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Abstract 

The feasibility of improving soil temperature estimation using the Kalman filter data assimilation 

scheme was investigated. The formulation for this algorithm was based on the discretization of the 

governing partial differential equation for transfer of temperature through the soil. The data 

assimilation scheme was designed to incorporate the knowledge of the uncertainties in both the 

model and the measurement, hereby producing a better estimate (prediction) for the state. Model 

uncertainty was also estimated by quantifying the model drift from observations when the model 

is initialized using the observed values. Experimental results using the Kalman filter were found to 

be more accurate than the other estimates. Also, the Kalman filter was found to be sensitive to the 

process noise and the measurement noise. 
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Chapter 1 

Introduction 

This chapter discusses the background of the study and the problem statement relating to the 

thesis. This section discusses the capabilities of the Kalman filtering scheme to retrieve the soil 

temperature and the effect of varying observation frequency, observation noise, process noise 

and initial error covariance as the objective of the study. 

Finally, justification and the outline of the thesis are also discussed. 

Soil temperature is a very important variable in land processes which greatly influences the water 

and energy contents of the land-atmosphere system. Soil moisture is a function of soil temperature, 

so the soil temperature mostly influences the transfer of soil moister in different soil layers. The 

temperature profile of the soil can be obtained through observation or modeling. Accurate 

prediction of soil temperature requires a realistic understanding of the soil thermal properties. 

Data assimilation is a methodology that combines the observation and the prediction of underlying 

models to produces best estimates of the state. Different algorithms have been developed to achieve 

this purpose, one of which is the Kalman filter proposed by (Kalman, 

 

1960). The Kalman filter is a variance minimization algorithm which produces best estimates of 

the-State when the state-space equations are linear. 

  Background of Study 

Scientific estimations are mostly obtained by observations and by using available models. 

Estimates from these methods come with a certain degree of error. In the absence of one of these 
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methods, the other is taken to be the best estimate. When both estimates are available, then it is 

mostly not clear which one of the pack is the best estimate. 

Data assimilation methodology was introduced to make use of model prediction and observations 

to obtain an estimate for the state and the error in this estimate smaller than there is in the observed 

data and the models. The algorithms for data assimilation are developed to combine measured data 

and dynamical model to obtain best estimates of the state and their uncertainties. 

The Kalman filter (Kalman, 1960) is a widely used sequential data assimilation algorithm and is 

optimal in estimating the state. The method is assumed to work only when the process and 

measurement equations are linear. The Kalman filter is a variance minimization algorithm, thus it 

uses the method of least squares to minimize the trace of the covariance matrix. The Kalman filter 

is used in this thesis to obtain best estimates of the temperature distribution in the soil. 

 The temperature distribution in the soil is governed by a partial differential equation (PDE) with 

boundary conditions. The finite volume method which is a numerical scheme for solving boundary 

value-problems was employed to discretize the PDE to obtain systems of equation and 

the PDE.   also to solve 

 

Problem Statement 

Soil temperature plays an important role in land processes. Accurate prediction of soil temperature 

requires a realistic understanding of the soil thermal properties. The dynamics of the soil 
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temperature is assumed to obey the heat diffusion equation. This model is used to estimate the 

dynamics of temperature distribution as well as the profile in the soil. 

The thermal conductivity is based on heat transfer conduction. Change in the soil temperature is 

mostly impacted by the convection and conduction heat transfer. The thermal diffusivity is a 

function of the soil texture and the soil moisture content. This parameter is assumed to be constant 

along the vertical columns of the soil making the model linear. 

In this study, we employ the Kalman filter which is a sequential data assimilation scheme 

introduced by Kalman (1960) for the estimation problem. This algorithm accurately estimates the 

states and compared to other assimilation methods, it produces an optimal solution when the state-

space equations are linear. 

1.3 Objectives 

The objectives of this study is 

 to evaluatethe capabilities of the Kalman filtering scheme to retrieve soil temperature 
 

 to simulate the soil temperature profile using data in calibration with the underlying 

mathematical model to ascertain the effect of varying observation frequency, observation 

noise, process noise and initial error covariance. 

Methodology 

The data assimilation methodology is employed to aid achieve the set objectives of the study. The 

Kalman filter algorithm is used as the data assimilation scheme in estimating the soil temperature 

distribution and profile. 
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The heat diffusion model which describes the dynamics of the soil temperature as well as the soil 

moisture is used. In the discretization and solving the underlying boundary value problem, we 

employ the finite volume method. 

All algorithms employed in this study were implemented using MatLab and used for various 

experiments. 

1.5 Justification 

Temperature and the accuracy of its prediction play a major role in determining the capacity of 

these models for predictions. A failure to properly predict the temperature state in the model can 

result in an inadequate characterization. A model with a tendency to over-predict or underpredict 

the soil temperature can result in excessive evaporation and subsequently affect the atmospheric 

dynamics. 

Given the importance of adequate representation of soil temperature, it has become necessary to 

use methodologes such as data-GGRiÎÅåon which constrain the error growth in predicting the 

tempyature state resulting from both model estimates and observations. 
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1.6 Outline of the Thesis 

The thesis is organized in five chapters. Chapter 1 is the introductory chapter which discusses the 

background of the study, the problem statement, objectives, methodology and justification of the 

study. The current section is also part of the first chapter and it contains the outline of the thesis. 

