loaded directly from an excel file i.e. xlsx/xls file or a notepad 

file. Therefore the Program allows for a database that can be updated with an import 

functionality from an excel file.   
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Generate Random values: System can automatically generate randomly data values to check 

system simulation.  

System output section: It initially displays a table of titles. After input of data, it displays the 

inputted data, its memory and assigned Number of times data is accessed as well as the optimal 

solution of the task given.  

The Number of times data is accessed Value section: It identifies the highest total Number of 

times data is accessed obtained which result in optimal value to be taken by the System and the 

System Throughput that indicates the quantity of processes finished per unit time. This section 

displays the optimal solution to the input data that should be loaded into the system.  

  
Figure 4.1: PCalculate home screen  

4.2.3 The Intermediate output pane  

This pane displays an intermediate results of input data. The various comparisms and 

combinations that the Program goes through to produce the optimal results. It displays the 

number of loop times or cycles undergone to reach optimal solution. Items which meet the 

constraints are indicated by 1 whereas items which do not get picked or donot meet the 

constraints are indicated by 0. This indicate the solution string of input data.  
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Additionally, it displays the memory space capacity utilized by loaded Processes.  

4.2.4 Back-end Specifications  

The back-end specification works on methods of the system which the user does not see and 

serves directly in support of the front-end services. The main idea of the back-end of the system 

is to execute dynamic programming methodologies given the inputs captured from the user.  

The back-end computes the following: the system utilisation, the System Through Put and 

generation of figures for processes as well as saved file and browse for file.  

  

 

 Figure 4.2: Intermediate output home screen  
 
 

4.  2. 5  Technologies and Software  

In considering how to actualize the software, consideration ought to be taken when picking the 

programming language(s) it will be composed in. The key high state necessities from a software 

convenience point of view are:   

- Easy to utilize Graphical User Interface   

- Fast calculation of numerically intensive computations   
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4.2.6 Java  

Java is a universally useful, simultaneous, class-based, object-oriented language that is 

particularly intended to have as few execution conditions as would be prudent. It is expected 

to let application designers "write once, run anywhere" implying that compiled Java code can 

execute at all platform that support Java without the requirement for recompilation.   

Java is at present a standout amongst the most prominent programming languages being used, 

and is generally utilized from application programming to web applications. The program,  

The Binary Knapsack optimizer is written using the Java programming language.  

4.2.7 Netbeans  

Netbeans is a an “integrated development environment (IDE)” for developing mostly with Java, 

and additionally with different languages, specifically HTML5, PHP, C/C++ etc. Netbeans 

provide the best support for fast and smart coding editing, write bug free code, enable quick 

user interface creation and provides the best support for latest Java technologies aside its ability 

to support cross platform and multiple languages. Its tremendous influential software package 

offers all sort of security and service to the users. This integrated development environment is 

used to write and edit the code and design the interface.  

 4.3 Data Analysis   

The System information with randomised data value was tested with the computer software 

developed in Java using the dynamic programming algorithm.   

From Table 4.1, there are a total of 15 processes and that of Table 4.2 has 32 processes. 

Taken the system information each process carry, if all processes are allowed to load as soon 

as created, from Table 4.1, the computer system will require total memory capacity of 88mb 

exceeding the main memory capacity of 32mb. Table 4.2 will demand an arbitrary overall 

memory space of 2411mb from a System with capacity limit 512mb. Therefore from Table  
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4.1, an additional memory of 56mb needs to be created and that of Table 4.2 is1899mb. 

Therefore it is infeasible to allow all the process to run without running into low memory or 

system crushes. A summary is shown in figure 4.3  

Since the memory cannot allocate space or hold all the process at a time, some process(es) 

should be allowed to run whiles others wait for their turns. Most of the authors, programmers 

and proponents of computers adopt existing strategies of allocating memory from one of this 

two:   

1. Load data into memory by size (Strategy 1)  

2. Load data into memory by number of accesses (Strategy 2)  

 

Figure 4.3: Memory demand of Table 4.1 and Table 4.2  

Source: Author Survey  

Strategy one allows data/process to be loaded according to data size picking data with 

smallest sizes first until the system capacity is reached. From Table 4.1, processes 1, 2, 4, 7, 

9, 11 satisfy the condition over the other processes and therefore by precedence it will be 

given concern. Together, this six (6) data/process will require 28mb space, with 4mb free. 

