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ABSTRACT 

      The main purpose of the study was to investigate the outcomes when an 

interacting term is incorporated into a Klein-Gordon equation, in particular when 

the interacting term involves a slow periodic wave field. The study further seeks to 

investigate in the context of Dirac approach to the quantum relativistic free particle. 

A slow varying periodic field was considered in the study as a potential field which 

interacted with quantum mechanics wave particle field as in the Schrodinger 

equation for a forced particle. In the relativistic context of the study, the Klein-

Gordon equation was considered as a homogenous differential equation which 

represented a free particle and the interacting term was placed on the right hand 

side, having a “slow varying potential” field as a factor.  

  It was found that for the zeroth order approximation of the slow varying wave field,      

Klein-Gordon equation still remained as field but there was only a shift in the energy 

mass. However, with the second order approximation, a formal Quantum Harmonic 

Oscillator was obtained. This yielded discrete positive and negative energy mass,     

suggesting particle and antiparticle states. 

An equivalent Dirac formalism which also incorporated an interacting term was 

obtained, with a recovery of particle and antiparticle states by means of creation and 

annihilation operators. 
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Chapter One 

Introduction 

 

1.1 Background  

1.1.1 The origins of Quantum Theory 

Until the end of the nineteenth century, classical physics appeared to be sufficient 

to explain all physical phenomena. The universe was conceived as containing 

matter, consisting of particles obeying Newton‟s laws of motion and radiation 

(waves) following Maxwell‟s equations of electromagnetism. The theory of special 

relativity, formulated by A. Einstein in 1905 on the basis of a critical analysis of the 

notions of space and time, generalized classical physics to include the region of 

high velocities. In the theory of special relativity, the velocity c  of light plays a 

fundamental role: it is the upper limit of the velocity of any material particle. 

Newtonian mechanics became an accurate approximation to relativistic mechanics 

only in the non-relativistic regime, that is, when relevant particle velocities were 

small with respect to c . It should be noted that Einstein‟s theory of relativity did not 

modify the clear distinction between matter and radiation which was at the root of 

classical physics. Indeed, all pre-quantum physics, non-relativistic or relativistic, 

are now often referred to as classical physics. 

During the late nineteenth century and the first quarter of the twentieth century, 

however, experimental evidence accumulated which came up with new concepts 

radically different from those of classical physics. Some of them are the 
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quantization of physical quantities such as energy and angular momentum, the 

particle properties of radiation and the wave properties of matter. These concepts 

were directly related to the existence of a universal constant, called Planck‟s 

constant h. Thus, just as the velocity c  of light plays a central role in relativity, so 

does Planck‟s constant in quantum physics. Because Planck‟s constant is very 

small when measured in microscopic units (such as SI units), quantum physics 

essentially deals with phenomena at the atomic and subatomic levels. 

According to Messiah (1958), quantum mechanics is a mode of calculation which 

purports to explain all physical phenomena, both on an atomic and on a 

macroscopic scale.  

 Merzbacher (1973) also defined quantum mechanics as the theoretical framework 

within which it has been found possible to describe, correlate and predict the 

behaviour of a vast range of physical systems from elementary particles, through 

nuclei atoms and radiations, to molecules and solids.  

Quantum mechanics is a fundamental physical theory which extends and corrects 

classical Newtonian mechanics, especially at the atomic and subatomic levels. It 

takes its name from quantum (that is, for “how much”) used in physics to describe 

the smallest discrete increments into which something is subdivided. 

Quantum mechanics describes with great accuracy and precision many 

phenomena where classical mechanics drastically fails to agree with experiments, 

including the behavior of systems of very small objects typically the size of atoms 

or smaller, but also some „macroscopic‟ phenomena, like superconductivity and 

superfludity. Quantum mechanics successfully addresses these failures, achieving 
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unprecedented precision in its agreement with experiment. It also satisfies 

Correspondence principle, in that it agrees with classical mechanics for those 

phenomena where classical mechanics agrees with experiment.  

Quantum mechanics has had enormous success in explaining many of the features of 

our world. The individual behavior of the microscopic particles that make up all forms 

of matter - electrons, protons, neutrons, and so forth - can often only be satisfactorily 

described using quantum mechanics.  

Quantum mechanics is important for understanding how individual atoms combine to 

form chemicals. The application of quantum mechanics to chemistry is known as 

quantum chemistry. Quantum mechanics can provide quantitative insight into 

chemical bonding processes by explicitly showing which molecules are energetically 

favorable to which others, and by approximately how much. Most of the calculations 

performed in computational chemistry rely on quantum mechanics.  

Much of modern technology operates at a scale where quantum effects are significant. 

Examples include the laser, the transistor, the electron microscope, and magnetic 

resonance imaging. The study of semiconductors led to the invention of the diode and 

the transistor, which are indispensable for modern electronics.  

Newtonian mechanics consisted of Kinematics (Special relativity) and Dynamics 

(Quantum mechanics.  Quantum mechanics also comprised of the non-relativistic, 

which has to do with the development of the Schrodinger equation and relativistic 

mechanics, which is also in relation to the Klein-Gordon and Dirac equations. When 

quantum mechanics was originally formulated, it was applied to models whose 

correspondence limit was non-relativistic classical mechanics. For instance, the well-

http://www.wordiq.com/definition/Matter
http://www.wordiq.com/definition/Electron
http://www.wordiq.com/definition/Proton
http://www.wordiq.com/definition/Neutron
http://www.wordiq.com/definition/Quantum_chemistry
http://www.wordiq.com/definition/Computational_chemistry
http://www.wordiq.com/definition/Technology
http://www.wordiq.com/definition/Laser
http://www.wordiq.com/definition/Transistor
http://www.wordiq.com/definition/Electron_microscope
http://www.wordiq.com/definition/Magnetic_Resonance_Imaging
http://www.wordiq.com/definition/Magnetic_Resonance_Imaging
http://www.wordiq.com/definition/Diode
http://www.wordiq.com/definition/Transistor
http://www.wordiq.com/definition/Electronics
http://www.wordiq.com/definition/Theory_of_relativity
http://www.wordiq.com/definition/Classical_mechanics
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known model of the quantum harmonic oscillator uses an explicitly non-relativistic 

expression for the kinetic energy of the oscillator, and is thus a quantum version of the 

classical harmonic oscillator.  

Early attempts to merge quantum mechanics with special relativity involved the 

replacement of the Schrödinger equation with a covariant equation such as the Klein-

Gordon equation or the Dirac equation. While these theories were successful in 

explaining many experimental results, they had certain unsatisfactory qualities 

stemming from their neglect of the relativistic creation and annihilation of particles. A 

fully relativistic quantum theory required the development of quantum field theory, 

which applies quantization to a field rather than a fixed set of particles. The first 

complete quantum field theory, quantum electrodynamics, provides a fully quantum 

description of the electromagnetic interaction.  

1.2 Statement of the Problem 

This study seeks to revisit the homogenous Schrodinger equation, homogenous Klein-

Gordon equation and the non-homogenous Schrodinger equation, coming out with 

their various equations and solutions available. It also seeks to investigate thoroughly 

the non-homogenous Klein-Gordon equation, when the right hand side of the free 

particle Klein-Gordon equation is replaced with a forced term, which represents the 

slow varying wave field. The study would also investigate whether there is a similarity 

between the non-relativistic free particle Schrodinger equation and the relativistic free 

particle Klein-Gordon equation. For instance, the non-homogenous Schrodinger and 

the Klein-Gordon equations are given respectively as                                            

                                
2

2 2

2
0

m
E

x





 


…………………………………………1.1 

http://www.wordiq.com/definition/Quantum_harmonic_oscillator
http://www.wordiq.com/definition/Kinetic_energy
http://www.wordiq.com/definition/Harmonic_oscillator
http://www.wordiq.com/definition/Special_relativity
http://www.wordiq.com/definition/Klein-Gordon_equation
http://www.wordiq.com/definition/Klein-Gordon_equation
http://www.wordiq.com/definition/Dirac_equation
http://www.wordiq.com/definition/Quantum_field_theory
http://www.wordiq.com/definition/Quantum_electrodynamics
http://www.wordiq.com/definition/Electromagnetism
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                        2

2

2
0

m
E     …………………………………………..1.1b 

                               2 2( ) 0m   …………………………………..…..………1.2 

If equations (1.1b & 1.2) are compared, we can literally equate the Laplacian ( 2  ) 

and the D‟Alembertian operator ( 2 ). In addition, the study would investigate the 

possible solutions to the energy levels with respect to the non-homogenous Klein-

Gordon equation. It will again probe into the existence of the creation and annihilation 

eigenvalues and eigenfunctions of the non-homogenous Klein-Gordon equation by 

application of the Dirac format.  

1.3 Objectives  

The objectives of the study are as follow:  

 To review the homogeneous Schrodinger equation, homogenous Klein-Gordon 

equation and the corresponding Dirac Equation. 

To study the non-homogeneous Klein Gordon equation with a slow varying wave as 

the interacting term on the Right Hand Side. 

1.4 Methodology 

The study looked at a free particle Schrodinger equation as a homogenous 

differential equation. A potential field interacting with a wave function field was 

replaced at the right hand side of the homogenous equation. The free particle Klein-

Gordon equation was also considered. With this equation, a forced term which 

represents a slow varying wave field reacted with the wave function field on the right 

hand side of the free Klein-Gordon equation, making it non-homogenous. Both the 

zero order and the second order terms of the slow varying wave field became the 
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interacting terms. Finally, the non-homogenous Klein-Gordon was also solved using 

the Dirac format. 

1.5 Organization of the study 

The study is organized into five chapters. Chapter one deals with the introduction. 

This consists of the background which contains the origins to quantum theory, the 

statement of the problem, objectives, methodology and the organization of the study. 

Chapter two also deals with the review of literature. In it, we have the review of the 

non-relativistic quantum mechanics, the interpretation of Schrodinger equation: 

continuity equation, solutions to the non-homogenous Schrodinger equation, 

negative energies and antiparticle of Schrodinger equation. Chapter three also 

contains the review of the relativistic quantum mechanics, which also contains the 

definition relativistic quantum mechanics, Minkowski‟s space, four-vectors, the four- 

velocity, and the relationship between proper time and an ordinary time. It has also 

been organized under the following sub-headings: review of the Hamiltonian and 

Klein-Gordon equation, interpretation of Klein-Gordon equation: continuity 

equation, Fourier expansion and momentum space of Klein-Gordon equation, review 

of Dirac equation, probability and current for Dirac equation, positive energy and 

antiparticles, free particle solution. Simple solutions: non-relativistic approximations. 

