KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY,

KUMASI

COLLEGE OF SCIENCE

THE DYNAMICS OF KLEIN-GORDON EQUATION FOR A

SLOW VARYING INTERACTING WAVE FIELD

A Thesis submitted to the Department of Mathematics, in partial

fulfillment of the requirements for the Degree of

MASTER OF PHILOSOPHY

By

AMOS ODOOM (B.ED, M.ED)

July, 2011



DECLARATION
| hereby declare that this is my own work towards the Master of Philosophy
(MPhil) and that, to the best of my knowledge, it contains no material previously
published by another person nor material which has been accepted for the award of
other degree of the University, except where due acknowledgement has been made

in the text.

OdoomM AMOS

Student Signature Date

Certified by

F.T Oduro (Dr.)lk, et S e | ...

Supervisor Signature Date

Certified by

FK.Darkwah e

Head of Department Signature Date



ABSTRACT
The main purpose of the study was to investigate the outcomes when an
interacting term is incorporated into a Klein-Gordon equation, in particular when
the interacting term involves a slow periodic wave field. The study further seeks to
investigate in the context of Dirac approach to the quantum relativistic free particle.

A slow varying periodic field was considered in the study as a potential field which

interacted with quantum mechanics wave particle field as in the Schrodinger

equation for a forced particle. In the relativistic context of the study, the Klein-

Gordon equation was considered as a homogenous differential equation which

represented a free particle and the interacting term was placed on the right hand

side, having a “slow varying potential” field as a factor.

It was found that for the zeroth order approximation of the slow varying wave field,
Klein-Gordon equation still remained as field but there was only a shift in the energy
mass. However, with the second order approximation, a formal Quantum Harmonic
Oscillator was obtained. This yielded discrete positive and negative energy mass,
suggesting particle and antiparticle states.

An equivalent Dirac formalism which also incorporated an interacting term was
obtained, with a recovery of particle and antiparticle states by means of creation and

annihilation operators.
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Chapter One

Introduction

1.1 Background

1.1.1 The origins of Quantum Theory

Until the end of the nineteenth century, classical physics appeared to be sufficient
to explain all physical phenomena. The universe was conceived as containing
matter, consisting of particles obeying Newton’s laws of motion and radiation
(waves) following Maxwell’s equations of electromagnetism. The theory of special
relativity, formulated by A. Einstein in 1905 on the basis of a critical analysis of the
notions of space and time, generalized classical physics to include the region of
high velocities. In the theory of special relativity, the velocity c of light plays a
fundamental role: it is the upper limit of the velocity of any material particle.
Newtonian mechanics became an accurate approximation to relativistic mechanics
only in the non-relativistic regime, that is, when relevant particle velocities were
small with respect toc. It should be noted that Einstein’s theory of relativity did not
modify the clear distinction between matter and radiation which was at the root of
classical physics. Indeed, all pre-quantum physics, non-relativistic or relativistic,
are now often referred to as classical physics.

During the late nineteenth century and the first quarter of the twentieth century,
however, experimental evidence accumulated which came up with new concepts

radically different from those of classical physics. Some of them are the



quantization of physical quantities such as energy and angular momentum, the
particle properties of radiation and the wave properties of matter. These concepts
were directly related to the existence of a universal constant, called Planck’s
constant h. Thus, just as the velocity c¢ of light plays a central role in relativity, so
does Planck’s constant in quantum physics. Because Planck’s constant is very
small when measured in microscopic units (such as Sl units), quantum physics
essentially deals with phenomena at the atomic and subatomic levels.

According to Messiah (1958), quantum mechanics is a mode of calculation which
purports to explain all physical phenomena, both on an atomic and on a
macroscopic scale.

Merzbacher (1973) also defined quantum mechanics as the theoretical framework
within which it has been found possible to describe, correlate and predict the
behaviour of a vast range of physical systems from elementary particles, through
nuclei atoms and radiations, to molecules and solids.

Quantum mechanics is a fundamental physical theory which extends and corrects
classical Newtonian mechanics, especially at the atomic and subatomic levels. It
takes its name from quantum (that is, for “how much’’) used in physics to describe
the smallest discrete increments into which something is subdivided.

Quantum mechanics describes with great accuracy and precision many
phenomena where classical mechanics drastically fails to agree with experiments,
including the behavior of systems of very small objects typically the size of atoms
or smaller, but also some ‘macroscopic’ phenomena, like superconductivity and

superfludity. Quantum mechanics successfully addresses these failures, achieving



unprecedented precision in its agreement with experiment. It also satisfies
Correspondence principle, in that it agrees with classical mechanics for those
phenomena where classical mechanics agrees with experiment.
Quantum mechanics has had enormous success in explaining many of the features of
our world. The individual behavior of the microscopic particles that make up all forms
of matter - electrons, protons, neutrons, and so forth - can often only be satisfactorily
described using quantum mechanics.
Quantum mechanics is important for understanding how individual atoms combine to
form chemicals. The application of quantum mechanics to chemistry is known as
quantum chemistry. Quantum mechanics can provide quantitative insight into
chemical bonding processes by explicitly showing which molecules are energetically
favorable to which others, and by approximately how much. Most of the calculations
performed in computational chemistry rely on quantum mechanics.
Much of modern technology operates at a scale where quantum effects are significant.
Examples include the laser, the transistor, the electron microscope, and magnetic
resonance imaging. The study of semiconductors led to the invention of the diode and
the transistor, which are indispensable for modern electronics.
Newtonian mechanics consisted of Kinematics (Special relativity) and Dynamics
(Quantum mechanics. Quantum mechanics also comprised of the non-relativistic,
which has to do with the development of the Schrodinger equation and relativistic
mechanics, which is also in relation to the Klein-Gordon and Dirac equations. When
quantum mechanics was originally formulated, it was applied to models whose

correspondence limit was non-relativistic classical mechanics. For instance, the well-
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known model of the quantum harmonic oscillator uses an explicitly non-relativistic
expression for the kinetic energy of the oscillator, and is thus a quantum version of the
classical harmonic oscillator.

Early attempts to merge quantum mechanics with special relativity involved the
replacement of the Schrodinger equation with a covariant equation such as the Klein-
Gordon equation or the Dirac equation. While these theories were successful in
explaining many experimental results, they had certain unsatisfactory qualities
stemming from their neglect of the relativistic creation and annihilation of particles. A
fully relativistic quantum theory required the development of quantum field theory,
which applies quantization to a field rather than a fixed set of particles. The first
complete quantum field theory, quantum electrodynamics, provides a fully quantum
description of the electromagnetic interaction.

1.2 Statement of the Problem

This study seeks to revisit the homogenous Schrodinger equation, homogenous Klein-
Gordon equation and the non-homogenous Schrodinger equation, coming out with
their various equations and solutions available. It also seeks to investigate thoroughly
the non-homogenous Klein-Gordon equation, when the right hand side of the free
particle Klein-Gordon equation is replaced with a forced term, which represents the
slow varying wave field. The study would also investigate whether there is a similarity
between the non-relativistic free particle Schrodinger equation and the relativistic free
particle Klein-Gordon equation. For instance, the non-homogenous Schrodinger and

the Klein-Gordon equations are given respectively as
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If equations (1.1b & 1.2) are compared, we can literally equate the Laplacian (V*¥)
and the D’ Alembertian operator ([J*\¥). In addition, the study would investigate the
possible solutions to the energy levels with respect to the non-homogenous Klein-
Gordon equation. It will again probe into the existence of the creation and annihilation
eigenvalues and eigenfunctions of the non-homogenous Klein-Gordon equation by
application of the Dirac format.

1.3 Objectives

The objectives of the study are as follow:

To review the homogeneous Schrodinger equation, homogenous Klein-Gordon
equation and the corresponding Dirac Equation.

To study the non-homogeneous Klein Gordon equation with a slow varying wave as
the interacting term on the Right Hand Side.

1.4 Methodology

The study looked at a free particle Schrodinger equation as a homogenous
differential equation. A potential field interacting with a wave function field was
replaced at the right hand side of the homogenous equation. The free particle Klein-
Gordon equation was also considered. With this equation, a forced term which
represents a slow varying wave field reacted with the wave function field on the right
hand side of the free Klein-Gordon equation, making it non-homogenous. Both the

zero order and the second order terms of the slow varying wave field became the



interacting terms. Finally, the non-homogenous Klein-Gordon was also solved using
the Dirac format.

1.5 Organization of the study

The study is organized into five chapters. Chapter one deals with the introduction.
This consists of the background which contains the origins to quantum theory, the
statement of the problem, objectives, methodology and the organization of the study.
Chapter two also deals with the review of literature. In it, we have the review of the
non-relativistic quantum mechanics, the interpretation of Schrodinger equation:
continuity equation, solutions to the non-homogenous Schrodinger equation,
negative energies and antiparticle of Schrodinger equation. Chapter three also
contains the review of the relativistic quantum mechanics, which also contains the
definition relativistic quantum mechanics, Minkowski’s space, four-vectors, the four-
velocity, and the relationship between proper time and an ordinary time. It has also
been organized under the following sub-headings: review of the Hamiltonian and
Klein-Gordon equation, interpretation of Klein-Gordon equation: continuity
equation, Fourier expansion and momentum space of Klein-Gordon equation, review
of Dirac equation, probability and current for Dirac equation, positive energy and
antiparticles, free particle solution. Simple solutions: non-relativistic approximations.
The main results were treated in chapter four, which contains the non-homogenous
Klein-Gordon equation with the interacting term. It is organized under the following
sub- headings: slow varying wave field, effects of slow varying wave field on the

Schrodinger equation, effects of the slow varying wave field on the Klein-Gordon



equation, Dirac equation, and the annihilation and creation operators whilst chapter

five focuses on the summary of results, conclusions and the recommendations.