From Table 4.2, processes 1, 2, 5, 7, 8, 16, 19, 20, 23, 24, 25, and 26, a throughput of 12 

data/processes satisfy the condition with a total request memory of 495mb, 17mb space left 

unused.   

Using the dynamic programming approach, the solution after passing the various 

data/Processes of Table 4.1 through the Single Binary Knapsack optimizer identified,  
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Processes 5, 7, 9, 11, 12, 14, 15 to be the Processes that should be loaded into memory for 

CPU scheduling (illustrated in figure 4.4). The Processes with a Throughput of 7 (seven) has 

the total memory space of 31mb leaving 1mb free. For Table 4.2, when the 32 processes are 

entered into the Program, Single Binary Knapsack optimizer, Processes 1, 2, 3, 4, 5, 7, 8, 19, 

24, 25, 26 were the items that meet the criteria totalling 11 (Throughput) with an optimal 

memory utilisation of 504, 8mb less than the total system capacity (illustrated in figure 4.5).    

  

Figure 4.4: Program Solution Output of Table 4.1  
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Figure 4.5: Program Solution Output (2)  

Table 4.3 compares the optimal data from Table 4.1 of Load data into memory by size 

Strategy and the Dynamic Programming approach.  

  

Load data into memory by size   

(Strategy 1)  

Dynamic Programming Approach  

Processes 

No  
data size/mb  Processes No  Data size/mb  

1  6  5  6  

2  4  7  5  

4  6  9  3  

7  5  11  3  

9  3  12  6  

11  3  14  5  

    15  3  

Table 4.3:Comparism of optimal data of Table 4.1  

Source: Author Survey  

Table 4.4compares the optimal data from Table 4.2 of Load data into memory by size Strategy 

and the Dynamic Programming approach.  

Load data into memory by size   

(Strategy 1)  

Dynamic Programming Approach  
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Processes No  data size/mb  Processes No  Data size/mb  

1  25  1  25  

2  52  2  52  

5  36  3  100  

7  12  4  86  

8  56  5  36  

16  48  7  12  

19  24  8  56  

20  64  19  24  

23  65  24  12  

24  12  25  45  

25  45  26  56  

26  56      

Table 4.4: Comparism of optimal data of Table 4.2  

Specification  (Strategy 1)  Dynamic Programming Approach  

System 

throughput  

6  7  

Memory 

acquired  

28  31  

Used 

memory  

4  1  

Table 4.5: Memory utilisation analysis of Table 4.1  

 

Figure 4.6: Memory utilisation of Table 4.5  

Table 4.5 illustrate the analysis of Memory utilisation of Table 4.1 where as Table 4.6 illustrate 

the analysis of Memory utilisation of Table 4.2   

Specification  (Strategy 1)  Dynamic Programming Approach  

System 

throughput  

12  11  
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Memory 

acquired  

495  504  

Used 

memory  

17  8  

Table 4.6: Memory utilisation analysis of Table 4.2  

Source: Author Survey  

 

Figure 4.7: Memory utilisation of Table 4.6  

Strategy two allows data/process to be selected according to the number of times data is access 

or the data access times until the system capacity is reached. Passing the data in table  

4.1 through this heuristic strategy, processes 5, 8, 11, 12, and 13 satisfy the condition due to its 

higher access times. A throughput of 5, it requires 31mb space to manage this processes.  

Processes 4, 11, and 18 giving a throughput of 3 from Table 4.2 satisfy the condition of 

heuristic strategy two. The processes will require 406mb to allow the three most frequently 

accessed data to run in memory holding the remaining data/process in queue. This will leave 

106mb free space in memory unutilized.   

Using the Dynamic programming approach for solving table 4.1 as already illustrated in 

figure 4.4, a throughput of 7, Processes 5, 7, 9, 11, 12, 14, and 15 is loaded into memory for 

CPU scheduling. With Table 4.2, Processes 1, 2, 3, 4, 5, 7, 8, 19, 24, 25, 26 totalling a 

throughput of 11 is loaded for memory allocation since their memory utilisation requirement 

is 8mb less than the 512mb memory capacity of the computer system. This is illustrated in 

figure 4.5.   
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Table 4.7 compares the optimal data from Table 4.1 of Load data into memory by number of 

accesses Strategy and the Dynamic Programming approach.  