Chapter 2 discusses the literature review and framework of studies relevant to this study. The 

methodology employed in the study is discussed in chapter 3. Presented in chapter 4 are the results 

from numerical simulations and the chapter also contains the discussion of results. 

Finally summary of findings, conclusion, recommendation and appropriate references are presented 

in chapter 5. 

 

Chapter 2 

Literature Review 
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2.1 Introduction 

This section deals with the review of literature from published and unpublished books, internet 

and any other relevant information others have said about the subject of study: theories and 

researches that address the issues. The chapter discusses the movement of heat through the soil 

which takes three classical mechanisms. 

In addition, estimating soil temperature profile and data assimilation in estimating soil temperature 

is discussed. 

The thermal behavior of the soil is important in many fields: whether soil is considered as a growth 

medium, an insulating blanket, a sink or source of heat or a component of the hydrological cycie, 

its temperature and thermal properties have immediate relevance. The flux of hcat into and out of 

the soil is a significant component of the surface energy budget, which should enter into calculations 

of evaporation using methods such as that of Penman (1948) particularly in temperate climates 

where there is seasonal storage of heat in the soil profile (Edwards & Rodda, 1970; Thorn & Oliver, 

1977; Simmers, 1977). 

This soil heat flux is usually estimated by measuring temperature gradients in soil heat flux plates, 

or by intensive temperature measurements, but both approaches involve heavy investment in 

equipment and field work. Soil temperature is of critical importance to agriculture, particularly in 

the uplands where the growing season is short. Russell (1977) refers to a number 

 
of experimental studies showing the control exerted by root temperature on growth, and if, as 

seems likely, the growing season for upland pasture grasses depends in part on soil temperature, 

then the prediction of soil temperatures in the uplands takes on more than academic interest. 
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2.2 Movement of Heat in the Soil 

Soil is one of the most complexes of inert materials, both in physical structure and in variety of 

constituents. Movement of heat through the soil can take place by any of the three classical 

mechanisms, conduction, convection and radiation. There is yet another possibility in the transport 

of latent heat by water in the vapor phase. 

According to Parlange et al (1998), heat transport has enjoyed extensive focus in soil physics and 

hydrology and yet, there has not been a satisfactory measure in the field with theory until recently. 

In their work, they reviewed a new theoretical development which explained field observations. 

The mechanism seems to have important consequences for transport in the soil. 

The use of air temperature as a driving mechanism for a soil temperature model was proposed by 

Hasfurther and Buypan (1974). In their work, they used the Fourier transform model to relate air 

temperature andÃðil tempera e. The research made use of a 25mm depth soil temperature data 

which_was available at the time of the study. Hasfurther and Bur-man noted that many other factors 

enter into the mechanism of soil heat transfer, particularly the soil temperature which depends 

partly on the warming of the ground surface by solar radiations and air movement bringing 

advective energy. The instantaneous soil heat flux at the surface was found to be strongly and 

linearly related to the net radiation, (Fuchs and Hadas, 1972). 

Veronez et al. (2010) presented an alternative method for the extrapolation of land surface 

temperature through the use of Artificial Neural Network. The positional variables (UTM 

coordinates and altitude), temperature and air relative humidity was considered in their study. 
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2.3 Estimating Soil Temperature Profile 

A methodology for the estimation of daily soil temperature at continental scales using daily air 

temperature and precipitation data for bare ground was developed by Zheng et al. (1993). In their 

work, they demonstrated how the soil temperature affected annual soil respiration. Their work 

revealed that changes in soil temperature under snow cover were smaller than those without snow 

cover. Soil temperature under vegetation cover was also simulated using an I Iday running average 

of daily mean air temperature at a depth of 1 Ocm using linear regression. 

Soil temperature is also an important parameter in energy balance applications. Holmes et al. 

(2008) proposed an approach for modeling the surface soil temperature profile from a single 

observation depth—They used-tWõTIÄÚdata sets in modelling near-surface soil temperature 

profile in a bare soil and showed that the commonly used solutions to the heat flow equations 

perform well when applied at deeper soil layers, but results come with large errors when applied 

to near surface layers, where there are extreme temperature variations. 

Land surface temperature is an important factor in global studies, estimating radiation budgets in 

heat balance studies and as a control for cliamte models, (Mallick et al., 2008). In their study, they 

found that the use of minimum noise fraction components classifies the uncertainties. The Landsat-

7 ETM+ satellite data over Delhi area was used in the study to obtain estimate of the surface 

temperature. The study revealed a strong correlation between surface temperature with normalized 

difference vegetation index over different land cover classes. 

Methods for the estimation of soil heat flux from soil temperature require more information on the 

distribution of temperature within the soil profile than can be obtained from measurements at one 

depth, (Hanks & Jacobs, 1971; Kimball & Jackson, 1975). It was proposed that digital model be 
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used to build up complete temperature profiles with measured soil temperatures and meteorolgical 

data. Their study revealed that the initial error covariance has a significant influence on the 

performance of the extended Kalman filter. 

Gomez et al. (2007) in their study, presented a method for estimating the annual and monthly mean 

values of temperature and precipitation, taking in account elements from simple interpolation 

methods and complementing them with some characteristics of more sophisticated methods. 

