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ABSTRACT 

The travelling salesman problem is considered to be a classic example of what is known as a tour 

problem. Essentially, any type of tour problem involves making a series of stops along a 

designated route and making a return journey without ever making a second visit to any previous 

stop. Generally, a tour problem is present when there is concern on making the most of available 

resources such as time and mode of travel to accomplish the most in results. Finding a solution to 

a tour problem is sometimes referred to as discovering the least-cost path, implying that the 

strategic planning of the route will ensure maximum benefit with minimum expenditure incurred.  

The concept of the travelling salesman problem can be translated into a number of different 

disciplines. As a form of optimization that is useful in both mathematical and computer science 

disciplines, combinatorial optimization seeks to team relevant factors and apply them in a 

manner that will yield the best results with repeated usage.  

This study formulated a real-life problem of WAEC as a TSP, modelled as network problem and 

applies dynamic programming approach in solving the problem. It was observed that the route 

that gave minimum achievable inspection plan was 1 – 3 – 6 –9 – 10 at the minimum distance of 

183 km, by visiting as many as five centres on the route.  
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CHAPTER ONE 

1.0 INTRODUCTION 

Nowadays, the route management is very important to make sure the user can arrive at the 

destination the fastest. In the transportation industry, the route that will be generated should 

consider the cost and time constraints which are dependent on the distance travelled using the 

route. Although from human logical thinking, the route can be generated easily but the 

calculation of checking the route whether it is optimal route or not is difficult and will take long 

time to be implemented.  

The travelling salesman or salesperson problem (TSP) is one of the most well-known 

optimization problems in the literature. It has attracted the attention of many researchers over the 

last half a century because of its simple problem description but simultaneously its associated 

difficulty in obtaining an optimal solution efficiently. The travelling-salesman problem involves 

a salesman who must make a tour of a number of cities using the shortest path available. For 

each number of cities n, the number of paths which must be explored is n!, causing this problem 

to grow exponentially rather than as a polynomial. 

The travelling salesperson problem (TSP) is a classic model for various production and 

scheduling problems. Many production and scheduling problems ultimately can be reduced to 

the simple concept that there is a salesperson who must travel from city to city (visiting each city 

exactly once) and wishes to minimize the total distance travelled during his tour of all n cities. 

Obtaining a solution to the problem of a salesperson visiting n cities while minimizing the total 

distance travelled is one of the most studied combinatorial optimization problems. While there 

are variations of the TSP, the Euclidean TSP is NP-hard (Schmitt and Amini, 1998; Falkenauer, 



1998). The interest in this particular type of problem is due to how common the problem is and 

how difficult the problem is to solve when n becomes sufficiently large.  

In this chapter of the thesis, an overview of the travelling salesman problem would be given; a 

brief description of the problem statement of the thesis is also presented together with the 

objectives, the methodology, the justification and the organization of the thesis.  

  

 1.1 BACKGROUND OF STUDY 

The Travelling Salesman Problem (TSP) is a problem whose solution has eluded many 

mathematicians for years. Currently there is no solution to the TSP that has satisfied 

mathematicians. The TSP has a very rich history. Historically, mathematics related to the TSP 

was developed in the 1800’s by Sir William Rowan Hamilton and Thomas Penyngton Kirkman, 

Irish and British mathematicians, respectively. Specifically, Hamilton was the creator of the 

Icosian Game in 1857. It was a pegboard with twenty holes that required each vertex to be 

visited only once, no edge to be visited more than once, and the ending point being the same as 

the starting point. This kind of path was eventually referred to as a Hamiltonian circuit. 

However, the general form of the TSP was first studied by Karl Menger in Vienna and Harvard 

in the late 1920’s or early 1930’s. 

TSPs were first studied in the 1930s by mathematician and economist Karl Menger in Vienna 

and Harvard. It was later investigated by Hassler Whitney and Merrill Flood at Princeton. 

Applegate et al., (1994) solved TSP containing 7,397 cities. Later in 1998, they solved it using 

13,509 cities in United States. In 2001, the authors found the optimal tour of 15,112 cities in 

Germany. Later in 2004, TSP of visiting all 24,978 cities in Sweden was solved; a tour of length 



of approximately 72,500 kilometers was found and it was proven that no shorter tour exists. This 

is currently the largest solved TSP. 

The travelling salesman problem (TSP) is a typical example of a very hard combinatorial 

optimization problem. The problem is to find the shortest tour that passes through each vertex in 

a given graph exactly once. The TSP has received considerable attention over the last two 

decades and various approaches are proposed to solve the problem.   As early as in 1954, optimal 

solution to travelling salesman problem with 49 numbers of cities has been obtained. In 1970’s 

Held and Karp used minimum spanning tree to solve the TSP with 64 cities. In 1971, Bellmore 

and Malone solved TSP using sub tour elimination .In 1980’s, Crowder and Padberg solved the 

problem with 318 cities using cutting-plane method. In 1991 Grötschel and Holland proposed a 

solution for large scale TSP. Applegate et al., (1998, 2001 and 2004) proposed solution for TSP 

using cuts  that solved 13509,15112 ,24978 cities respectively. The solutions worked well up to 

5000 cities and can be used up to 33,810 cities.  

The Travelling Salesman problem (TSP) is one of the benchmark and old problems in Computer 

Science and Operations Research. It can be stated as: A network with ‘n’ nodes (or cities), with 

'node 1' as ‘headquarters’ and a travel cost (or distance, or travel time etc.,) matrix C= (Cij) of 

order n associated with ordered node pairs (i, j) is given. The problem is to find a least cost 

Hamiltonian cycle. 

On the basis of the structure of the cost matrix, the TSPs are classified into two groups – 

symmetric and asymmetric. The TSP is symmetric if Cij = Cji, for all i, j and asymmetric 

otherwise. For an n-city asymmetric TSP, there are (n -1)! possible solutions, one or more of 

which gives the minimum cost. 



For an n-city symmetric TSP, there is (n-1)! / 2 possible solutions along with their reverse cyclic 

permutations having the same total cost. In either case the number of solutions becomes 

extremely large for even moderately large n so that an exhaustive search is impracticable. There 

are mainly three reasons why TSP has attracted the attention of many researchers and remains an 

active research area. First, a large number of real-world problems can be modeled by TSP. 

Second, it was proved to be NP-Complete problem. Third, NP-Complete problems are 

intractable in the sense that no one has found any really efficient way of solving them for large 

problem size. Also, NP-complete problems are known to be more or less equivalent to each 

other; if one knew how to solve one of them one could solve the lot. 

Broadly, the TSP is classified as symmetric travelling salesman problem (sTSP), asymmetric 

travelling salesman problem (aTSP), and multi travelling salesman problem (mTSP). With sTSP: 

Let V = {v1, .., vn} be a set of cities, A = {(r,s) : r,s V} be the edge set, and drs = dsr be a cost 

measure associated with edge (r,s) A.  The sTSP is the problem of finding a minimal length 

closed tour that visits each city once. In this case cities vi V are given by their coordinates (xi ,yi 

) and drs is the Euclidean  distance between r and s then we have an Euclidean TSP.  With aTSP: 

If drs ≠ dsr for at least one (r,s) then the TSP becomes an aTSP. With mTSP: The mTSP is 

defined as: In a given set of nodes, let there be m salesmen located at a single depot node. The 

remaining nodes (cities) that are to be visited are intermediate nodes. Then, the mTSP consists of 

finding tours for all m salesmen, who all start and end at the depot, such that each intermediate 

node is visited exactly once and the total cost of visiting all nodes is minimized. The cost metric 

can be defined in terms of distance, time, etc. 

Possible variations of the problem are as follows: Single vs. multiple depots: In the single depot, 

all salesmen finish their tours at a single point while in multiple depots the salesmen can either 



return to their initial depot or can return to any depot keeping the initial number of salesmen at 

each depot the same after the travel. Number of salesmen: The number of salesman in the 

problem can be fixed or a bounded variable. Cost: When the number of salesmen is not fixed, 

then each salesman usually has an associated fixed cost incurring whenever this salesman is 

used. In this case, minimizing the requirements of salesman also becomes an objective. Time 

frame: Here, some nodes need to be visited in a particular time periods which are called time 

windows.  It is an extension of the mTSP, and referred to as multiple travelling salesman 

problem with specified time frame (mTSPTW). The application of mTSPTW can be very well 

seen in the aircraft scheduling problems. Other constraints: Constraints can be on the number of 

nodes each salesman can visit, maximum or minimum distance a salesman travels or any other 

constraints. The mTSP is generally treated as a relaxed vehicle routing problems (VRP) where 

there is no restrictions on capacity. Hence, the formulations and solution methods for the VRP 

are also equally valid and true for the mTSP if a large capacity is assigned to the salesmen (or 

vehicles). However, when there is a single salesman, then the mTSP reduces to the TSP (Bektas, 

2006).  

