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ABSTRACT  

 

 

The transportation problem is a special class of the linear programming problem. It deals with 

the situation in which a commodity is transported from Sources to Destinations. The 

transshipment problem is an expansion of the transportation problem where intermediate nodes 

which are also referred to as transshipment nodes are added to account for locations such as 

warehouses. My main objective is to model Bank of Ghana’s transportation of Banknotes as a 

transshipment problem and also minimize the cost in  transportating them. I will formulate the 

Transshipment problem as a Transportation problem and use the Transportation algorithm to 

solve it. The Quantitative Method (QM) Software will be used to analyze the data. I conclude 

that if Bank of Ghana adapts this method, the cost of transporting Banknotes will be minimized.
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CHAPTER       1 

                                        INTRODUCTION 

Consider a distribution system consisting of multiple retail locations. Demands occur at 

each retail location, which replenishes its inventory from some central warehouse on a 

periodic basis. Demands at each retail location are first met from the available inventory 

at the location. When shortage occurs at one location, the shortage can be covered from 

available inventory at other retail locations through possible lateral transshipment. The 

objective is to determine the optimal order quantity of each retail location and the 

resulting optimal transshipment policy after demands are realized at each period so as to 

minimize the total expected replenishment costs, inventory holding costs, shortage costs 

and the transshipment costs among the multiple retail locations during some finite time 

horizon. Transshipment, when possible, can be used as one effective way to reduce total 

inventory and increase service level in a distribution system. Essentially, transshipment 

allows the distribution system to take advantage of the risk pooling effect to deal with 

uncertain demands at different retail locations. Excess inventory at one retail location can 

be used to cover shortage at another location. Physically, one can interpret inventory 

stocking at each individual location as being “pooled” together to meet the demands at 

any other location within the distribution system. As such, the use of transhipment 

provides more flexibility in deploying the available inventory in the system to meet 

uncertain customer demand. Consequently, transshipment can help to reduce the total 

system inventory and stock-out level at each individual location, at the expense of a 

higher transportation cost for transshipping the products among the different retail 
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locations. It is interesting yet unclear as to what kind of system configurations and retailer 

characteristics would benefit most from using transshipment. One objective of this paper 

is to address a number of managerial issues regarding the impact of transshipment on 

reducing the costs of the distribution system under different system configurations and 

retailer characteristics. Our distribution system with transshipment involves a convoluted 

decision problem consisting of two basic types of decisions that influence each other 

throughout the finite time zone. The first type involves the decision for the optimal order 

quantity at the retail locations during each replenishment cycle. We refer to this decision 

as the optimal replenishment policy. The second type involves the decision for 

transshipping the products among the retail locations after demands are observed and 

shortages occur at different retail locations. We refer to this decision as the optimal 

transshipment policy. The combined optimal replenishment problem with transshipment 

and stochastic demand is generally difficult to solve. The problem is complicated even 

for the single period model consisting of a two-stage decision problem, where the 

transshipment decisions are considered as a recourse action to cover shortage after the 

replenishment quantity has been selected and uncertain demands have been realized. For 

a finite time horizon, the optimal replenishment policy generally depends on the 

replenishment and transshipment decisions as well as realized demands in earlier periods. 

On the other hand, the optimal transshipment policy, which entails the decision of how 

much as well as from which location the transshipments should come from, also depends 

on the replenishment policy and realized demands in earlier periods. 



 

3 

 

This thesis presents a mathematical modeling of distribution of banknotes to branches 

and agencies of bank of Ghana as a transshipment problem, which can provide useful 

information to aid decision-makers in their supply chain decision making.  

In this chapter of the thesis, a historical background of Bank of Ghana would be given; a 

brief description of the problem statement of the thesis is also presented together with the 

objectives, the methodology, the justification and the organization of the thesis.  

  

1.1 BACKGROUND OF STUDY 

A central bank, reserve bank, or monetary authority is a public institution that manages 

the nation's currency, money supply and interest rates. Central banks also usually oversee 

the commercial banking system of their respective countries. In contrast to commercial 

banks fractional-reserve requirement, a central bank possesses a monopoly on creating 

limitless credit, and sometimes also on creating the physical national currency, such as 

notes and coins, which usually serves as the nation's tender. The primary function of a 

central bank is to manage the nation's money supply (monetary policy), through active 

duties such as managing interest rates, setting the reserve requirement, and acting as a 

lender of last resort to the banking sector during times of bank insolvency or financial 

crisis. Central banks usually also have supervisory powers, intended to prevent 

commercial banks and other financial institutions from reckless or fraudulent behavior. 

Central banks in most developed nations are institutionally designed to be independent 

from political interference.  
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Examples include the European Central Bank (ECB), the Federal Reserve of the United 

States, the People's Bank of China and the Bank of Ghana. 

The Central Bank of Ghana traces its roots to the Bank of the Gold Coast (BGC), where it 

was nurtured. As soon as local politicians and economists saw political independence in 

sight in the mid 1950’s the agitation for a central bank was revived. It was argued that a 

central bank was one institution which would give true meaning to political 

independence. It may be recalled that way back in 1947 some leading politicians had 

called for the establishment of a national bank with central bank functions to act as 

banker to government and to cater for the indigenous sector of the economy.  

Proposals of the advocates for a central bank were accepted and in early 1955 another 

Select Committee was set up by the Government to take a new look at the Trevor Report 

and prepare the grounds for the establishment of a central bank in Ghana. Fortunately, the 

BGC had already set the stage for central banking: all that was needed was specially 

trained personnel in central banking and suitable accommodation for the bank to take off.  

By the end of 1956, all was set for the establishment of the Bank of Ghana. A new and 

modern five-storey building had been put up on the High Street, adjacent to the Accra 

Metropolitan Assembly (AMA) to house both the Bank of Ghana and the Ghana 

Commercial Bank (GCB). On the 4th March 1957, just two days before the declaration of 

political independence, the Bank of Ghana was formally established by the Bank of 

Ghana Ordinance (No. 34) of 1957, passed by the British Parliament. Frantic preparations 

then began to put in place an organisational structure for the new central bank. By the 

middle of July 1957, all was set for the official commissioning of the new Head Office of 

the Bank on the High Street. In his opening address at the end of July 1957, the then 
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Leader of Government Business (Prime Minister) stated with pleasure that the occasion 

marked the beginning of independent monetary administration in the newly independent 

Ghana – a cherished dream had at long last become a reality. The Leader of Government 

Business had put the aspiration of the country in establishing the central bank as follows: 

“In the modern world a central bank plays a very important and decisive role in the life of 

a country. It is essential to our own independence that we have a government-owned bank 

and that the central bank follows a policy designed to secure our economic independence 

and to further the general development of our country.”  

The principal objects of the new central bank, as enshrined in the 1957 Ordinance, were 

“to issue and redeem Banknotes and coins: to keep and use reserves and to influence the 

credit situation with a view to maintaining monetary stability in Ghana and the external 

value of the Ghana pound; and to act as banker and financial adviser to the Government.  

The opening ceremony paved the way for the Bank to commence formal banking 

operations on 1st August 1957, when the Banking Department opened for business. The 

Issue Department did not commence operations until July 1958. The Bank of Ghana has 

since 1957 undergone various legislative changes. The Bank of Ghana Ordinance (No.34) 

of 1957 was repealed by the Bank of Ghana Act (1963), Act 182. This Act was 

subsequently amended by the Bank of Ghana (Amendment Act) 1965, (Act 282).The 

Bank of Ghana Law, 1992 PNDCL 291 repealed Acts 182 and 282. The current law 

under which the Bank operates is the Bank of Ghana Act 2002 (Act 612). 

(www.bog.gov.gh).  

 

http://www.bog.gov.gh/
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1.1.2 BRANCHES 

Bank of Ghana, as a Public Institution which serves the whole nation, is suppose to have 

branches  at some specific places in Ghana to be able to serve the Commercial Banks and 

the Public at large. In view of this the Bank of Ghana has six main branches        

(Regional Offices). These offices are Kumasi, Sunyani, Takoradi, Hohoe, Tamale, and 

Sefwi Buako. However Sefwi Buako is referred to as a Currency Office, which only deals 

with the distribution of money to the commercial Banks in its environs due to the high 

production of Cocoa. There is a main branch in Accra which is the main head office 

where the Governor and his two deputies together with all the Head of Departments 

operates. Of all these branches, Bank of Ghana has two main branches (Accra and 

Kumasi) which are the two main sources of Banknotes distribution. These two offices are 

the only branches that have Currency Processing Machines to process Banknotes received 

from the Commercial Banks for authentication. The other Regional Offices serves as 

branches for the distribution of Banknotes, because Banknotes are often sent to them 

from Accra or Kumasi for onward distribution. After   authenticating the Banknotes, they 

are then sent to other Regional Offices, Currency Office or Bank of Ghana Agencies. 

1.1.3 AGENCIES 

For equal distribution of Banknotes throughout Ghana, Bank of Ghana in an agreement 

with Ghana Commercial Bank has Agencies within the premises of Ghana Commercial 

Bank. These branches of Ghana Commercial Banks include the following; Tema, 

Swedru, Nkawkaw, Cape coast, Koforidua, Wa, and Dunkwa-on-Offin. Staffs who work 
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at these Agencies are Ghana Commercial Bank Staff who operates on behalf of Bank of 

Ghana. They receive Deposits from all Commercial Banks in their catchment area. 

They also Issue Cash to the Commercial Banks on request. In short, they operate just like 

Staff of Bank of Ghana Vaults. Daily transactions are being sent to Bank of Ghana who 

has a Unit in the Issue Department specifically for that, both Soft copies (on-line) and 

hard copies (through curia service).    

 

1.1.4 MONEY  

Money is any object or record that is generally accepted as payment for goods and 

services and repayment of debts in a given country or socio-economic context. The main 

functions of money are distinguished as: a medium of exchange; a unit of account; a store 

of value; and, occasionally in the past, a standard of deferred payment. Any kind of 

object or secure verifiable record that fulfills these functions can serve as money. 

Money originated as commodity money, but nearly all contemporary money systems are 

based on fiat money. Fiat money is without intrinsic use value as a physical commodity, 

and derives its value by being declared by a government to be legal tender; that is, it must 

be accepted as a form of payment within the boundaries of the country, for "all debts, 

public and private". 

The money supply of a country consists of currency (banknotes and coins) and bank 

money (the balance held in checking accounts and savings accounts). Bank money 
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usually forms by far the largest part of the money supply 

(http://en.wikipedia.org/wiki/Money). 

1.1.5 BANKNOTES 

A banknote (often known as a bill, paper money or simply a note) is a kind of negotiable 

instrument, a promissory note made by a bank payable to the bearer on demand, used as 

money, and in many jurisdictions is legal tender. In addition to coins, banknotes make up 

the cash or bearer forms of all modern fiat money. With the exception of non-circulating 

high-value or precious metal commemorative issues, coins are used for lower valued 

monetary units, while banknotes are used for higher values. 