Simple linear regression equations were also generated which associated temperature with altitude 

ofweather stations-in-thvstwdy region in order to determine the temperature. 

The sensitivity of the soil temperature in a "force-restore" model was studied by Mihailovic et al. 

(1999) to the changes of soil heat flux, soil water evaporation and variations of deep soil 

temperature. They also discussed the impact of the deep soil temperature variations on 



 

 

partitioning the surface energy and land surface water. Mihailovic et al. proposed a new procedure 

for the calculation of the deep soil temperature in the deep soil layers. The method was found to 

be reliable enough especially for long-term integration. 

2.4 Data Assimilation in Estimating Soil Temperature 

Kumar and Kaleita (2003) used the extended Kalman filter which is a sequential data assimilation 

scheme to improve the soil temperature profile predictions in land surface models. The formulation 

was based on the diffusion equation of heat transfer discretized through the soil column. 

The performance of the ensemble Kalman filter for land surface assimilation was assessed by 

Zhou et al. (2006). In their study, the ensemble Kalman filter was generally able to reproduce non-

normal soil moisture behaviour, including the skewness. The ensemble filter was compared to the 

sequential importance re-sampling particle filter and it was found that the mean estimates from the 

ensemble Kalman filter were very close to those generated by the sequential importance re-

sampling particle filter. The ensemble Kalman filter provided a good approximation for nonlinear, 

non-normal land surface problems, despite its dependence on the normality assumptions. 

A one-dimensionálíand data assimilatio scheme was developed based on ensemble Kalman filter 

by Huang et al. (2006). The scheme they developed is used to improve the estimation of soil 

temperature profile. Observations from four automatic weather stations were used to test and 

validate the scheme. Results from their simulation revealed that data assimilation improves the 

estimation of soil temperature profile. 

17 
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Chapter 3 

Methodology 

3.1 Introduction 

This chapter discusses the methodology employed in the study. The chapter discusses the model 

governing the heat transfer through the soil and a numerical solution to the temperature distribution 

model, considering the finite volume scheme used in discretizing and finding numerical solution 

to the heat transfer model. Secondly the Data assimilation types were discussed with focus on the 

Kalman filter which is a sequential data assimilation scheme. 

3.2 The Soil Temperature Distribution Model 

Differential equations are used to model, understand and predict systems that change with time.  

Thus, many physical laws that have been successfully modeled in nature are expressed in the form 

of differential equations. The dynamics of the soil temperature considered in this study is modeled 

using the heat diffusion equation for a one-dimensional vertical column. The heat 

equation governing the temperature distribution in the absence of internal phase changes is a partial 

differential given by  

ð (kðT9 (3.1) ôzk ðz 

where p is the bulk density, c is the specific heat capacity, k is the thermal conductivity of the soil 

(W m—1K—l), T is the soil temperature (K) at a point in space within a mass of material, t 



 

 

represents time and z is the soil depth in meters (m). pc is referred to as the volumetric heat 

capacity mostly denoted by C, measured in (J m—3 K—l). 

The temperature is assumed to have a constant value at every depth in the vertical column of the 

soil layer. This implies that the heat flux occurs only in the direction of the soil depth. The soil 

properties p, c and k mostly vary through time, chiefly through the transfer of water, but assuming 

these parameters to be spatially uniform through the soil layers then equation (3.1) 

becomes 

(3.2) 

 ðt ðzk D )ôz 

where D = k/ pc is the thermal diffusivity of the soil. The thermal diffusivity is a function of the 

soil texture and the soil moisture content. The heat equation in equation (3.2) is classified as a 

parabolic differential equation. A number of detailed set of mathematical techniques can be used 

to obtain the solutions for equation (3.2). 

Among the several variable that are involved in the hydrological and climatological model studies, 

surface temperature and the accuracy of its prediction plays a crucial role in determining 

the predictive capability of such models. It influences the partitioning of incoming radiant energy 

into ground, sensible and latent heat fluxes. Outgoing long wave flux is a function of the surface 

temperature.  

The  is mostly solved as an initial-boundary value problem. The time and space 

domains are clearly described in this instance and conditions imposed on the system to be solved. 

For the equation in (3.2), exact solutions may be obtained. In most cases the exact solutions cannot 

be obtained and so we resort to numerical solution techniques.  
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3.3 Solutions of Soil Temperature Distribution Model 

The transfer of heat has been of great interest within the engineering and scientific communities 

for a very long time. It is important to understand the dynamics of temperature distribution through 

the various mediums considered. The equation governing the dynamics of soil temperature is a 

partial differential equation assumed to obey the heat diffusion equation for onedimensional 

vertical column given in equation (3.2). 

The analytic solution and numerical solution can be obtained for the governing model. The two 

solutions can be compared in instances where both solutions can be obtained. In most instances 

where the model becomes more complex, the analytic solution is virtually impossible to obtain. In 

such instances we can approximate the solution numerically to obtain the solution to the governing 

model. 

The governing model considered in equation (3.2) is a simple model and its exact solution can be 

obtained using analytical methods as well as the numerical solution. We can then compare the two 

solutions obtained from the various methods.  

3.4 Analytic Solution to Temperature Model 

The behavior of mathematical models can be understood by finding solution to the models, or set 

of equations. These  using calculus, trigonometry, and other math 

techniques. The solution can tell absolutely how the model will behave under any circumstance. 

