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ABSTRACT  

Smeed, in 1949, provided a regression model for estimating road traffic fatalities (RTFs). In this 

study, a modified form of Smeed’s model is proposed for which it was shown that the 

multiplicative error term is less than that of Smeed’s original model for most situations. Based on 

this Modified Smeed’s model, Bayesian and multilevel methods were developed to assess RTF 

risk across sub populations of a given geographical zone. These methods consider the parameters 

of the Smeed’s model to be random variables and therefore make it possible to compute variances 

across space provided there is significant intercept variation of the regression equation across such 

regions. Using data from Ghana, the robustness of the Bayesian estimates was indicated at low 

sample sizes with respect to the Normal, Laplace and Cauchy prior distributions. Thus the 

Bayesian and Multilevel methods performed at least as well as the traditional method of estimating 

parameters and beyond this were able to assess risk differences through variability of these 

parameters in space.   
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1DEFINITIONS  

  

Road Traffic   

  

Accident:  

  

Road Traffic   

Accident resulting in injury, death or property damage and which involves 

at least one vehicle on a public road.  

Casualty:  

  

Accident   

Any road traffic accident victim injured or killed within 30 days of the 

crash. Thus the crash is the event whilst the casualty is the individual crash 

victim.  

Severity:  

  

Severity of the most seriously injured casualty.  

Fatal Accident:  

  

Serious Injury   

Road traffic accident in which, at least, one casualty dies of injuries 

sustained within 30 days of occurrence of the accident.  

 
1 National Road Safety Commission of Ghana (2011). Building and Road Research Institute (BRRI),  Road Traffic  

  
Crashes in Ghana, Statistics  



 

xv  

  

Accident:  

  

Minor or Slight  

Road traffic accident in which, at least, one person is detained in hospital as 

an in-patient for more than 24 hours.  

Injury Accident:  

  

Damage-only  

Road traffic accident in which the most severe injury sustained by a casualty 

is only minor, requiring at most first-aid attention.  

Accident:  Road traffic accident which results only in vehicle or other material  

damage.  

  

Urban:  

  

City or municipal area characterized by a concentration of residential, 

commercial and industrial buildings and activities.  

Non-urban:  

  

Areas not falling under the definition of urban.  

Junction:  Any place at which two or more roads meet, whatever the angle of intersection  

and parts of such roads lying within 25 meters of that place.  
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CHAPTER ONE INTRODUCTION  

  

1.0  Background of the Study  

There has been rapid economic growth in many countries in the world resulting in an enormous 

increase in the number of vehicles.  As a result, Road Traffic Accidents (RTAs) have become a 

serious public health problem. RTAs are considered by World Health Organization (WHO, 2004) 

as a global health problem claiming approximately 1.2 million fatalities per annum. This may be 

due to the fact that when roads are newly constructed there is likelihood that drivers may be 

tempted to over speed which may lead to accidents. Another contributing factor is that smooth 

roads may cause a driver to lose concentration or even be lazy and hence doze off thereby skidding 

off the road while driving.   

It should be pointed out that the European Economic Commission (EEC) and the World Health 

Organization (1979) have recommended a definition for road traffic accident fatalities which 

includes only deaths which occur within 30 days following the accident, since 93 – 97% of these 

fatalities take place within a one month period. A number of countries have not yet adopted this 

definition (see WHO, 1979). For example, in some countries, a road traffic fatality is recorded only 

if the victim dies at the site or is dead upon arrival at the hospital. In order to make comparison of 

accident statistics between countries reasonable, figures obtained from countries which have not 

adopted the 30-day fatality definition, should be properly adjusted.  No adjustment is required for 

figures from countries such as Ghana, U.S.A and Great Britain, which have adopted the standard 

fatality definition.  

Road traffic fatality rates of a country are known to depend upon factors such as population, 

the number of motor vehicles in use, the total length of roads, the population density and economic 

conditions among others. Two of these factors are of prime importance, namely, population (P) 

and the number of vehicles (N) (Smeed, 1964).    

Smeed (1949) gave a regression model for estimating road traffic fatalities (RTFs). In his 

paper, Smeed showed that the formula   
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N
D  

0.0003  N
P 

23 ……………………………………………………………….…..(1.1)  

gave a fairly good fit to the data from 20 countries, including European countries, USA, Canada, 

Australia and New Zealand (D = Number of RTFs, P = population size and N = number of vehicles 

in use).  The results obtained by Smeed in his study are consistent with other reported studies by 

Bener and Ofosu (1991), Jacobs and Bardsley (1977), Fouracre and Jecobs (1977), Ghee et al. 

(1997) in which an expression of the form  

    N
D  ˆ  N

P 
ˆ
 

………………………………………………………………………...(1.2)  

was used for the estimation of RTFs.  

Ponnaluri (2012) used data from all states in India to develop seven different models for 

predicting road traffic fatalities (RTFs) and also examined if the individual models were more 

relevant for application. The seven models, including that of Smeed’s, were tested for fit with the 

actual data. Smeed’s model was found to be the best fit. He showed that the original Smeed 

formulation cannot simply be discounted due to reasons cited by many researchers. This is because 

Smeed's model is parsimonious in parameter usage. According Ponnaluri (2012), Smeed's model 

appears to be observation-driven, evidence-based, and logically valid in measuring the per vehicle 

fatality rate.  

The dramatic increase in vehicle travel in developing countries called for the effective 

introduction of intervention/strategies that reduce traffic accidents. An important piece of 

information for such an introduction lay in the prediction of accidents and their fatalities, which 

was addressed in a paper published by Al-Matawah and Jadaan (2009). They stated that Smeed’s 

model was originally developed for the prediction of traffic fatalities in both developed and 

developing countries.   

Many authors tried to validate or update the Smeed formula based on newer data. The law was 

found to be valid with some changes in parameters (Adams, 1987). Fortunately, the increasing 

trend of the total number of fatalities started to change towards a decreasing trend in some 

countries, such as UK, from the 60s (Safe Speed, 2013).  
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It should be noted that, the predominant factors affecting RTFs are not the same as those of 

road traffic accidents (RTAs). Exposures to risk of RTFs (such as human error, vehicular speed, 

vehicular density, weather conditions, and nature of the roads and total length of roads) are 

predominant factors influencing road traffic accidents within a geographical region. However, the 

rate of RTFs is determined by vulnerability to risk (Such as accessibility, timeliness and 

appropriateness of emergency medical care as well as adequacy and enforcement of use of safety 

mechanisms in vehicles).  

Exposure to risk of RTFs and vulnerability to risk of RTFs are not correlated. Thus, high 

exposure does not necessarily imply high vulnerability. For instance, according to National Road 

Safety Commission (NRSC)2 of Ghana (2011) report, Greater Accra Region in Ghana, with the 

highest exposure to the risk of RTF (due to high population and vehicular densities), has the lowest 

RTF rate among all the other 9 regions in Ghana. Whilst the three Northern regions of Ghana, with 

the lowest population density have the highest rate of RTFs.  3Nigeria and Ghana have almost the 

same vehicular density. However, inhabitants of Nigeria are more vulnerable to die as result of 

road traffic accidents. Developing countries, with only about 10% of the world motorization, 

account for about 85% of annual RTFs in the world (3WHO, 2004, 2009). Thus, developed 

countries, though have greater exposure to risk of RTFs due to high vehicular density, are however 

less vulnerable to RTFs compared to developing countries.  

Predominant factors effecting of RTFs are categorized into two:  

(1) Internal factors (Safety mechanism in vehicles such as such as anti-lock braking systems 

(ABS), air bags and seatbelts)  

(2) External factors (Ambulance & Emergency Medical Services, pre-hospital care road traffic 

accident trauma patients)   

One reason why developing countries are more vulnerable to risk of RTF is due to the fact that 

a large proportion of road traffic accident trauma patients in these regions do not have access to 

formal emergency medical services (Tiska, et al., 2002). Secondly, the ages of vehicles and 

 
2 National Road Safety Commission of Ghana (2011). Building and Road Research Institute (BRRI),  Road Traffic 

Crashes in Ghana, Statistics  
3 http://www.nationmaster.com/country-info/stats/Transport/Road/Motor-vehicles-per-1000-people 3 

World Health Organization (2004) World report on road traffic injury prevention, Geneva.  

   World Health Organization. (2009). Global Status Report on Road Safety, time for action. WHO, Geneva.  
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availability of modern safety mechanisms in vehicles plying the roads in these regions have 

significant effect on the consequences of road traffic accidents. It is obvious that if greater attention 

is paid on improving road safety mechanisms (such as anti-lock braking systems (ABS), air bags, 

better design of cars and increased wearing of seatbelts in cars) there could be substantial benefits 

in reducing injuries and fatalities with respect to road traffic accidents in developing countries.   

Smeed’s model is of the form   

N
D   N

P 
 

e, 

…………………………………………………………………...........(1.3)  

where D = Number of RTFs, P = population size, N = number of vehicles in use,                        e 

= multiplicative error term, and  &  are parameters to be estimated. Equation (1.3) can be 

expressed as   

Y  X e
 
,  ………………………………………………………………...….............(1.4) 

where,  the predictor variable is X  N P vehicular density and the dependent variable is  

Y  D N  per vehicle fatality rate.   

The factors affecting RTAs correspond to exposure X while the factors affecting RTFs 

correspond to vulnerability given the same exposure. In Smeed’s model exposure is measured by 

the variable X whereas vulnerability for a given X is captured by the parameters  and .   

Let 
X

1  (with Y 
Y

1) and 
X

2  (with Y Y  2) be two predictor variables of two   

geographical regions such that 
X

1  
X

2. If 
Y Y

1  2, then the different values of Y is not based on 

X but is due to the fact that  and  vary across the two geographical regions. It therefore follows 

that, the parameters of Smeed’s model vary from one geographical region to another. Thus, one 

could use these parameters to assess variability of the risk of RTFs across geographical regions.  
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1.1    Problem Statement  

From the above, parameters of Smeed’s model vary from one geographical region to another. Thus, 

one could use these parameters to assess variability of risk of RTFs across geographical regions. 

Moreover, a road traffic intervention may be more effective in some geographical regions than 

others. Classical estimation based on information from a particular region can be essentially 

useless if the sample size is small in that region.  

Although there is extensive and growing literature on Least Square Regression (LSR) models 

for the estimation of road traffic fatalities of a country, the same cannot be said with respect to the 

application of Bayesian and multilevel approaches in modeling road traffic fatalities of a country. 

Smeed’s (1949) formulation and other related studies by Ponnaluri (2012), Ghee et al., (1997), 

Bener and Ofosu (1991), Jacobs and Bardsley (1977), Fouracre and Jacobs (1977) used LSR 

method to estimate the parameters.   

However, the LSR approach assumes that the model parameters are constants and thus does 

not allow the variability of the parameters. Moreover, LSR method of estimation is very sensitive 

to violation of the normality assumption of the model.     

Since the parameters of the Smeed’s model vary from one geographical region to the other, we 

need an estimation procedure that   

(1) is robust with respect to the assumptions of the model,  

(2) could be used to estimate the variance of the parameters across geographical regions,   

(3) enables us compare the risk of RTFs across the geographical regions,  

  

1.2   Objectives of the Study  

General Objective  

The earlier discussion revealed that there appears to be a link between the parameters of Smeed’s 

model and the risk of road traffic fatalities across geographical regions. As a general objective, 

therefore, this study aims at developing statistical methodology, based on Smeed’s model, for 

assessing the risk of RTFs across sub-populations of a given geographical zone.   
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Specific Objectives  

(1) The first objective of the study is to develop a modified Smeed’s model which is more 

accurate.  

(2) Based on the modified Smeed model, the study seeks to develop and use   

• the Bayesian analysis approach to derive an estimator, based on a prior distribution that is 

robust with respect to the normality assumption,   

• the multilevel analysis approach to compare the risk of RTFs across sub-populations of a 

given geographical zone.  

(3) Finally, the study seeks to use data from Ghana to validate the developed methods.  

  

1.3  Justification for the Study  

The Bayesian and multilevel methods of estimation consider the parameters of the Smeed’s model 

to be random variables and therefore make it possible to compare the risk of road traffic fatalities 

across geographical regions.  

These are very powerful methods of analysis which has the ability to estimate the variance 

terms that reflects the degrees to which regions differ in terms of the parameters. This distinguishes 

Bayesian and Multilevel models from the conventional least squares regression method which 

contains only one variance term, usually denoted by 
2
, which reflects the degree to which the 

actual value of y differs from its predicted value within a specific region, which is also associated 

with the Bayesian and the multilevel models.  

In a multilevel model, for instance, we use random variables to model the variation between 

regions. An alternative approach is to use an ordinary regression model, but to include a set of 

dummy variables to represent the differences between the regions. The multilevel analysis, for 

instance, offers several advantages over that of least squares method.  