The main results were treated in chapter four, which contains the non-homogenous 

Klein-Gordon equation with the interacting term. It is organized under the following 

sub- headings: slow varying wave field, effects of slow varying wave field on the 

Schrodinger equation, effects of the slow varying wave field on the Klein-Gordon 
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equation, Dirac equation, and the annihilation and creation operators whilst chapter 

five focuses on the summary of results, conclusions and the recommendations. 
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Chapter Two 

The Review of Non-Relativistic Quantum Mechanics  

This chapter is aimed at reviewing the non-relativistic quantum mechanics, with a 

focus on Schrodinger equation. A review of the Schrodinger equation, 

Interpretation, solutions to the non-homogenous Schrodinger equation were among 

some of the topics which will be treated.  

2.1 Review of Schrodinger Equation 

Bransden and Co. (2000) stated that, in quantum mechanics, the equation of 

motion is called the Schrodinger equation. We begin our discussion by considering 

the one-dimensional, non-relativistic motion of a free particle of mass m, having a 

well-defined momentum xpp x
ˆ


 (where x̂ is the unit vector along the x-axis) of 

magnitude xpp  and an energy E. Assuming that the particle is travelling in the 

positive x direction, then this particle is described by a monochromatic plane wave 

of wave number 


xp
k   and angular frequency


E , namely 

                                               )(),( tkxiAetx   ……………………………..2.1a 

                                               
)(

),(
Etxp

i
x

Aetx


   …………………………..2.1b  

where A  is a constant. The angular frequency   is connected with the wave number 

by the relation 

                                                         
m

k
2

2 ………………………………..2.2a 

This equation is equivalent to the classical relation which connects the energy and 

the momentum of the particle. 
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m

p
E x

2

2

  ……………………………….2.2b 

Now, by differentiating equation (2.1a) with respect to time, we have 

                                                         




iE

t





……………………….……….2.3a 

                                             


E
t

i 



  ………………………..…………..2.3b 

On the other hand, differentiating equation (2.1a) twice with respect to x, we have  

                                                     


2

2

2

2


xp

x





………………………………..2.4 

From equation (2.2b), we have   2

2

2

2


xp

E
m

  ……………………………….2.5                 

Substituting (2.5) into (2.4), we have 

                                                 


E
xm







2

22

2


……………………………….2.6                 

Equating equations (2.3b) and (2.6), we have 

                                             ),(
2

),(
2

22

tx
xm

tx
t

i 







 
 …………………..2.7  

More generally, since equation (2.7) is linear and homogeneous, it will also be 

satisfied by a linear superposition of plane waves (2.1). For example, the wave 

packet  

                                  
 

 

xx

tpExp
i

dppetx
xx

)(
2

1
),(

)(

2
1




 






 


………………..2.8 

associated with a „localized‟ free particle moving in one dimension, is also a solution 

of the equation (2.7), since             
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 

 

xx

tpExp
i

x dppepEtx
t

i
xx

)()(
2

1
),(

)(

2
1




 













 ……………….2.9a 

         
 

 

xx

tpExp
i

x dppe
m

p xx

)(
22

1 )(
2

2
1











 


…………………..2.9b 

                       ),(
2

),(
2

22

tx
xm

tx
t

i 











 …………………..2.9c 

The wave Equation (2.7) is known as the time-dependent Schrodinger equation for 

the motion of a free particle in one dimension. 

The generalization of these considerations to free particle motion in 3- dimension is 

straightforward. The plane wave (2.1b) is given by 

                                                  
).(

),(
Etrp

i

Aetr









  ……………….……….…...2.10  

It is then readily verified that the plane wave (2.10) satisfies the partial differential 

equation 

                                        

),(
2

),( 2
2

tr
m

tr
t

i


  



………………………2.11  

where                                        
2

2

2

2

2

2
2

zyx 












  

is the Laplacian operator. 

The wave equation (2.11), which is the direct generalization of equation (2.7), is the 

three-dimensional time-dependent Schrodinger equation for a free particle. As in the 

one-dimensional case, it is a linear and homogeneous equation which also satisfies 

the arbitrary linear superpositions of plane waves (2.10), particularly with the wave 

packets 
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 

 
)(

2

1
),(

)(.

2
3

pedpdpdptr
tpErp

i

zyx








 


  













 ……………..2.12a 

                                          

 

 
pdpe

tpErp
i







 )(
2

1 )(.

2
3







 …………………………2.12b 

where  zyx dpdpdppd 


 is the volume element in momentum space.  

Equation (2.11) is also clearly of first order in the time derivative
t

 . 

Finally, using the fact that in wave mechanics, the total energy E and the momentum 

p are represented by the differential operators 

                                          



  ip

t
iE opop , ……………………………2.13 

we observe that the free-particle Schrodinger equation (2.11) may also be written in 

the form  

                                   ),(
2

1
),(

2
trp

m
trE opop


  ………………………...2.14 

in formal analogy with the classical equation (2.2b).  We must again note that the 

quantity 
m

p
2

2
 is represented by the operator 

                                               2
2

2

22

1


m
p

m
T op


…………………….2.15. 

This equation is called the kinetic energy operator of the particle. 

We now want to generalize the free-particle Schrodinger equation (2.11) to the case 

of a particle moving in a field of force. We shall assume that the force  ),( trF


 acting 

on the particle is derivable from a potential 
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                                                ),(),( trVtrF


 ……………………….2.16. 

So that, for a classical particle, the total energy E is given by the sum of its kinetic 

energy 
m

p
2

2
 and its potential energy  ),( trV


 

                                             ),(
2

2

trV
m

p
E




 ……………………….2.17 

Since the potential energy V does not depend on Eorp


, the above discussion of 

the free-particle case suggests using equation (2.13) to write 

                                    ),(),(
2

1
),(

2
trtrVp

m
trE opop


 







 ………………..2.18 

So that the generalization of the free-particle Schrodinger equation (2.11) reads 

                                 ),(),(
2

1
),( 2 trtrV

m
tr

t
i


  













 ………………2.19  

Equation (2.19) is the celebrated time-dependent Schrodinger wave equation for a 

particle moving in a potential, which was proposed by E. Schrodinger in 1926. It is 

the basic equation of non-relativistic quantum mechanics.  

The operator appearing inside the brackets on the right of the Schrodinger equation 

(2.19) is called the Hamiltonian operator H of the particle. This means that                 

                       V
m

H  2
2

2


………………………………….….2.20a                                                 

                             VTVp
m

op 
2

2

2


…………………………2.20b 

And the time-dependent Schrodinger equation (2.19) may therefore be rewritten in 

the form 

                                     ),(),( trHtr
t

i


  



………………………..2.21 
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2.2 Interpretation of Schrodinger equation-Continuity Equation 

In reference to equation (2.7), the free particle Schrodinger equation (SE) is given 

by 

                                                 
t

i
m 


 

 2
2

2
…………………. 2.7 

The complex conjugate equation (SE*) of (2.7) is  

                                             
t

i
m 




*
*

2

2
2




………………..2.22 

Multiplying equation (2.7) by *  and (2.22) by , we have 

                                          
t

i
m 


 **

2

2
2




……………….2.23a 

                                      
t

i
m 




*
*

2

2
2




…………………2.23b 

 Subtracting equation (2.23b) from (2.23a) , we have 

                  


















tt
i

m

*
***

2

22
2




…………….2.24a 

                            



 ***.

2

2

t
i

m



…………….2.24b 

By rearranging equation (2.24b) we have 

                        0**.
2

* 


 

mit
………………….2.25 

which is just the continuity equation   

                                        0. 



j

t


 …………………………………....2.26 

if                                               * …………………..……..……….2.27a 
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                                        **
2



mi
j …………..…………..2.27b 

Equations (2.27a) and (2.27b) are the probability density and current for the 

Schrodinger equation. 

We now turn to the interpretation of the Klein-Gordon equation. This is non-

trivial since the Klein-Gordon equation is of second order in the time derivative  

t


,which is different from the Schrodinger equation   ),(),( trHtr

t
i 



 , 

upon which the probabilistic interpretation of non-relativistic quantum theory is 

based. 

Consider a quantum mechanical problem of scattering of a particle of mass  and 

energy E  by a potential )(rV . 

2.3 Solutions to the non-Homogenous Schrodinger wave equation  

The Schrodinger wave equation for a particle is given by                                         

                  )()()(
2

2
2

rErrV 












……………….…...…..…2.28 

 where )(r is the wave function. 

Equation (2.28) can be written in the form 

                     )(
2

)()(
2

22

2 rErrV 












                                   

           )()(
2

)(
2

22

2 rrVr
E














.........................…...2.29a 

                  Let              
22

2 )(2
,

2



rV
U

E
k


                                        

             )()(22 rUrk  ………….………….……..2.29b 
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We then replace the differential equation (2.29b) by an integral equation. The 

transformation to an integral equation is performed most efficiently by regarding 

)(rU on the right-hand side of (2.29) temporarily as a given inhomogeneity, even 

though it contains the unknown function )(r . 

A particular solution of equation (2.29b) is constructed in terms of the Green‟s 

function ),( rrG   which is the solution of the equation 

                       )(4),(22 rrrrGk   ..................................…....2.30 

Let   the expression            

                            rdrrUrrG  
3)()(),(

4

1


……………...……… (*)  

solves equation (2.30) by virtue of the properties of the delta function and the 

homogeneous equation                                           

                                0)(22  rk ..............................................…...2.31 

which is the Schrodinger equation for a free particle, that is, no scattering. 

Solving equation (2.31), we have 

                                       riker .)(  ..................................................…....2.32a 

Choosing a suitable normalization factor, we have equation (2.31) as                                              

                           
 

.
2

1
)( .

2
3

riker


 ...........................................…...2.32b 

Combining equation (*) and (2.32b), we thus establish the integral equation 

     
 

rdrrUrrGer rki  
3.

2
3

)()(),(
4

1

2

1
)(





…………..….2.33 

Equation (2.33) is a particular set of solutions of the Schrodinger equation (2.29b) 
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k


 has a definite magnitude, fixed by the energy eigenvalue, but its direction is 

undetermined thus exhibiting an infinite degree of degeneracy, which corresponds 

physically to the possibility of choosing an arbitrary direction of incidence. 