One example of the usefulness of the TSP is a direct application of the TSP in the drilling 

problem of printed circuit boards (PCBs) (Grötschel et al., 1991). To connect a conductor on one 

layer with a conductor on another layer, or to position the pins of integrated circuits, holes have 

to be drilled through the board. The holes may be of different sizes. To drill two holes of 

different diameters consecutively, the head of the machine has to move to a tool box and change 

the drilling equipment. This is quite time consuming. Thus it is clear that one has to choose some 

diameter, drill all holes of the same diameter, change the drill, drill the holes of the next 

diameter, etc. Thus, this drilling problem can be viewed as a series of TSPs, one for each hole 



diameter, where the 'cities' are the initial position and the set of all holes that can be drilled with 

one and the same drill. The 'distance' between two cities is given by the time it takes to move the 

drilling head from one position to the other. The aim is to minimize the travel time for the 

machine head. 

In addition to the above application, TSP has been applied to solve a number of real-life 

problems, including Overhauling gas turbine engines (Plante et al., 1987), X-Ray 

crystallography(Bland & Shallcross, 1989; Dreissig & Uebach, 1990), Computer wiring(Lenstra 

& Rinnooy Kan, 1974), The order-picking problem in warehouses(Ratliff & Rosenthal,1983), 

Vehicle routing (Lenstra & Rinnooy Kan, 1974), and Mask plotting in PCB 

production(Gottschalk et al., 1991). Thus, TSP has played an important role in supporting 

managerial decisions in the areas of printing press scheduling, school bus routing, crew 

scheduling, interview scheduling, hot rolling scheduling, mission planning, and design of global 

navigation satellite system surveying networks. 

 

1.2 PROBLEM  STATEMENT 

 The specific form of problem that this thesis seeks to solve is to mathematically model a The 

West African Examinations Council Depot inspection problem as travelling salesman problem 

(TSP) and solve the problem.  

The TSP is one of the most widely studied integer programming problems. The TSP can be 

easily stated as follows. A salesman wants to visit m distinct cities and then return home. He 

wants to determine the sequence of the travel so that the overall travelling distance is minimized 



while visiting each city not more than once. Although the TSP is conceptually simple, it is 

difficult to obtain an optimal solution. 

In an m-city situation, any permutation of m cities yields a possible solution. As a consequence, 

m! possible tours must be evaluated in the search space. By introducing variables xij to represent 

the tour of the salesman travels from city i to city j, one of the common integer programming 

formulations for the TSP can be written as: 

 

 Minimize z =  
                                  j  i 
 
 
Subject to  
 
    = 1      j = 1, 2, …, m; i≠ j.  
 
   = 1   i = 1, 2, …, m; i≠ j.  
  ui –uj + mxij  m – 1  i, j = 2, 3, …, m; i¹ j.  

  All xij = 0 or 1, All ui  0 and is a set of integers  

The distance between city i and city j is denoted as dij. The objective function Z is simply to 

minimize the total distance travelled in a tour. The first constraint set ensures that the salesman 

arrives once at each city. The second constraint set ensures that the salesman leaves each city 

once. The third constraint set is to avoid the presence of sub-tour. Generally, the TSP formulated 

is known as the Euclidean TSP, in which the distance matrix d is expected to be symmetric, that 

is dij = dji for all i, j, and to satisfy the triangle inequality, that is dik  dij + djk for all distinct i, j, 

k.  

1.3 OBJECTIVES  



The travelling salesman problem is one of the most commonly studied optimization problem in 

Operations Research because of its wide applicability. Due to its NP -hard nature, the problem is 

already complex and difficult to solve.  

The goal of this research is to model the Depot inspection problem of The West African 

Examinations Council as a TSP problem and solve the problem.  

1.4 METHODOLOGY  

 In our methodology, we shall propose the Dynamic Programming approach in solving our 

problem. First, the algorithm will be presented. A real life computational study is performed and 

Excel Solver would be employed to analyze our Data. 

 

 1.5 JUSTIFICATION  

The travelling salesman problems are widely used in modeling most of the real-life industrial 

applications, and very interestingly from the perspective of computer science because of the time 

complexities in some of the well-known algorithms used in solving the problems. These have 

made the studies of travelling salesman problems and their algorithms an important area of 

research in the contribution to academic knowledge and the benefit of the economy as a whole, 

hence the reason for solving the travelling salesman problem. 

 

1.6 ORGANIZATION OF THE THESIS 

In chapter one, we presented a background study of travelling salesman problem.  



In chapter two, related work in the travelling salesman problem will be discussed. 

In chapter three, dynamic programming algorithm proposed to solve our problem would be 

introduced and explained.  

Chapter four will provide a computational study of the algorithm applied to our travelling 

salesman instances.  

Chapter five will conclude this thesis with additional comments and recommendations 

 

1.7 SUMMARY  

Mathematical programming models are useful tools for modeling and optimizing real-life 

problems. Unfortunately, the time required to solve mathematical programming models are 

mostly exponential, so real-life problems often cannot be solved. The travelling salesman 

problem is a form of mathematical programming problem that are used to model most of the 

real-life industrial applications. In addition, travelling salesman problems are widely used in 

industrial decision making, and very interestingly from the perspective of computer science since 

they are NP-hard. These facts make the studies of travelling salesman problems and their 

algorithms an extremely important area of research.  

This thesis seeks to model a real-life problem in the industry as a travelling salesman problem 

and proposed a dynamic programming approach in solving the problem. 

CHAPTER TWO 

LITERATURE REVIEW 



Order picking in conventional warehouse environments involves determining a sequence in 

which to visit the unique locations where each part in the order is stored, and therefore can often 

be modeled as s TSP. With computer tracking of inventories, parts may now be stored in 

multiple locations, simplifying the replenishment of inventory and eliminating the need to 

reserve space for each item. In such an environment, order picking requires choosing a subset of 

the locations that store an item to collect the required quantity. Thus, both the assignment of 

inventory to an order and the associated sequence in which the selected locations are visited 

affect the cost of satisfying an order. Daniels et al. (1998) formulated a model for simultaneously 

determining the assignment and sequencing decisions, and compared it with the previous models 

for order picking. 

 

Fagerholt and Christiansen (2000) studied a TSP with allocation, time window, and precedence 

constraints (TSP-ATWPC). The TSP-ATWPC occurs as a sub problem involving optimally 

sequencing a given set of port visits in a real bulk ship scheduling problem, which is a combined 

multi-ship pick up and delivery problem with time windows and multi-allocation problem. Each 

ship in the fleet is equipped with a flexible cargo hold that can be partitioned into several smaller 

holds in a given number of ways, thus allowing multiple products to be carried simultaneously 

by the same ship. The allocation constraints of the TSP-ATWPC ensure that the partition of the 

ship’s flexible cargo hold and the allocation of cargoes to the smaller holds are feasible 

throughout the visiting sequence. 

 



Calvo and Cordone (2003) introduced the overnight security service problem. The model 

obtained was a single-objective mixed-integer programming problem. It is NP-hard in the strong 

sense, and exact approaches are not practicable when solving real-life instances. Thus, the model 

was solved heuristically, through decomposition into two sub problems. The former was a 

capacitated clustering problem, the latter a multiple-travelling salesperson problem with time 

windows. 

 

The time-dependent travelling salesperson problem (TDTSP) is a generalization of the classical 

TSP, where the cost of any given arc is dependent of its position in the tour. The TDTSP can 

model several real-life applications (e.g., one-machine sequencing). Gouveia and Vob (1995) 

presented a classification of formulations for the TDTSP. This framework includes both new and 

old formulations. All previous literature on the TSP assumed that the sites to be visited are 

stationary. Motivated by practical applications, Helvig et al. (2003) introduced a time-dependent 

generalization of TSP, which is called moving target TSP, where a pursuer must intercept in 

minimum time a set of targets that move with constant velocities. 

 

The TSP has been widely studied in the literature, mainly because of the real-life logistics and 

transportation problems related to it. Toth and Vigo (2002) reviewed the models and the exact 

algorithms based on the branch-and bound approach proposed in recent years for the solution of 

the basic version of the TSP, where the capacity constraints of the vehicle are considered.  

 



Ruiz et al. (2004) proposed a two-stage exact approach for solving a real-life problem of the 

TSP. In the first stage, all the feasible routes are generated by means of an implicit enumeration 

algorithm; thereafter, an integer programming model is designed to select in the second stage the 

optimum routes from the set of feasible routes. The integer model uses a number of 0-1 variables 

ranging from 2,000 to 15,000 and arrives at optimum solutions in an average time of sixty 

seconds (for instances up to 60 clients). The developed system was tested with a set of real 

instances and, in a worst-case scenario (up to 60 clients), the routes obtained ranged from a 7% 

to 12% reduction in the distance traveled and from a 9% to 11% reduction in operational costs. 

 

Teixeira et al. (2004) conducted a study of route planning for the collection of urban recyclable 

waste. The aim was to create collection routes for every day of the month, to be repeated every 

month, as a TSP minimizing the operation cost. Two important features of the problem were the 

planning of a relatively long period of time and the separate collection of three types of waste. 

