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Abstract

In this work the Feynman-Kac theorem was used to derive a Partial Differential

Equation (Kolmogorov Equation) from an SDE model for cancer cell growth.Two

Numerical schemes specifically for Stochastic Differential Equations were used

to solve for the time it takes for the cancerous cells to be extinct (Persistence

Time) and the resulting deterministic PDE so derived was solved using the Finite

Difference approach.Tabular and Graphical results are presented and discussed.

The results obtained showed that the Stochastic Numerical schemes; the Euler

Maruyama and the Milstein Method employed for the SDE gave fairly consistent

results while the Finite difference method employed for the deterministic PDE

gave a very close approximate results to that of the SDEs.
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Chapter 1

Introduction

Cancer is used to describe diseases where cells grow uncontrollably and tumours

develop to invade normal tissues. It is considered as the second most deadly

disease after cardiovascular diseases in the European countries. About a third

of people diagnosed with breast cancer die annually in Ghana,Hunter and Anita

(2003). Unfortunately, most treatment plans administered to patients are based

on only empirical data such as clinical examinations and imaging studies. It is

not uncommon to find the cancer redeveloping even after successful treatment.

A possible reason is that the treatment might have been stopped prematurely

while the cancer cells still persist. In some situations the treatments, (i.e. radio-

therapy, chemotherapy or a combination of both) may be continued even when

there are no more cancerous cells left. Another reason could also be attributed to

the fact that the cancer is said to be caused by only cancer stem cells neglecting

differentiated cancer stem cells which have high rates of proliferation. Like many

other biological processes, population growth of cells have been modeled using de-

terministic models which unfortunately assume that the processes are influenced

by only internally deterministic factors. However, most biological processes are

influenced by noise emanating from hormonal oscillations, blood pressure, enzy-

matic actions, cellular metabolism, etc. Some attempts have however been made

to use more realistic models which include the noise factor to describe biological

processes. Example, Stochastic Differential Equations (SDEs) have been used

to model pharmacodynamics and pharmacokinetics as well as population growth

of cells etc. Yet such SDEs proved some difficulties in term of their solution.

This thesis seeks to use a Partial Differential Equation (PDE) to approximate

the solution of an SDE model describing cancer cells through their persistence
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time.

1.1 Problem Statement

Cancer continuous to be a life threatening disease in most countries world wide.

The cancerous cells may still persist even after what is described as successful

treatment. Stochastic Differential Equations (SDEs) are mostly used to model

cancer cell growth and their persistent time. However most Stochastic Differen-

tial Equations cannot be easily solved. Even with numerical methods the choice

of initial conditions may sometimes make solutions of SDE unrealistic. In this

work the Feynman-Kac theorem was used to derive a Partial Differential Equa-

tion (PDE) to approximate the solution of an SDE model for cancer cell growth

through their persistent time.

1.2 Objectives of the study

• To review the Feynman-Kac theorem and use it to derive a Kolmogorov

Equation (PDE) from an SDE model for cancer cell growth.

• To solve the derived PDE for the Average Persistence Time of the cancer

cells.

• To analyze and compare the solution of the derived PDE with that of the

SDE model.

1.3 Methodolgy

This thesis looked at how to use the Feynman-Kac theorem to obtain a Kol-

mogorov Equation(PDE) from a system of SDEs describing cancer growth

dynamics. The Stochastic Differential Equation was used to obtain an ap-

proximate solution to the system of Stochastic Differential Equation. First

2



a Stochastic Differential Eqaution that describes cancer stem cells and Dif-

ferentiated cancer cells was considered. The Feynman-Kac theorem was

then proven and in conjunction with the Ito’s Lemma, the Feynman-Kac

theorem was used to derive a PDE for the SDE model. The SDE model

was simulated for the population of the cancer cells and average Persis-

tence using two Numerical methods specifically for SDEs, i.e. The Euler

Maruyama and the Milstein Methods. The resulting PDE was also solved

numerically using the Finite Difference Method for the average Persistence

Time. The results of the average Persistence Time derived from both the

SDE and the PDE were compared. The simulations and graphs were done

using MatLab. Information for this study was gathered from the Internet

and the published articles and books that are related to the study.

1.4 Justification of the Work

In Ghana, about 1000 women die annually due to cancer related ailments, the

cancer has unfavorable prognostic features and unlikely to respond to hormonal

manipulation, Solomon (2010). This number makes up to 70% of th women

diagnosed with the disease Clegg-Lamptey (2007). Recovery rates of the disease

vary depending on cancer type, treatment plan and schedule etc. example, for

testicular cancer, the rate is 97.3% but as low as 10.9% for lung cancer, Kroos

(2014). So far the treatment has mostly been based on only clinical examinations.

However, the fight against cancer is far from over. It becomes very prudent to

try to tackle the problem also from a theoretical point of view. It must be

emphasized that, looking at the high mortality rates of cancer, any research that

aims at improving the success rates of cancer treatment becomes crucial.
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1.5 Organization of Thesis

The Chapter one of this study will contain Introduction of study, Problem state-

ment, Objectives of study, Methodology, Justification of the study, and Orga-

nization of thesis. Chapter two will contain the literature review, where studies

already carried out and are related to our study, methods and applications of SDE

and PDE will be looked at. The Feynman-Kac theorem, Ito’s Lemma as well as

the SDE and PDE models will be considered under chapter three. Chapter four

will contain results of their analysis,based on methods outlined in chapter three.

In Chapter five, a conclusion will be drawn based on our findings and analysis

to check if the goals of this study are achieved.Recommendations will be given

with respect to the results obtained that are based on the methods used in the

analysis.
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Chapter 2

Literature Review

In this section, we reviewed relevant studies which have been conducted and are

relevant to our work. The review was focused on various stochastic differential

equations models and some proposed methods of solutions. Some of the methods

included the use of Ito calculus and Stratonovich Integrals. The Ito calculus for

instance creates a way of extending methods of calculus to stochastic processes.

We also looked at how important stochastic processes are in the field of Physics,

finance and in the medical field.

2.0.1 Brownian Motion

Brownian motion otherwise called pedesis is a random motion of particles sus-

pended in a fluid due to collisions and pressure build up between liquid or gas

molecules and between them and the walls of their containing vessels. Mathe-

matically, the term ”Brownian motion” is used to refer to mathematical models

used to describe random movements often referred to as particle theory, Brown

(1866). While looking through microscope at particles of pollen grains in water,

Robert Brown noted that the particles move through the water, but was unable to

describe the mechanism of the movement immediately. Einstein (1956) explained

how the motion Brown had observed occurs. He noted that the pollen grains

were moved by individual water molecules. This definition went on to establish

the existence of atoms and molecules. According to him the direction of the force

of atomic bombardment is constantly changing, and at different times a particle

is hit more on one side than the other, leading to what seams to be the random

nature of the motion.
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2.0.2 Stochastic Calculus

Brownian motion or the Wiener Process was discovered to be exponentially com-

plex, mathematically. The Wiener Process is no where differentiable. This meant

that it required it own form of calculus. This led to the two dominating ver-

sions of stochastic calculus called the Ito Stochastic calculus by Kiyoshi Ito and

the Stratonovich Stochastic calculus. Whether to apply the Ito calculus or the

Stratonovich calculus to a particular problem can be very tricky. Oksendal (2003)

provided guidelines of which of the two versions is preferable at a given instance.

He provided guidelines as to how to switch between Ito Stochastic Calculus and

Stratonovich Stochastic Calculus. It must be noted however that for a given

stochastic problem, one has to be careful as to which of the two versions to

employ.

Ito calculus

Kiyoshi Ito extended the methods of calculus to stochastic processes, such as

Brownian Motion (Wiener Process) David and Kevin (2012). It has very impor-

tant applications in financial mathematics and stochastic differential equation.

The central concept in Ito Calculus is about the Ito integral and consequently,

the Ito’s Lemma. The Ito’s Integral is a generalization of the ordinary concepts

of a Riemann-Stiltjes integral. The generalization is in two parts. The first is

the fact that for stochastic differential equations, we are dealing with random

variable. Secondly, we are integrating with respect to a non-differentiable func-

tion(technically; a stochastic process). The Ito integral allows us to integrate one

stochastic process with respect to another stochastic process. It must be noted

also that an important result of the Ito calculus include the integration by parts

formula and the Ito’s Lemma, which is a change in variable formula. These differ

slightly from the formulas of standard calculus due to quadratic variation.
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Stratonovich Stochastic Process

Ruslan L. Stratonovich and D.L.Fisk developed the Stratonovich Stochastic Pro-

cess simultaneously. These processes are basically Stochastic Itegrals which are

considered as alternative to the more popular Ito Stochastic calculus. Ito calculus

are mostly employed in problems in Applied Mathematics while Stratonovich In-

tegrals are mostly used in prblems that emanate from Physics. Both methods are

mathematically correct and one could be converted into the other form. Mostly

it is a matter of choice based on the problem at hand. For instance, in areas

of physics, it is realized that the stratonovich is better suited as opposed to the

Ito calculus. In certain areas, the stratonovich integrals are easier to manipulate.

For example, unlike Ito calculus, Stratonovich Stochastic calculus are defined such

that the chain rule of ordinary calculus holds. According to E.Platen and Kloe-

den (1995), Stochastic Integrals and differentials can rarely be solved analytically

making stochastic numerical integration an important tool in all uses of stochas-

tic integrals. They also realized that various numerical approximations converge

to the stratonovich integral and variations of these are used to solve stratonovich

SDEs. It must be noted however that, most widely used Euler Scheme(The Euler

Maruyama method) for the numerical solution of the Langevin equations requires

the equation to be in Ito form.

2.0.3 Application of Ito Integrals and Stratonovich Inte-

grals

As mentioned earlier, the method to be employed in solving a particular Stochas-

tic Differential Equation could be very tricky. From purely mathematical point

of view both the Ito and Stratonovich Calculi are correct. The question as to

whether one employs which method relies on the context of particular application.

Ito SDE is appropriate when the continuous approximation of a discrete system

is concerned (many examples occur in biological sciences). The stratonovich in-
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tegral lacks the important property of the Ito integral which does not ”look into

the future”. In many real world applications, such as modeling stock prices, one

only has information about past events and hence the Ito interpretation is more

natural. In financial mathematics, the Ito interpretation is mostly employed.