This type of solution obtained by using analysis is referred to as the analytic solution. But this 

tends to work only for simple models. For more complex models, it becomes virtually impossible 

to obtain the analytic solution. 
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We consider the model governing the temperature distribution 

through the soil column as in equation (3.2). This is a simple 

model whose analytic solution can be found. We start finding the 

solution the temperature distribution equation by the method of 

separation of variables. This method assumes that the solution 

(Temperature) can be expressed explicitly as a product of two 

different functions. Thus 

  (3.3) 

From equation (3.3) we can obtain expressions for the first 

derivative with respect to time and the second derivative with 

respect to soil depth. 

ôT(z, t) 

 
These expressions are substituted into equation (3.2) and it is 

assumed that the thermal diffusivity of the soil is constant, which 

gives the resulting equation 

ðG(t) ô2F(z) (3.6) 

at ðZ2  

 at at 

(3.4) 

ð 2 T(z, t) ð2F(z) 

 ôZ2 ðZ2 (3.5) 
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Rewriting equation (3.6), we 

have 

 
   1 

ðG(t) D ð2F(z) (3.7) 

G (t) at  F(z) ðz2    

The right side of the equation (3.7) is just a function of depth 

of the soil whereas the left hand side of the same equation is 

explicitly a function of time. The two sides of equation (3.7) are 

functions of different variables can only be equal if they evaluate 

to a constant. We set both sides of equation (3.7) to a constant, 

and rearranging gives the following set of equations 

 - RG(t) 

at 

  (3.8) 

ð2F(z) 

(3.9) ðZ2 

The solution to the temperature distribution model can be obtained 

by solving equations (3.8) and (3.9). In general, the linear 

combination of solutions is also a solution to this model. Equation 

(3.10) gives the general representation of the solution to the 

temperature model considered above.  

n2Tt2 Dt 
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an sin (3.10) n=l where 

 an f (z) sin  

 

3.3 Numerical Solution to Temperature Model 

There are different schemes for finding the numerical solution to 

partial differential equations, examples of which are the finite 

difference method, the finite volume method and the finite element 

method. The sequence of—approximations gcnerated by the numerical 

algorithm is required to converge to the correct solution. 

In this research, the finite volume method among many others is presented for discretizing and 

finding the numerical solution to the heat equation considered in equation (3.2). The finite volume 

method is an increasingly popular numerical method for approximating the solution of partial 

differential equations and it has an excellent numerical capability for capturing changes in 

conserved quantities such as mass, momentum, energy, among others. 

3.3.1 Finite Volume Method (FVM) 

In this section, we discuss the finite volume method as a numerical technique for obtaining a 

numerical solution to partial differential equation. The finite volume method transforms the heat 

equation from the form of a partial differential equation into a set of algebraic equations that can 

easily be solved. The finite volume method relies on integration. For a finite volume discretization, 

the computational domain for the heat equation is partitioned into a number of control volumes, 
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with the value at the centre of the control volume considered to be a representative for the valve 

over the entire control volume. These cells are number 1 to N, for a one dimensional domain. 

 

Figure 3.1: The discretization of one dimensional domain into finite volumes 

 

The space is discretized into N equal size grid cells of size h = I/N. By integrating the original PDE 

over the control volume the equation is cast into a form that ensures conservation and the 

derivatives at the faces of the volume are approximated by finite difference equations. 

Consider the heat transfer equation given in equation (3.1). 

Integrating both sides with respect to time and space, we have 

t+At 

—dz dt = D— dz 

dt (3.11) 

Solving for the left hand side, we have 

 t+At ðT  

— dz dt = — dt dz 

ðt 

(dT) dz 

 

 

Thus from equation (3.11), we can 

then say that 

{T(t + At) — T(t)) 

dz 
(3.12) 

1 
i 
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[Tik+l - Tik]Az =dt i+1/2 ðz 

i— 1/2 

t+At   

 Di+1/2 Az

 Di_1/2 

Az 

T)dt 

(3.13) 

Using the theta method, for 0  

(6Tk+1 + (1 — 0)Tk (3.14) 

When e = 0, the scheme becomes explicit scheme which is 

conditionally stable. 

9 = 1, the scheme is an implicit scheme (unconditionally 

stable) and 
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we solve using the Crank Nicolson scheme. 

 

[Tik+ l — Tik]Az 

 Dk+l  At 

i+1/2 

e  1 
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 At (3.15) 

The implicit schemes are considered to be unconditionally stable. 

Thus, they simply permit the use of larger time steps. Implicit 

schemes can tolerate a great deal of error, yet it does not allow 

this error to grow and they mostly involve solving systems of linear 

equations. Equation (3.15) tends implicit when e = 1 giving 

 [Tk+l — Tik]Az At (3.16) 

Let = (D X At) /(Az)2, since D is assumed to be constant in this 

research. (3.16) then reduced to 

 = - Tik+l) - (TLk+1 - Tik-+ll)] (3.17) 

Rearranging equation (3.17) gives an algebraic system presented in 

equation (3.15) below. 