1. We can generalize to a wider population.   

  For example, one can say something about the growth rate of RTFs that is expected in the Greater 

Accra region from which the sample was selected.  

2. Information can be shared between regions.  
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By assuming that the random effects come from a common distribution, a multilevel model 

can share information between regions. This can improve the precision of predictions for 

regions that have relatively little data.  

3. Fewer parameters are needed.   

By contrast, the approach via dummy variables would require 20 parameters, two from each 

region, together with the variance of the dependent variable for each region. Multilevel 

analysis will require only 7 parameters to be estimated. This reduction in the number of 

parameters is particularly important with more complex models and a limited amount of data.  

  

1.4 Significance of the Study  

The significance of this study is that, a modified Smeed’s model for assessing the risk of road 

traffic fatalities (RTFs) across sub-populations of a given geographical zone could assist in 

determining what policy interventions or safety mechanisms must be put in place to reduce or 

minimize the risk of RTFs.   

Policy and planning interventions for minimizing risk of RTFs which focused on exposure to 

risk or directed towards regulating the behaviour road users are not likely to yield the desired 

results. Human behaviour, in a complex traffic environment, is uncertain and therefore effort to 

regulate human behaviour in an indiscipline traffic environment usually achieves little results in 

any geographical region in the world.   

However, interventions directed toward enhancing accessible, timely and appropriate 

emergency medical care as well as enforcement of use of safety mechanisms in vehicles and 

ensuring the crashworthiness of vehicles may go a long way in minimizing vulnerability to risk of 

RTFs. Crashworthiness is the ability of a vehicle to protect its occupants during an impact. It is a 

measure of how well a vehicle performs during a collision. In the modified Smeed’s model, 

vulnerability for a given exposure is captured by the parameters of the model.   

For example, if the parameters of the modified Smeed’s model across each sub-population of 

a given geographical zone are estimated, then the expected risk of RTFs for each region could be 

obtained and hence appropriate policy and planning interventions could be applied.   
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In the light of this, there is the need to establish Bayesian and Multilevel approaches for 

determining the important factors that influence risk of RTFs in a given geographical zone.  

Prediction using Bayesian and Multilevel models offer a more scientific and potentially better 

approach to minimizing the risk of RTFs. These modeling approaches will serve as a predictive 

tool that can be used to examine the distribution of risk across geographical regions. The analysis 

has the potential to reveal the future regional variations that are likely to exist in the incidence of 

road traffic fatalities in a geographical zone. It is also rich in terms of policy implications and 

economics.  

  

1.5   Limitations of the study  

The data from Ghana for the validation of the proposed Bayesian and multilevel methods used in 

this study were obtained from the following sources.   

(a) The data on the number of road traffic fatalities were obtained from the National Road Safety 

Commission (NRSC) of Ghana   

(b) The Driver and Vehicle Licensing Authority (DVLA) of Ghana provided the data on the 

number of registered vehicles in Ghana.   

(c) The estimated population figures were obtained from Ghana Statistical Service (GSS) 2010 

Population and Housing Census, Summary Report of Final Report.    

It is believed that not all accidents are reported to the police for records to be made on them. Also, 

it is possible that the police might not have filled the accident report form for all accidents which 

might have been reported to them. It is therefore imperative to admit that the data provided by 

National Road Safety Commission (NRSC) of Ghana might be under recorded. Also, population 

censuses in Ghana are conducted every 10 years. Thus, the population figures used in this study 

where estimated based on the population growth rate of the 2000 and 2010 population censuses. 

However, since these sources are state institutions with appropriately qualified and train personnel 

the study assumes that these data are reliable and representative.     
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1.6  Outline of the thesis  

The thesis is organized in six chapters that are linked to the general objective of this study. It also 

includes information from various sources relating to the study. Chapter One gives the background 

of the study, problem statement and states the main objective of the study. It also highlights the 

justification for the study as well as the significance of the study.   

Chapter Two reviews the various literature related to the topic under consideration in order to 

uncover critical facts and findings which have already been identified by previous researchers. 

There are two sections in this chapter. First it discusses the relevant concepts and theoretical 

framework of the study (the concepts of Road Traffic Fatalities RTFs). Secondly, the chapter 

reviews studies of what the researcher found as important contribution to application of Bayesian 

and multilevel methods.  

Chapter Three reviews the methodology used in the study. First it put forward the derivation 

of a modified Smeed’s model and also determines how accurate the proposed modified model of 

this study is. Based on the modified Smeed’s model, the chapter also developed the methodology 

of two Bayesian approaches for estimating the regression coefficients. Finally, the chapter 

developed the methodology of the multilevel method which can be used to assess the risk of road 

traffic fatalities across sub-population of a given geographical zone.  

Chapter Four presents some preliminary investigations on some characteristics of road traffic 

accidents and particularly road traffic fatalities in Ghana which are of general interest and have a 

certain bearing on the main results of this study. There are five sections, the first is on the 

epidemiology of RTAs and focusses on the demographic aspects of fatalities, the second deals with 

the regional distribution of RTFs and is related to the main results, the third deals with RTF 

characteristics of types of road users while the forth section deals with the effect of age on road 

traffic fatality index in Ghana. The final section of chapter 4 derives a logistic regression model 

for predicting the annual distribution of the proportion of road traffic casualties who die as a result 

of road traffic accidents in Ghana.  

In Chapter five, the study uses data from Ghana to validate the methodology discussed in 

Chapter 3. The Bayesian method is applied to estimate the regression parameters using the 

‘conjugate prior’ and maximum a posteriori approaches. The Chapter also illustrates the estimation 
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of multilevel random coefficient using data from the 10 geographical regions in Ghana and 

examined the risk of road traffic fatality across these regions.   

Chapter Six contains the final discussion, conclusions and recommendations.    

CHAPTER TWO REVIEW OF RELATED LITERATURE 2.0   Introduction  

There are two sections in this chapter. First it discusses the relevant concepts and theoretical 

framework of the study (the concepts of Road Traffic Fatalities RTF). The concepts help to assess 

causes and socio-economic consequences of RTAs induced Physical Disabilities (PDs) on 

livelihoods and well-being of the victims and their households. Theoretical framework is defined 

as a „conceptual model of how one theorizes or makes logical sense of the relationships among 

several factors that have been identified as important to the problem‟ (Sakaran 2003: 19). The 

theories guide and direct identification of literature sources that suit the research questions and 

help as a tool for analysis of the findings.  

Secondly, the chapter reviews studies of what the researcher found as important contribution 

to application of Bayesian analyses of hierarchical (multilevel) models and Markov Chain Monte 

Carlo (MCMC) methods. It also discusses the reviews of recent history of Bayesian statistical 

softwares. This review is also reflected in the findings and the concluding chapter as it helps to 

identify critical areas that need intervention.  

  

2.1 Theoretical framework and Concepts   

2.1.1 Theoretical framework   

Elvik (2006) proposed a framework for a rational analysis of road safety problems. This starts with 

the definition of a road safety problem as "Any factor that contributes to the occurrence of 

accidents or the severity of injuries." It further defines objectives of rational road safety analysis 

as "the identification of those problems that make the greatest contribution to accidents or injuries 

and that are amenable to treatment". The taxonomy, a corner stone of the researcher‟s rational 

analysis of road safety problems, aims at providing categorization of road safety problems and has 

two inseparable parts: Analysis of the size or importance of problem (quantification) and a concept 

of the amenability of problems to treatment (amenability). Road safety problems are considered 

having several dimensions such as magnitude, complexity, territoriality, dynamics, severity, 

inequity, perception and amenability to treatment.  
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Lu and Wevers (2005) presented a conceptual model for the effects of road traffic safety 

measures, based on a breakdown in underlying components of road traffic safety (probability and 

consequence), and five (speed and conflict related) variables that influence these components, and 

are influenced by traffic safety measures. The model allows estimating relative effects, and 

together with available data on absolute effects of infrastructure measures, to estimate absolute 

effects for Advanced Driver Assistance Systems (ADAS) based measures. It may in general help 

to improve insight in the mechanisms between traffic safety measures and their effects. The model 

is illustrated by a case study concerning rural roads in the Netherlands.  

 Since in developing countries long series of traffic volume data are absent, a model for the fit and 

prediction of road traffic fatalities for developing countries was developed by Koornstra (2007). 

This model was based on the relationships of income level per capita with road traffic mortality.  

Moutari et al. (2005) introduced a macroscopic model for road traffic accidents along 

highways‟ sections. The researchers the motivation and the derivation of a such model, and 

presented its mathematical properties. The results are presented by means of examples where a 

section of a one-way crowded highway contains in the middle a cluster of drivers whose dynamics 

is prone to road traffic accidents. The coupling conditions was discussed and presented some 

existential results of weak solutions to the associated Riemann Problems. Furthermore, some 

features of the proposed model were illustrated through some numerical simulations.  

 In Blum and Gaudry (2000), household income is used as an economic indicator. A rise in the 

income results in an increasing vehicle ownership, which in turn increases road use demand and 

the number of accidents. Also the current rate of interest affects road use, accidents and victims. 

Unemployment has a small but highly significant negative effect on road use, but only a moderate 

significant effect on casualties. Tegnér et al. (2000) show that an increase in the number of 

employed results in a higher number of vehicle-kilometres.   

Hakim et al. (1991) published a very comprehensive comparison of different macro models. 

The objectives of these authors are the identification and establishment of the significance of policy 

and socio-economic variables affecting the level of road accidents, and the identification of the 

variables associated with effective policies and interventions to enable decision makers to improve 

the level of road safety. In general, the form of a macro model can be written as Y = F(X), where Y 

is the number of accidents or an accident rate, and X is the vector of explanatory variables (driving, 
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demographic or economic parameters). Sometimes intervention variables are introduced, to show 

the effect of an intervention or policy change. In this section, several important aspects of macro 

models are reviewed.  

In Germany, an improved version (SNUS-2.5) of the SNUS-1 model (Gaudry and Blum 1993) 

was developed. The main difficulties faced by the authors have to do with the specification of the 

employment activity variable and with the role of vehicle stocks in road demand models. Further, 

several specific aspects characterize the German situation, namely the absence of general speed 

limits on motorways, the large size of the country, with high car ownership and an important car 

industry, and the poly-central infrastructure and structural breaks in the data series caused by the 

unification of the country.  

Fridstrom developed the TRULS-1 model in Norway as part of the researcher‟s PhD thesis. 

It is the successor of the generalised Poisson regression models estimated in Fridstrom and 

Ingebrigtsen (1991). In the TRULS-1 model, the assumption is made that casualty counts follow a 

generalised Poisson distribution. The main attempt of the model is to explain exposure. In this 

study, the traffic safety in the Stockholm Region has been investigated (Tegnér et al., 2000). The 

model of traffic demand for Stockholm is estimated on aggregate time-series data for the 

Stockholm County. The objective is to explain traffic volumes (in vehicle-kilometres) and road 

accidents, using a spectrum of monthly explanatory variables.  

TRACS-CA involves the development and the estimation of a structural aggregate model of 

highway safety, based upon historical time series data (1981 – 1989) from California. The model 

is consistent with Gaudry‟s DRAG multi-equation approach. McCarthy (2000) generalizes a 

previous version of the model by refining empirical specifications in traffic exposure and crash 

frequency, and by including additional models for crash mortality and morbidity.  

 Fournier and Simard (2000) report an inverse relationship between gasoline car accidents and 

gasoline prices, the average price of gasoline and the number of non-work-related trips. Note that 

the effect of gasoline price changes on accidents is not direct. The price of gasoline determines its 

demand, which in turn affects the number of accidents. Also the number of kilometres driven 

decreases with a rise in gasoline prices (Tegnér et al., 2000). McCarthy (2000), however, did not 

find any impact of the real gasoline price on the demand for travel. This is explained by relating 

the gasoline price to the opportunity cost of travel, which is a generalised cost, including monetary 
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and time costs. In the same model, the number of accidents does decrease with a rise in the gasoline 

price.  

 Variables that may be used to express economic and/or social stress are rates of net outmigration, 

levels of violent and property crimes, police calls for domestic disputes, rates of suicide and worker 

strikes. Note that these variables are much wider than aggressive behaviour in traffic. Sivak (1983) 

found that, as violence and aggressiveness rise, the number of injuries in road accidents increases.  

 Young drivers are considered as a high-risk group, having a higher probability of involvement in 

car accidents with injuries. Also in Fournier and Simard (2000), an increase in the number of young 

drivers, between 16 and 24 years old, results in a rise in the number of road accidents. Quite often, 

the topic of young drivers has been related to the effect of the minimum legal drinking age (MLDA) 

on accidents.   