Stratonovich SDE or integral process is more appropriate when the idealization

of a smooth real noise is concerned (many examples are found in engineering and

in physical sciences). In Physics for example, Stratonovich integrals occurs as

the solution of Langevin Equations (In Statistical Physics) a Langevin Eqaution

is a stochastic differential equation describing the time evolution of a subset of

the degree of freedom Langevin (1908). These degree of freedom are collective or

macroscopic varaiable changing only slowly in comparison to the other (micro-

scopic) variable of the system. The fast (microscopic) variables are responsible

for the stochastic nature of the Langevin Equation. The original Langevin eqau-

tion describes Brownian motion- the apparently random movement of particles

in a fluid due to collisions with the molecules of the fluid. The degree of freedom

here is the position of the particles. The noise term in the Langevin equation in

Physics is what is described as stochastic processes in SDEs. The Wong-Zakai

theorem states that physical systems with non-white noise spectrum character-

ized by a finite correlation time, T can be correlated by a Langevin Eqaution

with the noise in Stratonovich interpretation in the limit where T tends to zero.

Because the Stratonovich calculus satisfies the ordinary chain rule, Stochastic

Differential Equations in the Stratonovich sense can be meaningfully defined on

arbitrary differential manifolds, rather than just on Rn. This is not possible in

Ito calculus since here, the coordinate system would affect the SDE’s solution.

2.0.4 SDE models

SDE models are used in the field of Applied Sciences, Mathematics, Financial

Mathematics and in some Physical Science such as Physics. In Physics, SDEs are

written in the Langevin equation. This form is basically based on the notion that
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there are standard techniques for transforming higher order equations into several

first order equations, by bringing in new unknowns. In Physics, the main method

of finding solution is to find the probability distribution function as a function of

time using the relevant Fokker-Plank Equation. It is similar to the Schodinger

Equation which results in the time evolution of the quantum wave function or the

diffusion equation. The Fokker-Plank Equation (FKE) shows how the probability

distribution evolves in time.In the field of Financial Mathematics, the SDEs are

used to model stock prices of commodities. It has also been used to model

interest rates, inflation and sometimes electricity prices. Examples of the models

used here is the famous Black Scholes SDE model, the Cox-Intergrosol Model

(CIR) mean reverting models, Geometric Brownian Motion model, Ohrnstein-

Uhlenbeck processes etc.

2.0.5 Principal Funtions of Financial Institutions

Among the chief functions of financial institutions is to act as a risk-reducing

intermediary among customer engaged in production. For example, the insurance

industry draws premiums of several customers and is suppose to pay off only the

few who actually incur losses. But risk comes in situations for which pooled-

premium insurance is available. For example, as a hedge against higher fuel costs

an airline may want to buy a security whose value may increase if oil prices rise.

But who will want to sell such a security? The role of a financial institution

is to design such a security, determine a ”fair” price for it and sell it to the

airlines.The security thus sold becomes a ”derivative” i.e. it value is dependent on

other securities. ”Fair” in this context means that the financial institution earns

enough money from selling the security to enable it to trade in other securities

whose relation with oil prices is such that, if oil price do indeed rise up, the

firm can pay off it increased obligation to the airlines.An efficient market thus is

one in which risk-hedging securities are widely available at ”fair” prices. Here is

where the stochastic models normally fit in. The Black-Scholes Option pricing
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formula for instance, provided for the first time, a theoretical method of fairly

pricing a risk-hedging security.If an investment bank offers a derivative security

at a price that is higher than ”fair” it may be under bid. If it offers the security

at less than ”fair” price, it runs the risk of substantial loss. This makes the

bank reluctant to offer many of the derivative securities that could contribute to

market efficiency.In particular, the bank only likes to offer derivative securities

whose ”fair” price can be obtained in advance. Moreover, If the bank sells such

a security, it must subsequently address hedging problems. How must it manage

the risk associated with its new position? The mathematical theory ensuing

out of the Black-Scholes Option Pricing model gives the solutions for both the

pricing and hedging problems. It thus has made the creation of many specializing

derivative securities.

2.0.6 SDE models in Financial Mathematics

The Brownian motion models for financial markets are based on the work of

Robert C. Merton and Paul A. Samuelson, as extensions to the one-period mar-

ket models of Harold Markowitz and William F. Sharpe, and are concerned with

defining the concepts of financial assets and markets, portfolios, gains and wealth

in terms of continuous-time stochastic processes.Under this model, these assets

have continuous prices evolving continuously in time and are driven by Brownian

motion processes.This model requires an assumption of perfectly divisible assets

and a frictionless market (i.e. that no transaction costs occur either for buying

or selling). Another assumption is that asset prices have no jumps, that is there

are no surprises in the market. This last assumption is removed in jump diffu-

sion models. The theory of finance tries to explain how financial markets work,

how to make them more efficient, and how they should be regulated. It explains

and enhances the important role these markets play in capital allocation and risk

reduction to facilitate economic activities.Without loosing it practical aspects of

trading and regulation, theory of finance has become increasingly mathematical,
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to the point that problems in finance are new driving research in mathematics.

Markowitz (1952) laid the ground work for the mathematical theory of finance.

He developed an idea of mean return and covariances for common stocks that

allowed him to quantify the concept of ”diversification” in a market. He showed

how to compute the mean return and variance for a given portfolio and argued

that investors should hold only these portfolios whose variance is minimal among

all portfolio with a given mean return. Although the language of finance now

involves ’Ito Calculus’, management of risk in a quantifiable manner is the un-

derlying theme of the modern theory and practice of quantitative finance. Merton

(1971) introduced Stochastic Calculus into the study of finance. Merton was mo-

tivated by the desire to understand how prices are set in financial markets which

is the classical economics question of ”equilibrium” and in later papers he used

the machinery of Stochastic Calculus to begin investigation of this issue. While

Merton’s work was in progress, Fisher Black and Myron Scholes were simulta-

neously developing their popular Option pricing formula. It gave a satisfying

solution to a prudent practical problem, that is, finding a price that is fair for

an European call option (i.e. the right to buy one share of a given stock at a

particular price and time). Pliska (1981) used the general theory of continuous

time stochastic process to put the Black-Scholes option pricing formula on a solid

theoretical basis and a result, showed how to price numerous other ”derivative”

securities.Many of the theoretical developments in finance have found immediate

application in finance markets. In general, to understand how the Black-Scholes

formula and for that matter other Stochastic Differential Eqautions’ models, we

will need to investigate on the role of financial institutions.

2.0.7 Other SDE models in finance

A lot of SDE models have been developed in the past to describe concepts in the

financial sector. Some of such projects are as follows;
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Ho-Lee model

HO and Lee (1986) provided a short rate model widely used in the pricing of

bond options, captions and other interest rate derivatives and in modeling future

interest rates. It was the first arbitrage free model of interest rates. The model

can be calibrated to market data. This calibration, and subsequent valuation of

bond options, swaptions and other interest rate derivatives, is typically performed

via a binomial lattice based model. Closed form valuations of bonds, and ”Black-

like” bond option formulae are also available.

Hull-White Model

The Hull (2006) model as applied in financial is a Stochastic model that describes

future interest rates. In its most generic formulation,it belongs to the class of non-

arbitrage models that are able to fit today’s term structure of interest rates. It is

relatively straightforward to translate the mathematical description of the evolu-

tion of future interest rates onto a tree of lattice and so interest rate derivatives

such as bermudan swaptions can be valued in the model.

Cox-Ingersoll-Ross model (or CIR model)

Cox et al. (1985) developed the CIR model as an extension of the Vasicek model.In

mathematical finance, the Cox-Ingersoll-Ross model describes the evolution of

interest rates. It is a type of ”one factor model” (short rate model) as it describes

interest rate movements as driven by only one source of market risk. The model

can be used in the valuation of interest rate derivatives.

Black-Derman-Toy model

The Black-Derman-Toy model (BDT)by Black et al. (1990) is a popular short

rate model used in the pricing of bond options, swaptions and other interest

rate derivatives.It is a one factor model; that is , a single stochastic factor-the

short rate- determines the future evolution of all interest rates. It was the first
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model to combine the mean-reverting behaviour of the short rate with lognormal

distribution, and is still widely used. The model was introduced by Fischer

Black, Emanuel Derman, and Bill Toy. It was first developed for in-house use

by Goldman Sachs in the 1980s and was published in the Financial Analysts

Journal in 1990. Under BDT, using a binomial lattice, one calibrates the model

parameters to fit both the current term structure of interest rates (yield curve),

and the volatility structure for interest rate caps (usually as implied by the Black-

76-prices for each component caplet) Using the calibrated lattice one can then

value a variety of more complex interest-rate sensitive securities and interest rate

derivatives.

2.1 SDE Models in Medicine

Continuous time processes are often modeled as a system of ordinary differen-

tial equations. These models assume that the dynamics observed are exclusively

driven by internal, deterministic processes. However, real biological systems are

always prone to influences that are not understood completely or not feasible to

model explicitly, and thus, there is the need to extend the deterministic mod-

els to models that encompasses more complex variations in the dynamics. A

way of modeling these elements is by including random influences or noise. A

natural extension of a deterministic differential equations model is a system of

stochastic differential equations, where relevant parameters are modeled as suit-

able stochastic processes, or stochastic processes are added to the driving system

equations. This procedure assumes that the dynamics are to some extent driven

by noise. All biological dynamical systems develop under stochastic forces, if we

define stochasticity as the aspects of the dynamics that we either cannot pre-

dict or understand or the part we choose not to include in the explicit modeling.

To best mimic the real world, models of biological systems should include ran-

dom influences, since they involve subsystems of the real world that cannot be

sufficiently separated from external effects to the model. The physiological justi-
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fication to include erratic behaviors in a model can be seen in the many factors

that cannot be controlled, like blood pressure variations,hormonal oscillations,

respiration, variable neural control of muscle activity, energy requirements, the

cellular metabolism,enzymatic processes, sympathetic nerve activity, or individ-

ual characteristics like body mass index, genes, smoking, stress impacts, etc. Also

external influences, like temperature, small differences in the experimental pro-

cedure, differences in preparation and administration of drugs, if these are added

to the experiment, or maybe the experiments are conducted by different scientist

that inevitably will lead to small differences in procedures within the protocols.