 2Ä)Tik+1 -  — Tik (3.18) 

Demoñštrating the scheme in equation (3.18) for the discretized 

space domain with N discrete points, we have 

RT{+I + (1 + 2Ä)T1k+1 - RT2k+1  

 ATIk+1 + (1 + 2Ä)T2 - AT}+I  

RT2k+1 + (1 + 2Ä)T3k+1 -  

 

Equation  



 

27 

/17'{+_} + (1 + 2R)TÆ+I 1 _RTk+1  

This system can also be written in matrix notation and is presented below. 

  1+2Ä — R 

(3.19) 

The system is now represented as a system of linear algebraic equations of the form AT = b 

where T = T 

 

and 

 

The linear algebraic equations are then solved to obtain the solution to the partial differential 

equation (in our case the heat equation) at various times. More interestingly, the system in equation 

(3.19) can be expressed as a state space equation where the state is the temperature. The state 

equation can be represented using the autoregressive model given as 

 Tk+l = FTI, + (.01, (3.20) 

where F is just the same as the inverse of the coefficient matrix, A in the system above, thus 
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 F = A—l. The temperature, Tk = b and  is the process noise assumed to be white Gaussian. 

3.4 Data Assimilation 

Information used to estimate the state of a system is generally obtained from observations and 

models. Observations are mostly sparse and in most cases come with some degree of uncertainty. 

These uncertainties may be due to the mode of collecting these observations, instrumental errors, 

errors due to implementation of these instruments and many more. Models on the other hand help 

in interpolating information from observations to unobserved regions or quantities. 

In land-atmosphere models, the prediction of surface temperature is subject to several errors.  

There is usually an uncertainty associated with specifying soil texture at the scales at which these 

models are for predictions. The soil-moisture dynamics are often inadequately represented resulting 

in significant errors in the estimates of soil-moisture states in the different soil layers, which 

adversely impacts the thermal conductivity, estimates. The adequate representation of surface 

temperature—in land-atmõšñã4Gdies requires using methodologies, such as data assimilation, that 

constrain the error growth resulting from these uncertainties. 

Data assimilation basically combines information available from different sources to obtain at best, 

estimates of the state of a system. The combination of noisy data is an efficient way of filtering out 

the noise to obtain more accurate estimates. Data assimilation is therefore a technique used to 

minimize model forecast errors by periodically incorporating observations and updating the model 

predicted states in a way that the dynamics in the conservation laws is maintained. 

A data assimilation system comprises a set of observations, a dynamical model and a data 

assimilations scheme. Several algorithms exist for data assimilation which aid in obtaining the best 

estimates. In this study we use the Kalman filter for the assimilation of near-surface temperature 

measurements. 
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3.5 The Kalman Filter 

The Kalman filter method is a sequential data assimilation scheme developed by Kalman, 1960. It 

is a recursive variance minimizing process that optimally predicts the state when the statespace 

equations are linear. The method explicitly accounts for the dynamical propagation of errors in the 

model. 

The Kalman filter uses the measurements that are observed over time that contain noise (random 

variables) and other inaccuracies, together with model predictions and produce values that tend to 

be closer to the true values of the measurements and their associated calculated values. It makes 

use of the method of least squares to minimize the trace of the error covariance matrix. 

The Kalman filter is-applicable on-StãŒGFÉe equations. The state-space equations are made up 

of the process equation and the measurement equation. These equations are assumed to be linear 

to allow for the use of the Kalman filter. The state equation can be represented as 

Xk+l = FkXk + (3.21) 

where Fk is the transition operator, (.ðk is the process noise. The measurement equation is also 

given as 

Yk = HkXk + (3.22) 

where Hk is the observation operator which relates the state to the observed and b'k is the 

measurement (observation) noise. The nature of the observation operator is determined by the 

number of states being observed. 

The Kalman filter was developed based on certain assumptions. These assumptions are given 

below: 

1. The process noise 0k and the measurement noise Vk are Gaussian noises, with zero mean. 
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2. The state xo, Wk and Vk are uncorelated 

3. xo N(xo+, Po+) 

4. The state and the measurement dynamics are linear. 

The Kalman filter is categorized into two steps: Predict and Update. The predict step uses the state 

estimate from the previous time step to produce an estimate of the state at the current time step. 

This predicted state estimate is known as the a prior state estimate and is denoted by xi. 

The update step, the available observation information is combined with the a priori estimate. 
 

This is done to improve the a pnori estimate producing the a posteriori state estimate which is 

denoted-byxk+. 

3.5.1 Least Square Derivation of the Kalman filter 

We consider the state and measurement equations in equations (3.21) and (3.22) respectively. 

The errors in both the a priori and a posteriori estimates are given as 

  ek  

These error estimates can be used to estimate corresponding error covariance given as 

 E[eî (eî)T] E[et (e: Y] 

The a priori estimates are obtained based on the fact that observations are available until the k — 

Ith time step. This gives an estimate of the a priori estimate as 

 =  =  + IYk-1] =  (3.23) 

The state noise is said to have zero mean, thus  = O and hence we obtain the a priori 

estimate as 

 FkXk+ (3.24) 
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The error in estimating the a priori estimate is computed and subsequently used to obtain the 

corresponding covariance. The error can be computed as 

+ Wk — FkXk  

Fk(Xk-1 -xt) + Ok 

  (3.25) 

JNIVERSi1N 

or 

Having obtained an estimate of the a priori state, then the corresponding covariance can be estimated 

as 

E[eî (eî)T]  

 

 

where Qk is the covariance of the process noise 0k and e: and Ok are uncorrelated. Thus the a priori 

covariance matrix is obtained as 

  (3.26) 

The a priori estimates are updated when observation become available. We consider the 

measurement dynamics in equation (3.22 ). Estimate ofthe observation can then be obtained as 

 Yk = E[YkIYk-1] = E[HkXk+ IYk-11 IYk-1] +  IYk-1] 

Again E [Vk] = 0. Therefore 
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 HkXî (3.27) 

The covariance associated with this estimate is given as 

  (3.28) 

where Rk is the covariance of the measurement noise Vk. 