Chapter Two

The Review of Non-Relativistic Quantum Mechanics

This chapter is aimed at reviewing the non-relativistic quantum mechanics, with a
focus on Schrodinger equation. A review of the Schrodinger equation,
Interpretation, solutions to the non-homogenous Schrodinger equation were among
some of the topics which will be treated.

2.1 Review of Schrodinger Equation

Bransden and Co. (2000) stated that, in quantum mechanics, the equation of
motion is called the Schrodinger equation. We begin our discussion by considering
the one-dimensional, non-relativistic motion of a free particle of mass m, having a

well-defined momentum p = p, X (where Xis the unit vector along the x-axis) of
magnitude p=|p,|and an energy E. Assuming that the particle is travelling in the

positive x direction, then this particle is described by a monochromatic plane wave
of wave number k = p% and angular frequency w = E/ , hamely

(i) e’ ... A 2.1a

L pox=Et)

(X DA N, 2.1b

where A is a constant. The angular frequency  is connected with the wave number

by the relation

_ hk?
= Am ...................................... 22a

This equation is equivalent to the classical relation which connects the energy and

the momentum of the particle.



_ F’V
E =P ) 2.2b

Now, by differentiating equation (2.1a) with respect to time, we have

oy iE
Y e 2.3a
a  n’

o B B i 2.3b

Oy py
azx — _hTV/ ...................................... 2.4
. 2m pZ
From equation (2.2b), we have T ES& Jx G2 e 2.5

Substituting (2.5) into (2.4), we have

— L0
2m 62X

. e .. 2.6

Equating equations (2.3b) and (2.6), we have

2 4

£ 1o h° o0
h—wy (X)) =—————w(Xt) e 2.7
att//( ) = 82X!//( )

More generally, since equation (2.7) is linear and homogeneous, it will also be
satisfied by a linear superposition of plane waves (2.1). For example, the wave

packet

T Hpx-E(pot

1 e
(2mn)” -,

associated with a ‘localized’ free particle moving in one dimension, is also a solution

w(Xx,t) = ]¢( P)AP, e 2.8

of the equation (2.7), since
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0 1 7 1
lhac//(x,t) :(2727*1—)% L E(p,)e B(P)AD, <o, 2.9a

1 % p? pxepo
- Px g DD, e, 2.9b
(m)%LZm #(p,)dp
.0 h® o°
i () = = LX) e, 2.9¢
at!//( ) om azxw( )

The wave Equation (2.7) isiknewn as the time-dependent Schrodinger equation for
the motion of a free particle in one dimension.
The generalization of these considerations to free particle motion in 3- dimension is

straightforward. The plane wave (2.1b) is given by

Lprm)

T ..., 2.10

It is then readily verified that the plane wave (2.10) satisfies the partial differential

equation

in (r t)——ﬁv2 ((#)) 2.11
ERV/ ) om AW e« o o ST ;

O 0 O°

where Vies—+—+—
ox® oy® oz

is the Laplacian operator.

The wave equation (2.11), which is the direct generalization of equation (2.7), is the
three-dimensional time-dependent Schrodinger equation for a free particle. As in the
one-dimensional case, it is a linear and homogeneous equation which also satisfies
the arbitrary linear superpositions of plane waves (2.10), particularly with the wave

packets

10
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w(r,t)= (Zﬂh—)%_‘[odpx _J;)dpy __[Odpze

%[ﬁf—E(p)t]

P(P) oo 2.12a

1 I;[ﬁ-fE(p)t

)
- BYAD < 2.12b
)" #(p)dp

where dp =dp,dp,dp, is the volume element in-momentum space.

Equation (2.11) is also clearly of first order in the time derivative 9 Gt -
Finally, using the fact that in wave mechanics, the total energy E and the momentum
p are represented by the differential operators

.. O .
Eop:'ha’ Pop =—1AV oo 2.13

we observe that the free-particle Schrodinger equation (2.11) may also be written in

the form

= il S
E,o(F 1) = %(pop)zy/(r,t) .............................. 2.14
in formal analogy with the classical equation (2.2b). We must again note that the
=2
quantity P 4m is represented by the operator

I YA
T= 2m(pop) = oV 2.15.

This equation is called the kinetic energy operator of the particle.
We now want to generalize the free-particle Schrodinger equation (2.11) to the case

of a particle moving in a field of force. We shall assume that the force F(r,t) acting

on the particle is derivable from a potential

11



FF D) =—VV (T eeeeeeeeeeeeeeeeee, 2.16.

So that, for a classical particle, the total energy E is given by the sum of its kinetic

=2
energy P Am and its potential energy V (r,t)

ﬁZ
E=— 4tV (Ft) oo, 2.17
2m

Since the potential energy V does not depend on p-or- E, the above discussion of

the free-particle case suggests using equation (2.13) to write
E,ow (Ft) = [zi(pop)2 +V(r,t)},/(r,t) .................... 2.18
m
So that the generalization of the free-particle Schrodinger equation (2.11) reads
.0 Ty h -
|hx//(r,t)=[—_V +V(r,t)}//(r,t) .................. 2.19
ot 2m

Equation (2.19) is the celebrated time-dependent Schrodinger wave equation for a
particle moving in a potential, which was proposed by E. Schrodinger in 1926. It is
the basic equation of non-relativistic quantum mechanics.

The operator appearing inside the brackets on the right of the Schrodinger equation

(2.19) is called the Hamiltonian operator H of the particle. This means that

hZ
e 7 R T <o, i 2.20a
m
"
=—ﬂ(pop) BV =T Voo, 2.20b

And the time-dependent Schrodinger equation (2.19) may therefore be rewritten in

the form

ih%y/(F,t) =Hy((Ft) oo 2.21

12



2.2 Interpretation of Schrodinger equation-Continuity Equation
In reference to equation (2.7), the free particle Schrodinger equation (SE) is given
by

2
—h—vzqf = iha—\P ...................... 2.7
2m ot

The complex conjugate equation (SE*) of (2.7) is

2 *
QY & O Pl 2.22
2m
Multiplying equation (2.7) by ¥ * and (2.22) by ¥, we have
2
I yevrg i 2.23a
2m ot
2 *
LR L S 2.23b
2m
Subtracting equation (2.23b) from (2.23a) , we have
2 *
I (prvry oy )i w0 g OF j ................ 2.24a
2m ot ot
2
= G lvrvw -G ]=in S (¥ 2 ). 2.24b
2m ot
By rearranging equation (2.24b) we have
0 h o= - -
— (V)T —Val NS VES VR (=0, 2.25
A e ]
which is just the continuity equation
a—pN.] 20 e, 2.26
ot
if P 2.27a

13
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Equations (2.27a) and (2.27b) are the probability density and current for the
Schrodinger equation.
We now turn to the interpretation of the Klein-Gordon equation. This is non-

trivial since the Klein-Gordon equation is of second order in the time derivative
%,Which is different from the Schrodinger equation ihst\P(r,t) = HY(r,t),

upon which the probabilistic interpretation of non-relativistic quantum theory is
based.

Consider a quantum mechanical problem of scattering of a particle of mass x and
energy E by a potential vV (r) .

2.3 Solutions to the non-Homogenous Schrodinger wave equation

The Schrodinger wave equation for a particle is given by

(—ﬁvz +V(r)]‘P(r) —EW() oo 2.28
2p

where W(r) is the wave function.

Equation (2.28) can be written in the form

2 24 __2u
[V — hZV(r))‘P(r)— =2 EW(r)

= (vz + Z;f j‘P(r) = il—élV(r)‘P(r) ............................... 2.29
Let k2= 2HE 22V (D)
h h
= (VZHkEI) U)o 2.290

14



We then replace the differential equation (2.29b) by an integral equation. The
transformation to an integral equation is performed most efficiently by regarding

UW¥(r) on the right-hand side of (2.29) temporarily as a given inhomogeneity, even
though it contains the unknown function ¥ (r) .
A particular solution of equation (2.29b) is constructed in terms of the Green’s
function G(r,r") which is the solution of the equation
(V2 +K2)B(r, 1) = 425 (E=F") vovsorttenreseeersses o 2.30

Let the expression

1 l; r r 8./ %k
—EJ.G(r,r)U(r PR ........................... (*)

solves equation (2.30) by virtue of the properties of the delta function and the
homogeneous equation
(R T WED, W L Tl 2.31
which is the Schrodinger equation for a free particle, that is, no scattering.
Solving equation (2.31), we have
T St =] . ... 2.32a

Choosing a suitable normalization factor, we have equation (2.31) as

¥(r)= MNE. X . 2.32b

1
(2x)*

Combining equation (*) and (2.32b), we thus establish the integral equation

¥ (r)=

ik.F 1 , , N3y
(27:)%e _QIG(r,r)U(r MW(r)dr 2.33

Equation (2.33) is a particular set of solutions of the Schrodinger equation (2.29b)

15



k has a definite magnitude, fixed by the energy eigenvalue, but its direction is
undetermined thus exhibiting an infinite degree of degeneracy, which corresponds

physically to the possibility of choosing an arbitrary direction of incidence.