Different sources of errors will need different modeling of the noise, and these

factors should be considered as carefully as the modeling of the deterministic

part, in order to make the model predictions and parameter values possible to

interpret. It is thus, very important to understand and investigate the influence

of noise in the dynamics. In many cases the noise simply blurs the underlying

dynamics without qualitatively affecting it, as is the case with measurement noise

or in many linear systems. However, in nonlinear dynamical systems with system

noise, the noise will usually drastically cause some changes in the correspond-

ing deterministic dynamics. In general, stochastic effects influence the dynamics,

and may promote, diminish or even completely change the dynamic behavior of

the system. The following are sample works that have been done in the past in

medicine.

SDE models in system Biology

? used a type of Stochastic Differential Equation called Reflected Stochastic Dif-

ferential Equations to model ion channels. Ion channels are membrane proteins

that open and close at random and play a vital role in the electrical dynamics of

excitable cells. The stochastic nature of the conformational changes these pro-

teins undergo can be significant, however ordinary stochastic modeling method-

ologies limit make it difficult to study such systems. Some of the limitations
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are as follows: Discrete-state Markov chain models are seen as the ”gold stan-

dard,” but are computationally intensive, restricting investigation of stochastic

effects to the single-cell level. Continuous stochastic methods that use stochas-

tic differential equations (SDEs) to model the system are more efficient but can

lead to simulations that have no biological meaning David and Kevin (2012) In

their paper they showed that modeling the behavior of ion channel dynamics

by a reflected SDE ensures biologically realistic simulations, and further argued

that this model follows from the continuous approximation of the discrete-state

Markov chain model.They compared Open channel and action potential statistics

from simulations of ion channel dynamics using the reflected SDE with those of

a discrete-state Markov chain method. Their results proved that the reflected

SDE simulations are in good agreement with the discrete-state approach. The

reflected SDE model therefore provides a computationally efficient method to

simulate ion channel dynamics while preserving the distributional properties of

the discrete-state Markov chain model and also ensuring biologically realistic so-

lutions. This framework could easily be extended to other biochemical reaction

networks. Variability in the action potential of isolated myocytes and tissue

samples is observed in experimental studies. Variability is manifested as both

differences in the action potential (AP) morphology between cells (extrinsic vari-

ability), and also ’intrinsic’ or beat-to-beat variability of repolarization (BVR) in

the AP duration of each cell Zaza (2015) used Stochastic Differential Equations

to study the the relative contributions of experimentally recorded intrinsic and

extrinsic variability to dispersion of repolarization in tissue. We developed four

cell-specific parameterizations of a phenomenological stochastic differential equa-

tion AP model exhibiting intrinsic variability using APs recorded from isolated

guinea pig ventricular myocytes exhibiting BVR. They performed simulations in

tissue using the four different model parameterizations in the presence and the ab-

sence of both intrinsic and extrinsic variability. They further altered the coupling

of the tissue to determine how inter-cellular coupling affected the dispersion of
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the AP duration in tissue. Both intrinsic and extrinsic variability were gradually

revealed by reduction of tissue coupling.

2.1.1 Comparison between SDEs and PDEs

Since it is not always possible to obtain closed form solutions for both stochastic

and Ordinary differential equation and for that matter partial differential equa-

tions, the usual practice would be to resort to numerical procedures. Nonetheless,

even the numerical procedures might sometimes prove some difficulty. Another

way out would be to find a means of switching between the two types of equations

with the hope of finding solutions much easier. Some of the related works are

as follows; Geib and Manthey (1998) proved the comparison theorems of ordi-

nary stochastic differential equations as well as for stochastic partial differential

equations. Comparison theorems are useful in the theory of deterministic and

stochastic differential equations. In their paper they proved such a theorem for

systems of ordinary stochastic differential equations with the main interest fo-

cused on Stochastic Partial Differential Equations (SPDEs). Independently, the

authors proved a similar assertion in a more particular case (cf. Manthey and

Stiewe, 1992). Melnikova and Parfenenkova (2012) introduced a generalization of

the Feynman-Kac theorem in Hilbert spaces. Connection between solutions to an

abstract stochastic differential equation and solutions to a derived deterministic

partial differential (with derivatives in Hilbert spaces) equation for probability

characteristic was proven. Interpretation of objects in the equations was also

given.
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Chapter 3

Methodology

In this section we consider a Stochastic Differential Equation (SDE) model that

describes cancer growth dynamics and that which takes into consideration both

cancer stem cells and differentiated cancer cells. We will also use the Feynman-

Kac theorem to derive a Kolmogorov Equation that models the persistent time

of our cancerous cells.

3.1 Stochastic Differential Equation

Stochastic Process

A stochastic process is a collection of random variables. Formally, given a prob-

ability space (Ω,Λ, P ) and a measurable space (S, υ). An s - valued stochastic

process is a collecition of s - valued random variables, Ω indexed by the ordered

set T (time).

Probability Space

The set of possible outcomes in a random experiment is called sample space and

is denoted with Ω. A possible combination of outcomes is called an event and

the set of all events is denoted with Λ

Definintion 3.2.1

A σ-algebra, Λ is a family of subsets of Ω so that:

1. Ω ∈ Λ

2. A ∈ Λ ⇒ Ac ∈ Λ

3. A1, A2, ... ∈ Λ ⇒ ∪i≥1 Ai ∈ Λ
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Defininition 3.2.2 (Probability Measure)

: Let Λ be a σ-algebra over Ω, a mapping P : Λ −→ [0, 1] is a probability measure

if it satifies the following two axioms;

1.P (φ) = 0

2. A1, A2, ... ∈ Λ and Ai ∩ Aj = φ for i 6= j ⇒ P (∪i≥1Ai) = Σi≥1P (Ai)

The tripplet (Ω,Λ, P ) is called probability space.

Definition 3.1.3 (Stochastic Process, trajectory)

: A stochastic process is a mapping

X : [0, T ]× Ω −→ Rn so that;

• X(t) = X(t, .) : Ω −→ Rn is a random variable for every t ∈ [0, T ]

• X(., ω):[0, T]−→ Rn is called a path, a realization or a trajectory of the

stochastic process for every ω ∈ Ω.

For each patient we are always going to represent the patient by a tra-

jectory.

3.1.1 Wierner Process

It is the most important stochastic process in continuous time. The Wiener

Process is also called the Brownian Motion named after Robert(1828).The precise

mathematical formulation of the Brownian motion was given by Norbert Wiener

(1923)

Definition 3.3.1 (Wiener Process :)

A stochastic process {W (t)}t≥0 is called a Wiener Process or a Brownian Motion

if;

• W (0) = 0
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• {W (t)}t≥0 has independent increment i.e Wt1 ,Wt2 , ...Wtk −Wtk−1 are inde-

pendent random variables for all 0 ≤ t1 < t2 < ... ≤ tk

• W (t+ s)−W (s) ∼ N(0, t) for all t > 0

Here, N(µ, σ2) denotes the normal distribution with mean µ and variance σ2.

Thus, the Wiener process is a Gaussian process. From the works of Albert Eistein

(1905) and Marian Smoluchowski (1906), it is established that the displacement

of Brownian particles is not protportional to the elapsed time, but rather it’s

square root. The brownian motion thus is expressed mathematically us

∆W (tk) = ε(tk)
√

∆t

where ε(.) is a discrete-time Gaussian white noise i.e. with mean zero and stan-

dard deviation of 1. The Wiener process is continuous with mean zero and vari-

ance proportional to the elapsed time:E(W (t)) = 0 and V ar(W (t)) = t. If X(t)

is a stationary stochastic process, then X(t) has the same distribution as X(t+h)

for all h > 0. Thus, the Wiener process cannot be stationary since the variance

increases with t. The autocovariance function is given by Cov(Wt,Ws) =min(s, t)

The sample paths of a Wiener process behave ”widly” in that they are nowhere

differentiable. To see what that means define the total variation of a real-valued

function f on an interval [a, b] ⊂ R by the quantity

V b
a (f) = sup

n∑
k=1

|f(tk)− f(tk−1)|

where the supremum is taken over all finite partitions a ≤ t0 < ... < tn ≤ b

of [a, b]. When V b
a < ∞ we say that f is of bounded variation on [a, b]. Func-

tions that behave sufficiently ”nice” are of bounded variation, if for example f

is differentiable, it is of bounded variation. It turns out that the Wiener pro-

cess is of unbounded variation everywhere. This happens because the increments

W (t+ ∆t)−W (t) is on the order of
√

∆t instead of ∆t since the variation is ∆t.
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Therefore

V b
a (W ) = sup

n∑
k=1

|W (tk)−W (tk−1)|

≥ lim
n←→∞

n∑
k=1

∣∣∣∣W (
a+

k

n
(b− a)

)
−W

(
a+

k − 1

n
(b− a)

)∣∣∣∣
≈ limn−→∞

n∑
k=1

√
1

n
(b− a) = limn−→∞

√
n(b− a) =∞

for any interval [a, b]. Trying to differentialte we see how this affects the limit

lim
∆t−→0

|W (t+ ∆t)−W (t)|
∆t

≈ lim
∆t−→0

|
√

∆t|
∆t

=∞

Now we define the quadratic variation of a real-valued function f on

[a, b] ⊂ R by

|f |ba = sup
n∑
k=0

(f(tk)− f(tk−1))2

where the supremum is taken as before. For functions of bounded variation

the quadratic variation is always 0, and thus,if |f |ba > 0 then V b
a (f) = ∞.The

quadratic variation of a Wiener process over an interval[a, b] equals t− s and in

the limit we therefore expect

lim
∆t−→0

(W (t+ ∆t)−W (t))2 ≈ ∆t

Definintion 3.2.3: History of the Wiener Process

The σ-algebra

U(s) := U(W (r)) : 0 ≤ r ≤ s

is called the history of the Wiener process (W (t)) till time s. This implies that

U(s) records all information of our observations of W (r) for all times 0 ≤ r ≤ s.