The update step is carried out when observations become available 

at the current time step k. At this point the a priori estimates 

are updated with the available observations to obtain the a 

posteriori estimate. The update equation is given as 

  (3.29) 

where Kk is referred to as the Kalman gain. We now compute the error 

associated with the a posteriori estimate and this is given as 

ek  

 

(1 - xî) - 1<kVk 

 - 1<kVk (3.30) 

By the Kalman filter, the trace of the a posteriori covariance is 

to be minimized. We then estimate the covariance which gives 

 (1 — - KkHk)T + (3.31) 

We then differentiate the trace of equation (3.31) with respect to 

Kk and equate the result to zero. 
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+ 2KkRk -  (3.32) 

ôKk 

Solving equation (3.32) for 

1<1, we have 

  =  (HkPFHkT + Rk) 1 (3.33) 
 

Algorithm 1 : Kalman Filter 
 

1. Set the initial parameters 

2. fork = 1 : T 0/oT is the assimilation period 

3. for i = 1 : n % n is number of model predictions in between observations 

Time update 

Fk Xk-l 

Fk pi_1 Ft—l  

end loop for i 

4. Measurement update 

 PF_IHÈT (H p- 11-11  % Kalman gain 

 

 

5. end loop for k 

 

 

Chapter 4 
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Results and Discussion 4.1 Introduction 

An assimilation scheme is used in order to improve the soil temperature profile in the heat model 

governing the distribution of temperature through the soil layer. The assimilation scheme is 

implemented on the discretized heat transfer equation through the soil column. Scientific 

estimations are obtained from observations (measurements) or by using models developed to obtain 

this estimates. Either of these estimates is the best in the absence of the other. But when both model 

estimates and measurements are available, we are faced with the issue of deciding among the two, 

which is the best estimate. 

Data assimilation was developed to incorporate the two estimates to obtain the best estimate for 

the states thereby minimizing the forecast error in a way that the dynamics in the conservation laws 

is maintained. This improved estimate of the model states provides better prediction. The research 

is centered on estimating the soil temperature profile through the soil column. 

The Kalman filter method is used to improve the soil temperature profile prediction through the 

soil column in this study due to its-abtfitÿîõcorrect the model states and also provide estimates of 

the associated error. The Kalman filter is applicable on state space formulation of the problem. The 

governing differential equation of temperature distribution through the soil column was discretized 

using the finite volume to obtain the state space formulation of the problem. 

The Kalman filter is designed to incorporate knowledge of the uncertainties in both the 

measurements and the models. In order to ascertain the performance of the Kalman filter algorithm, 

simulation studies was carried out for the different experimental cases. This chapter discusses the 

results and findings of the research. 



 

35 

4.2 Experimental Setup 

Soil temperature and the accuracy of its prediction play a major role in the determination of the 

predictive capacity of such models. The governing equation for the prediction of the soil 

temperature profile is shown in equation (3.1). Under the assumption that the parameter values in 

the governing equation do not vary with time, equation (3.2) was obtained, which can be simplified 

to give 

  ð2T 

(4.1) 
at ôZ2 

The boundary conditions considered for the model in equation (4.1) is the Dirichlet boundary 

 

conditions which state the solution (temperature) of the problem on the boundary. These 

boundary conditions were stated as follows: 

   and  

whereas the initial condition defined-FÉFoblem is stated as 

(4.2) 

  (4.3) 

In order to formulate the Kalman filter equations, the vertical column of the soil was discretized into 

layers of equal depth. Synthetic measurements of the soil temperature were obtained from the layers 

of the soil column. We use the finite volume scheme to obtain a system of equations represented by 

equation (3.17). 

This problem is solved at various times, and equation (3.21) is the state space formulation of the 

problem on which the Kalman filter is applicable. The state space can generally be represented as 

in equation (3.21). All the states were observed in this study, and equation (3.22) represents the 

measurement equation. 
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The study investigates the performance of the Kalman filter algorithm by considering various cases 

that influence the performance. First, we consider the impact of the initial conditions (error 

covariance) on the performance of the algorithm. We also investigate the effect of the model error 

(process noise), observation error (measurement noise), and frequency of observation on the 

performance of the Kalman filter. The assimilation of the soil temperature in this study is based on 

synthetic data as well as the numerical solution to the governing equations. 

4.3 Experimental Results 

The results from the prediction of the soil temperature dynamics from the Kalman filter algorithm 

are presented in this section. The performance is measured by using the root mean squared errors 

(RMSE). Starting with the propagation of the error covariance which demonstrates how we I the 

Kalman filte tructs the estimates. 