The banknote was first developed in China during the Tang and Song dynasties, starting 

in the 7th century. Its roots were in merchant receipts of deposit during the Tang Dynasty 

(618–907), as merchants and wholesalers desired to avoid the heavy bulk of copper 

coinage in large commercial transactions. During the Yuan Dynasty, banknotes were 

adopted by the Mongol Empire. In Europe, the concept of banknotes was first introduced 

during the 14th century, with proper banknotes appearing in the 17th century 

(http://en.wikipedia.org/wiki/Banknoye). Presently Banknotes issued in Ghana, are of the 

denomination 1,2,5,10,20 and 50 cedis. 

 

1.1.6 COINS 

A coin is a piece of hard material that is standardized in weight, is produced in large 

quantities in order to facilitate trade, and primarily can be used as a legal tender token for 

commerce in the designated country, region, or territory. Coins are usually metal or a 
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metallic material and sometimes made of synthetic materials, usually in the shape of a 

disc, and most often issued by a government. Coins are used as a form of money in 

transactions of various kinds, from the everyday circulation coins to the storage of large 

numbers of bullion coins. In the present day, coins and banknotes make up currency, the 

cash forms of all modern money systems. Coins made for paying bills and general 

monetized use are usually used for lower-valued units, and banknotes for the higher 

values; also, in many money systems, the highest value coin made for circulation is worth 

less than the lowest-value note. In the last hundred years, the face value of circulation 

coins has usually been higher than the gross value of the metal used in making them; 

exceptions occurring when inflation causes the metal value to surpass the face value, 

causing the minting authority to change the composition and the old coins to begin to 

disappear from circulation (see Gresham's Law.) However, this has generally not been the 

case throughout the rest of history for circulation coins made of precious metals. 

Exceptions to the rule of coin face-value being higher than content value, also occur for 

some bullion coins made of silver or gold (and, rarely, other metals, such as platinum or 

palladium), intended for collectors or investors in precious metals. Examples of modern 

gold collector/investor coins include the American Gold Eagle minted by the United 

States, the Canadian Gold Maple Leaf minted by Canada, and the Krugerrand, minted by 

South Africa. The American Gold Eagle has a face value of US$50, and the Canadian 

Gold Maple Leaf coins also have nominal (purely symbolic) face values but the 

Krugerrand does not. (http://en.wikipedia.org/wiki/Coin) 
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Historically, a great number of coinage metals (including alloys) and other materials have 

been used practically, artistically, and experimentally in the production of coins for 

circulation, collection, and metal investment, where bullion coins often serve as more 

convenient stores of assured metal quantity and purity than other bullion.  

Coins have long been linked to the concept of money, as reflected by the fact that in some 

other languages the words "coin" and "currency" are synonymous. Fictional currencies 

may also bear the name coin as such, an item may be said to be worth 123 coin or 123 

coins (http://en.wikipedia.org/wiki/Coin). Presently Coins issued in Ghana are of the 

denomination 1, 5,10,20,50 pesewas and 1 cedi. 

 

 

1.1.7 THE CEDI  

Prior to independence, the issue of currency was the responsibility of the West African 

Currency Board (WACB). The West African pounds shillings and pence, constituted 

currency issued by the Board and was in circulation in Ghana until July 1958.  

After Independence, the new monetary authority, the Bank of Ghana, issued its own 

currency in the form of Ghana pounds, shillings and pence on 14
th 

July, 1958. With that 

issue, the Bank of Ghana formally took over the issue of currency notes and coins from 

the WACB. (www.bog.gov.gh).  

The second issue of currency was in early 1965, when Ghana decided to leave the British 

colonial monetary system and adopt the widely accepted decimal system. Accordingly, 

http://www.bog.gov.gh/
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Cedi notes and Pesewa coins were introduced on the 19
th 

July, 1965 to replace the Ghana 

pounds, shillings and pence. The cedi was equivalent to eight shillings and four pence (8s 

4d) and bore the portrait of the then President, Dr. Kwame Nkrumah. The name “cedi” 

was derived from the word “sedie” meaning cowrie, shell money which gained popularity 

and wider circulation in the later part of the 19
th 

Century. The “Pesewa” represented the 

smallest denomination (quantity) of the gold-dust currency regime. The name was chosen 

to replace the British Colonial penny. (www.bog.gov.gh). 

After the overthrow of the CPP government, the military government decided to replace 

the existing currency, which bore Nkrumah’s portrait, with one without his portrait. The 

New Cedi (N¢), as it was called, was introduced on 17
th 

February, 1967 to replace the 

1965 cedi at a rate of ¢ 1.20=N¢ 1.00. The N¢ notes remained in circulation until March 

1973 when it became simply known as the cedi. (www.bog.gov.gh). 

On 9
th 

March, 1979, the Government announced the introduction of new cedi notes to 

replace the old ones at a discount of 30% for amounts up to ¢5,000 and 50% for amounts 

in excess of ¢5,000. The old cedis were therefore, demonetized. New denominations 

issued included ¢1, ¢2, ¢5, ¢10, ¢20 and ¢50. (www.bog.gov.gh). 

From 1965 to present, various cedi and pesewa denominations, ranging from ¢1 to ¢5,000 

for notes and ½ P to ¢500 for coins, were put into circulation. Currency issued in 1965 

comprised ¢1, ¢5, ¢10, ¢50, ¢100, ¢1,000, 5P, 10P, and 20P. Between 1972 and 1994, 

additional seven different note denominations and eight coin denominations were 

introduced. These ranged between ¢2 to ¢5,000 for notes and ¢100p to 50,000p (¢500) 

for coins.  

Since 2002, two more notes ¢10000 and ¢20000 have been added to notes in circulation.  

http://www.bog.gov.gh/
http://www.bog.gov.gh/
http://www.bog.gov.gh/
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(Statistics and Reports Office Issue Department) (www.bog.gov.gh). 

In 2007, Bank of Ghana embarked on a re-denominations exercise by eliminating four 

zeros at the end of every amount (ie ¢10,000 became GH¢1.00). (www.bog.gov.gh). 

1.2 PROBLEM STATEMENT 

Bank of Ghana for evenly distribution of Banknotes has Branches and Agencies all 

around the country. It is the Mandate of the Bank to make money available no matter 

which part of the country one may be. Ghana is a country which has about 80% of its 

population that uses Banknotes as its main mode of payment. Bank of Ghana sometimes 

experiences shortages of Banknotes at some Regional Offices and Agencies although 

Banknotes may be available at its two main sources. Transshipments, the monitored 

movement of material between locations at the same echelon, provide an effective 

mechanism for correcting discrepancies between the locations’ observed demand and 

their available inventory. As a result, transshipments lead to cost reductions and 

improved service without necessarily increasing system-wide inventories. 

 

1.3 OBJECTIVES  

This research project proposes to;  

1.  Model the distribution of Banknotes by Bank of Ghana as a transshipment problem. 

2.  To find the Optimal Transshipment module by a Transshipment Algorithm. 

 

http://www.bog.gov.gh/
http://www.bog.gov.gh/
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1.4 METHODOLOGY  

Our proposed methodology to our problem would be solved by using the transshipment 

model with intermediate destinations between the sources and the destinations. The 

transshipment problem will be converted to a transportation problem and the 

transportation algorithm will be used to solve it. A Data from Bank of Ghana which is a 

secondary data for one year period (2011) would be analyzed and the Quantitative 

Methods (Q. M.) for windows software will be used.  

  

 

1.5 JUSTIFICATION  

The relevance of this research was to come out with a model for the distribution of 

Banknotes to all Branches and Agencies at an optimal cost and to make Banknotes 

readily available at all Bank of Ghana Branches and Agencies.  

This will help to reduce cost of transshipment of Banknotes from Accra and Kumasi to 

the various Regional Branches and Agencies as there is no schedule of transporting 

money until a request is being made by the Branch or Agency in need of money. It will 

also help to reduce the transportation problems facing Bank of Ghana in distributing 

Banknotes to the various destinations.  
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1.6 ORGANIZATION OF THE THESIS 

Chapter one presents a historical background study of Bank of Ghana.  

In chapter two, related work in the transshipment problem will be discussed. 

 In chapter three, the transshipment and transportations algorithms by Amponsah and 

Darkwah (2009) will be introduced and explained.  

Chapter four will provide a computational study of the algorithm applied to our 

transshipment problem for Bank of Ghana.  

Chapter five will conclude this thesis with comments and recommendations 
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CHAPTER      2 

LITERATURE REVIEW 

The literature on distribution problems has grown enormously during the past years, and 

there is a clear need to develop a classification scheme for all their variants. The need for 

such a scheme exits because there are many connections and dependencies among the many 

variants of these problems and it is conceivable of such a scheme   (Psaraftis, 2007).  

 

Lin et al., (2003) addressed a limited form of the two-stage lightering practice for large 

tankers, first stage at an offshore location farther from the refinery and the second stage at 

the lightering location closer to the refinery using an event-based approach. The authors 

assumed single-compartment vessels, did not restrict the number of simultaneous services 

for a single tanker, did not allow pickups from more than two tankers within one voyage 

of a lightering vessel, ignored differences in crude densities, and did not allow the 

freedom to select lightering crudes. In their paper, the authors developed a new 

continuous-time MILP formulation that addresses all of the above drawbacks. Thus, the 

authors allowed multi-compartment lightering vessels, restricted the number of 

simultaneous transfers to two, allowed more than two pickups in one voyage for any 

lightering vessel, considered the impact of varying crude densities, selected optimally the 

right lightering crudes, and most importantly used a realistic cost-based scheduling 

objective. The authors MILP model generated optimal lightering schedule with lightering 

volumes, sequence, times, and assignments, which minimized the operating costs of 

lightering vessels, the demurrage costs of tankers as well as the delivery times of crude 

oil from the lightering location to refinery ports.  
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Krishnan and Rao (1965) studied a reactive mode of transshipment. The authors 

considered a model that was similar to the periodic lateral transshipment model which has 

negligible transshipment times, but aim to minimize cost through transshipments once all 

demand is known. The author’s model provided an optimal solution for a multi-location, 

multiperiod model. However, this solution can only be determined for networks with 

either two nonidentical locations or any number of identical locations. For more than two 

non-identical locations, a LP based heuristic solution procedure is proposed and shown to 

perform well for a number of scenarios.  

 

In a system with two echelons there are several ways in which stockouts can be satisfied 

through emergency stock movements. Lateral transshipments are one possibility but there 

could be situations where it is beneficial also to perform emergency shipments from the 

central warehouse. Wee and Dada (2005) considered this problem with five different 

combinations of transshipments, emergency shipments and no movements at all and 

devises a method for deciding which setup is optimal under a given model description. 

The author’s research allows the structure of the emergency stock movements to be 

established. 

