EXPLORING THE PERI-, CHEMO-, AND REGIO-SELECTIVITY OF ADDITION OF METAL OXIDES TO KETENES: A DFT COMPUTATIONAL STUDY

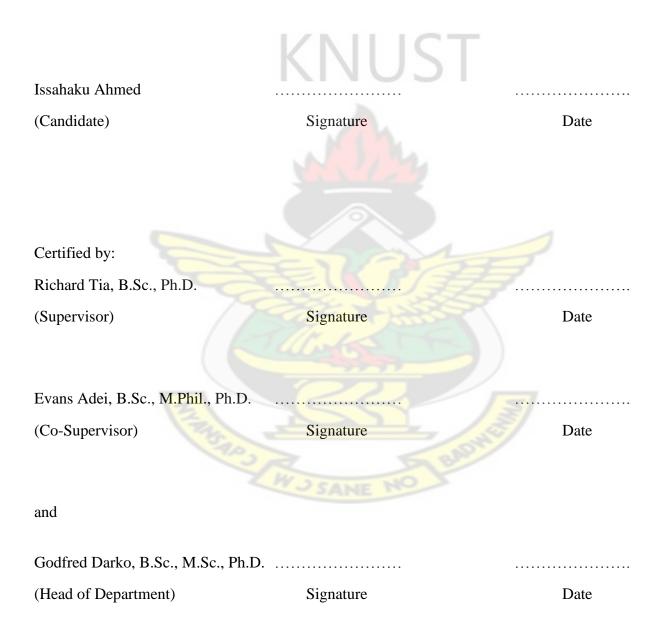
A thesis submitted to the Department of Chemistry, College of Science, Kwame Nkrumah

University of Science and Technology, Kumasi

in partial fulfillment of the requirement for the award of the degree of

MASTER OF PHILOSOPHY

in Physical Chemistry


By:

Issahaku Ahmed, HND, B.Sc. (Hons.)

August, 2015

DECLARATION

I hereby declare that this thesis is my own work towards the M.Phil. and that, to the best of my knowledge and belief, it contains no material that has been accepted for the award of any other degree in any educational institution nor material previously published or written by another person, except where due reference is made in the text of the thesis.

TABLE OF CONTENTS

CHAPTER FOUR	60
4.0 RESULTS AND DISCUSSION	60
4.1.1 Reaction of TcO ₃ Cl with dimethyl ketene	60
4.1.2 Reaction of TcO_4^- with dimethyl ketene	64
4.1.3 Reaction of TcO_3 –OCH ₃ with dimethyl ketene	67
4.1.4 Reaction of TcO ₃ –CH ₃ with dimethyl ketene	69
4.1.5 Reaction of TcO ₃ Cl with methyl ketene	73
4.1.6 Reaction of TcO ₃ Cl with chloro methyl ketene	77
4.1.7 Reaction of TcO ₃ Cl with cyano methyl ketene	79
4.1.8 Reaction of TcO ₃ Cl with methyl phenyl ketene	82
4.1.9 Rationalizing the PES's of the reaction of TcO ₃ Cl with the substituted ketenes	84
4.2 Conclusion	86
REFERENCES	
CHAPTER FIVE	91
5.0 RESULTS AND DISCUSSION	91
5.1.1 Reaction of MnO ₃ Cl with dimethyl ketene	
5.1.2 Reaction of MnO ₄ ⁻ with dimethyl ketene	95
	95
5.1.2 Reaction of MnO ₄ ⁻ with dimethyl ketene	95 98
5.1.2 Reaction of MnO_4^- with dimethyl ketene	95 98 . 102
5.1.2 Reaction of MnO_4^- with dimethyl ketene 5.1.3 Reaction of MnO_3^- OCH ₃ with dimethyl ketene 5.1.4 Reaction of MnO_3^- CH ₃ with dimethyl ketene	95 98 . 102 . 106
 5.1.2 Reaction of MnO₄⁻ with dimethyl ketene	95 98 . 102 . 106 . 110
 5.1.2 Reaction of MnO₄⁻ with dimethyl ketene	95 98 . 102 . 106 . 110 . 113
 5.1.2 Reaction of MnO₄⁻ with dimethyl ketene	95 98 . 102 . 106 . 110 . 113 . 116
 5.1.2 Reaction of MnO₄ with dimethyl ketene	95 98 . 102 . 106 . 110 . 113 . 116 . 118