The collection operation was modeled in accordance to the practice of the company that manages 

the collection system. Preliminary results suggest that significant economies in collection costs 

are possible. 

 

The Aero medical Airlift Wing of the U. S. Air Force is responsible for the transportation of 

military personnel in need of specialized medical treatment to and from various military 

hospitals. Over 8 million active and retired personnel, spouses, and dependents benefit from the 

system. The system operates under a variety of regulations to ensure timely service and safe 

operation of the aircraft. Ruland (1999) presented a model of the system to assist the route 



planners in generating solutions minimizing patient inconvenience. This was achieved by 

assigning patients to sequence of aircraft while minimizing layovers. 

 

Xiong et al. (1998) used the TSP with time windows (TSPTW) to analyze and model the rolling 

batch planning problem. Kim and Kim (1999) considered a multi-period scheduling problem in a 

transportation system where a fleet of homogeneous vehicles delivers products of single type 

from a central depot to multiple (N) cities. The objective is to minimize transportation costs for 

product delivery and inventory holding costs at cities over the planning horizon. 

 

 

Wasner and Zapfel (2004) described why the optimal design of depot and hub transportation 

networks for parcel service providers makes it necessary to develop a generalized hub location 

and travelling salesperson model (TSPM). Analogous problems occur for postal, parcel, and 

piece goods service providers. A generalized hub location and TSPM was developed, which 

encompassed the determination of the number and locations of hubs and depots and their 

assigned service areas as well as the routes between the demand points and consolidation points 

(depots, hubs). The applicability of the model was demonstrated through an Austrian case study. 

The developed model involved several million binary variables as well as continuous variables 

and millions of constraints. 

 



Andreea and Camelia-M (2007) presented a model which used a component-based approach to 

model Ant Colony System (ACS) for the travelling salesman problem (TSP). They used 

components to solve the TSP with ACS technique and the collaboration rules between 

components are also described. The internal reasoning about the ant colony component-based 

system for the TSP gives a better perception of solving this problem using ant-based techniques. 

 

Agarwala et al., (2001) studied a model and used Concorde’s TSP solver to construct radiation 

hybrid maps as part of their ongoing work in genome sequencing. The TSP provides a way to 

integrate local maps into a single radiation hybrid map for a genome; the cities are the local maps 

and the cost of travel as a measure of the likelihood tat one local map immediately follows 

another. 

 

To connect a conductor on one layer with a conductor on another layer, or to position the pins of 

integrated circuits, holes have to be drilled through the board. The holes may be of different 

sizes. To drill two holes of different diameters consecutively, the head of the machine has to 

move to a tool box and change the drilling equipment. This is quite time consuming. Thus it is 

clear that one has to choose some diameter, drill all holes of the same diameter, change the drill, 

drill the holes of the next diameter, etc. Thus, this drilling problem can be viewed as a series of 

TSPs, one for each hole diameter, where the cities are the initial position and the set of all holes 

that can be drilled with one and the same drill. The distance between two cities is given by the 

time it takes to move the drilling head from one position to the other. The aim is to minimize the 



travel time for the machine head. Grotschel et al., (1991) presented a direct application of the 

TSP in the drilling problem of printed circuit boards (PCBs). 

 

To guarantee a uniform gas flow through the turbines there are nozzle-guide vane assemblies 

located at each turbine stage. Such an assembly basically consists of a number of nozzle guide 

vanes affixed about its circumference. All these vanes have individual characteristics and the 

correct placement of the vanes can result in substantial benefits (reducing vibration, increasing 

uniformity of flow, reducing fuel consumption). Plante et al., (1987) presented a model on the 

overhauling gas turbine engines as a TSP problem which occurs when gas turbine engines of 

aircraft have to be overhauled. The problem of placing the vanes in the best possible way was 

modeled as a TSP with special objective function. 

 

Analysis of the structure of crystals is an important application of the TSP. Here an X-ray 

diffractometer is used to obtain information about the structure of crystalline material. To this 

end a detector measures the intensity of X-ray reflections of the crystal from various positions. 

Whereas the measurement itself ca be accomplished quite fast, there is a considerable overhead 

in positioning time since up to hundreds of thousands positions have to be realized for some 

experiments. In the two examples referred to, the positioning involves moving four motors. The 

time needed to move from one position to the other can be computed very accurately. The result 

of the experiment does not depend on the sequence in which the measurements at the various 

positions are taken. However, the total time needed for the experiment depends on the sequence. 

Therefore, the problem consists of finding a sequence that minimizes the total positioning time. 



This leads to a travelling salesman problem, studied by Bland and Shallcross (1989) and Dreissig 

and Uebach (1990). 

 

Lenstra and Rinnooy (1974) presented a special case of connecting components on a computer 

board. Modules are located on a computer board and a given subset of pins has to be connected. 

In contrast to the usual case where a Steiner tree connection is desired, here the requirement is no 

more than two wires are attached to each pin. Hence there is the problem of finding a shortest 

Hamiltonian path with unspecified starting and terminating points. A similar situation occurs for 

the so-called test bus wiring. To test the manufactured board one has to realize a connection 

which enters the board at some specified point, runs through all the modules, and terminates at 

some specified point. For each module there is also a specified entering and leaving point for this 

test wiring. This problem also amounts to solving a Hamiltonian path problem with the 

difference that the distances are not symmetric and that starting and terminating point are 

specified. 

 

Ratliff and Rosenthall (1983) studied a problem of order-picking associated with material 

handling in a warehouse. Assume that at a warehouse an order arrives for a certain subsets of the 

items stored in the warehouse. Some vehicle has to collect all items of this order to ship them to 

the customer. The relation to the TSP is immediately seen. The storage locations of the items 

correspond to the nodes of the graph. The distance between two nodes is given by the time 

needed to move the vehicle from one location to the other. The problem of finding a shortest 

route for the vehicle with minimum pickup time can now be solved as a TSP.  



 

Suppose that in a city n mail boxes have to be emptied every day within a certain period of time, 

say one hour. The problem is to find the minimum number of trucks to do this and the shortest 

time to do the collections using this number of trucks. As another example, suppose that n 

customers require certain amounts of some commodities and a supplier has to satisfy all demands 

with a fleet of trucks. The problem is to find an assignment of customers to the trucks and a 

delivery schedule for each truck so that the capacity of each truck is not exceeded and the total 

travel capacity constraints are combined.  These are common in many real-life applications. 

Lenstra and Rinnooy (1974) studied and solved this problem as a TSP without the time and 

capacity constraints and a fixed number of trucks (say m). In this case, the authors obtained m-

salesmen problem. Nevertheless, one may apply methods for the TSP to find good feasible 

solutions for this problem. 

 

For the production of each layer of a printed circuit board, as well as for layers of integrated 

semiconductor devices, a photographic mask has to be produced. In this case for printed circuit 

boards this is done by a mechanical plotting device. The plotter moves a lens over a 

photosensitive coated glass plate. The shutter may be opened or closed to expose specific parts of 

the plate. There are different apertures available to be able to generate different structures on the 

board. Two types of structures have to be considered. A line is exposed on the plate by moving 

the closed shutter to one endpoint of the line, then opening the shutter and moving it to the other 

end of the line. Then the shutter is closed. A point type structure is generated by moving (with 

the appropriate aperture) to the position of the point then opening the shutter just to make a short 



flash, and then closing it again. Exact modeling of the plotter control problem leads to a problem 

more complicated than the TSP and also more complicated than the rural postman problem. 

Grotschel et al., (1991) presented a real-life application in the actual production environment of 

the above problem. 

One of the major and primary applications of the multiple travelling salesperson problems arises 

in scheduling a printing press for a periodical with multi-editions. Here, there exist five pairs of 

cylinders between which the paper rolls and both sides of a page are printed simultaneously. 

There exist three kinds of forms, namely 4-, 6-, and 8-page forms, which are used to print the 

editions. The scheduling problem consists of deciding which form will be on which run and the 

length of each run. In the multiple salesperson problem vocabulary, the plate change costs are the 

inter-city costs. Gorenstein (1970) and Carter and Ragsdale (2002) presented a real-life 

application of the above problem. 

 

Angel et al., (1972) investigated the problem of scheduling buses as a variation of the multiple 

travelling salesperson problems with some side constraints. The objective of the scheduling is to 

obtain a bus loading pattern such that the number of routes is minimized, the total distance 

travelled by all buses is kept at minimum, no bus is overloaded and the time required to traverse 

any route does not exceed a maximum allowed policy. 

 

An application for deposit carrying between different branch banks was presented by Svestka 

and Huckfeldt (1973) as a multiple travelling salesperson problem. Here, deposits need to be 



picked up at branch banks and returned to the central office by a crew of messengers. The 

problem is to determine the routes having a total minimum cost.  

 

Gilbert and Hofstra (1992) studied the application of multiple travelling salesperson problems, 

having multi period variations, in scheduling interviews between tour brokers and vendors of the 

tourism industry. Each broker corresponds to a salesman who must visit a specified set of vendor 

booths, which are represented by a set of T cities. 

