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ABSTRACT 

In this thesis, a three state Markov chain model is used to describe the malaria 

transmission dynamics, using Ghana data from the Ghana Health Service and World 

Health Organization. The states of the model are defined as susceptible, Infected and 

dead and the time step for a transition to occur is defined as 8 days. The model is 

based on the assumptions that individuals are transferred at constant rate between 

states, and that only one transition is possible between two consecutive surveys. The 

model is used to determine the steady state probability distributions, the life 

expectancy of an individual and finally the results are interpreted in terms of malaria 

control issues. The expected time to a first infection is found to be 11 days and the 

total duration of the disease (non severe) is found to be 17 days. The life expectancy 

from the onset of the survey is found to be 55 years for both individuals who are 

initially infected and those who are initially susceptible.  
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CHAPTER 1 

INTRODUCTION 

1.0 INTRODUCTION 

The chapter describes the disease under study and the burden of the disease worldwide and 

nationally. It further discusses the dynamics of the disease, the problem hoped to be resolved, 

the objectives of the theses, the methodology, reason for the research and scope of the theses. 

 

1.1 BACKGROUND OF STUDY 

Malaria in humans is the state of infection with the protozoan parasites of the genus 

Plasmodium. There are over 120 species of plasmodium but only four of such are responsible 

for malaria. These are Plasmodium falciparum, P. vivax, P. malariae and P. ovale.  

Plasmodium falciparum causes the most severe form of the disease, and is responsible for 

half of the clinical cases and 90% of the deaths from malaria (Nicolas, 2008). Recently a fifth 

species, P. knowlesi has been reported to be responsible for malaria in countries like Thailand 

--and Philippines. The parasite is indirectly transmitted via a vector, which is a mosquito, 

hence Malaria is a vector borne disease. The main vector is an infected female Anopheles 

mosquito. 

 

1.1.1 Burden of Malaria 

Malaria is one of the leading causes of death in the developing world today. Every year, 

malaria causes an estimated 1.3–3 million deaths and around half a billion clinical episodes 

(Breman et al., 2001). The majority of deaths occur in children under the age of 5 years. 

There are no accurate statistics available, as most cases occur in rural areas, where a large 

proportion of the population does not have access to hospitals or health care in general. 
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Malaria today occurs mostly in tropical and subtropical countries, particularly in sub-Saharan 

Africa and Southeast Asia (Figure A3.1, in appendix 3). In developing countries malaria may 

account for as much as 40% of public health expenditure, 30-50% of hospital admissions, and 

up to 50% of outpatient visits to health facilities (WHO, 2006). Critically, malaria is not just 

caused by poverty; the burden of malaria disease is also an important factor contributing to 

that poverty. Economic growth in countries with high malaria transmission has historically 

been lower than in countries without malaria. Some economists believe that malaria is 

responsible for a growth penalty of up to 1.3% per year in some African countries (Gallup 

and Sachs, 2001). Not only does malaria result in lost life, and lost productivity due to illness 

and premature death, malaria also hampers children’s schooling and social development 

through both absenteeism and permanent neurologic damage (Holding and Snow, 2001). 

Although interventions have been made to mitigate the plague in Ghana, the situation is 

worrying and is a major cause of deaths. About 3.5 million people contract malaria every 

year. Approximately 20,000 children die from Malaria every year (25 per cent of the deaths 

of children under the age of five). Even if a child survives, the consequences from severe 

malaria such as convulsions or brain dysfunction can hamper long-term development and 

schooling (United Nations Children’s Fund, 2007). Approximately 10% of children in Ghana 

will die before their 5th birthday, a quarter of those mortalities attributable to malaria. Every 

year, an average of 15,000 children below the age of five are recorded as dying from the 

disease, but these fatalities are not limited to children alone. 10% of pregnant women in 

Ghana also die as a result of this disease, contributing to the total of 13.2% of all deaths 

nationwide caused by malaria. These statistics compounded with the challenge of chronic 

illness such as HIV creates public health challenges that are difficult to handle (Appiagyei et 

al., 2011). 
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The annual economic burden of malaria is estimated at 1-2 per cent of the Gross Domestic 

Product in Ghana. Outpatient attendance over the last 19 years illustrates the increasing 

burden of malaria in Ghana. Communicable diseases accounted for about two third of 

outpatient visits, but their relative share has changed over time. While there is an overall 

consistent decrease of other infectious and parasitic diseases (from 31.8% in 1985 to 19.5% 

in 2003), there has been an increase in malaria cases (from 37.1% in 1985 to 44.7% in 2004) 

(Adams et al., 2004). 

 

1.1.2 Disease Dynamics 

Life Cycle of the parasite in Human Malaria infection begins when female anopheles 

mosquito bite a human and inject infectious cells known as sporozoites into the person’s 

bloodstream. The sporozoites enter and multiply in the liver to form merozoites. The 

merozoites leave the liver to invade red blood cells usually after the fifth day. Inside the red 

blood cells, the merozoites multiply rapidly until the blood cells burst. When these cells burst 

the released merozoites infect other red blood cells. Some merozoites divide to form 

gametocytes, immature male and female gametes (cells involved in sexual reproduction). The 

gametes are involved in transmission of the disease. Symptoms generally appear about the 

time the red blood cells burst. The bursting cells release waste and toxins along with the 

merozoites. Fever develops as the immune system responds to the toxins and waste in the 

blood. Figure 1.1 shows the three main phases of the life cycle of malaria.  
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Figure 1.1:  The three main phases of malaria cycle. 

source: http://www.nature.com/nature/journal/v433/n7022/images/433113a-f1.2.jpg 

  Malaria is an acute febrile illness. In a non-immune individual, symptoms appear seven days 

or more (usually 10–15 days) after the infective mosquito bite (WHO, 2012). The first 

symptoms – fever, headache, chills and vomiting – may be mild and difficult to recognize as 

malaria. The four malaria parasites all produce fevers and anemia, and, if untreated, can open 

up a Pandora’s box of complications. Some fevers erupt and then disappear; others do not. P. 

falciparum infection is incapable of such relapses (Webb, 2008). For both P. vivax and P. 

ovale, clinical relapses may occur weeks to months after the first infection, even if the patient 

has left the malarious area. These new episodes arise from dormant liver forms known as 

hypnozoites (absent in P. falciparum and P. malariae); special treatment – targeted at these 

liver stages – is required for a complete cure. If a sufferer is cleared of a falciparum infection, 

she or he is free of the disease unless and until reinfected by another parasite-laden mosquito. 

If not treated within 24 hours, P. falciparum malaria can progress to severe illness often 
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leading to death. Children with severe malaria frequently develop one or more of the 

following symptoms: severe anaemia, respiratory distress in relation to metabolic acidosis, or 

cerebral malaria. In adults, multi-organ involvement is also frequent. In malaria endemic 

areas, persons may develop partial immunity, allowing asymptomatic infections to occur 

(WHO, 2012). Falciparum can also produce cerebral malaria, a condition that may lead to 

dangerous sequel such as epilepsy, blindness, cognitive impairments, and behavioral 

disturbances, or it may lead to coma and death (Webb, 2000). Severe malaria is almost 

exclusively caused by P. falciparum infection, and usually arises 6–14 days after infection. 

Consequences of severe malaria include coma and death if untreated—young children and 

pregnant women are especially vulnerable. Splenomegaly (enlarged spleen), severe headache, 

cerebral ischemia, hepatomegaly (enlarged liver), hypoglycemia, and hemoglobinuria with 

renal failure may occur. Renal failure is a feature of blackwater fever, where hemoglobin 

from lysed red blood cells leaks into the urine. Severe malaria can progress extremely rapidly 

and cause death within hours or days (health2spread, 2012). In most severe cases of the 

disease, fatality rates can exceed 20%, even with intensive care and treatment (Kain et al., 

1998). 

Falciparum malaria can be treated to prevent complications. According to WHO guidelines 

2010 on the treatment of falciparium malaria, artemisinin-based combination therapies 

(ACTs) are the recommended first line antimalarial treatments for uncomplicated malaria 

caused by P. falciparum. The following ACTs are recommended by the WHO: artemether 

plus lumefantrine; artesunate plus amodiaquine; artesunate plus mefloquine; artesunate plus 

sulfadoxine-pyrimethamine and dihydroartemisinin plus piperaquine. The choice of ACT in a 

country or region will be based on the level of resistance to the constituents in the 

combination. Artemisinin and its derivatives should not be used as monotherapy in 

http://www.health2spread.com/wiki/Coma
http://en.wikipedia.org/wiki/Splenomegaly
http://en.wikipedia.org/wiki/Headache
http://en.wikipedia.org/wiki/Ischemia
http://en.wikipedia.org/wiki/Hepatomegaly
http://en.wikipedia.org/wiki/Hypoglycemia
http://en.wikipedia.org/wiki/Renal_failure
http://en.wikipedia.org/wiki/Blackwater_fever
http://en.wikipedia.org/wiki/Lysis
http://www.health2spread.com/
http://en.wikipedia.org/wiki/Fatality_rate
http://en.wikipedia.org/wiki/Artemisinin-based_combination_therapies
http://en.wikipedia.org/wiki/First_line_therapy
http://en.wikipedia.org/wiki/Antimalarial
http://en.wikipedia.org/wiki/Artemether
http://en.wikipedia.org/wiki/Lumefantrine
http://en.wikipedia.org/wiki/Artesunate
http://en.wikipedia.org/wiki/Amodiaquine
http://en.wikipedia.org/wiki/Mefloquine
http://en.wikipedia.org/w/index.php?title=Sulfadoxine-pyrimethamine&action=edit&redlink=1
http://en.wikipedia.org/wiki/Dihydroartemisinin
http://en.wikipedia.org/wiki/Piperaquine
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uncomplicated falciparum malaria. As second-line antimalarial treatment, when initial 

treatment doesnot work or stops working, it is recommended to use an alternative ACT 

known to be effective in the region, such as: Artesunate plus tetracycline or doxycycline or 

clindamycin; Quinine plus tetracycline or doxycycline or clindamycin. Any of these 

combinations are to be given for 7 days (WHO, 2010). 

 

Factors which contribute to the transmission of P. falciparum are numerous. Some of these 

factors include are temperature, immunity of population, seasonal changes, sanitation, 

altitude and so on. Falciparum is not transmitted at stable temperatures below 19o C. This is 

one condition which largely affects the distribution of the disease. With climate changes the 

distribution of the disease is expected to change across the globe.  

An individual may also be immune to the parasite, but a question to ask is how much of the 

parasite can a person receive to remain immune? Natural defence mechanisms (or innate 

factors) against malaria are most apparent in populations continually exposed to malaria 

parasites. For example, inherited conditions such as sickle cell anaemia and beta-

thalassaemia, which cause deformities in red blood cells and are common in people from 

malarious regions, make it more difficult for malaria parasites to infect red blood cells (Cross, 

2004). 

 Seasonal changes as well affect spread of the falciparum parasite since mosquitoes breed 

more during the rainy seasons than in the dry seasons. Much work have been done to aid 

explain the spread and prevention of malaria which is increasing in recent times, yet much 

have not been achieved predicting disease parameters due to the complexity of the disease 

transmission. 

http://en.wikipedia.org/wiki/Quinine
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 Understanding of the dynamics of diseases is very essential. Mathematical models have been 

useful in description of diseases but not sufficient.  Today we are faced with the need to 

predict the dynamics and transmission of indirectly transmitted diseases with a greater 

accuracy and over longer periods of time, and more often with limited empirical data   

(Ngwa, 1999). Quantifying and understanding disease dynamics will help in the prevention 

and control of emerging infectious diseases.This could be however challenging, since 

existing data on patients from hospitals are not accurate enough for such work. Also due to 

endemicity of the disease many people tend to self medicate and may not report to hospitals.  