SUMMARY	
REFERENCES	
APPENDIX	

LIST OF FIGURES

Fig 3.1a: Energetics of the reaction of ReO ₃ -Cl with dimethyl ketene on the singlet PES. Energies
in kcal/mol
Fig 3.1b: Energetics of the stepwise reaction of ReO ₃ -Cl with dimethyl ketene on the singlet PES.
Energies in kcal/mol
Fig 3.2 : Energetics of the reaction of ReO_4^- with dimethyl ketene on the singlet PES. Energies in
kcal/mol20
Fig 3.3a: Energetics of the reaction of ReO ₃ -OCH ₃ with dimethyl ketene on the singlet PES.
Energies in kcal/mol
Fig 3.3b: Energetics of the stepwise reaction of ReO ₃ -OCH ₃ with dimethyl ketene on the singlet
PES. Energies in kcal/mol
Fig 3.4a: Energetics of the reaction of ReO ₃ -CH ₃ with dimethyl ketene on the singlet PES. Energies in kcal/mol.
Fig 3.4b: Energetics of the stepwise reaction of ReO ₃ -CH ₃ with dimethyl ketene on the singlet
PES. Energies in kcal/mol
Fig 3.5a Energetics of the reaction of ReO ₃ -Cl with methyl ketene on the singlet PES. Energies in
kcal/mol
Fig 3.5b Energetics of the stepwise reaction of ReO ₃ -Cl with methyl ketene on the singlet PES.
Energies in kcal/mol
Fig 3.6: Energetics of the reaction of ReO_3 -Cl with Chloro methyl ketene on the singlet PES.
Energies in kcal/mol
Fig 3.7a: Energetics of the reaction of ReO ₃ -Cl with cyano methyl ketene on the singlet PES.
Energies in kcal/mol
Fig 3.7b: Energetics of the stepwise reaction of ReO ₃ -Cl with cyano methyl ketene on the singlet
PES. Energies in kcal/mol
Fig 3.8: Energetics of the stepwise reaction of ReO3-Cl with methyl phenyl ketene on the singlet
PES. Energies in kcal/mol
Fig. 4.1: Energetics of the reaction of TcO ₃ -Cl with dimethyl ketene on the singlet PES. Energies
in kcal/mol at the B3LYP level of theory
Fig. 4.2 : . Energetics of the reaction of TcO_4^- with dimethyl ketene on the singlet PES. Energies in
kcal/mol at the B3LYP level of theory