 

In the iron and steel industry, orders are scheduled on the hot rolling mill in such a way that the 

total set-up cost during the production can be minimized. Tang et al., (2000) presented an 

application of modeling such problem. Here, the orders are treated as cities and the distance 

between two cities is taken as penalty cost for production changeover between two orders. The 

solution of the model yielded a complete schedule for the hot strip rolling mill. 

 

Fiechter (1994) proposed a method for the TSP that includes an intensification phase during 

which each process optimizes a specific slice of the tour. At the end of the intensification phase, 

processes synchronize to recombine the tour and modify (shift part of the tour to a predetermined 

neighboring process) the partition. To diversify, each process determines from among its subset 

of cities a candidate list of most promising moves. The processes then synchronize to exchange 

these lists, so that all build the same final candidate list and apply the same moves. Fiechter 



reports near-optimal solutions to large problems (500, 3000 and 10000 vertices) and almost 

linear speedups (less so for the 10000 vertex problems).  

 

Porto and Ribeiro (1995, 1996) studied the task scheduling problem for heterogeneous systems 

as a TSP and proposed several synchronous parallel tabu search procedures where a master 

process determines and modifies partitions, synchronizes slaves, and communicates best 

solutions. Interesting results were reported, even for strategies involving a high level of 

communications. Almost linear speedups were observed, better performances being observed for 

larger problem instances. 

 

 

Taillard (1993) studied parallel tabu search methods for travelling salesman problems. In 

Taillard’s approach, the domain is decomposed into Polar Regions, to which vehicles are 

allocated, and each sub problem is solved by an independent tabu search. All processors 

synchronize after a certain number of iterations (according to the total number of iterations 

already performed) and the partition is modified: tours, undelivered cities, and empty vehicles 

are exchanged between adjacent processors. Taillard reports very good results for the epoch.  

 

 Rego and Roucairol (1996) proposed a tabu search method for the TSP based on ejection chains 

and implemented an independent multi-thread parallel version, each thread using a different set 

of parameter settings but starting from the same solution. The method is implemented in a 

master-slave setting, where each slave executes a complete sequential tabu search. The master 



gathers the solutions found by the threads, selects the overall best, and reinitializes the threads 

for a new search.  

 

Crainic and Gendreau (2001) proposed a co-operative multi-thread parallel tabu search for the 

fixed cost, capacitated, multi-commodity network design problem as a TSP problem. In their 

study, the individual tabu search threads differed in their initial solution and parameter settings. 

Communications were performed asynchronously through a central memory device. The authors 

compared five strategies of retrieving a solution from the pool when requested by an individual 

thread. The strategy that always returns the overall best solution displayed the best performance 

when few (4) processors were used. When the number of processors was increased, a 

probabilistic procedure, based on the rank of the solution in the pool, appears to offer the best 

performance. The parallel procedure improves the quality of the solution and also requires less 

(wall clock) computing time compared to the sequential version, particularly for large problems 

with many commodities (results for problems with up to 700 design arcs and 400 commodities 

are reported). The experimental results also emphasize the need for the individual threads to 

proceed unhindered for some time (e.g., until the first diversification move) before initiating 

exchanges of solutions. This ensures that local search histories can be established and good 

solutions can be found to establish the central memory as an elite candidate set. By contrast, 

early and frequent communications yielded a totally random search that was ineffective. The 

authors finally report that the co-operative multi-thread procedure also outperformed an 

independent search strategy that used the same search parameters and started from the same 

initial points.  

 



 

The mission planning problem consists of determining an optimal path for each army men (or 

planner) to accomplish the goals of the mission in the minimum possible time. The mission 

planner uses a variation of the multiple travelling salesman problems where there are n planners, 

m goals which must be visited by some planners, and a base city to which all planners must 

eventually return. Brummit and Stentz (1996) and Yu et al., (2002) studied the application of the 

mission planning problem as a multiple travelling salesman problem. 

 

Ryan et al., (1998) presented a model of the routing problems arising in the planning of 

unmanned aerial vehicle applications as a multiple travelling salesman problem, and proposed a 

tabu search approach for solving the problem. 

 

A very recent and an interesting application of the multiple travelling salesperson problems, 

presented by Saleh and Chelouah (2004) arise in the design of global navigation satellite system 

(GNSS) surveying networks. A GNSS is a space-based satellite system which provides coverage 

for all locations worldwide and is quite crucial in real-life applications such as early warning and 

management for disasters, environment and agriculture monitoring, etc. The goal of surveying is 

to determine the geographical positions of unknown points on and above the earth using satellite 

equipment. These points, on which receivers are placed, are co-ordinated by a series of 

observation sessions. When there are multiple receivers or multiple working periods, the problem 

of finding the best order of sessions for the receivers can be formulated as a multiple travelling 

salesman problem.  

 



The travelling salesman problem is one of a class of difficult problems in combinatorial 

optimization that is representative of a large number of important scientific and engineering 

problems. Miller and Pekny (1991) gave a survey of recent applications and methods for solving 

large problems. In addition, an algorithm for the exact solution of the asymmetric travelling 

salesman problem was presented along with computational results for several classes of 

problems. The results show that the algorithm performs remarkably well for some classes of 

problems, determining an optimal solution even for problems with large numbers of cities, yet 

for other classes, even small problems thwart determination of a provably optimal solution.  

 

Tobias and Osten (2007) introduced an optical method based on white light interferometer in 

order to solve the well-known NP–complete travelling salesman problem. According to the 

authors it was the first time that a method for the reduction of non–polynomial time to 

quadratic time has been proposed. The authors showed that this achievement is limited by the 

number of available photons for solving the problem. It turned out that this number of 

photons is proportional to NN for a travelling salesman problem with N cities and that for 

large numbers of cities the method in practice therefore is limited by the signal–to–noise 

ratio.  

 

Kaur and Murugapan (2008) presented a novel hybrid genetic algorithm for solving Travelling 

Salesman Problem (TSP) based on the Nearest Neighbour heuristics and pure Genetic Algorithm 

(GA). The hybrid genetic algorithm exponentially derives higher quality solutions in relatively 

shorter time for hard combinatorial real world optimization problems such as Travelling 



Salesman Problem (TSP) than the pure GA. The hybrid algorithm outperformed the NN 

algorithm and the pure Genetic Algorithm taken separately. The hybrid genetic algorithm is 

designed and experimented against the pure GA and the convergence rate improved by more 

than 200% and the tour distance improved by 17.4% for 90 cities. These results indicate that the 

hybrid approach is promising and it can be used for various other optimization problems.  

 

Travelling salesman problems with profits (TSPs with profits) are a generalization of the 

travelling salesman problem (TSP), where it is not necessary to visit all vertices. A profit is 

associated with each vertex. The overall goal is the simultaneous optimization of the collected 

profit and the travel costs. These two optimization criteria appear either in the objective function 

or as a constraint. Dominique et al., (2003) studied a classification of TSPs with profits is 

proposed, and the existing literature is surveyed. Different classes of applications, modeling 

approaches, and exact or heuristic solution techniques are identified and compared. Conclusions 

emphasize the interest of this class of problems, with respect to applications as well as theoretical 

results.  

 

Cerny (1985) presented a Monte Carlo algorithm to find approximate solutions of the travelling 

salesman problem. The algorithm generates randomly the permutations of the stations of the 

travelling salesman trip, with probability depending on the length of the corresponding route. 

Reasoning by analogy with statistical thermodynamics, we use the probability given by the 

Boltzmann-Gibbs distribution. Surprisingly enough, using this simple algorithm, one can get 

very close to the optimal solution of the problem or even find the true optimum. The author 



demonstrates this on several examples. The author conjectures that the analogy with 

thermodynamics can offer a new insight into optimization problems and can suggest efficient 

algorithms for solving them. 

  

Viera et al., (2002) presented an approach to the well-known travelling salesman problem (TSP) 

via competitive neural networks. The neural network model adopted in this work is the Kohonen 

network or self-organizing maps (SOM), which has important topological information about its 

neurons configuration. The author was concerned with the initialization aspects, parameters 

adaptation, and the complexity analysis of the proposed algorithm. The modified SOM algorithm 

proposed by the author has shown better results when compared with other neural network based 

approaches to the TSP. 

 

The travelling salesman problem with precedence constraints (TSPPC) is one of the most 

difficult combinatorial optimization problems. Chiung (2002) presented an efficient genetic 

algorithm (GA) to solve the TSPPC.  The key concept of the proposed GA is a topological sort 

(TS), which is defined as an ordering of vertices in a directed graph. Also, a new crossover 

operation is developed for the proposed GA. The results of numerical experiments showed that 

the proposed GA produces an optimal solution and shows superior performance compared to the 

traditional algorithms.  