In exploring the dynamics of diseases, it is desirable to quantify parameters such as force of 

infection, disease prevalence, and infection and recovery probabilities. These can be achieved 

by mathematical and statistical methods; however can be very involving. We can describe the 

process of an individual being infected with a disease as an experiment: with the outcomes: 

being infected, not infected, recovery or even death. By sampling of individuals in various 

disease states (e.g. uninfected and infected) at discrete time intervals it is possible to apply 

stochastic processes to such a data. Markov chain models, a discrete time stochastic process, 

is one method that is used to describe disease dynamics at the individual level, thence 

creating room for inferences regarding populations (Zipkin et. al., 2010). Parameters can be 

estimated at the individual level but can be extended to the population level. 
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1.2 PROBLEM STATEMENT 

Every year, malaria causes an estimated 1.3–3 million deaths and around half a billion 

clinical episodes. The majority of deaths occur in children under the age of 5 years. Malaria 

today occurs mostly in tropical and subtropical countries, particularly in sub-Saharan Africa 

and Southeast Asia. The annual economic burden of malaria is estimated at 1-2 per cent of 

the Gross Domestic Product in Ghana. Outpatient attendance over the last 19 years illustrates 

the increasing burden of malaria in Ghana (Adams et. al., 2004). More understanding based 

on mathematical models will help in the prevention and curbing of such devastating impacts. 

This study attempts to construct one such a model. 

 

 

1.3 OBJECTIVES 

 The main objective for this work is to develop an S-I-D Markov chain model of malaria 

transmission dynamics using Ghana data. The specific objectives of this study are to: 

1)  Determine the steady state probability distributions of the model.  

2)  Compute the life expectancy of an individual using the model and available data. 

3)  Interpret the results in terms of malaria control issues. 

 

 

1.4 METHODOLOGY 

Secondary data was obtained from the Ghana Health Service (GHS), World Health 

Organization (WHO), and the Central Intelligence Agency (CIA). The first two sources 

provided the incidence rate from 1997 to 2008 and admission and mortalities from 1997 to 
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2009 respectively. The third source, which was used to verify results, presents the national 

demographic data for 2008.  

The time step for a transition to occur was defined and also the states for the Markov model 

were partitioned so that it was only possible to enter one state after one time step. The model 

was based on the assumptions that individuals are transferred at constant rate between states, 

and only one transition is possible between two consecutive surveys. 

The probability of transiting into a new state is given as the frequency of moving from a 

previous state to the new state divided by the total frequency of moving from the previous 

state to any other state. Subsequently transition probabilities for the time step are computed 

and the transition matrix populated using the time step and available data. 

The long run behavior of the process was determined by computing the steady states of the 

first order Markov process. The Markov model was then extended to estimate the first 

transition probabilities distribution for an individual to become infected and to recover 

respectively and then the expected time of an individual to first infection and recovery. 

Finally the fundamental matrix was determined which also allows for the calculation of the 

life expectancy using person below 5 years as sampling unit. 

 

1.5 JUSTIFICATION 

Malaria is on the rise though intervention from government and non government agencies 

had been made. Outpatient attendance over the last 19 years illustrates the increasing burden 

of malaria in Ghana (Adams et. al., 2004). About 3.5 million people contract malaria every 

year and in every 30 seconds malaria kills a child – about 3,000 children every day. 

Approximately 20,000 children die from Malaria every year (25 per cent of the deaths of 
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children under the age of five) in Ghana. The annual economic burden of malaria is estimated 

1-2 per cent of the Gross Domestic Product in Ghana (United Nations Children’s Fund, 

2007). Although much work have made, further studies to quantify and understand disease 

dynamics will help in the prevention and control of emerging infectious diseases (such as 

HIV/AIDS and influenza) in Ghana, especially with the changing climatic conditions. It 

would also help in understanding the development and spread of drug resistant strains 

(especially with regard to malaria and tuberculosis) and hence aid policy making in Ghana 

(Bhadra et. al., 2009). Forecasting emerging epidemics can also be done by parameter 

estimation for infectious disease models. 

 

1.6 SCOPE AND LIMITATION 

The study is focused at explaining the dynamics of malaria using first step discrete Markov 

models. A three state Markov model in which the third model happens to be an absorbing 

state will be formulated for Ghana. The complexities of interaction between the vector and 

the host, the human body in response to P. falciparum and many other interactions makes 

explaining malaria dynamics a bit difficult. However, we choose a much simplified but 

efficient model to explain basic dynamics.The most important progeny of the methodology is 

to calculate life expectancies using discrete data. It is assumed that the defined states clearly 

and correctly characterize the process and that an individual sampled would be in one of the 

states at the defined time step.  
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1.7 THESIS ORGANIZATION 

The remaining sections of this thesis are organized as follows. Chapter 2 reviews works in 

different fields where Markov processes were applied and also other theoretical works 

relevant to this study have been touched on. Chapter 3 also describes the Markov Chain 

modelling, some general applications of the model, how the model can be applied to malaria 

transmission dynamics and finally how we compute for our parameters. Chapter 4 discusses 

the calculated results for our expected disease metrics, the average life expectancies, 

simulation and how these results can be incorporated in malaria control. Finally, Chapter 5 is 

a conclusion based on the results obtained and the recommendations needed to help in the 

control of malaria. 
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                                                   CHAPTER 2 

LITERATURE REVIEW 

 

2.1  INTRODUCTION 

In this chapter relevant literature and other theoretical works relevant to this study have been 

touched on.  A few works in different (non epidemiology) fields where Markov processes has 

been applied are first reviewed to explain the dynamics of processes, then the application of 

Markov process in explaining disease dynamics is discussed narrowing  down to the use of 

discrete first order Markov processes in explaining disease dynamics. 

 

2.2 APPLICATIONS OF MARKOV MODEL EXPERIMENTS TO DYNAMICS OF 

EVENTS IN VARIOUS FIELDS 

In a paper in the field of economics written by Ciecka et al. (2003), the researchers explored 

the rich implications of the Markov nature of the increment-decrement model. They wanted 

to predict the future of the concept of worklife expectancy. In 1982, the Bureau of Labour 

Statistics (BLS) introduced the increment-decrement model of labour force activity in 

Bulletin 2135. A subsequent BLS publication, Bulletin 2254, in 1986 also used the 

increment-decrement methodology. Worklife expectancies were the most important progeny 

of their methodology. They showed that the increment-decrement model is a valuable 

construct that enables one to describe many aspects of labour market activity that should be 

of interest to economists, sociologists, and demographers.  
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A three-state Markov model was developed for speech on the telephone lines. The model 

considered the alternate occurrence of the telephone calls and the intercall gaps on the 

telephone lines. During a phone call there occur several talkspurts (speech without break) and 

pauses (silence without break) in the user's speech. The three types of events, intercall gaps 

(large gaps) talkspurts and pauses occurring on the telephone lines are assumed to have 

negative exponential density functions with different transition rate parameters. The steady 

state probability distribution, average and variance of the number of busy channels and the 

system utilization are evaluated as a function of call loss fraction (P0f). The Synchronous 

Time Division Multiplexing (STDM) system with number of channels in the group equal to 6 

and 24 is considered. The model is also applied to Time Assignment Speech Interpolation 

(TASI) system and the relationships among the number of user terminals, speech Freeze out 

Fraction (FOF) and system utilization are obtained for various values of P0f. The STDM and 

TASI systems applied to the group of 6 channels are simulated on the EC-1030 computer to 

check the validity of the analytical results.  The results of this study are portrayed on graphs 

and may be used as guide lines in the design of TASI systems (Kekre et al., 1977). 

 

Hidden Markov models have recently been used to model single ion channel currents as 

recorded with the patch clamp technique from cell membranes. The estimation of hidden 

Markov models parameters using the forward-backward and Baum-Welch algorithms can be 

performed at signal to noise ratios that are too low for conventional single channel kinetic 

analysis; however, the application of these algorithms relies on the assumptions that the 

background noise be white and that the underlying state transitions occur at discrete times. To 

address these issues, they presented an “H-noise” algorithm that accounts for correlated 

background noise and the randomness of sampling relative to transitions and discuss three 
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issues that arise in the practical application of the algorithm in analyzing single channel data. 

First, they described a digital inverse filter that removes the effects of the analog antialiazing 

filter and yields a sharp frequency roll-off. This enhances the performance while reducing the 

computational intensity of the algorithm. Second, the data may be contaminated with baseline 

drifts or deterministic interferences such as 60-Hz pickup. We propose an extension of 

previous results to consider baseline drift. Finally, we describe the extension of the algorithm 

to multiple data sets (Venkataramanan et al., 2002). 

 

In a research by Kekre (1978), a queueing model with finite waiting room, Poisson arrivals, 

multiple synchronous outputs and the number of active servers varying through the birth and 

death process is studied. Variation of active servers is obtained by providing a switch in each 

server. The switches are controlled through the birth and death process having finite 

population. The relationships between overflow probabilities, buffer size and expected 

queueing delay due to buffering are obtained. An efficient algorithm for computation of 

steady state probabilities is developed. Two digital voice-data systems; Data multiplexing in 

speech with Synchronous Time Division Multiplexing (STDM) and Time Assignment 

Speech Interpolation (TASI) systems are considered for the application of the queueing 

model studied. The results of this study are portrayed on graphs and may be used as 

guidelines for designing a buffer in digital systems. The two voice-data systems using the 

developed model are simulated on the EC-1030 computer to check the validity of the 

analytical results. Although this problem arose in the study of data interpolation in STDM 

and TASI systems, the queueing model developed is quite general and may be useful for 

other industrial applications. 
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A stochastic approach, namely, a Markov chain, was been adopted to simulate the dynamics 

of complex reactions in a flow chemical reactor without either solving directly differential 

equations governing the performance of the reactor or obtaining a closed form solution to 

such equations. All calculations were carried out iteratively with the aid of a computer. The 

results were in good agreement with the known results obtained from the deterministic 

approach. The present technique can be applied to a variety of flow reactors with complex 

chemical reactions, which cannot be handled easily by deterministic approaches (Too, 1983). 

 

Fan et al. (1985) employed a Markov chain approach to generate the residence time 

distribution (RTD) curves of various flow models. This technique is shown to be efficient and 

useful in modeling complex flow systems which consist of ideal mixing cells, plug flow 

zones, split streams, recycle streams and any combination of these for which the 

mathematical description is extremely difficult if not impossible. The expressions for the 

mean and variance of the residence time distributions for a flow system are elucidated from 

the stochastic viewpoint. Two examples were simulated numerically; the agreement between 

the RTD's derived from the exact statistical treatment and those based on the present Markov 

chain approach appears satisfactory. The technique proposed in this study enables us to 

generate the RTD curve for any flow system and to match it to the experimental data. 

Furthermore, the applicability of the Markov chain approach for generating the cycle time 

distribution curve for a circulating system is discussed. 
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 A continuous time Markov chain (Markov process), was employed to analyze and model, in 

a unified fashion, both the kinetics of unimolecular reactions and mixing accompanied by 

flow in a continuous flow reactor under an unsteady state operation; the results reduce to 

those under the corresponding steady state operation in the limit as 

 

 

 

.The approach can be applied to both the time homogeneous and heterogeneous processes. The transitional distributions of the number of molecules of each type inside the reactor as well as at the exit are formulated. The treatment leads to the general expressions for the transient internal and exit age distributions of molecules in the flow reactor. The life time distribution of molecules under steady state is also derived. The statistical basis of the residence time distribution theory for flow reactors is clarified. The approach is illustrated with two examples (Nassar et al. 1981)  2.3 APPLICATIONS OF MARKOV MODEL EXPERIMENTS TO DISEASES DYNAMICS Killeen (2010) in the Markov model of smoking cessation described survival functions from smoking cessation interventions by a three-state Markov model. It was found that on quitting, smokers’ transit through a state of withdrawal characterized by a high rate of relapse, and then into a more secured state of long-term abstinence. The Markov model embodies the dynamic nature of the cessation/relapse process; it permits stronger inference to long-term abstinence rates, provides measures of treatment efficacy, describes the outcomes of new quit attempts, and suggests mechanisms for the survival process.   
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In another research by Hiligsmann et al. (2009), the researchers developed and validated an 

original Markov micro simulation model to accurately assess the cost-effectiveness of 

prevention and treatment of osteoporosis. Although Markov models are increasingly used in 

economic evaluations of treatments for osteoporosis, most of the existing evaluations are 

cohort-based Markov models missing comprehensive memory management and versatility. 