Fig. 4.3: Energetics of the reaction of TcO_3 -OCH ₃ with dimethyl ketene on the singlet PES.
Energies in kcal/mol at the B3LYP level of theory
Fig 4.4: Energetics of the reaction of TcO ₃ -CH ₃ with dimethyl ketene on the singlet PES. Energies
in kcal/mol at the B3LYP level of theory71
Fig. 4.5: Energetics of the reaction of TcO_3 -Cl with methyl ketene on the singlet/triplet PES.
Energies in kcal/mol at the B3LYP level of theory
Fig 4.6: Energetics of the reaction of TcO ₃ -Cl with chloromethyl ketene on the singlet/triplet PES.
Energies in kcal/mol at the B3LYP level of theory
Fig 4.7: Energetics of the reaction of TcO_3 -Cl with cyanomethyl ketene on the singlet PES.
Energies in kcal/mol at the B3LYP level of theory
Fig 4.8: Energetics of the reaction of TcO ₃ -Cl with methyl phenyl ketene on the singlet/triplet
PES. Energies in kcal/mol at the B3LYP level of theory
Fig. 5.1: Energetics of the reaction of MnO ₃ Cl with dimethyl ketene on the singlet PES. Energies
in kcal/mol
Fig. 5.2 : Energetics of the reaction of MnO_4^- with dimethyl ketene on the singlet PES. Energies in kcal/mol. 97
Fig. 5.3: Energetics of the reaction of MnO_3 -OCH ₃ with dimethyl ketene on the singlet PES.
Fig. 5.3: Energetics of the reaction of MnO_3 -OCH ₃ with dimethyl ketene on the singlet PES.
Fig. 5.3 : Energetics of the reaction of MnO ₃ -OCH ₃ with dimethyl ketene on the singlet PES. Energies in kcal/mol
Fig. 5.3: Energetics of the reaction of MnO ₃ -OCH ₃ with dimethyl ketene on the singlet PES. Energies in kcal/mol. 101 Fig. 5.4: Energetics of the reaction of MnO ₃ -CH ₃ with dimethyl ketene on the singlet PES.
Fig. 5.3: Energetics of the reaction of MnO ₃ -OCH ₃ with dimethyl ketene on the singlet PES. Energies in kcal/mol. 101 Fig. 5.4: Energetics of the reaction of MnO ₃ -CH ₃ with dimethyl ketene on the singlet PES. Energies in kcal/mol 104
Fig. 5.3: Energetics of the reaction of MnO ₃ -OCH ₃ with dimethyl ketene on the singlet PES. Energies in kcal/mol. 101 Fig. 5.4: Energetics of the reaction of MnO ₃ -CH ₃ with dimethyl ketene on the singlet PES. Energies in kcal/mol 104 Fig. 5.5: Energetics of the reaction of MnO ₃ -Cl with methyl ketene on the singlet PES. Energies in
Fig. 5.3: Energetics of the reaction of MnO ₃ -OCH ₃ with dimethyl ketene on the singlet PES. Energies in kcal/mol. 101 Fig. 5.4: Energetics of the reaction of MnO ₃ -CH ₃ with dimethyl ketene on the singlet PES. Energies in kcal/mol 104 Fig. 5.5: Energetics of the reaction of MnO ₃ -Cl with methyl ketene on the singlet PES. Energies in kcal/mol. 109
Fig. 5.3: Energetics of the reaction of MnO ₃ -OCH ₃ with dimethyl ketene on the singlet PES. Energies in kcal/mol. 101 Fig. 5.4: Energetics of the reaction of MnO ₃ -CH ₃ with dimethyl ketene on the singlet PES. Energies in kcal/mol 104 Fig. 5.5: Energetics of the reaction of MnO ₃ -Cl with methyl ketene on the singlet PES. Energies in kcal/mol. 109 Fig. 5.6 Energetics of the reaction of MnO ₃ -Cl with chloro methyl ketene on the singlet PES.
Fig. 5.3: Energetics of the reaction of MnO ₃ -OCH ₃ with dimethyl ketene on the singlet PES. Energies in kcal/mol. 101 Fig. 5.4: Energetics of the reaction of MnO ₃ -CH ₃ with dimethyl ketene on the singlet PES. Energies in kcal/mol 104 Fig. 5.5: Energetics of the reaction of MnO ₃ -Cl with methyl ketene on the singlet PES. Energies in kcal/mol. 109 Fig. 5.6 Energetics of the reaction of MnO ₃ -Cl with chloro methyl ketene on the singlet PES. Energies in kcal/mol.
Fig. 5.3: Energetics of the reaction of MnO ₃ -OCH ₃ with dimethyl ketene on the singlet PES. Energies in kcal/mol. 101 Fig. 5.4: Energetics of the reaction of MnO ₃ -CH ₃ with dimethyl ketene on the singlet PES. Energies in kcal/mol 104 Fig. 5.5: Energetics of the reaction of MnO ₃ -Cl with methyl ketene on the singlet PES. Energies in kcal/mol. 109 Fig. 5.6 Energetics of the reaction of MnO ₃ -Cl with chloro methyl ketene on the singlet PES. Energies in kcal/mol. 112 Fig. 5.7: Energetics of the reaction of MnO ₃ -Cl with cyano methyl ketene on the singlet PES.