 Several authors (e.g. Blum and Gaudry, 2000) showed that reducing the speed limits appears to 

be related to a reduction in fatalities. Also the severity of injuries is positively related to the allowed 

speed. According to McCarthy (2000), however, increased speed limits slightly reduce risk 

exposure. In his model for California, higher speeds have no effects on fatal crashes, but a strong 

positive impact on the frequency of non-fatal injury crashes. Keeping all else constant, there were 

fewer fatalities per fatal crash and fewer injuries per non-fatal injury crash after the increased speed 

limits law. But if a crash occurs, a higher speed results in more serious injuries.   

 According to Zlatoper (1984) and Loeb (1987), the periodic inspection of motor vehicles reduces 

the number of road fatalities. White (1986) showed that the probability of accident involvement 

increased with the length of time between inspections. Schroer and Peyton (1979) stated that the 

inspected vehicles have a lower accident rate than the uninspected vehicles. Also, the accident rate 

of inspected vehicles decreases after inspection. Poor mechanical condition is a significant factor 

in motor-vehicle accidents. Fournier and Simard (2000) include in their model an index of 

maintenance costs for vehicles. According to this model, an increase in vehicle maintenance costs 

would result in a decrease in the distance travelled and in the number of road accidents. Crain 

(1980), on the other hand, concluded that vehicle inspection programs have minor impact on 

highway safety. Random inspections are more effective and less expensive than periodic 

inspections.  
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2.1.2 Concepts  

Data provided by Peden et al. (2004) indicated that  African Region had the highest mortality rate, 

with 28.3 deaths per 100 000 population. This was followed closely by the low-income and middle-

income countries of the Eastern Mediterranean Region, at 26.4 per 100 000 population. Countries 

in the Western Pacific Region and the South-East Asia Region accounted for more than half of all 

road traffic deaths in the world. The report indicated that there are notable differences in the way 

different road users are affected by road traffic collisions as summarized below:  

• More than half of all global road traffic deaths occur among young adults between 15 and 44 

years of age.  

• 73% of all global road traffic fatalities are males.  

• Vulnerable road users  (pedestrians, cyclists and motorcyclists) account for a much greater 

proportion of road traffic collisions in low-income and middle-income countries than in high-

income countries.  

According to research work conducted by Afukaar et al. (2003), majority of road traffic 

fatalities (61.2%) and injuries (52.3%) occurred on roads in rural areas. About 58% more people 

died on roads in the rural areas than in urban areas, and generally more severe crashes occurred on 

rural roads compared with urban areas. Pedestrians accounted for 46.2% of all road traffic 

fatalities. The majority of these (66.8%) occurred in urban areas. The second leading population 

of road users affected was riders in passenger-ferrying buses, minibuses and trucks. The majority 

of these (42.8%) were killed on roads that pass through rural areas. Pedestrian casualties were 

overrepresented (nearly 90%) in five regions located in the southern half of the country. The study 

recommended that efforts to tackle pedestrian safety should focus on the five regions of the country 

where most pedestrian fatalities occur in urban areas. Policies are also needed to protect passengers 

in commercially operated passenger-ferrying buses, minibuses and trucks because these vehicles 

carry a higher risk of being involved in fatal crashes.  

According to the World Health Organisation (WHO, 2004), approximately 16,000 people die 

everyday worldwide from all types of injuries. Injuries represent about 12% of the global burden 

of diseases, making injuries the third most important cause of overall mortality. Deaths from traffic 

injury are a very significant part of the problem accounting for 25% of all deaths from injury.  

http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A%28Afukaar%2C+Francis+K.%29
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A%28Afukaar%2C+Francis+K.%29
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There have been several reviews of the costs to society of road traffic injury. A major review 

was presented in 1994 by the European Commission: “Socio-economic cost of road accidents, final 

report of action COST 313” (Alfaro et al., 1994). This report is now more than 10 years old. A 

more recent survey was made as part of the ROSEBUD-project (de Blaeij et al., 2004). This survey 

first considered methods used in estimating the costs to society of traffic injury, then presented 

recent cost estimates for selected countries. As far as methods for estimating costs are concerned, 

the typology shown in Figure. 2.1 was developed in COST-313.  

  

 

 Figure. 2.1:   Methods for estimating costs of traffic injury  

  

The costs of restitution are the direct costs generated by road accidents (for example, medical costs, 

property damage or administrative costs). Generally speaking, the human capital approach is used 

to estimate the value of lost productive capacity due to a traffic death, whereas the willingness-to-

pay approach is used to estimate the value of lost quality of life. Two varieties of the willingness-

to-pay approach are normally used: the individual willingness-to-pay and the social willingness-

to-pay approaches. According to the former, information about willingness-topay is obtained from 

individuals, either by studying behaviour in situations where reduced risk must be traded off 

against other commodities or by means of questionnaires. According to the latter, society‟s 

willingness-to-pay for reduced risk is inferred from the valuation implicit in public decisions like 

setting speed limits. More information on the different costing methods is given by Trawén et al. 

(2001), Wesemann (2000) and de Blaeij et al. (2004).  

Adekunle (2010) examined the effect of road traffic accident deaths on socio-economic 

development of Nigeria and suggested measures to improve safety on Nigerian roads. Twelve 

socio-economic variables were initially selected and the application of principal component 

analysis on the variables resulted in the emergence of five components which could be used to 
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describe the pattern of socio-economic development in the country. Road Traffic Accident deaths 

were assessed through the identification of road traffic accident fatality for the 36 states and the 

federal capital in the country. Multiple regression method was then used to assess the relationship 

between the road traffic accident fatalities and the five components of socioeconomic development 

in the country. The results showed that the five components namely urbanization, security, 

Universal Basic Education, Public Utility and Unemployment could be used to explain the pattern 

of road traffic accident deaths and socio-economic development in the country.  

Several schools of thought have arisen in an attempt to describe the causes of Road Traffic 

Accidents (RTAs). One of such is the concept known as the epidemiological model of road 

accident. An important relationship exists between the concept of risk and accident. The concept 

of cost is inextricably linked to epidemiological and anthropological notions of risk. 

Epidemiologists and Clinicians have generally divided risk factors into three categories when 

addressing the issue of road traffic accidents. The three categories are – human, vehicle and 

physical/social environmental factors (Mishra et al., 2010)   

Five „human‟ factors have been identified as area where clinically based interventions may 

have positive outcomes – use of alcohol, use of drugs, morbidity, use of occupant restraints (seat 

belts) and advanced age. Epidemiological research has tended to focus on human risk factors 

because they are most relevant to the search for preventive measures and because they have been 

identified as the most frequent cause of crashes (Polen and Friedman, 1988).   

A strong positive association between increasing blood alcohol concentration and the risk of 

road traffic accident involvement has been documented by researchers for many decades. Alcohol 

use is generally seen as contributing to traffic injuries by impairing driving capabilities and thus 

increasing the risk of crash involvement (Pludemmann et al., 2004). Although alcohol is generally 

thought to be the most important risk factors among all drugs, some evidence has also linked the 

use of minor tranquilizers such as benzodiazepines to increase risk of crash involvement (Gururaj, 

2004).   

Studies have also linked certain chronic medical conditions to elevated risks of crash 

involvement while other studies have presented evidence suggesting that those medical conditions 

represent a negligible risk in reference to automobile injuries or fatalities (Barbone et al., 1998). 

There is some evidence however that drivers with diabetes, epilepsy, cardiovascular disease or 
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mental illness experience higher crash and violation rates (Mishra et al., 2010) but there is an equal 

number of studies indicating that neither chronic medical conditions nor disabilities among 

automobile drivers put them at greater risk of road traffic accidents (Mohan, 2002).   

Also, much research has demonstrated the efficacy of occupant restraint systems (seat belts) 

in reducing injuries and preventing deaths in road traffic accidents. Investigations include 

laboratory studies, post-crash comparisons of injuries sustained by restrained and unrestrained 

occupants and post-crash judgements by crash analysts regarding the probable effects of restraints 

had been used. Estimates of effectiveness vary depending on the restraint system being 

investigated, the type of crash, the size of the vehicle (Zlatoper, 1984) and other factors but tend 

to cluster between 40 per cent and 60 per cent meaning risk of injury or death due to a road accident 

is reduced 40 – 60 per cent by using seat belts.   

Descriptive studies also suggest that the risk of death from automobile crashes is elevated in 

older individuals. Fatality rates per passenger/km of travel are relatively high among the older than 

70 years of age (Sagberg, 1999). Data from a Northern Ohio Trauma study indicate that motor 

vehicle deaths per 100,000 population sharply increase among men at about age 70 years and the 

proportion of injuries that were fatal rose dramatically in those older than 60 years of age.   

Although, AUSTROADS (1994) has pointed out that road accidents occur as a result of one 

or more than one of the following factors: human factor, vehicle factor, road factor and 

environmental factor. Road traffic accidents in developing countries are largely due to the human 

factors (approximately 80 – 90 per cent). In fact, recklessness or negligence of drivers, excessive 

speed, inattention, confusion and lack of judgement are listed as the main human causes of road 

traffic accidents in Nigeria (Pratte, 1998).   

The geographical approach to the study of traffic accidents relates the concept of place, time 

and environment to accident occurrence. It is believed that land use, road element, width of the 

road, bending of the road, hilly area, topography and regional distribution in occurrence of road 

traffic accident are factors to be considered. According to Cutter (1993), geographical scale is 

important for impacts and their reduction. Land use pattern, types of road network, local business 

and activity pattern will influence the system risk in an area (Komba, 2006). There is also 

ruralurban differences. In urban areas, there are more accidents, lower degree of injury while in 

rural areas there are lower accident levels but more serious fatalities (Astrom et al., 2006).  
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2.2   General Review on Road Traffic-Accident Fatalities  

Quite a large number of the existing studies are first of all interested in exploring the link between 

income and road traffic fatalities at a cross-country level (see e.g. Wintermute, 1985; Jacobs and 

Cutting, 1986; S¨oderland and Zwi, 1995; Van Beeck, Borsboom and Mackenbach, 2000; Kopits 

and Cropper, 2005; Anbarci, Escaleras and Register, 2006; Bishai, Quresh, James et al., 2006; 

Paulozzi, Ryan, Espitia-Hardeman et al., 2007). Researchers more or less find that at very low 

levels of income road traffic fatalities per (100,000) person(s) increase with income (because 

motorization goes up) up to a certain threshold, after which countries seem to be able to invest in 

safety measures (including safer cars) and possibly behavioral changes that bring traffic fatalities 

again down (e.g. separate tracks, preventive measures). This inverted U-shaped pattern first has 

been explicitly pointed out by Van Beeck et al., (2000). Kopits and Cropper (2005) tried, in 

addition, to relate traffic accidents to environmental externalities. The researchers suspect that the 

per capita income at which traffic fatalities begin to decline is in the range of incomes at which 

other externalities such as air pollution begin to decline as well. However, most of these studies 

offer surprisingly little discussion of how the income effect should be interpreted, for instance, 

whether this should be seen as a direct effect of income on road traffic crashes or whether income 

is first of all a proxy for the quality of the road network, the degree of motorization, the 

implementation and enforcement of safety measures and many other factors. Moreover, even after 

controlling for income, the residual is usually quite important. Indeed, Japan, for instance 

experiences a road mortality rate of 5.18 deaths per 100,000 inhabitants, while in the United States 

this rate is almost three times as high (13.94). Van Beeck et al. (2000) highlight that Greece and 

Spain are cases with particular by high fatality rates in Europe, even after income is controlled. 

Wintermute (1985), in an earlier study, emphasized that the analysis of road traffic crash fatalities 

need to account for a much broader set of determinants than just income. The researcher mentions 

determinants such as geography, rules and regulations, urbanization, nature of traffic mix, 

infrastructure development, availability of medical services and culture, but does not examine 

these empirically.  
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Yet a few studies do indeed analyze the conditional and unconditional effect of income by 

including in the analysis additional determinants of this type (Jacobs and Cutting (1986); 

S¨oderland and Zwi (1995); Anbarci et al. (2006); and Bishai et al. (2006)).  

Jacobs and Cutting (1986) use a cross-sectional analysis to examine the link between fatality 

rates and social, economic and physical characteristics of selected developing countries. These 

include, besides GDP per capita, the number of circulating vehicles, road density (standardized by 

land size), vehicle density (per kilometer of road), population per physician and population per 

hospital bed. The study show that fatality rates are not only related to GDP per capita, but also to 

vehicle density and population per hospital bed. Nevertheless, vehicle ownership is the only 

remaining statistically significant variable in a regression in which the effects of all these 

determinants are examined simultaneously. Using the fatality index (proportion of all persons 

injured that die) as the dependent variable, the only significant variable in the multiple regression 

analysis is population per physician (probably partly due to the limited sample size and 

multicollinearity problems).   