 

Dong and Rudi (2004) examined a different aspect by looking at the benefits of lateral 

transshipments for a manufacturer that supplies a number of retailers. The authors 

compared the case where the manufacturer is the price leader to the case of exogenous 

prices. For exogenous prices, it was found that retailers benefited more when demand 

across the network was uncorrelated. For the endogenous price case, modeled as a 
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Stackelberg game, the manufacturer exploits his leadership to increase his benefits, 

leaving retailers worse off if they use transshipments. These results were restricted to 

demand that follows a normal distribution. 

 

In a more retail case study based approach, Bendoly (2004) studied a model with internet 

and store based customers. The authors utilized lateral transshipment ideas to show how 

partial pooling of goods can improve a system's performance. The examined model 

considered a modern retail environment where stores are operated alongside internet 

channels and is an example of the practical uses of lateral transshipments.  

  

Cross docking is a logistic technique which seeks to reduce costs related to inventory 

holding, order picking, transportation as well as the delivery time. Most of the existing 

studies in the area are interested in the dock assignment problem and the design of the 

cross dock transportation networks. Little attention has been given to the transshipment 

operations inside a cross docking platform. Larbi et al. (2003) studied the transshipment 

scheduling problem in a simple cross dock with a single strip door and single stack door. 

The authors proposed a graph based model for the problem. The shortest path in the 

graph gives the schedule which minimizes the total cost of transshipment operations.  

 

Deniz et al. (2009) studied transshipment problem of a company in the apparel industry 

with multiple Sub-contractors and customers, and a transshipment depot in between. 

Unlike a typical transshipment problem that considers only the total cost of 

transportation, the authors model also considered the supplier lead times and the customer 
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due dates in the system and can be used for both supplier selection and timely distribution 

planning. The authors proposed their model can also be adapted easily by other 

companies in the industry.  

 

 

Tagaras (1989) used the fill rate and the probability of no-stock out to reflect the level of 

service. For an identical demand structure, balancing the fill rate is equivalent to starting 

with identical beginning inventory at each location. In the authors study, while analyzing 

the effect of risk pooling in a setting with one central warehouse and three stocking 

locations, the author compared random allocation with a ‘risk balancing’ transshipment 

policy. In risk balancing, transshipment quantities are determined so as to equalize the 

probability of a stockout in the following period, and for an identical demand structure, 

risk of stockout will be balanced if each location starts with the same inventory.       

 

 Kut (2006) studied a distribution system consisting of multiple retail locations with 

transshipment operations among the retailers. Due to the difficulty in computing the 

optimal solution imposed by the transshipment operations and in estimating shortage cost 

from a practical perspective, the authors proposed a robust optimization framework for 

analyzing the impact of transshipment operations on such a distribution system. The 

authors demonstrated that their proposed robust optimization framework is analytically 

tractable and is computationally efficient for analyzing even large-scale distribution 

systems. From a numerical study using this robust optimization framework, the authors 

addressed a number of managerial issues regarding the impact of transshipment on 

reducing the costs of the distribution system under different system configurations and 



 

19 

 

retailer characteristics. The authors considered two system configurations, line and circle, 

and studied how inventory holding cost, transshipment cost, and demand size and 

variability affect the effectiveness of transshipment operations for the cases of both 

homogeneous and non-homogeneous retailers. The results obtained from the robust 

optimization framework helped to evaluate the potential benefits when investing in 

transshipment operations. 

In situations where a seller has surplus stock and another seller is stocked out, it may be 

desirable to transfer surplus stock from the former to the latter. Krishnan and Rao (1965) 

studied the transshipment problems with multiple retail locations with identical cost 

structure, and examined how the possibility of such transshipments between two 

independent locations affects the optimal inventory orders at each location. If each 

location aims to maximize its own profits—the authors called this local decision 

making—their inventory choices will not, in general, maximize joint profits. The authors 

found transshipment prices which induce the locations to choose inventory levels 

consistent with joint-profit maximization. The authors showed that the optimal stocking 

quantities satisfy the equal fractile property.  

 

Tagaras (1989) presented a model which deals with the analysis of two-location periodic 

review inventory systems with non-negligible replenishment lead times. Emergency 

transshipments were used in these systems as a recourse action to reduce the occurrence 

of shortages. A class of partial pooling policies is proposed for the control of 

transshipments. The cost performance of this class of policies was shown to be inferior to 

that of complete pooling. An approximate model and a heuristic algorithm were 
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introduced to compute near-optimal stocking policy solutions. Comparisons with 

simulation results verified the satisfactory performance of the approximate model and 

algorithm. Numerical sensitivity analysis provided additional insight into the nature of 

optimal transshipment behavior. The author’s model also allowed for a service constraint 

on the minimum acceptable fill rates.  

Supply chain designs are constrained by the cost-service trade-off. Cost minimization 

typically leads to physically efficient or lean supply chains at the expense of customer 

responsiveness or agility. Recently, the concept of leagility has been introduced. 

Research on leagility, defined as the capability of concurrently deploying the lean and 

agile paradigms, hinges heavily on the identification of the decoupling point, which, in 

turn, is enabled by postponement. Postponement strategies, however, present a cross-

functional challenge for implementation. As a tactical solution to achieve leagility 

without postponement, Yale et al.(2002), studied transhipments problem, which 

represented a common practice in multi-location inventory systems involving monitored 

movement of stock between locations at the same echelon level of the supply chain. 

Through a series of models, the authors established how transshipments can be used to 

enhance both agility and leanness.  

 

Deniz et al. (2006) considered coordination among stocking locations through 

replenishment strategies that explicitly take into account lateral transshipments, i.e., 

transfer of a product among locations at the same echelon level. The basic contribution of 

our research is the incorporation of supply capacity into the traditional emergency 

transshipment model. The authors formulated the capacitated production case as a 
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network flow problem embedded in a stochastic optimization problem. The authors 

developed a solution procedure based on infinitesimal perturbation analysis (IPA) to 

solve the stochastic optimization problem numerically. The authors analyzed the impact 

on system behavior and on stocking locations’ performance when the supplier may fail to 

fulfill all the replenishment orders and the unmet demand is lost. The  authors found that 

depending on the production capacity, system behavior can vary drastically. Moreover, in 

a production-inventory system, the authors found evidence that either capacity flexibility 

(i.e., extra production) or transshipment flexibility is required to maintain a certain level 

of service.  

 

Taragas and Cohen (1993) studied two-location transshipment model which allow for 

positive replenishment lead-times. With positive replenishment lead-times, it might be 

beneficial to hold back stock for future demands, and so it is not necessarily optimal to 

always transship from the other location (complete pooling) when shortages occur. 

However, their numerical results showed that complete pooling generally dominates 

partial pooling.  

 

Herer and Rashit (1999) studied the two-location transshipment problem to include fixed 

and joint replenishment costs and the multiperiod case and defined a set of assumptions 

that lead to “complete pooling.” Complete pooling means that if one location has excess 

stock while another location is short, the number of units transshipped will be the 

minimum of the excess and the shortage. The authors showed that no transhipments will 

occur if both locations are short or if both have excess stock, and derived several 
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properties regarding the structure of the corresponding optimal replenishment and 

transshipment policies.  

 

Herer and Tzur (2001) investigated the strategy of transshipments in a dynamic 

deterministic demand environment over a finite planning horizon. The authors considered 

a system of two locations which replenish their stock from a single supplier, and where 

transshipments between the locations are possible. The authors model included fixed 

(possibly joint) and variable replenishment costs, fixed and variable transshipment costs, 

as well as holding costs for each location and transshipment costs between locations. The 

problem was to determine how much to replenish and how much to transship each period; 

thus the study can be viewed as a synthesis of transshipment problems in a static 

stochastic setting and multilocation dynamic deterministic lot sizing problems. The 

authors provided interesting structural properties of optimal policies which enhance the 

understanding of the important issues which motivate transshipments and allowed the 

development of an efficient polynomial time algorithm for obtaining the optimal strategy. 

By exploring the reasons for using transshipments, the model enabled practitioners to 

envision the sources of savings from using this strategy and therefore motivated them to 

incorporate it into their replenishment strategies. With this model the authors were able to 

minimize the total replenishment, holding and transshipment costs over a finite horizon.  

 

Dong and Rudi (2004) studied how transshipments affect manufacturers and retailers, 

considering both exogenous and endogenous wholesale prices. For a distribution system 

where a single manufacturer sells to multiple identical-cost retailers, the authors 
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considered both the manufacturer being a price taker and the manufacturer being a price 

setter in a single-period setup under multivariate normal demand distribution. In the case 

of the manufacturer being a price taker, the authors provided several analytical results 

regarding the effects of key parameters on order quantities and profits. In the case of the 

manufacturer being a price setter, the authors characterized the Stackelberg game that 

arises, and provided several insights into how the game dynamics are affected by 

transshipments. Specifically, the authors found that risk pooling makes retailers’ order 

quantities less sensitive to the wholesale price set by the manufacturer; hence, in general, 

the manufacturer benefits from retailers’ transshipments by charging a higher wholesale 

price, while retailers are often worse off. The author’s model captures the effect of 

demand correlation and the effect of the number of retailers throughout, and it illustrates 

the findings by a numerical example. The authors also provided an interactive Web page 

for numerical experiments.  

 

Roberto et al. (2009) considered the stochastic capacitated transshipment problem for 

freight transportation where an optimal location of the transshipment facilities, which 

minimizes total cost, must be found. The total cost is given by the sum of the total fixed 

cost plus the expected minimum total flow cost, when the total throughput costs of the 

facilities are random variables with unknown probability distribution. By applying the 

asymptotic approximation method derived from the extreme value theory, a deterministic 

nonlinear model, which belongs to a wide class of Entropy maximizing models, is then 

obtained. The computational results showed a very good performance of this 

deterministic model when compared with stochastic one. 
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Mangal and Chandna (2007) examined the antecedents of retailer - retailer partnership 

and to explore its impact on the supply chain performance. The authors considered 

coordination among stocking locations through replenishment strategies that take 

explicitly into consideration transshipments, transfer of a product among locations at the 

same echelon level. A continuous review inventory system was adopted, in which lateral 

transshipments are allowed. In general, if a demand occurs at a location and there is no 

stock on hand, the demand is assumed to be backordered or lost. Lateral transshipments 

serve as an emergency supply in case of stock out and the rule for lateral transshipments 

is to always transship when there is a shortage at one location and stock on hand at the 

other. The aim is to explore the role of lateral transshipment to control inventory and 

associated cost within supply chain and, from this, to develop an exploratory framework 

that assists understanding in the area. A simple and intuitive model was presented that 

enables us to characterize optimal inventory and transshipment policies for ‘n’ locations. 

The study was based on a case study of a bi-wheeler company in India by using its data 

and to strengthen its supply chain. The results obtained enabled the managers to 

overcome the uncertainties of demand and lead-time resulting into customer satisfaction 

and cost reduction.  