LIST OF SCHEMES

LIST OF TABLES

Table 3.1: Calculated activation energies and reaction energies in kcal/mol for some selected addition pathways in the reaction of ReO₃-Cl with dimethyl ketene at the B3LYP and MO6 levels Table 3.2: Calculated activation energies and reaction energies in kcal/mol for some selected addition pathways in the reaction of ReO₄⁻ with dimethyl ketene at the B3LYP and MO6 level of Table 3.3: Calculated activation energies and reaction energies in kcal/mol for some selected addition pathways in the reaction of ReO-OCH₃ with dimethyl ketene at the B3LYP and MO6 Table 3.4: Nature of partial charges on the atoms of the dimethyl ketene and the various metal **Table 3.5**: Calculated activation energies and reaction energies in [kcal/mol] for the [3 + 2] and [2 + 2] addition of ReO₃L (L = Cl⁻, O⁻, CH₃O⁻, CH₃) across the C=C and C=O bond of dimethyl **Table 3.6**: Calculated activation energies and reaction energies in [kcal/mol] for the [3 + 2] and [2+ 2] Addition of ReO₃Cl with the substituted ketenes ($O=C=C(CH_3)(X)$; X = H, CH₃, Cl, CN, Ph), **Table 3.7**: Nature of partial charges on the C=C=O atoms of the parent ketene obtained from the Table 4.1: Calculated activation energies and reaction energies in kcal/mol for the addition pathways in the reaction of TcO₃Cl with dimethyl ketene at the B3LYP and MO6 levels of theory Table 4.2: Calculated activation energies and reaction energies in kcal/mol for the addition pathways in the reaction of TcO_4 with dimethyl ketene at the B3LYP and MO6 levels of theory Table 4.3: Calculated activation and reaction energies in kcal/mol for the addition pathways in the Table 4.4: Calculated activation energies and reaction energies in kcal/mol for the addition pathways in the reaction of TcO₃-OCH₃ with dimethyl ketene at the B3LYP and MO6 levels of

Table 4.5: Calculated activation energies and reaction energies in [kcal/mol] for the [3 + 2] and [2+ 2] addition of TcO₃Cl with the substituted ketenes ($O=C=C(CH_3)(X)$; X = H, CH₃, Cl, CN, Ph), Table 4.6: Nature of partial charges on the C=C=O atoms of the parent ketene obtained from the Table 5.1: Calculated activation energies and reaction energies in kcal/mol for some selected addition pathways in the reaction of MnO₃-Cl with dimethyl ketene at the B3LYP and MO6 levels Table 5.2: Calculated activation energies and reaction energies in kcal/mol for some selected addition pathways in the reaction of MnO₄⁻ with dimethyl ketene at the B3LYP and MO6 level of Table 5.3: Calculated activation and reaction energies in kcal/mol for the addition pathways in the reaction of TcO₃-OCH₃ with dimethyl ketene at the B3LYP and MO6 levels of theory 100 Table 5.4: Calculated activation and reaction energies in kcal/mol for the addition pathways in the reaction of MnO₃-CH₃ with dimethyl ketene at the B3LYP and MO6 levels of theory......103 **Table 5.5**: Calculated activation energies and reaction energies in [kcal/mol] for the [3 + 2] and [2+ 2] addition of MnO₃Cl with the substituted ketenes ($O=C=C(CH_3)(X)$; X = H, CH₃, Cl, CN, Ph),

ACKNOWLEDGEMENT

My furthermost appreciation goes to the almighty Allah for His acumen, guidance, direction, might, protection, prerequisite and nourishment throughout my life and the entire period as a student of KNUST. Without Him this piece of work wouldn't have been doable.

My heartfelt gratitude also goes to my supervisors Prof. Evans Adei and Dr. Richard Tia whose likeability and gen of resources have been of vast worth to me.

I also appreciate the efforts and support given to me by my colleagues at the theoretical and computational chemistry lab especially Albert Aniagyei who brought the idea of considering working with ketenes.