They developed a Markov micro simulation model with a lifetime horizon and a direct 

health-care cost perspective. The patient history was recorded and was used in calculations of 

transition probabilities, utilities, and costs. They carried out an example calculation for 

alendronate therapy, to test the internal consistency of the model. Then, external consistency 

was investigated by comparing absolute lifetime risk of fracture estimates with epidemiologic 

data. 

The results revealed that, for women at age 70 years, with a twofold increase in the fracture 

risk of the average population, the costs per quality-adjusted life-year gained for alendronate 

therapy versus no treatment were estimated at €9105 and €15,325, respectively, under full 

and realistic adherence assumptions. Also all the sensitivity analyses in terms of model 

parameters and modelling assumptions were coherent with expected conclusions and absolute 

lifetime risk of fracture estimates were within the range of previous estimates, which 

confirmed both internal and external consistency of the model. They concluded that Micro 

simulation models present some major advantages over cohort-based models, increasing the 

reliability of the results and being largely compatible with the existing state of the art, 

evidence-based literature. The developed model appeared to be a valid model for use in 

economic evaluations in osteoporosis. 
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Markov chain Monte Carlo methods are frequently used in the analyses of genetic data on 

pedigrees for the estimation of probabilities and likelihoods which cannot be calculated by 

existing exact methods. In the case of discrete data, the underlying Markov chain may be 

reducible and care must be taken to ensure that reliable estimates are obtained. Potential 

reducibility thus has implications for the analysis of the mixed inheritance model, for 

example, where genetic variation is assumed to be due to one single locus of large effect and 

many loci each with a small effect. Similarly, reducibility arises in the detection of 

quantitative trait loci from incomplete discrete marker data. The paper aimed to describe the 

estimation problem in terms of simple discrete genetic models and the single-site Gibbs 

sampler. Reducibility of the Gibbs sampler was discussed and some current methods for 

circumventing the problem outlined (Sheehan, 2000). 

 

In the paper by Patten et al. (2005), Markov models were extended to describe the 

longitudinal course of the disorder. They described that most epidemiological study of major 

depression report period prevalence estimates. These are of limited utility in characterizing 

the longitudinal epidemiology of this condition. They stated also that Markov models provide 

a methodological framework for increasing the utility of epidemiological data. Markov 

models relating incidence and recovery to major depression prevalence have been described 

in a series of prior papers. 

 

In a paper by Sesso et al. (2002), the researcher stated that the use of Markov chain models is 

a technique commonly used to simulate long-term progressive diseases. These models 

represent recurring events associated with an ongoing risk, assuming that patients reside in 

one of a finite number of health states. Subjects may transition from one health state to 

http://hyper.ahajournals.org/search?author1=Howard+D.+Sesso&sortspec=date&submit=Submit
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another during a defined interval of time called a cycle. The life expectancy benefits of 

antihypertensive treatment, based on both systolic and diastolic blood pressure reduction, was 

estimated with a cardiovascular disease event Markov model with prospective data from 57 

573 men and women. Seven patient states were defined, including (1) no cardiovascular 

disease, (2) stroke, (3) myocardial infarction, (4) revascularization, (5) history of 

cardiovascular disease, (6) noncardiovascular disease death, and (7) cardiovascular death. 

Risk functions were developed from gender-specific multivariate Cox proportional hazards 

models for primary events and age-, smoking-, and diabetes-adjusted models for secondary 

events. At baseline we assumed (1) hypothetical pretreatment blood pressures of 160/95 or 

150/90 mm Hg; (2) strategies A and B lower blood pressure by 20/13 and 13/8 mm Hg, 

respectively; and (3) baseline age of 35 years. For subjects initially at 160/95 mm Hg, those 

with antihypertensive treatment, antihypertensive treatment and diabetes, or antihypertensive 

treatment, diabetes, and currently smoking had corresponding gains in life expectancy of 

2.43, 2.80, and 2.43 years for Strategy A. An initial blood pressure of 150/90 mm Hg resulted 

in similar gains. Compared with Strategy B, with blood pressure reductions of 13/8 mm Hg, 

Strategy A provided additional gains in life expectancy of 0.84, 0.99, and 0.87 years for those 

with antihypertensive treatment, antihypertensive treatment and diabetes, or antihypertensive 

treatment, diabetes, and currently smoking. The initial blood pressure level did not affect the 

magnitude of life expectancy gains for equivalent blood pressure reductions. Greater gains in 

life expectancy among hypertensive and diabetic women suggest that blood pressure 

lowering may yield greater benefits in selected subgroups.  

 

Unique to survival analysis of veterinary clinical data is classification of observations from 

euthanized animals. The first study highlighted limitations of Kaplan-Meier product limit 
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analysis (KM) of veterinary clinical data. Three data sets with different outcome proportions 

(alive, lost-to-follow-up, dead due to disease, dead due to other, euthanized due to disease, 

euthanized due to other) were used. Different classifications of observations from euthanized 

animals caused inconsistent conclusions of significant differences between strata within data 

sets. At times, ranking of median survival time estimates for strata was reversed. The KM 

was found inappropriate to evaluate observations from euthanized animals. This finding, 

coupled with restriction of KM to two-state description of disease (alive to outcome), 

prompted exploration of an alternate analysis method. Markov models allow modeling of 

multiple health states and outcomes. A 5-state, time-homogeneous, Markov chain was used 

for a cohort of 64 dogs with generalized lymphoma. The model contained two transient 

(WELL, TOXIC) and three absorbing (DEAD, EUTHANASIA, LOST-TO-FOLLOWUP) 

states. The transition probability matrix (P) was used to iterate future transitions and survival 

probabilities. Matrix solution and Monte Carlo simulation were used to estimate survival 

time. Estimates appeared reliable. Markov modeling was extended for comparison of 

vaccine-associated sarcoma progression after treatment in a cohort of 294 cats. For a 5-state 

model, transition probabilities derived from exponential transformation of incidence rates 

were used to construct P for each treatment – NONE (no surgery), SX (surgery) and 

SX+RAD (surgery and radiation). Monte Carlo estimates of durations in transient states and 

expected survival showed SX+RAD prolonged expected survival significantly longer than 

SX than NONE. Commitment to repeated treatment with surgery and radiation did prolong 

expected survival of cats with vaccine-associated sarcoma. Assumptions of Markov modeling 

did not appear prohibitive for analysis of veterinary clinical data and further exploration 

(Hosgood, 2002). 
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The application of Markov models in recovery and restoration is a natural extension to their 

success in modeling ecological succession and disturbance. Due to the continual shifting of 

ecosystem function during the restoration, however, and the immigration and extinction of 

local species, the model must be reconsidered in terms of its ecological analogues. Modeling 

groups of species, classified by functional groups, is suggested. An extended Markov model, 

the hidden Markov model, is introduced as a method of linking the structure and function of 

the ecosystem in the modeling construct (Tucker et al., 2004). 

 

Commenges (1999) in his work presented the influence of covariates and different durations 

and time-dependent variables synthesized using explanatory processes, and also general 

additive model for transition intensities. He first discuss the main assumptions which can be 

made for  multi-state models: the time-homogeneity and semi-Markov assumptions, the 

problem of choice of the time scale, the assumption of homogeneity of the population and 

also assumptions about the way the observations are incomplete, leading to truncation and 

censoring. Different inference approaches, including penalized likelihood, are considered. 

Finally three examples of application in epidemiology are presented and some references to 

other works are given. 

Data from three national surveys conducted by the Canadian national statistical agency 

(Statistics Canada) were used in this analysis. These data were integrated using a Markov 

model. Incidence, recurrence and recovery were represented as weekly transition 

probabilities. Model parameters were calibrated to the survey estimates. The population was 

divided into three categories: low, moderate and high recurrence groups. The size of each 

category was approximated using lifetime data from a study using the WHO Mental Health 

http://www.springerlink.com/content/?Author=D.+Commenges
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Composite International Diagnostic Interview (WMH-CIDI). Consistent with previous work, 

transition probabilities reflecting recovery were high in the initial weeks of the episodes, and 

declined by a fixed proportion with each passing week. They concluded that Markov models 

provide a framework for integrating psychiatric epidemiological data. The study extended the 

Markov approach by distinguishing several recurrence categories.  

 

Many chronic diseases have a natural interpretation in terms of staged progression. Multistate 

models based on Markov processes are a well-established method of estimating rates of 

transition between stages of disease. However, diagnoses of disease stages are sometimes 

subject to error. The paper presented a general hidden Markov model for simultaneously 

estimating transition rates and probabilities of stage misclassification. Covariates could be 

fitted to both the transition rates and the misclassification probabilities. For example, in the 

study of abdominal aortic aneurysms by ultrasonography, the disease was staged by severity, 

according to successive ranges of aortic diameter. The model was illustrated on data from a 

trial of aortic aneurysm screening, in which the screening measurements were subject to 

error. General purpose software for model implementation was developed in the form of an R 

package (Jackson et al., 2003). 

 

Debanne et al. (2000) developed a computer-implemented, multivariate Markov chain model 

toproject tuberculosis (TB) incidence in the United States from 1980 to 2010 in disaggregated 

demographic groups. Uncertainty in model parameters and in the projections is represented 

by fuzzy numbers. Projections were made under the assumption that current TB control 

measures will remain unchanged for the projection period. The model predicted that the rate 

of decline in the number of cases among Hispanics will be slower than among white non-

Hispanics and black non-Hispanics—a prediction supported by the most recent data.   
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A mathematical model of three-dimensional transport of gas-phase contaminants in indoor 

environments based on a Markov chain, the Markov model, was extended to solid-phase 

contaminant transport in indoor environment. The performance of the model was affirmed by 

comparison with simplified transport models, and a previously published study of poly-

dispersed particulate transport in a quiescent environment. The experiment was conducted to 

measure the transport and fate of mono-dispersed fluoresce in-tagged particles with nominal 

aerodynamic diameters of 3 μm and 14 μm under turbulent and quiescent conditions in a 

room-scale chamber. Advection and turbulence were characterized using 3-axis anemometery 

and tracer gas studies. Parameterization of turbulence in the Markov model was explored: 

Turbulent diffusion coefficients and fluctuating velocities were associated with mixing time 

through simulation, but the simulated fluctuating velocities were not strongly correlated with 

measured fluctuating velocities. The Markov model did not replicate the experimental results 

with high fidelity, but this may be due in part to limitations in the anemometry, and the 

complexity of the aerosol release. The public health significance of the mathematical 

modeling was demonstrated in the context of Mycobacterium tuberculosis exposure and 

infection risk in commercial passenger aircraft. Infection risk to passengers, and the impact of 

exposure reduction strategies were quantitatively assessed using the Markov model in 

conjunction with Monte Carlo simulation. The expected infections ranged from 10 -6 to 10-1 

per 169 susceptible passengers, for an exponential (k = 1) dose-response function. Use of 

respiratory protection, surgical masks or filtering face piece respirators, by the infectious 

source and or the susceptible passengers reduced infection risk by a factor of 2-10 (Jones, 

2008) 

 

Surveillance data for communicable nosocomial pathogens usually consist of short time 

series of lownumbered counts of infected patients. These often show overdispersion and 
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autocorrelation. Inferences that depend on such analyses cannot be considered reliable when 

patient-to-patient transmission is important. Hence a new method was proposed for analyzing 

these data based on a mechanistic model of the epidemic process by developing a ‘structured’ 

hidden Markov model where the underlying Markov chain is generated by a simple 

transmission model. Both structured and standard (unstructured) hidden Markov models were 

applied to time series for three important pathogens. Results showed that both methods can 

offer marked improvements over currently used approaches when nosocomial spread is 

important. Also in comparison to the standard hidden Markov model, the new approach was 

more parsimonious, biologically plausible, and allowed key epidemiological parameters to be 

estimated (Cooper and Lipsitch, 2004). 