 

Banu and Sunderesh (2005) studied a single-item two-echelon inventory system where 

the items can be stored in each of N stocking locations is optimized using simulation. The 

aim of this study was to minimize the total inventory, backorder, and transshipments 

costs, based on the replenishment and transshipment quantities. In this study, 
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transshipments which are the transfer of products among locations at the same echelon 

level and transportation capacities which are the transshipment quantities between 

stocking locations, were also considered. Here, the transportation capacities among the 

stocking locations are bounded due to transportation media or the locations’ 

transshipment policy. Assuming stochastic demand, the system is modeled based on 

different cases of transshipment capacities and costs. To find out the optimum levels of 

the transshipment quantities among stocking locations and the replenishment quantities, 

the simulation model of the problem was developed using ARENA 10.0 and then 

optimized using the Opt Quest tool in this software.  

 

Mabel et al. (2006) developed an analytical framework for studying a two-echelon 

distribution system consisting of one central warehouse and multiple retail locations with 

transshipment operations among the retailers. The authors’ framework can be used to 

model very general distribution systems and analyze the impact of transshipment under 

different system configurations. The authors demonstrated that their proposed analytical 

framework was analytically tractable and computationally efficient for analyzing even 

large-scale distribution systems. From a numerical study using the authors framework, 

they addressed a number of managerial issues regarding the impact of transshipment on 

reducing the costs of the distribution system under different system configurations and 

retailer characteristics. The managerial insights obtained from the authors analysis was 

able to evaluate the potential benefits by investing in transshipment operations.  
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The transportation problem has offered two mathematical facets: (1) as a specialized type 

of linear programming problem, (2) as a method of representation of some combinatorial 

problems. Orden (1956) developed a third aspect of the mathematical properties of the 

transportation problem. It was shown that the same mathematical framework can be 

extended beyond pair-wise connections, to the determination of optimum linked paths 

over a series of points. This extension although viewed here as a linear programming 

problem, takes advantage of the combinatorial aspect of the transportation problem, and 

applications may arise which, like the assignment problem, appear to be combinatorial 

problems, but which can be solved by linear programming.  

 

A dynamic network consists of a graph with capacities and transit times on its edges. The 

quickest transshipment problem is defined by a dynamic network with several sources 

and sinks; each source has a specified supply and each sink has a specified demand. The 

problem is to send exactly the right amount of flow out of each source and into each sink 

in the minimum overall time. Variations of the quickest transshipment problem have been 

studied extensively; the special case of the problem with a single sink is commonly used 

to model building evacuation. Similar dynamic network flow problems have numerous 

other applications; in some of these, the capacities are small integers and it is important to 

find integral flows. There are no polynomial-time algorithms known for most of these 

problems.  Hoppe and Tardos (1997) presented the first polynomial-time algorithm for 

the quickest transshipment problem. The author’s algorithm provides an integral optimum 

flow. Previously, the quickest transshipment problem could only be solved efficiently in 

the special case of a single source and single sink.  
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Transshipments, monitored movements of material at the same echelon of a supply 

chain, represent an effective pooling mechanism. With a single exception, research on 

transshipments overlooks replenishment lead times. The only approach for two-location 

inventory systems with non-negligible lead times could not be generalized to a multi-

location setting, and the proposed heuristic method cannot guarantee to provide optimal 

solutions. Gong and Yucesan (2006) studied a model that uses simulation optimization 

by combining an LP/network flow formulation with infinitesimal perturbation analysis 

to examine the multi-location transshipment problem with positive replenishment lead 

times, and demonstrates the computation of the optimal base stock quantities through 

sample path optimization. From a methodological perspective, the authors deployed an 

elegant duality-based gradient computation method to improve computational efficiency. 

In test problems, the author’s algorithm was also able to achieve better objective values 

than an existing algorithm.  

Glover et al. (2005) developed a primal simplex procedure to solve transshipment 

problems with an arbitrary additional constraint. The procedure incorporates efficient 

methods for pricing-out the basis, determining certain key vector representations, and 

implementing the change of basis. These methods exploit the near triangularity of the 

basis in a manner that takes advantage of computational schemes and list structures used 

to solve the pure transshipment problem. The authors implemented these results in a 

computer code, I/O PNETS-I. Computational results (necessarily limited) confirm that 

this code is significantly faster than APEX-III on some large problems. The authors also 

developed a fast method for determining near optimal integer solutions. Computational 
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results showed that the near optimum integer solution value was usually within 0.5% of 

the value of the optimum continuous solution value.  

A transshipment problem with demands that exceed network capacity can be solved by 

sending flow in several waves. How can this be done using the minimum number of 

iterations? This is the question tackled in the quickest transshipment problem. Hoppe and 

Tardos (1997) described the only known polynomial time algorithm that finds an integral 

solution to this problem. The author’s algorithm repeatedly minimizes sub-modular 

functions using the ellipsoid method, and is therefore not at all practical. Fleischer 

presented an algorithm that finds a fully integral quickest transshipment with a 

polynomial number of maximum flow computations. When there is only one sink, the 

quickest transshipment problem is significantly easier. For this case, the authors showed 

how the algorithm can be sped up to return an integral solution using O(k) maximum 

flow computations, where k is the number of sources.  

 

Ozdemir et al. (2003) studied a supply chain model, which consists of N retailers and one 

supplier. The retailers may be coordinated through replenishment strategies and lateral 

transshipments, that is, movement of a product among the locations at the same echelon 

level. Transshipment quantities may be limited, however, due to the physical constraints 

of the transportation media or due to the reluctance of retailers to completely pool their 

stock with other retailers. The authors introduced a stochastic approximation algorithm to 

compute the order-up-to quantities using a sample-path-based optimization procedure. 

Given an order-up-to S policy, the authors determined an optimal transshipment policy, 

using an LP/network flow framework. Such a numerical approach allows the authors to 

study systems with arbitrary complexity. 
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The decentralized transshipment problem is a two-stage decision making problem where 

the companies first choose their individual production levels in anticipation of random 

demands and after demand realizations they pool residuals via transshipment. The 

coordination will be achieved if at optimality all the decision variables, i.e. production 

levels and transshipment patterns, in the decentralized system are the same as those of 

centralized system. Hezarkhani and Kubiak (2009) studied a model with the coordination 

via transshipment prices. The authors proposed a procedure for deriving the 

transshipment prices based on the coordinating allocation rule introduced by Anupindi et 

al. (2006). With the transshipment prices being set, the companies are free to match their 

residuals based on their individual preferences. The authors drew upon the concept of 

pair-wise stability to capture the dynamics of corresponding matching process. As the 

main result of the study, the authors showed that with the derived transshipment prices, 

the optimum transshipment patterns are always pair-wise stable, i.e. there are no pairs of 

companies that can be jointly better off by unilaterally deviating from the optimum 

transshipment patterns. 

Rosa et al. (2001) studied the Arc Routing and Scheduling Problem with Transshipment 

(ARPT), a particular Arc Routing Problem whose applications arise in garbage collection. 

In the ARPT, the demand is collected by specially equipped vehicles, taken to a transfer 

station, shredded or compacted and, finally, transported to a dump site by means of high-

capacity trucks. A lower bound, based on a relaxation of an integer linear formulation of 

the problem, was developed for the ARPT. A tailored Tabu Search heuristic was also 

devised. Computational results on a set of benchmark instances were reported which 

proved to be efficient as compared with existing methods.  
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Asmuth et al., (1979) studied a multi-commodity transshipment problem where the prices 

at each location are an affine function of the supplies and demands at that location and 

the shipping costs are an affine function of the quantities shipped. A system of prices, 

supplies, demands, and shipments is defined to be equilibrium, if there is a balance in the 

shipments, supplies, and demands of goods at each location, if local prices do not exceed 

the cost of importing, and if shipments are price efficient. The authors used Lemke’s 

algorithm to compute the equilibrium.  

Perincherry and Kikuchi (1990) presented a transshipment problem in which the 

projected demand and supply at different locations on different days are known in fuzzy 

quantities. The formulation of the model follows that of fuzzy linear programming in that 

the solution is a shipment schedule which satisfies the objective at a `reasonable cost'. 

Priorities for satisfying requirements at demand points and supply points on selected days 

were incorporated by multiplying corresponding weights to h, the level of satisfaction. 

The authors provided several examples for their formulation. 

Dahan (2009) studied a model which considered two retailers between which 

transshipments can take place at the end of the period. The retailers differ in cost and 

demand distributions, operate in a single period, and cooperate to minimize joint costs. 

The authors work differs from previous analyses as it considered the possibility that 

customers are not always willing to wait for transshipments. Instead, only some 

customers are willing to wait and return to the retailer for transshipments. The objective 

of the study was to find the replenishment levels and transshipment quantities that 

minimize the total expected system cost. The authors considered two cases - a partially 
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deterministic case, and a fully stochastic case. In the partially deterministic case, the 

number of returning customers was a known fraction of those that could not be satisfied 

off-the-shelf. The fully stochastic case treated the number of returning customers as a 

random variable whose probability density function is known and whose expected value 

was a fraction of the customers that could not be satisfied off-the-shelf. In the partially 

deterministic case, the authors showed that the transshipment decision has a form similar 

to complete pooling. They proved that the objective function was convex in the 

replenishment levels, and suggested numerical methods for finding the optimal 

replenishment levels.  

 

Topkis (1984) developed a complement and substitution principles applicable to sittings 

in transhipment dual stage problems such as those encountered in factories and 

warehouses. Direct examination of the basic property of this transportation problem 

suggested that two locations of a similar nature would be reasonable substitutes. Such 

elements may not apply to location pairs where there were one or more warehouses. 

Where no warehouse was present, complement and substitution principles are functional. 

Model illustrations of factory warehouses and demand centre locations were highlighted 

in the author’s results. 

Huang and Greys (2008) studied a newsvendor game with transshipments, in which n 

retailers face a stochastic demand for an identical product. Before the demand was 

realized, each retailer independently orders her initial inventory. After the demand was 

realized, the retailers selected an optimal transshipment pattern and ship residual 

inventories to meet residual demands. Unsold inventories were salvaged at the end of the 
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period. The authors compared two methods for distribution of residual profit—

transshipment prices (TPs) and dual allocations (DAs)—that were previously analyzed in 

literature. TPs are selected before the demand is known, and DAs, which were obtained 

by calculating the dual prices for the transshipment problem, were calculated after 

observing the true demand. The authors first studied the conditions for the existence of 

the Nash equilibrium under DA and then compared the performance of the two methods 

and showed that neither allocation method dominates the other. The author’s analysis 

suggested that DAs may yield higher efficiency among “more asymmetric” retailers, 

whereas TPs worked better with retailers that were “more alike,” but the difference in 

profits does not seem significant. The authors also linked expected dual prices to TPs and 

used those results to develop heuristics for TPs with more than two symmetric retailers. 