Even if a particular vector k


 is selected, equation (2.33) is by no means 

completely defined yet. 

The Green‟s function could be any solution of equation (2.30) and there are 

infinitely different ones. The choice of a particular ),( rrG 


 imposes definite 

boundary conditions on the eigenfunctions )(rk


 . 

The two particular useful Green‟s functions are 

                                
rr

e
rrG

rrik






 




),( ………………………………2.34a 

A host of Green‟s function of the form 

               )(),( rrrrG 


………………………….……2.34b 

may be obtained by applying a Fourier transformation to the equation  

           )(4)(22 rrGk


 ………………….……….…..2.35 

which is a simplified version of equation (2.30). 

We want to introduce  

                                          kdekgrG
rki





3

.

)()(


………………………..……2.36a 

and the three dimensional delta function defined as  

                         
  




kder rki 3.

3
2

1
)(




 …………..………….…………….2.36b                                              

Substituting equations (2.36a) and (2.36b) into (2.35), we have    
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                                     
 

kdekdekgk
rki

rki 





3

.

3

3.22

2

1
4)(






………2.37a 

                                 
2

22

2

1
)(


 kgk ………………..……….…2.37b 

                           
   222222 2

1

2

1
)(

kk
kg








 

                                 
 

kderGk
rki





3

.

3

22

2

1
4)(





……………….....…2.38a 

                                  kderGk
rki





3

.

2

22

2

1
)(




………………….….2.38b 

                                   
  






kd
k

e
rG

rki
3

22

.

22

1
)(




.............................…...2.39 

                                  
  






kd
kk

e
rG

rki
3

22

.

22

1
)(




……………………….2.40a 

and comparing equations (3.9a) and (2.40a), we have 

                                                
222

1

2

1
)(

kk
kg





………………………….2.40b 

Integrating equation (2.40a) over the solid angles, we have 

                    kd
kk

ke
ddrG

rki





  

 

0

22

2.2

0 0

2
sin

2

1
)(

 





………………………………2.41 

                  kd
kk

k
derG rki 




 




0

22

2

0

cos.

2
sin2

2

1
)(


 


……………………...2.42 

                       kd
kk

k
de rki 




 




0

22

2

0

cos. )cos(
1


 


 

                             kd
kk

k
e

rki
rG rki 






 




0

22

2

0

cos1
)(





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                              kd
kk

k
ee

rki
rG rkirki 







 




0

22

21
)(


 

                   





























 kde
kk

k
kde

kk

k

rki
rG rkirki

0

22

2

0

22

21
)(


 

                     



























 kde
kk

k
kde

kk

k

r

i
rG rkirki

0

22

0

22
)(


 

                   



























 kde
kk

k
kde

kk

k

r

i
rG rkirki

0

22

0

22
)(


 

                                










 







kd
kk

e

dr

d

r
rG

ikr

22

1
)(


……………………………2.43 

Since the integrand has simple poles on the real axis in the complex k plane 

at kk  , the integral (2.43) does not exist, suggesting that our attempt to represent 

the solutions of (2.30) as Fourier integral has failed. This approach is nevertheless 

potent because the integral (2.43) can be replaced by another one which does exist. 

Thus, 

                      










 







 kd
ikk

e

dr

d

r
rG

ikr

)(

1
)(

22 
 ……………….………..2.44 

where   is a small positive number. 

)(rG  exists but is, of course, no longer a solution to equation (2.35). The trick is to 

evaluate the expression (3.44) for 0 and to let 0 , that is, )()( rGrG   , 

after the positive integration has been performed. 

Now, let                                 

                                       









 kd
ikk

e
I

rki

)( 22 
…………………………..2.45 
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The integral (2.45) is most easily performed by using the complex k  -plane as an 

auxiliary device.  

 

From fig 2.1, the poles of the integrand are at 

                                                  022  ikk  for small . 

                                                    ikk  2  

                                              
2

1

2
1 










k

i
kk


 

                                           









22

1
1

k

i
k


 

                                         









k

i
k



2

1
……………….…..…………2.46 

The path of integration leads along the real axis from   to  . A closed contour 

may be used if we complete the path by a semicircle of very large radius through the 

upper half plane because 0r . It encloses the pole in the right half plane. The result 

of the integration is not changed by introducing detours avoiding the two points 
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kk  and kk  . In fact, if this is done, the limit 0 can be taken prior to the 

integration and we may write  

                                







 kd
kk

e

dr

d

r
rG

rki

rG
22

.

0

1
)( )(lim




………..….….2.47 

According to the residue theorem, we may let )(zf be single-valued and analytic 

inside and on a simple closed curve C except at the singularities ...,,, cba , then the 

residue theorem states that  

                                              

C

cbaidzzf ...)(2)( 111 ……………………2.48 

that is, the integral )(zf  around C is i2 times the sum of the residues of )(zf  at the 

singularities enclosed by C. 

From equation (2.47), if we make use of the residue at kk  , then we have 

                                   
22

)(
2

1
)(

kk

ekk

dr

d
i

r
rG

rki








 


…………………..2.49 

By differentiating equation (2.49) with respect to r , we have 

                                  
kk

e
kii

r
G

rki






 


2
1

………………………2.50 

At kk  ,                          

                                 
k

e
kii

r
G

rki







2

2
1




 

                                     
r

e
rG

ikr

  )( …………………..……………..….2.51 

Equation (2.51) is indeed the solution of equation (2.35).  

2.4 Positive Energy and Antiparticles of Schrodinger equation 

The free particle Schrodinger Equation is given by                                                  
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t

i
m 





 

 2
2

2
……………….…………...…..2.7  

which has solution                                  

                E

Et
i

ekxDkxCtx   sincos),( ………….…….…..2.52 

                           
Et

i

ikxikx eBeAe  ……………………………….2.53 

Substituting equation (2.53) into (2.7) gives  

         0
2

),(),(
2

222









 

m

k
EortxEtx

m

k 
………….…..…..2.54a   

yielding                                             

                                   
m

k
E

2

22
 …………………………..…....……….2.54b    

However, it also has solution                     

  E

Et
i

ikxikx eBeAetx 


   ),( …………………………..……….2.55   

Now, substituting equation (2.55) into (2.7) also gives 

      0
2

),(),(
2

2222









 

m

k
EortxEtx

m

k 
……………………2.56a 

yielding                                                                                          

                                
m

k
E

2

22
 ………………………………….………..2.56b 

E and E  are different solutions. The first one E corresponds to positive 

energy and the second one E to negative energy. From SE, we have two different 

solutions for positive and negative energy. This makes it possible to freely toss 

away one solution as unphysical and keep E . 
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Chapter Three 

Review of the Relativistic Quantum Mechanics  

This chapter also focuses on the review relativistic quantum mechanics. 

Definition to the relativistic quantum mechanics was unveiled. Other sub-topics 

which the chapter considered among others were the Minkowski‟s space, four-

vectors, four-velocity, interpretation of Klein-Gordon equation, review of the Dirac 

equation, positive energy and antiparticles, free particle solutions, and other simple 

solutions.  

3.1.1 Definition of Relativistic Quantum Mechanics   

It is the branch of theoretical physics that studies the relativistic (that is, satisfying the 

requirements of the theory of relativity) quantum laws of motion of micro particles, 

such as electrons, in what is known as the single-particle approximation. 

Relativistic effects are great when the energy of a particle is comparable with its rest 

energy. At such energies, the production of real or virtual particles may occur. For this 

reason, the single-particle approximation cannot be used in the general case. A 

consistent description of the properties of relativistic quantum particles is possible 

only within the framework of quantum field theory. In some problems where 

relativistic effects are significant, however, particle production need not be taken into 

consideration, and wave equations describing the motion of one particle of the single-

particle approximation can be used. The relativistic corrections to atomic energy levels 

(fine structure), for example, are found in this way. This approach based on the single-

particle approximation is logically unclosed. Thus, in contrast to relativistic quantum 
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field theory and non-relativistic quantum mechanics, relativistic quantum mechanics, 

in which problems of this type are considered, does not constitute a consistent theory. 

Relativistic generalizations of the Schrodinger equation are the basis for calculations 

in relativistic quantum mechanics: the Dirac equation for electrons and other particles 

of spin ½ (in units of Planck‟s constant), and the Klein-Gordon equation for particles 

of spin 0. 

The Klein–Gordon equation (Klein–Fock–Gordon equation or sometimes Klein–

Gordon–Fock equation) is a relativistic version of the Schrödinger equation. 

It is the equation of motion of a quantum scalar or pseudoscalar field, a field 

whose quanta are spinless particles. It cannot be straightforwardly interpreted as a 

Schrödinger equation for a quantum state, because it is second order in time and 

because it does not admit a positive definite conserved probability density. Still, 

with the appropriate interpretation, it does describe the quantum amplitude for 

finding a point particle in various places, the relativistic wavefunction, but the 

particle propagates both forwards and backwards in time. Any solution to the Dirac 

equation is automatically a solution to the Klein–Gordon equation, but the converse 

is not true. 

3.1.2 Minkowski’s Space 

Minkowski pointed out that the external world is not formed of ordinary three 

dimensional space, known as Euclidean space, but it is four dimensional space-time 

continuum known as Minkowski or World space, where time or more conveniently 

ict may be regarded to be the fourth dimension. Therefore, an event in world space 

must be represented by four coordinates  4321 ,,, xxxx  out of which the first three 

http://en.wikipedia.org/wiki/Special_relativity
http://en.wikipedia.org/wiki/Schrödinger_equation
http://en.wikipedia.org/wiki/Quantum_field_theory
http://en.wikipedia.org/wiki/Schrödinger_equation
http://en.wikipedia.org/wiki/Feynman-Stueckelberg_interpretation#The_Feynman-Stueckelberg_interpretation
http://en.wikipedia.org/wiki/Dirac_equation
http://en.wikipedia.org/wiki/Dirac_equation
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are space coordinates and the fourth one is the time coordinate. The events in the 

world are represented by points known as world points. In this world space, there 

corresponds to each particle a certain line known as world line. Let us consider two 

axes OX  andOP . O being the origin of the system (where ictp  ).  

According to Lorentz transformations, 

22222 tczyx  = invariant. 

But                                                          zzyy  , . 

22222 pxtcx  =invariant. 

This means that the distance of any variable point P in x-p plane from origin is 

unchanged. 