S¨oderland and Zwi (1995), also performed a multiple regression analysis. The researchers 

use data from 83 countries for the year 1990. As the dependent variable the researchers considered 

alternatively the crude traffic-related death rate per 100,000 persons per year, traffic related deaths 

per 1,000 registered four-wheeled vehicles per year, the ratio of mid-age to total population 

mortality, the ratio of the male/female mortality rate and fatal injuries as a proportion of total 

injuries. The researchers introduce different explanatory variables according to the outcome 

analyze: number of vehicles per capita, road density (km of road per square km), total surface area, 

GDP per capita, health expenditure as percentage of GDP and population density. The authors 

found that GDP per capita is positively correlated with traffic-related deaths per 100,000 

population, but negatively correlated with traffic deaths per 1,000 registered cars, suggesting that 

in per vehicle terms, income reduces road crash fatalities. Moreover, the number of road traffic 

accident related deaths among youth and elderly people is directly linked to population density. 

Finally, the study showed that GDP per capita and health expenditure as a share of GDP are 

associated with a declining rate of fatal injuries among road victims.  

Bishai et al. (2006) have a particular focus on the transmission channel between income and 

road crashes. The authors use data from 41 countries for the period 1992 to 1996. Considered 
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outcome variables include road traffic crashes, injuries, and fatalities. As channel variables, the 

researchers used the number of vehicles, kilometers of roadway, fuel consumption, alcohol 

consumption (available for a single year only), and population density. Fixed effects regression 

models were used to control for time-constant unobservable heterogeneity across countries. The 

authors found that with a GDP of $1500 to $8000 PPP per capita, controlling for the other variables, 

further national income growth does not bring about a further increase in road traffic crash 

fatalities, although the number of crashes and injuries continue to rise. Bishai et al. (2006) 

underlines that GDP has probably to be seen as a „proxy‟ for a set of relevant but hard-tomeasure 

factors such as urbanization, vehicle mix, road quality and health services. However, the authors 

do not investigate these channels further.  

Other studies exploit the within-country variance in road traffic fatalities (see e.g. Garg and 

Hyder (2006), La Torre (2007), Van Beeck (2000) and Traynor (2008)). Traynor (2008), for 

instance, analyzes the relationship between income and fatalities (per vehicle and miles traveled) 

across counties in the U.S. State of Ohio. The researcher introduces various explanatory variables 

in addition to income such as population density, the incidence of alcohol abuse and the share of 

teenage drivers. He finds that the county population density, the presence of interstate highways in 

rural counties, the prevalence of severe alcohol abuse, the proportion of teen drivers and the 

presence of a large college student population all have statistically significant relationships with 

county fatality rates; while for most counties the correlation between per capita income and road-

related deaths is not statistically significant. La Torre et al. (2007) identify in addition the 

employment rate and alcohol consumption as important determinants of road traffic fatalities (both 

are positively associated with fatalities). However, both studies suffer from a possible omitted 

variable bias since they do not control for regional or county-fixed effects.  

Only very few studies analyze the determinants of road traffic fatalities at the individual level, 

such as for instance the relation between individual income and driving behavior and how different 

types of individuals respond to different laws and forms of enforcement. The understanding of why 

individuals engage in risky behavior such as drink and drive, excess speed, infringement of traffic 

rules etc. might be particulary important to design and target effective policies.  

Fosgerau (2005) uses a large cross-sectional dataset from the Danish National Travel Survey 

(1996 – 2001) and shows that speed decreases with age, men drive faster than women, singles 
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drive slightly faster than married individuals and speed decreases with urbanization. He also shows 

that the effect of income on speed is positive and highly statistically significant. He argues that a 

higher income increases the perceived value of time and decreases the „real cost‟ of fines and other 

speed dependent user costs (noise for instance), which are independent of own income; thus, so 

the hypothesis, higher income leads to higher speed.  

Factor et al. (2008) emphasize the importance of social and cultural characteristics. They use 

a data set which merges Israeli census data with road traffic accident records. Estimating a logistic 

regression where the dependant (latent) variable is the probability of drivers from different social 

groups to be involved in a fatal or a severe road accident, they show that Muslims, separated and 

widowed people, males, young people, low-skilled workers and less educated individuals have a 

higher chance to be involved. The authors conclude that traffic accidents may in part be socially 

generated. They refer to the different habits, skills and styles of each sub-group, which may imply 

different risk-taking levels.  

Only a few authors have made an attempt to explicitly model the behavior of drivers. 

Exceptions are for instance Blomquist (1986), Boyer and Dionne (1987) and Bishai et al. (2006). 

In the models suggested in that literature drivers typically are confronted with accidents of a certain 

probability of occurrence, that depends on own safety efforts (use of safety belt, speed, vehicle 

quality) and other drivers‟ driving behavior as well as exogenous safety measures. The „music‟ in 

these models comes from the assumption that on the one hand own safety efforts and exogenous 

safety measures create a disutility because they involve time costs, discomfort, energy and money, 

on the other hand, in case of an accident the driver has to bear the costs of the accident such as car 

repair and medical services. Drivers are assumed to weigh these costs against the benefits in order 

to maximize their expected utility. It is easy to show that in such a setting, one may find that drivers 

decrease own safety efforts in response to an increase in exogenous safety measures. For instance 

the introduction of safety belts may lead to higher speed. Keeler (1994) found some evidence for 

this kind of behavior using panel data for the US. Similar findings exist in the area of HIV/AIDS 

prevention policies. A study based on a randomized controlled trial found for instance that a higher 

prevalence of condom use following an information campaign was accompanied by more risky 

sexual behavior (Kajubi et al., 2005)  



 

22  

  

This finding leads to another interesting question. Does the effectiveness of campaigns which 

inform about the consequences of risky behavior depend on riskaversion or even change the risk 

attitude? Kenkel (1991) shows, for instance, that smoking behavior is responsive to health 

knowledge. Nevertheless, the author also stresses that formal education still has an impact on 

health behavior even if health knowledge is controlled for. The expected interactive effects of 

schooling and health knowledge on alcohol consumption or exercise are not found. According to 

the author, the differences in the respective stigma attached to these activities across 

socioeconomic groups may explain this result. Cook and Bellis (2001) find based on (a rather 

unrepresentative) survey among students that behavior and knowledge about the risks are 

uncorrelated. But they also find that the perception of risk is related to risk aversion. They identify 

being male, being younger, having parents in white-collar occupations, belief in God and early 

exposure to risk as factors that reduce risk aversion. The authors conclude that an effective 

provision of health information does not only need to transmit the knowledge but requires also an 

intimate understanding of the media, culture and public perception.  

The understanding of individual behavior is crucial to understand and assess the effectiveness 

of other interventions as well, not just information campaigns. Lave (1985), for example, examines 

traffic fatalities in conjunction with speed limit legislations across US states and concludes that 

speed limits are not an adequate policy. He argues that not the average speed but the variance of 

speed (absence of coordination) causes traffic fatalities. A problem of that argument is of course 

that the variance of speed is rising in the average speed, so the results do not rule out the fact that 

a lower speed leads to less fatalities holding constant the variation in speed. It is hard to believe 

that both the occurrence and the severity of car crashes are independent of the level of speed at 

which crashes happen and just depend on the difference in speed. This and other studies do also 

not properly control for the degree of the enforcement of speed limits.  

Using panel data from 46 Japanese prefectures for the years 1988 to 2000, Yamamura 

empirically examines the role of social norms (reinforced by social capital and social structures) 

for drivers‟ attitudes, in particular dangerous driving. Social capital and social structures are 

proxied by the number of community centers in the prefecture, the share of emigrants to other 

prefectures, and the share of immigrants from other prefectures. The study controls for a number 

of variables, including the number of policemen, which are seen as a proxy for „formal‟ deterrents. 
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Given that this variable is likely to be endogenous, it is instrumented using income. The involved 

exclusion restriction can of course be doubted since income itself has to be seen, as shown above, 

as a determinant of driving behavior. However, taken together the study finds that formal deterrents 

hardly affect dangerous driving behavior, whereas informal deterrence prevents drivers from 

driving dangerously (but does not necessarily enhance attentive driving). Similar to the studies 

cited above, this study also finds that mandated safety inspections induce drivers to drive less 

attentively (the „off setting effect‟).  

Carpenter (2004) uses the US American Behavioral Risk Factor Surveillance System 

(BRFSS), which is a large state representative telephone survey collecting information on alcohol 

consumption and drunk-driving behavior for young adults, 18 years and older to assess the effects 

of the “Zero Tolerance” policies. The empirical model accounts for unobserved state, year and 

seasonal fixed effects. The author also introduces in his regression other control variables such as 

drink-driving laws, the state unemployment rate, the state beer tax and the state minimum legal 

drinking age. The author finds strong evidence that the main effect of the “Zero  

Tolerance” policy was to reduce heavy episodic drinking by males aged 18 to 20. An increase of 

the beer tax or changes in the minimum drinking age are shown to be less effective as they tax all 

levels of drinking instead of those that lead directly to the alcohol-related traffic fatalities.  

Another, again small, strand of the literature investigates the determinants of the involvement 

of road users and the health and economic burden victims have to carry. As one can expect, the 

typical profile of victims varies a lot between low and high income countries. Whereas in low 

income countries pedestrians and (motor) cyclists are the most vulnerable road users, car occupants 

dominate in high income countries (see e.g. Jacobs et al., 2000; Ansari et al., 2000; Montazeri, 

2004; Regional Health Forum of South-East Asia, 2004; Paulozzi et al., 2007 and WHO, 2009). 

Again, not much is known about within country variation, i.e. whether poorer population groups 

are systematically more affected than richer groups. But a study in Bangalore, India seems to 

provide some evidence for such a negative gradient in income (Aeron-Thomas              et al., 2004). 

This correlation is mainly driven by the fact that different income groups use different transport 

means. The study by Factor et al. (2008), cited above, also suggested for the case of Israel that 

among the most vulnerable road users are minorities, low-skilled workers and individuals with low 

education.   
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Given the limited space of this note, we have certainly not given justice to all the work which 

has been done on the economic aspects of road traffic crashes, but nevertheless to us it seems to 

be, in particular compared to other health problems, an under-researched area. This is in particular 

true concerning the determinants of driving behavior. A good starting point to make further 

progress in this field would be to elaborate a rigorous conceptual framework of driving behavior 

and to test such a model using an experimental design. The theoretical side would certainly benefit 

if it addressed the interaction between risk attitude and time preference (see e.g.  

Van der Pol and Ruggeri, 2008).  

  

2.3  Review on Regression Models  

Wedagama (2010) did a study to investigate the influence of accident related factors on motorcycle 

fatal accidents in the city of Denpasar during the period 2006 – 2008 using a logistic regression 

model. The study found that the fatality of collision with pedestrians and right angle accidents were 

respectively about 0.44 and 0.40 times lower than collision with other vehicles and accidents due 

to other factors. In contrast, the odds that a motorcycle accident will be fatal due to collision with 

heavy and light vehicles were 1.67 times more likely than with other motorcycles. Collision with 

pedestrians, right angle accidents, and heavy and light vehicles were respectively accounted for 

31%, 29%, and 63% of motorcycle fatal accidents.  

 Goswami and Sonowal (2011) did statistical analysis of road traffic accident data for the year 2009 

in Dibrugarh city, Assam, India. Data interpretation was done using Degree of freedom, Chi-square 

test for goodness of fit, 
2
-test for independence of attributes and Kruskal- 

Wallis test. They found that human characteristics (rush and negligence) make 95.38% of the total 

RTAs. 60% of the accidents were recorded during day time (6 AM to 6 PM). The peak time was 

between 12 PM to 6 PM (38.46%). The highest numbers of accidents (32.30%) were observed in 

the heavy rainy season during the months of July – September.  

A study was done by Fujita and Shibata (2006) to clarify the relation between alcohol use and 

traffic fatalities in accidents involving motor vehicles in Japan between 1987 and 1996. Multiple 

logistic regression models were used to assess the effect of alcohol use on the risk of traffic-

accident deaths. The data showed that 58,421 male drivers were involved in traffic accidents during 
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the 10-year study period, and that 271 of these were killed as a result of the accident. Alcohol use 

was significantly associated with speed, seat belt use, time, and road form. Among male motorcar 

drivers, the odds ratio of alcohol use before driving, after adjusting for age, calendar year, time, 

and road form, was 4.08 (95% confidence interval, 3.08–5.40), which means that about 75% of 

fatalities (attributable risk percent among exposed) might have been prevented if drivers had not 

drunk before driving.  

A descriptive analysis of road traffic accidents (RTAs) and injury data in Kenya was done 

using routine accident reports, official statistical abstracts, published and unpublished surveys. The 

characteristics of injury - producing accidents examined included trends, distribution patterns, risk 

factors, types of vehicles involved, and road-users injured or killed between 1962 and 1992. It was 

found that fatality rate per 10,000 vehicles increased from 50.7 to 64.2, while fatality per 100,000 

populations ranged between 7.3 and 8.6. 66% of the accidents occurred during daytime. 60% of 

the reported RTAs occurred on rural roads and had a higher case fatality rate (CFR) of 16% 

compared to those occurring in urban areas (11%). Human factors were responsible for 85% of all 

causes. Vehicle-pedestrian collisions were most severe and had the highest CFR of 24%, while 

only 12% of injuries resulting from vehicle-vehicle accidents were fatal. Utility vehicles and buses 

were involved in 62% of the injury producing accidents. Of all traffic fatalities reported, 

pedestrians comprised 42%, passengers 38%, drivers 12%, and cyclists 8%.   