Finally, I do appreciate the warm support granted me by my family and friends especially my father (Alhaji Ahmed Babaya Fuseini), my mother (Zuweira Issaka), my siblings (Abass, Abdul Manaf, Fati, Nadjat, Hafsat and Muwahib), Mr. Fred Ayim Ofosu, Mr. Twene Abdul-Basit as well as all and sundry who supported me in various ways right through the period of my education.

KNUST

DEDICATION

To my wife Suraiya and daughter Raihannah

Publications Arising From this Work

- 1. Ahmed, I.; Tia, R.; Adei, E. Density functional theory study of the mechanisms of addition of transition metal oxides ReO_3L (L = Cl⁻, O⁻, OCH₃, CH₃) to substituted ketenes,, *Journal of Theoretical Computational Chemistry*. **2015**, 14, No. 5, 1550035: 1-29.
- Ahmed, I.; Tia, R.; Adei, E. Exploring the Peri-, Chemo-, and Regio-selectivity of Addition of Manganese Metal Oxides MnO₃L (L = Cl⁻, O⁻, OCH₃, CH₃) to Substituted Ketenes: A Computational Study, *Inorganica Chimica Acta*. 441 (2016) 57-66.
- Ahmed, I.; Tia, R.; Adei, E. Exploring the peri-, chemo- and regio-selectivity on the mechanisms of addition of transition metal oxides of the type TcO₃L (L = Cl⁻, O⁻, OCH₃, CH₃) to substituted ketenes O=C=C(CH₃)(X) (X = H, CH₃, Cl⁻, CN⁻, Ph). *Canadian Journal of Chemistry*, DOI 10.1139/cjc-2015-0295

ABSTRACT

Ketenes are excellent precursors for catalytic asymmetric reactions, creating chiral centers mainly through addition across their C=C bonds and C=O bonds. Density functional theory calculations at the MO6/LACVP* and B3LYP/LACVP* levels of theory have been employed in a systematic investigation of the peri-, chemo- and regio- selectivity of the addition of transition metal oxo complexes of the type MO_3L (M = Re, Tc, Mn; L = Cl, O⁻, OCH₃, CH₃) to substituted ketenes $O=C=C(CH_3)(X)$ [X = CH₃, H, CN, Ph] with the aim of elucidating the effects of substituents on the mechanism of the reactions. The [2 + 2] addition pathway, across the C=C or C=O (depending on the ligand), is the most preferred in the reactions of dimethyl ketene with all the metal complexes studied. The [2 + 2] pathway is also the most preferred in the reactions of ReO₃Cl with all the substituted ketenes studied except when X = CI. Thus of all the reactions studied, it is only the reaction of ReO₃Cl with $O=C=C(CH_3)(Cl)$ that prefers the [3 + 2] addition pathway. Reactions of dimethyl ketene with ReO₃L favours addition across C=O bonds of the ketene when $L = O^{-}$ and CH₃ but favours addition across C=C bonds when $L = OCH_3$ and Cl. In the reactions of ReO₃Cl with substituted ketenes, addition across C=O bonds is favoured only when X = H while addition across C=C bonds is favoured when $X = CH_3$, Cl, Ph, CN. The order in the activation energies of the reactions of dimethyl ketenes with the metal complexes ReO₃L with respect to changing ligand L is $O^{-} < CH_{3}O^{-} < CI^{-} < CH_{3}$ while the order in reaction energies is $CH_{3} < CH_{3}O^{-} < O^{-} < CI^{-}$. For the reactions of substituted ketenes with ReO_3Cl , the order in activation barriers is $CH_3 < Ph < CN$ < Cl < H while the reactions energies follow the order Cl < CH₃ < H < Ph < CN. In the reactions of dimethyl ketenes with ReO₃L, the trend in the selectivity of the reactions with respect to ligand L is $Cl^{-} < CH_{3}O^{-} < CH_{3} < O^{-}$ while the trend in selectivity is $CH_{3} < CN < Cl < Ph$ in the reactions of ReO₃Cl with substituted ketenes. In the reactions of $T_{cO_3}L$ (L = Cl, O⁻, OCH₃, CH₃) to substituted ketenes $O=C=C(CH_3)(X)$ [X = H, CH₃, Cl, CN, Ph] the [2 + 2] addition across the C=C bond of the ketenes is the preferred pathway while the [3 + 2] addition across the C=C bond of the ketenes is the preferred pathway for L = Cl, OCH₃. The order in the activation energies of the preferred [3 + 2] and [2 + 2] pathways for addition of dimethyl ketenes to the metal complexes TcO₃L with respect to changing ligand L is $O^- < Cl < CH_3 < CH_3O^-$ while the order in reaction energies is $CH_3 < CH_3O^- < O^- < Cl$. For the reactions of substituted ketenes with TcO₃Cl, the order in activation barriers for the preferred addition pathways is CH₃ < Ph < H < Cl< CN while the reactions energies follow the order $Cl < CH_3 < H < Ph < CN$. In the reactions of dimethyl