Load data into memory by number of accesses  

 (Strategy 2)  

Dynamic Programming Approach  

Processes No  
Number of times data is 

accessed  Processes No  
Number of times data 

is accessed  

5  9  5  9  

8  9  7  7  

11  9  9  6  

12  10  11  9  

13  9  12  10  

    14  8  

    15  6  

Table 4.7:Comparism of optimal data of Table 4.1  

Source: Author Survey  

Table 4.8 compares the optimal data from Table 4.2 of Load data into memory by number of 

accesses Strategy and the Dynamic Programming approach.  

Load data into memory by number of accesses  

 (Strategy 2)  

Dynamic Programming Approach  

Processes No  
Number of times data is 

accessed  Processes No  
Number of times data 

is accessed  

4  9  1  6  

11  8  2  5  

18  8  3  7  

    4  9  

    5  5  

  

  

7  4  

8  7  

19  6  

24  3  

25  7  

26  6  

Table 4.8: Comparism of optimal data of Table 4.2  

Source: Author Survey  

Table 4.9 illustrate the analysis of Memory utilisation of Table 4.1 for strategy two  
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Specification  (Strategy 2)  Dynamic Programming Approach  

System 

throughput  

5  7  

Memory 

acquired  

31  31  

Used memory  
1  1  

Table 4.9: Memory utilisation of Table 4.1  

Source: Author Survey  

  

 

Figure 4.8: Memory utilisation of Table 4.9  

Specification  (Strategy 2)  Dynamic Programming Approach  

System 

throughput  

3  11  

Memory 
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406  504  

Used memory  
106  8  

Table 4.10: Memory utilisation of Table 4.2  

Source: Author Survey  
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Figure 4.9: Memory utilisation of Table 4.10  

4.4 Data findings  

Comparing the Dynamic programming approach to other existing strategies employed by 

computer programmers and system developers for optimising memory as stated in this 

research work P. 54, the Dynamic programming approach tends to out-perform most of them.  

The Dynamic programming approach tends to pick data/process that can enhance efficient 

utilisation of memory. It also picks as many processes as possible provided their data sizes do 

not exceed the system capacity. from Table 4.5 even though loading data into memory by 

size strategy (Strategy one) allowed system throughput of 6, it left an unused memory space 

of 4mb compared to the Dynamic approach of allowing 7 process, and an efficient memory 

utilisation of 31mb, illustrating that there is optimal utilisation of memory. Same can be made 

of table 4.6 with strategy 1 picking more data/process than the Dynamic approach, it left 

more unutilized space than the Dynamic approach which may lead to memory leakage. The 

strategy of loading data into memory by size strategy tends to favour only process/data with 

smaller data size but data with larger data size takes a long time to be given space thereby 

increasing the allocation time of such data irrespective of the higher system priority or access 

frequency that a data/process may have.  
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The second strategy although can be used to Optimize memory, it also failed to perform 

better compared to the proposed approach. From table 4.9, although the memory requirement 

of selected processes of Table 4.1 for Load data into memory by number of accesses strategy 

(strategy 2) equals the Dynamic programming approach, the system throughput of the 

heuristic strategy two falls short of 2 more processes compared to the Dynamic programming 

approach which allow 7 processes to load at time.  In table 4.10 the Dynamic programming 

approach achieves 8 more processes than heuristic strategy two. With only 3 system 

throughput, strategy two require 406mb memory spaces to allow the most frequently used 

process to run leaving behind 106mb memory unutilized. The Dynamic programming 

approach, with 11 system throughput, made an effective utilisation of memory. It required 

504mb memory leaving 8mb space free. At this point it can be deduced that The Load data 

into memory by number of accesses strategy may some times not make use of efficient use of 

memory and may lead to memory loses and leakages  

Additionally, the Load data into memory by number of accesses strategy take a longer time 

for a fresh new data to be loaded into memory space since it favours data/process with a 

higher number/time accessed otherwise such process/data is held in queue. Therefore newly 

created process which probably may need little space to load will have to wait a long while to 

execute.   