Mohammad (2009) conducted statistical analysis for road traffic accidents and associated 

casualties in Bangladesh. An exploration was undertaken using the averages (per annum) of rates 

of fatal casualty, accident and involved vehicles applying Bar-charts. Annual time series data were 

also investigated using trend lines. Time series, Mann-Whitney, Kruskal-Wallis tests were used as 

well as modeling of two/ three-way data was conducted using the frequencies of fatal casualty, 

fatal accident and involved vehicles applying Poisson regression. The research found out that 

pedestrians are highly involved in the casualty figures. Fatal hit pedestrian is the main collision 

type accident. Maximum fatal accidents occur at out of junction. Cities have higher accident and 

casualty rates than that for non-cities (divisions/ districts, excluding cities). National highways are 

the main venues of accidents and casualties. Heavy vehicles including buses and trucks are 

predominantly involved in casualty accident.   
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Ahmad et al. (2012) used regression model analysis for the analysis of accidents using SPSS. 

The frequency of accidents has been established and trend of frequency of involvement in the road 

accident by the registered vehicles and population has been statistically formulated. Here 

dependent variable is number of accident and independent variables are registered Vehicle and 

population. Finally, it is found that regression model data is closed to the collected accident data  

Boakye et al. (2013) showed statistical evidence of relationship between road traffic accidents 

and population growth in Ghana in order to ascertain additional information in contributing to 

previous researches that have emerged in dealing with this menace. Time series data on yearly road 

traffic accidents and population values for Ghana covering the period 1990 to 2012 were used. The 

results from the analysis shows three key findings: a systematic visible pattern of growth in both 

road traffic accidents and population over the period; evidence of statistical relationship between 

road traffic accidents and population growth in Ghana as given by the correlation coefficient (r) of 

0.854, with a corresponding coefficient of determination                   

(r-square) of 72.9% indicating that for the period under study based on the available data, the 

population is able to account for 72.9% of the changes in accidents in Ghana; and finally a 

regression model developed for the purposes of estimating and forecasting on the basis of the 

analysis, specifically based on test of hypothesis and model validation.   

According to research results of Tortum et al. (2012) in Turkey, driver, pedestrian, vehicle, 

passenger and road failures in main traffic accidents failure list were ranked based on their 

effectiveness. It is found that road failures such as road pits, wheel trace, soft shoulders, loose 

material, permanent wave, deficiency of road signs and road settlements have an important effect 

on traffic accidents. To reduce road failures, road projects must be planned carefully to meet human 

needs. In addition to this, road infrastructure must be built according to specific road projects and 

standards.  

In Jordan, Abojaradeh (2013) developed traffic accidents regression prediction models in 

Amman Greater Area, . These models relate accident numbers, as a dependent variable, with 

possible causes of accidents that are related to driver behavior, as independent variables. Also, to 

propose effective counter measures to reduce the frequency and severity of traffic accidents in 

Jordan. Accident data were collected from the General Security Directorate and from the Jordan 

Traffic Institute for the selected areas inside Greater Amman Area in Jordan. These data were 
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analyzed and used in the regression models. Several regression prediction models were formed 

and the best models were chosen. The intersections and road segments, under this study, were 

arranged according to the traffic accidents severity. The most dangerous and hazardous streets and 

intersections were located in the study areas. Proper treatments and improvements are needed to 

reduce the number and severity of accidents in these areas. Preventive counter measures were 

recommended to enhance traffic safety in Jordan specially Amman Area.  

  

2.4   Review of Bayesian Analysis  

2.4.1  The Origin of Bayesian Analysis   

The term Bayesian refers to Thomas Bayes (1702–1761), who proved a special case of what is 

now called Bayes' theorem in a paper titled "An Essay towards solving a Problem in the Doctrine 

of Chances". In that special case, the prior and posterior distributions were Beta distributions and 

the data came from Bernoulli trials. It was Pierre-Simon Laplace (1749–1827) who introduced a 

general version of the theorem and used it to approach problems in celestial mechanics, medical 

statistics, reliability, and jurisprudence. Early Bayesian inference, which used uniform priors 

following Laplace's principle of insufficient reason, was called "inverse probability" (because it 

infers backwards from observations to parameters, or from effects to causes). After the 1920s, 

"inverse probability" was largely supplanted by a collection of methods that came to be called 

frequentist statistics.   

In the 20th century, the ideas of Laplace were further developed in two different directions, 

giving rise to objective and subjective currents in Bayesian practice. In the objectivist stream, the 

statistical analysis depends on only the model assumed and the data analysed. No subjective 

decisions need to be involved. In contrast, "subjectivist" statisticians deny the possibility of fully 

objective analysis for the general case.  

In the 1980s, there was a dramatic growth in research and applications of Bayesian methods, 

mostly attributed to the discovery of Markov Chain Monte Carlo methods, which removed many 

of the computational problems, and an increasing interest in nonstandard, complex applications. 

Despite the growth of Bayesian research, most undergraduate teaching is still based on frequentist 

statistics. Nonetheless, Bayesian methods are widely accepted and used, such as in the fields of 

machine learning and talent analytics.  
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2.4.2  Review of Bayesian Analyses of Hierarchical (Multilevel) Models  

Bayesian analyses of hierarchical (multilevel) linear models have been considered for at least forty 

years (Hill, 1965) and have remained a topic of theoretical and applied interest. On the theoretical 

side, hierarchical models allow a more “objective” approach to inference by estimating the 

parameters of prior distributions from data rather than requiring them to be specified using 

subjective information (see Efron and Morris, 1975). At a practical level, hierarchical models are 

flexible tools for combining information and partial pooling of inferences (see Gelman et al., 

2003).  

Browne and Draper (2005) reviewed much of the extensive literature in the course of 

comparing Bayesian and non-Bayesian inference for hierarchical models. As part of their article, 

Browne and Draper considered some different prior distributions for variance parameters. They 

used simulation studies, whose design is realistic for educational and medical research to compare 

Bayesian and likelihood-based methods for fitting variance-components (VC) and random-effects 

logistic regression (RELR) models. The likelihood approaches they examined are based on the 

methods most widely used in current applied multilevel (hierarchical) analyses: maximum 

likelihood (ML) and restricted ML (REML) for Gaussian outcomes, and marginal and penalized 

quasi-likelihood (MQL and PQL) for Bernoulli outcomes. Their Bayesian methods applied 

Markov chain Monte Carlo (MCMC) estimation, with adaptive hybrid Metropolis-Gibbs sampling 

for RELR models, and several diffuse prior distributions.  

The Junior School Project (JSP; Mortimore et al., 1988; Woodhouse et al., 1995) was a 

longitudinal study of about 2,000 pupils from 50 primary schools chosen randomly from the 636 

Inner London Education Authority (ILEA) schools in 1980. A variety of measurements were made 

on the students during the four years of the study, including background variables (such as gender, 

age at entry, ethnicity, and social class) and measures of educational outcomes such as mathematics 

test scores (on a scale from 0 to 40) at year 3 (math3) and year 5 (math5). A principal goal of the 

study was to establish whether some schools were more effective than others in promoting pupils' 

learning and development, after adjusting for background differences.  

The 1987 Guatemalan National Survey of Maternal and Child Health (Pebley and Goldman,  
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1992) was based on a multistage cluster sample of 5,160 women aged 15 – 44 years living in 240 

communities, with the goal of increased understanding of the determinants of health for mothers 

and children in the period during and after pregnancy. The data have a three-level structure – births 

within mothers within communities – and one analysis of particular interest estimated the 

probability of receiving modern (physician or trained nurse) prenatal care as a function of 

covariates at all three levels. Rodriguez and Goldman (1995) studied a subsample of 2,449 births 

by 1,558 women who (a) lived in the 161 communities with accurate cluster-level information and 

(b) had some form of prenatal care during pregnancy.   

An article by Jeong-Hun (2007) explored the performance of a Bayesian application of spatial 

voting models to the roll calls of the Fifth European Parliament (EP). Focusing on two distinct 

voting behaviours of members of the EP (MEPs) – high absenteeism and the defection from 

majority alternatives caused by the influence of national parties – it shows that the Bayesian 

method is complementary to the standard NOMINATE method. In general, the two methods 

produced very similar estimates and work as robustness checks for the results from each other. 

However, the Bayesian method enabled the researcher to measure the uncertainty of estimates 

resulting from the estimation with a large number of missing data and some randomappearing roll 

calls. In this way, it helps us draw more confident inferences about MEPs‟ voting behaviour.  

 Patrick (2001) demonstrated the application of multilevel modeling to one of the most common 

issues that confront institutional researchers: that of student attrition, where the response variable 

is typically binary rather than continuous. Comparisons are made with a traditional logistic 

regression approach. The data pertain to one large university. The techniques illustrated may be 

extended to the analysis of data sets encompassing many institutions, making meaningful inter-

institutional comparisons of performance feasible even when there is hierarchical clustering 

present in the data.  

 An analytical and software advances can be used to demonstrate that a broad class of Multilevel 

linear models (MLMs) may be estimated as structural equation models (Bauer, 2003). Moreover, 

within the structural equation model (SEM) approach it is possible to include measurement models 

for predictors or outcomes, and to estimate the mediational pathways among predictors explicitly, 

tasks which are currently difficult with the conventional approach to multilevel modeling. The 

equivalency of the SEM approach with conventional methods for estimating MLMs is illustrated 
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using empirical examples, including an example involving both multiple indicator latent factors 

for the outcomes and a causal chain for the predictors. The limitations of this approach for 

estimating MLMs are discussed and alternative approaches are considered.  

 Meta-analysis is formulated as a special case of a multilevel (hierarchical data) model in which 

the highest level is that of the study and the lowest level is that of an observation on an individual 

respondent. Studies can be combined within a single model where the responses occur at different 

levels of the data hierarchy and efficient estimates are obtained. An example is given by Goldstein 

and Yang (2000) from the studies of class sizes and achievement in schools, where study data are 

available at the aggregate level in terms of overall mean values for classes of different sizes, and 

also at the student level.  

The extent and nature of contextual effects on juvenile offending are frequent subjects of 

current research, mainly in the USA. Oberwittler (2004) presented empirical results of a new study 

which hints at the existence of neighbourhood contextual effects on serious offending by 

adolescents. The study is based on three types of cross-sectional data on 61 neighbourhoods in two 

German cities and a rural area: a self-report survey of students aged about 13 to 16, a separate 

survey of residents in the survey neighbourhoods, and census and administrative data on the same 

neighbourhoods. Multilevel analysis was applied to identify and explain the neighbourhood-level 

variance of self-reported serious juvenile offending. Hypotheses from both main traditions of 

theoretical reasoning about contextual effects on juvenile delinquency –                  sub-cultural 

and disorganization theories – are supported by the empirical findings. The spatial concentration 

of adolescents with attitudes typical of delinquent subcultures increases the likelihood of serious 

offending net of relevant individual predictors, whereas the social capital of neighbourhoods (as 

measured by the independent survey of residents) reduces it.   

 Bayesian methods have become widespread in marketing literature. We review the essence of the 

Bayesian approach and explain why it is particularly useful for marketing problems. While the 

appeal of the Bayesian approach has long been noted by researchers, recent developments in 

computational methods and expanded availability of detailed marketplace data has fueled the 

growth in application of Bayesian methods in marketing. Rossi and Allenby (2003), in their paper 

titled Bayesian Statistics and Marketing, emphasized the modularity and flexibility of modern 

Bayesian approaches. The usefulness of Bayesian methods in situations in which there is limited 
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information about a large number of units or where the information comes from different sources 

is noted.   

Walker et al. (2007) reviewed the concepts and methods of Bayesian statistical analysis, 

which can offer innovative and powerful solutions to some challenging analytical problems 

that characterize developmental research. In the article, the researchers demonstrated the 

utility of Bayesian analysis, explained its unique adeptness in some circumstances, addressed 

some concerns and misconceptions about the approach, and illustrated some applications of 

Bayesian analysis to issues that frequently arise in developmental research. The illustrations 

of the approach used reflect several important issues within the domain of moral reasoning 

development (such as assessing patterns of stage change over time); however, the methods 

are readily applicable across content areas in developmental research.  