 

Markov simulation model to assess the impact of changing trends in coronary heart disease 

incidence on requirements for coronary artery revascularization procedures in Western 

Australia was done by Mannan et al. (2010). Different CHD incidence trend scenarios were 

developed to explore the effect of changing CHD incidence on requirements for coronary 

artery bypass graft (CABG) and percutaneous coronary interventions (PCI), together known 

as coronary artery revascularization procedures (CARPs) by applying a validated Markov 

simulation model to the population of Western Australia. Results showed that, the most 

dominant component of CHD incidence is the risk of CHD hospital admission for those with 

no history of CHD and if this risk levelled off and the trends in all other risks continued 

unchanged, then the projected numbers of CABGs and PCIs are only minimally changed. 

Further, the changes in the projected numbers remained small even when this risk was 

increased by 20 percent (although it is an unlikely scenario). However, when the other CHD 

incidence components that had also been declining, namely, the risk of CABG and that of 

CHD death for those with no history of CHD, were also projected to level off as these were 
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declining in 1998-2000 and the risk of PCI for those with no history of CHD (which was 

already increasing) was projected to further increase by 5 percent, it had a substantial effect 

on the projected numbers of CARPs. They concluded that there was need for dramatic 

changes to several CHD incidence components before it has a substantial impact on the 

projected requirements for CARPs. Continued monitoring of CHD incidence and also the mix 

of initial presentation of CHD incidence is required in order to understand changes to future 

CARP requirements. 

 

In a work by Lekone and Finkenst¨adt (2006), a stochastic discrete-time susceptible-exposed-

infectious-recovered (SEIR) model for infectious diseases was developed with the aim of 

estimating parameters from daily incidence and mortality time series for an outbreak of Ebola 

in the Democratic Republic of Congo in 1995. The incidence time series exhibit many low 

integers as well as zero counts requiring an intrinsically stochastic modeling approach. In 

order to capture the stochastic nature of the transitions between the compartmental 

populations in such a model they specified appropriate conditional binomial distributions. In 

addition, a relatively simple temporally varying transmission rate function was introduced 

which allowed for the effect of control interventions. They developed Markov chain Monte 

Carlo methods for inference that were used to explore the posterior distribution of the 

parameters. The algorithm was further extended to integrate numerically over state variables 

of the model, which are unobserved. This provided a realistic stochastic model that can be 

used by epidemiologists to study the dynamics of the disease and the effect of control 

interventions. 
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Markov chain models are powerful tools; applicable to the study of disease dynamics that 

allow straightforward calculations of easily interpretable metrics of interest including 

probabilities of infection or recovery, expected times to initial infection, duration of illness 

and life expectancies for susceptible and infected individuals (Zipkin et al., 2010). 

 They presented the basic principles and assumptions behind Markov chain modelling with an 

intuitive interpretation of parameter estimates and a step-by-step guide (including software 

code) for implementing this approach in the study of wildlife diseases. They also included an 

explanation of the estimation process necessary to implement Markov chain modelling (i.e. 

estimating the probability of state transitions between consecutive time steps) from typical 

survey data. They demonstrated the usefulness and ease of calculation of Markov chains 

through an example using a house finch Carpodacusmexicanus–Mycoplasma gallisepticum 

(MG) system. Their results showed how semi-weekly transition estimates of susceptible and 

infected individuals can be used to estimate a wide array of seasonal disease-associated 

metrics.  

 

A model, using stochastic processes, was developed by Verma et al., (1983) to estimate some 

epidemiological parameters of malaria in a homogeneous population from longitudinal data. 

Assessments of transition probabilities from one state of health to the other were made taking 

"lost to follow-up" as a competing risk. The model was based on the assumptions that 

individuals are transferred at constant rate between states, and only one transition is possible 

between two consecutive surveys. It showed a good fit to the observed data; the model was 

also simple to understand and could easily be used if computer facilities are not available. 

 

http://jech.bmj.com/search?author1=B+L+Verma&sortspec=date&submit=Submit
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In a paper by Gani et al. (1971), Markov chain methods were applied to chain binomial 

models in epidemics. In both Greenwood and Reed-Frost chain binomial models, it was 

shown that the susceptibles and susceptibles together with infectives respectively form 

Markov chains. These chains are used to obtain probabilities for the duration time and the 

total number of cases in an epidemic. A study of chain binomial models as Markov chains 

imbedded in continuous time processes is made. A practical application of the effects of 

inoculation on an epidemic was carried out, and some numerical results for the mean duration 

times and mean numbers of cases given. 

 

Plasmodium falciparum has a complex transmission cycle. Public health planning and 

research would benefit from the ability of a calibrated model to predict the epidemiologic 

characteristics of populations living in areas of malaria endemicity. The paper described the 

application of Bayesian calibration to a malaria transmission model using longitudinal data 

gathered from 176 subjects in Ndiop, Senegal, from July 1, 1993, to July 31, 1994. The 

model was able to adequately predict P. falciparum parasitemia prevalence in the study 

population. Further insight into the dynamics of malaria in Ndiop was provided. During the 

dry season, the estimated fraction of nonimmune subjects goes down to 20% and then 

increases up to 80%. The model-predicted time-weighted average incidences contributed by 

nonimmune and immune individuals are 0.52 cases per day and 0.47 cases per day, 

respectively. The median times needed to acquire infection (conversion delay) for 

nonimmune and immune individuals are estimated at 39 days and 285 days, respectively 

(Cancré et al., 2000). 

 

http://aje.oxfordjournals.org/search?author1=Nicole+Cancr%C3%A9&sortspec=date&submit=Submit
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Multistate Markov models are frequently used to characterize disease processes, but their 

estimation from longitudinal data is often hampered by complex patterns of incompleteness. 

Two algorithms for estimating Markov chain models in the case of intermittent missing data 

in longitudinal studies, a stochastic EM algorithm and the Gibbs sampler, were described. 

The first was viewed as a random perturbation of the EM algorithm and was appropriate 

when the M step is straightforward but the E step was computationally burdensome. It lead to 

a good approximation of the maximum likelihood estimates. The Gibbs sampler was used for 

a full Bayesian inference. The performances of the two algorithms were illustrated on two 

simulated data sets. A motivating example concerned with the modelling of the evolution of 

parasitemia by Plasmodium falciparum (malaria) in a cohort of 105 young children in 

Cameroon was described and briefly analyzed (Deltour, 1999). 

 

A three-state Markov model taking into account clinical signs of malaria infections by P. 

falciparum was described in a research by Richard et al., (1993). They defined three states 

considered are the noninfected (state 0), the infected exhibiting no clinical signs (state 1), and 

the infected with clinical signs (state 2). Methods for estimating the transition rates from 

longitudinal data were indicated. Their model was used to assess the effect on children of an 

intervention trial on the use of mosquito nets impregnated with insecticide. The trial was 

conducted in West Africa (Burkina Faso) between 1985 and 1987. The analysis showed that 

the intervention was most effective on transition rates between state 1 and state 2. 
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CHAPTER 3 

METHODOLOGY 

 

3.0 INTRODUCTION 

In this chapter, the theory of Markov processes is discussed in terms of its definition, 

simulation of Markov chains, the steady states, classification states, absorbing states, as well 

as how to estimate relevant transition probabilities for the study. 

 

 
3.1 MARKOV CHAINS 

Suppose that with each element s of a sample space S of some random experiment E, we 

associate a function X (t,s), where t belongs to 

 

 

 

http://en.wikipedia.org/wiki/Random_variable
http://en.wikipedia.org/wiki/Countable_set
http://en.wikipedia.org/wiki/Conditional_probability_distribution
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A change of state of the system is referred to as a transition, and the probabilities associated 

with various state-changes are called transition probabilities. The probability of moving from 

state I at time t to state j at time t+1 given we are currently in state I, pij defined as;  
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These equations imply that a given process will be in some state k after exactly m (less than 

n) states when moving from state I to state j after n steps. Where 
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3.3 CLASSIFICATION OF STATES OF A MARKOV CHAIN 

A state j is said to be accessible from a state I (written I → j) if a system started in state I has 

a non-zero probability of transitioning into state j at some point. Formally, state j is accessible 

from state I if there exists an integer n ≥ 0 such that  
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transient. Since a recurrent state definitely will be revisited after each visit, it will be visited 

infinitely often if the process continues forever. If the process enters a certain state and then 

stays in this state at the next step, this is considered a return to this state. Hence, the following 

kind of state is a special type of recurrent state. 

 

A state I is called absorbing if it is impossible to leave this state. Therefore, the state I is 

absorbing if and only if 

 

 

 

state     0        1       2   3 

http://en.wikipedia.org/wiki/Absorbing_Markov_chain
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process starts in either of these states, it can never leave these two states. Furthermore, 

whenever the process moves from one of these states to the other one, it always will return to 

the original state eventually. 

Another useful property of Markov chains is periodicities. The period of state I is defined to 

be the integer 
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distribution  (or invariant measure) if its entries 
 

 

 are non-negative and satisfies the 

equations; 

 

http://en.wikipedia.org/wiki/Invariant_measure
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the process enters state j from state I, since qij is the transition rate from state I to state j 

given that the process is in state i. By summing over all 

 

 

 

, the entire right-hand side then gives the rate at which the process enters state j from any other state. The overall equation thereby states that the rate at which the process leaves state j must equal the rate at which the process enters state j.    3.5 ABSORBING CHAINS  Many interesting applications of M.Cs involve chains in which some of the states are absorbing and remaining states are transient states. Such a state is called an absorbing chain.  In this process, we are sure of ending up in one of the absorbing states if we begin in a transient state. First if we assume that there are s-m transient states (t1, t2, …, ts-m) and in m absorbing states (a1,a2,…,am) , then the canonical representation for the absorbing chain may be written as follows;                        where Q is an (s-m)*(s-m) matrix that represents transitions between transient states. R is an (s-m)*m matrix which represents the transitions from transient to absorbing states. I is an m*m identity matrix reflecting the fact that we never leave an absorbing sate and O is m*(s-m) zero(s) matrix which means it is impossible to go from an absorbing state to a transient state. It is possible to determine the following outcomes:  Given P, we can find the nth steps transition probabilities matrix as follows; 

The image part with relationship ID rId51 was not found in the file.
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We extension of our example above we define a discrete three states compartmental model 

with the following states: susceptible (state 0), infected (state 1) and dead (or removed; state 

2). The model is graphed as below: 

 

 

Figure 3.2: A graph of the three state Markov Chain. 

 

Definition of states in the Model: 

S=Uninfected state. It consists of humans who have not being exposed before and individuals 

who have recovered from an infection. 

I= Infectious state; consist of infected humans and carriers of the disease 

D= Death or removed state. 

 

Parameters of the Chain (Probabilities of transition): 

p00= Probability of remaining in a susceptible state. 

P01= transition Probability from susceptible state to infectious state.Referred to in literature as 

discrete time force of infection. 

P02= transition probability from susceptible to a removed state. 

This image cannot currently be displayed.
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P10= transition probability from infectious state to susceptive state. 

P11= Probability of remaining in an infectious state. 

P12= transition probability from an infectious state to a removed state. 

P22= Probability of remaining in an removed state. 

These pij’s in the study of diseases actually give us a measure the frequency of both disease 

occurrence and deaths from the disease. The rates also tell us how fast the disease is 

occurring in a population. 

The figure 3.2 shows that a susceptible individual that receives the Plasmodium parasites 

from a mosquito bite can remain susceptible, become infected or die in a given time step. 

Similarly, infected individuals can recover, remain infected or die. However once an 

individual dies, it remains dead and hence a transition to another state is not possible. The 

susceptible and infected states are therefore transient states while death is an absorbing state 

because once an individual dies, it remains dead. 

We could also have a four state compartmental model where we can separate the Recovered 

individuals from S as below. 
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Figure 3.3: A graph of a four state S-I-R-D Markov chain. 