For general instances with more than two asymmetric retailers, the authors proposed a TP 

agreement that uses a neutral central depot to coordinate the transshipments (TPND). 

Although DAs in general outperform TPND in our numerical simulations, its ease of 

implementation makes TPND an attractive alternative to DAs when the efficiency losses 

are not significant (e.g., high critical fractiles or lower demand variances).  

 

Lateral transshipments in multi-echelon stochastic inventory systems imply that locations 

at the same echelon of a supply chain share inventories in some way, in order to deal with 

local uncertainties in demands. While the structure of a transshipment policy will depend 

on many important factors, a commonly observed phenomenon at the retail level, called 

"customer switching", may be of some significance. Under such a phenomenon, a 

customer, who cannot obtain a desired product at a specific location, may visit one or 
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more other retail locations in search of the item. Liao (2010) studied the inventory 

replenishment and transshipment decisions in the presence of such stochastic "customer 

switching" behavior, for two firms which were either under centralized control, or operate 

independently. The first model adopted in this study considered two retailers that sell the 

same product to retail customers. After demand was realized, transshipments occur if 

only one location has insufficient inventory. Under this circumstance, a random fraction 

of the unfulfilled demand from the stocked out firm (which was referred to as the 

"shortage firm") may switch to the other firm with surplus inventory (which was referred 

to as the "surplus firm"). We examine the impact of such customer switching behavior on 

the firms' inventory decisions, and found out that the firm with surplus inventory is 

willing to (1) transship the entire quantity requested ("complete pooling policy"), (2) 

transship a portion of the amount requested ("inventory keeping policy"), or (3) transship 

nothing ("no-shipping policy") to the shortage firm. The authors demonstrated that a 

unique pair of optimal order quantities exists if the two firms are centeredly coordinated.  

 

Herer et al. (2006) considered coordination among stocking locations through 

replenishment strategies that take explicitly into consideration transshipments, that is, 

transfer of a product among locations at the same echelon level. The authors incorporated 

transportation capacity such that transshipment quantities between stocking locations are 

bounded due to transportation media or the location's transshipment policy. The authors 

modeled different cases of transshipment capacity as a capacitated network flow problem 

embedded in a stochastic optimization problem. Under the assumption of instantaneous 

transshipments, the authors developed a solution procedure based on infinitesimal 

perturbation analysis to solve the stochastic optimization problem, where the objective 
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was to find the policy that minimizes the expected total cost of inventory, shortage, and 

transshipments. Such a numerical approach provides the flexibility to solve complex 

problems. Investigating two problem settings, the authors showed the impact of 

transshipment capacity between stocking locations on system behavior. The authors 

found out that transportation capacity constraints do not only increase total cost, but also 

modify the inventory distribution throughout the network.  

 

Zhaowei et al. (2009) studied a new type of transshipment problem, the flows through the 

cross dock are constrained by fixed transportation schedules and any cargos delayed at 

the last moment of the time horizon of the problem will incur relative high inventory 

penalty cost. The problem is known to be NP-complete in the strong sense. The authors 

therefore focused on developing efficient heuristics. Based on the problem structure, the 

authors proposed a Genetic Algorithm to solve the problem efficiently. Computational 

experiments under different scenarios showed that GA outperforms CPLEX solver. 

 

Herer and Tzur (1998) investigated the strategy of transshipments in a dynamic 

deterministic demand environment over a finite planning horizon. The authors considered 

a system of two locations which replenished their stock from a single supplier, and where 

transshipments between the locations are possible. The authors model included fixed and 

variable replenishment costs, fixed and variable transshipment costs, as well as holding 

costs for each location and transshipment costs between locations. The problem was to 

determine how much to replenish and how much to transship in each period. The authors 

provided interesting structural properties of optimal policies which enhanced the 
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understanding of the important issues which motivate transshipments and allowed the 

development of an efficient algorithm for obtaining the optimal strategy. By exploring the 

reasons for using transshipments, the model enabled practitioners to envision the sources 

of savings from using this strategy and therefore motivated them to incorporate it into 

their replenishment strategies 

 

 

Belgasmi et al. (2008) studied a multi-location inventory system where inventory choices 

at each location are centrally coordinated. Lateral transshipments are allowed as recourse 

actions within the same echelon in the inventory system to reduce costs and improve 

service level. However, this transshipment process usually causes undesirable lead times. 

The authors proposed a multi-objective model of the multi-location transshipment 

problem which addressed optimizing three conflicting objectives: (1) minimizing the 

aggregate expected cost, (2) maximizing the expected fill rate, and (3) minimizing the 

expected transshipment lead times. The authors applied an evolutionary multi-objective 

optimization approach using the strength Pareto evolutionary algorithm (SPEA2), to 

approximate the optimal Pareto front. Simulation with a wide choice of model parameters 

showed the different trades-off between the conflicting objectives.  

Transshipments, monitored movements of material at the same echelon of a supply chain, 

represent an effective pooling mechanism. Earlier papers dealing with transshipments 

either do not incorporate replenishment lead times into their analysis, or only provide a 

heuristic algorithm where optimality cannot be guaranteed beyond settings with two 

locations. Gong and Yucesan (2010) presented a method that uses infinitesimal 

perturbation analysis by combining with a stochastic approximation method to examine 
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the multi-location transshipment problem with positive replenishment lead times. It 

demonstrates the computation of optimal base stock quantities through sample path 

optimization. From a methodological perspective, this study deploys a duality-based 

gradient computation method to improve computational efficiency. From an application 

perspective, it solves transshipment problems with non-negligible replenishment lead 

times.  

  

One of the most important problems in supply chain management is the distribution 

network design problem system which involves locating production plants and 

distribution warehouses, and determining the best strategy for distributing the product 

from the plants to the warehouses and from the warehouses to the customers. Vahidreza 

et al., (2009) studied a model which allows for multiple levels of capacities available to 

the warehouses and plants. The authors developed a mixed integer programming model 

for the problem and solved it by a heuristic procedure which contains 2 sub-procedures. 

The authors used harmony-search meta-heuristic as the main procedure and linear 

programming to solve a transshipment problem as a subroutine at any iteration of the 

main procedure. 

 

Glover et al. (1974) presented a primal simplex procedure to solve transshipment 

problems with an arbitrary additional constraint. The procedure incorporates efficient 

methods for pricing-out the basis, determining representations, and implementing the 

change of basis. These methods exploit the near triangularity of the basis in order to take 

full advantage of the computational schemes and list structures used in solving the pure 

transshipment problem. Also reported was the development of a computer code, I/O 
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PNETS-I for solving large scale singularly constrained transshipment problems. This 

code has demonstrated its efficiency over a wide range of problems and has succeeded in 

solving a singularly constrained transshipment problem with 3000 nodes and 12,000 

variables in less than 5 minutes on a CDC 6600. Additionally, a fast method for 

determining near optimal integer solutions is also developed. Computational results 

showed that the near optimum integer solution value is usually within a half of one 

percent of the value of the optimum continuous solution value. 

Cheng and Karimi (2002) addressed a special case of the general chemical transhipment 

problem, namely the tanker lightering problem. When tankers are fully loaded with crude 

oil, they may not be able to enter the shallow channels or refinery ports due to the draft 

limitation. Under such circumstances, it is necessary to transfer some part of the crude oil 

from the tanker to lightering vessels in order to make the tanker “lighter”. After such 

transhipment operation, the tanker can travel to the refinery port, which it previously 

cannot. And, the lightering vessels also travel to the refinery port to deliver the lightered 

crude oil. With tanker lightering operation, large tankers can also deliver crude oil to 

shallow-draught refinery ports. Furthermore, it helps to reduce the demurrage costs of 

tankers as well as inventory holding costs (Chajakis, 2000) at the refinery. During 

congested time, tankers could spend days awaiting lightering service. Since the 

demurrage costs of tankers are extremely high, effective scheduling of lightering 

operation is crucial for minimizing the system cost by reducing the waiting times of 

tankers and increasing the utilization of lightering vessels.  

Chajakis (1997) considered a scheduling problem faced by a shipping company that 

provides lightering services to multiple refineries clustered in a region. The company 



 

38 

 

operates a fleet of multi-compartment lightering vessels with a mix of different 

configurations such as numbers of compartments, sizes, speeds, heating equipment, and 

so on. When a tanker arrives at the lightering location, one lightering vessel pumps off 

crude oil from one side of the tanker. Therefore, at most two lightering services can take 

place simultaneously for a tanker, one at each side of the tanker. And, these multi-

compartment lightering vessels can pick up multiple types of crude from the 

same/different tankers during a voyage. After enough crude oil has been offloaded, the 

tanker leaves the lightering system and travels to its designated refinery port. However, 

lightering vessels travel to the refinery ports, deliver the crude oils, and then return to the 

lightering location to continue their service. In other words, the lightering vessels make 

multiple voyages among the refinery ports and lightering location in order to service 

multiple tankers. Furthermore, the authors considered a two-stage lightering practice for 

large tankers, first stage at an offshore location farther from the refinery and the second 

stage at the lightering location closer to the refinery.  

Gilbert et al. (1997) examined a multiperiod capacity transhipment model with 

upgrading. There are multiple product types, corresponding to multiple classes of 

demand, and the firm purchases capacity of each product before the first period. Within 

each period, after demand arrives, products are allocated to customers. Customers who 

arrive to find that their product has been depleted can be upgraded by at most one level. 

The authors showed that the optimal allocation policy is a simple two-step algorithm: 

First, they used any available capacity to satisfy same-class demand, and then upgrade 

customers until capacity reaches a protection limit, so that in the second step the higher-

level capacity is rationed. The authors showed that these results hold both when all 
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capacity is salvaged at the end of the last demand period as well as when capacity can be 

replenished (in the latter case, an order up to policy is optimal for replenishment). 

Although finding the optimal protection limits was computationally intensive, the authors 

described bounds for the optimal protection limits that take little effort to compute and 

can be used to effectively solve large problems.  

 

Mues et al. (2005) stated that the transhipment Problems and Vehicle Routing Problems 

with Time Windows (VRPTW) are common network flow problems and well studied. 

Combinations of both are known as intermodal transportation problems. This concept 

describes some real world transportation problems more precisely and can lead to better 

solutions, but they are examined rarely as mathematical optimization problems.  

According to White (1972), the movement of vehicles and goods in a transportation 

system can be represented as flows through a time-dependent transhipment network. An 

inductive out-of-kilter type of algorithm was presented which utilizes the basic 

underlying properties of the dynamic transhipment network to optimize the flow of a 

homogeneous commodity through the network, given a linear cost function.  

Banerjee et al. (2003) examined the effects of transshipments in different operating 

conditions one of which is based on the concept of inventory balancing via 

transshipments. Under their redistribution policy, the beginning inventory at each 

location is equalized. Bertrand and Bookbinder (1998) also use the balancing of the 

beginning inventory as a redistribution policy for identical retailers. 
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Hsu and Bassok (1999) considered a single period problem with one input resulting in a 

random yield of multiple, downward substitutable products. They showed how the 

network structure of the problem can be used to devise an efficient algorithm.  