 

The classical travelling salesman problem involves the establishment of a tour around a set of 

points in a plane such that each point is intersected only once and the circuit is of minimal total 

length. When the length of a salesman's tour cannot exceed a specified constant, the problem 



becomes that of finding the fewest number of salesmen such that every city is visited by a 

salesman and the length of each salesman's tour does not exceed a specified constant. This is the 

chromatic travelling salesmen problem. An algorithm for this problem was presented by Milton 

et al., (2010) which was used to create periodic markets in parts of Sierra Leone. Fifteen rural 

areas were examined from Sierra Leone, and weekly market places were identified in each area. 

Salesmen were to be assigned to an area so that each market place was visited and each tour (or 

periodic ring) did not exceed forty hours. The chromatic travelling salesmen algorithm was used 

to minimize the number of periodic rings needed for each area and provide the specific tour for 

each ring. 

 

The Symmetric Circulant Travelling Salesman Problem asks for the minimum cost tour in a 

symmetric circulant matrix. The computational complexity of this problem is not known – only 

upper and lower bounds have been determined. Ivan and Federico (2008) presented a 

characterization of the two-stripe case. Instances where the minimum cost of a tour is equal to 

either the upper or lower bound are recognized. A new construction providing a tour is proposed 

for the remaining instances, and this leads to a new upper bound that is closer than the previous 

one. 

 

The travelling salesman problem (TSP) is known to be a combinatorial optimization problem 

which belongs to NP-hard (a class of problems which does not allow polynomial time solution). 

Recently, various types of TSP are studied on the Web and the best solutions up to date are open 



to the public. The initial solution for a given TSP can be easily obtained by the well-known 

methods such as greedy, nearest neighbor, and saving method. Murano and Matsumoto (2003) 

studied on how to improve these initial solutions of TSP with less computation time, and the 

domain division method for 2-opt and 3-opt methods is proposed. The proposed methods 

remarkably reduce the number of the candidate edges for trials. By executing appropriate domain 

division, we can save more than 90 percent computation time for 2-opt and 3-opt methods, and 

can obtain good solution which is comparative to those obtained by without doing the domain 

division method and with much more computation time. 

 

Bernd and Peter (1996) presented an approach which incorporates problem specific knowledge 

into a genetic algorithm which is used to compute near-optimum solutions to travelling salesman 

problems (TSP). The approach is based on using a tour construction heuristic for generating the 

initial population, a tour improvement heuristic for finding local optimal in a given TSP search 

space, and new genetic operators for effectively searching the space of local optima in order to 

find the global optimum. The quality and efficiency of solutions obtained for a set of TSP 

instances containing between 318 and 1400 cities are presented.  

 

Gunter (1992) considered the special case of the Euclidean Travelling Salesman Problem where 

the given points lie on a small number (N) of parallel lines. Such problems arise for example in 

the fabrication of printed circuit boards, where the distance travelled by a laser which drills holes 

in certain places of the board should be minimized. By a dynamic programming algorithm, we 



can solve the N-line travelling salesman problem for n points in time nN, for fixed N, i. e., in 

polynomial time. This extends a result of Cutler (1980) for 3 lines. The parallelity condition can 

be relaxed to point sets which lie on N "almost parallel" line segments. The author gave a 

characterization of the allowed segment configurations by a set of forbidden sub configurations.  

 

The Travelling Salesman Problem (TSP) is a well-studied combinatorial optimization problem 

with a wide spectrum of applications and theoretical value. Hains (2010) designed a new 

recombination operator known as Generalized Partition Crossover (GPX) for the TSP. GPX is 

unique among other recombination operators for the TSP in that recombining two local optima 

produces new local optima with a high probability. Thus the operator can 'tunnel' between local 

optima without the need for intermediary solutions. The operator is respectful, meaning that any 

edges common between the two parent solutions are present in the offspring, and transmits 

alleles, meaning that offspring are comprised only of edges found in the parent solutions. The 

author designed a hybrid genetic algorithm, which uses local search in addition to recombination 

and selection, specifically for GPX. The author showed that this algorithm outperforms Chained 

Lin-Kernighan, a state-of-the-art approximation algorithm for the TSP. The author next analyzed 

these algorithms to determine why the algorithms are not capable of consistently finding a 

globally optimal solution. The results revealed a search space structure which the author called 

'funnels' because they are analogous to the funnels found in continuous optimization. Funnels are 

clusters of tours in the search space that are separated from one another by a non-trivial distance. 

The author found that funnels can trap Chained Lin-Kernighan, preventing the search from 

finding an optimal solution. The data used indicated that, under certain conditions, GPX can 



tunnel between funnels, explaining the higher frequency of optimal solutions produced by the 

author’s hybrid genetic algorithm using GPX. 

 

Travelling salesman problem is a classical complete nondeterministic polynomial problem. It is 

significant to solve Multiple Travelling Salesman Problems (MTSP). Previous researches on 

multiple travelling salesman problems are mostly limited to the kind that employed total-path-

shortest as the evaluating rule, but little notice is made on the kind that employed longest-path-

shortest as the evaluating rule. Hai-Long et al., (2009) studied this problem and employed 

genetic algorithm to optimize it and decoding method with matrix was proposed. The method 

could solve symmetric and asymmetric MTSP. Symmetric and asymmetric multiple travelling 

salesman problems were simulated and different crossover operators were compared. 

 

Logistics Management sometimes involves pickup as well as delivery along the route. Courier 

service is a typical example. The imposition of precedence constraints among the places to be 

visited constitutes a variant of the classical Travelling Salesman Problem (TSP). This well-

known NP-hard problem is often solved by heuristics. The Precedence-Constrained TSP that 

incorporates Delivery and Pickup (PCTDP) is a much harder problem to solve. Ganesh and 

Narendran (2005) studied the PCTDP and presented a three-stage heuristic using clustering and 

shrink-wrap algorithms for finding an initial path as well as genetic algorithms for the final 

search to obtain the best solution. The proposed heuristic is tested over a range of trial datasets 

and is found to give encouraging results. With its ability to provide solutions of good quality at 

low computing times, the proposed heuristic has ample scope for application as an automated 

scheduler when implemented at the site of a logistics-planning cell. 



 

Most researches in evolutionary computation focus on optimization of static and no-change 

problems. Many real world optimization problems however are actually dynamic, and 

optimization methods capable of continuously adapting the solution to a changing environment 

are needed. Yan et al., (2004) presented an approach to solving dynamic TSP. A dynamic TSP is 

harder than a general TSP, which is a NP-hard problem, because the city number and the cost 

matrix of a dynamic TSP are time varying. The authors proposed an algorithm to solve the 

dynamic TSP problem, which is the hybrid of EN and Inver-Over algorithm. From the results of 

the experiment, the authors concluded their algorithm was effective  

 

Vardges (2009) studied an LP relaxation for ATSP. The author introduced concepts of high-

value and high-flow cycles in LP basic solutions and show that the existence of this kind of 

cycles would lead to constant-factor approximation algorithms for ATSP. The existence of high-

flow cycles is motivated by computational results and theoretical observations.  

 

The multiple travelling salesmen problem (MTSP) is an extension of the travelling salesman 

problem with many production and scheduling applications. The TSP has been well studied 

including methods of solving the problem with genetic algorithms. The MTSP has also been 

studied and solved with GAs in the form of the vehicle-scheduling problem. Carter (2003) 

presented a new modeling methodology for setting up the MTSP to be solved using a GA. The 

advantages of the new model are compared to existing models both mathematically and 

experimentally. The model is also used to model and solve a multi line production problem in a 

spreadsheet environment. The new model proves itself to be an effective method to model the 



MTSP for solving with GAs. The concept of the MTSP is then used to model and solve with a 

GA the use of one salesman make many tours to visit all the cities instead of using one 

continuous trip to visit all the cities. While this problem uses only one salesman, it can be 

modeled as a MTSP and has many applications for people who must visit many cities on a 

number of short trips. The method used effectively creates a schedule while considering all 

required constraints. 

 

The travelling salesperson problem (TSP) is a classic model for various production and 

scheduling problems. Many production and scheduling problems ultimately can be reduced to 

the simple concept that there is a salesperson who must travel from city to city (visiting each city 

exactly once) and wishes to minimize the total distance traveled during his tour of all n cities. 

Obtaining a solution to the problem of a salesperson visiting n cities while minimizing the total 

distance traveled is one of the most studied combinatorial optimization problems. While there are 

variations of the TSP, the Euclidean TSP is NP-hard .Schmitt and Amini (1998) and Falkenauer 

(1998) studied a model with the interest in this particular type of problem being how common 

the problem is and how difficult the problem is to solve when n becomes sufficiently large.  

 

The travelling salesman problem (TSP) has been an early proving ground for many approaches 

to combinatorial optimization, including classical local optimization techniques as well as many 

of the more recent variants on local optimization, such as simulated annealing, tabu search, 

neural networks, and genetic algorithms. David and Lyle (1995) studied how these various 

approaches have been adapted to the TSP and evaluates their relative success in this perhaps a 

typical domain from both a theoretical and an experimental point of view. 