Definition 3.2.4. (n-dimensional Wiener proces). A stochastic pro-

cess (W (t))t, W : R+ −→ Rn is an n-dimensional Wiener process(also called
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n-dimensional Brownian motion), if it satifies the following;

• For all i = 1, ...n the stochastic process (W i(t))t is a one-dimensional Wiener

process with W (t) = (W 1(t), ...,W n(t))

• The σ-algebra W i := B(W i(t)) : t ≥ 0 are independent, where B is the

σ-algebra generated by the random variable W i(t), t ≥ 0

3.1.2 Evolution of SDE from a PDE

The method employed here is the semi-group technique for PDEs. Roughly speak-

ing, the semi-group approach is to consider a time-dependent partial differential

equation as an ordinary differential equation on a function space. We begin by

formulating the SDE from a diffusion equation. Consider the diffusion equation

below;

∂µ(t, x)

∂t
=

∂2µ(t, x)

∂x2
, x ∈ (0, 1), t > 0 (3.1)

µ(t, x) = 0, x ∈ {0, 1}, t > 0

µ(t, x) = U0(x), x ∈ (0, 1), t = 0

If we define D as the second order derivative operator, that is D =
∂2

∂x2

eqn(3.1) becomes

dµ(t)

dt
= Dµ(t) (3.2)

Next we set Dµ(t) = f(t, x) and µ(t) = X(t) we obtain the ODE in the

form

dX(t)

dt
= f(t, x) (3.3)

with the initial condition X(0) = x0. The equation can also be written in the

21



integral form as follows

X(t) = x0 +

∫ t

0

f(s, x(s))ds (3.4)

where X(t) = X(t, x0, t0) is the solution of eqn(4) with the initial condition

X(0) = x0 In eqn(3.4) above if we assume that f(t,x) is the product of two

functions a(t) and x(t) i.e f(t, x) = a(t)x(t) eqn(3.4) becomes

dX(t)

dt
= a(t)x(t), X(0) = x0 (3.5)

In the ODE (3.5), if we further assume that a(t) is not deterministic parameter but

rather a random parameter, we get a stochastic differential equation(SDE).Thus

a natural extension of ordinary differential equation model is a stochastic differ-

ential equation model where the relevant parameters are randomized or modeled

as random process of some suitable form, or simply by adding a noise term to

the driving equations of the system. This approach assumes some degree of noise

is present in the dynamics of the process. The random process will be using for

the purposes of this paper is the Weiner Process with all its properties defined

earlier. Thus we assume that

a(t) = f(t) + h(t)ε(t)) (3.6)

where ε(t) denotes a white noise process. Thus we obtain the equation;

dX(t)

dt
= f(t)X(t) + h(t)X(t)ε(t) (3.7)

If we further assume that ε(t) is a certain change in a stochastic process (Weiner

process) with respect to time, i.e. dW (t) = ε(t)dt, where dW (t) represents the

differential form of a the Brownian motion, we obtain

dW (t) = f(t)X(t)dt+ h(t)X(t)dW (t) (3.8)
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3.1.3 Stochastic Differential Equations

Let (W (t))t≥0 be an m-dimensional Wiener process and X0 an n-dimensional

random vector that is independent from (W (t))t≥0. Further we let F (t) :=

U(X0,W (s)), 0 ≤ s ≤ t be the σ-algebra generated by X0 and the history of

the Wiener process till time t. A stochastic differential equation on the interval

[0,T], has the form

dX(t) = f(t,X(t))dt+ g(t,X(t))dW (t) (3.9)

for t ∈ [0, T ] and with (3.10)

X(t) = (X1(t), ..., Xd(t))
t (3.11)

W (t) = (X1(t), ..., Xm(t))t (3.12)

f : [0, T ] × Rd −→ Rd (3.13)

g : [0, T ] × Rd −→ Rd×m (3.14)

(3.15)

where W (t) denotes an n-dimensional Wiener process and X(t) a stochastic pro-

cess. The function, f is called the drift coefficient of the stochastic differential

equation and g is its diffusion coefficient.

3.1.4 Numerical Solutions for Stochastic Differential Equa-

tions

In equation (3.9) above, the coefficients of the functions f and g may not be

linear or constants all the time in which situations, exact solutions may be ob-

tained. However, in more realistic problems, such functions may have non-linear

coefficients. They may be square root processes. In such situations we apply

numerical methods or procedures just like the ones in ODEs and PDEs. The two
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most famous numerical schemes applied in this regards for Stochastic Differential

Equations (SDEs) are the Euler-Maruyama method which is an extension of the

classical Euler method for ordinary differential equations and the second method

is the Milstein method, which is a scheme for higher order.

3.1.5 The Euler-Maruyama Method

The Euler-Maruyama method for a stochastic differential equation (9) is defined

by: Xn+1 = Xn + f(tn, Xn) + g(tn, Xn)∆Wn with

n = 0, ..., N − 1, Xn ≈ X(tn),∆t = T
N
, ti = i∆t and ∆Wn = W (tn+1) −

W (tn) ∼ ℵ(0,∆t). For each component this implies that:

Xi,n+1 = Xi,n + f(tn, Xn)∆t+
m∑
j=1

gij(tn, Xn)δWj,n (3.16)

for i = 1, ..., d with ∆Wj,n ∼ ℵ(0,∆t) for all j = 1, ...,m and n = 0, ..., N

3.1.6 The Milstein Method

The implicit Milstein method is defned for each component of Xn by:

Xi,n+1 = Xi,n+fi(tn+1, Xn+1)∆t+
m∑
j=1

gij(tn, Xn)∆Wj,n+
m∑

j1=1

m∑
j2=1

d∑
l=1

glj1
∂gij2
∂xl

In(j1, j2)

(3.17)

for i = 1, ..., d and the other parameters defined as in 3.5.1. Also, we

have

In(j1, j2) =
∫ t+∆t

tn

∫ s
tn
dWj1(r)dWj2(s) For j1 = j2 this double ito inte-

gral can be written as In(j1, j1) =
1

2
((∆Wj1,n)2 − ∆t) The double Ito-integral

does not have a closed analytical form for j1 6= j2. Nevertheless, in order

to compute it, we can approximate this integral by: In(j1, j2) ∼ n(j1, j2) =∑M−1
j=0 (Wj1(tj,n) − Wj1(t0,n))(Wj2(tj+1,n) − Wj2(tj,n)) with tj,n = tn + j

∆t

M
for

j = 0, ...M
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3.1.7 The Finite Difference Method

When solving PDEs it is not always possible to obtain a closed form formula for

the solution, in such cases we resort to numerical method to compute approximate

values of the solution. An example is the Monte Carlo computation and the

deterministic Finite Difference method.

A finite difference is a quotient that approximates a derivative. For

example consider Kolmogorov Backward Equation (PDE) given by;

0 = ∂tf(x, t) + a(x, t)∂xf(x, t) +
b2(x, t)

2
∂2
xf(x, t) (3.18)

The FDM uses the grid points (xj, tk) with xj = jδx and tk = kδt also T =

tn = nδt and tk − δt = tk−1 Next we compute the following approximations;

∂tf(xj, tk) ≈
f(xj, tk)− f(xj, tk−1)

δ
≈ fj,k − fj,k−1

δt

∂xf(xj, tk) ≈
fj+1,k − fj−1,k

2δx

∂2
xf(xj, tk) ≈

fj+1,k − 2fj,k + fj+1,k

δx2

by substituting the following approximations into eqn(3.18) we obtain the follow-

ing

0 =
fj,k − fj,k−1

δt
+ a(xj, tk)

fj+1,k − fj−1,k

2δx
+

1

2
b2(xj, tk)

fj+1,k − 2fj,k + fj+1,k

δx2

Now, the purpose of all this was to compute the numbers fj,k−1 from the numbers

fj,k. For this, you only need to put fj,k−1 on the other side of the equation and

solve:

fj,k−1 = fj,k +
δt

2δx
a(xj, tk)(fj+1,k − fj−1,k) +

δt

2δx2
b2(xj, tk)(fj+1,k − 2fj,k + fj+1,k)

(3.19)
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This is the Forward Euler Method, also called explicit Euler for finding the ap-

proximations eqn (3.18)

3.2 An SDE model for Cancer Stem Cells and

Differentiated Cancer cells

In this section, we consider a stochastic differential equation which models can-

cer growth dynamics by Julia Maria Kroos (August,2014), then in subsequent

discussions apply the Feynman-Kac theorem to it.

3.2.1 A brief on Cancer Stem Cells and Differentiated

Cancer cells

Until the year 1997, the monoclonal model was used to describe tumour growth

dynamics. In this model, the tumour is supposed to be composed of only differ-

entiated cancer cells. In contrast to this model is the one proposed by Bonnet

and Dick in 1997 while they were investigating the oringin of leukemia. They

introduced the concept of cancer stem cells. In their proposition they suggested

that cancer stem cells could be the origin of cancer and possibly bring about the

resistance of malignant tumours and recurrence. In their model, the tumour is

said to be composed of both differentiated cancer cells and a few cancer stem cells

that have the typical characteristics of stem cells. The cancer stem cells are able

to generate differentiated cancer cells that in turn enlarge the tumour by frequent

proliferation. These cancer stem cells could be an explanation for the fact that

after therapy the tumor first disappears and after some time reappears: as stem

cells proliferate less often than differentiated tumor cells most therapies do not

harm the stem cells as much as they harm the differentiated cancer cells. Never-

theless, the origin of the cancer stem cells is not solved yet. They may develop

when self-renewing normal stem cells acquire mutations and are transformed by

altering only proliferative pathways. It is also possible that the cancer stem cells
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originate by multiple mutations in progenitor cells which acquire the capability

of self-renewal.

3.2.2 The Model

We begin by first defining some few parameters. let c(t)= population of differen-

tiated cancer cells and s(t)= population of cancer stem cells at any time, t. We

also make the following assumptions:

• Cancer stem cells are immortal and have unlimited replicative potential.

• Cancer stem cells are able to divide in various ways

– into two stem cells (with a probability , a1)

– into one differentiated cancer cell and once cancer stem cell (with prob-

ability, a2)or

– into two differentiated cancer cells(with probability, a3), with ai ∈

[0, 1], i = 1, 2, 3,
∑3

i=1 a1 = 1

• Differentiated cancer cells are mortal and have finite potential to divide.