  

CHAPTER FIVE  

SUMMARY, CONCLUSION AND RECOMMENDATIONS  

5.0 Introduction  

This chapter presents summary of the findings from the study, and recommendations for 

software and operating system developers and builders. It again recommends further study 

possibility areas for future researchers. The chapter provides the concluding statements of the 

research based on the findings.  
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5.1 Summary  

The main purpose of the research is to optimize memory of Processes to reduce system crushes, 

system running low memory, system underperformance, system overheat and difficulty in 

accessing data. The research model the selection procedure of data/Process from process queue 

and loading them into memory for execution as a 0/1 knapsack problem. Known for its 

combinatorial optimisation problem, the 0–1 knapsack problem is NP-hard. Therefore majority 

of algorithms for solving Knapsack problem typically, use implicit enumeration approaches or 

a greedy approach. The method adopted to solve this problem is the Dynamic programming 

approach.  

The study considered sampled values of a Process that holds its memory usage and Number of 

times data is accessed information and uses them to solve the problem. Input values which are 

negative or alphabet/symbols were not considered.   

The study was compared to other existing heuristic strategies of optimising memory - Load data 

into memory by size (Strategy 1) and Load data into memory by number of accesses  

(Strategy 2).  It was found that the Dynamic approach out-performed these strategies. The 

Dynamic programming approach provides better results, makes efficient use of memory and 

allowed optimal number of processes to run at a time.  

The use of dynamic programming approach helps to prevent frequent loss of data and prevent 

uncontrolled, uncounted loss of memory by other strategies.  

The proposed system was implemented using java.  

5.2 Conclusion  

In this research thesis, we propose a partial enumeration technique based on an exact 

enumeration algorithm like the dynamic programming for effective utilisation and optimization 

of memory. The problem identified is one that has a single linear constraint, a linear objective 

function which sums the values of data/process in memory, and the added restriction that each 
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data/process should be in memory or not. The Dynamic programming approach proved to 

quickly find an optimal solution or a near optimal solution in some situations where exact 

solution is not possible as opposed to a heuristic that may or may not find a good solution.  

From the thesis, it is shown that the Dynamic programming algorithm is more efficient and 

yield better result than other existing heuristic algorithm. Dynamic Programming algorithm is 

easy to implement since no sorting is necessary, saving the corresponding sorting time. 

Additionally, the time complexity taken to solve the Dynamic programming is 0(n*W) 

compared to the 0/1 knapsack algorithm running time of O(2^n). Taken that n is the number of 

items and W is the Capacity limit.  

5.3 Recommendations  

Most of out daily activities can be modelled as a knapsack problem which needs a careful 

approach in undraping at the optimal solution. Dynamic programming is an easy but useful 

technique of solving this kind of problems.  

The Dynamic programming algorithm outperform heuristics based on local search techniques 

and local search algorithm since they fail to fully exploit the structural properties of knapsack 

problems and find better solutions than those even obtained by a greedy algorithm. It is 

envisaged that authors, software creators and system programmers will employ the Dynamic 

programming algorithm when they arrive at such problems.  

The software which is easy to use is not only systematic, but also swift. It can produce and 

displays results within 30 seconds. It is therefore envisage that higher results within the 

shortest possible time may be achieved when adopted by Operating system developers, 

System creators or Software engineers in their design creation to model real life computer 

problems to achieve optimum results.   
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5.4 Further Studies  

Whiles it is acknowledged that the focused is on 0-1 knapsack algorithm, we suggest further 

that in future work, we will investigate evolutionary heuristics (Genetic Algorithms and ANT 

method) and hybrid heuristics for finding suitable solution to optimising memory in computer 

system.  
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javax.swing.JFileChooser; import 

javax.swing.JOptionPane;  

  

public class calc extends javax.swing.JInternalFrame {     

Vector<Integer> weight = new Vector<Integer>();  

    Vector<Integer> value = new Vector<Integer>();  

    File f;     public calc() 

{         

initComponents();  

        Dimension d = Toolkit.getDefaultToolkit().getScreenSize();         setBounds(0, 0, 

d.width, d.height);         jTable2.setModel(new DefaultTableModel(new 

String[]{"Memory", "Priority"}, 0));         

jTable2.getDefaultEditor(String.class).addCellEditorListener(                 new 