McGillivray and Silver (1978) considered a case where products had identical costs and 

there is a fixed probability that a customer demand for a stocked-out product can be 

substituted by another available product.  

 

Bertrand and Bookbinder (1998) extend the complete pooling policy problem, whereby 

the amount transshipped from location i to location j is the minimum between the excess 

at location i and the shortage at location j: to a system whose stock keeping locations 

have non-identical costs. In particular, the authors considered a warehouse following a 

periodic order up to S policy based on the system stock. Once the warehouse receives a 

shipment, it is entirely allocated to the retailers, who experience independent and (not 

necessarily identically distributed) normal demand. Prior to a new replenishment (order 

by the warehouse), system stock is redistributed—in a preventive transshipment mode—

among the retailers to minimize the expected holding, backorder and transshipment costs. 

In the case with identical retailers, the authors analytically showed that redistribution 

reduces the variance of the net inventory prior to a new order. For the case with non-

identical retailers, a one-parameter-at-a-time simulation experiment showed that higher 

values of the length of the replenishment cycle, the number of retailers, holding costs, 

lead times (LTs) from the warehouse to the retailers, coupled with low values for 

transhipment costs, supplier LTs, and shortage penalties, favor a redistribution policy.  
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CHAPTER      3 

METHODOLOGY 

3.0 INTRODUCTION 

In this chapter we shall discuss the transportation and the transshipment problems and 

their solution procedures. 

3.1.1 THE TRANSPORTATION PROBLEM  

The transportation problem seeks to find the determination of a shipping plan of a single 

commodity from a number of sources, (say, m), to a number of destinations, (say, n), at a 

minimum total cost, while satisfying the demand at all destination.  

The standard scenario where a transportation problem arises is that of sending units of a 

product across a network of highways that connect a given set of cities. Each city is 

considered either as a "source," (supply point) or a "sink,” (demand point). Each source 

has a given supply, each sink has a given demand, and each highway that connects a 

source-sink pair has a given transportation cost per unit of shipment. This can be 

visualized in the form of a network, as depicted in Figure 3.1.  
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S1                                  c11                                                              D1 

                                   c12 

                                  c21 

S2                              c22                                                                 D2 

 .                                         c2n               . 

 .                             .cn2 

SN                               cnn                                                                DN 

 

                                     Figure 3.1 Shipment from sources to sinks   

Given such a network, the problem of interest is to determine an optimal transportation 

scheme that minimizes the total cost of shipments, subject to supply and demand 

constraints. Problems with this structure arise in many real-life situations. The 

transportation problem is a linear programming problem, which can be solved by the 

regular simplex method but due to its special structure a technique called the 

transportation technique is used to solve the transportation problem. It got its name from 

its application to problems involving transporting products from several sources to 

several destinations, although the formation can be used to represent more general 

assignment and scheduling problems as well as transportation and distribution problems. 

The two common objectives of such problems are either to:   



 

43 

 

 minimize the total transportation cost of shipping a single commodity from m 

sources to n destinations, or   

 maximize the profit of shipping from m sources to n destinations.    

3.1.2 CHARACTERISTICS OF A TRANSPORTATION PROBLEM  

a. Objective function is to reduce the transportation cost to the minimum.  

b. Maximum quantity available at the sources is limited. This is a constraint.  

c. Maximum quantity required at the destination is specified. This cannot be exceeded. 

This is another constraint.  

d. Transportation cost is specified for each movement.  

e. Sum of the products available from all sources is equal to sum of the products 

distributed at various destinations  

 

Maximum quantity available at the source, maximum quantity required at the destination 

and the cost of transportation, all refer to a single product.  

3.2 MATHEMATICAL FORMULATION  

Let the cost of transporting one unit of goods from ith origin to jth destination be Cij , i= 

1,2, ….m, j=1,2,….n. If xij ≥ 0 is the amount of goods to be transported from ith origin to 

jth destination, then the problem is to determine xij so as to 

                                   Minimize Z = ∑ ∑ 𝑋𝑖𝑗𝐶𝑖𝑗
𝑛
𝑗=1

𝑚
𝑖=1  

subject to the constraint  
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                                        ∑ 𝑋𝑖𝑗
𝑛
𝑗=1   = ai, ( i = 1, 2, ..., m)  

                                        ∑ 𝑋𝑖𝑗
𝑚
𝑖=1  = bj, ( j = 1, 2, ..., n)  

                                and xij ≥ 0 , for all i and j, where ai and bj are demand and supply 

availabilities.  

3.2.1 FEASIBLE SOLUTION  

A set of non-negative allocations, X which satisfies the row and column restrictions is 

known as feasible solution. A feasible solution to an m-origin and n-destination problem 

is said to be Basic Feasible Solution ( BFS) if the number of positive allocations are 

(m+n–1).  

3.2.2 NON – DEGENERATE BASIC FEASIBLE SOLUTION  

A basic feasible solution of an (m × n) transportation problem is said to be non- 

Degenerate if it has following two properties: (a) Initial basic feasible solution must 

contain exactly (m+n–1) number of individual allocations.  

(b) These allocations must be in independent positions. Independent positions of a set of 

allocations mean that it is always impossible to form any closed loop through these 

allocations. See fig 3.2 below. 

                                                                                                                                                         

0   0 

                  0 0  

 0 0  

 

Closed loop  (ie Non – independent position) 
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0   0 

0  0  

0 0   

 

Independent position 

Fig 3.2  Figure showing Non-independent and depended Loop 

Definition (Loop) 

Given a transportation table, an ordered set of four or more cells is said to form a loop if:  

a. Any two adjacent cells in the ordered set lie in the same row or in the same column.  

b. Any three or more adjacent cells in the ordered set do not lie in the same row or in the 

same column.  

3.2.3 DEGENERATE BASIC FEASIBLE SOLUTION  

A basic feasible solution that contains less than (m + n – 1) non – negative allocations is 

said to be degenerate basic feasible solutions.  

3.2.4 DEGENERACY IN TRANSPORTATION PROBLEM  

Transportation with m-origins and n-destinations can have (m+n-1) positive basis 

variables or allocation, otherwise the basic solution degenerates. So whenever the number 

of basic cells or occupied cells is less than (m + n-1), the transportation problem is 

degenerate.  
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3.2.5 HOW TO RESOLVE DEGENERACY IN TRANSPORTATION PROBLEM  

To resolve the degeneracy, the positive variables are augmented by as many zero-valued 

variables as is necessary to complete (m +n –1) basic variables.  

3.3 BALANCED TRANSPORTATION PROBLEM  

If total supply equals total demand, the problem is said to be a balanced transportation 

problem: that is  

                                      ∑ 𝑎𝑖
𝑚
𝑖=1   = ∑ 𝑏𝑗

𝑛
𝑗=1  

3.3.1 UNBALANCED TRANSPORTATION PROBLEM  

The transportation problem is known as an unbalanced transportation problem for the 

following  two cases. 

Case (1).  

Here,    ∑ 𝑎𝑖
𝑚
𝑖=1  > ∑ 𝑏𝑗

𝑛
𝑗=1  

In solving this, we first balance it by introducing a dummy destination in the 

transportation table. The cost of transporting to this destination is set equal to zero. The 

requirement at this destination is assumed to be equal to  

                            bn+1 =   ∑ 𝑎𝑖
𝑚
𝑖=1   -  ∑ 𝑏𝑗

𝑛
𝑗=1  

 

 

Case (2) .  

Here,   ∑ 𝑎𝑖
𝑚
𝑖=1   <  ∑ 𝑏𝑗

𝑛
𝑗=1  
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To solve this, we first balanced it by introducing a dummy origin in the transportation 

table. The costs associated in transporting the dummy source are set equal to zero. The 

availability is  

                                am+1 =  ∑ 𝑏𝑗
𝑛
𝑗=1   - ∑ 𝑎𝑖

𝑚
𝑖=1  

3.4 THE TRANSPORTATION TABLEAU 

Table 3.4 The Transportation Table 

 D1 D2 D3 D4 SUPPLY 

S1 

C11              

                                                                                

              X11   

C12              

                                                                                

              X12  

     …… C1N             

                                                                                

              X1N 

S1 = a1 

S2 

C21              

                                                                                

              X21   

C22              

                                                                                

              X22   

     ……. C2N             

                                                                                

              X2N   

S2 = a2 

……    ……    ……     ……..     ……..      …….. 

SN 

CM1              

                                                                                

              XM1   

CM2              

                                                                                

              XM2 

    …….. CMN              

                                                                                

              XMN   

SN= aM 

DEMAND 

d1 

 . 

 .  

b1 

d2 

 . 

 .  

b2 

 

   ……… 

dn 

 . 

 .  

bn 

 

 

3.5 METHODS OF FINDING INITIAL BASIC FEASIBLE SOLUTION 

FOR A BALANCED TRANSPORTATION PROBLEM  

The three basic methods are:  

 The Northwest Corner Method  

 The Least Cost Method  

 The Vogel’s Approximation Method  
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3.5.1NORTHWEST-CORNER METHOD  

The steps below are used in the Northwest- Corner method 

Step (1) The first assignment is made in the cell occupying the upper most left-hand 

(North West) corner of the transportation table. The maximum feasible amount is 

allocated there, i.e.; x11 = min (a1, b1) .  

Step (2) If b1 > a1, the capacity of origin S1 is exhausted but the requirement at D1 is not 

satisfied. So move downs to the second row, and make the second allocation: x21 = min ( 

a2 , b1 – x11 ) in the cell ( 2,1 ). If a1 > b1, allocate x12 = min ( a1 - x11 , b2 ) in the cell ( 

1,2) .  

Step (3) Continue this until all the requirements and supplies are satisfied. 

3.5.2 LEAST-COST METHOD  

The least cost method uses shipping costs in order to come up with a basic feasible 

solution that has a lower cost.  

Step (1) Find the decision variable with the smallest shipping cost xij.  

Step (2)  Assign xij its largest possible value, which is the minimum of si and dj . 

Step (3) As in the Northwest Corner Method cross out row i and column j and reduce the 

supply or demand of the non crossed-out row or column by the value of xij,  

Step (4) Choose the cell with the minimum cost of shipping from the cells that do not lie 

in a crossed-out row or column and repeat the procedure. 
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3.5.3 VOGEL’S APPROXIMATION METHOD (VAM)  

Step 1 For each row of the transportation table, identify the smallest and the next to-

smallest costs. Determine the difference between them for each row. Display them 

alongside the transportation table by enclosing them in parenthesis against the respective 

rows. Similarly compute the differences for each column. 