• During proliferation, differentiated cancer cells divide into cells each of them

being again a differentiated cancer cell.

we further define the following parameters: bc, bs : proliferation rate (birth rates)

for differentiated cancer stem cells and cancer stem cells respectively dc, ds : death

rates for differentiated cancer stem cells and cancer stem cells respectively

m12: transfer rate from differentiated cancer stem cells

to cancer stem cells

m21: transfer rate from cancer stem cells to differentiated

cancer stem cells

The assumptions above thus lead to the following

ds = 0 , m12 = 0 and dc ≥ 0
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For small interval of time, ∆t the respective transition probabilities for

the random variable X = (c, s)t is as summarized in the table below.

Changes Probability

∆X(1) = (1, 0)t p1 = bcc∆t+ bsa2s∆t

∆X(2) = (−1, 0)t p2 = dcc∆t

∆X(3) = (0, 1)t p3 = bsa1s∆t

∆X(4) = (0, 1)t p4 = 0(cancer stem cells are immortal)

∆X(5) = (2,−1)t p5 = bsa3s∆t

∆X(6) = (−1, 1)t p6 = m12∆t = 0(cancer cells cannot become cancer stem cells)

∆X(7) = (0, 0)t p7 = 1−
∑6

i=1 pi

Next we compute the expectation and the covariance matrix for a given

time t:

E(∆X) =
7∑
i=1

pi∆X
(i)

=

 bcc+ bsa2s− dcc+ 2bsa3s

bsa1s− bsa3s

∆t

E(∆X(∆X)t) =
7∑
i=1

pi∆X
(i)(∆X(i))t

= k1

 1 0

0 0

∆t+ k2

 1 0

0 0

∆t+ k3

 1 0

0 0

∆t+ k4

 4 -2

-2 1

∆t

=

 bcc+ bsa2s+ dcc+ 4bsa3s −2bsa3s

−2bsa3s bsa1s+ bsa3s

∆t

k1 = (bcc+ bsa2s), k2 = dcc, k3 = bsa1s, k4 = bsa3s

It can be shown that

V =
E((∆X(∆X)t)

∆t
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is positive-definite. Hence the square root of the matrix V exists which we now

define as B := V
1
2 . Further we define and compute the following:

µ : =
E(∆X)

∆t
=

 bcc+ bsa2s− dcc+ 2bsa3s

bsa1s− bsa3s


V : =

E(∆X(∆X)t

∆t
=

 bcc+ bsa2s+ dcc+ 4bsa3s −2bsa3s

−2bsa3s bsa1s+ bsa3s


This gives an indication that B is a (2×2)matrix, which we can explicitly define

as follows;

B = V
1
2 =

 u v

v w


1/2

=
1

η

 u+ τ v

v w + τ


with τ =

√
uv − v2 and η =

√
u+ w + 2τ . With the previously computed matrix

V we obtain the following values for the matrix B

u = bcc+ bsa2s+ dcc+ 4bsa3s

v = −2bsa3s

w = bsa1s+ bsa3s

τ =
√
bss(a1(bsa2s+ 4bsa3s+ c(bc + d+ c)) + a3(bsa2s+ c(bsa2s+ c(bc + dc)))

η = (2
√
bss(a1(bsa2s+ 4bsa3s+ c(bc + d+ c)) + a3(bsa2s+ c(bsa2s+ c(bc + dc)))

+ bsa1s+ bsa2s+ 5bsa3s+ c(bc + dc))
1/2

=
√

2τ + bsa1s+ bsa2s+ 5bsa3s+ c(bc + dc)

The stochastic differential equation for the dynamics of the two cancer cell pop-

ulations is then given by

dX = µ(t, c, s)dt+B(t, c, s)dW(t)
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with the initial condition X(0) = X0 and W(t) = ((W1)(t),W2(t))t, W1(t) and

W2(t) denote independent Wiener process. For each population, we obtain the

following differential equation

dc(t) = µ1(t, c, s)dt+B11dW1(t) +B12dW2(t)

= (u+ v − 2dcc)dt+
1

η
(u+ τ)dW1(t) +

v

µ
dW2(t)

ds(t) = µ2(t, c, s)dt+B21dW1(t) +B22dW2(t)

= (w + v)dt+
v

η
dW1(t) +

1

η
(w + τ)dW2(t)

(3.20)

Thus we obtain stochastic processes such that each trajectory describes the tumor

growth dynamics for a specific patient.

3.3 The Feynman-Kac Theorem

In this section, we establish the Feynman-Kac theorem and use it to obtain dif-

ferential Equation out of the Stochastic Differential Equation we derived earlier.

To review the Feynman-Kac theorem, we need the Ito Calculus, Ito’s Lemma,

and Markov Process.

3.3.1 Ito Calculus

Ito Calculus named after Kiyoshi Ito extends the methods of calculus to stochas-

tic processes such as Brownian motion (Weiner Process). It has a very important

application in mathematical finance. The central concept in ito calculus is the Ito

Integral. This is the generalization of the ordinary concepts of Riemann-Stieltjes

integral. The generalization is in two parts; first we are dealing with stochas-

tic process and secondly, we are integrating with respect to a non-differentiable

function(technically;a stochastic process). The Ito calculus enables us to integrate

one stochastic process with respect to another (Brownian motion). Consider the

30



stochastic process given by the equation

dX(t, w) = f(t, x(t, w)dt+ g(t, x(t, w))dW(t, w) (3.21)

where w denotes that X = X(t, w) is a random variable and initial condition

X(0, w) = X0 with probability one.

In the integral form equation (3.21) could be written as follows

X(t, w) = X0 +

∫ 1

0

f(s,X(s,X(s, w)))ds+

∫ t

0

g(s,X(s,X(s, w)))dW (s, w)

(3.22)

The second term in equation (3.22) is an ordinary Lebesgue integration while the

third term ∫ t

0

g(s, x)dW

represents the Ito integration. Let us define the ito integration as follows

Yt =

∫ t

0

g(s,X(s, w))dW (s, w) (3.23)

where W (.) is a Brownian motion (Weiner process)and g(s,X(s, w) is a square

integrable process. The standard rules of calculus fails to evaluate the integral

(3.23) because of the path of the Weiner process. In particular the Weiner process

is no where differentiable and at any time is of unbounded variation. Thus the

integral cannot be defined in the general sense of the Reinmann-Stieltjes integral.

The idea of the Ito calculus is thus hinged on the fact that g(.) be adapted.

Loosely speaking, it means that the value of g(.) at any time ,t can only depend

on information until that time.

3.3.2 Integration with respect to Brownian Motion

The ito integral can be defined in a manner similar to the Reimann-Stieltjes

integral, that is as a limit of a Reimann sums. Suppose W (t, w) is a Weiner
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process and that g(t,X(s, w)) is continuous and locally bounded. Suppose also

that {Πn} is a sequence of partitions of [0T ] with the mesh going to zero, then the

Ito integral of g(t,X(s, w)) with respect to W (t, w) up to t is a random variable

S given by

S =

∫ t

0

g(t, w)dW (t, w) (3.24)

thus S can be written as a Reimann Sum

Sn =
N∑
i=0

g(ti−1, w)(W (ti, w)−W (ti−1, w) (3.25)

with N −→∞

A random variable S is called the Integral of a stochastic process g(t, w)

with respect to the Brownian motion W (t, w) on the interval [0, T ] if

lim
N−→∞

E

[(
S −

N∑
i=1

g(ti−1, w)(W (ti, w)− (W (ti−1, w)))

)]
= 0 (3.26)

for each of the partitions (t0, t1 · · · tN) of interval [0, T] such that maxi(ti −

ti−1) −→ 0. The limit in the above definiton converges in the mean square sense.

Thus the stochastic process is a random variable , the samples of which depends

on the individual realizations of the path W (t, w).

To establish the difference between Lebesgue integration and the Ito cal-

culus , we consider the example below.

E.g. Let g(t, w) = W (t, w) = W (t, w) from equation (4)

∫ T

0

W (t, w)dW (t, w) = lim
N−→∞

N∑
i=1

W (ti−1, w)(W (ti, w)−W (ti−1, w))

= lim
N−→∞

[
1

2

N∑
i=1

(W 2(ti, w)−W 2(ti−1, w)− 1

2

N∑
i=1

(W (ti, w)−W (ti−1, w))2

]

= −1

2
lim

N−→∞

N∑
i=1

(W (ti, w)−W (ti−1, w))2 +
1

2
W 2(T,w)

(3.27)
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Equation (7) can be achieved as follows, first

N∑
i=1

[
W 2(ti, w)−W 2(ti−1, w)

]
= W 2(t1, w)−W 2(t0, w) +W 2(t2, w)−W 2(t1, w) + · · ·W 2(tN , w)−W 2(tN−1, w)

= W 2(tN , w)−W 2(t0, w)

= W 2(T,w)

(i.e as N ←→ ∞ and using the initial condition W (t0, w) = 0 ) Note the use of

the substitution below;

y(x− y) = yx− y2 + 1
2
x2 − 1

2
x2 = 1

2
x2 − 1

2
y2 − 1

2
(x− y)2

Now from eqn (7) we take a critical look at

lim
N−→∞

N∑
i=1

(W (ti, w)−W (ti−1, w))2

lim
N−→∞

N∑
i=1

(W (ti, w)−W (ti−1, w))2 = lim
N−→∞

N∑
i=1

[
(W 2(ti, w)−W 2(ti−1, w) + 2W (ti, w)W (ti−1, w)

]
(3.28)

Next according to the rules of Brownian motion,

W (ti, w).W (ti−1, w) = 0

W 2(ti, w).W 2(ti−1, w) = ∆W 2(t, w)

= ∆t

Thus eqn (3.28) reduces to limN−→∞
∑N

i=1(ti+1 − ti) = t1 − t0 + t2 − t1 + · · · +

tN − tN−1 = tN − t0 = T therefore

lim
N−→∞

N∑
i=1

(W (ti, w)−W (ti−1, w))2 = T (3.29)
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Hence our SDE

∫ T

0

W (t, w)dW (t, w) =
1

2
W 2(T,w)− 1

2
T (3.30)

This contrasts to our knowledge of Standard Calculus.In which case for the dert-

erministic integral ∫ T

0

x(t)dt =
1

2
x2(T )

whereas the Ito integral differs by the term −1

2
T .This example shows that the

rules of differentiation (in particular chain rule)and integration need to be refor-

mulated in the stochastic calculus.