Even if a particular vector k is selected, equation (2.33) is by no means
completely defined yet.
The Green’s function could be any solution of equation (2.30) and there are

infinitely different ones. The choice of a particular G(r', ") imposes definite
boundary conditions on the eigenfunctions ¥, (1) .

The two particular useful Green’s functions are

k| F-F

.................................... 2.34a

F =1’

G NC-T TN e ... 2.34b
may be obtained by applying a Fourier transformation to the equation
(v RS = Az () ... 2.35
which is a simplified version of equation (2.30).
We want to introduce

= i < T
G(r):jg(k)e 3K 2.36a

and the three dimensional delta function defined as

1
(27)

5(F) = [ Td%K o 2.36b

Substituting equations (2.36a) and (2.36b) into (2.35), we have

16
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1
VZ+k?) gkHe* " dk' =—4r——|e dk’ ......... 2.37a
i) oy
2 2 4 l
= (V24K2) g(K) === oo, 2.37b
2r
1 1
= k') =— =
W) =i k?) = 22V i)
1 ik.r
V4K IG(M)=—-4r—=|e d°K" ........oooiiiii 2.38a
(7 +1¢ )< 4 5|
= (V2 +Kk2)5(F) = " A 2.38b
— G(f)=- 1j & g 2.39
272-2 (V2+k2) ................................... .
|kr
= aC(ME= %K 2.40a
() = j 1)
and comparing equations (3.9a) and (2.40a), we have
.
g(k )—2 T o G 2.40b
Integrating equation (2.40a) over the solid angles, we have
o0 |k rk12
G(r)= =—=i¢ M AL ... ... 2.41
1 T ik'.rcos@ ~; T klz '
= G(r) ===, SiNEO[———dk oo 2.42
2w 0 o k'“—k
1 T ik'.rcos@ i k'z
== |e""™d(-cos g dk’
T ! ( )! k'? —k?
— G(r) _ |kr0059 ”T k dk’
0 ! k/2 k2

17



—ik'r elkr]j k'2 dkr
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1 © kr2 12
= G(r) = e ™ dk’' — [ ———e""dk’
( ) ikrﬂr|:.[[k!2 k2 J.er k2 :|
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1 d © e+|kr
G(r) == S [t [ 243
=60 ﬂf{d Jatie }

Since the integrand has simple poles on the real axis in the complex k'plane

atk’ = £k, the integral (2.43) does not exist, suggesting that our attempt to represent
the solutions of (2.30) as Fourier integral has failed. This approach is nevertheless
potent because the integral (2.43) can be replaced by another one which does exist.

Thus,

0 +|kr
=G, (r=—— O Sl = S 2.44
(= [ jk R }

where 7 is a small positive number.
G,, (r)exists but is, of course, no longer a solution to equation (2.35). The trick is to
evaluate the expression (3.44) for n = Oand to let — 0, that is,G,, (r) — G, (r),

after the positive integration has been performed.

Now, let

ik'T

= J‘%dk, ................................ 245
=K = (k" +in)
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The integral (2.45) is most easily performed by using the complex k'-plane as an

auxiliary device.

Im k
’4‘——_ -~~.‘s
-~
l’ \\
- ~
rd ~
I, \\
td -
» N
’ \

’ \
’ \
’ \
’ \

:’ ‘
¥y , oy
] + 11}, \
] k+— 1

', m yi'd 1
1

i 1

I . -k . 1
ek’

From fig 2.1, the poles of the integrand are at

k' —(k2 +i77)z0 for small .
k"= k> +in

c\h
=S kK 3 J_rk(1+ %)

The path of integration leads along the real axis from —oo to+o. A closed contour
may be used if we complete the path by a semicircle of very large radius through the
upper half plane becauser > 0. It encloses the pole in the right half plane. The result

of the integration is not changed by introducing detours avoiding the two points
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k"=+k andk’=—k. In fact, if this is done, the limit 77 — O can be taken prior to the
integration and we may write
: 1dp e ,
G, (n=Ilim GH7 (r)=- o dk 2.47

ardrd k'2—k?
n—0

According to the residue theorem, we may let f (z)be single-valued and analytic
inside and on a simple closed curve C except at the singularities a,b,c,..., then the
residue theorem states that

§ f(2)dz =27 (8, + D +C +.) ceeeeeiieeeiiee, 2.48
C

that is, the integral f(z) around C is 27 times the sum of the residues of f(z) at the

singularities enclosed by C.

From equation (2.47), if we make use of the residue at k' =-+k , then we have

i ik’
SN S IR . 2.49
pi8 dr. k™=K
By differentiating equation (2.49) with respect tor , we have
eik’r
G, = ——x2m xik" ——— L 2.50
ar k'+k
Atk =+k,
eik’r
= G,.=——=x27 xik’
nr 2k’
ikr
Go(r) = e 2.51

Equation (2.51) is indeed the solution of equation (2.35).
2.4 Positive Energy and Antiparticles of Schrodinger equation

The free particle Schrodinger Equation is given by
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2
Sy i Y 2.7
2m ot

which has solution

(%) = (CCOSkX+ DSINKX)E" =W evevererereereeeeeese 2.52

= (ne™ +Be ™ )e%Et ..................................... 253

Substituting equation (2.53) into (2.7) gives

2 21,2
%W(x,t) =—-Ey(xt) or ( E+ thI; }// =0 . 2.54a
yielding
21,2
E= B T 2.54b
2m

However, it also has solution

pxt) =(Ae™ +Be ™™ A =y i 255

Now, substituting equation (2.55) into (2.7) also gives

h2k2 hz 2
o w(x,t) =—Ew(xt) or(E— - jy/:O ........................ 2.56a
yielding
2 | ad
E :+h oo e 2.56b
2m

weand y . are different solutions. The first one . corresponds to positive
energy and the second one y__ to negative energy. From SE, we have two different

solutions for positive and negative energy. This makes it possible to freely toss

away one solution as unphysical and keep ..
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Chapter Three

Review of the Relativistic Quantum Mechanics

This chapter also focuses on the review relativistic quantum mechanics.
Definition to the relativistic quantum mechanics was unveiled. Other sub-topics
which the chapter considered among others were the Minkowski’s space, four-
vectors, four-velocity, interpretation of Klein-Gordon equation, review of the Dirac
equation, positive energy and antiparticles, free particle solutions, and other simple
solutions.
3.1.1 Definition of Relativistic Quantum Mechanics
It is the branch of theoretical physics that studies the relativistic (that is, satisfying the
requirements of the theory of relativity) quantum laws of motion of micro particles,
such as electrons, in what is known as the single-particle approximation.
Relativistic effects are great when the energy of a particle is comparable with its rest
energy. At such energies, the production of real or virtual particles may occur. For this
reason, the single-particle approximation cannot be used in the general case. A
consistent description of the properties of relativistic quantum particles is possible
only within the framework of quantum field theory. In some problems where
relativistic effects are significant, however, particle production need not be taken into
consideration, and wave equations describing the motion of one particle of the single-
particle approximation can be used. The relativistic corrections to atomic energy levels
(fine structure), for example, are found in this way. This approach based on the single-

particle approximation is logically unclosed. Thus, in contrast to relativistic quantum
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field theory and non-relativistic quantum mechanics, relativistic quantum mechanics,

in which problems of this type are considered, does not constitute a consistent theory.
Relativistic generalizations of the Schrodinger equation are the basis for calculations

in relativistic quantum mechanics: the Dirac equation for electrons and other particles
of spin % (in units of Planck’s constant), and the Klein-Gordon equation for particles
of spin 0.

The Klein—Gordon equation (Klein-Fock—Gordon equation or sometimes Klein—
Gordon—Fock equation) is a relativistic version of the Schrodinger equation.

It is the equation of motion of a quantum scalar or pseudoscalar field, a field
whose quanta are spinless particles. It cannot be straightforwardly interpreted as a
Schrodinger equation for a quantum state, because it is second order in time and
because it does not admit a positive definite conserved probability density. Still,
with the appropriate interpretation, it does describe the quantum amplitude for
finding a point particle in various places, the relativistic wavefunction, but the
particle propagates both forwards and backwards in time. Any solution to the Dirac
equation is automatically a solution to the Klein—Gordon equation, but the converse
IS not true.

3.1.2 Minkowski’s Space

Minkowski pointed out that the external world is not formed of ordinary three
dimensional space, known as Euclidean space, but it is four dimensional space-time
continuum known as Minkowski or World space, where time or more conveniently
ict may be regarded to be the fourth dimension. Therefore, an event in world space

must be represented by four coordinates (x,, X,, X;, X,) out of which the first three
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are space coordinates and the fourth one is the time coordinate. The events in the
world are represented by points known as world points. In this world space, there
corresponds to each particle a certain line known as world line. Let us consider two
axes OX andOP . O being the origin of the system (where p =ict ).
According to Lorentz transformations,
x* +y? + z? —c’t® = invariant.
But W=Wz=23.
= X —c’t? =x* + p®=invariant.
This means that the distance of any variable point P in x-p plane from origin is
unchanged.
3.1.3 Four-vectors
Having introduced the idea of four-dimensional space, it is possible to extend
ordinary vector analysis to four dimensions to derive generally valid laws in the
form of equations between four dimensional vector. These four dimensional vectors
are called four vectors or world vectors.