Step 2 Identify the row or column with the largest difference among all the rows and 

columns. If a tie occurs, use any arbitrary tie breaking choice. Let the greatest difference 

correspond to ith row (jth column) and the minimum cost be Cij . Allocate a maximum 

feasible amount xij = min ( ai , bj ) in the ( i, j )th cell, and cross off the ith row or jth 

column. 

 Step 3. Re compute the column and row differences for the reduced transportation table 

and go to step 2. Repeat the procedure until all the rim requirements are satisfied. 

 

3.6 OPTIMAL SOLUTION  

A feasible solution (not necessarily basic) is said to be optimal if it minimizes the total 

transportation cost. 

3.6.1 THEOREM FOR TESTING OPTIMALITY 

If we have a BFS consisting of m + n – 1 independent positive allocations and a set of 

arbitrary number ui and vj (i =1,2,...m;  j =1,2,...n) such that crs = ur + vs for all occupied 

cells (r,s) then the evaluation dij corresponding to each empty cell (i, j) is given by  

dij = cij – (ui + vj)  
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If all dij > 0, then the solution is optimal and unique. 

If all dij ≥ 0, (ie at least one dij = 0), solution is optimal and alternate solution also exist. 

If at least one dij < 0, the solution is not optimal. 

3.6.2 SOLUTION TO OPTIMALITY  

As mentioned above, the solution method for transportation problems is a streamlined 

version of the Simplex algorithm. As such, the solution method also has two phases. In 

the first phase, the aim is to construct an initial basic feasible solution; and in the second 

phase, to iterate to an optimal solution. For optimality, we need a method, like the 

simplex method, to check and obtain the optimal solution. The two methods used are:  

a. Stepping-stone method  

b. Modified distributed method (MODI)  

3.6.3 STEPPING STONE  

1. Select an unused square to be evaluated. 

 

2. Beginning at this square, trace a closed path back to the original square via 

 

squares that are currently being used (only horizontal or vertical moves allowed). 

 

You can only change directions at occupied cells. 

 

3. Beginning with a plus (+) sign at the unused square, place alternative minus (-) 

 

signs and plus signs on each corner square of the closed path just traced. 

 

4. Calculate an improvement index, Iij by adding together the unit cost figures 

 

found in each square containing a plus sign and then subtracting the unit costs 

 

in each square containing a minus sign. 
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5. Repeat steps 1 to 4 until an improvement index has been calculated for all unused 

 

squares. 

 

If all indices computed are greater than or equal to zero, an optimal solution has been  

reached 

 

If not, it is possible to improve the current solution and decrease total shipping 

 

costs. 

 

3.6.4 MODIFIED DISTRIBUTED METHOD (MODI)  

It is a modified version of the stepping stone method  

MODI determines if a tableau is the optimal, tells which non-basic variable should be 

firstly considered as an entry variable, and makes use of stepping-stone to get its answer 

of next iteration  

Procedure (MODI) 

 Step 1: let ui, vj , cij variables represent rows, columns variables, and cost in the 

transportation tableau, respectively  

Step 2:(a) Form a set of equations that are used to represent all basic variables xij as         

ui + vj = cij   

  (b) Solve variables ui, vj by assign one variable = 0  

Step3: (a) Form a set of equations use to represent non-basic variable (or empty cell) as  

         Such cij – ui – vj = kij  

         (b) Evaluate variables vj by using step 2b information  

Step 4: Select the cell that has the most negative value in step 3b 

 Step 5: Use stepping-stone method to allocate resource to cell in Step 4 
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 Step 6: Repeat the above steps until all cells in step 3a has no negative Value. 

3.7 THE TRANSSHIPMENT PROBLEM  

The transshipment problem is an extension of the framework of the transportation 

problem. The extension is in allowing the presence of a set of transshipment points that 

can serve as intermediate stops for shipments, possibly with a net gain or loss in units. 

Any given transshipment problem can be converted into an equivalent transportation 

problem. Hence, the procedure for solving the transportation problems can be applied to 

the solution of transshipment problem as well.  

A transshipment problem consists of finding the cheapest way of shipping goods through 

a network of routes so that all given demands at all points of the network is satisfied. 

Given: 

 • a network of routes as a graph 

 • a set of nodes which act as sources (supplies)  

• a set of nodes which act as sinks (demands)  

• the amount of supply and demand at each node 

 • the cost of each transport route (edge)  

The transshipment problem is similar to the transportation problem except that in the 

transshipment problem it is possible to ship both into and out of the same junction node 

(point). It is an extension of the transportation problem in which intermediate nodes, 

referred to as transshipment nodes are added to source as well as sink nodes to account 

for locations such as junctions. In this more general type of distribution problem, 

shipments may be made between any pair of the three general types of nodes: origin 
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nodes, transshipment nodes and destination nodes. For example (i) transshipment 

problems permits shipments of goods from origins to transshipment nodes and on to 

destinations, (ii) From one origin to another origin, (iii) From one transshipment location 

to another, (iv) from one destination location to another and (v) directly from origins to 

destinations. 

3.7.1 THE MODEL  

The general linear programming model of a transshipment problem is 

                                    Min ∑ 𝐶𝑖𝑗𝑋𝑖𝑗𝑎𝑙𝑙𝑎𝑟𝑐𝑠  

Subject to  

                                ∑ 𝑋𝑖𝑗𝑎𝑟𝑐𝑜𝑢𝑡  -  ∑ 𝑋𝑖𝑗𝑎𝑟𝑐𝑖𝑛  = Si      nodes Origin i 

                                ∑ 𝑋𝑖𝑗𝑎𝑟𝑐𝑜𝑢𝑡  -  ∑ 𝑋𝑖𝑗𝑎𝑟𝑐𝑖𝑛  = 0     Transshipment nodes  

                                ∑ 𝑋𝑖𝑗𝑎𝑟𝑐𝑖𝑛  -  ∑ 𝑋𝑖𝑗𝑎𝑟𝑐𝑜𝑢𝑡  = Di    demand nodes j 

Where  

                    xij =  amount of units shiped from node i to node j 

                    Cij = cost per unit of shipping from node i to node j 

                    Si = supply at origin node i  

                    Dj = demand at origin node j 

The following steps describe how the optimal solution to a transshipment problem can be 

found by solving a transportation problem. 

 Step1: Balancing the given problem: Balancing means checking whether sum of 

availability constraints must be equal to sum of requirement constraints. That is ∑𝑏𝑖= 

∑𝑑𝑗. Once they are equal, go to Step two. If not by opening a Dummy row or Dummy 
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column balance the problem. The cost coefficients of dummy cells are zero. If ∑𝑏𝑖 is 

greater than ∑𝑑𝑗 , then open a dummy column, whose requirement constraint is equal to 

∑𝑏𝑖 - ∑𝑑𝑗   and the cost coefficient of the cells are zeros. 

In case if ∑𝑑𝑗 is greater than ∑𝑏𝑖, open a dummy row, whose availability constraint will 

be equal to ∑𝑑𝑗  - ∑𝑏𝑖  and cost coefficient of the cells are zeros. 

 Step2: Transshipment occurs in the network because the entire supply amount of goods 

could conceivably pass through any node of the network before ultimately reaching their 

destination nodes. In this regard each node of the network with both input and output arcs 

acts as both a source and a destination and is referred to as a transhipment node. The 

remaining nodes are either pure supply nodes or pure demand nodes. 

In converting the transhipment model into a regular transportation model, a row in the 

tableau will be needed for each supply point and transhipment point. The amounts of 

supply and demand at the different nodes are computed as 

Supply at a pure supply node = Original supply 

Demand at a pure demand node = Original demand 

Supply at a transhipment node = Original Supply + Buffer amount 

Demand at a transhipment node = Original demand + Buffer amount 

The buffer amount should be sufficiently large to allow all of the original supply(or 

demand) units to pass through any of the transhipment nodes. 

Assuming B is the desired buffer amount, then 

B = Total Supply (or Demand), thus, sum of supply or sum of demand. 

Using the buffer and the unit shipping costs given in the network, we construct the 

equivalent regular transportation model. 
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 Step 3: Solve the transportation table of step 2 by the transportation technique. 
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                                     CHAPTER     4 

DATA COLLECTION AND ANALYSIS 

4.1 INTRODUCTION  

This chapter deals with data collection, data analysis and discussion, the discussion of 

transshipment of Banknotes from Bank of Ghana to the other branch offices. The data 

was obtained from Bank of Ghana Head office Accra; the cost of transporting Banknotes 

involves fuel consumption of vehicle and  cost of labour. The main sources of Banknotes 

are Accra and Kumasi, the warehouses or junctions are Tarkoradi, Sefwi Buako, Sunyani, 

Hohoe and Tamale, and the final destinations are Cape Coast, Agona Swedru, Koforidua, 

Nkawkaw, Dunkwa-On-Offin and Wa.  

Accra and Kumasi are the only branches that have currency processing machines to 

process Banknotes received from the Commercial Banks for authentication. 

The other regional offices serve as branches for the distribution of Banknotes. 

 

Table 4.1 below shows the Distances between the Locations in Kilometers. Full table can 

be seen in Appendix (I) 
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Table 4. 1 Table of Data Showing Distances Between Locations (KM) 

 ACCRA KUMASI HOHOE ---- ----- ------ DK. OFF S. BUAKO 

ACCRA - 270 225    270 391 

KUMASI 270 - 385 ---- ---- ---- 95.7 140 

HOHOE 225 385 - ----- ------ ---- 457 525 

SUNYANI 400 130 509 ----- ------ ---- 212 137 

TAKORADI 218 242 432 ------ ------ ----- 166 266 

TAMALE 658 388 392 ------ ------ ----- 471 456 

TEMA 30.5 270 201 ------ ------- ----- 174 410 

K’DUA 85 194 190 ----- ------ ----- 266 335 

C-COAST 144 221 362 ----- ------- ----- 140 260 

NKAWKAW 145 105 280 ----- ------ ------ 177 245 

AG. SWE 72.6 220 272 ----- ------- ------ 197 348 

WA 740 470 693 ------ ------- ------ 537 488 

DK. OFF 270 95.7 457 ------ ------- ------ - 123 

S. BUAKU 391 140 525 ----- ------ ----- 123 ----- 

 

 

 

Figure 4.1 below represents data of Bank of Ghana. All the destinations serve as pure 

destinations. All junctions serve as both sources and junctions. The two main sources, 

Accra and Kumasi, serve as pure sources and destinations as well. 
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FIGURE 4. 1 This network shows the distances between locations  
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Table 4.2 below shows the fuel consumption in litres on every movement made. This 

information was gathered from the Transport Unit of the General Services Department of 

Bank of Ghana. Full table can be seen on Appendix (II) 

 

 

Table 4.2 Table of Data Showing the Fuel Consumption (in liters) on every 

movement made. 