3.4 Properties of the Ito Integral

i) E
(∫ T

0
g(t, w)dW (t, w)

)
= 0

ii) var
[∫ T

0
g(t, w)dW (t, w)

]
=
∫ T

0
E [g2(t, w)] dt

3.4.1 Proof of properties

i) E
(∫ T

0
g(t, w)dW (t, w)

)
= 0

Proof

E
(∫ T

0

g(t, w)dW (t, w)

)
= E lim

N−→∞

N∑
i=1

g(ti−1, w)(W (ti, w)−W (ti−1, w))

= lim
N−→∞

N∑
i=1

E [g(ti−1, w)]E [(W (ti, w)−W (ti−1, w)] = 0

(3.31)

34



The result in (3.31) is because from the rules of Weiner process, we know

that a Weiner processW (t) has independent increment and that E [W (t)−W (s)] =

0 and var [W (t)−W (s)] = (t− s), for times t ≥ s ≥ 0.

ii) var
[∫ T

0
g(t, w)dW (t, w)

]
=
∫ T

0
E [g2(t, w)] dt

Proof:

var

[∫ T

0

g(t, w)dW (t, w)

]
= E

[(∫ T

0

g(t, w)dW (t, w)

)2
]

= E

[
lim

N−→∞

N∑
i=1

g(ti−1, w) (W (ti, w)−W (ti−1, w))2

]

= lim
N−→∞

N∑
i=1

N∑
j=1

E [g(ti−1, w)g(tj−1, w)] (W (ti, w)−W (ti−1, w)) (W (ti, w)−W (ti−1, w))

= lim
N−→∞

N∑
i=1

E
[
g2(ti−1, w)

]
E
[
(W (ti, w)−W (ti−1, w))2

]
= lim

N−→∞

N∑
i=1

E
[
g2(ti−1, w)

]
(ti − ti−1)

=

∫ T

0

E
[
g2(t, w)

]
dt

(3.32)

The result in eqn (3.32) is achieved by employing the property of Weiner

process ;

(∆W 2 = ∆t)

3.4.2 The Ito’s Lemma

Ito’s Lemma is the most important aspect of the Ito Calculus. It serves as the

most important tool employed in establishing the Feyman-Kac Theorem. It states

that any twice differentiable function of the Stochastic diffusion process can also

be expressed as a diffusion process. Given the SDE below;

dX(t) = f(t,X(t))dt+ q(t,X(t))dW (t) (3.33)
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as a diffusion process, we define a function Y (t) = g(t,X(t)) we differentiate Y (t)

as follows using chain rule

dY (t)

dt
=
∂g(t, x)

∂t
+
∂g(t, x)

∂x

dX(t)

dt
(3.34)

This can also be written as

dY (t) =
∂g(t, x)

∂t
dt+

∂g(t, x)

∂x
dX(t), (NB X(t) = x) (3.35)

Next we apply the Taylor series expansion to eqn (3.35) to obtain

dY (t) = gt(t, x)dt+
1

2
gtt(t, x)(dt)2 + gx(t, x)dX(t) +

1

2
gxx(t, x)(dX)2 + Θ(h3)

(3.36)

We now substitute equation (3.33)into eqn (3.36)

dY (t) = gt(t, x)dt+
1

2
gtt(t, x)(dt)2 + gx(t, x) [f(t, x)dt+ q(t, x)dW ]

+
1

2
gxx(t, x) [f(t, x)dt+ q(t, x)dW (t)]2 + Θ(h3)

(3.37)

This implies that

dY (t) = gt(t, x) +
1

2
gtt(t, x)(dt)2 + gx(t, x)f(t, x)dt+ gx(t, x)q(t, x)dW

+
1

2
gxx(t, x)

[
f 2(t, x)(dt)2 + q2(t, x)dW 2(t) + 2f(t, x)q(t, x)dtdW (t)

]
+ · · ·

(3.38)

Next we note the following under Weiner process

1. Higher order derivatieves of dt and dW (t) becomes zero

2. (dt)2 −→ 0 and dtdW (t) −→ 0
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3. dW 2(t) = dt

Eqn (3.38) becomes

dY (t) =

[
∂g(t, x)

∂t
+
∂g(t, x)

∂x
f(t, x) +

1

2

∂2g(t, x)

∂x2
q2(t, x)

]
dt

+

[
∂g(t, x)

∂x
q(t, x)

]
dW (t)

(3.39)

Eqn (3.39) is a diffusion equation of the form

dY (t) = f(t, x)dt+ ð(t, x)dW (t) (3.40)

where;

f(t, x) =

[
∂g(t, x)

∂t
+
∂g(t, x)

∂x
f(t, x) +

1

2

∂2g(t, x)

∂x2
q2(t, x)

]
(3.41)

ð =

[
∂g(t, x)

∂x
q(t, x)

]
(3.42)

The expression below

∂g(t, x)

∂t
+
∂g(t, x)

∂x
f(t, x) +

1

2

∂2g(t, x)

∂x2
q2(t, x)

is called the Ito correction factor. Now we allow X(t) ∈ Rn and let W (t) be an m-

dimensional standard Brownian motion and f(t,X(t)) ∈ Rn and q(t, x) ∈ Rn×m.

Let Y (t) be a scalar process defined by Y (t) = φ(t,X(t)), where φ(t,X(t)) is a

scalar function which is continuously differentiable with respect to time, t and

twice continuously differentiable with respect to X.

The Ito’s formula can be written in the vector notation as follows

dY (t) = f(t, x)dt+ ð(t, x)dW (t)

where
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f(t,X(t)) = φt(t,X(t)) + φx(t,X(t))f(.) +
1

2
tr

(
∂2φ(t,X(t))

∂x2
q(t,X(t))X(t)qT (t,X(t))

)
(3.43)

ð(t,X(t)) = φx(t,X(t))g(t,X(t)) (3.44)

Where the operator ”tr” denotes the trace operator and f(.) = f(t,X(t))

3.4.3 Markov Chain

A stochastic Process is said to be a Markov Chain if it has the Markov property.

This means that

E (h(X(t+ s))|Ft) = E [h(X(s))] (3.45)

t, s ∈ R and t ≤ s and Ft is called the filtration such that ∀t ≤ s Ft = {Xt|t ∈ I}

Proof of Markov property

Consider the stochastic Diffusion Process below

dX(t) = δ(X(t))dt+ σ(X(t))dW (t) (3.46)

X(0) = y and t ∈ [0, T ] We consider the diffusion process for which the exis-

tence and uniqueness of the solution to the Cauchy Problem for eqn (3.46) are

fulfilled. Let X t,x, t ∈ [0, T ], X(t) = x be the solution of eqn (3.46), by the

uniqueness of the solution to the Cauchy problem for (3.46) we have X(r) =

X t,X(t)(r), r ≥ t almost surely. Define F (x, t; τ, w) = X t,x(τ). We prove the

property, through the equality below;

E [h(F (X(t), t, t+ s, w))|Ft] = E [h(F (t), 0, s, w)] (3.47)
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Next we introduce

V t,x(t+ s, w) = h(F (x, t, t+ s, w)) (3.48)

and then fix

tk = t+
k(T − t)

m
, k = 0, 1, 2 · · ·m

Let

V t,x(t)
m =

m∑
k=0

V t,x(t)(tk+1, w)Xτ∈[tk,tk+1) (3.49)

where Xτ∈[tk,tk+1] is a characteristic function of the semi-open interval Xτ∈[tk,tk+1]

Then we can write

E[V t,x(t)
m (τ, w)|Ft] = E

[
m∑
k=0

V t,x(t)(tk+1, w)Xτ∈[tk,tk+1]|Ft

]
(3.50)

We observe that Xτ (·) does not depend on w, hence eqn (30) will be as follows

E[V t,x(t)
m (τ, w)|Ft] =

m∑
k=0

Xτ∈[tk,tk+1)E(V t,x(t)(tk+1,w)|Ft)

(3.51)

=
∑m

k=0 Xτ∈[tk,tk+1]E(V t,x(t)(tk+1, w)), Ft has vanished because tk+1>t, thus V t(tk+1, w)

does not depend on Ft hence

E[V t,x(t)
m |Ft] = E

[
m∑
k=0

Xτ∈[tk,tk+1)V t,x(t)(tk+1, w)

]

= E[V t,x(t)
m (τ, w)]

(3.52)

Now we let V
t,x(t)
m (τ, w) −→ V t,x(t)(τ, w) as m −→∞ Thus as τ = t+ s it can
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be concluded that

E[h(F (x(t), t, t+ s, w)|Ft] = E[h(x(t), t, t+ s, w)] (3.53)

This yields the needed result.

3.5 Martingale Process:

In probability theorem, a martingale is a model of a fair game, where knowledge

of past events never helps predict the mean of the future winnings

Definition: A sequence of random variables X1, X2, · · · , Xn is said to

be a martingale if ;

E[Xn+1|X1,··· ,Xn ] = Xn

That is, the conditional expectation of the next observation, given all the past

observations is equal to the last observation. Thus for the function g(t,X(t)) to

be a Martingale, then

E[g(t,X(t)|Fs)] = g(s,X(s)), 0 ≤ s ≤ t (3.54)

3.6 The Feynman-Kac Theorem

The Feynman-Kac theorem relates the solution of the Stochastic Differential

Equation with the Brownian motion (Weiner Process) , W (t), t ≥ 0

dX(t) = AX(t)dt+BdW (t), t ∈ [0, T ] and X(0) = y (3.55)

with the solution of the Cauchy Problem for the deterministic Partial Differential

Equation;
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gt(t, x) + β(t, x)gx(t, x) +
1

2
γ2(t, x)gxx(t, x) = 0

g(T, x) = h(x)

(3.56)

for the probability characteristic, g(t, x) = Et,xh(X(T )) Here, Et,x means

the mathematical expectation of a solution to eqn (35) with the initial condition

X(t) = x, 0 ≤ t ≤ T .