A four-vector in the X;, X,, X5, X, Space is defined as a quantity which
transformations under Lorentz transformation in the same way as the X, X,, X;, X,

co-ordinates of a point in the four dimensional space. It must be noted that the
length of a 4-vector is unchanged under Lorentz transformation. If the square of the
length of a 4-vector is positive, it is space-like vector and if the 4-vector is
negative, it is also time-like vector. The position of the component of a 4-vector is

represented by
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A, = (AL A ALA) = (ATA)
The square of the magnitude of the vector
AN =N +A+A - A
3.1.4 4-Velocity

A 4-velocity vector u, is defined by

dx

3

v Jr

o

where x, =(x,ict)and dz is the proper time given by

dz =dt1- 52

u, = P [dx ic]
Yodt1-p57 J-pr ldt
1

(v, ic)
1-p°

=Uu, =

N V ic
A1 52 1yt

3.1.5 Relationship between proper time and an ordinary time

or

(v, ic)

If the form of a law is not changed by certain coordinate transformation, the law is
said to be invariant. If any physical law may be expressed in a covariant four
dimensional form, then the law will be invariant under Lorentz transformations. In
four dimensions, the position vector will be termed as position four-vector. The
position four-vector in four dimensions will be represented as

r =% + K%, + XX, + R, X,
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where X, X,, X, and X,are unit vectors along X, X,, x;and x, respectively. To

differentiate position four-vector with ordinary position vector, we have to put r in

place of r.

Taking dot product of r with itself, we shall get a world scalar and hence Lorentz

invariant, that is,

= r.r=x>+x.+x;+x? = Lorentz invariant.
If dr represents the change in position four vector, then we have
dr = X dx;, + X,0x, +X,dx, + X,dX,

Taking dot product of this with itself, we shall get a world scalar and hence

Lorentz invariant, that is,
dr.dr = (R,0x, +X,0X, +Ry0X, +X,dx, [(R,dxX, + R,dx, + X,dx, + R,dX, )
= drdr =dx’ +dx; +dxZ +dx;= Lorentz invariant
or  dr’=dx?+dx?+dx? +dx’
But X =X, X, =Y, X, =z and x, =ict
sodrdr = dr? =dx? +dy? +dz® —c?dt®=Lorentz invariant.
If we consider a system in which a particle is momentarily at rest, as the object is

at rest, its displacement vanishes, that is, dx =0, dy =0, dz =0 and let the time be

denoted by 7 , then we have

As dr? is an invariant, we have
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2

dr? =dx® +dy? +dz? —c?dt? =—c?dz?.............. (b)

From equation (a), it is clear that dz = _gic is an invariant, dr and c are also

invariant.

The timedr, as measured in the rest frame is called the proper time.
A proper time is a time measured by the clock fixed in the rest frame of the

particle. It is a scalar or invariant under Lorentz transformation.
From equation (b), we have

drzzdtz—ciz(dx2+dy2+dzz)
—de? =dt 1-= (%jzj{dy):[dzjz
¢ Ldt dt dt
V2
dr =dt,[1-— = dr =dtyj1-
c

This is an expression for time dilation.

v
where p=—.
C

3.2 Review of the Hamiltonian and the Klein-Gordon Equation
Let the dynamical properties of a classical particle of rest mass be ‘m’and ‘e’ in

an electromagnetic field and let ‘v’ be the velocity of the particle. In Newtonian

presentation, the velocity vector ‘v’ is given by

dz

From the equation de _ hi—p°
dt

We define the relativistic mass M and the Mechanical momentum p by
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M = and MV=———..................... 3.2
1-vV 1-v?
B e, 3.3
1-v?
where P=Mv
Equation (3.3) forms a certain four —vector
P# =(E,p) of the norm m?
That is, E2 P2 =M e, 3.4

and pointing into the future, E>0
In the absence of a field, the particle follows a uniform rectilinear motion with
v =constant
According to Jackson(1962), in the electromagnetic field, the trajectory followed
by the particle satisfies the equation

dp

E:q(éwm):ﬁ .............................................. 35

This is the fundamental equation of the relativistic dynamics of a material point.

The vector F is called the Lorentz force.

The relativistic velocity u, is defined as

u, = ! (7163 eSO 3.6
1- 2
. mv Imc
=mu, = (MV,IMC) = | ———,——— | o e, 3.7
Vi- [Jl—ﬂz Vi ﬂZJ
N pvz(ﬁ,éEj .................................................. 3.8
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mc? . mv
and =

p
J1- J1- 32

p, is called the 4-vector momentum and p is also the 3-dimensional momentum.

where E=

Using the condition that the length of a 4-vector is invariant,

2

p,p, = p° —5—2 =CoNStant ...........coooeiiiiiin 3.9
When
P=0, = E=—M2C%. . i 3.10
2
= PP =M 2.32
= E?=c?p?+m’ G ............................. 3.11a

ol [CAR SO ... 3.11b

In a magnetic field, the velocity v is given by

Y, =—qc1>+%A\7 ........................................ 3.12
where @ is a scalar potential.
A system is said to be conserved if its energy is constant. In such a system, the
Hamiltonian
R e o AL g 3.13
where T is the kinetic energy and V is the potential energy.

In a non-relativistic case,

T :imv2 ............................................ 3.14

2
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The Lagrangian L is also given by

L:%mvz—q¢+ﬂ/1\7 .................................... 3.15
C

By differentiating with respect to V,

o=t oV QA 3.16a
dv C

By making V the subject,

2
- mzvzz[raL—%Aj ......................................................... 3.18a
_}2
L pzz(ﬁ—ﬂAj .............................................................. 3.18b
C

Substituting equation (3.11b) into (3.13),
= H =/ p2+m2Ct AV 3.19

Substituting equation (3.18b) into equation (3.19),

2
= H =\/02(f>——A] AMPCt 4D 3.20
c

o]

where V =qd
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Equation (3.20) is the relativistic expression for a particle in an electromagnetic
field

Now since the problem of finding a relativistic wave equation for the electron is
complicated by the existence of spin, we first look for a relativistic wave equation
for a particle of spin 0. Such a particle has no internal degrees of freedom and so its
wave function W depends only on the variables r andt.

Let ‘m’ be the mass of such a particle and ‘g its charge. Suppose that it is moving

in the electromagnetic potential
AY = (D, A) i 3.21

To find the wave equation, we proceed empirically using the correspondence
principle and this will guarantee that we can obtain the classical laws of motion
when the classical approximation is valid. The Schrédinger correspondence rule is
given by:

E:% end 7 DSl . ... 3.22

From P“ =(E, p) and the Hamiltonian equation (3.20),

H

Il
go
o)

>

E:qCD+\/(*— q)2+m204 .................................... 3.23

Substituting equation (3.22) into (3.23),

= ih§:q®+\/(—ihv-q,&)2 MR L, 3.24a

Multiplying both sides of equation (3.24a) by wave function ¥

o i %
:>(iha—qGD)‘P:[(%V—qA)2+m2c4} L U 3.24b
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Equation (3.24b) has two main drawbacks
First, the dissymmetry between the space and time coordinates is such that
relativistic invariance and its consequences are not clearly exhibited.

Secondly, the operator on the right hand side is a square root which is practically
unatractable except when the field A vanishes.
Now to avoid these two difficulties, we take equation (3.4) as the starting point of
the correspondence operation and the fact that
E=E+q®, P=P+0A. . i 3.25

Substituting (3.25) into (3.4), we have

(E-qo)f —(P=aA)2=m?. ..o, 3.26

Equation (3.26) is equivalent to the more general equation

E :qdbi\/(ﬁ—qA)Zerzc“ ........................................ 3.27

It must be noted that

(i) Only the positive sign corresponds to real classical solutions

(if) The negative sign represents solutions of negative energy without any physical
significance.

By taking equation (3.26) as the starting point and applying the correspondence

operation and the wave function, we have
0 > (n 2N -
|ha—q® —=V=0A| [Y=mMmTY .o 3.28
[
Expanding the LHS of equation (3.28), we have
2
[(—hz%—ihq%—ihq@%w@zj—(—hzvz+ith.A+ihqA.V+q2A2) Y=mic'Y...3.29
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By re-arranging the terms, we have
2
—hz(a—z—V2)+q2(®2 — A% —ihq(V.A+a£) —ihq(q>ﬁ+ AV) |¥ =m%*c*¥ ...3.30
ot ot ot
In a weak field,
q%(®? — A?) =0 and by Lorentz gauge,

ing(V.A+ %tqi) ) . P oo 331

Equation (3.30) will reduce to

2
—h? (6—2 —V?)—ihq(® ﬁ+ AV) W =m2c*Y ... 3.32a
ot ot
0? = 0
= | (= -c*V)+m’c’ [P =irg(AV+DP )Y ... 3.32b
ot ot
Q%+m2ch)¥ = ihq(AV+®§)‘P ...................................... 3.33
2
where  [1°=h? (%_szzj ..................................................... 3.34

Equation (3.34) is commonly referred to as D’Alembertian operator

Now from equation (3.33), if we consider a free particle of spin 0, then we have

NPT .............. o 3.35

If we substitute equation (3.34) into (3.35), we have

2
[hz (%—czvzj+mzc4}‘{’=0 ....................................... 3.36a
2
= —h? aat—\f + RV =M W =0, 3.36b
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2
oW _ M2CMW — 22V AW e 3.36¢

=-h'—=
Equation (3.35) is the homogenous Klein-Gordon Equation for a free particle.
3.3 Interpretation of Klein-Gordon Equations: Continuity Equation
The Klein-Gordon equation was historically rejected because it predicted a
negative probability density. In order to see this, let us first revise the probability
and current for the Schrodinger equation.