 ACCRA KUMASI HOHOE ---- ----- ------ DK. OFF S. BUAKO 

ACCRA - 160 133.34    160 231.71 

KUMASI 160 - 228.15 ---- ---- ---- 56.71 82.96 

HOHOE 133.34 228.15 - ----- ------ ---- 270.82 311.12 

SUNYANI 237.04 77.04 301.63 ----- ------ ---- 125.63 81.19 

TAKORADI 129.19 143.41 256 ------ ------ ----- 98.37 157.63 

TAMALE 389.93 229.93 232.30 ------ ------ ----- 279.11 270.23 

TEMA 18.07 160 119.11 ------ ------- ----- 103.11 242.97 

K’DUA 50.37 114.96 112.59 ----- ------ ----- 157.63 198.52 

C-COAST 85.33 130.96 214.52 ----- ------- ----- 82.96 154.08 

NKAWKAW 85.93 62.22 165.93 ----- ------ ------ 104.89 145.19 

AG. SWE 43.02 130.37 161.19 ----- ------- ------ 116.74 206.22 

WA 438.52 278.52 410.67 ------ ------- ------ 318.23 289.19 

DK. OFF 160 56.71 270.82 ------ ------- ------ - 72.89 

S. BUAKU 231.71 82.96 311.12 ----- ------ ----- 72.89 ----- 
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The shipping costs are obtained by multiplying the costs per litre ( GH¢1.52 as at when 

Data was collected in 2011 ) by the fuel consumption of Bullion travels. This is shown in 

Table 4.3 below. Full table can be seen at Appendix (III) 

 

Table 4.3 Table of Data Showing the Amount Spent on Every Specie (GH¢) 

 ACCRA KUMASI HOHOE ---- ----- ------ DK. OFF S. BUAKO 

ACCRA - 243.20 202.67    243.20 352.19 

KUMASI 243.20 - 346.79 ---- ---- ---- 86.20 126.11 

HOHOE 202.67 346.79 - ----- ------ ---- 411.64 472.89 

SUNYANI 360.30 117.10 458.48 ----- ------ ---- 190.96 123.40 

TAKORADI 196.36 217.98 389.12 ------ ------ ----- 149.52 239.60 

TAMALE 592.69 349.49 353.09 ------ ------ ----- 424.25 410.74 

TEMA 27.47 243.20 181.05 ------ ------- ----- 156.73 2369.31 

K’DUA 76.56 174.75 171.14 ----- ------ ----- 239.60 301.75 

C-COAST 129.71 199.07 326.07 ----- ------- ----- 126.11 234.20 

NKAWKAW 130.61 94.58 252.21 ----- ------ ------ 159.43 220.68 

AG. SWE 65.39 198.17 245.00 ----- ------- ------ 177.45 313.46 

WA 666.56 423.35 624.22 ------ ------- ------ 483.70 439.57 

DK. OFF 243.20 86.20 411.64 ------ ------- ------ - 110.79 

S. BUAKU 352.19 126.11 472.89 ----- ------ ----- 110.79 ----- 
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Table 4.4 is the cost matrix, supply availability at each source is at the far right column 

and the warehouse demands are shown in the bottom row.  

Full table is shown in Appendix (IV) 

Total supply = 450 movements 

Total demand = 435 movements 

Dummy = 15 movements 

One (1) movement = 360 trays of Banknotes 

One (1) tray = 10,000 pieces of Banknotes 

 

SOURCES; 

PURE SOURCES = S1-ACCRA, S2-KUMASI,  

JUNCTIONS = S3-HOHOE, S4-SUNYANI, S5-TAKORADI, S6-TAMALE,  

S7-S BUAKO 

Table 4.4 Table of the cost matrix showing the shipping cost at the locations.  

 D1 D2 D3 --- ---- D11 D12 DUMMY SUPPLY 

S1 202.67 360.30 196.36 --- ---- 243.20 352.19 0 150 

S2 346.79 117.10 217.98 --- ---- 86.20 126.11 0 100 

S3 - 458.48 389.12 --- ---- 411.64 472.89 0 30 

S4 458.48 - 335.08 --- --- 190.96 123.40 0 35 

S5 389.12 335.08 - --- --- 149.52 239.60 0 45 

S6 353.09 270.23 615.21 --- --- 424.25 410.74 0 40 

S7 472.89 123.40 239.60 --- --- 110.79 - 0 50 

DEMAND 35 45 50 --- --- 25 60 15 450 
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DESTINATIONS; 

JUCTIONS = D1-HOHOE, D2-SUNYANI, D3-TAKORADI, D4-TAMALE,             

D12-S BUAKO   

PURE DESTINATIONS = D5-TEMA, D6-KOFORIDUA, D7-CAPE COAST,            

D8-NKAWKAW, D9-AG SWEDRU, D10-WA, D11-DUNKWAW ON OFFIN. 

 

4.2 MODEL FORMULATION 

Let xij be the number of units of Notes shipped from source i to warehouse j for the 

Banknotes. 

The objective is to minimize  

Cost = ∑ ∑ 𝑐𝑖𝑗
𝑛
𝑗

𝑚
𝑖 xij 

Then the supply constrains are  

∑ 𝑥𝑖𝑗
𝑛
𝑗=1  ≤ Si         i = 1,2,3,……m        .................. … (1)  

The demand constrains are  

∑ 𝑥𝑖𝑗
𝑚
𝑖=1  ≥ dj         j = 1,2,3,……..n       .......………… (2)  

The transshipment constrains are  

∑ 𝑥𝑖𝑗
𝑛
𝑗=1  - ∑ 𝑥𝑖𝑗

𝑚
𝑖=1  = 0                           ..…………… (3)  

And the non-negativity xij ≥ 0, for all i, j  

Cij‘s are the unit shipping cost and can be obtained in Table 4.4 and Appendix IV 

Si‘s are the supply availability at the various sources and can also be seen in Table 4.4 

and Appendix IV 

dj‘s are the demand at the various destination also to be seen in Table 4.4 and Appendix 

IV 



 

63 

 

 

 

4.3 COMPUTATIONAL PROCEDURE  

The computer used for the computation was Toshiba Intel with 250GB as Hard disk size 

and 2GB DDR2 RAM size. The operating system that runs the machine is Microsoft 

Windows 7. Quantitative Method (Q. M. 32) for windows software was used to analyse 

the data to find solution to the problem. It has a capacity of 760 bytes and approximately 

4.00 KB, on disc.  

The Q. M. 32 for windows start with an initial starting method (The Vogel’s 

Approximation method) to solve the problem, if an optimal solution is not provided, it 

then applies a method ( Modified distribution method – MODI) that would compute it to 

optimality to get an optimal solution.  

4.4 RESULTS 

Table 4.5 below is the result of the data analysed. 

The final optimal transhipment cost was GH¢30,719.80.  

Column 2 is the sources of the transhipment material, column 3 is the destinations, 

column 4 the shipment (the number of units shipped), column 5 is the unit cost per 

shipment, and column 6 is the total shipment cost. 
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Table 4.5 RESULTS ANALYSIS 

  Shipment List         

No. From To Shipment 
Cost per 
unit 

Shipment 
cost 

1 ACCRA HOHOE 5 202.67 1013.35 

2 ACCRA TADI 5 196.36 981.8 

3 ACCRA TEMA 35 27.47 961.45 

4 ACCRA K'DUAH 30 76.56 2296.8 

5 ACCRA C-COAST 25 129.71 3242.75 

6 ACCRA N'KAW 10 130.61 1306.1 

7 ACCRA AG.SWE. 25 65.39 1634.75 

8 ACCRA DUMMY 15 0 0 

9 KUMASI SUNYANI 10 117.1 1171 

10 KUMASI TAMALE 5 349.49 1747.45 

11 KUMASI N'KAW 25 94.58 2364.5 

12 KUMASI WA 25 423.35 10583.75 

13 KUMASI DK.OFF 25 86.2 2155 

14 KUMASI S.BUAKU 10 126.11 1261.1 

15 HOHOE HOHOE 30 0 0 

16 SUNYANI SUNYANI 35 0 0 

17 TAKORADI TADI 45 0 0 

18 TAMALE TAMALE 40 0 0 

19 S.BUAKU S.BUAKU 50 0 0 

 

From column 4 of the Results table above, the maximum shipment is 50 movements, 

from S Buako to S Buako destination. The next maximum shipment is also from Takoradi 

to Takoradi destination, which is 45 movements. 

The minimum shipments were 5 movements, from Accra to Hohoe destination, Accra to 

Takoradi destination, and Kumasi to Tamale destination. The next minimums were 10 

movements, from Accra to Nkawkaw Destination, from Kumasi to Sunyani Destination 

and from Kumasi to S Buako Destination. 

The optimal transhipment cost for the study is GH¢30,719.80. 
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4.5 DISCUSSION 

From the result in Table 4.5, it could be seen that shipping Banknotes from source to 

junctions then to the final destination was costly than shipping straight from source to the 

final destination. 

From row 3, 35 movements were made from Accra to Tema, at a cost per unit of 

GH¢27.47 with a total cost of GH¢961.45. From row 4, 30 movements were made from 

Accra to Koforidua, at a cost per unit of ¢76.56, with a total unit cost of GH¢2,296.80, 

whereas from row 5, 25 movements were made from Accra to Cape Coast at a unit cost 

of GH¢129.71, with a total of GH¢3,242.75. 

It was also realized that the highest unit cost per shipment from sources to the final 

destination was from Kumasi to Wa, which is 25 movements, at a maximum cost per unit 

of GH¢423.35, with a total cost of GH¢10,583.75. 
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                                             CHAPTER   5 

CONCLUSIONS AND RECOMMENDATION 

5.1 CONCLUSIONS 

Results of data collected from Bank of Ghana consisting of cost of transporting 

Banknotes from the Sources to the destinations and the number of units being transported 

to each junction and destination were analysed by using Quantitative Method (QM 32). 

The minimum cost for the period under study was around GH¢30,719.80 used by BoG. 

 

Banknotes shipment was modelled as a transhipment problem which was converted to a 

transportation problem, and subsequently solved using QM 32 for windows. Because 

some supply points and demand locations were on different locations, the results made it 

clear that it is better to transport more Banknotes within the same locality for a less cost 

transportation. Based on the findings and analysis of the collated data, it was also realized 

that it was less costly to transport Banknotes from sources to the branches directly than 

through the intermediary points or junctions from sources to the destinations. 
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5.2 RECOMMENDATION 

 This study was conducted for only one year and results of this study provide some 

scope for further studies.  

 It could be of interest to use data on the weekly basis. This will provide a more 

comprehensive view point about the cost of transporting the Banknotes. 

 QM for windows software is recomended to supply chain management and the 

transport officer since it will help them to locate the shortest possible route that 

will lead to cost effective so far as  transporting Banknotes to the final 

destinations are concerned. 

 It is also recommended that Bank of Ghana should adopt the system of 

transporting Banknotes directly to destinations, instead of passing through 

junctions since it is cost effective. 
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