Study of the relationship between the two equations (3.55) and (3.56)

was initial caused by the needs of Physics. Example: while the process X(t)

describes the random motion of particles in liquids or gas, g(t, x) is a probabil-

ity characteristic such as temperature determined by the Kolmogorov Equation,

Melnikova and Parfenenkova (2012).

Similarly, in financial mathematics for instance, X(t) may describe stock price

at time t, while g(t, x) is the value of stock options, determined by the famous

Black Scholes equation.

3.6.1 Proof of the Feynman-Kac Theorem

Theorem

Consider the Stochastic Differential Cauchy problem (3.55). Fix some T ≥ 0 and

suppose that

Et,x[h(X(T ))] <∞ for all pairs t and s. Then g(t, x) = Et,xh(X(T )) is a

Martingale process and it is a solution to the Kolmogorov (backward) Equation

(3.56).
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Proof of Theorem

We start by applying the Ito’s lemma on g(t, x) to obtain

dg(t, x) =

[
∂g(t,X(t))

∂t
+
∂g(t,X(t))

∂x
AX(t) +

1

2

∂g(t,X(t))

∂x2
B2

]
dt

+
∂g(t,X(t))

∂t
BdW (t)

(3.57)

In the integral form eqn (3.57) can be written as

g(t,X(t)) = g(0, y) +

∫ t

0

∂g(s,X(s))

∂x
BdW (s)

+

∫ t

0

[
∂g(s,X(s))

∂s
+
∂g(s,X(s))

∂x
AX(s) +

1

2

∂g(s,X(s))

∂x2
B2

]
ds

(3.58)

Next we take the expectations of both sides of eqn (3.58)

E[g(t,X(t))] = E[g(0, y)] + E
[∫ t

0

∂g(s,X(s))

∂x
BdW (s)

]
+ E

[∫ t

0

[
∂g(s,X(s))

∂s
+
∂g(s,X(s))

∂x
AX(s) +

1

2

∂g(s,X(s))

∂x2
B2

]
ds

]
(3.59)

Since g(t,X(t)) is a Martingale process, thus

E[g(t,X(t))] = E[g(t,X(t))|F0] = g(0, y)

It can also easily be seen that g(0, y) is not a random variable thus

E[g(0, y)] = g(0, y). Further more, the expectation of an Ito integral as proved

earlier is zero i.e.

E
∫ t

0

∂g(s,X(s))

∂x
BdW (t) = 0
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Equation (3.59) now becomes

g(0, y) = g(0, y) + E
(∫ t

0

[
∂g(s,X(s))

∂s
+
∂g(s,X(s))

∂x
A(s) +

1

2

∂2xg(s,X(s))

∂x2
B2

])
ds

(3.60)

Which implies that

E
(∫ t

0

[
∂g(s,X(s))

∂s
+
∂g(s,X(s))

∂x
A(s) +

1

2

∂2g(s,X(s))

∂x2
B2

])
ds = 0 (3.61)

Applying Tonelli-Fubini’s Theorem to (3.61) we get the equality below.

=

(∫ t

0

E
[
∂g(s,X(s))

∂s
+
∂g(s,X(s))

∂x
A(s) +

1

2

∂2g(s,X(s))

∂x2
B2

])
ds = 0 (3.62)

thus

E
[
∂g(s,X(s))

∂s
+
∂g(s,X(s))

∂x
A(s) +

1

2

∂2g(s,X(s))

∂x2
B2

]
= 0 (3.63)

Subsequently we rewrite equation (3.63) at the origin and employ the linearity of

expectations (E) to obtain

E
[
∂g(0, y)

∂s

]
+ E

[
∂g(0, y)

∂x
A(s)

]
+ E

[
1

2

∂2g(0, y)

∂x2
B2

]
= 0 (3.64)

since each of the terms in eqn (3.64) is not random, we finally get the following;

∂g(s,X(s))

∂s
+
∂g(s,X(s))

∂x
A(s) +

1

2

∂2g(s,X(s))

∂x2
B2 = 0 (3.65)

So far the Cauchy problem given by eqn (3.55) is such that t ∈ [0, T ].

Consider this problem for the same equation with the initial condition at the

moment τ ∈ [0, T ] :

dX(t) = AX(t)dt+BdW (t), t ∈ [τ, T ] and X(τ) = x (3.66)
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Then by the arguments similar to that conducted previously the equality

∂g

∂t
(τ, x) +

∂g

∂x
(τ, x)Ax+

1

2

∂2g

∂x2
(τ, x)B2 = 0 (3.67)

holds. Varying τ ∈ [0, T ] we obtain eqn (3.67) for x = X(τ). We therefore would

conclude that

g(T, x) = ET,xh(X(T )) = h(X(T ))|x=X(T ) = h(x) (3.68)

This completes the proof. The Feynman-Kac theorem thus establishes

the interrelation between the stochastic and the deterministic problems on both

sides. In numerical methods this relationship is indeed important to both sides:

numerical methods obtained for stochastic equations are used for solving differ-

ential equations in partial derivatives, and basic methods for partial differential

equations allow to obtain the characteristics of solutions to stochastic problems

Melnikova and Parfenenkova (2012). We must emphasize that equation (3.68)

is called the Kolmogorov Equation. This means that the Feynman-Kac theorem

’give birth’ to a Kolomogorov equation (in particular, the Kolmogorov Backward

Equation). For more details of the proof especially in Hilbert spaces refer to

Melnikova and Parfenenkova (2012).

3.7 The Kolmogorov Equations

These are two Partial Differential Equations (PDE) that arise in the theorem of

continuous-time stochastic Markov Process. i.e. the Kolmogorov Forward and

the Kolmogorov Backward Equation. Both were published in the year 1931 by

Andrey Kolmogorov. It became evident however that the Kolomogorov Forward

Equation was already in existence under the name Fokker-Planck Equation; but

the Kolmogorov Backward Equation(KBE) was an entirely new concept. The
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KFE arises as follows; assuming we have information (probability distribution,

pt(x))of the state x we want to find the probability distribution of the state at

later time s > t. Here the adjective ’forward’ stresses the fact that pt(x) serves

as the initial condition and the PDE is integrated forward in time. In contrast

to the KFE, the KBE is used if we are interested in knowing for every state x at

time t, (t < s) what is the probability of ending in a given subsets of states B at

time s. If we describe the target set by the given function µs(x), then µs(x) serves

as the final condition of the PDE, which is integrated backwards in times from

s to t. The Kolmogorov Backward Equation (3.69) for our system of Stochastic

Differential Equations derived for the cancer stem cells and differentiated cancer

cells can be written as follows:

∂F

∂t
=

2∑
k=1

µk(t, y1, y2)
∂F

∂yk
+

1

2

2∑
k,j=1

2∑
m=1

Bkm(t, y)Bjm(t, y)
∂2F

∂yk∂yj
(3.69)

where µ and B are in eqn (3.20) and (c, s) = (y1, y2) In following we reformu-

late the KBE so derived to calculate the persistent time for our two interacting

populations.

3.8 Persistent Time

The Persistent Time is the period or time it takes for one of the interacting

populations, c(t) and s(t) to become zero or become extinct. This is first preceded

by a decrease in rate of cell growth usually in the advent of therapy or as the

population rises to its carrying capacity. The rate of cell growth here is used to

describe the proportion of the cancer cells within the tumour which are growing

and dividing to form new cancer cells. We will employ two approaches to calculate

the persistent time.

• First is to simulate the PDE (The kolmogorov Backward Equation) directly

for the persistent time. To this end we will adjust the KBE to suit the

intended purpose.

45



• We will also solve the system of SDEs till one of our two interacting popu-

lations i.e. c(t) or s(t) goes to zero or becomes extinct.

3.8.1 Simulation of the KBE

First we let C1 and C2 be the respective carrying capacities of c(t) and s(t). This

represents the maximum population of differentiated cancer cells and cancer stem

cells respectively. We let: C1 = C2 = R, K ∈ R

W = W (y) be a random variable, where y = (c0, s0)t represents the initial

populations. Then T = E(W ((y)) denote average persistent time F (t, y1, y2) =

P ((W (y)) > t) , represent the probability that the persistent time exceeds time, t.

Also F is as in the KBE (3.69) this implies that we can define pW (y) = −∂F
∂t

(y, t)

where pW (y) is the probability density of W (y) and finally

T (y) =

∫ ∞
0

F (y, t)dt (3.70)

Now KBE (3.62) when simplified can be represented by

∂F

∂t
= (u+ v − 2dcc0)

∂F

∂c0

+ (w + v)
∂F

∂s0

+
1

2
(u
∂2F

∂c2
0

+w
∂2F

∂s2
0

+ 2v
∂2F

∂c0∂s0

) (3.71)

Next we integrate both sides of eqn (3.71) and taking (3.70) into consideration

we obtain the following.

∫ ∞
0

∂F

∂t
(X(0), t) = F (X(0),∞)− F (X(0), 0) = 0− 1

= ((bc − dc)c0 + bs(a2 + 2a3)s0)
∂T

∂c0

+ (bs(a1 − a3)s0)
∂T

∂s0

+
1

2
(((bc + dc)c0 + bs(a2 + 4a3)s0)

∂2T

∂c2
0

+ (bs(a1 + a3)s0))
∂2T

∂s2
0

)− 2bsa3s0
∂2T

∂c0∂s0

(3.72)
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with the following initial conditions

T (0, s0) = 0 s0 ∈ (0, K)

T (c0, 0) = 0 c0 ∈ (0, K)

∂T

∂c0

(K, s0) = 0, s0 ∈ (0, K)

∂T

∂c0

(c0, K) = 0, c0 ∈ (0, K)

Now we solve our new KBE above using the finite difference method as discussed

earlier.
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Chapter 4

Analysis

This chapter contains the results from our study on comparison of Stochastic Dif-

ferential Equation for Cancer growth dynamics with Derived Partial Differential

Equation using the Feynman-Kac theorem.....

This chapter contains the various results of the comparison between the SDEs for

Cancer Cell growth and the derived PDE (Kolmogorov Equation) as derived by

the Feynman Kac theorem.