 

Although the latter model is an expanded form of the three-state discrete model, the dynamics 

are very different when critically considered. This time we may find the immunity of 

recovered individuals or the immunity of naïve individuals separately if the additional state is 

a recovery state or immune state respectively. Until date to actual values of immunity have 

not being found and to pursue for these parameters would require large resources, years, 

corporate expertise Also note that in this model the S are those who have never being 

exposed to the parasite. 

Additional state therefore can be added to account for disparities between I and recovered 

individuals or to incorporate other details of interest. For example, an immune state can be 

included to encompass individuals that have recovered from infection and are incapable of 

contracting the disease in the future.  Similarly, infected individuals can recover, remain 

infected or die. The incubation period for the P. falciparum parasite (the delay from infected 

bite to fever) within the human is from 7 to 14 days. However due to the endemicity in Ghana 

most people would seek for cure when clinical signs to manifest we chose an average of 8 

days begin. Fortunately, this disease is curable when proper, early and prompt treatment is 

sought. Smelters(1997) indicates that When the correct chemotherapy, diet and adequate rest 

The image part with relationship ID rId51 was not found in the file.
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are given to a patient, the maximum length for recovery should be seven days, three days for 

detention in the hospital and four for rest at home depending on the protocol of the health 

facility.  A more recent work (Chuks et al., 2009) in a case study of Volta Region in Ghana 

however indicated that it takes from 1 to 14+ days length of stay of patient at health facility on 

admission for malaria. Hence averagely individual spends a close to eight days or more 

depending on the conditions afore mentioned. 

 

The most important stage in Markov modelling is to determine the one step transition 

probabilities. To estimate this, it is very important to choose a reasonable time step  for which 

a transition will occur. An illogical time step could result in wrong results and interpretation. 

With previously explained time frame for infection, recovery and death due to disease, we 

can choose the time step for sampling as 8 days during which much severe instances would 

not be observed. Hence the model will be based on mild cases of the disease. 

 

 The death state may not be necessarily death in all cases, falciparum can also produce 

cerebral malaria, a condition that may lead to dangerous sequel such as epilepsy, blindness, 

cognitive impairments, and behavioral disturbances, or it may lead to coma which is unlikely 

to be reversed. Practically blood sample would be taken from Individuals would be screened 

to find out if the blood is infected after eight days. Then if they are, appropriate drugs would 

be administered to them and still monitored after the eighth day to determine if they are free 

of the disease. Death may before or after the first sampling time or even after administration 

of drugs. 

By observing individuals over time (screening blood sample after each time step) and 

recording the disease status during a given sampling occasion, we can study the dynamic of 

any disease. The resulting time-series data is be represented as a matrix, X of 0, 1 and 2 s 
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indicating whether a given individual was uninfected (0), infected (1) or dead (2) . A 

detection history of X= 0, 0, 1, 1, 0 indicates that an individual was infected only during the 

third sampling occasion (x3) and recovered during the fifth sampling occasion (x5). However 

an individual could recover during a sampling occasion and be infected during the next 

sampling occasion due to multiple bites from the mosquito. Since death is absorbing, no 

additional data for that individual are necessary (that is even if we considered a sixth 

sampling period).  An individual who received the plasmodium parasite could remain 

infected (carrier) due to acquired immunity in the individual. Hence we can consider an 

infection as a “success” though quite unpleasing to use and not infected as a “failure”. Also 

an individual who is infected during our sampling period (t+1) does not depend on the fact 

that another individual was infected or not. In other words transitions are independent of each 

other. 

 We can obtain a time series data by sampling persons during time steps whereby the only 

possible states of an individual at a current time would be S={susceptible, infected}since 

sampling cannot be made on a dead individual. 

 

With the observed data sequence {X(n)}, we can easily find the transition frequency Fji in the 

sequence by counting the number of transitions from state j to state I in one step and 

represent them as a one-step transition matrix for the sequence {X(n)}as follows: 
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the population are not very appropriate for estimating the needed probabilities. An example is 

, the proportion of malaria on all deaths in children under five was reported as 33% (health 

facility data) with an estimated 14,000 deaths in children under five were attributable to 

malaria in 2008 (GHS, 2008). However the verbal autopsy component of the 2008 DHS 

household survey reports that malaria accounted for 43% of all deaths in children aged 29 

days to 5 years, and that roughly half deaths in children under five occurred at home (PMI, 

2011). This and many reasons may result in inconsistent report of the disease process in the 

population. 

 

Let us consider an example. If we have 100 people in a community and observed 20 infected 

case due to any disease during a year, the probability of infection will be 20/100. However if 

each individual can be infected more than once in a year we could have as much as the total 

population being infected. So both the numerator and denominator in the equation (9) will 

change. 

 

To avoid such inconsistency we can examine the distribution of the process. Since individuals 

make transitions at different continuous periods and a transition is also independent of the 

time (time homologous) the arrival of the process in a state follows a Poisson distribution 

with exponential interarrival times. We can therefore find the probability density function 

from the cumulative distribution function. The cumulative distribution function describes the 

probability of transition before time t and thus can be used to derive the probability of 

transition from the rate of transition. With a constant rate of transition, the probability p is 

given as;   
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The one-step state transition probability matrix P in this study is given as; 

 

Where the rows (indexed as I = 0–2) represent the state of a process for a given individual at 

time n and the columns (indexed as j = 0–2) indicate the state of the process at the following 

time step n + 1. As death is an absorbing state, the probability of becoming susceptible or 

infected is zero. With the time step already defined, at any given time, an individual is 

assumed to be exactly one of these three states (although a perfect clinical state may not be 

detected), which is reflected by the fact that each of the rows always sum to one (5). 

Probabilities p01 p02 are also known as the discrete force of infection and the discrete 

mortality rate respectively and p10 and p12 are the force of recovery and the mortality rate due 

to malaria or case fatality rate respectively. 

  

3.6.2 Determining the N-step transition matrix 

We need to determine the n-step transition probabilities of the Markov process since the 

elements of the matrix Pn only provide information on the Markov chain at the nth time step; 

nothing can be inferred about the state of the process during any of the n – 1 time steps. 

However we must populate our transition matrix, P before finding Pn. To do this we calculate 

or transition probabilities pij’s from the given data. 

 These pij’s as in the study of diseases actually give us a measure the frequency of both 

disease occurrence and deaths from the disease and how fast the disease is occurring in a 

population. It also provides quantification for the prognostics of P. Falciparum parasitemia 

which is necessary to describe the severity of a disease to establish priorities for clinical 

services and public health programs to establish a baseline for natural history of the disease 

The image part with relationship ID rId51 was not found in the file.

state     0        1       2    
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so that as new treatment become available, the effects of these treatment can be compared 

with the expected outcome without them. Furthermore, if different types of therapy are 

available for a given disease, such as surgical procedures, to compare the effectiveness of the 

various type of therapy there is need for such quantitative means for expressing the prognosis 

in group receiving treatment (Gordis, 2009). 

From (5) the total for each row equal 1 hence there only need to find two of the three 

parameters in each row of the transition matrix. For row one I computed for p01 and p02 in 

row two I calculated for p10 and p12. 

To obtain p01 we would use (11). The incidence rate (provided by GHS) usually gives a 

measure of the infection rate. Since everyone in the population of Ghana is at risk the 

incidence rate could be a good measure for the force of infection in the nation. However we 

could encounter some problems when using the incidence. We know that the infection rate 

lies in the range 1/14 to 1/6, that is the inverse of the times for infection, hence the incidence 

should be within this range. With this rate we can find the probability of infection during 8 

days using (11).  

To calculate the next parameter, p02 I used data from both GHS complimented by the data 

from WHO survey. We would calculate for the discrete rate of mortality for the year as the 

number of people who died as a result of all causes over the number of all people who were 

admitted in the WHO data. This was verified using he mortality rate of Ghana presented by 

CIA. Discrete mortality rate (probability of death) is defined using (9) as follows; 
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3.7 ESTIMATING DISEASE METRICS 

Diagnostic and screening test permit the categorization of sick and healthy individual. Once a 

person is identified as having a disease, the question arises. “How can we characterize the 

natural history of the disease in quantitative term”? In Epidemiology some measures are to 

find the 5 year survival rate, and also the life tables. Markov modeling allows for 

computation of very important quantitative measures which can be used in characterizing 

malaria. 

 

3.7.1 Estimation the First transition probability distributions 

 It is often desirable to also make probability statements about the number of transitions made 

by the process in going from state I to state j for the first time. The probability that a process 

initially in state I will be in state j after exactly n time steps is simply the elements of matrix 

Pn, denoted as pn
ij. We can use these elements (pn

ij) of the transition matrix P to calculate our 

disease metrics. We know from the definition of Markov process that the probability that a 

susceptible individual becomes infected after one time step is simply p01 and the probability 

that it remains susceptible is p00. We define our initial time step as n and the interval  n, n+1, 

n+2,…,n+m. Thus, the probability that a susceptible individual first becomes infected after 

two time steps is simply the probability that it remained susceptible for exactly one time step 

and then became infected during the next time step: 
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between the m – 1 and m time steps is given by: 
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3.7.2 Estimating The Expected Time To First Transition. 

We can now use the probability distributions to determine the expected time to first infection 

(i.e. the average time to initial infection for a susceptible individual given that the individual 

does become infected) and the expected time to recovery (i.e. the average duration 

of infection). The expected time for an individual in a given state at time n to first enter 

another state, denoted  
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two transient states, 0 and 1 (susceptible and infected) and one absorbing state, 2 (dead), 

therefore: 
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of remaining susceptible and mortality respectively will be affected. Also an increase in 

recovery rates will affect the malaria mortality rate and the rate of remaining infected. 

Similarly, in terms of probabilities, p01 is relates p02 and p00 and also p10 relates p11 and p12. 

From (5) we have; 

k1p01=1-k2p02-k3p00 and k4p10=1-k5p12-k6p11 

For some positive constants ki, where i=1, 2,…, 6. Hence a decrease in p01 as a result of a 

decrease of k1 will yield increase in p02 and p00 respectively. Similarly an increase in p10 as a 

result of an increase of k4 will yield decreases in p12 and p11 respectively (using 5). 

With this idea we would simulate using the model and data whiles purposeful changes are 

made in the infection probability and recovery probability to find how sensitive the life 

expectancy and other computed disease metrics are towards theses changes.    
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                                                                           CHAPTER 4 

    RESULTS 

4.1 INTRODUCTION 

In this chapter we discuss the source and nature of data. How the transition probability matrix 

was obtained is also shown. The characteristics of the model are then obtained. Next, the first 

step transition probabilities (to infection and recovery) are determined and their 

corresponding overall transition probabilities respected. These results are plotted against the 

sampling period (n+m) to determine the nature of the distribution. Finally, the life expectancy 

was found using the model and simulations were conducted to see the impact of the 

probabilities on the life expectancy.   

 

4.2 SOURCE AND NATURE OF DATA 

The data sources for this study are essentially secondary and retrospective. In general, three 

sets of data are used for this study. The primary sources of empirical information relates to 

the statistical returns of the Ghana Health Service, the World Health Organisation and Central 

Intelligence Agency. The choice of these data is predicated on the fact that representative 

information over time on the subject matter is gathered nationwide.  

The GHS is responsible for generating and analyzing data emanating from the functioning of 

the health services through the Center for Health Information Management (CHIM). The 

mission of the Health Ministry is to contribute to socio-economic development and wealth 

creation by promoting health and vitality, ensuring access to quality health, population and 

nutrition services for all people living in Ghana and promoting the development of the local 
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health industry. The sector goal is to ensure a healthy and productive population that 

reproduces itself safely.  