In applications of hierarchical models (HMs), a potential weakness of empirical Bayes 

estimation approach is that they do not to take into account uncertainty in the estimation of the 

variance components (see, e.g., Dempster et al., 1987). One possible solution entails employing a 

fully Bayesian approach, which involves specifying a prior probability distribution for the variance 

components and then integrating over the variance components as well as other unknowns in the 

HM to obtain a marginal posterior distribution of interest (see, e.g., Draper, 1995). Though the 

required integrations are often exceedingly complex, Markov-chain Monte Carlo techniques (e.g., 

the Gibbs sampler) provide a viable means of obtaining marginal posteriors of interest in many 

complex settings. Seltzer et al. (1996) in their article, fully generalized the Gibbs sampling 

algorithms presented in Seltzer (1993) to a broad range of settings in which vectors of random 

regression parameters in the HM (e.g., school means and slopes) are assumed multivariate 

normally or multivariate t-distributed across groups. Through analyses of the data from an 

innovative mathematics curriculum, the researchers examined when and why it becomes important 

to employ a fully Bayesian approach and discuss the need to study the sensitivity of results to 

alternative prior distributional assumptions for the variance components and for the random 

regression parameters.  
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2.4.3  Review of Markov Chain Monte Carlo methodology  

Markov chain Monte Carlo (MCMC), which originated from Metropolis et. al. (1953), is a generic 

method for approximate sampling from an arbitrary distribution. The idea of MCMC is that for an 

arbitrary distribution  of interest, one can generate a Markov chain whose limiting distribution is 

equal to the desired distribution.  In its simplest form, the Monte Carlo method is nothing more 

than a computer-based exploitation of the Law of Large Numbers to estimate a certain probability 

or expectation.   

Markov Chain Monte Carlo is useful because it is often much easier to construct a Markov 

chain with a specified stationary distribution than it is to work directly with the distribution itself.   

At the heart of any Monte Carlo method is a random number generator: a procedure that 

produces an infinite stream   

    U1, U2,...  

of random variables that are independent and identically distributed (i.i.d.) according to some 

probability distribution. When this distribution is the uniform distribution on the interval            (0, 

1) (that is, Dist = U(0, 1)), the generator is said to be a uniform random number generator. 

Computer-generated random numbers are sometimes called pseudorandom numbers, we will refer 

to them simply as random numbers. In MATLAB, for example, this is provided by the rand 

function. The user is typically requested only to input an initial number, called the seed, and upon 

invocation the random number generator produces a sequence of independent uniform random 

variables on the interval (0, 1).  

The most prominent MCMC algorithms are:  

(1) The Metropolis-Hastings algorithm and in particular the independence sampler and random 

walk sampler;  

(2) The Gibbs sampler, which is particularly useful in Bayesian analysis;  

(3) The hit-and-run sampler – commonly used in Bayesian settings with a highly constrained 

parameter space and for generic rare-event simulation problems;  

(4) The shake-and-bake algorithm – a practical approach for generating points uniformly 

distributed on the surface of a polytope;  

(5) Metropolis – Gibbs hybrids and the multiple-try Metropolis-Hastings method, in which ideas 

from different MCMC algorithms are combined;  

http://mathworld.wolfram.com/PseudorandomNumber.html
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(6) Auxiliary variable samplers such as the slice sampler and the Swendsen-Wang algorithm;  

(7) The reversible-jump sampler, which has applications in Bayesian model selection.  

Markov Chain Monte Carlo (MCMC) algorithms – such as the Metropolis-Hastings algorithm 

(Metropolis et al., 1953 and Hastings, 1970) and the Gibbs sampler (Geman and Geman 1984, 

Gelfand and Smith, 1990) – have been an extremely popular tool in statistics [see for example the 

recent reviews Smith and Roberts (1993), Tierney (1994), Gilks et al. (1996a)]. In addition to the 

large body of applied work which uses these mothods, there has been a substantial amount of 

progress on the theoretical aspects of these algorithms. To the applied user, it is often unclear what 

lessons (if any) can be learned from these theoretical results.   

Brooks (1998) provided a simple, comprehensive and tutorial review of some of the most 

common areas of research in this field. The article discussed how MCMC algorithms can be 

constructed from standard building-blocks to produce Markov chains with the desired stationary 

distribution. It also discussed more complex ideas that have been proposed in the literature, such 

as continuous time and dimension jumping methods. Some implementational issues associated 

with MCMC methods were also mentioned. The paper looked at the arguments for and against 

multiple replications, considered how long chains should be run for and how to determine suitable 

starting points. Graphical models and how graphical approaches can be used to simplify MCMC 

implementation was discussed. Finally, the study presented a couple of examples, which were used 

as case-studies to highlight some of the points made earlier in the text. In particular, he used a 

simple change-point model to illustrate how to tackle a typical Bayesian modelling problem via 

the MCMC method, before using mixture model problems to provide illustrations of good sampler 

output and of the implementation of a reversible jump MCMC algorithm.  

Statistical methods of inference typically require the likelihood function to be computable in 

a reasonable amount of time. The class of “likelihood-free" methods termed Approximate Bayesian 

Computation (ABC) are able to eliminate this requirement, replacing the evaluation of the 

likelihood with simulation from it. Likelihood-free methods have gained in efficiency and 

popularity in the past few years, following their integration with Markov Chain Monte Carlo 

(MCMC) and Sequential Monte Carlo (SMC) in order to better explore the parameter space. They 

have been applied primarily to estimating the parameters of a given model, but can also be used to 

compare models. Didelot et al. (2011) presented novel likelihood-free approaches to model 
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comparison, based upon the independent estimation of the evidence of each model under study. 

Key advantages of these approaches over previous techniques are that they allow the exploitation 

of MCMC or SMC algorithms for exploring the parameter space, and that they do not require a 

sampler able to mix between models. They validated the proposed methods using a simple 

exponential family problem before providing a realistic problem from human population genetics: 

the comparison of different demographic models based upon genetic data from the Y chromosome.  

Geochemical signatures deposited in otoliths are a potentially powerful means of identifying 

the origin and dispersal history of fish. However, current analytical methods for assigning natural 

origins of fish in mixed-stock analyses require knowledge of the number of potential sources and 

their characteristic geochemical signatures. Such baseline data are difficult or impossible to obtain 

for many species. A new approach to this problem can be found in iterative Markov Chain Monte 

Carlo (MCMC) algorithms that simultaneously estimate population parameters and assign 

individuals to groups. MCMC procedures only require an estimate of the number of source 

populations, and post hoc model selection based on the deviance information criterion can be used 

to infer the correct number of chemically distinct sources. White (2008) et al described the basics 

of the MCMC approach and outlined the specific decisions required when implementing the 

technique with otolith geochemical data. The researchers also illustrated the use of the MCMC 

approach on simulated data and empirical geochemical signatures in otoliths from young-of-the-

year and adult weakfish, Cynoscion regalis, from the U.S. Atlantic coast. While the study described 

how investigators can use MCMC to complement existing analytical tools for use with otolith 

geochemical data, the MCMC approach is suitable for any mixed-stock problem with a continuous, 

multivariate data.   

  

2.4.4  Recent History of Bayesian Statistical Software  

In the last 20 years, Bayesian statistical software has emerged from humble beginnings to the 

powerful applications that we have today. There is no doubt that this trend will continue. In the 

near future, we expect to see new theoretical advances, better software and faster hardware. 

Sparapani and Laud (2008) reviewed some of the history of the Bayesian statistical software.    

The era of modern Bayesian statistical computation can be said to begin with the paper by 

Gelfand and Smith (1990). The construction of general purpose computational software, however, 
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begins with three seminal papers by Gilks et al. (1995) and Spiegelhalter et al. (1995). These 

advances culminated in the release of the free software package BUGS (Bayesian inference Using 

Gibbs Sampling, Spiegelhalter et al., 1995). BUGS software had two components: a model 

specification language, and a command language that could be utilized either interactively by the 

command line or in batch via a script file. BUGS was available for many Unix platforms as well 

as Linux and MS-DOS. BUGS relied on other software like the free software R to create input data 

file(s) and to analyze its output data files such as the R packages CODA (Convergence Diagnosis 

and Output Analysis for MCMC: Plummer at al. 2006) or BOA (Bayesian Output Analysis: Smith, 

2005). BUGS although still available, is no longer maintained. BUGS was succeeded by the free 

software package WinBUGS (Lunn et al., 2000).  

WinBUGS is only available for MS Windows and is based on the BlackBox Component 

Builder developed by Oberon microsystems, a component-based development environment for the 

programming language Component Pascal. The model specification language is largely the same 

as that of BUGS, and WinBUGS still relies on other software to create input data file(s) as before. 

Interactive use is handled by the GUI of WinBUGS. Batch processing is handled by a new 

WinBUGS command language which is not the same as the BUGS command language. WinBUGS 

also provides its own convergence diagnostics via the Gelman-Rubin Statistics (1992) while still 

allowing you to create output data files to analyze as in the past. The R package R2WinBUGS 

(Sturtz et al., 2005) is a work-in-progress that manages the whole process from R: submitting the 

data and model file to WinBUGS, batch processing the MCMC sampling in WinBUGS and 

returning the samples to R. Although WinBUGS is an MS Windows application, it is currently 

possible to run it on other x86 platforms, like Unix/Linux and Mac OS X, via Wine, a free software, 

open source implementation of the MS Windows API for X11/OpenGL (and R2WinBUGS can 

take advantage of Wine as well).  

WinBUGS is considered to be stable, but it will be phased out in the future. Current 

development is based on OpenBUGS (Thomas et al., 2006), an open source version of WinBUGS 

that runs on MS Windows, Linux and as an R package. Although, OpenBUGS is in its early stages, 

OpenBUGS for MS Windows is quite robust and where new WinBUGS features are appearing. 

OpenBUGS shares much with WinBUGS including most of what has been described above like 

convergence diagnostics, R2WinBUGS and Wine. One di_erence is that OpenBUGS does not 
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share the WinBUGS command language for batch processing, but instead has its own command 

language which is also not the same as the original BUGS command language. An advantage of 

OpenBUGS is you don't have to register it annually, something that was a minor irritant with 

WinBUGS. From here on out, the phrase OpenBUGS will refer to the MS Windows version and 

all comments will apply equally well to WinBUGS.  

SAS ® started out as a statistical analysis software package at a time when there were few 

options. Over time, SAS also built in capabilities that would facilitate data operations such as 

capture, management and manipulation. And, it is in this unique framework that SAS has prospered 

as one of the few annual fee software packages: you don't buy SAS, you “rent” it. SAS combines 

two levels of data programming: a low-level called the DATASTEP and a high-level known as 

Procedures or PROCs. SAS also provides the user with the SAS Macro Language: a facility for 

creating reusable SAS scripts called macros that can also provide high-level Procedure-like 

functionality.SAS provides two SAS macros (Westfall, 1999), bayestests and bayesintervals, for 

multiple testing and simultaneous intervals from the posterior sample. Also, with SAS you can 

perform Bayesian Variance Component analysis (Wolfinger, 2000). And very recently SAS has 

made available three Bayesian-capable PROCs: GENMOD, PHREG and LIFEREG which will be 

included in the next release of SAS. These PROCs are available as an experimental download on 

the MS Windows platform with the names BGENMOD, BPHREG and BLIFEREG. In addition, 

the user's manual (SAS Institute Inc. 2006) contains a nice introduction to Bayesian statistics. The 

40 pages of material, including 7 pages of references, is worth reading for all who are interested in 

Bayesian statistics, whether they plan on using SAS or not, and whether they are novices or more 

advanced.  

Currently, many Bayesian statisticians use R or SAS for its powerful data manipulation, and 

penBUGS for the statistical analysis. In this manner, the modeling and inference exibility of 

OpenBUGS can be combined with the data manipulation and graphical power of R or SAS to 

explore the Markov chain Monte Carlo samples obtained from OpenBUGS.  

For those using SAS, this process is facilitated by the free software, open source SAS macro 

library called RASmacro (Sparapani, 2004). It is a library of middle-level SAS macros that are the 

building blocks for high-level SAS macros. RASmacro provides two SAS macros, _lexport and 

_sexport, to create input data for OpenBUGS. _lexport takes a list of SAS dataset variables and 
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creates an input data _le of scalars referred to as a “list” data _le. _sexport takes a list of SAS 

dataset variables and creates an input data _le of vectors referred to as a “structure” data _le. 

RASmacro also provides two SAS macros, _decoda and _debugs, to process OpenBUGS output 

_les. _decoda creates a SAS dataset from the OpenBUGS text output _les: the index _le and chain 

_le(s). _debugs generates posterior statistics and plots, histograms and trace _les (_decoda will call 

_debugs if statistics and graphics are requested).   

  

2.5 Conclusion  

It is more evident from the literature review that regression analysis is a powerful way of 

developing a model for predicting road traffic fatalities. This study seeks to modify Smeed‟s 

(1949) formula in order to derive a model for predicting road traffic fatalities in Ghana. The 

Literature review also revealed that Bayesian and multilevel analyses has not been applied, as 

predictive model, to study the trend and effect of road traffic accidents.   