4.1 Initial Conditions

To solve our system of SDE (3.20) we need initial conditions that describe the

size of each population at time t = 0. As in Kroos (2014) we refer to Hillen

and Backman (March 2013) on the study of Oncology and Powathil (2007) and

MA Kroos for our choice of initial condition and model parameters. The initial

condition thus becomes (c0, s0)t = (0.5, 0.4)t. This implies that we consider the

area that is very close to the center of the tumour. The proliferation rates are

also set as follows. bc = bs = ln(2)/5, slightly different from that in Hillen

and Backman (March 2013). The motive is that high birth and death rates in

stochastic differential equations lead to higher fluctuations and thus a lot of the

trajectories become zero after a small period of time. We assume that the death

rate is equal to the mitosis rate for the differentiated cancer cells, meaning that

dc = ln(2)/5. The different probabilities of the cancer stem cells to differentiate

are defined as a1 = p > 0.215 for the symmetric division into two cancer stem

cells and a3 = 1−p for the division into two differentiated cancer cells. As proved

by Hillen and Bachmann (March 2013), the model without asymmetric division

of the cancer cells is as good as when its included in the model, thus we set a2 = 0.
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Table 4.1: Initial Condition and Parameters
parameters (c0, s0)t bc, bs, dc a1 a2 a3

value (0.5, 0.4) ln(2)/5 0.7 0 0.3

4.2 Numerical Simulations

A naive approach would be to try to solve to perform the simulations using

the classical Euler-Maruyama method as described in the earlier section. This

algorithm may yield values which are negative for the popultions of cancer stem

cells and differentiated cancer cells. Such values occur because the incremental

change of the Gaussian Process is not bounded from below. To deal with such a

problem we cut of all such trajectories that give negative values by setting them to

zero when they intercept the horizontal axis. The moment a trajectory becomes

zero it will maintain this status. Figure 4.2. shows some realizations of our system

of stochastic differential equations and the mean value of 104 trajectories solved

with the Euler-Maruyama method. The figure also includes the magnification

to see the impact of the stochastic part of our differential equation, the typical

fluctuations of stochastic processes. We further solve our system numerically with

a higher order methods i.e. the implicit Milstein method given in detail also in

the earlier section. We use the supplementary term in the Milstein method to

determine the random term g(tn,Xn)∆Wn. Figure 4.3. shows the trajectories

computed with the implicit Milstein Method. When we make a comparison of

the two solutions we realize that the results are almost in the same order of

magnitude except that the Euler-Maruyama method gives slightly smaller values

for the population sizes.One great problem however for the Milstein method is

that it has a long program execution time, resulting from the approximations of

the derivatives and the double Ito-integral in equation (3.3).
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Figure 4.1: (a) Cancer Stem Cells as simulated by Euler Maruyama Method,
mean value in black.

Figure 4.2: (b) Differentiated Cancer Stem Cells as simulated by the Euler
Method, mean value in black.
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Figure 4.3: (c)-amplified version of (a):Cancer Stem Cells as simulated by Euler
maruyama Method, mean value in black.

Figure 4.4: (a):Cancer Stem Cells as simulated by the Milstein Method, mean
value in black.
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Figure 4.5: (b):Differentiated Cancer Stem Cells as simulated by the Milstein
Method, mean value in black.

Table 4.2: Solution of KBE at different points
Populations (c, s)t Persistent Time from FDM

(0.02, 0.02)t 0.17889
(0.1, 0.1)t 0.90253
(0.2, 0.2)t 0.81561
(0.2, 0.3)t 0.93564
(0.3, 0.1)t 1.23700
(0.3, 0.2)t 0.94212
(0.3, 0.3)t 1.07602
(0.5, 0.4)t 1.00233
(0.4, 0.5)t 0.87678
(0.5, 0.5)t 0.99905
(0.5, 0.6)t 2.26509
(0.5, 0.7)t 0.99338
(0.8, 0.2)t 0.96579
(0.8, 0.8)t 0.99745
(1.0, 0.8)t 0.78871
(1.0, 1.0)t 1.03908
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Table 4.3: Numerical Simulation of Average Time of Persistence
Populations (c, s)t Av.Persitent T ime(EMM) Av.Persistent time(MM)

(0.02, 0.02)t 0.18385 0.17828
(0.1, 0.1)t 0.15847 0.57750
(0.2, 0.2)t 0.76467 0.76621
(0.3, 0.1)t 0.86595 0.86007
(0.3, 0.2)t 0.87392 0.87482
(0.3, 0.3)t 0.99701 0.96859
(0.5, 0.4)t 0.87661 0.88329
(0.4, 0.5)t 0.92550 0.92460
(0.5, 0.5)t 0.98805 0.98891
(0.5, 0.6)t 0.98905 0.97891
(0.5, 0.7)t 0.99805 0.98991
(0.8, 0.2)t 0.96859 0.96995
(0.8, 0.8)t 0.97807 0.97897
(1.0, 0.8)t 0.98721 0.98662
(1.0, 1.0)t 1.07359 1.08359

4.3 Simulation of our system of Stochastic Dif-

ferential Equations

The procedure used here is to compute the average persistent time numerically.

We carry out simulations of population behavior of our system of Stochastic

Differential Equation (3.13) several times till one of the populations is extinct.

Then the average time of persistence is calculated. We thus generate for example

1000 trajectories with the Euler Maruyama Method and the Milstein Methods

. The trajectories are stopped whenever c ≤ 0 or s ≤ 0 and we note the exact

time of this event. table 4.3 gives the respective average persistent time for our

system of Differential Equations from the Euler Maruyama Method (E.M.M) and

the Milstein Methods(M.M)

4.4 Analysis of the Results

Upon careful observation, we realize that most of the values of the persistent time

computed for the Euler Maruyama Method and the Milstein Methods deviate
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Figure 4.6: Comparison of Average Persistent Time (a)

Figure 4.7: Comparison of Average Persistent Time (b)
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only slightly from each other. Some of the values of the persistence time are

almost the same for The Euler Maruyama Method, Milstein Method as well as the

Finite difference method for the PDE. A clear example can be seen at T (0.8, 0.2)

and T (1.0, 1.0) The reasons for the above observations can be attributed to the

following:

• The first obvious reason is that the methods are not exactly the same even

though they are intended for the same purpose. The Milstein Method for

instance is a higher order method relative to the Euler Maruyama Method

both of which are used for the approximations of the system of SDEs while

the Finite Difference method is adopted for a non-stochastic equation i.e. a

PDE. These analysis can easily be verified from the graphs depicted in fig

4.6 and fig 4.7 above.

• Another reason may also be due to the fact that we computed up to 1000

trajectories. An attempt to increase the number of trajectories proved

difficult as it by far exceeded the run-time of the program computing the

values with the Milstein method.

Relatively speaking, the Euler Maruyama and the Milstein method showed slight

deviations in terms of their persistent time values as obtained from our system

of Stochastic Differential Equations. When you make a comparison between any

of the persistent times i.e. from the Euler Maruyama or the Milstein method or

their average with the Finite difference method used to compute for the persistent

time in case of the kolmogorov backward equation (i.e. PDE), it is realized that

the KBE deviated slightly higher but not so significant. The three methods are

thus almost consistent with one another but the Euler and the Milstein methods

were more consistent to each other. The reason is that the Kolmogorov Equation

does not take into accounts, the randomness of the population growth behaviour

of the cancer cells, i.e. it does not factor uncertainties. To stress on the analysis
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we made above,we use the Frobenius norm to compute the relative and abso-

lute errors made by the Kolmogorov Backward Equation as compared with the

approximations with the simulations of the SDEs.(i.e. their average persistent

time) For the exact values x and the approximation x̄ we compute the errors for

N = 100 discretization as follows.

errorrelative =

∥∥∥∥x− x̄∥∥∥∥
errorabsolute =

∥∥∥∥x− x̄∥∥∥∥∥∥∥∥x∥∥∥∥
Erel =

∥∥∥∥x− x̄∥∥∥∥ = 0.20052

Eabs =

∥∥∥∥x− x̄∥∥∥∥∥∥∥∥x∥∥∥∥ = 3.3673

Judging from the examples given above we realize that the Kolmogorov Backward

Equation basically slightly overestimates the persistence time but the error made

is rather very small. In principle, the numerical simulations for the SDEs tend

to be more accurate and thus offer more realistic values for the persistence time.

However this work has proven that such systems of stochastic Differential Equa-

tions can be changed to an equivalent Partial Differential Equation and obtain

solutions which are very close to that of the SDE. It is worth noting that, for very

small initial populations sizes the numerical simulations of the SDEs tend to be

less accurate. This is caused by the factor 1
η

in equation (3.20), which becomes

problematic for the values of s and c close to zero and thus an η that is close

to zero. In the Kolmogorov backward equation this problem does not exist as

this approach to compute the persistence time only uses the deterministic part of
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equation (3.9) leaving out the stochastic part that includes the factor 1
η
. We again

realize that the Stochastic Differential Equation model considered in this thesis

does not capture cancer treatment. This is due to the assumption that ds = 0.

However some treatments that are employed in the treatment of cancer include

chemotherapy and Radiotherapy and sometimes a combination of both methods.

Their overall effect is that they speed up the death rates of the cancerous cells. In

such situations d 6= 0 and that will mean that the Stochastic differential equations

we solved earlier on will be changed slightly for the populations of the cancer stem

cells and the differentiated cancer cells. This will also affect the values we found

for the average persistence time. However cancer treatment is outside the scope

of this thesis. Nevertheless, the Stochastic Differential Equation model is almost

sure to give a very good estimate of persistence time and so is the Kolmogorov

Backward Equation(a PDE) derived through the Feynman Kac theorem.

57



Chapter 5

Conclusion

In conclusion we note that Feynman-Kac theorem can be used to obtain a PDE

(Kolmogorov Equation) from an equivalent SDE model to describe the average

persistent time of the cancer cells. The PDE is able to provide an approximate

solution to the usual SDE models used to describe cancer cell growth and thus

provides an alternative method of solution.

5.1 Recommendation

Judging from our results, we make two recommendations;

• The SDE model used in this work should be developed to include cancer

treatment such as chemotherapy and radiotherapy. In addition the model

should be improved to deal with situations when initial populations of the

cancer cells are relatively small as this led to fluctuating results.

• Other Numerical schemes for PDE should be used to solve the Kolmogorov

equation derived for the SDE and to compare the results.
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