The medium Team Policies and priorities of the Health sector are to: Ensure mother and child 

are healthy through scaling up implementation of high impact and rapid delivery intervention; 

Promote good nutrition, food security and food safety; Prevent, control and manage 

communicable diseases such as HIV/AIDS, Malaria, Tuberculosis, Buruli Ulcer, Guinea 

Worm, Leishmaniasis, Lympahatic Filariasis, schistosomiasis; Collaborate effectively with 

relevant MDAs and stakeholders to improve housing, personal hygiene, environmental 

sanitation and access to potable water; Reduce risk factors associated with non communicable 

diseases such as tobacco and alcohol use, lake of exercise, poor eating habits, unsafe driving 

and stress; Strengthen referrals systems and clinical management of diseases as well as 

prevention and management of blindness and promotion of mental health; Strengthen 

surveillance and response to epidemics and emergencies and so on. 

 

The World Health Organization (WHO) is a specialized agency of the United Nations (UN) 

that is concerned with international public health. It was established on 7 April 1948, with 

headquarters in Geneva, Switzerland and is a member of the United Nations Development 

Group. Its predecessor, the Health Organization, was an agency of the League of Nations. 

The constitution of the World Health Organization had been signed by all 61 countries of the 

United Nations by 22 July 1946, with the first meeting of the World Health Assembly 

finishing on 24 July 1948. It incorporated the Office International d'Hygiène Publique and the 

League of Nations Health Organization. Since its creation, WHO has been responsible for 

playing a leading role in the eradication of smallpox. Its current priorities include 

http://en.wikipedia.org/wiki/United_Nations
http://en.wikipedia.org/wiki/Public_health
http://en.wikipedia.org/wiki/Geneva
http://en.wikipedia.org/wiki/United_Nations_Development_Group
http://en.wikipedia.org/wiki/United_Nations_Development_Group
http://en.wikipedia.org/wiki/League_of_Nations
http://en.wikipedia.org/wiki/United_Nations
http://en.wikipedia.org/wiki/World_Health_Assembly
http://en.wikipedia.org/wiki/League_of_Nations_Health_Organization
http://en.wikipedia.org/wiki/Eradication_of_smallpox
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communicable diseases, in particular, HIV/AIDS, malaria and tuberculosis; the mitigation of 

the effects of non-communicable diseases; sexual and reproductive health, development, and 

ageing; nutrition, food security and healthy eating; substance abuse; and drive the 

development of reporting, publications, and networking. WHO is responsible for the World 

Health Report, a leading international publication on health, the worldwide World Health 

Survey, and World Health Day. 

WHO identifies its role as one of six main objectives: providing leadership on matters critical 

to health and engaging in partnerships where joint action is needed; shaping the research 

agenda and stimulating the generation, translation and dissemination of valuable knowledge 

setting norms and standards and promoting and monitoring their implementation; articulating 

ethical and evidence-based policy options; providing technical support, catalysing change, 

and building sustainable institutional capacity; and monitoring the health situation and 

assessing health trends. 

 

The World Factbook (also known as the CIA World Factbook) is a reference resource 

produced by the Central Intelligence Agency of the United States with almanac-style 

information about the countries of the world. The official paper copy version is available 

from the National Technical Information Service and the Government Printing Office. Other 

companies—such as Skyhorse Publishing—also print a paper edition. The Factbook is 

available in the form of a website, which is partially updated every week. It is also available 

for download for use off-line. It provides a two- to three-page summary of the demographics, 

geography, communications, government, economy, and military of 267 entities including 

U.S.-recognized countries, dependencies, and other areas in the world. In researching the 

Factbook, the CIA uses the sources some of which are: Antarctic Information Program 

http://en.wikipedia.org/wiki/Communicable_diseases
http://en.wikipedia.org/wiki/World_Health_Report
http://en.wikipedia.org/wiki/World_Health_Report
http://en.wikipedia.org/wiki/World_Health_Day
http://en.wikipedia.org/wiki/Central_Intelligence_Agency
http://en.wikipedia.org/wiki/Almanac
http://en.wikipedia.org/wiki/List_of_countries
http://en.wikipedia.org/wiki/Skyhorse_Publishing
http://en.wikipedia.org/wiki/Demography
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http://en.wikipedia.org/wiki/Military
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(National Science Foundation), Armed Forces Medical Intelligence Center (Department of 

Defense), Bureau of the Census (Department of Commerce), Bureau of Labor Statistics 

(Department of Labor) and so on. Other public and private sources are also consulted. 

 

4.3 PRELIMINARY ANALYSIS OF DATA 

4.3.1Malaria Admissions 

The table for malaria admission cases in Ghana from 2000 to 2009 are shown in table A2.2 in 

the appendix. Generally inpatient cases of malaria for all age group appear to have increased 

from 2000 to 2008. Malaria accounted for over 28 % of total inpatient cases reported at 

various hospitals and in the case of children below 5, malaria accounted for over 36% of the 

total child inpatient cases. The latter shows that children were at higher risk within the time 

frame considered. A plot of the cases of admission against the years is shown in figure 4.1. 

 

Figure 4.1: The plot of malaria admission cases from 2000 to 2009 in Ghana.  
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4.3.2 Malaria Incidence 

Data from 1997 to 2008 was obtained for the incidence reported across the country (Table 

A2.1 in appendix 2). A quick look at the table shows an increasing trend of the number of 

cases for malaria. With the lowest incidence recorded in 1997 and gradually rises to the 

highest in 2008. However we could observe a sharp decline in 2007 which seems a bit 

unusual. Incidence is related to the population size so with increasing populations we expect 

the incidence to rise and whereby there is an intervention, we expect a mild rise in the 

number of incidence, hence the observed value in 2007 may be an outlier. The time series 

plot of the data is shown in figure 4.2 below.  
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Figure 4.2:  plot of the Incidence rate of malaria per100000 in Ghana against years 
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4.3.3 Malaria Mortalities 

The reported mortalities cases due to all causes and due to malaria are presented in table A2.3 

(in appendix 2). Mortality due to malaria in children accounted for over 21% of the total 

deaths recorded from 2000 to 2008. A plot of the mortalities due other causes and the 

mortality as a result of malaria infection for all ages from 2000-2008 is shown in figure 4.3 

below.  

 

 

Figure 4.3:   A plot of death cases due to malaria and other cases from 2000-2008 in Ghana. 
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from 2000 to the lowest reported mortalities in 2001, then a mild rise from 2001 to 2002. The 

mortality afterward gradually reduced from 2002 until 2004 and then rapidly rose from 2004 

until the highest case was observed in 2007 then the trend declined. Generally this tends to be 

an upward trend however very slowly comparing with the increasing population over the 

years.  

The plots or the mortalities rates however give a better comparison of the two trends in the 

nation taking population into consideration (Figure 4.4).This shows downward trend in the 

proportion of mortalities for both all-cause and malaria cause. The trend of malaria deaths 

cases could be due to intervention policies and strategies and increasing government and non 

government expenditure in financing malaria control over the years. Table A2.6 shows the 

list of Governmental and external financing in malaria control. 

A very important situation is to observe is the rate of children who die within each year 

compared to that of other ages. This is presented in table A2.4. A plot of these results shows 

that generally the malaria mortality rate in both age groups decline from 2000 to 2008. There 

rate at which children die over the years are higher as compared to those in all-ages. The 

trend for child mortality, however, seems to be narrowing to the mortality rate for all ages.   
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Figure 4.4: A plot of mortalities rate per person year for malaria and other cases from 2000-2008 in 
Ghana. 

 

4.3.4 Recovery 

The number of people who recovered from malaria infection after treatment was administered 

from within the time frame in Ghana for the various years are shown in table A2.4 in  

(appendix 2). Malaria cases accounted for 30% of total outpatient cases for all –groups and 

about 32.6% of total outpatient cases for children below 5 years. The plot of the cases of 

recovery in both groups is shown in the figure 4.5 below. Generally there tends to be an 

increase trend in cases for both all-age and below 5 age groups. 
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Figure 4.5:  Recovered cases for all –age and below 5 groups from 2000-2009  

 

However this may not be a true reflection considering the number of people who may have 

reported in each of the two groups, hence a need for the plot of the rates of recovery for all-

ages and for below 5 years.  

 

 

Figure 4.6:  The recovery rates of all-ages and below 5 groups from 2000 to 2008 
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Figure 4.6 shows the proportion of people who recovered within each year from 2000 to 2008 

in the county for all-ages and for children below 5 years. The proportion of people who 

recovered from malaria infection in a year in Ghana from 2000 to 2008 tends to be high in 

both groups. Noticeably was the increase in the proportion of people who recovered from 

2000-2001. 

 

4.4 MODEL BUILDING 

4.4.1     Transition Probabilities 

4.4.1.1 Infection probability. 

Invasion of the blood by merozoites starts after the 5th day after an infected mosquito hence 

the maximum rate of infection is given as 1/6. The incidence rate is a measure of the infection 

rate but may yield inaccurate result since not all individuals will be observed during the 

yearly period of study. The infection rate was calculated from the incidence rates (Table 4.1) 

using (9). Then we found the average from 2000 to 2008 as follows  
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4.1.1.2 Recovery probability. 

Recovery probability was best estimated using (10) and monitored results of recovery in a 

research conducted by Nuguchi research institute (Table A2.4). 

Continuous monitoring of the efficacy in the age group with the largest proportion of malaria 

problem- children under 5- pointed to the possibility of differences in drug responses between 

adults and children. Nonetheless, the efficacy of Artesunate – Amodiaquine has remained 

high and currently is over 90% after 28 days of treatment (MOHG, 2009). 

The rate of recovery was estimated as follows; 
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population size as children who were admitted which is quite inappropriate since admission 

of children will be as a result of a severe condition hence such individuals have higher 

probabilities of dying. Estimation was done to explain the difference in p01 and p02. Also with 

data from PMI (2011) report we have the number of children who reported to health facilities 

and the number who died. These parameters were used to estimate the malaria mortalities 

which also served as a guide as follows; 
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The Markov transition matrix for the S-I-D P. falciparum parasitemia is given as:   
 

 

 

The image part with relationship ID rId51 was not found in the file.
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within an 8 day period. Which accounts for over 40000 below 5 deaths in an estimated  

population of 3.7 million children (alive) in Ghana are like to die after a year (Table A2.3b). 

Also the rate from I to D in the model shows us that about 40 people (below 5 years) are 

likely to die out of 100000 under 5 children as a result of malaria infection during 8 days. 

This reflects about 15000 child deaths as a result of malaria and about 35% proportion of all 

death in the population in a year. 

The probability of infection also indicates that about 7 out 10 children will be infected if 

exposed to mosquito bite in a period of 8 days. This is also a reflection of the high infection 

rate of 0.166 which implies that one would have symptoms of disease starting from 6 days in 

Ghana. This is confirmed by World Malaria Report (2011), which indicates that transmission 

in West Africa and specifically Ghana is above 100 cases per 1000 population (Figure A3.2, 

in appendices).  

 

4.5 CLASSIFICATION OF THE MODEL STATES 

By our classification of states in section 3.3 we see that S is reachable from I and I from S 

hence susceptible(S) and infectious (I) states of the model are communicating class.  

Also since there is a positive probability of returning to S if we start from S and likewise a 

positive probability of returning to I, state S and I also exhibit a recurrent property. In other 

words if we start the process from a susceptible state we are always likely to return to a 

susceptible state. Same can be said of state I. Also D is recurrent although absorbing since 

remaining in an absorbing state is considered as a visit during the time.  
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If we are to move from S to D there are two possible paths: S-D and S-I-D. Since these two 

paths have an odd interval the chain is aperiodic. Since all states of the Markov chain are 

recurrent and aperiodic the chain is ergordic. 

 

4.6 THE STEADY STATES PROBABILITIES 

The probability,

 

 

 

 of finding the process in a certain state, say j, after a large number of steps, independent of the probability distribution of the initial state gives the steady states probabilities. In computing for the steady state probability distribution, we obtain three equations with three unknowns. That is: 
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the probability distribution of the initial state. In other words the transition probability into a 

susceptible state after a long time equals zero. Practically this means that in the long run, if 

malaria persists, then even if the person recovers that person will quickly move out of the 

recovery state. Similarly a person will quickly move out of a susceptible state. However,  
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Figure 4.8: plot of the probability distributions for an infection of susceptible individuals and 

recovery of infected individuals against the sampling times. 