 

The travelling salesman problem with precedence constraints (TSPPC) is one of the most 

difficult combinatorial optimization problems. Chiung et al., (2000) presented an efficient 

genetic algorithm (GA) to solve the TSPPC. The key concept of the proposed GA is a 

topological sort (TS), which is defined as an ordering of vertices in a directed graph. Also, a new 

crossover operation is developed for the proposed GA. The results of numerical experiments 

show that the proposed GA produces an optimal solution and shows superior performance 

compared to the traditional algorithms. 

 

Many real-life industrial applications involve finding a Hamiltonian path with minimum cost. 

Some instances that belong to this category are transportation routing problem, scan chain 

optimization and drilling problem in integrated circuit testing and production. Li-Pei et al., 

(2001) presented a Bee Colony Optimization (BCO) algorithm for Travelling Salesman Problem 

(TSP). The BCO model is constructed algorithmically based on the collective intelligence shown 

in bee foraging behavior. The model is integrated with 2-opt heuristic to further improve prior 

solutions generated by the BCO model. Experimental results comparing the proposed BCO 

model with existing approaches on a set of benchmark problems were also presented. 

 

Zakir (2010) presented a new crossover operator, Sequential Constructive crossover (SCX), for a 

genetic algorithm that generates high quality solutions to the travelling salesman Problem (TSP). 

The sequential constructive crossover operator constructs an offspring from a pair of parents 

using better edges on the basis of their values that may be present in the parents' structure 

maintaining the sequence of nodes in the parent chromosomes. The efficiency of the SCX is 



compared as against some existing crossover operators; namely, edge recombination crossover 

(ERX) and generalized N-point crossover (GNX) for some benchmark TSPLIB instances. 

Experimental results show that the new crossover operator is better than the ERX and GNX. 

 

The aim of the Travelling Salesman Problem (TSP) is to find the cheapest way of visiting all 

elements in a given set of cities (nodes) exactly once and returning to the starting point. In 

solutions presented in the literature costs of travel between nodes are based on Euclidean 

distances, the problem is symmetric and the costs are constant and crisp values. Practical 

application in road transportation and supply chains are often uncertain or fuzzy. The risk 

attitude depends on the features of the given operation. Foldesi et al., (2010) presented a model 

that handles the fuzzy, time dependent nature of the TSP and also gives a solution for the 

asymmetric loss aversion by embedding the risk attitude into the fitness function of the eugenic 

bacterial memetic algorithm. Computational results are presented for different cases. The 

classical TSP is investigated along with a modified instance where some costs between the cities 

are described with fuzzy numbers. Two different techniques are proposed to evaluate the 

uncertainties in the fuzzy cost values. The time dependent version of the fuzzy TSP is also 

investigated and simulation experiences are presented.  

 

Iridia (1996) presented an artificial ant colony model capable of solving the travelling salesman 

problem (TSP). Ants of the artificial colony are able to generate successively shorter feasible 

tours by using information accumulated in the form of a pheromone trail deposited on the edges 

of the TSP graph. Computer simulations demonstrate that the artificial ant colony is capable of 

generating good solutions to both symmetric and asymmetric instances of the TSP. The method 



is an example, like simulated annealing, neural networks, and evolutionary computation, of the 

successful use of a natural metaphor to design an optimization algorithm. 

 

The travelling salesman problem and the quadratic assignment problem are the two of the most 

commonly studied optimization problems in Operations Research because of their wide 

applicability. Due to their NP -hard nature, the individual problems are already complex and 

difficult to solve. Ping and William (2005) studied a model which integrated the two hard 

problems together, that is called the integrated problem of which the complexity is absolutely 

much higher than that of the individual ones. Not only a complete mathematical model which 

integrates both the travelling salesman and the quadratic assignment problems together is built, 

but also a genetic algorithm hybridized with several improved heuristics is developed to tackle 

the problem.  

 

The Travelling Salesman Problem (TSP) is one of the most intensively studied problems in 

computational mathematics. To solve this problem a number of algorithms have been developed 

using genetic algorithms. But these algorithms are not so suitable for solving large-scale TSP. 

Kalyan et al., (2010) proposed a new solution for TSP using hierarchical clustering and genetic 

algorithm. 

 

Time-constrained deliveries are one of the fastest growing segments of the delivery business, and 

yet there is surprisingly little literature that addresses time constraints in the context of stochastic 

customer presence. Ann and Barrett (2007) studied the probabilistic travelling salesman problem 

with deadlines (PTSPD). The PTSPD is an extension of the well-known probabilistic travelling 



salesman problem (PTSP) in which, in addition to stochastic presence, customers must also be 

visited before a known deadline. The authors presented two recourse models and a chance 

constrained model for the PTSPD. Special cases are discussed for each model, and 

computational experiments are used to illustrate under what conditions stochastic and 

deterministic models lead to different solutions.  

 

Kenneth and Ruth (2007) studied a new multi-period variation of the M-travelling salesman 

problem. The problem arises in efficient scheduling of optimal interviews among tour brokers 

and vendors at conventions of the tourism and travel industry. In classical travelling salesman 

problem vocabulary, a salesman is a tour broker at the convention and a city is a vendor's booth. 

In this problem, more than one salesman may be required to visit a city, but at most one salesman 

per time period can visit each city. The heuristic solution method presented is polynomial and is 

guaranteed to produce a non-conflicting set of salesmen's tours. The results of an implementation 

of the method for a recent convention are also reported. 

 

Valentina et al., (2010) studied the equality generalized travelling salesman problem (E-GTSP), 

which is a variant of the well-known travelling salesman problem. We are given an undirected 

graph G = (V, E), with set of vertices V and set of edges E, each with an associated cost. The set 

of vertices is partitioned into clusters. E-GTSP is to find an elementary cycle visiting exactly one 

vertex for each cluster and minimizing the sum of the costs of the travelled edges. The authors 

proposed a multi-start heuristic, which iteratively starts with a randomly chosen set of vertices 

and applies a decomposition approach combined with improvement procedures. The 



decomposition approach considers a first phase to determine the visiting order of the clusters and 

a second phase to find the corresponding minimum cost cycle. We show the effectiveness of the 

proposed approach on benchmark instances from the literature. On small instances, the heuristic 

always identifies the optimal solution rapidly and outperforms all known heuristics; on larger 

instances, the heuristic always improves, in comparable computing times, the best known 

solution values obtained by the genetic algorithm. 

 

June and Sethian (2006) studied a problem in which given a domain, a cost function which 

depends on position at each point in the domain, and a subset of points (“cities”) in the domain. 

The goal is to determine the cheapest closed path that visits each city in the domain once. This 

can be thought of as a version of the travelling salesman problem, in which an underlying known 

metric determines the cost of moving through each point of the domain, but in which the actual 

shortest path between cities is unknown at the outset. The authors proposed algorithms for both a 

heuristic and an optimal solution to this problem. The complexity of the heuristic algorithm is at 

worst case M·N log N, where M is the number of cities, and N the size of the computational 

mesh used to approximate the solutions to the shortest paths problems. The average runtime of 

the heuristic algorithm is linear in the number of cities and O (N log N) in the size N of the mesh.  

Many companies have travelling salesmen that market and sell their products. This results in 

much travelling by car due to the daily customer visits. This causes costs for the company, in 

form of travel expenses compensation, and environmental effects, in form of carbon dioxide 

pollution. As many companies are certified according to environmental management systems, 

such as ISO 14001, the environmental work becomes more and more important as the 



environmental consciousness increases every day for companies, authorities and public. 

Torstensson (2008) presented a model which computes reasonable limits on the mileage of the 

salesmen; these limits are based on specific conditions for each salesman’s district. The objective 

is to implement a heuristic algorithm that optimizes the customer tours for an arbitrary chosen 

month, which will represent a “standard” month. The output of the algorithm, the computed 

distances, will constitute a mileage limit for the salesman. The algorithm consists of a 

constructive heuristic that builds an initial solution, which is modified if infeasible. This solution 

is then improved by a local search algorithm preceding a genetic algorithm, which task is to 

improve the tours separately. This method for computing mileage limits for travelling salesmen 

generates good solutions in form of realistic tours. The mileage limits could be improved if the 

input data were more accurate and adjusted to each district, but the suggested method does what 

it is supposed to do. 

 

Davoian and Gorlatch (2005) presented a new modification of the Genetic Algorithm (GA) for 

solving the classical Travelling Salesman Problem (TSP), with the objective of achieving its 

efficient implementation on multiprocessor machines. The authors described the new features of 

our GA as compared to existing algorithms, and developed a new parallelization scheme, 

applicable to arbitrary GAs. In addition to parallel processes and iterative data exchanges 

between the involved populations, our parallel implementation also contains a generation of new 

possible solutions (strangers), which eliminates typical drawbacks of GA and extends the search 

area. The proposed algorithm allows for acceleration of the solution process and generates 

solutions of better quality as compared with previously developed GA versions.  