Figure 4.1 show a cross section of a time series propagation of the error covariance by the Kalman 

filter. As indicated in the algorithm, the prior estimates are updated when observations become 

available. From the result in Figure 4.1, there is a constant increase-in the error covariance in the 

absence of observations. 
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Time 

Figure 4.1: Time series propagation of the error covariance from using the 

Kalman filter algorithm 

But when observations are made available to the Kalman filter and the prior estimates are updated, 

there is a rapid decrease in the error covariance indicating that the estimate as a result of the update 

has the minimum noise and therefore is the best of the estimates. 

 

The temperature distribution is estimated for different soil layers and the results are shown in 

Figures42—and 4.3 below. The research considered four (4) inner layers for which the temperature 

distribution is to be estimated. Figure 4.2 demonstrates the dynamics of the temperature 

distribution through layers 1 and 2 whereas Figure 4.3 shows the temperature dynamics across 

layers 4 and 5. 
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Truth o Observation 
— 

Kalman 

 

Time 

Figure 4.2: Plot of the truth, observations and estimates of the temperature 
distribution (temperature dynamics) through soil layers 1 and 2 using the 
Kalman filter. 

In both Figures 4.2 and 4.3, the solid blue lines are plots of the true estimates (Truth) which are 

reconstructed using the Kalman fllEAlgouthm. The available observations are plotted with the 

black circles whereas the Kalman filter estimates are the plots indicated with the broken red 

lines. As shown by these results, the Kalman filter estimate coincide with the truth in some 

instances, but in the other instances, the estimates by the Kalman filter algorithm are different 

from that from the truth. 
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The differences in the estimates are due to the presence of various errors in estimation of the 

truth which the Kalman filter tries to minimize. From these results the Kalman filter estimates are 

closely predicting the observed. In the case of this study all the states (Temperature) was 

observed. The temperature is increasing and decreasing at various time steps across the various 

soil layers whereas the temperature decreases as you move down the soil layers from layer 1 

through to 4 in this experiment. The evidence of this conclusion is demonstrated in Figure 4.4 

below. 

Dynamics of Soil Temperature Distribution 

 

Truth o Observation Kalman 

 

Time 

Figure 4.3: Plot of the truth, observations and estimates of the temperature 
distribution (temperature dynamics) through soil layers 3 and 4 using the 
Kalman filter. 
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Time 

Figure 4.4: Plot of temperature distribution for the four layers. The first set is from 
the Kalman filter and the second from the Truth. 

4.4 Impact of measurement noise 

In order to test the impact of the measurement noise on the performance of the Kalman filter, 

the measurement noise was varied keeping all other parameters constant. Table 4. I 

demonstrates the results from the experiment which varied the measurement noise. The root 

mean squared errors were measured for the various experimental options with regards the 

measurement noise and from this results, it can be concluded-That the performance of the 
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Kalman filter algorithm in reconstructing the solution (temperature distribution) through the soil 

column is sensitive to the 

40 

'NIVERSITV or 
measurement noise. The performance of the Kalman filter in predicting the state improves when 

the measurement noise is very small. Considering the result from Table 4.1, the best estimate were 

obtained when the measurement noise is 10-514 where the 14 is a 4 x 4 identity matrix wherever 

it appears in this thesis. This is because at this measurement noise, the Kalman filter has the least 

RMSE. 

Table 4.1: Comparing the impact of the measurement noise on the 

performance of the Kalman filter to the state of the temperature 

profile 

Measurement Noise, R Mean of RMSE Variance of RMSE 

10-514 0.0621 0.000004 

10-214 1.9709 0.002840 

o. 114 6.1335 0.026656 

o. 514 13.2377 o. 178980 

14 17.8733 0.385220 

514 33.6353 2.238810 

1014 41.6133 3.665593 

 

The performance of the Kalman filter deteriorates as you increase the measurement noise. 

Measures of the mean and variance of the RMSE increase significantly with increase in the 

KWAME 



 

 

measurement noise. The highest values of the RMSE occur at 10/4 as per the values considered 

for the measurement noise in this study. 
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4.5 Impact of process noise 

The next experimental setup investigates the impact of the process noise on the Kalman filter 

algorithm. Presented in Table 4.2, are the results from the experiment based on varying the process 

noise with all other parameters keep fixed. The measure Of the root mean squared error kept 

increasing whenever there was an increase in the process noise. That is to say, the performance of 

the Kalman filter improves with decrease in the process noise resulting in a decrease in the RMSE 

value. 

Table 4.2: Comparing the impact of the process noise on the 

performance of the Kalman filter to the state of the 

temperature profile 

Process Noise, Q Mean of RMSE Variance of RMSE 

10-714 0.1609 0.00010513 

10-514 0.2163 0.0001716 

10-214 0.6116 0.00020426 

o. 114 0.6216 0.00039199 

o. 514 0.6234 0.00032448 

According to the result from Table 4.2, the least RMSE was recorded for a process noise of 10 —

7/4 while the highest value of-the—R-MSE was recorded for a process noise of 0.5/4. The 

performance of the Kalman filter based on the results from Tables 4.1 and 4.2 is more sensitive 

to the measurement noise than the process noise due to the fact that increasing the measurement 

noise recorded higher values of the RMSE compared to the process noise. 