CellEditorListener() {                     public void editingCanceled(ChangeEvent e) {  

                        System.out.println("editingCanceled");  

                    }  

                    public void editingStopped(ChangeEvent e) {                         

if (jTable2.getSelectedColumn() == 1) {  

                            String a = String.valueOf(jTable2.getValueAt(jTable2.getSelectedRow(), 

jTable2.getSelectedColumn()));  

                            int val = Integer.parseInt(a);  

                            if (val > 10) {  

                                JOptionPane.showMessageDialog(null, "Please value should not be more than  

10");                                 

jButton5.setEnabled(false);  

                            }  

                        }  

                    }  

                });  
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    }  

  

    public void solve(int[] wt, int[] val, int W, int N) {         

int NEG = Integer.MIN_VALUE;         int[][] m = 

new int[N + 1][W + 1];         int[][] sol = new int[N + 

1][W + 1];  

        String intermediate = "";         

String loop_cycles = "";         int 

optimal_memory = 0;  

        int cycles = 0;         for (int i = 1; i <= 

N; i++) {             for (int j = 0; j <= W; j++) 

{                 int m1 = m[i - 1][j];                 

int m2 = NEG;                 if (j >= wt[i]) {                     

m2 = m[i - 1][j - wt[i]] + val[i];  

                }  

                m[i][j] = Math.max(m1, m2);                 

sol[i][j] = m2 > m1 ? 1 : 0;                 

intermediate += ("V[" + i + ", " + j + "] = Max 

(" + m1 + ", " + m2 + ") = " + m[i][j]) + " ... (" + 

sol[i][j] + ")\n";                 cycles++;  

            }  

        }  

        intermediate += "loop cycles: " + cycles + "\n";         jLabel6.setText("Optimal Data 

Accessed Total Value: " + String.valueOf(m[N][W]));         String selected_string = "";         

int[] selected = new int[N + 1];         for (int n = N, w = W; n > 0; n--) {             if (sol[n][w] 

!= 0) {                 selected[n] = 1;                 w = w - wt[n];  

            } else {                 

selected[n] = 0;  
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            }  

            selected_string += (selected[n]);  

        }  

        String items = "";         int 

total_nums = 0;         for (int i = 1; i < 

N + 1; i++) {             if (selected[i] == 

1) {                 items += (i + "\n");                 

optimal_memory += (wt[i]);  

            }  

        }  

        jLabel8.setText("Optimal Memory:" + optimal_memory);         

jTextArea1.setText(items);  

        String a[][] = new String[wt.length - 1][3];         

int memory = 0;         for (int i = 0; i < N; i++) {             

a[i][0] = String.valueOf(i + 1);             a[i][1] = 

String.valueOf(wt[i + 1]);             memory += 

Integer.parseInt(a[i][1]);             a[i][2] = 

String.valueOf(val[i + 1]);  

        }  

        jLabel2.setText("Arbitrary Memory Usage: " + memory);         

intermediate += "Solution String: " + selected_string + "\n";         

intermediate += "Arbitrary Memory Usage: " + memory;         

jTextArea2.setText(intermediate);  

        String cols[] = {"#", "Memory", "Data Accessed Times"};         

jTable1.setModel(new DefaultTableModel(a, cols));  

        // System.out.println();  

    }  
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    public String[][] default_values(int row, int col) {         

String a[][] = new String[row][col];         for (int i = 

0; i < a.length; i++) {             for (int j = 0; j < 

a[i].length; j++) {                 a[i][j] = "0";  

            }  

        }  

        return a;  

    }  

    

  

package Knapsack; import 

java.util.Scanner; public 

class knapsack  

{  

    public void solve(int[] wt, int[] val, int W, int N)  

    {  

        int NEG = Integer.MIN_VALUE;         

int[][] m = new int[N + 1][W + 1];         

int[][] sol = new int[N + 1][W + 1];            

for (int i = 1; i <= N; i++)  

        {  

            for (int j = 0; j <= W; j++)  

            {  

                int m1 = m[i - 1][j];                 int 

m2 = NEG;                  if (j >= wt[i])                     

m2 = m[i - 1][j - wt[i]] + val[i];                 

m[i][j] = Math.max(m1, m2);                 

sol[i][j] = m2 > m1 ? 1 : 0;  
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            }  