 

The figure above (Fig. 4.8) shows the probability that a susceptible individual first becomes 

infected with P. falciparum (solid black line) and the probability that an infected individual 

first recovers (dash black line) in exactly m steps (calculated in 8 days time steps). 

We observe that the probability distributions decrease monotonically and faster for the 

probability distribution of first infection. This implies that currently it takes longer time to 

recovery than to be infected in Ghana. 

 

 

 

The image part with relationship ID rId51 was not found in the file.
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4.8 OVERALL PROBABILITIES OF INFECTION AND RECOVERY 

The infinite sum of the first transition probability distribution yields the overall probability of 

first infection which is in shown the table A2.5. The overall probabilities or first infection and 

first recovery are used to find the duration of infection and the duration of recovery 

respectively. However it may take a long time for the distribution to converge to the overall 

probability. The actual (converging) probability of infection was calculated by making use of 

(18) which is included in the matlab script. The results for the overall probabilities of 

infection and recovery are shown in Table A2.5 in appendices. This permitted for the 

estimation of the mean time for first infection and mean recovery is calculated using (19). 

The plot of the cummulative transition probability distribution is shown in figure 4.9. 

 

 
Figure 4.9: The plot of the cumulated probability distributions for an infection of susceptible 
individuals and recovery of infected individuals against the sampling times.  

The image part with relationship ID rId51 was not found in the file.
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Figure 4.9 shows the cumulative probability that a susceptible individual has been infected 

(solid black line) and an infected individual has recovered (dash black line) over the duration 

of the study. 

Interestingly, the overall probability of infection for a susceptible individual was very high 

(0.9994). The long-term transition probabilities for infection took almost 11 days to stabilize.  

Given that a susceptible individual becomes infected, the expected time to first infection is 

given as 11days (table 4.1). 

Another interesting result is the overall probability of recovery for a susceptible individual 

which was also found to be high (0.9991). This result was used to calculate the expected time 

for recovery or the duration of the disease which is another useful quantity in characterizing a 

disease. Given that an infected individual recovers, the expected time to first recovery is 

given as approximately17 days (table 4.1). This was also consistent with a work by Wiser 

(1999) who stated that the duration of a typical P. falciparum malaria symptom if untreated 

ranges from 2-3 weeks. 
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Table 4.1: Estimated disease metrics for humans exposed to P. falciparum using Ghana 

           data from 2000 to 2008. 

Metric Value 

Probability of infection 0.9994 

Probability of recovery 0.9991 

Expected time to infection(steps) 1.4278 

Expected time to recovery(steps) 2.1259 

Expected time to infection (days) 11.4222 

Expected time to recovery (days) 17.0068 

 

4.9 LIFE EXPECTANCIES 

The computed result of our fundamental matrix given by (I-Q)-1 defined in section 3.6 are 

shown in appendix 3. This allows us to find the time it takes for an individual to enter an 

absorbing state. The first element of row one is the total expected time a person is expected to 

spend in the susceptible state before being absorbed and the second element is the time a 

person is expected to spend in the infectious state before being absorbed. The summation of 

these two gives us the total time for a person who was in a susceptible state at the onset of the 

survey period to be absorbed. Similarly the summation of the second row gives the life 

expectancy starting from an infectious state. 

The life expectancies using (21); expected time to death from the onset of the experiment) for 

susceptible and infected individuals were found to be approximately 55 years (Table 4.2) in 

each situation. This is not the life expectancy at birth. Rather, since the sampling unit was on 
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individuals below 5 years adding the average age of this group will yield the life expectancy 

at birth.The result shows a similarly life expectancies for people who were previously 

susceptible and those who were previously infected. This explains the fact that people in 

susceptible states are not so different from those who are infected. Practically this means that 

recovery rates in Ghana are high with regards to current treatment and other recovery related 

factors. However the life expectancy for uninfected individuals are slightly higher than that 

for infected persons from the onset of the survey. This shows the fact that; the life expectancy 

of people in the nation could be increased if preventive measures are taken rather than 

depending on treatment. Although this points out to an interesting fact for policy making, we 

can however not make conclusive deduction on this slight difference until further test is 

conducted.  

 

Table 4.2: The calculated life expectancy from 2000 to 2008 using first order Markov 
model. 

Time 
Life expectancy 

2000-2008 

Susceptible (sampling steps) 2525.4 

           Infected (sampling steps) 2525.4 

            Susceptible (Years) 55.1994 

            Infected (Years) 55.1990 

` 

4.10 SIMULATION 

In order to determine the impact of infection probabilities and also of the recovery 

probabilities we conducted simulations using the Markov model and obtained estimates from 

the Ghana simultaneously. 
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We reduced both the probability of infection and the probability of recovery at 1% intervals 

until a 10% reduction in each situation. We cannot an explicit solution to k1 and k2, however 

changing k1 will produce a change in both k1 and k2. We therefore decreased the infection 

probability also by 5% at intervals of 1% of the existing (prevailing) probability and found 

the outcome for the life expectancy using the model. The mortality rate was kept constant so 

that logical interpretation could be inferred. The results for simulation are indicated in Table 

4.3.  

 

Table 4.3: Results of the simulated life expectancies by decreasing infection probability. 

 Life expectancy (years) 

decrease in 

infection 

probability 

Susceptible Infected 

0.0000 55.1994 55.1990 

0.0035 55.2011 55.2007 

 

 

 

 

 

 

0.0280 55.2132 55.2127 

0.0315 55.2149 55.2145 

         0.0350 55.2167 55.2162 

 

The plot for the simulated life expectancies as a result of decreasing the infection probability 

and keeping mortality probability constant is shown in figure 4.10. This showed increases in 

the life expectancy with decreases n infection probabilities.  
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Figure 4.10: Simulated results for life expectancies of susceptible and infected individuals against 

decreases in infection probability.  

Next, to determine the impact of recovery probabilities, we increased the recovery probability 

by 5% and then observed the outcome for the life expectancy using the model. It was logical 

to expect a decrease in the probability of death due to malaria if the recovery rates are 

increased so we decreased p12 by some constant as well.  

Table 4.4: Results of the simulated life expectancies and transition times by increasing 

recovery probability. 

 Life expectancy (years) recovery duration 

increase in recovery 

probability 

Susceptible      Infected  

0 55.1994 55.1990 17.0068 

0.0047 55.5959 55.5956 16.8387 

0.0094 55.9948 55.9948 16.6739 

0.0141 56.3963 56.3965 16.5123 

0.0188 56.8004 56.8008 16.3539 

0.0235 57.2070 57.2077 16.1984 
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The plot for the three way simulated life expectancies as a result of increasing the recovery 

probability and reducing malaria mortality probability and the probability of remaining 

susceptible is shown in figure 4.11. This also shows as increase in the life expectancy. Also 

interesting to note was the decreases in the duration of recovery (Table 4.4). 

 

Figure 4.11: Simulated results for life expectancies of susceptible and infected individuals against 

increases in recovery probability.  

 

4.11 INTERPRETATION OF RESULTS 

The measures of occurrence from the disease showed how fast the disease is occurring in 

Ghana from 2000 to 2008. These quantifications of the P. falciparum parasitemia are 

necessary to describe the severity of a disease to establish priorities for clinical services and 

public health programs. Example the malaria mortality probability within the 8 days sampling 

time (0.0004) though looks small contributes to over of 15000 child deaths as a result of 

malaria and about 33% proportion of all death in the population (approximately 3.7 million 

below age 5 children in Ghana) in a year. This is worrying and calls for more anti-malaria 
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policies, funding of drugs, increase in hospital facilities and services and education of public 

on the prevention of the disease. 

 

The estimation of 8 days (time step) probabilities of infection and recovery in terms of 

seasonal probabilities of infection and recovery for malaria was possible by the application of 

Markov models. The model also permitted the computation of expected time to infection and 

duration of infection and state-dependent life expectancy from the onset of the survey period. 

Hence the use the Markov model provided a convenient and accessible approach for 

computation of disease metrics that summarize relevant aspects of the host-pathogen 

interaction. Quantities such as expected time to infection and seasonal probabilities of 

infection and recovery have clearly interpretable meanings with respect to management 

efforts and can help set thresholds of acceptable disease persistence.  

 

The expected time to a first infection was given as 11 days with a very high probability 

(0.9994). It means that a susceptible individual has very high likelihood to be infected if 

exposed to mosquitoes during an average of 11 days. This is a reflection of the endemicity of 

the disease in Ghana. Hence IPT’s using antimalarial drugs like Sulfadoxine-pyrimethamine 

(SP) and Chemoprophylaxis can be administered before 11 days as a measure to prevent 

occurrence of the disease. 

 

The expected time to a first recovery of the duration of non severe P. falciparum was found 

to be 17 days with a very high probability (0.9991). It means that individuals in Ghana 

recover from non severe P. falciparum malaria infection at an average time of 17 days with a 

high probability.  
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We can use these estimated values of the model as baselines for the natural history, so that as 

new preventive methods become available, the effects on life expectancy, recovery times and 

infection time using these using these treatment can be compared with the expected outcome 

without them. We can compare to see the impact that purposeful changes in disease 

management can have on groups receiving treatment, which can also be used to compare the 

effectiveness of the various types of treatments. 

 

Preventive methods are methods which are used to avoid infection from occurring. These 

consist of preventing mosquito bites, controlling mosquito breeding, the use of anti- malarial 

drugs and so on. Prevention in this study involves the reduction of probability of infection. 

By the outcome of our simulation, using the Markov model for Ghana, we notice that the life 

expectancy increases when the probability of infection is decreased, even when mortality 

rates are kept constant. The outcome of the two way simulation by decreasing the probability 

of recovery by 5% of the prevailing probability at 1% intervals and keeping the discrete 

mortality rate constant, showed a final gain in life expectancy in years of 0.0173 (Table 4.3). 

 

This proves the fact that preventive measures which lead to reducing infection probabilities 

can help increase the average life span of people living in Ghana. Therefore prevention using 

any of these  methods, namely: IRS to kill adult mosquitoes; the use of ITN’s; the use of 

repellants; control of mosquito breeding; use of IPT and so on, will in tend save many lives 

which will result in an increase in the average life expectancy of Ghanaians. 

 

Disease management deals with diagnosis and early treatment of disease and other related 

factors like nutrition, rest and so on, which are needed for recovery. This implies proper care 

for infected persons and in this study involves the probability of recovery and the malaria 
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mortality probability. Also from the outcome of the simulation, we also notice that the life 

expectancies increases when doth the probability of recovery is increased and the probability 

of malaria mortality is decreased. An increase to 5% in the probability of recovery by 1% 

intervals and a reduction by some percentage k5 in the probability of malaria mortality, 

showed a final gain of 2 years in life expectancy (Table 4.4). Although the increments were 

rather arbitrarily chosen if treatment methods and malaria death are monitored carefully, we 

can find k2 which should permit in predicting the life expectancies using the model. 

 

The result thus proves the fact that improvements in disease management procedures which 

increase the recovery probabilities can help increase the average life of people living in 

Ghana. Another interesting finding is on the shortening of the duration of recovery from 

prevailing 17 days to almost 16 days after simulation. This clearly shows that increases in the 

recovery probability speeds up recovery time and could prevent much complication as a 

result of the disease.  

 

 

 

 

 

 

 

 

 

 

 



 

 

 84 

CHAPTER 5 

CONCLUSION AND RECOMMENDATION 

 

5.1 CONCLUSION 

The measures of occurrence from the disease showed how fast the disease is occurring in 

Ghana from 2000 to 2008. These quantifications of the P. falciparum parasitemia 

transmission are necessary to describe the severity of a disease to establish priorities for 

clinical services and public health programs.  

 

The estimation of 8 days (time step) probabilities of infection and recovery in terms of 

seasonal probabilities of infection and recovery for malaria was possible by the application of 

Markov models. The model also permitted the computation of expected time to infection, the 

duration of recovery and the state-dependent life expectancy from the onset of the survey 

period which have clear interpretable meanings with respect to management efforts and can 

help set thresholds of acceptable disease persistence.  