 



Marco and Luca (1997) presented an artificial ant colony capable of solving the travelling 

salesman problem (TSP). Ants of the artificial colony are able to generate successively shorter 

feasible tours by using information accumulated in the form of a pheromone trail deposited on 

the edges of the TSP graph. Computer simulations demonstrate that the artificial ant colony is 

capable of generating good solutions to both symmetric and asymmetric instances of the TSP. 

The method is an example, like simulated annealing, neural networks, and evolutionary 

computation, of the successful use of a natural metaphor to design an optimization algorithm.  

 

An analogy with the way ant colonies function has suggested the definition of a new 

computational paradigm, which we call Ant System. Marco et al., (1996) proposed it as a viable 

new approach to stochastic combinatorial optimization. The main characteristics of this model 

are positive feedback, distributed computation, and the use of a constructive greedy heuristic. 

Positive feedback accounts for rapid discovery of good solutions, distributed computation avoids 

premature convergence, and the greedy heuristic helps find acceptable solutions in the early 

stages of the search process. The authors applied the proposed methodology to the classical 

Travelling Salesman Problem (TSP), and report simulation results. The authors also discussed 

parameter selection and the early setups of the model, and compare it with tabu search and 

simulated annealing using TSP. To demonstrate the robustness of the approach, the authors 

showed how the Ant System (AS) can be applied to other optimization problems like the 

asymmetric travelling salesman. 

 



 Durbin and Willshaw (1987) studied the ant colony system (ACS), a distributed algorithm that is 

applied to the travelling salesman problem (TSP). In the ACS, a set of cooperating agents called 

ants cooperate to find good solutions to TSP’s. Ants cooperate using an indirect form of 

communication mediated by a pheromone they deposit on the edges of the TSP graph while 

building solutions. The authors studied the ACS by running experiments to understand its 

operation. The results showed that the ACS outperforms other nature-inspired algorithms such as 

simulated annealing and evolutionary computation, and we conclude comparing ACS-3-opt, a 

version of the ACS augmented with a local search procedure, to some of the best performing 

algorithms for symmetric and asymmetric TSP’s.  

 

Kenneth and Ruth (1992) presented a new multiperiod variation of the M-travelling salesman 

problem. The problem arises in efficient scheduling of optimal interviews among tour brokers 

and vendors at conventions of the tourism and travel industry. In classical travelling salesman 

problem vocabulary, a salesman is a tour broker at the convention and a city is a vendor's booth. 

In this problem, more than one salesman may be required to visit a city, but at most one salesman 

per time period can visit each city. The heuristic solution method presented is polynomial and is 

guaranteed to produce a nonconflicting set of salesmen's tours. The results of an implementation 

of the method for a recent convention are also reported. 

 

 

 



 

 

 

 

 

 

 

 

 

 

CHAPTER THREE 

METHODOLOGY 

3.0  INTRODUCTION 

 This chapter provides an explanation of the dynamic programming algorithm which we 

proposed to solve our problem.  

In order to have a good understanding of the dynamic programming algorithm, it is necessary to 

first have a good understanding of some key terms as used in dynamic programming problems 

3.1 CHARACTERISTICS OF DYNAMIC PROGRAMMING PROBLEMS 

One way to recognize a situation that can be formulated as a dynamic programming problem is 

to notice its basic features. 



These basic features that characterize dynamic programming problems are presented and 

discussed here. 

1. The problem can be divided into stages, with a policy decision required at each stage. 

Dynamic programming problems require making a sequence of interrelated decisions, where 

each decision corresponds to one stage of the problem. 

2. Each stage has a number of states associated with the beginning of that stage. 

In general, the states are the various possible conditions in which the system might be at that 

stage of the problem. The number of states may be either finite or infinite. 

3. The effect of the policy decision at each stage is to transform the current state to a state 

associated with the beginning of the next stage (possibly according to a probability distribution). 

This procedure suggests that dynamic programming problems can be interpreted in terms of the 

networks. Each node would correspond to a state. The network would consist of columns of 

nodes, with each column corresponding to a stage, so that the flow from a node can go only to a 

node in the next column to the right. The links from a node to nodes in the next column 

correspond to the possible policy decisions on which state to go to next. The value assigned to 

each link usually can be interpreted as the immediate contribution to the objective function from 

making that policy decision. In most cases, the objective corresponds to finding either the 

shortest or the longest path through the network. 

4. The solution procedure is designed to find an optimal policy for the overall problem, i.e., a 

prescription of the optimal policy decision at each stage for each of the possible states. 

 For any problem, dynamic programming provides this kind of policy prescription of what to do 

under every possible circumstance (which is why the actual decision made upon reaching a 

particular state at a given stage is referred to as a policy decision). Providing this additional 



information beyond simply specifying an optimal solution (optimal sequence of decisions) can 

be helpful in a variety of ways, including sensitivity analysis. 

5. Given the current state, an optimal policy for the remaining stages is independent of the policy 

decisions adopted in previous stages. Therefore, the optimal immediate decision depends on only 

the current state and not on how you got there. This is the principle of optimality for dynamic 

programming. 

For dynamic programming problems in general, knowledge of the current state of the system 

conveys all the information about its previous behavior necessary for determining the optimal 

policy henceforth. Any problem lacking this property cannot be formulated as a dynamic 

programming problem. 

6. The solution procedure begins by finding the optimal policy for the last stage. 

The optimal policy for the last stage prescribes the optimal policy decision for each of the 

possible states at that stage. The solution of this one-stage problem is usually trivial, as it was for 

the stagecoach problem. 

7. A recursive relationship that identifies the optimal policy for stage n, given the optimal policy 

for stage n + 1, is available. 

Therefore, finding the optimal policy decision when you start in state s at stage n requires finding 

the minimizing value of xn. 

This property is emphasized in the next (and final) characteristic of dynamic programming. 

8. When we use this recursive relationship, the solution procedure starts at the end and moves 

backward stage by stage - each time finding the optimal policy for that stage - until it finds the 

optimal policy starting at the initial stage. This optimal policy immediately yields an optimal 

solution for the entire problem. 

 



 
3.2 The Algorithm 

• Identify the decision variables and specify objective function to be optimized under certain 

limitations, if any. 

• Decompose or divide the given problem into a number of smaller sub-problems or stages. 

Identify the state variables at each stage and write down the transformation function as a function 

of the state variable and decision variables at the next stage. 

• Write down the general recursive relationship for computing the optimal policy. Decide 

whether forward or backward method is to follow to solve the problem. 

• Construct appropriate stage to show the required values of the return function at each stage. 

• Determine the overall optimal policy or decisions and its value at each stage. There may be 

more than one such optimal policy. 

 
The basic features, which characterize the dynamic programming problem, are as follows: 

(i) Problem can be sub-divided into stages with a policy decision required at each stage. A stage 

is a device to sequence the decisions. That is, it decomposes a problem into sub-problems such 

that an optimal solution to the problem can be obtained from the optimal solution to the sub-

problem. 

(ii) Every stage consists of a number of states associated with it. The states are the different 

possible conditions in which the system may find itself at that stage of the problem. 

(iii) Decision at each stage converts the current stage into state associated with the next stage. 

(iv) The state of the system at a stage is described by a set of variables, called state variables. 

(v) When the current state is known, an optimal policy for the remaining stages is independent of 

the policy of the previous ones. 



(vi) To identify the optimum policy for each state of the system, a recursive equation is 

formulated with ‘n’ stages remaining, given the optimal policy for each stage with (n – 1) stages 

left. 

(vii) Using recursive equation approach each time the solution procedure moves backward, stage 

by stage for obtaining the optimum policy of each stage for that particular stage, still it attains the 

optimum policy beginning at the initial stage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER FOUR 



DATA COLLECTION AND ANALYSIS 

4.0 INTRODUCTION 

 In this chapter, we shall consider a computational study of the Travelling Salesman 

Problem. Emphasis will be placed on TSP, which is modelled as a network problem. Data from 

the Test Administration Department (TAD) of WAEC shall be examined. 

4.1 Data Collection and Analysis 

 WAEC Ghana, during its various Examination seasons, sends officers to inspect the 

various question paper depots and examination centres where security materials are kept to 

ascertain whether the regulations regarding the safety of the materials are complied with in the 

various regions in Ghana. 

 An officer moves from the various regional capitals and is expected to visit as many 

examination depots and centres as possible on each route within each journey in a day. Table 4.1 

is the distance matrix table, taken from Transport Department of WAEC and it shows the various 

links of connecting question paper depots and examination centres for officer assigned to some 

parts of eastern region of Ghana in kilometers (km). 

 

 

 

 

 

Table 4.1 Distance matrix table connecting question paper depots in km 

 



 1 2 3 4 5 6 7 8 9 10 

1 0 66 46 71 0 0 0 0 0 0 

2 66 0 0 0 29 0 0 0 0 0 

3 46 0 0 0 29 67 0 0 0 0 

4 71 0 0 0 0 0 49 0 0 0 

5 0 29 29 0 0 43 0 109 0 0 

6 0 0 67 0 43 0 0 28 49 0 

7 0 0 0 49 0 0 0 87 108 0 

8 0 0 0 0 109 28 87 0 41 62 

9 0 0 0 0 0 49 108 41 0 21 

10 0 0 0 0 0 0 0 62 21 0 

 

The zeroes signify no direct link between the two towns. 