3.1.3  Four-vectors 

Having introduced the idea of four-dimensional space, it is possible to extend 

ordinary vector analysis to four dimensions to derive generally valid laws in the 

form of equations between four dimensional vector. These four dimensional vectors 

are called four vectors or world vectors.  

A four-vector in the 4321 ,,, xxxx space is defined as a quantity which 

transformations under Lorentz transformation in the same way as the 4321 ,,, xxxx  

co-ordinates of a point in the four dimensional space. It must be noted that the 

length of a 4-vector is unchanged under Lorentz transformation. If the square of the 

length of a 4-vector is positive, it is space-like vector and if the 4-vector is 

negative, it is also time-like vector. The position of the component of a 4-vector is 

represented by 
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                                 ),(),,,( 04321 iAAAAAAA


  

The square of the magnitude of the vector 

                               2
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2

2

2

1 AAAAAA   

3.1.4   4-Velocity 

A 4-velocity vector vu is defined by  

d

dx
u v

v   

                        where ),( ictxxv  and d is the proper time given by 

                                           21   dtd  














 ic

dt

dx

dt

dx
u v

v ,
1

1

1 22 
 

                                  ),(
1

1

2
icVuv




  

or                                 ),(
1

,
1 22

icV
icV

uv




 
  

    3.1.5 Relationship between proper time and an ordinary time 

If the form of a law is not changed by certain coordinate transformation, the law is 

said to be invariant. If any physical law may be expressed in a covariant four 

dimensional form, then the law will be invariant under Lorentz transformations. In 

four dimensions, the position vector will be termed as position four-vector. The 

position four-vector in four dimensions will be represented as  

                                  44332211
ˆˆˆˆ xxxxxxxxr   
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where 4321
ˆˆ,ˆ,ˆ xandxxx are unit vectors along 4321 ,, xandxxx  respectively. To 

differentiate position four-vector with ordinary position vector, we have to put r  in 

place of r . 

Taking dot product of r  with itself, we shall get a world scalar and hence Lorentz 

invariant, that is, 

                 4433221144332211
ˆˆˆˆ.ˆˆˆˆ. xxxxxxxxxxxxxxxxrr   

         2

4

2

3

2

2

2

1. xxxxrr  = Lorentz invariant. 

If rd represents the change in position four vector, then we have 

                     44332211
ˆˆˆˆ dxxdxxdxxdxxrd   

Taking dot product of this with itself, we shall get a world scalar and hence 

Lorentz invariant, that is, 

                  4433221144332211
ˆˆˆˆ.ˆˆˆˆ. dxxdxxdxxdxxdxxdxxdxxdxxdrdr   

                   2

4

2

3

2

2

2

1. dxdxdxdxdrdr  = Lorentz invariant 

                   2

4

2

3

2

2

2

1

2
dxdxdxdxdror   

But               ictxandzxyxxx  4321 ,,  

                    222222
. dtcdzdydxdrdrdr  =Lorentz invariant. 

If we consider a system in which a particle is momentarily at rest, as the object is 

at rest, its displacement vanishes, that is, 0,0,0  dzdydx and let the time be 

denoted by , then we have   

                                              222
dcdr  ………………(a) 

As 
2

dr  is an invariant, we have  
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                        22222222
dcdtcdzdydxdr  …………..(b) 

From equation (a), it is clear that 
ic

drd   is an invariant, dr and c are also 

invariant. 

The time d , as measured in the rest frame is called the proper time. 

A proper time is a time measured by the clock fixed in the rest frame of the 

particle. It is a scalar or invariant under Lorentz transformation. 

From equation (b), we have                    

 222

2

22 1
dzdydx

c
tdd   
























































222

2

22 1
1

dt

dz

dt

dy

dt

dx

c
tdd  

2

2

2

11   dtd
c

v
dtd  

This is an expression for time dilation. 

           where                         
c

v
 . 

3.2 Review of the Hamiltonian and the Klein-Gordon Equation 

Let the dynamical properties of a classical particle of rest mass be „m’ and „e’ in 

an electromagnetic field and let „v’ be the velocity of the particle.  In Newtonian 

presentation, the velocity vector „v’ is given by              

                                           
dt

rd
v



 …………………………………………3.1 

     From the equation              21
d

dt


   

We define the relativistic mass M and the Mechanical momentum p by 
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22 11 v

vm
vMand

v

m
M 










 …………………3.2 

                                                  
21 v

vm
P 




  ……………………………3.3 

                       where                            vMP


   

Equation (3.3) forms a certain four –vector 

                                               ),( pEP


  of the norm 2m  

That is,                                    222 mPE 


…………………………………..3.4 

and pointing into the future,        0E  

In the absence of a field, the particle follows a uniform rectilinear motion with  

v =constant 

According to Jackson(1962), in the electromagnetic field, the trajectory followed 

by the particle satisfies the equation                            

                     FHvEq
dt

pd 

 )( ……………………….……………...3.5 

This is the fundamental equation of the relativistic dynamics of a material point. 

The vector F


is called the Lorentz force. 

The relativistic velocity vu is defined as 

                icvuv ,
1

1

2




 .........................................................................3.6 

    




















222 1
,

1
),(

1

1



imcvm
imcvmmuv




………………….....3.7 

                      







 E

c

i
ppv ,


…………………………………………..3.8       
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where                    
2

2

1 


mc
E       and      

21 


vm
p




 

vp  is called the 4-vector momentum and p


is also the 3-dimensional momentum. 

Using the condition that the length of a 4-vector is invariant, 

                     
2

2
2

c

E
ppp vv  =constant …………………..…….3.9 

When                                

              22,0 cmEp  …………………………………….3.10                                   

       22

2

2
2 cm

c

E
p  ………………………………………2.32                                   

          

2 2 2 2 4

2 2 2 4

.........................................................3.11

...................................................3.11

E c p m c a

E T c p m c b

  

   

 

In a magnetic field, the velocity v is given by 

                      VA
c

q
qV


.  ………………..…………….....3.12 

where   is a scalar potential. 

A system is said to be conserved if its energy is constant. In such a system, the 

Hamiltonian                                                                                 

                             VTH  ………………………..……….…..….3.13     

where    T is the kinetic energy and V is the potential energy. 

In a non-relativistic case,                                                 

                           2

2

1
mVT  ………………………..…………...3.14        
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The Lagrangian L is also given by 

                     VA
c

q
qmVL


.

2

1 2   …………………….………..3.15    

By differentiating with respect to V,                                 

                A
c

q
Vm

dV

dL
pL


 ……………………………..3.16a    

By making V


the subject,                        

            







 A

c

q
p

m
V L

 1
……………………………….3.16b   

By squaring both sides of equation (3.16b),  

            

2

2

2 1
. 








 A

c

q
p

m
VVV L


……………………………3.17    

Multiplying through equation (3.17) by 2m  

                            

        

2

2 2

2

2

.........................................................3.18

..............................................................3.18

L

q
m V p A a

c

q
p p A b

c

 
   

 

 
   

 

 

            Substituting equation (3.11b) into (3.13), 

                       VcmpcH


 4222 …………………………………..3.19 

Substituting equation (3.18b) into equation (3.19), 

              







 qcmA

c

q
pcH 42

2

2


……………………………..3.20 

                        where                     qV  
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Equation (3.20) is the relativistic expression for a particle in an electromagnetic 

field 

Now since the problem of finding a relativistic wave equation for the electron is 

complicated by the existence of spin, we first look for a relativistic wave equation 

for a particle of spin 0. Such a particle has no internal degrees of freedom and so its 

wave function  depends only on the variables r


and t . 

Let „m‟ be the mass of such a particle and „q’ its charge. Suppose that it is moving 

in the electromagnetic potential 

                                        ),( AA


 ……………………..…………….3.21 

To find the wave equation, we proceed empirically using the correspondence 

principle and this will guarantee that we can obtain the classical laws of motion 

when the classical approximation is valid. The Schrödinger correspondence rule is 

given by: 

                              
t

i
E







 and    


ip …………………………3.22 

From  ),( pEP


  and the Hamiltonian equation (3.20),                  

          
2

2 4H E q p qA m c     ……………………………...3.23 

Substituting equation (3.22) into (3.23),  

                    
2

2 4i q i qA m c
t


     


……………..……….3.24a 

Multiplying both sides of equation (3.24a) by wave function   

            

1
2

2 2 4( ) ( )
i

i q qA m c
t

  
          

………….……..3.24b 
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  Equation (3.24b) has two main drawbacks 

First, the dissymmetry between the space and time coordinates is such that 

relativistic invariance and its consequences are not clearly exhibited. 

Secondly, the operator on the right hand side is a square root which is practically 

unatractable except when the field A


 vanishes. 

Now to avoid these two difficulties, we take equation (3.4) as the starting point of 

the correspondence operation and the fact that                                        

                    AqpPqEE


 , …………………….………….3.25 

Substituting (3.25) into (3.4), we have                                

                  222

)( mAqPqE 


…………………….…………….3.26 

Equation (3.26) is equivalent to the more general equation                                  

               
2

2 4E q p qA m c    …………………..……….…….3.27 

It must be noted that  

    (i)  Only the positive sign corresponds to real classical solutions 

    (ii) The negative sign represents solutions of negative energy without any physical 

significance. 

By taking equation (3.26) as the starting point and applying the correspondence 

operation and the wave function, we have         

2 2

2 4i q qA m c
t i

    
          

     

………………….……….…….3.28 

Expanding the LHS of equation (3.28), we have 

 
2

2 2 2 2 2 2 2 2 4

2
. .i q i q q i q A i qA q A m c

t t t

    
                 

    
…3.29 
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By re-arranging the terms, we have 

2
2 2 2 2 2 2 4

2
( ) ( ) ( . ) ( . )q A i q A i q A m c

t t t

   
               

   
…3.30 

In a weak field,  

            0)( 222  Aq


 and by Lorentz gauge,    

                        0).( 





t
Aqi


 …………………………..……….3.31   

 Equation (3.30) will reduce to                          

        
2

2 2 2 4

2
( ) ( . )i q A m c

t t

  
         

  
……………………3.32a 

  
2

2 2 2 2 4

2
( ) ( . )c m c i q A

t t

  
        

  
………………………..…3.32b                                     

                     2 2 4( ) ( . )m c i q A
t


    


………………………………..3.33              

 where     
2

2 2 2 2

2
c

t

 
   

 
……………………………………………..3.34     

Equation (3.34) is commonly referred to as D‟Alembertian operator 

Now from equation (3.33), if we consider a free particle of spin 0, then we have                                   

                      2 2( ) 0m   ……………………………….……………….3.35                             

If we substitute equation (3.34) into (3.35), we have                           

                 
2

2 2 2 2 4

2
0c m c

t

  
      

  
…………..…………………….3.36a 

                   
2

2 2 2 2 2 4

2
0c m c

t

 
      


………………………….3.36b 
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2

2 2 4 2 2 2

2
m c c

t

 
    


………………………………….3.36c 

Equation (3.35) is the homogenous Klein-Gordon Equation for a free particle. 