In order to simplify the discussion, we shall consider only the free particle Klein-

Gordon equation

82

—h2¥T=m2c4T—hZCZVZ\P ....................... 3.36¢

To interpret the wave function, let us try to construct a position probability
density P(r,t) and a probability current density j(r,t) satisfying the continuity

equation
B e |\ 3.37
ot

If Wis asolution to the Klein-Gordon equation (3.36c¢), then its complex
conjugate W* must also be a solution to the Klein-Gordon equation. This means

that we can write the complex conjugate of equation (3.36¢) as
—7 W =mictY RV 3.38

Multiplying through equation (3.36¢) by W* on the Left Hand Side, equation

(3.38) by ¥ on the Right Hand Side, we have

2
O _ M2 c* W' — %PV 3.39a

;=

—h?Y
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8‘1’

=m’c*PY¥ " —A%CPPVIY .. 3.39h

And subtracting these equations, we also have

2 2+
\P*a‘{’ oY

P — e veiw—wvawr] 3.40a
O 2 g |Gl vw_wvrw]...... 3.400
al - a et

which is the continuity equation

a—/’N]:o ........................................ 3.37
at
If pE‘P*a—\P—‘Pai ................................. 3.41a
ot ot
then j=WYV¥ —¥'V¥ or j*=90"¥Y-Yo"¥"....... 3.41b

But for this equation to match the Schrodinger Equation wave function, we

should define j in the same way, i.e.

]zzi[lp*vqf N ]_ (T VYWV ) 3.42

Thus for equation (2.60) to hold, we must have

The problem with p (in both expressions above) is that it is not positive

definite and therefore cannot be interpreted as a probability density. This is one

reason why Klein-Gordon equation was discarded.
According to Landau (1977), because p can be either positive or negative, it

can be interpreted as charge density. We therefore note that this problematic
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p came about because the Klein-Gordon equation is a 2" order in time. We have
g—'[; and p itself constrains%; this does not happen with the Schrodinger equation

and Dirac equation.
3.4 Fourier expansion and momentum space

As with the non-relativistic case, we expand plane wave states as
W@ = | AR K, DB e 3.44
But now with
Ak = NGA%K e, 3.45a
where N, is a normalization constant which is given by

1

= P 3.45b
20(27)
Substituting W(r,t) into the free Klein-Gordon equation
2
L g0 \ZP +R°VY—m*Y =0
This gives us
j dk (¢5+ K2+ m2¢jei” e O S 3.46

Now, defining

@0=(K)=vK>+M? o 3.47

and requiring the integrand to be zero gives

Gt @2 =0 oo 3.48

which is a 2™ order differential equation, with auxiliary equation
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FP+w>=0 or r=ti@.....c.c.cevvvvvinnn.. 3.49

The two solutions are crucial! They can be interpreted as positive and negative
energy, or as particle and antiparticle. In the non-relativistic case, we only have one

solution
pk,t)y=a(k)e'™ +c(k)e™ ... 3.50

3.5 Review of Dirac Equation
From Zaarur and Co. (1998), spin is an.intrinsic property of particles. The

definition of spin operator S is analogous to the angular momentum operator
S?a) =S(S+DA%|@) cooooooiice 3.51
|r) being an eigenfunction of S and S(S +1) the corresponding eigenvalues.

We can also define

=S kO ST e 3.52
where S,,S, and S, obey the following commutation relations:
IS,.S,|=inS, , [S,.S,|=ikS, , [S,,Scl=iAS, i, 3.53
Analogous to angular momentum, the quantum number of spin in the z-direction
IS
V=355 a3 - 345 and

Sz|a>:m h|a> .................................... 3.54

S

For particles ( an electron, for example) with spin }/ , we have m, = i% and

two distinct eigenvectors of S?and S, denoted by |+4)and |-1). These
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eigenvectors are called the standard basis, where

The Pauli matrices o = (o,,0,,0,) are defined using

S=EU .............................................. 3.56
2

where

0 1 0 —i 1 0
o, = , O, =|. , O, =| | 3.57
1 0 Y i 0 0 -

S being written in the standard basis. The commutation relations of the Pauli
matrices are
[GX,UyJ=2iUZ, lay,azj=2iax, [GZ,GX]=2in ............ 3.58
Other useful relations of Pauli matrices are

o’ 20'5 g = e . 3.59

Consider a system consisting of particles with a spin S . Applying a magnetic

field B will introduce an additional term to the free Hamiltonian H,, so that

TIRE . I 7 A 3.60
mc

Hence the electron spin magnetic moment or interaction H,,, is

H.. =—(§). EJ:—(ija.B ........................ 3.61
mc) 2 2mc

We have already seen that the Klein Gordon Equation gives rise to negative
energies and non-positive definite probabilities and these reasons were discarded as

a fundamental quantum equation. These problems arise because the Klein-Gordon
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equation is non-linear in%, unlike the Schrodinger Equation. Dirac thus sought a

relativistic quantum equation linear in%, unlike the Schrodinger Equation. Dirac

therefore invented a matrix equation.

Sakurai (1967) also stated that Klein-Gordon equation could not accommodate
.1 : ; : . .
the Spin — 5 nature as the Dirac equation can. In this connection, let us first study

how to incorporate the electron spin in the non-relativistic quantum mechanics.
In non-relativistic quantum mechanics, in order to account for the interaction of
the electron spin magnetic moment with the magnetic field, it is customary to add a

term

PR _(@IOMC)T B ..ot e, 3.62

to the usual Hamiltonian, as done originally by W.Pauli. Consider a particle of
mass m and charge e moving in an electromagnetic field described by a vector

potential A(F,t) and a scalar potential A, (F',t) . Its non-relativistic classical

Hamiltonian can be obtained by starting from the particle, and making in it the

substitutions

E—>E-eA,, p—> p—% ................................ 3.63.

This procedure appears somewhat artificial, especially if we subscribe to the
philosophy that the only fundamental electromagnetic interactions are those which

can be generated by the substitution
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In the usual wave mechanical treatment of the electron, the kinetic energy

operator in the absence of the vector potential is given by

HED = P 3.65
2m

.1 . . . .
However, for a Spin —5 particle, we may just as well start with the expression

H® O =(0.p)@.0)/2m ..o i, 3.66

This alternative form is indistinguishable from equation (3.65) for all practical

purposes when there is no vector potential. There is, however, a difference when

we make the substitution of equation (3.64).

The expression (3.65) then becomes

He Lo ﬁ_eAHﬁ_% 36T
2m c C
1 A A A
s LS N a8 ol Pl | SR 3.67b
2m C 2m C C
1 AY  en
By Zaagpe oy 3.67¢
2m c 2mc

where we have used

PXAZ AV XA = AXP eeeeeieeeeeeeeeeeeeeeeel 3.68a.

and the formula

(0.A)(0.B)= AB+iGAAXB) ..o 3.68b

holds even if A and B are operators.
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. 1
Our objective is to derive a relativistic wave equation for SP"~ > particle. Just

as we incorporated the electron spin into the general framework of relativistic
theory using the kinetic energy operator (3.66), we can in the same way incorporate
the electron spin into the general framework of relativistic quantum mechanics by

taken the operator analog of the classical expression

E? 2

= -G (MENE L B L, (3.69a)

g (or) (op) )
—0.p ( +0'.pj=(mc) ....................................... (3.69b)

c
where
EOD=in S = i and P= iV, ...t 213
ot OX

0

This enables us to write a second-order equation

[ihi+a.ihvj (ihﬁ —a.ihVJq5= (MCYD .o 3.70
OX, OX,q

for a free electron, where @ is now a two-component wave function.

We are interested in obtaining a wave equation of first order in the time

derivative. Relativistic covariance suggests that the wave equation linear in

o/ ot must be linear in  V also.

We can therefore define two-component wave functions @® and &® where

d® :i('haxﬁ—iha.vJ@, DY = 3.71a

mc 0

From equation (3.70), it implies that
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(ih@i+a.ihvj¢® =mcd® 3.71b
XO

The total number of components has now been increased to four. The second-
order equation (3.70) is now equivalent to two first-order equations (3.72a) and

(3.72b)

[in6.V —in(01ox, )] PV = —mcd® ..., 3.72a

[—iho.V —ih(0lx, ) |@P = =medD....c....cccocccoooiiiiiiiinnn 3.72b

Equation (3.72) is equivalent to the wave equation of Dirac. To bring it to form
originally written by Dirac, we take the sum and difference of equation (3.72).

We then have

—in(o.V)(2® - V)= in(8lox, ) (81 + D)= —mc (V) + DV)............... 3.73q,

in(0.V)(2V+0®) +in(0lox, ) (2P - dY) = —me(@® -d")................... 3.73b

Denoting the sum and difference of @® and @® by ¥, and ¥, we have

—in(0/ox,) —ihaV ¥, v,
= ) = I | e eeeennes 3.74
iho.V i7(0/ 0%, ) \ Wy ¥,
Defining a four component wave function ¥ by
e o™ + v
W:( Aj: - ol IE 3.75
Y, dR

We can rewrite (3.74) more concise as
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LA 1L 3.76a
o(i%, ) h

or

L 3.76b
“ox  h

1

where y, with ©=1,2,3,4 are 4x4 matrices given by

(0 —ig 1 f -
7k_iak ol 74—0 B .