Chapter 5 
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Conclusion and Recommendation 

5.1 Conclusion 

In order to improve the soil temperature distribution or profile obtained using the temperature 

model, the Kalman filter which is a sequential data assimilation scheme was used. The formulation 

is based on the discretized governing equation of heat transfer through the soil column. The 

Kalman filter is designed to incorporate the knowledge of the uncertainty in both the model and 

the measurement to obtain a better estimate of the state. 

The Kalman filter was used to reconstruct the available information on the state and it was noted 

that the estimates from the Kalman filter best predicts the state. Model uncertainty was found to 

play an important role in the performance of the Kalman filter in reconstructing the state. The 

impact was measured using the root mean square error from which it was deduced that the small 

the process noise the better the performance of the Kalman filter. 

Similar results were obtained when the impact of the measurement noise on the performance of 

the Kalman filter was investigated, and the results followed that of the process noise. Conclusions 

were4hat the Kalman—ffter-WáS more sensitive to the measurement noise than the process noise 

judging from the values recorded for the RMSE in both cases. 

Estimates of the error covariance indicates that there is a constant increase in the error covariance 

of the state until the point measurement is made available and used in updating the aprior estimate. 

At this point the results show that the error covariance drops rapidly. 
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5.2 Recommendation 

The following recommendations are made as a result of the findings from this study. The Kalman 

filter algorithm is recommended in reconstructing the solution of the state when both model 

estimates and observations are available. It is recommended that the process noise and 

measurement noise be kept minimal especially the measurement noise since the Kalman filter was 

found to be more sensitivity to the measurement noise. Further work is recommended to 

investigate other parameters that may be affecting this algorithm. 

 

References 

Edwards, K.A. and Rodda, J.C. (1970). A preliminary study of the water balance of a small clay 

catchment. J. Hyfrol. (N. Z), 9 , 202-218. 

Fuchs, M. and Hadas A. (1972). The heat flus density in a non-homogeneous bare loessial soil. 

Boundary Layer Meteorel , 191-200. 



 

46 

Gomez, J.D, Etchevers, J.D., Monterroso, A.I., Gay, C., Campo, J., and Martinez, M. (2007). 

Spatial estimation of mean temperature and precipitation in areas of scarce meteorogical 

information. Atmosfera , 35-56. 

Hanks, R.J. and Jacobs, H.S. (1971). Comparison of the calorimetric and flux meter measurements 

of soil heat flow. Soil Sci. Soc. Am. Proc. 35 , 671-674. 

Hasfurther, V. R. and Burman, R.D. (1974). Soil temperature modelling using air temperature as 

a driving mechanism. Am. Soc. Agric Engrs , 78-81.  

Holmes, T.R.H., Owe, M., De Jeu, R.A.M and Kooi, H. (2008). Estimating the soil temperature 

profile a single depth observation: A simple empirical heatflow solution. Water Resources 

Research . 

Huang, C., Li, X., Lu, L., and Gu, J. (2006). Experiments of one-dimensional soil moisture 

assimilation system based on ensemble Kalman filter. Remotesensing of enviroment. Remote 

Sensing ofEnvironment , 888-900. 

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Transaction 

ofthe ASME Journal ofBasic Engineering . 

Kimball, B.A. and Jackson R.D. (1975). Soil heat flux determination: a null-alignment method. 

Agric. Meteorol. 15 , 1-9. 

Kumar, P., and Kaleita, A. L. (2003). Assimilation of near-surface temperature using extended 

Kalman filter. Advances in Water Resources , 79-93. 

Mallick, J.,  Estimation of land surface temperature over Delhi 

using Landsat-7 ETM+. J. Ind. Geophys. Union , 131-140. 

MihailõÇIC, D.T., Kallos, G., Arsenic I.D., Lalic, B., Rajkovic, B., and Papadopoulos, A. (1999). 

Sensitivity of soil surface temperature in a forest-restore equation to heat fluxes and deep soil 

temperature. Int. J. Climatol , 1617-1632. 

Parlange, M.B., Cahill, A.T., Neilsen, DR., Hopmans, J.W., and Wendroth, O. (1998). Review of 

heat and water movement in field soils. Elsevier Science B. V. , 5-10. 



 

 

Penman, H. L. (1948). Natural evaporation from open water, bare soil, and grass. Proc. Roy. Soc. 

London , 120-145. 

Russell, R. S. (1977). Plant root systems. London: McGraw-Hill. 

Simmers, I. (1977). Effect of soil heat flus on the water balance of a small catchment. Hydrol. sci. 

Bull , 433-445. 

Thom, A. S., and Oliver, H. R. (1977). Penman's equation for estimating regional evaporation. 

Quart. Journal Roy. Met. Soc. , 345-357. 

Veronez, MR., Wittmann, G., Reinhardt, A.O., and DaSilva, R.M. (2010). Surface temperature 

estimation using artificial newral network. ISPRS TC Jill Symposium. Vienna, Austria. 

Zheng, D., Hunt, E.R., and Running, S.W. (1993). A daily soil temperature model based on air 

temperature prediction for continental applications. Climate Research Clim. Res. , 183-191. 

Zhou, Y., McLaughlin, D, and Entekhabi, D. (2006). Assessing the Performance of the 

Ensemble Kalman Filter for Land Surface Data Assimilation. American Meteorology Society . 

 