        }          

        int[] selected = new int[N + 1];         

for (int n = N, w = W; n > 0; n--)  

        {  

            if (sol[n][w] != 0)  

            {  

                selected[n] = 1;  

                w = w - wt[n];  

            }             else                 

selected[n] = 0;  

        }  

        System.out.println("\nItems selected : ");         

for (int i = 1; i < N + 1; i++)             if 

(selected[i] == 1)  

                System.out.print(i +" ");  

        System.out.println();  

    }  

    public static void main (String[] args)   

    {  

        Scanner scan = new Scanner(System.in);         

System.out.println("Knapsack Algorithm Test\n");         knapsack 

ks = new knapsack();  

         System.out.println("Enter number of elements ");         

int n = scan.nextInt();          int[] wt = new int[n + 1];         

int[] val = new int[n + 1];  

         System.out.println("\nEnter weight for "+ n +" elements");  
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        for (int i = 1; i <= n; i++)             

wt[i] = scan.nextInt();  

        System.out.println("\nEnter value for "+ n +" elements");  

        for (int i = 1; i <= n; i++)             

val[i] = scan.nextInt();  

         System.out.println("\nEnter Weight of Memory ");  

int W = scan.nextInt();          

ks.solve(wt, val, W, n);  

    }  

}  

package Knapsack;  

    public main() {         

initComponents();  

   }  

  

    @SuppressWarnings("unchecked")  

    // <editor-fold defaultstate="collapsed" desc="Generated Code">//GEN-BEGIN:initComponents     

private void initComponents() {         jDesktopPane1 = new javax.swing.JDesktopPane();         

jMenuBar1 = new javax.swing.JMenuBar();         jMenu1 = new javax.swing.JMenu();         

jMenuItem1 = new javax.swing.JMenuItem();         

setDefaultCloseOperation(javax.swing.WindowConstants.EXIT_ON_CLOSE);         setTitle("Single 

Binary knapsack Optimizer");  

        javax.swing.GroupLayout jDesktopPane1Layout = new 

javax.swing.GroupLayout(jDesktopPane1);         

jDesktopPane1.setLayout(jDesktopPane1Layout);         

jDesktopPane1Layout.setHorizontalGroup(             

jDesktopPane1Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)             

.addGap(0, 2175, Short.MAX_VALUE)  
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        );  

        jDesktopPane1Layout.setVerticalGroup(             

jDesktopPane1Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)  

            .addGap(0, 756, Short.MAX_VALUE)  

);  

        jMenu1.setText("File");         jMenuItem1.setText("Process Master");         

jMenuItem1.addActionListener(new java.awt.event.ActionListener() {             

public void actionPerformed(java.awt.event.ActionEvent evt) {                 

jMenuItem1ActionPerformed(evt);  

            }  

        });  

        jMenu1.add(jMenuItem1);         jMenuBar1.add(jMenu1);         

setJMenuBar(jMenuBar1);         javax.swing.GroupLayout layout = new 

javax.swing.GroupLayout(getContentPane());         getContentPane().setLayout(layout);         

layout.setHorizontalGroup(             

layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)  

            .addComponent(jDesktopPane1)  

        );  

        layout.setVerticalGroup(             

layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)  

            .addGroup(layout.createSequentialGroup()  

                .addComponent(jDesktopPane1, javax.swing.GroupLayout.PREFERRED_SIZE, 

javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED_SIZE)                 

.addGap(0, 11, Short.MAX_VALUE))  

        );         

pack();  

    }// </editor-fold>//GEN-END:initComponents  

    private void jMenuItem1ActionPerformed(java.awt.event.ActionEvent evt) {//GEN- 

FIRST:event_jMenuItem1ActionPerformed  
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calc c = new calc();  

        c.setVisible(true);  

        c.setBounds(0, 0, jDesktopPane1.getWidth(), jDesktopPane1.getHeight());         

c.pack();  

        jDesktopPane1.add(c);        // TODO add your handling code here:  

    }//GEN-LAST:event_jMenuItem1ActionPerformed  

    public static void main(String args[]) {                 /* 

Create and display the form */         

java.awt.EventQueue.invokeLater(new Runnable() {  

            public void run() {                 

new main().setVisible(true);  

            }  

        });  

        }  