Which really mean

0 0 -i 0 1.0 0 0
0 0 0 i 0 1 0 0
- , s S 3.78
B0 0 0 Ya=lg 0 -1
0 -i 0 0 0 0 0 -1

It must be noted that the standard form of the Pauli matrices

Q-4 0 —i 10
o, = y S : o= e, 3.79
1 0 i Ay 0 -1

were used.
The symbol | also stand for the 2 x 2identity matrix

10
= I ST . . S 3.80

Multiplying equation (3.76a) by y, , we see that the Dirac equation can be written

in the Hamiltonian form

HY = Ih[a—\yj ............................................. 3.81
ot

where H=—iChaV + MC ... 3.82
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= ih%y = VY +MCY oo, 3.83

with

I O ) 0 o,
B=r,= 0 —11 o, =y, = 5 0 ) 3.84

The matrices o and p satisfy

{0, B1=0, B2 =L {onean }= 28 e, 3.85
3.6 Probability and current for Dirac Equation
According to Norbury (2000), for the Schrodinger Equation(SE) and Klein-Gordon
equation(KGE), we used Schrodinger equation (SE*) Klein-Gordon equation
(KGE™) to derive the continuity equation. For matrices, the generalization of the
complex conjugate (*) is Hermitian conjugate (+) which is the transpose of the

complex conjugate. The Dirac equation is

(MO 0. M ... 3.86a

e, SOy 3.86b

and DE™ = DE"is (using (AB)* =B*A") given by

o —m) =0... g ol 3.87
Wy 0, =m)=0 ... 3.88
where 0y =0 e 3.89
w (=% %0, —m)=0 3.90
making using of
P =YY 3.91
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We want to introduce the Dirac adjoint ( i is a column matrix)

w=yy° (wisarowmatrix)............ccoeeeenn. 3.92
Using »°»° =1, we get
W*(—iyoy”yoﬁﬂ—myoyo)zo .......................... 3.93
= wliy*y°0,+my®)=0. ..o 3.94

And cancelling out »° gives, the Dirac adjoint equation,
w(id+m)=0 < Yid+m)=0.oovreeeeireeeeeeenn, 3.95
The notation @ means that @ operates on y to the left, i.e. 1,7/@5(8#17/)/‘.

The DE and DE" are explicitly

(i10-my =0 < iy —My =0, 3.96a
w(i0+m) =0 (0, y)r" + My =0....ooovviiiirrnnencniinennenes 3.96b

Now, to derive the continuity equation, multiply Differential Equation (DE)

from the left by z,/7 and DE" from the right by, we have

Wiy 0 W —My) =0, 3.97a
and

i(0,y)y" +My ) =0, 3.97b
H

Adding these two equations, we have

J}/’uaﬂw-f-(aﬂa)}/’ul//=0=5”(l/_/}/”l//) ....................... 3.98
Giving =@ W)= (0,7) oo 3.99
0 + 2 2
Or P=Wy w=y V/:Z|‘//i| ............................... 3.100
i=1

which is now positive definite.
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3.7 Positive Energy and Antiparticles

For the cases in Klein-Gordon equation and Differential Equation, we always have
both positive and negative for all solutions. The only way to toss away the negative
energy is to toss away all solutions; i.e. toss out the whole equation.

3.7.1 Klein Gordon equation

From the free particle Klein Gordon Equation which is given by

2
= —h’ aat‘f +RVEE MY =0 3.36C
Let ¢=NeP*=N"EPI 3.101

be a solution.

Substituting (3.101) into (3.36¢) gives

(2 NP AR 3.102
which implies
= e . i wn S N 3.103a
or
= e 1 TR A 3.103b

Thus the single solution ¢ = Ne™* = N'®™P% has both positive and negative energy
solutions.

Another solution is ¢ = Ne ™*.

Substituting also into the free KGE give the same as above

(E2—P2+m2)P=0 oo, 3.104a

or E=4p2+m? o 3.104b
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And again, a single solution ¢ = Ne ™* has both positive and negative energy
solutions.

The interpretation of these states is as follows. For p =0(particle at rest),

then E =+m. For p =0, there will be a continuum of states above and

below E =+m, with bound states appearing in between. In quantum mechanics, there
will be transitions to the negative energy continuum to-infinite negative energy. The
Klein-Gordon equation then becomes a relativistic wave equation for spinless
particles, within the framework of many-particle theory in which the negative energy
states are interpreted in terms of antiparticles.

3.7.2 Dirac equation

. 1
Let us return to the Dirac equation (3.83) for a free particle of SPI"~ > Since

the Hamiltonian (3.82) is independent of r and t, we can seek the eigenfunctions
common to both the energy and momentum operators, namely plane waves of the

form

P(r,t) = Auexpli(BF —EtMA] ..o 3.105

with E:J_r,/!p!zc2 e oA ... 3.104

where A is a constant and u is a four-component spinor independent of x and t.

The plane waves (3.105) are eigenfunctions of the operators
E-= ihg and P =-iaV with eigenvalues E =7%w® and p =7k, respectively.

Substituting equation (3.105) into (3.83) gives for u the matrix equation.

(cop+AMCU=EU....ooovovoiiii 3.105a
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For a particle at rest p ~ 0, equation (3.105a) becomes

(BMC?)u=Eu....oooooi 3.105b

0
Denoting the corresponding four-component spinor by u(0) = (UAEO;] and in
uB

accordance with equations (3.75) and (3.76), we first try the time-

dependence e ™ "/" . Using equation (3.84), equation (3.105b) then reduces to

((I) - ?j TRV (0) S =TT (0) 3.106a
mezl 0 J

= V() R =ITT(0) WO 3.106b
0 —mc?l

= mez. 0 j(u’*(o)j = E[UA(O)j ...................... 3.106¢
0 —mc?1 )\ ug (0) ug (0)

Equation (3.106c¢) is satisfied only if the lower two-component spinor
u; (0) vanishes. But using a similar argument, we also see that equation (3.105) can

+ime?t/ i

be satisfied equally well by the time-dependence e provided that the upper
two-component spinor u,(0) vanishes.

As in the Pauli theory, the non-vanishing two-component spinors can be taken as

o) =

So there are four independent solutions to equation (3.105b):
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1 0
0| . . 1 . .
g men B e, (3.107a)
0 0
0 0
0 0
O o .. .
gHmet/n AL (3.107b)
1 0
0 i

If we insist on the interpretation that |ha is the Hamiltonian operator, the first

two are “positive-energy” solutions while the last two are “negative —energy”

solutions. It must also be note that the eigenvalues of the Hamiltonian operator
aretmc’ , depending on whether the eigenvalues of y, = B are +1.

3.8 Free particle solution

Let us now consider the case p = 0. It is convenient to write the four-component

spinor u in terms of two-component spinors u,(p)and u;(p) as

_ u,(p) B i
_(us(p)Jem('p'E_'fJ .......................... 3.108
where “A(P){El((m uB(p)z(El((z))] ....................... 3.109

From equation (3.105a),

(cop+AMCU=EU oo, 3.105a

and making use of equation (3.109), we can have
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(mczl co.p

, Ju(p): EU(P) e 3.110a
co.p —mc’l

= (mczl co pJ(UA(p)j _E (uA(p)J ....................... 3.110b
co.p  —mc?l J\ug(p) Ug (P)

From equation (3.110Db)

= MC? U, +CoPUg = EUy oot 3.111a
and

Co.pU, —MC°IUg = Bl v 3.111b
Modifying equation (3.111), we have

(E=mc?)u, () =CopUg (P)-rorvvvrrrren 3.112a
and
(E+me?)ug () =COPUgucreerccessnsssnns: 3.112b

u,(p) and ug(p) are now related according to (3.112) by

co.p co.p
uA(p):E_mCZ UB(p), UB(p):rrnCzUA(p) ........................... 3113
Eliminatingu, (p) , we have
CO co.
u(p) = = (p)
2
B 1L e 3.114

E*-m?c*
= (E*—m’c*)u,(p) =[c’p* +ca(px p) un(p)

e L T (O R R T () 3.115
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since pxp=0
Similarly, upon elimination ofu,(p), we also have

(EZ—mCZ)JB(p)ZCZDZUB(p) ........................... 3.116

Hence the four eigenvalues of equation (3.111) are therefore given by

1

E, =+(m?c*+ p’c®)?  occuring twice .........cvvvverenen 3.117a
and

@
E =—(m’c*+p’c’ )7 OCCUNiNG-AWICE......occcccvvrrcrrrrr 3.117b

1
For E, = +(m2c4 + pzcz)E , part from the normalization constant,

1 0
(Oj and [J for U (pP). oo 3.118

There are two linearly independent solutions for equation (3.111), corresponding to

1
the positive energy E, = +(m2c4 e pzcz)E ,Which describe a free spin —% particle of

energy E, and momentum p. If we write

=
J.p:[ p?j Py pzj’ ................................. 3.119
po+Ip, =P,

then the independent solution for E, or E >0 are

written as
0
u®(p)=N 4D (p) =N 1 | 3120
p3C/(E+mC2) ! (pl—ipz)C/(E+mc2) .........
(5 +ip, eI (E + e polle me)
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1
For E_ = —(mzc4 + p2c2)5 < 0,we may start with the lower two-component spinor

1 0
[OJ and [J for Ug(pP) «oovvvieiii 3.121

There are again two linearly independent solutions of this type, which may be

Uz (p) set to

written as
—p3c/QE\+mcz) —(pl—ipz)c/QE\+mc2)
U(S)(p):N _(p1+ip2)C/qE‘+mC2) , u(‘”(p):N p3C/QE‘+mC2) ...3.122
1 0
0 1

where N is the normalization constant.