3.3 Interpretation of Klein-Gordon Equations: Continuity Equation 

The Klein-Gordon equation was historically rejected because it predicted a 

negative probability density. In order to see this, let us first revise the probability 

and current for the Schrodinger equation. 

In order to simplify the discussion, we shall consider only the free particle Klein-

Gordon equation  

                              



 22242

2

2
2 ccm

t
 …………………..3.36c 

To interpret the wave function, let us try to construct a position probability 

density ),( trP  and a probability current density ),( trj satisfying the continuity 

equation 

                                 0. 



j

t


………………………………….3.37 

    If  is a solution to the Klein-Gordon equation (3.36c), then its complex 

conjugate   must also be a solution to the Klein-Gordon equation. This means 

that we can write the complex conjugate of equation (3.36c) as  

                          *222*42*

2

2
2 



 ccm

t
 ……………….3.38 

Multiplying through equation (3.36c) by   on the Left Hand Side, equation 

(3.38) by   on the Right Hand Side, we have 

                      



 2*22*42

2

2
*2 ccm

t
 …………….3.39a 
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                    *222*42

2

*2
2 




 ccm

t
 …………3.39b 

 And subtracting these equations, we also have 

                  *22*2

2

*2

2

2
* 









 c

tt
……..…3.40a 

                  *2*
*

* . 




















 

ttt
……….3.40b 

which is the continuity equation 

                                0. 



j

t


 ………………………….………3.37 

If                           
tt 









*
* …………………..……….3.41a 

              then     *** jorj


……..3.41b         

But for this equation to match the Schrodinger Equation wave function, we 

should define j


in the same way, i.e. 

              ***

2
*

2







m

i

mi
j  ……………..3.42 

            Thus for equation (2.60) to hold, we must have  

                                


















ttm

i *
*

2


 …………………………3.43 

       The problem with  (in both expressions above) is that it is not positive 

definite and therefore cannot be interpreted as a probability density. This is one 

reason why Klein-Gordon equation was discarded.   

   According to Landau (1977), because  can be either positive or negative, it 

can be interpreted as charge density. We therefore note that this problematic 
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 came about because the Klein-Gordon equation is a 2
nd

 order in time. We have 

t


 and   itself constrains

t


; this does not happen with the Schrodinger equation 

and Dirac equation. 

3.4 Fourier expansion and momentum space 

As with the non-relativistic case, we expand plane wave states as 

                                     riketkkdtr
 .),(

~
),(  ……………..…..3.44 

But now with 

                                               kdNkd k

3~
 ……………….…….3.45a 

where kN  is a normalization constant which is given by 

                                          
3)2(2

1


kN ………………………3.45b 

 Substituting ),( tr


 into the free Klein-Gordon equation 

                         0222

2

2
2 



 m

t
  

This gives us                                         

                                     







 0

~ .22
..

rikemkkd


 …………..…….…..3.46 

Now, defining   

                                            22)( mkk 


  ……………….…….3.47 

and requiring the integrand to be zero gives 

                                            02
..

  …………..……………….……3.48  

 which is a 2
nd

 order differential equation, with auxiliary equation 
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                                          irorr  022 ……………….…3.49 

The two solutions are crucial! They can be interpreted as positive and negative 

energy, or as particle and antiparticle. In the non-relativistic case, we only have one 

solution 

                              titi ekcekatk   )()(),(


…………………………3.50 

3.5 Review of Dirac Equation 

From Zaarur and Co. (1998), spin is an intrinsic property of particles. The 

definition of spin operator S is analogous to the angular momentum operator 

                                        22 )1(  SSS ……………………………….3.51 

  being an eigenfunction of 2S  and )1( SS the corresponding eigenvalues.  

We can also define                                                          

                                     2222

zyx SSSS  …………………………………….3.52 

where yx SS ,  and zS  obey the following commutation relations:                        

               yxzxzyzyx SiSSSiSSSiSS   ,,,,, …………….……3.53 

Analogous to angular momentum, the quantum number of spin in the z-direction 

is            

                                      SSSms  ,...,1,  and    

                                          sz mS  ……………..…..……….....3.54 

For particles ( an electron, for example) with spin 
2

1 , we have 
2

1sm and 

two distinct eigenvectors of 2S and zS denoted by 
2
1 and 

2
1 . These 
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eigenvectors are called the standard basis, where                      

2
1

2
1

2
12

4
3

2
12

2
, 


 zSS …………………..……….…3.55 

The Pauli matrices ),,( zyx    are defined using                                           

                                       
2


S ………………………………..……..3.56 

where  

            

















 











10

01
,

0

0
,

01

10
zyx

i

i
 ………………..……..3.57 

S being written in the standard basis. The commutation relations of the Pauli 

matrices are                            

                      yxzxzyzyx iii  2,,2,,2,  ………...3.58 

 Other useful relations of Pauli matrices are 

                               1222  zyx  ………………..……………...……..3.59 

Consider a system consisting of particles with a spin S . Applying a magnetic 

field B  will introduce an additional term to the free Hamiltonian ,0H  so that                                  

                          S
mc

eB
HHHH .0int0  ……………………..….....3.60 

Hence the electron spin magnetic moment or interaction intH  is                                        

                        B
mc

e

mc

eB
H .

22
.int  




















………….………..3.61 

We have already seen that the Klein Gordon Equation gives rise to negative 

energies and non-positive definite probabilities and these reasons were discarded as 

a fundamental quantum equation. These problems arise because the Klein-Gordon 
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equation is non-linear in
t


, unlike the Schrodinger Equation. Dirac thus sought a 

relativistic quantum equation linear in
t


, unlike the Schrodinger Equation. Dirac 

therefore invented a matrix equation. 

Sakurai (1967) also stated that Klein-Gordon equation could not accommodate 

the
2

1
Spin nature as the Dirac equation can. In this connection, let us first study 

how to incorporate the electron spin in the non-relativistic quantum mechanics. 

  In non-relativistic quantum mechanics, in order to account for the interaction of 

the electron spin magnetic moment with the magnetic field, it is customary to add a 

term 

                                    Bσmce=H (spin)


 .2/ ………………………………...3.62 

to the usual Hamiltonian, as done originally by W.Pauli.  Consider a particle of 

mass m and charge e moving in an electromagnetic field described by a vector 

potential ),( trA


and a scalar potential ),(0 trA


. Its non-relativistic classical 

Hamiltonian can be obtained by starting from the particle, and making in it the 

substitutions 

                           
c

Ae
ppeAEE



 ,0 ………………..…….…..3.63. 

  This procedure appears somewhat artificial, especially if we subscribe to the 

philosophy that the only fundamental electromagnetic interactions are those which 

can be generated by the substitution 

                                         
c

Ae
pp

μ

μμ




  ……………………….………3.64 
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 In the usual wave mechanical treatment of the electron, the kinetic energy 

operator in the absence of the vector potential is given by                  

                                       
2m

2
. p

=H E)(K


 …………………………….……..3.65 

However, for a
2

1
Spin  particle, we may just as well start with the expression                            

                           2m/... pσpσ=H E)(K 
…………………….……..……3.66 

This alternative form is indistinguishable from equation (3.65) for all practical 

purposes when there is no vector potential. There is, however, a difference when 

we make the substitution of equation (3.64).                                                  

The expression (3.65) then becomes   

                    




























c

Ae
p

c

Ae
p

m
=H







..
2

1
 …………….……….........3.67a 

                           























































c

Ae
p

c

Ae
p

m

i

c

Ae
p

m
=










.
2

.
2

1
2

 …………3.67b                                    

                         B
mc

e

c

Ae
p

m
=





..

22

1
2














 ………………………….…...3.67c 

where we have used                                   

                            pA)A(i=Ap





 …………………….…3.68a.  

and the formula                                        

                      )BA(iσ+BA=)B)(σA(σ


.... …………..……………3.68b  

holds even if A and B are operators. 
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Our objective is to derive a relativistic wave equation for Spin−
1

2 particle. Just 

as we incorporated the electron spin into the general framework of relativistic 

theory using the kinetic energy operator (3.66), we can in the same way incorporate 

the electron spin into the general framework of relativistic quantum mechanics by 

taken the operator analog of the classical expression         

                     

 

 

 

2
22

2

2

............................................................ 3.69

. . ....................................... 3.69
op (op)

E
p = mc ( a)

c

E E
σ p +σ p = mc ( b)

c c

 
 

 

  
   

  

  

where  

                            .
0












 i=pand

x
i=

t
i=E (op) ………………..…....2.13 

This enables us to write a second-order equation 

                                Φmc=Φiσ
x

iiσ+
x

i
2

00

.. 





























 ………….3.70  

for a free electron, where Φ  is now a two-component wave function.  

We are interested in obtaining a wave equation of first order in the time 

derivative. Relativistic covariance suggests that the wave equation linear in 

t / must be linear in  also. 

We can therefore define two-component  wave functions (R)Φ  and (L)Φ where 

      Φ=Φ,Φσi
x

i
mc

=Φ (L)(R)
















.

1

0

 ………………………….3.71a 

From equation (3.70), it implies that                             
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                          (L)(R) mcΦ=Φiσ+
x

i 














 .

0

………….……………..3.71b 

 The total number of components has now been increased to four. The second-

order equation (3.70) is now equivalent to two first-order equations (3.72a) and 

(3.72b)                           

                    

 

 

0

0

. / ........................................3.72a

. / .......................................3.72

(L) (R)

(R) (L)

i σ i ( x ) Φ = mcΦ

i σ i x Φ = mcΦ b

   

      

 

Equation (3.72) is equivalent to the wave equation of Dirac. To bring it to form 

originally written by Dirac, we take the sum and difference of equation (3.72). 