Table 4.2 shows the names of the towns where depots and centres are located. 

 

 

 

 

 

 

 

Table 4.2 Names of Towns of Examination centres 

1 Koforidua 



2 Aburi 

3 Suhum 

4 Begoro 

5 Nsawam 

6 Asamankese 

7 Kibi 

8 Akwatia 

9 Akim Oda 

10 Akim Swedru 

 

The problem at hand is to find the minimum distance that an officer could cover and visit a 

maximum number of examination centres and depots as possible. 

Modeling the above problem as a Network problem, we obtain Figure 4.1, which shows the route 

map of the various ways of reaching the examination depots and centres, with each node 

representing a depot and centre. The numbers on the lines indicate the distances in kilometres 

(km).  
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Figure 4.1: Route map of the various ways of reaching question paper depots and examination 

centres. 

 
By applying dynamic programming, the problem may be considered as 4-stage problem. This is 

shown in Figure 4.2. 

 
  
                     Stage 1                       Stage 2                    Stage 3                 Stage 4 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               

 
 
 
 
 
 
 
 
 
 
 
 
  
 
Figure 4.2: Route maps of the various ways of reaching examination depots and centres    
in Stages 
Let xi be the state variable in the ith stage, and di(xi) be the distance covered in the ith stage. Our 

model then becomes; 
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                                      d(i) = min {  } 

In the first stage, i = 1, and the officer leaves from examination centre 1 (node number 1) and can 

reach examination centres 2, 3, and 4 directly.  

We shall therefore have d(1) = min { }. 

Considering the distances: 1 to 2, which is 66 km, 1 to 3, which is 46 km, and 1 to 4, which is 71 

km, as this is minimization problem and the goal of an officer is to visit more number of 

examination centres and travel less distance. We can show the routes, which give the minimum 

distance in bold lines and the rest of the lines we can neglect or we can show in normal lines. In 

this problem, lines 1 – 3 will be in bold and the rest normal as shown in Figure 4.3.  

d(1) = min {66, 46, 71}, which is 46 km. The distance covered up to that stage is written just 

above the node.  

                     

 

 

 

 

 

 

 

Figure 4.3: Distance travelled between examination depots and centres   
         
In the second stage, i = 2 and the inspection officer can reach examination centre 5 directly from 

examination centres 2 and 3, examination centre 6 directly from examination centre 3 and 

examination centre 7 from 4. 
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We have d(2) = min { }. 

Considering the distance from examination centre 2 to 5, we have 66 + 29 = 95, 

Similarly, from examination centre 3 to 5 is 46 + 29 = 75 km. 

The distance from examination centre 3 to 6 = 46 + 67 = 113 km. 

The distance from examination centre 4 to 7 = 71 + 49 = 120 km. 

The distance from examination 5 to 6 is 75 + 43 = 118 km. 

The distance from examination 6 to 7 is 113 + 80 = 193 km. 

d(2) = min{95, 75, 113, 118, 120, 193}. 

The minimum distance is 75 km. Hence, the inspection officer will travel from examination 

centre 1 to 3 and from examination centre 3 to 5 covering 75 km on the route 1-3-5. 

 

We then move on to the next stage, which is stage 3, with i = 3.  

We have d(3) = min { }. 

In the third stage, the inspection officer may be at examination centre 5 or at examination centre 

6 or at examination centre 7. From there the officer can directly go to examination centre 8 or 

examination centre 9. 

Working out the minimum distance from examination centres 5, 6 and 7 to 8 and 9, we have: 

The distance from examination centre 5 to 8 = 75 + 109 = 184 km. 

The distance from examination centre 6 to 8 = 113 + 28 = 141 km. 

The distance from examination centre 7 to 8 = 120 + 87 = 207 km. 

The distance from examination centre 6 to 9 = 113 + 49 = 162 km. 

The distance from examination centre 7 to 9 = 120 + 108 = 228 km. 

The distance from examination centre 8 to 9 = 141 + 41 = 182 km. 



d(3) = min {184, 141, 207, 162, 228, 182}. 

The minimum of all these is 141 km. Hence, the inspection officer can go from examination 

centres 6 to 8 at the distance of 141 km only on the routes 1-3-6-8. 

Next, we consider our final stage which is stage 4, thus i = 4. 

Thus, we have d(4) = min { }. 

In the 4th stage the inspection officer can reach examination centre 10 from examination centres 

8 or 9. Calculating the minimum distances from examination centres 8 and 9 to examination 

centre 10 we have: 

The distance from examination centre 8 to 10 = 141 + 62 = 203 km. 

The distance from examination centre 9 to 10 = 162 + 21 = 183 km. 

d(4) = min {203, 183}. 

The minimum of these is 183 km. This is shown in Figure 4.4 with bold lines and the distances 

written on top of the nodes. 
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Figure 4.4: Distance covered by officer moving between examination depots and centres    

 
Hence the minimum distance from examination centres 1 to 10 on the path is 183 km, and the 

routes are 1 – 3 – 6 –9 – 10.  

This implies that the inspection officer can use any of the above routes and visit as many as five 

examination centres on the route. 

 

 

 

 

 

 

 

CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATIONS 

5.0 INTRODUCTION 

9 



The travelling salesman problem is a traditional problem that has to do with making the most 

efficient use of resources while at the same time spending the least amount of energy in that 

utilization. The designation for this type of problem hails back to the days of the travelling 

salesman, who often wished to arrange travel distances in a manner that allowed for visiting the 

most towns without having to double back and cross into any given town more than once.  

In a wider sense, the travelling salesman problem is considered to be a classic example of what is 

known as a tour problem. Essentially, any type of tour problem involves making a series of stops 

along a designated route and making a return journey without ever making a second visit to any 

previous stop. Generally, a tour problem is present when there is concern on making the most of 

available resources such as time and mode of travel to accomplish the most in results. Finding a 

solution to a tour problem is sometimes referred to as discovering the least-cost path, implying 

that the strategic planning of the route will ensure maximum benefit with minimum expenditure 

incurred.  

The concept of the travelling salesman problem can be translated into a number of different 

disciplines. For example, the idea of combinatorial optimization has a direct relationship to the 

travelling salesman model. As a form of optimization that is useful in both mathematical and 

computer science disciplines, combinatorial optimization seeks to team relevant factors and 

apply them in a manner that will yield the best results with repeated usage.  

In a similar manner, discrete optimization attempts to accomplish the same goal, although the 

term is sometimes employed to refer to tasks or operations that occur on a one-time basis rather 

than recurring. Discrete optimization also is helpful in computer science and mathematical 

http://www.wisegeek.com/what-does-a-salesman-do.htm
http://www.wisegeek.com/what-is-computer-science.htm
http://www.wisegeek.com/what-is-discrete-optimization.htm


disciplines. In addition, discrete optimization has a direct relationship to computational 

complexity theory and is understood to be of use in the development of artificial intelligence.  

While the imagery associated with a travelling salesman problem may seem an 

oversimplification of these types of detailed options for optimization, the idea behind the 

imagery helps to explain a basic fundamental to any type of optimization that strives for 

efficiency. The travelling salesman problem that is solved will yield huge benefits in the way of 

maximum return for minimum investment of resources.  

 

TSP is a very attractive problem for the research community because it arises as a natural sub-

problem in many applications concerning everyday life. Indeed, each application, in which an 

optimal ordering of a number of items has to be chosen in a way that the total cost of a solution 

is determined by adding up the costs arising from two successive  items, can be modelled as a 

TSP instance. Thus, studying TSP can never be considered as an abstract research with no real 

importance. 

 

 

5.1 CONCLUSIONS 

      This thesis seeks to model a real-life problem of WAEC as a network problem and apply 

dynamic programming approach in solving the problem. It was observed that the route that gave 

minimum achievable inspection plan was  

 1 – 3 – 6 –9 – 10 at the minimum distance of 183 km, by visiting as many as five centres on the 

route.  

http://www.wisegeek.com/what-is-a-theory.htm


      At the time of this work, records show that there is no laid down procedure for determining 

which routes to be used by inspection officers. The routes are chosen arbitrarily and sometimes 

the driver’s discretion is the determining factor. The maximum number of centres they normally 

visit were three on a route. 

 

5.2 RECOMMENDATIONS 

      The use of mathematical models has proved to be efficient in the computation of optimum 

results and gives a systematic and transparent solution as compared with an arbitrary method. 

Operation has become one of the key competitive advantages with optimization-based 

approaches being expected to play an important role. Using optimization-based approaches to 

model industrial problem gives a better result. Management will benefit from the proposed 

approach for officers who would be assigned to inspect various examination centres in order to 

visit more centres on a route at a minimized travel distance. We therefore recommend that our 

TSP model should be adopted by WAEC for its depot inspection planning.  
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