  

CHAPTER THREE  

METHODOLOGY   

3.0 Introduction  

This chapter will put forward the derivation of a modified Smeed’s model and also determine how 

accurate the proposed modified model of this study is. The question to be addressed here is:  

how does the modified Smeed’s model compare to that of Smeed (1949) in their performance?   

The chapter also explored the concepts and techniques for analyzing and making use of the 

linear relationship between two variables. This analysis may lead to an equation that can be used 

to predict the value of a dependent variable given the value of an independent variable.    

 Based on the modified Smeed’s model, the chapter seeks to develop the methodology of two 

Bayesian approaches for estimating the regression coefficients. The two methods are Conjugate 

prior and Maximum a Posteriori.  

Finally, using this modified Smeed’s model, a multilevel method is developed to assess the 

risk of road traffic fatalities (RTFs) across sub-populations of a given geographical zone.  
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3.1 A Modification of Smeed‟s Model  

Smeed’s model, which is of the form   

D  N 
e,  

 N P ……………………………………………………….........................(3.1)  

measures the per vehicle fatality rate, D N , of a geographical region, where D = Number of  

RTFs, P = population size, N = number of vehicles in use, e = multiplicative error term, and  & 

 are parameters to be estimated. It was shown, in Chapter One of this study, that the  and  vary 

from one geographical region to another and thus, could be used to assess variability of risk of 

RTFs across sub-populations of a given geographical zone. In this section, the study derives a 

modified Smeed’s model.  

Multiplying both sides of (3.1) by N P, we obtain  

D
P  N

P 
  N

P 
e

.  

……………………………………………………………............(3.2)  

The modified Smeed’s model of this study, which estimates the per capita fatality rate (also called 

4public health risk indicator), is of the form   

D
P   N

P u, …………………………………………………...………………...…..(3.3)  

where u   N
P e   e  provided N  P. Table 3.1 is an extract from the list of countries with 

ranks based on the number of road motor vehicles per 1,000 inhabitants. For every country in the 

 
4 National Road Safety Commission of Ghana (2011). Building and Road Research Institute (BRRI),  Road Traffic 

Crashes in Ghana, Statistics  
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world, except San Marino, the number of registered vehicles in use, N, is less than the population 

size, P.  

  

Table 3.1:  List of Countries by the Number of Road Motor Vehicles per 1,000 Population  

Rank  Country  N 
 1 000 P Rank  Country  N 

 1 000 P 

  1  San Marino  1,263    85  South Africa  165  

  2  Monaco  899  143  Nigeria  31  

  3  United States  797  145  Ghana  30  

31  United Kingdom  519  192  Togo  2  

Source:  NationMaster:  Transport > Road > Motor vehicle per 1000 people  

  

Since N  P for most situations, it follows that the multiplicative error term u in the modified 

Smeed’s model of this study is less than that of Smeed’s original model, making the modified 

Smeed’s model preferred.  

The modified Smeed’s model is nonlinear but can be transformed to linear model by using 

special transformation. Such nonlinear model is called intrinsically linear. Daniel and Wood  

(1980), Montgomery and Peck (1992), and Myers (1990) give several nonlinear models that are 

intrinsically linear. Thus, Equation (3.3) can be transformed to a linear model by a logarithmic 

transformation of the form  

  
y

i  0 1 1
x

i 2
x

i2  k ikx i,  i 1, , ,n ………………………………(3.4) where k is a 

positive integer.   

  For example, Equation (3.3) can be written in the form   

ln D  ln ln N 1 ln P ln .u ……………………………………………...(3.5)  

Alternatively we may write this as   

    
y

i  0 1 1
x

i 2
x

i2 i,  i 1, 2,  , ,n ………………………………………..(3.6)  

https://en.wikipedia.org/wiki/Motor_vehicle
https://en.wikipedia.org/wiki/Motor_vehicle
https://en.wikipedia.org/wiki/San_Marino
https://en.wikipedia.org/wiki/San_Marino
https://en.wikipedia.org/wiki/South_Africa
https://en.wikipedia.org/wiki/South_Africa
https://en.wikipedia.org/wiki/Monaco
https://en.wikipedia.org/wiki/Monaco
https://en.wikipedia.org/wiki/Nigeria
https://en.wikipedia.org/wiki/Nigeria
https://en.wikipedia.org/wiki/United_States
https://en.wikipedia.org/wiki/United_States
https://en.wikipedia.org/wiki/Ghana
https://en.wikipedia.org/wiki/Ghana
https://en.wikipedia.org/wiki/United_Kingdom
https://en.wikipedia.org/wiki/United_Kingdom
https://en.wikipedia.org/wiki/Togo
https://en.wikipedia.org/wiki/Togo
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n 

where k = 2, yi  lnD,  xi1  ln N,  xi2  lnP,   0 ln ,    1 ,  2=ln(1 ) and  i lnui, i 1, 

2, , n. This transformation requires that 1, 2, ,  are normally and independently distributed with 

mean 0 and variance 5. In Equation (3.6), we have introduced an additive random error term i. 

However, if we refer back to the original Equation (3.3), we see that this is equivalent to assuming 

a multiplicative error term u.  

Another possible linear transformation of Equation (3.3) is of the form   

 ln  D
P   ln     

 ln  N
P   ln ,u 

…………………………………………………(3.7)  

which can be expressed as   

 yi  0 1xi i, ........................................................................................................(3.8)  

where, k = 1,  0 ln ,  1, 
x

i  ln N P , 
y

i  ln D P  and  iln
u

i, i 1, 2, , .n   

The linear transformation in Equation (3.7)  is preferred to that of Equation (3.5) because of 

the following reason. Since D P is a risk indicator (known as 2Public Health Risk indicator) used 

in epidemiological studies, it follows that any one-to-one relation of this indicator, such as  Y  

ln(D P), can also be used as risk indicator of RTF. This is in sync with the general objective of this 

studies.  

  

3.2 The multiple linear regression model  

In the multiple linear regression model, we assume that a linear relationship exists between 

a variable Y, which we call the dependent variable, and k independent variables, X1, X2, ..., 

Xk. The independent variables are sometimes referred to as explanatory variables because 

of their use in explaining the variation in Y . They are also called predictor variables, 

because of their use in predicting Y.   

 
5 National Road Safety Commission of Ghana (2011). Building and Road Research Institute (BRRI),  Road Traffic 

Crashes in Ghana, Statistics  
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3.2.1 The model equation  

The multiple linear regression model can be expressed as given in Equation (3.4), where  

0, 1, ..., k are called partial regression coefficients and where, it is assumed that E   0 

and V    2. The parameter  j represents the expected change in the response Y per unit 

change in xj when all the remaining independent variables xi i  j  are held constant. The term 

linear is used because the Equation (3.4) is a linear function of the unknown parameters  

0, 1, ..., k.  

  

3.2.2 Least squares estimation of parameters  

 The method of least squares can be used to  

Table 3.2:   Data for a multiple linear  

estimate the regression coefficients in the multiple regression linear 

regression model. Suppose n  k observations are 

available, and let xij denote the i
th

 observation of 

variable X j.  The observations  

are  xi1, xi2, , xik, yi  i 1, 2, , n. It is customary to 

present the data for a multiple linear regression in a 

table such as Table 3.2.  

 Each set of observations  xi1, xi2, ,xik, yi  satisfies the model in Equation (3.5), or    

 
y

i  =   01 1
x

i 2
x

i2  k ikx i,  i 1, , ,n  

k 

 =    0   j ijx i,      i 1, , .n  ....…….. …………………………………….(3.9)  

j 1 

The least squares estimates, ˆ0, ˆ1, . . . , ˆk, of 0, 1, . . ., and k , are the values of  

y  x1  x2  …  xk  

y1  x11  x12  …  x1k  

y2  x21  x22  …  x2k  

.  

.  

.  

.  

.  

.  

.  

.  

.  

…  

…  

…   

.  

.  

.  

yn  xn1  xn2  …  xnk  
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0, 1, . . . , k which minimize   

Q  n (
y

i    
 
0
 
1 1

x
i  . . . k ikx )2, i 1 the sum of the squares of the deviations of the 

points from any proposed hyperplane. Thus, the least squares estimates of 0, 1, . . . , k must 

satisfy  

Q
0  ˆ0, ˆ1, ..., ˆk i

n
1  

ˆ
  i

k
1

ˆ 
j ijx   0  

……………………………………..(3.10)  2   
y

i     0 

and 
Qj  ˆ0, ˆ , ..., ˆ  2i

n
1  

y
i    ˆ0   k 

ˆ j ij
x 

 
x

ij  0,   j 1, 2, . . . , k 

.……..………(3.11)  

 1 k j 1  

Simplifying Equations (3.7) and (3.8), we obtain the least squares normal equations  

 n n n n 

n   ˆ0   ˆ1  
x

i1    ˆ2  
x

i2          ˆk  
x

ik 

  
y

i i 1 i 1 i 1 i 1 

ˆ0  xi1     ˆ1  xi1 

 i n1 i n1 2     ˆ2i n1x xi1 i2         ˆki n1x xi1 ik  i n1x yi1 i       

…………(3.12)  

                                                                                          

ˆ
0 n 

x
ik     1 n 

x x
ik i1     2 2 n 2 n x yik i ˆ

 ˆ  x xik i2          ˆk  xik   i 1 i 1

 i 1 i 1 i 1 

The fitted regression plane is then  

 yˆ 
ˆ
0     

ˆ
1 1x     

ˆ
2 2x          

ˆ
k kx .  …………………………………………. 

….(3.13)  

Notice that there are p  k 1 normal equations, one for each of the unknown regression 

coefficients. The solution to the normal equations will be the least squares estimates of the 

regression coefficients, 0,  1,  , and k. The normal equations can be solved by any method 
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appropriate for solving a system of linear equations. Snedecor and Cochran (1989) and Steel and 

Torrie (1979) give numerical examples for four variables and Anderson and Bancroft (1952)  

illustrate the calculations involved when there are five variables.  

3.2.3 The matrix approach to multiple linear regression  

In fitting a multiple linear regression model, particularly when the number of variables exceeds 

two, a knowledge of matrix theory can facilitate the mathematical manipulation considerably.  

Suppose that the experimenter has k regressor variables and n observations, xi1, ,xik, yi ,  i 1, 

2, , n, and the model relating the regressors to the response is given by Equation (3.6). The model 

is a system of n equations that can be expressed in matrix notation as  

Y  X ,   

where Y is an n    1   vector, X is an n     k 1  matrix,  is a k 1 -dimensional column  

vector, and  is an n -dimensional column vector. That is,  

  
y

1  1 0  1  

y
2 

,  X  β  1 ,  and ε  

  2 .   Y  

       

 
y

n  k  n  

It is assumed that E ε   0,  V ε   I 
2
,where V ε  denotes the variance-covariance 

matrix of ε.  

Notice that the elements of the vector Y are the observed responses, while the elements of the 

matrix X are the observed values of the explanatory variables. The following theorem gives 

important results for finding the least squares estimator of   and for proving Theorem 12.3. A 

proof of the theorem is given by Rao (1973).  

  

1 11 12 

22 2 21 

1 2 

1 
, 

1 

k 

k 

n n nk 

x x x 

x x x 

x x x 
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Theorem 3.1  

X B X    B, X X AX   2AX, V A W    A V W

  A, where B is a constant vector, A  

is a constant matrix and V W  is the variance-covariance matrix of the random variables in the 

vector W (see Rao, 1973).  

  

Least squares estimates of parameters  

The method of least squares seeks an estimate of  that minimizes the sum of squared deviations 

between the fitted and observed responses. Thus, we wish to find the value of  that minimizes   

 Q   
n 2

i     '  Y  X  
Y  X .   

i 1 

The least squares estimate, 
ˆ 

, of  is therefore the solution of  in the equation  

Q 

  0. …………………………………………………………………………….(3.14)  

 

Note that Q  can be expressed as  

Q  = Y Y   X Y   Y X    X X    

=  Y Y   2Y X    X X  ,  

since X Y   is a 1     1 matrix or a scalar, and its transpose X Y  
 

Y X   is the 

same scalar.  

The least squares estimate of  must satisfy.  

 
Q 

 2X Y  2X X  ˆ  0,  

 ˆ 

which simplifies to  
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X X  
ˆ 

 X Y.  

…………………………………………………………………………(3.15)  

Equations (3.12) are the least squares normal equations in matrix form. They are identical to the 

scalar form of the normal equations given earlier in Equations (3.9). To solve the normal equations, 

pre-multiply both sides of Equations (3.12) by the inverse of X X  . This gives the least squares 

estimate of  as  

 
ˆ 

= X X  1 X Y.    

……………………………………………………………………(3.16)  

The solution assumes that the matrix X X   is nonsingular and so X X  1
exists. The inverse,  

X X  1, exists if the regressors are linearly independent, that is, if no column of  X is a linear  

combination of the other columns.  