We then have  

       

       

0

0

. / .................3.73

. / ......................3.73

(R) (L) (L) (R) (L) (R)

(L) (R) (R) (L) (R) (L)

i σ Φ Φ i x Φ +Φ = mc Φ +Φ a,

i σ Φ +Φ +i x Φ Φ = mc Φ Φ b

      

     

 

Denoting the sum and difference of (R)Φ  and (L)Φ  by AΨ and BΨ , we have 

                 
 

  


































B

A

B

A
mc

Ψ

xii

ixi

0

0

/.

./








………………………..3.74                         

Defining a four component wave function Ψ by 

                        
































)()(

)()(

LR

LR

B

A
Ψ ……………..………………….3.75 

 We can rewrite (3.74) more concise as  
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4. 0 .............................................3.76

0..............................................................3.76b

0

μ

μ

mc
γ +γ Ψ + Ψ = a

(ix )

or

mc
γ + Ψ =

x

 
 

 

 
   

 

where μγ with 43,2,1,=μ are 44  matrices given by 

                

















 


I

I

i

i

k

k

k
0

0
,

0

0
4




 ………………..……...3.77 

Which really mean      

.

1000

0100

0010

0001

,

000

000

000

000

43 etc

i

i

i

i


















































  ……….….3.78 

It must be noted that the standard form of the Pauli matrices 

             .
10

01
,

0

0
,

01

10
321 


















 









 

i

i
………………...3.79 

 were used. 

The symbol I also stand for the 22 identity matrix 

                                 









10

01
I ………………….…………………..…….3.80 

Multiplying equation (3.76a) by 4γ , we see that the Dirac equation can be written 

in the Hamiltonian form 

                                           













t
iH  ……………………………….……..3.81 

 where                            2. mcicH    ………………………....………3.82 
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                              



 2. mci

t
i  …………………..…....3.83 

with  

                       




















0

0
,

0

0
44

k

k

kk i
I

I




 ……………3.84 

The matrices α  and β  satisfy 

                         .2δ1,0, 2

kllkk =αα=β=β,α …………………..………..3.85 

 3.6 Probability and current for Dirac Equation 

According to Norbury (2000), for the Schrodinger Equation(SE) and Klein-Gordon 

equation(KGE), we used Schrodinger equation (SE*) Klein-Gordon equation 

(KGE*) to derive the continuity equation. For matrices, the generalization of the 

complex conjugate (*) is Hermitian conjugate (+) which is the transpose of the 

complex conjugate. The Dirac equation is 

                             

 

 

0...................................................3.86

0...............................................3.86

i m a

i m b







  

   

 

                       and  DEDE* is (using   ABAB)( ) given by 

                                       0)(   mi ………………………………..3.87 

                                      0)(   miγ 
 ……………………………….3.88 

 where                                               …………………………………..3.89 

                                        0)( 00  mγi 
 …………………………3.90 

making using of  

                                                 0  γ …………………………….....3.91 
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We want to introduce the Dirac adjoint (  is a column matrix) 

                                       0   ( is a row matrix)……………………..3.92 

Using 100  , we get 

                                    0)( 0000   
 mi ……………………..3.93 

                                         000   
 mi ………………...……..3.94 

And cancelling out 0 gives, the Dirac adjoint equation, 

                                0)(0)(  mimi  …………………….3.95 

The notation  means that  operates on   to the left, i.e.   
  


. 

The DE and DE are explicitly 

                       
( ) 0 0...................................3.96

( ) 0 ( ) 0.................................3.96

i m i m a

i m i m b









   

   

      

      
 

         Now, to derive the continuity equation, multiply Differential Equation (DE) 

from the left by   and DE from the right by , we have 

                      and                   

 

( ) 0..............................3.97

( ) 0............................3.97

i m a

i m b









   

   

  

  

 

 Adding these two equations, we have 

                              )(0)(  





  …………….…….3.98 

Giving                          ),()( jj


   …………………….…….……3.99 

       Or                         


 
4

1

20

i

i ………………………….3.100     

which is now positive definite.   
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3.7 Positive Energy and Antiparticles 

For the cases in Klein-Gordon equation and Differential Equation, we always have 

both positive and negative for all solutions. The only way to toss away the negative 

energy is to toss away all solutions; i.e. toss out the whole equation. 

3.7.1 Klein Gordon equation 

From the free particle Klein Gordon Equation which is given by 

                                   0222

2

2
2 



 m

t
 ……………..……3.36c 

                                      Let   ).(. xpEtixip NNe


  ………………………….3.101 

be a solution. 

Substituting  (3.101) into (3.36c) gives 

                                   0)( 222  mpE


 ………………………….……3.102 

which implies 

                      or      

2 2 2

2 2

.......................................................3.103

..........................................................3.103

E p m a

E p m b

  

  

 

Thus the single solution ).(. xpEtixip NNe


  has both positive and negative energy 

solutions. 

Another solution is xipNe . . 

Substituting also into the free KGE give the same as above  

                                                  0)( 222  mpE


…….……………3.104a 

                               or                 22 mpE 


 ……………….…….3.104b 
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And again, a single solution xipNe . has both positive and negative energy 

solutions. 

The interpretation of these states is as follows. For 0p


(particle at rest), 

then mE  . For 0p


, there will be a continuum of states above and 

below mE  , with bound states appearing in between. In quantum mechanics, there 

will be transitions to the negative energy continuum to infinite negative energy. The 

Klein-Gordon equation then becomes a relativistic wave equation for spinless 

particles, within the framework of many-particle theory in which the negative energy 

states are interpreted in terms of antiparticles. 

 3.7.2 Dirac equation 

Let us return to the Dirac equation (3.83) for a free particle of Spin−
1

2 . Since 

the Hamiltonian (3.82) is independent of r and t, we can seek the eigenfunctions 

common to both the energy and momentum operators, namely plane waves of the 

form  

                               


/.exp),( EtrpiAutr  ……………………3.105      

             with             ,4222
cmcpE   ………………………..3.104 

where  A is a constant and u is a four-component spinor independent of x and t. 

The plane waves (3.105) are eigenfunctions of the operators 





  iPand

t
iE  with eigenvalues kpandE    , respectively. 

Substituting equation (3.105) into (3.83) gives for u the matrix equation. 

                                        Euumcpc  2. 


……………………….3.105a      
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For a particle at rest 0p , equation (3.105a) becomes 

                                             2mc u Eu  ……………………………..…3.105b        

  Denoting the corresponding four-component spinor by 









)0(

)0(
)0(

B

A

u

u
u   and in 

accordance with equations (3.75) and (3.76), we first try the time-

dependence /2timce . Using equation (3.84), equation (3.105b) then reduces to 

                                    

2

2

2

2

2

0
(0) (0) .......................................3.106

0

0
(0) (0)......................................3.106

0

(0) (0)0
...

(0) (0)0

A A

B B

I
mc u Eu a

I

mc I
u Eu b

mc I

u umc I
E

u umc I

 
 

 

 
    

    
           

...................3.106c

 

Equation (3.106c) is satisfied only if the lower two-component spinor 

)0(Bu vanishes. But using a similar argument, we also see that equation (3.105) can 

be satisfied equally well by the time-dependence /2timce  provided that the upper 

two-component spinor  )0(Au vanishes.  

As in the Pauli theory, the non-vanishing two-component spinors can be taken as                                                                           

                                                          
















1

0

0

1
and  

So there are four independent solutions to equation (3.105b): 
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2 2

2 2

/ /

/ /

1 0

0 1
, ,.....................................(3.107 )

0 0

0 0

0 0

0 0
.......................................(3.107 )

1 0

0 1

imc t imc t

imc t imc t

e e a

e e b

 

 

   
   
   
   
   
   

   
   
   
   
   
   

 

If we insist on the interpretation that 
t

i



 is the Hamiltonian operator, the first 

two are “positive-energy” solutions while the last two are “negative –energy” 

solutions. It must also be note that the eigenvalues of the Hamiltonian operator 

are 2mc , depending on whether the eigenvalues of 14  are . 

3.8 Free particle solution 

Let us now consider the case 0p . It is convenient to write the four-component 

spinor u  in terms of two-component spinors )( puA and )( puB  as 

                             




















Et
i

p

x
ip

pu

pu
u

B

A
.exp

)(

)(
……………………..3.108   

 where        









)(

)(
)(

2

1

pu

pu
puA    










)(

)(
)(

2

1

pu

pu
puB ………………….. 3.109    

 From equation (3.105a), 

                                   Euumcpc  2. 


,…………………………3.105a 

    and making use of equation (3.109), we can have 
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2

2

2

2

.
( ) ( )......................................3.110

.

( ) ( ).
.......................3.110

( ) ( ).

A A

B B

mc I c p
u p Eu p a

c p mc I

u p u pmc I c p
E b

u p u pc p mc I









 
   

    
           

  

From equation (3.110b) 

                             

2

2

. ..............................3.111

. ..............................3.111

A B A

A B B

mc Iu c pu Eu a

and

c pu mc Iu Eu b





  

 

 

Modifying equation (3.111), we have 

                                

 

 

2

2

( ) . ( )..................3.112

( ) . ........................3.112

A B

B A

E mc u p c pu p a

and

E mc u p c pu b





 

 

 

)( puA  and )( puB  are now related according to (3.112) by  

             
2 2

. .
( ) ( ), ( ) ( )...........................3.113A B B A

c p c p
u p u p u p u p

E mc E mc

 
 

 
 

Eliminating )( puB , we have                   

 

 

2 2

2

2 2 4

2 2 4 2 2

2 2 4 2 2

. .
( ) ( )

( . ) ( . )
( )....................................................3.114

( ) ( ) ( )

( ) ( ),..............................

A A

A

A A

A A

c p c p
u p u p

E mc E mc

c p p
u p

E m c

E m c u p c p c p p u p

E m c u p c p u p

 

 




 




      

   ...........................3.115
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            since 0 pp  

Similarly, upon elimination of )( puA , we also have 

                              )()( 2222 pupcpumcE BB  ………………………3.116       

Hence the four eigenvalues of equation (3.111) are therefore given by 

                    

 

 

1
2 4 2 2 2

1
2 4 2 2 2

........................... 3.117

............................. 3.117

E m c p c occuring twice a

and

E m c p c occuring twice b





  

  

 

                 For    ,2

1
2242 cpcmE   part from the normalization constant, 

                                )(
1

0

0

1
puforand A
















…………………………3.118  

There are two linearly independent solutions for equation (3.111), corresponding to 

the positive energy   ,2

1
2242 cpcmE  which describe a free 

2

1
spin  particle of 

energy E and momentum p. If we write  

                                   













321

213
.

pipp

ippp
p  ,…………………………...3.119  

        then the independent solution for 0 EorE  are  

written as 

 
   

   
 

.