3.9 Simple Solutions; Non-Relativistic Approximations; Plane Waves

3.9.1 Large and small components:

Before we study the behaviour of Dirac wave function ¥ under Lorentz
transformations, let us examine the kind of physics buried in the harmless-looking
equation (3.76b).

In the presence of electromagnetic couplings, the Dirac equation reads

LN L L R 3.123
OX,.» hC h
where the usual replacement —i7(0/0x, ) — —in(0/0x,)—eA, /c is assumed to

be valid. Assuming that A is the time independent, we let the time dependence of
¥ be given by

V=0 Ly € e, 3.124
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which means that ¥ is an eigenfunction of %0/t with eigenvalue E .
From equation (3.121), we can then write the coupled equations for the upper and

lower components, ¥, and ¥, as follows.

= —in(0/0%) ) ¥, —iho.V¥y =—mc¥,

e A% A G GRS BT L R — 3.125a

= in(010%,) ¥s tiho. V¥, ==mc¥,
= iho V¥, =—(i(8]0%,) +MC)W oo 3.125h
Substituting iz(0/x, )= E — E —eA, and —iaV=p — p—% into equation
c

(3.125a) and (3.125b) we have (3.126a) and (3.126D).

— —_ eA ] 1 — " 2
| D e e | LA — S P S e 3.126
{a [p = j_ — C( eds—Y1g ) A a
(. eA y
—|6.| p—— | |Ph=—=\& F edpst (5, . o W 3.126b
|:0 (p c } K C( ed, + mc ) X
where A, = (A, iA, ). Using equation (3.126b), we can readily eliminate Ps in

equation (3.126a) to obtain

[5{ P efﬂ{é_eé:mz}{a( = Q?HWA =(E—eA -mc? )P, ......... 3.127

Up to now, we have made no approximations. We now assume that

Ezmcz,

BA | <<MC? 3.128

Defining the energy measured from by

MC® EM = EMC2., oo 3.129
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From equation (3.126), we can make the following expansion:

2 2 _
QC—Z:L . 2chR :imeczx[ch%(E(’“R)—eA))} 1
E—eA+mc® 2m|2mc*+E™ —ep | 2m

1 Al E™_ea T 1 [, E™_ep
=——x2me® x(2me?) |1+ =2 | = |l e 3.130
2m 2mc 2m 2mc

Equation (3.130) can be regarded as an expansion in powers of (v/ c)2 since

E®Y —eA, is roughly

[B-A/QF/2mamV®/2 ... 3.131

Keeping only the leading term in (3.130), we obtain

1 _ eA _ eA
%a.(p—cJa.(p—chA:(E‘NR) —EAO)z”A ................................... 3.132

Using equation (3.76b), equation (3.132) then becomes

2
{Ela[r"%j —%CUEWAO}PA =B, 3.133

Thus to zeroth orderin (v/c)”, P, is nothing more than the Schrodinger-Paulo
two component wave function in non-relativistic quantum mechanics multiplied by
a factor e™™"/"  Using equation (3.126b), we see that ¥ is “smaller” than ¥, by
a factor roughly [p—(eA/c)]/2m ~v/2c provided that equation (3.128) is valid.

For this reason with E ~ m¢?, ¥, and W, are respectively known as the large and

small components of the Dirac wave function V' .
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Chapter Four

Main Results

Non-homogeneous Klein-Gordon Equation with interacting term

This chapter stipulates the main findings. In it, the free particle Klein-Gordon
equation became a non-hamogenous equation, with the introduction of a n
interacting term, which is a slow varying wave field, on the right hand side. Other
sub-topics treated were the effects of the slow varying wave field interacting with
the Schrodinger equation and Klein-Gordon equation. Annihilation and creation
operators were also tackled.

4.1 Slow varying wave field

A field is said to be slow varying field if it has a low frequency. If we take for
instance coskxas a periodic function, when k is small, then the variation of

coskx will be slow and coskx may be expanded as

2\
cos(kx)=£1—k2X +J .................................... 4.1

4.2 Effects of slow varying wave field on the Schrodinger equation

4.2.1 Schrodinger Equation (Homogenous)
The non-homogenous relationship between the energy E and the momentum p of a

free particle of spin 0 and the rest mass m are given:

classically by
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quantum mechanically by

E—>ih§, DAV oo, 4.2b

The Schrodinger equation for a free particle is given by

VZ‘P+27m EW =0 2.7b
= V¥4 1V O g..p-..J g oo 2.7¢
where = 27m E

4.2.2 Schrodinger Equation (Non-Homogenous)

We want to look at cases when the free particle Schrodinger equation is replaced
with forced term —«* cos(kx)W . That is, if we replace the Right Hand Side of
equation (2.7¢) by the slow wave field, we have

= VAT 2T SECoN M S Fom 4.3a

Substituting the expanded form of equation (4.1) into (4.3a), we have

k2x?

= VW + 1*Y = —«* (1— +...)‘P ....................................... 4.3

Case |

When the right hand side of equation (4.3b) is approximated with the zero order
term —«?, we will have

VAW 4 1P ==K i 4.4a
VAW (17 + 1) =0i 4.4b

We may therefore write equation (4.4b) as

VA 472 =0, 4.5
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where y? =1 +K*
Case Il

We want to also consider replacing the Right Hand Side of equation (4.5) with the

2,,2
KX

second order term , we will have

V¥ 4+ Y =

Equation (4.6) is the quantum simple Harmonic oscillator.
4.3 Effect of the slow varying wave field on the Klein-Gordon Equation

4.3.1 Klein-Gordon Equation (Homogenous)

The relativistic relationship between the energy E and the momentum p of a free

particle of spin 0 and the rest mass m is given

classically by
el e T o S 4.7

quantum mechanically by
> I
E—>|ha, PN ... o e 4.2b

If we quantize the relativistic equation (4.7), we have

2
{hz(%—czvﬁ i m%“}{f B e, 4.8a
2.4
WS Wm0 4.8b
7
PP A0 =0 i 4.8¢
m2c*

Where [ is the d’Alembertian operator and v* = .
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Equation (4.8c) is the Klein-Gordon equation for a free particle.
4.3.2 Klein-Gordon Equation (Non-Homogenous)
If the Right Hand Side of equation (4.8c) is replaced with a slow varying wave

field (4.1), we will have

PW 4+ 0" =~k COS(KX)WF v 4.9a

k?x?

=02Y + 0% = —k2 [1— +...]‘P .................................. 4.9b

Case |

If the right hand side of equation (4.9b) is replaced with the zero order term —x~,

equation (4.6b) will become
B S e R 4.10a

Equation (4.10a) may be written as

B T o S i W i e /R 4.10b
= SRR () A . ) e 4.10c
where 72 =0+ K

From equation (4.10b), when the zero order term of the slow moving wave field was
replaced at the Right Hand Side of the Klein-Gordon equation, it only introduce a
positive shift in the energy, which eventually did not lead to any significant change in
the energy.

Case Il

If we also consider replacing the Right Hand Side of equation (4.10c) by the second

order term, we will have
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2W +0°Y =

Now, the time independent Klein-Gordon equation may be written as

VAW H(E2 02 )P =" W 4.12a
2
K22

= V¥ +n°¥ = R SRR 4.12b

Where n” 2R -BNLLLS )L (*)

Equation (4.12b) is called the relativistic Quantum Harmonic Oscillator
Equation (4.12b) is analogous to the Energy generated by the simple Harmonic

oscillator, whose energy is given by

From equation (*), if E* [ ©?, then we can assume that
me? '
772 a E2 —(TJ ................................................. 4.14

where 7 is new mass energy which represent the mass of the energy levels

produced by the Klein-Gordon equation.
If we equate equations (4.14) and (4.13), we have

7% =(2n+1)h7a) ............................................ 4.15a

n L

S (2n+1)h7w ........................................... 4.15b

where n=0,1 2,...
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Equation (4.15b) is generally the mass of the energy levels depicted by the Klein-
Gordon equation. This equation shows the negative and positive masses of the
energy levels indicated by the Klein-Gordon equation, which also represents the
particles and antiparticles of the Klein-Gordon equation.

Ifn=0, then equation (4.15b) becomes

hio

=+ K. LJ. L. 4.16a
Hy 5

Equation (4.16a) represents the mass of the energy level at the lowest state of the
relativistic quantum harmonic oscillator.