 

The expected time to a first infection was given as 11 days with a very high probability 

(0.9994). This means that susceptible individuals have very high likelihood of being infected 

if exposed to mosquitoes during an average of 11 days. The expected time to a first recovery 

or the duration of non severe P. falciparum was found to be 17 days with very high 

probability (0.9991). 
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The outcome of our simulation by decreasing the probability of infection by 5% of the 

prevailing probability at 1% intervals showed a final gain in life expectancy in years of 

0.0173 (Table 4.3). This proves the fact that prevention methods which lead to decreasing the 

infection probabilities can help increase the average life span of people living in Ghana. 

Therefore prevention using any of these methods, namely: IRS to kill adult mosquitoes; the 

use of ITN’s; the use of repellants; control mosquito breeding; use of IPT’s and so on, will in 

tend save many lives which will result in an increase in the life expectancy. 

Also an increase to 5% in the probability of recovery by 1% intervals and a reduction in 

probability of malaria mortality, showed a final gain of 2 years in life expectancy (Table 4.4). 

The result thus proves the fact that improvements in disease management conditions which 

lead to increases in the recovery probability can help increase the average life span of people 

living in Ghana. The shortening of the duration of recovery from prevailing 17 days to almost 

16 days due to increases in recovery probability show that complications as a result of the 

disease can also be avoided with this procedure. 

The state-dependent life expectancy from the onset of the survey period using the model was 

found to be approximately 55 years for both individuals who were had the disease( infectious 

state) and those who did not (susceptible state). This result is consistent with results from the 

Ghana health service which gives an average life expectancy at birth from 2003 to 2009 as 59 

years. 

Although the increments and decreases in simulation were rather arbitrarily chosen if 

monitoring is carefully done, can help determine amount of increase and decrease which can 

be used to predict the life expectancies using this model. The Markov model did not account 

for differences among classes of individuals below 5 (that is below 2 and above 2 years), 
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neither did it account for differences in the season (wet and dry season) yet separate models 

can be developed for each life stage and season to compare disease dynamics across an 

individuals’ lifetime and across seasons respectively if adequate data from Ghana is obtained.  

 

Finally, this research was intended to demonstrate the usefulness of Markov chain modelling 

in the study of diseases and I envision this research can serve as an entry point into the 

extensive literature and potential applications of Markov chains in malaria and disease 

modelling. 

 

5.2 RECOMMENDATIONS 

We recommend that measures be put in place by the government of Ghana to implement 

malaria management procedures which increase the recovery probability or recovery rates 

since this leads to an increase in the life expectancy of the Ghanaian and also reduces the 

duration of the disease. 

We also recommend that preventive measures which lead to the reduction in the infection 

probability be adapted since this also increases the life expectancy of Ghanaians. Finally we 

recommend that intermittent preventive treatment (IPT) using anti malaria drugs like 

Sulfadoxine-pyrimethamine (SP), Chemoprophylaxis can be administered before 11 days to 

interrupt occurrence of malaria. 
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APPENDICES  

 
Appendix 1CALCULATION OF DISEASE METRICS 

The following script computes for the disease metrics 
%% 1 Create the matrix P that contains the transition probabilities for susceptible (state 0), 

infected (state 1), and dead (state 2) 

  %%Define the transition probabilities 

p01 = 0.70; %MOHG 

p02 = 0.00039;   % who average 

p00 = 1-p01-p02 

p10 = 0.47;    %Who 

p12 = 0.0004;  

p11 = 1-p10-p12 

p20 = 0 

p21 = 0 

p22 = 1 

P = [p00,p01,p02; p10,p11,p12; p20,p21,p22]; 

%2. Calculate steady states 

 syms x0 x1 x2    

_etn2='x1=x0*p01+x1*p11+x2*p21'; 

_etn3='x2=x0*p02+x1*p12+x2*p22'; 
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 etn4= 'x0+x1+x2=1'; 

 [a,b,c]=solve(etn1,etn3,etn4,x0,x1,x2); 

a=subs(a) 

b=subs(b) 

c=subs(c) 

%3. Calculate metrics of interest 

   %Probability of moving from susceptible (0) to infected (1) over course of 

%study period and expected time to first transition 

Pr01 = p01 / (1-p00); 

Ex01 = 1 / (1-p00); 

%%Probability of moving from infected (1) to susceptible (0) over course of 

%%study period and expected time to first transition 

Pr10 = p10 / (1-p11); 

Ex10 = 1 / (1-p11); 

%%Calculate the probability of first infection at each time step for a susceptible individual 

%%Create the number of time steps, n 

n=1:30; 

%%Create a vector with zero values (as place holders) that 
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%%is the length of n for f01(n) as defined in eqn 4 

f01n = zeros(length(n)); 

 %%Write a loop that uses eqn 15 to calculate the probability 

%% of first infection at each time step 

for i=1:length(f01n) 

    f01n(i) = p01 * p00^(i-1); 

end 

%%print the values 

f01=f01n(:,1) 

 f10n = zeros(length(n)); 

%% of first recovery at each time step 

for i=1:length(f01n) 

    f10n(i) = p10 * p11^(i-1); 

end 

f10=f10n(:,1) 

 pinf=cumsum(f01) 

prec=cumsum(f10) 

%%4. Find the life expectancy (expected time to absorption) for susceptible and infected 

states. 
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%%Create the matrix Q with the transition probabilities 

Q = P(1:2,1:2) 

 %%Define an identity matrix called Identity 

Id = eye(size(Q));  

%%Find the inverse of the Identity matrix minus Q using 

IminusQ = Id - Q; 

Fmatrix= inv(IminusQ); 

 %% Create a 2 by 1 vector with the value 1 in each element 

one = ones(length(Q),1); 

 %% Use eqn 9 to find life expectancies 

Lifeexpectancy =inv(IminusQ)*one 

 b=Lifeexpectancy*8/366 
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Appendix 2: TABLES 

Table A2.1: The incidence rates in Ghana 

  Year 1997 1998 1999 2000 2001 2002 2003 

incidence rate per 

100000 

11615 11191 12284 13590 15667 15726 16363 

incidence rate 0.11615 0.11191 0.12284 0.1359 0.15667 0.15726 0.16363 

 

 

Year 2004 2005 2006 2007 2008 Average 

incidence rate per 100000 16015 17513 18032 15833 21376  

incidence rate 0.16015 0.17513 0.18032 0.15833 0.21376 0.1667* 

Source: GHS. NB * is the average from 2000- 2008 
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Table A2.2:  Cases of Admission for various age groups from 2000 to 2008 

Source: World Health Organization(WHO). 

 

 

 

 

 

 

 

  All ages  <5 years All ages  <5 years 

  All-cause Malaria All-cause Malaria All-ages Malaria 

YEAR admissions Admissions Admissions admissions proportion  proportion  

2000 263269 84091 98507 27478 0.319411 0.278945 

2001 268598 87236 102397 38911 0.324783 0.380001 

2002 310793 116600 100895 38340 0.375169 0.379999 

2003 517566 115401 120126 45648 0.222969 0.380001 

2004 844091 132566 123384 46886 0.157052 0.380001 

2005 483038 118449 174522 31644 0.245217 0.181318 

2006 356000 122928 97860 51407 0.345303 0.525312 

2007 556036 157628 113952 22019 0.283485 0.19323 

2008 900242 272802 181427 99217 0.303032 0.54687 

Average 499959.2 134189 123674.4 44616.67 0.286269 0.360631 
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Table A2.3:  Mortality summaries for children below 5 from 2000 to 2008 

Year All-

cause 

Malaria Mortality 

rates 

p02 per 

sampling time 

proportion of  

malaria deaths 

Yearly Case 

fatality rates 

(%) 

2000 8872 3952 0.09007 0.00197 0.21569 - 

2001 6265 1717 0.06118 0.00134 0.21998 - 

2002 5913 2376 0.05861 0.00128 0.27266 - 

2003 5983 2103 0.04981 0.00109 0.27540 - 

2004 5887 1575 0.04771 0.00104 0.27501 2.7 

2005 4532 2037 0.02597 0.00057 0.30817 2.1 

2006 4988 3125 0.05097 0.00111 0.20692 2.7 

2007 5263 1241 0.04619 0.00101 0.06746 2.4 

2008 4907 1697 0.02705 0.00059 0.07987 1.6 

Average 5845.6 2202.6 0.05084 0.00111 0.21347 1.9** 

Source: WHO, **GHS (with current treatment) 
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Table A2.3b 

Year under 5 mortality rates 

per 1000 alive 

mortality rate at 

sampling time 

p02 

1988 155.00 0.155 0.00068 0.00061 

1993 119.00 0.119 0.00052 0.00047 

1998 107.00 0.107 0.00047 0.00042 

2003 111.00 0.111 0.00049 0.00044 

2008 80.00 0.080 0.00035 0.00032 

average from 2003-

2008 

99.33 0.099 0.00043 0.00039 

Source: GHS 
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Table A2.4: Recovery cases of various age groups from 2000 to 2008 in Ghana 

RECOVERED <5 years Proportion of 

recovered 

Recovery 

rates 

 Malaria   

YEAR RECOVERY   

2000 23526 0.856176 0.0693 

2001 37194 0.955874 0.1114 

2002 35964 0.938028 0.0993 

2003 43545 0.95393 0.1099 

2004 45311 0.966408 0.1212 

2005 29607 0.935628 0.0980 

2006 48282 0.939211 0.1000 

2007 20778 0.94364 0.1027 

2008 97520 0.982896 0.1453 

Average 42414.11 0.94131 0.1063 

Source: World Health Organization(WHO). 

NB. For probability of infection during sampling period we made an assumption of equal 

proportion over the year. 

 

 

 

 

 

 

 



 

 

 104 

Table A2.5: The Estimated first transition probabilities and overall probabilities for 

infection and recovery in Ghana  

Sampling time probability first 

of infection, f01 

probability of 

first recovery, f10 

total probability 

of infection, pinf 

total probability 

of infection, prec 

1 0.7000 0.4700 0.7000 0.4700 

2 0.2097 0.2489 0.9097 0.7189 

3 0.0628 0.1318 0.9726 0.8507 

4 0.0188 0.0698 0.9914 0.9205 

5 0.0056 0.0370 0.9970 0.9575 

6 0.0017 0.0196 0.9987 0.9771 

7 0.0005 0.0104 0.9992 0.9875 

8 0.0002 0.0055 0.9994 0.9930 

9 0.0000 0.0029 0.9994 0.9959 

10 0.0000 0.0015 0.9994 0.9974 

11 0.0000 0.0008 0.9994 0.9982 

12 0.0000 0.0004 0.9994 0.9987 

13 0.0000 0.0002 0.9994 0.9989 

14 0.0000 0.0001 0.9994 0.9990 

15 0.0000 0.0001 0.9994 0.9991 
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Table A2.6: List of Governmental and external financing in malaria control. 

 2006 2007 2008 2009 

Other* 0 0 1000000 0 

USAID/PMI 0 5000000 16900000 17300000 

UNITED NATIONS 

CHILDREN’S FUND 
0 1200000 1200000 939300 

WHO 0 100000 200000 290000 

World Bank 0 5000000 4000000 1283389 

Global Fund 21762030 9269310 10544980 18363180 

Government** 1229000 2980000 3235000 8700000 

Source WHO  

NB:*Bilaterial: DFI, JICA; and EU, UN agencies, etc.** Government expenditure may not include 
cost at sub-national level and cost related to health systems, human resources, etc. 
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Appendix 3: Diagrams showing risk and distribution of malaria 

 

 

FigureA3.1: Map of malaria risk areas. Source: World Health Organization, 2005. 

 

 

 

The image part with relationship ID rId51 was not found in the file.
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Figure A3.2: The distribution of confirmed cases (per 1000 population) in Ghana 

Source: WHO (World Malaria Report 2011). 

 

The image part with relationship ID rId51 was not found in the file.
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