/

/

1

0

)(,

/

/

0

1

)(

2

3

2

21

)2(

2

21

2

3

)1(



















































mcEcp

mcEcipp
Npu

mcEcipp

mcEcp
Npu ………3.120 
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For   ,02

1
2242  cpcmE we may start with the lower two-component spinor 

)( puB set to                           

                                 )(
1

0

0

1
puforand B
















 …………………………3.121   

There are again two linearly independent solutions of this type, which may be 

written as 

 
   

   
 





















































1

0

/

/

)(,

0

1

/

/

)(
2

3

2

21

)4(
2

21

2

3

)3( mcEcp

mcEcipp

Npu
mcEcipp

mcEcp

Npu …3.122 

where N is the normalization constant. 

3.9 Simple Solutions; Non-Relativistic Approximations; Plane Waves 

3.9.1 Large and small components:  

Before we study the behaviour of Dirac wave function Ψ under Lorentz 

transformations, let us examine the kind of physics buried in the harmless-looking 

equation (3.76b). 

    In the presence of electromagnetic couplings, the Dirac equation reads 

                                   0=Ψ
mc

+ΨγA
c

ie

x
μμ

μ  

















…………………..…3.123  

where the usual replacement ceA)x(i)x(i μμμ ///    is assumed to 

be valid. Assuming that Aμ is the time independent, we let the time dependence of 

Ψ be given by 

                                          iEt,

=t e|Ψ(x,t)=Ψ 

0 …………………………..3.124     
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which means that Ψ is an eigenfunction of ti  /  with eigenvalue E . 

From equation (3.121), we can then write the coupled equations for the upper and 

lower components, AΨ and BΨ  as follows. 

                    

 

  

0

0

/ .

. / ....................................3.125a

A B A

B A

i x Ψ i σ Ψ = mcΨ

i σ Ψ = i x mc Ψ

     

     

      

                            

 

  

0

0

/ .

. / ..................................3.125

B A B

A A

i x Ψ +i σ Ψ = mcΨ

i σ Ψ = i x +mc Ψ b

    

    

    

Substituting  
c

eA
pp=iandeAEE=xi 0   0/  into equation 

(3.125a) and (3.125b) we have (3.126a) and (3.126b).                              

 

 

0

1
. .....................................3.126

1
. ...................................3.126b

2

B A

2

A 0 B

eA
σ p Ψ = E eA mc Ψ , a

c c

eA
σ p Ψ = E eA +mc Ψ

c c

  
    

   

  
     
   

     

where )iA(A,=A 0μ . Using equation (3.126b), we can readily eliminate Ψ
B  in 

equation (3.126a) to obtain 

   A

2

0A2

0

ΨmceAE=Ψ
c

eA
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mc+eAE

c

c

Ae
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

























































..
2

………3.127    

        Up to now, we have made no approximations. We now assume that                                           

                           2

0

2 mceA,mcE <<


……………………..………3.128       

Defining the energy measured from by  

                      mc
2

,mcE=E 2(NR) . ……………………………..……3.129        
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From equation (3.126), we can make the following expansion: 

 

 

2
1

1
1

1 2 1
2 2

2m 2 2m

1 1
2 2 1 1 ... ......................3.130

2m 2 2m 2

2
2 2 (NR)

02 (NR)2

00

(NR) (NR)
2 2 0 0

2 2

c mc
= = mc mc + E eA

mc + E eAE eA +mc

E eA E eA
= mc mc + = +

mc mc






 
        

    
     

   

  

 Equation (3.130) can be regarded as an expansion in powers of  2
/ cv  since 

0

(NR) eAE  is roughly      

                           2/2m//
2 2mvc)(eAp 


 ………………….…...………..3.131      

Keeping only the leading term in (3.130), we obtain                                             

  A0

(NR)

A ΨeAE=Ψ
c

eA
pσ

c

eA
pσ 




















..

2m

1
………………………...…..3.132      

Using equation (3.76b), equation (3.132) then becomes                                

                  A

(NR)

A0 ΨE=ΨeA+Bσ
mc

e

c

eA
p
























.

22m

1
2

……………..3.133      

Thus to zeroth order in  2
/ cv , A  is nothing more than the Schrödinger-Paulo 

two component wave function in non-relativistic quantum mechanics multiplied by 

a factor /2imce  . Using equation (3.126b), we see that B is “smaller” than A  by 

a factor roughly   2c/2m// vc)(eAp 


 provided that equation (3.128) is valid. 

For this reason with 2mcE  , A  and B are respectively known as the large and 

small components of the Dirac wave function . 
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Chapter Four 

Main Results 

Non-homogeneous Klein-Gordon Equation with interacting term 

This chapter stipulates the main findings. In it, the free particle Klein-Gordon 

equation became a non-homogenous equation, with the introduction of a n 

interacting term, which is a slow varying wave field, on the right hand side. Other 

sub-topics treated were the effects of the slow varying wave field interacting with 

the Schrodinger equation and Klein-Gordon equation. Annihilation and creation 

operators were also tackled. 

4.1 Slow varying wave field 

A field is said to be slow varying field if it has a low frequency. If we take for 

instance coskx as a periodic function, when k  is small, then the variation of 

coskx will be slow and coskx  may be expanded as     

                              
2 2

cos( ) 1 ...
2

k x
kx

 
   
 

………………………………4.1                                         

4.2 Effects of slow varying wave field on the Schrodinger equation 

4.2.1 Schrodinger Equation (Homogenous) 

The non-homogenous relationship between the energy E  and the momentum p of a 

free particle of spin 0 and the rest mass m are given: 

classically by 

                                                     
2

p
E

m
 …………………………………..4.2a 
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quantum mechanically by 

                                     ,E i p i
t


  


…………………………...4.2b 

The Schrodinger equation for a free particle is given by                                                              

                             2 2
0

m
E    …………………………………..2.7b                                              

                            2 2 0     …………………………………….2.7c 

where                                  2 2m
E   

4.2.2 Schrodinger Equation (Non-Homogenous) 

We want to look at cases when the free particle Schrodinger equation is replaced 

with forced term 2 cos( )kx  . That is, if we replace the Right Hand Side of 

equation (2.7c) by the slow wave field, we have                             

               2 2 2 cos( )kx       ………………………………….4.3a 

Substituting the expanded form of equation (4.1) into (4.3a), we have 

    
2 2

2 2 2 1 ...
2

k x
 

 
         

 
…………………………...…...4.3                                                            

Case I  

When the right hand side of equation (4.3b) is approximated with the zero order 

term 2 , we will have 

                              2 2 2        ………………………………………4.4a 

                               2 2 2 0      ………………………………..…..4.4b 

We may therefore write equation (4.4b) as                                              

                                     2 2 0    …………………………………………..4.5 
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where                                         2 2 2     

Case II 

We want to also consider replacing the Right Hand Side of equation (4.5) with the 

second order term
2 2

2

x
, we will have                                            

                                  
2 2

2 2

2

x
     ………………………………….4.6                                         

Equation (4.6) is the quantum simple Harmonic oscillator. 

4.3 Effect of the slow varying wave field on the Klein-Gordon Equation 

4.3.1 Klein-Gordon Equation (Homogenous) 

The relativistic relationship between the energy E  and the momentum p  of a free 

particle of spin 0 and the rest mass m is given 

classically by 

                                                 2 2 2 2 4E c p m c  …………………………………4.7 

quantum mechanically by 

                                             ,E i p i
t


  


…………………………..4.2b 

If we quantize the relativistic equation (4.7), we have       

               
2

2 2 2 2 4

2
( ) 0c m c

t

 
     

 
………………………….…4.8a 

                       
2 4

2

2
0

m c
   ……………………………………4.8b 

                                 2 2 0   ……………………………………..4.8c 

Where  2  is the d‟Alembertian operator and 
2 4

2

2

m c
   
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Equation (4.8c) is the Klein-Gordon equation for a free particle. 

4.3.2 Klein-Gordon Equation (Non-Homogenous)  

If the Right Hand Side of equation (4.8c) is replaced with a slow varying wave 

field (4.1), we will have                    

               2 2 2 cos( )kx     ………………………..………4.9a 

       
2 2

2 2 2 1 ...
2

k x
 

 
        

 
……………………….......4.9b 

       Case I 

If the right hand side of equation (4.9b) is replaced with the zero order term 2 , 

equation (4.6b) will become 

                          2 2 2      …………………………….….……4.10a 

Equation (4.10a) may be written as                                  

                       2 2 2 0     …………………….…………….....4.10b 

                          2 2 0    ………………………………………….4.10c 

where                          2 2 2     

From equation (4.10b), when the zero order term of the slow moving wave field was 

replaced at the Right Hand Side of the Klein-Gordon equation, it only introduce a 

positive shift in the energy, which eventually did not lead to any significant change in 

the energy. 

Case II 

If we also consider replacing the Right Hand Side of equation (4.10c) by the second 

order term, we will have                                      



 59 

                    
2 2

2 2

2

x
    ………………………………………….4.11 

 Now, the time independent Klein-Gordon equation may be written as                                                

                   
2 2

2 2 2

2

x
E


     ………………….………….4.12a 

                       
2 2

2 2

2

x
    ……………………………….4.12b 

Where                           2 2 2E   ……………………………………(*) 

Equation (4.12b) is called the relativistic Quantum Harmonic Oscillator                                                                                                                                    

Equation (4.12b) is analogous to the Energy generated by the simple Harmonic 

oscillator, whose energy is given by                                

                            2 1
2

nE n


  …………………………………….……….4.13 

From equation (*), if 2 2E  , then we can assume that                                                

                               

2
2

2 2 mc
E

 
 
 

…………………………..……………..4.14 

where  is new mass energy which represent the mass of the energy levels 

produced by the Klein-Gordon equation. 

If we equate equations (4.14) and (4.13), we have 

                                2 2 1
2

n n


   …………..…………………………4.15a                                         

                        2 1
2

n n


    ………………………….…………4.15b 

where                                              0, 1, 2,...n   
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Equation (4.15b) is generally the mass of the energy levels depicted by the Klein-

Gordon equation. This equation shows the negative and positive masses of the 

energy levels indicated by the Klein-Gordon equation, which also represents the 

particles and antiparticles of the Klein-Gordon equation. 