ketenes with TcO₃L, the trend in the selectivity of the reactions is $Cl < CH_3O^- < CH_3 < O^-$ while the trend in selectivity is $CH_3 < H < CN < Cl < Ph$ in the reactions of TcO_3Cl with substituted ketenes. In the reactions of MnO_3L (L = Cl, O⁻, OCH₃, CH₃) to substituted ketenes $O=C=C(CH_3)(X)$ [X = H, CH₃, Cl, CN, Ph] the [3 + 2] addition across the C=C is the preferred pathway for all the reactions studied irrespective of the ligand or substituents on the ketene except for L = O which undergo stepwise addition pathway. In the reaction of MnO₃Cl with the substituted ketenes (O=C=C(CH₃)(X); X = H, CH₃, Cl, CN, Ph), the [2 + 2] addition across the C=O of the ketene is preferred for $L = OCH_3$ over C=C of the ketene. No [2 + 2] addition pathways were located except for $L = OCH_3$. The order in the activation energies of the preferred [3 + 2] and [2 + 2] pathways for addition of dimethyl ketenes to the metal complexes MnO₃L with respect to changing ligand L is $O^- < Cl < CH_3 < CH_3O^-$ while the order in reaction energies is CH₃ $< CH_3O^- < Cl < O^-$. For the reactions of substituted ketenes with MnO₃Cl, the order in the activation energies for the preferred addition pathways is $O^{-} < Cl < CH_{3} < CH_{3}O^{-}$ while the order in reaction energies is $CH_3 < CH_3O^- < Cl < O^-$. For the reactions of substituted ketenes with MnO₃Cl, the order in activation barriers for the preferred addition pathways is $Cl < H < CN < CH_3$ < Ph while the reactions energies follow the order H < CH₃ < CN < Ph < Cl. In the reactions of dimethyl ketenes with MnO₃L, the trend in the selectivity of the reactions is $Cl^- < CH_3O^- < CH_3 < C$ O⁻ while the trend in selectivity is $H < Cl < CH_3 < CN < Ph$ in the reactions of MnO₃Cl with substituted ketenes ($O=C=C(CH_3)(X)$; $X = H, CH_3, Cl, CN, Ph$). Generally, reactions involving a change in oxidation state of metal from the reactant to the product have high activation barriers while reactions that do not involve a change in oxidation state have low activation barriers. The changes in oxidation state were observed for substituents or ligands with inductive effect. A triplet zwitterionic intermediate is formed in the reactions of the MO₃L with the substituted ketenes for all the metals. The reactions of dimethyl ketene with MO_3L (L = Cl, O⁻, OCH₃, CH₃) will most likely lead to the formation of an ester precursor for each metal. For both [3 + 2] and [2 + 2]addition, low activation barriers are obtained when the substituent on the ketene is electrondonating while high activation barriers are obtained when the substituent is electron-withdrawing. The results show that the reactions of ketenes with MnO₃L complexes have lower activation barriers for the preferred [3 + 2] and [2 + 2] addition pathways than those of the ReO₃L and TcO₃L complexes reported in the literature. Thus the MnO₃L complexes may be better catalysts for the activation of the C=C bonds of substituted ketenes than the reported ReO₃L and TcO₃L complexes and is in the order Mn < Tc < Re.