Whenn =1, equation (4.15b) then becomes

=t /%T“’ .............................................. 4.16b

Whenn =2, equation (4.15b) also becomes

P /5’77” ............................................... 4.16¢

Equations (4.16a,b&c) are the various energy levels, which indicate the downward
and upward energy levels.
4.4 Dirac equation
For a Dirac solution of the non-homogeneous Klein-Gordon equation, we shall

still make reference to equation (3.33) given by

2
{hz(%—vz)+mz}l’: ihq(A.V+CD§)‘P ........................ 3.33a

Equation (3.33) may still be written as
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2 2
2 (%—vzj ‘P:ihq(®§+,&vj‘{’—m2‘{’ ............................ 3.33b

We assume that

AP = —DW ..o 4.17a
By writing equation (3.33b) in the Dirac representation and making use of equation

(4.19a), we have

:>(ih§+a.ihvj (z‘h%—a.ihvj‘l’(” = ihq(@ih§+Ao-.z‘th\P(” -m*¥® .. .4.18a

= [ih§+a.ihvj (ih%—a.ihv)‘l’(” E ihq@(ih%—a.z’th‘P(L) —-m*¥® ...4.18b

Set
(iha 4 —a.ihV)‘P(L) SR 419
= (a.ihVJrih%t—ithD) PR RO N [ o= 4.19b

We want to again assume that

e — . LA N 4.17b

Substituting equation (4.17b) into equation (4.18a), we have

= (ih%—a.ihvj (ih%+a.ihV)‘P(R) = ihq@(z’h%ﬂhan‘P(R) -m?P® 4.20
Setting
(iha 4 +0.ihV)‘P(R) =W e, 4.21a,
= (iha Loy - ihqd)) PO = PR 4.21b
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To bring it to form originally written by Dirac, we will take the sum and difference

of equations (4.19b & 4.21b).This gives us

-in 0L (PO 9O - iV (PR + PO ) +ingd (WO + 9O )= —m? ($O -wO) 4222

ot

—ih%t(‘I’(R) +9O) - inV (P -V ) -ingd (P - ¢ )=m* (¢O + V) . 4,220

Denoting the sum and difference of ¥® and ¥ by ¢, and ¢, , we have

10/ y — IRV G, HTADG, =~y oo 4.23a
—ih%t b — ANV By —THAD Gy = M Br oo, 4.23b

From equation (4.21a), we have

i1/, s+ (~0 ANV +THAD) o = P oo 4.24a

Making use of the total energy E and the momentum p as represented by the

differential operators,

E= ihaat and p=-ing T VPR — 2.25,
equation (4.24a) may be written as
~Edy +(0.p+iRGD) Gy = =M Py oot 4.24b
By re-arrangement of terms, we have
(o p+ing®) gy =(E=M) gy oo, 4.24c

In a similar development and by way of considering equation (4.23b), we have

i1+ (O IRY — QD) gy =My o 4.25a

substituting equation (2.13) into (4.25b), we have

—E@,+(0.p—in0®) s =M@y .o, 4.25b
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By re-arrangement of terms, we have
(o p—ihqD) gy =—(E+M") gy oo 4.25¢

The product of equation s (4.24c & 4.25c¢) may be written as

(o.p)° —[(E2 —m* )]¢A¢B = —(WG20? ) oy v 4.26a
= (0:p)" [ (E? =m") | e = ~(P°0PD ) g oo 4.26b
Where Ppp = s

Equation (4.26b) may be intuitively written as
Vi +U 0 = —(hzqz(Dz)(pAB ............................... 4.26¢

Equation (4.26c) is of the form of the relativistic quantum harmonic oscillator.

In addition, equation (4.26c¢) can also be written as
{52 —(J.f))z}(pAB (M =212 02) =01 ocicesit e 4.26d

Equation (4.26d) is also analogous with the Klein-Gordon equation.

We can also write the matrix representation of equations (4.24a & 4.25a) as
—ino —c AV +ihqd
& ( | ) (¢Bj=—m2(¢3j ............................. 4.27
(—oinV —ihq®) Ihaat Pa Pn
4.5 Annihilation and Creation operators

White (1966) deduced the annihilation and creation operators for the simple

harmonic oscillator. Based on his assumptions, if we consider equations (4.24c and

4.25c), we can define two operators a anda'such that

a'=—=(o.p+igD) ..o 4.28a

Sl
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a:i(a.p—ihqq)) ........................................... 4.28b

N7

Equations (4.28) may be written as

N2a' g, = (E=mM?) gy oo, 4.29a

N2ag,=(E+M)g, oo 4.29b

If we form the product operators

aa’ =%[(0.p)2—i(a.p—q<D)+(q<D)2] ..................... 4.30a
and
a'a= %[(a.p)z +i(0.p=a®)+(AD) | 4300

We observe that
l(aaT +aTa)=1[(a.p)2 +(qCD)2}:h ...................... 2.31a
2 Za -

Equation (4.31a) is the Hamiltonian operator of the relativistic harmonic oscillator in

terms of aand a'operators.

Further, we note that

(aa"-a'a)= %(—Zi)[a. p(a®)-a®(c.p)].....cco.ennnnnb 31D
=—i[o.p,q®]
= (i) (in)
[a, a*]: T 4.32

aanda' operators obey a particularly simple commutation relation. Since, from this

commutation rule,
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aa' =h+a'a.......... 4.33,
the modified Hamiltonian operator for the relativistic harmonic oscillator may be

written as

= %(aa" $218) e, 4.34

= %(2a"'a+h)

:(a*a+%) ............................................ 435

Defining a new operator N such that
N =a'a,
The Hamiltonian operator for the relativistic quantum harmonic oscillator will also

become

t,; :(N +1jhw ...................................... 4.36
2

We want to proceed by finding the eigenvalues and eigenfunctions for the

Hamiltonian operator. Let us denote the eigenfunction by|u> such that
i ncaanca iy SOREIP AP~ 2 AUUOUUNIUTY 4.37
The symbol | )is called a ket; its dual < |is called a bra. Together, the two symbols

define a scalar product, which Dirac calls bracket( | ) We want to derive the

allowed values of v by examining the relations between eigenfunctions implied by

the Hamiltonian equation (4.37) and by the commutation relation between a anda’.

To develop this relation between the eigenfunctions, we need to first develop two

operator equalities involving Naand Na'.
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Na=a'aa

=(aa'-1)a
—aa'a—a
=a(a'a-1)
=a(N=2) oo 4.38
and
Na' =a'aa’
=a'(a'a+1)
=a" (N L)oo 4.39

We now want to consider the vector |u} witha. Using the identity equation (4.38),

we find that
Na|o) =a(N —1)|o)
—a(v-1)|0)
- (v-1)alv)
N[alo)]=(v=1)[a|o) ] oo 4.40

We can deduce from equation (4.40) that a|u> is an eigenvector of N belonging to

the eigenvaluev —1.
Similarly,
Na'|v) =a' (N +1)|0)

=a' (U+l)|l)>
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=(v+1)a’|v)
N[a'|v) |=(o+D)[a"[0)] oo, 4.41

aanda’are respectively called the demotion (annihilation) and promotion (creation)

operators.

a operating on the eigenfunction |u) demotes it to the eigenfunction belonging to the
eigenvaluev—1, and a’operating on |u> promotes it to the eigenfunction belonging

to the eigenvaluev +1.
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Chapter Five

Conclusions

In this chapter, the summary of the results were given, followed by the
conclusions, recommendations and suggestion for further research of the study. The
study investigated the behaviour of the free particle Klein-Gordon equation when an
interacting term is introduced on the right hand side of the equation. The interacting
term which was a potential field was the slow varying periodic wave field, which
contained the zero order and the second order approximations. It was found that when
the zero order approximation was introduced at the right hand side of the equation,
there was a shift in the mass energy. On the other hand, positive and negative energy
masses, which also represent particles and antiparticles were obtained when the right
hand side of the equation was replaced with the second order term. Annihilation and
creation operators, which resulted in the formation of eigenvalues, were also realized.
This became possible when the non-homogenous Klein-Gordon equation was solved
by the Dirac format.

5.1 Summary of results

From the study, the relativistic Quantum mechanics for homogenous Klein-Gordon
equation for free particles which is also a second order differential equation was
reviewed.

Dirac equation which also extended the results to first order differential equation was
also reviewed.

Dirac was able to shows that spinols are not only particles but there are antiparticles

available.
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The non-homogenous Klein-Gordon equation of the relativistic quantum mechanics
was also reviewed. Only the space part was considered. In this regard, the interacting
term of the Klein-Gordon equation was regarded as the forced particle. This led us to
the relativistic quantum harmonic oscillator.

From the result, when the zero order term was replaced at the interacting term of the
Klein-Gordon equation, it only introduced a shift in the mass, which did not lead to
any significant change. On the other hand, when the interacting term of the Klein-
Gordon equation was replaced with the quadratic term, positive, zero and negative
masses of the energy, which represent the particles and antiparticles, were realized.
Additionally, when the Klein-Gordon equation is written in Dirac format, there was
the formation of creation and annihilation of eigenvalues and eigenfunctions.

5.2 Conclusion

We can therefore conclude that

1. The homogeneous Klein-Gordon equation and the corresponding Dirac Equation
have been adequately been reviewed.

2. The non-homogeneous Klein Gordon equation with a slow varying wave field as
the interacting term on the right hand side has also been thoroughly studied.

5.2 Recommendations

We recommend that physical interpretations and applications to this study be carried
out.

It is also recommended that further investigation could be carried out on higher order
approximations of the interacting slow varying wave field which leads to quantum

anharmonic oscillators.
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