If 0n  , then equation (4.15b) becomes                                                     

                             0
2


   ………………………………………….4.16a 

Equation (4.16a) represents the mass of the energy level at the lowest state of the 

relativistic quantum harmonic oscillator. 

When 1n  , equation (4.15b) then becomes                                                       

                                1

3

2


   ……………………………………....4.16b 

When 2n  , equation (4.15b) also becomes 

                              2

5

2


   …………………………….………....4.16c 

Equations (4.16a,b&c) are the various energy levels, which indicate the downward 

and upward energy levels. 

4.4 Dirac equation 

     For a Dirac solution of the non-homogeneous Klein-Gordon equation, we shall 

still make reference to equation (3.33) given by                                           

                    
2

2 2 2

2
( ) ( . )m i q A

t t

  
      

  
……………………3.33a                        

Equation (3.33) may still be written as                           
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2
2

2 2 2

2
.i q A m

t t

   
          

   
……………………….3.33b 

 We assume that                                               

                               A  ………………………….………..……….…4.17a 

By writing equation (3.33b) in the Dirac representation and making use of equation 

(4.19a), we have                        

( ) ( ) 2 ( ).i .i .L L Li +σ i σ = i q i A i m
t t t


       

               
       

….4.18a 

( ) ( ) 2 ( ).i .i .L L Li +σ i σ = i q i i m
t t t


       

               
       

….4.18b 

Set                                                       

                      ( ) ( ). L Ri i =
t

    


………………….……………4.19a             

  ( ) 2 ( ).i R Lσ i i q = m
t

      


…………………………………4.19b 

We want to again assume that                                        

                               A ………………………………………………....4.17b 

Substituting equation (4.17b) into equation (4.18a), we have 

( ) ( ) 2 ( ).i .i .R R Ri σ i σ = i q i i m
t t t


       

                
       

….…..4.20 

Setting                           

               ( ) ( ). R Li i =
t

    


…………………………………….......4.21a, 

       ( ) 2 ( ). L Ri i i q = m
t

      


………………..……….......…..4.21b 
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 To bring it to form originally written by Dirac, we will take the sum and difference 

of equations (4.19b & 4.21b).This gives us 

       ( ) ( ) ( ) ( ) ( ) ( ) 2 ( ) ( ).R L R L R L R Li i i q = m
t

             


…4.22a

       ( ) ( ) ( ) ( ) ( ) ( ) 2 ( ) ( ).R L R L R L R Li i i q = m
t

            


…4.22b                                

     Denoting the sum and difference of (R)  and (L)  by A and B , we have                                

        2.B A A Bi i i q = m
t
         


……………..……………….....4.23a 

                   2.A B B Ai i i q = m
t
        


……………………………..4.23b 

    From equation (4.21a), we have                                           

             2.B A Bi i i q = m
t
        


…………………………...…4.24a 

Making use of the total energy E  and the momentum p  as represented by the 

differential operators, 

                      E i
t




     and     p i
x

 


………………….……...…2.25,                            

equation (4.24a) may be written as                      

                2.B A BE p i q = m        ……………………………………4.24b 

By re-arrangement of terms, we have                               

                        2. A Bp i q = E m     ………………………..….……….4.24c 

In a similar development and by way of considering equation (4.23b), we have                                     

                      2.A B Ai i i q = m
t
       


……………………...…….4.25a 

substituting equation (2.13) into (4.25b), we have                                   

                                2.A B AE p i q = m       ……………………..………4.25b 
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By re-arrangement of terms, we have 

                          2. B Ap i q = E m      ………………………….……..4.25c 

The product of equation s (4.24c & 4.25c) may be written as 

                    
2 2 4 2 2 2. A B A Bp E m = q        

 
………………………….4.26a 

                     
2 2 4 2 2 2. AB ABp E m = q       

 
……………………….4.26b 

Where                               AB A B    

Equation (4.26b) may be intuitively written as 

                                 2 2 2 2 2

AB AB AB= q       ………………………….4.26c 

Equation (4.26c) is of the form of the relativistic quantum harmonic oscillator. 

In addition, equation (4.26c) can also be written as 

                        
22 4 2 2 2. 0AB ABE p m q       …………………………4.26d 

Equation (4.26d) is also analogous with the Klein-Gordon equation. 

We can also write the matrix representation of equations (4.24a & 4.25a) as           

 

 

2
.

.

B B

A A

i i i q
t

m
i i q i

t

  

 

                     
 

………………………..4.27 

4.5 Annihilation and Creation operators 

White (1966) deduced the annihilation and creation operators for the simple 

harmonic oscillator. Based on his assumptions, if we consider equations (4.24c and 

4.25c), we can define two operators a  and
†

a such that 

                            † 1
.

2
a p i q   …………………………….……..4.28a                                               
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                             
1

.
2

a p i q   ……………………………….……4.28b 

    Equations (4.28) may be written as                                                                                 

                          † 22 A Ba = E m  ……………………….…………..…4.29a 

                                      22 B Aa = E m  ………………………………..4.29b 

If we form the product operators                                   

                            
2 2† 1

. .
2

aa p i p q q       
 

………………...4.30a 

         and                         

                            
2 2† 1

. .
2

a a p i p q q       
 

…………………..4.30b 

We observe that                                      

                            
2 2† †1 1

.
2 2

opaa a a p q h     
 

……………….…2.31a 

Equation (4.31a) is the Hamiltonian operator of the relativistic harmonic oscillator in 

terms of a and 
†

a operators.  

Further, we note that 

                                     † † 1
2 . .

2
aa a a i p q q p         …….…….......4.31b 

                                                    . ,i p q    

                                                     i i   

                                        †,a a    ……………………………..………...……4.32 

a and
†

a operators obey a particularly simple commutation relation. Since, from this 

commutation rule,                                             
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                                   † †aa a a  ……………………..………….……..4.33, 

the modified Hamiltonian operator for the relativistic harmonic oscillator may be 

written as 

                                               † †1

2
aa a a  ………………………....………4.34 

                                                     †1
2

2
a a   

                                                  †

2
a a  …………………………….……….4.35 

Defining a new operator N such that 

                                                                 †N a a ,  

The Hamiltonian operator for the relativistic quantum harmonic oscillator will also 

become  

                                               
1

2
opH N 

 
  
 

…………………….…….……4.36 

We want to proceed by finding the eigenvalues and eigenfunctions for the 

Hamiltonian operator. Let us denote the eigenfunction by   such that  

                                                   N    ……………………………………4.37 

The symbol is called a ket; its dual is called a bra. Together, the two symbols 

define a scalar product, which Dirac calls bracket . We want to derive the 

allowed values of  by examining the relations between eigenfunctions implied by 

the Hamiltonian equation (4.37) and by the commutation relation between a  and †a . 

To develop this relation between the eigenfunctions, we need to first develop two 

operator equalities involving Na and †Na . 
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                                                         †Na a aa  

                                                                 † 1aa a   

                                                                †aa a a   

                                                                  † 1a a a   

                                                                  1a N  ……………………………4.38 

and                                                           

                                                        † † †Na a aa  

                                                               † † 1a a a   

                                                          † 1a N  …………………………….……4.39 

We now want to consider the vector   with a .  Using the identity equation (4.38), 

we find that 

                                                  1Na a N    

                                                             1a     

                                                              1 a    

                                           1N a a           ……………………..………4.40 

We can deduce from equation (4.40) that a  is an eigenvector of N belonging to 

the eigenvalue 1  .  

Similarly, 

                                                  † † 1Na a N    

                                                               † 1a     
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                                                                †1 a    

                                              † †1N a a         …………………………4.41 

a and †a are respectively called the demotion (annihilation) and promotion (creation) 

operators. 

a operating on the eigenfunction   demotes it to the eigenfunction belonging to the 

eigenvalue 1  , and †a operating on   promotes it to the eigenfunction belonging 

to the eigenvalue 1  . 
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Chapter Five 

Conclusions 

In this chapter, the summary of the results were given, followed by the 

conclusions, recommendations and suggestion for further research of the study. The 

study investigated the behaviour of the free particle Klein-Gordon equation when an 

interacting term is introduced on the right hand side of the equation. The interacting 

term which was a potential field was the slow varying periodic wave field, which 

contained the zero order and the second order approximations. It was found that when 

the zero order approximation was introduced at the right hand side of the equation, 

there was a shift in the mass energy. On the other hand, positive and negative energy 

masses, which also represent particles and antiparticles were obtained when the right 

hand side of the equation was replaced with the second order term. Annihilation and 

creation operators, which resulted in the formation of eigenvalues, were also realized. 

This became possible when the non-homogenous Klein-Gordon equation was solved 

by the Dirac format.     

5.1 Summary of results 

From the study, the relativistic Quantum mechanics for homogenous Klein-Gordon 

equation for free particles which is also a second order differential equation was 

reviewed. 

Dirac equation which also extended the results to first order differential equation was 

also reviewed.  

Dirac was able to shows that spinols are not only particles but there are antiparticles 

available. 
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The non-homogenous Klein-Gordon equation of the relativistic quantum mechanics 

was also reviewed. Only the space part was considered. In this regard, the interacting 

term of the Klein-Gordon equation was regarded as the forced particle. This led us to 

the relativistic quantum harmonic oscillator. 

From the result, when the zero order term was replaced at the interacting term of the 

Klein-Gordon equation, it only introduced a shift in the mass, which did not lead to 

any significant change. On the other hand, when the interacting term of the Klein-

Gordon equation was replaced with the quadratic term, positive, zero and negative 

masses of the energy, which represent the particles and antiparticles, were realized. 

Additionally, when the Klein-Gordon equation is written in Dirac format, there was 

the formation of creation and annihilation of eigenvalues and eigenfunctions. 

5.2 Conclusion 

We can therefore conclude that 

1. The homogeneous Klein-Gordon equation and the corresponding Dirac Equation 

have been adequately been reviewed. 

2. The non-homogeneous Klein Gordon equation with a slow varying wave field as 

the interacting term on the right hand side has also been thoroughly studied. 

5.2 Recommendations  

We recommend that physical interpretations and applications to this study be carried 

out. 

It is also recommended that further investigation could be carried out on higher order 

approximations of the interacting slow varying wave field which leads to quantum 

anharmonic oscillators. 
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