Techniques for finding X X  1 are explained in many textbooks on elementary  

determinants and matrices. There are also many high-speed computer packages available for 

multiple regression.   

It is easy to see that the matrix form of the normal equations is identical to the scalar form. 

Writing out Equations (3.12) in detail, we obtain  

  n  
x

i1  
x

i2  xik ˆ0    yi  

  xi1  xi21  x xi1 i2  x xi1 ik ˆ1    x yi1 i .     

      

  
x

ik  
x x

ik i1  
x x

ik i2  xik2 ˆk  xik iy  

If the indicated matrix multiplication is performed, the scalar form of the normal equations 

(that is, Equations (3.9)) will result. In this form, it is easy to see that X X  is a  p  p  

symmetric matrix and X Y  is a  p  1  column vector, where p  k 1. Note the special  

structure of the matrix X X.  The diagonal elements are the sums of squares of the elements in the 

columns of X, and the off-diagonal elements are the sums of cross-products of the elements of the 
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columns of X. Furthermore, the elements of X Y  are the sums of the cross products of the columns 

of X and Y.  

The fitted regression model is  

k 

 y
ˆ
i   

ˆ
0  

ˆ 
j ijx , i 1, 2, , .n  ......…………………………….………………..(3.17)  

j 1 

In matrix notation, the fitted model is  

Y = Xˆ 
ˆ 

 X X X   1 X Y.  …………………………………………………………..(3.18)  

The difference between the observation yi and the fitted values yˆi, is a residual, say ei  yi  

yˆi. The n    1   vector of residuals is denoted by  

 e  Y Y.ˆ 

…………………………………………………………………………….(3.19)  

The statistical properties of the least squares estimators ˆ0, ˆ1, , ˆk may be easily found, 

under certain assumptions on the error terms 1, 2, , k, in the regression model.  

  

Theorem 3.2  

If E   0 then 
ˆ
 is an unbiased estimator of  (see Ofosu et al. 2014).  

  

Theorem 3.3 (The covariance of ˆ )  

If V   
2
I, where I is a k 1   k 1  identity matrix, then V 

ˆ   2 
X X  

1
.  

Therefore, the diagonal elements of 
2

X X  1
 are the variances of ˆ0, ˆ1, , ˆk and the 

offdiagonal elements of the matrix are the covariances (see Ofosu et al. 2014).  
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Theorem 3.4 (The Gauss-Markov theorem)  

The least squares estimator of ,  ˆ  X X  1 X Y,  is the best linear unbiased estimator 

(BLUE) of  (see Montgomery et al., 2006).  

  

3.2.4 Polynomial regression  

The linear regression model, Y  X +  , is a general model that can be used to fit any relationship 

that is linear in the unknown parameters, 0, 1, . . ., and k. This includes the important class of 

polynomial regression models. For example, the second-degree polynomial in one variable,  

 Y  0 1x 2x
2 

,  

is a linear regression model. In this section, we consider polynomial regression models. In  

general, the kth order polynomial regression model in one variable is  

 Y  0 1x 2x
2  kx

k 
. …………………………………………(3.20)  

Polynomial regression models are widely used when the response is curvilinear, because the 

general principles of multiple regression can be applied. For example, in equation (3.20), if we set 

xj  xj
j, j 1, 2, ,k , then (3.20) becomes a multiple linear regression model. Confusion sometimes 

arises when we speak of a polynomial regression model as a linear model. However, statisticians 

normally refer to a linear regression model as one in which the parameters occur linearly, regardless 

of how the independent variables occur.  

  

  

Quadratic regression  

Here, we assume that   

 Y  0 1x 2
x2 

,  ……….…………………………………......…..…(3.21)  
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where E   0. Given a set of data consisting of n points xi, yi , i 1, 2, , n, we obtain the  

least squares estimates of 0, 1 and 2 by minimizing  

Q  n yi  0 1xi 

2xi2 2. i 1 

Now,  

2 n yi  01xi 2 2 ,   Q  

xi 

 0 i 1 

2 n yi  0 1 2 xi,   Q  

xi 2xi 

 1 i 1 

2 n 
y

i  01
x

i  x2 xi2.   Q  

2 i 

 2 i 1 

Equating the partial derivatives to zero and replacing 0, 1 and 2 by 
ˆ
0, 

ˆ
1 and 

ˆ
2, we obtain 

the least squares normal equations as  

n ˆ0     ˆ1 n xi     ˆ2 n xi2  

n yi, i 1 i 1 i 1 

ˆ0 n xi     ˆ1 n xi2     ˆ2 n xi3 

 n y xi i, i 1 i 1 i 1 i 1 
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ˆ0 n xi2    ˆ1 n xi3     ˆ2 n xi4  n y 

xi i2. i 1 i 1 i 1 i 1 

These equations can be solved by means of a scientific calculator.  

  

Cubic and higher order polynomial regression  

A cubic equation involves one extra term 3x
3in the model defined by Equation (3.21) which now 

becomes  

 y  0 1x 2x
2 

3x
3 

.  ………………………………………………….(3.22)  

The least squares estimates of 0, 1, 2 and 3 can be found by minimizing  

n 

Q   
y

i  0 1
x

i 2
x

i
2 

3
x

i
3

2 

…………………………………………..(3.23) i 1 

with respect to 0, 1, 2 and 3.  

In a similar manner to the above, higher order equations can be fitted. The work involved in 

solving the normal equations increases considerably as the number of terms in the model increases. 

It is therefore highly desirable to have a computer package available to fit the required model.  

If a computer is not being used, the fitting of a high order polynomial can be facilitated by 

making use of orthogonal polynomials. For details of the use of orthogonal polynomials, see 

Johnson and Leone (1976).  

  

3.3  Bayesian Approach  

3.3.1 Introduction  

Thus far, the researcher has assumed that the regression coefficients 0, 1, and k are fixed 

unknown parameters which lies in a parameter space . Based on the sample, inferences can be 

made about β.   
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In this section, the study considers the situation where, before a sample is taken, some 

information about β is known. It is assumed that this knowledge about β can be expressed in the 

form of a probability distribution over . The multiple linear regression model, with k predictor 

variables, in Equation (3.4), can be expressed as  

 
y

i = xi  i,    i 1, 2, ...,  n  ……………………….............................................(3.24) where 

xi  1, x1i, x2i,..., xki . It is assumed that the unknown parameter vector β    0, 1, ...  

k   is a value of some multivariate random variable with a multivariate prior  

distribution.   

The range of possible values that the regression coefficients 0, 1, ...  k can take is –∞ to 

+∞. Thus, the largest possible domain of the prior distribution is the set of all real numbers. This 

limits us to distribution which can take both negative and positive values. Therefore, the most 

suitable prior distributions are the bivariate Normal, Laplace and Cauchy distributions.   

Two Bayesian methods were used in estimating the parameters in Equation (3.24) These are 

the ‘conjugate prior’ method and the maximum a posteriori method which are discussed in the 

following sequel.  

  

3.3.2 „Conjugate Prior‟ Method  

In this section, we assume that the random variable Y, with components yi, in Equation (3.24), has 

the normal distribution with mean β x and variance 2. Thus, the likelihood function will also 

follow a normal distribution. Since the normal distribution is conjugate to itself (or selfconjugate) 

with respect to a normal likelihood function, choosing a bivariate normal prior over β will ensure 

that the posterior distribution is also normal. The conditional p.d.f. of Y is then given by  

 fY 
y

i β   1
2  exp  2

1
2 

y
i β x

2
,  

y
i  0.  

…............................................(3.25)  

 

The likelihood function is given by   
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 fY  yβ  = n 2  1 yi β x 2 ,  

yi  0. 1 exp  

 i 1    2 2  

n 

21 2 2 exp  2 12 i n1 yi β xi 2    = 

   

 =  k1exp  1 n y
i β

x
i 

2 ,  y  (
y

1 2, y , ...,   
y

n). ………..............(3.26)  

  2  

  2  i 1  

n 

where k1  1 2 2 2 . It is assumed that β has a multivariate normal distribution with mean 

vector μ    0, 1,..., k  and covariance matrix Σ. Thus, the p.d.f. of β is  

p β   2
1

 Σ 1
2 

exp
 12 β μ  Σ 1

β μ  

………………………………..……..(3.27)  

 a00 a01 a02 a0k  

 1
a
a

1020aa1121aa1222 aa12kk . Thus, Equation (3.27) can expressed as  

where Σ  

   

 ak0 ak1 ak2 akk  

a01 a02 a0k  a 

  p β  = k2 exp  12  00,  11,...,  k k 
a
aa100020 a1121 aa1222aa12kk 

      10 10   
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  ak0 ak1 ak2 akk  kk  

 

    = k   k 2 k 1 k  

 2 exp 1
2 l 0all  ll   2 j   0s j  1ajs  j j  s

 s , ......................(3.28)  

where  k2  2
1

 Σ
1
2 . The joint pdf of Y  (Y Y1, 2, ...,   Yn) and  is  

    f  y , β   
f  y β  p β . 

………………………………………………………...(3.29)  

The marginal p.d.f. of  Y  (Y Y1, 2, ...,   Yn) is given by   

 fY 
y
1, 

y
2, ...,   

y
n  

  f  y β  p β β  d 

.………………………………………..(3.30)  

 

The posterior distribution is the conditional p.d.f. of j  given Yj  yj which is given by   

 f  y , β  f  y β  p β  

  p β y  = fY y1, y2, ...,   yn   =  fY y1, y2, ...,  yn  

  

= k f3  y β  p β . .................................................................................(3.31)  

    

where the value of k3 does not depend on β.  From Equations (3.26) and (3.28),  the posterior 

distribution can therefore be expressed as  

p β y    = k3 k1exp  2 12 i n1 yi β xi 2 k2exp  12 l k0all  l l 2  

2kj   01s kj 1ajs  j j  s s ,  
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    = kexp  12 n  k 2 1  k all  l l 2  2k    1 k ajs  j j  s s ……..(3.32) yi 

 0  jxji   

  2 i 1  j 1  2 l 0 j 0s j 1  

where k  k1 k2 k3. Now let  

2 

v = 12 i n1  yi  0 j k 1  jxji   

  = 12 n yi2  n2  02 12  k n 2 2jxji  22 0i n1 yi  j  

k 1i n1  jx yji i  i 1 j 1i 1   

 k 1 k n 

           j s
x x

ji si ……………………………………………………….(3.33)  

  j 0 s j  1i 1 

 k 2 k 1 k 

w =  
a

jj  j j   2   
a

js  j j  s s  l 0 j 0s j  1 

k 

    =  ajj     2j 2 j j2j  2k 1 k ajs    

    j s s j j s j s   

 j 0 j 0s j  1 

    = k 
a

jj  2
j 2 k ajj

  
j j k ajj  2

j 2k 1 k ajs
  

j 

s 2k 1 k ajs s
 

j   j 0 j 0 j 0 j 0s j  1 j 0s j  1 

 k 1 k k 1 k 

      2   
a

js   j s 2   
a

js  j s 

…………………………………………(3.34) j 0 s j  1 j 0s j  1 
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Thus,   v w =  n2 a00  02 j k 1  12 i n1x2ji ajj  2j

 2  12 i n1 yi l k1a1l l  0   

   1 x yji i   ajl l   j 2k  1 k  1 n  k  n k 

 2 j  1  2 i 1 l 1  j 0s  j 1  2 i 1x xji si ajs   j s r 

….(3.35)  

where r is a constant term, independent of  j. It can be seen that Q( )β  v w is a quadratic  

form of the matrix Σβ
1 in β   0, 1, ...  k . Therefore the posterior distribution of  β is of 

the form  

1
Q( )β   

p
β

 y
  ke 2 . 

…………………………………………………...........................(3.36)  

Hence Equation (3.33) follows the multivariate normal distribution with mean vector given by  

  μ    
1
2 ΣβC, ..……………………………………………………………………....(3.37)  

where Σβ is a (k 1) (k 1) matrix with inverse Σβ
1 mij  whose elements are given as  

 

 m00  n2  
a

00,             

  n  

mj0  12 
 x

ji  
a

j0,     j 1,2,...k    

  i 1  

 1 
n xji  a0 j,     j 1,2,...k   ......................................................................(3.38)  

m0 j  2  

 i 1  n  mij  12  
x x

il

 jl  
a

ij,     i  j,      

 l 1  n  mii  12  
x

ij
2  

a
ii,     j 1,2,...k  
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  i 1  

C  is a column vector of order (k + 1) with elements given as  

C0  2  12 i n1 yi  j k 1a0 j  j   

 …………………………………(3.39)  

  n k 

Ci  2  12 i 1 y xi li  j 1aij  j ,     l 1,2,...,k  

  

Estimation of μ and Σ  

To estimate the parameters of the prior distribution of the regression parameters, we used the 

jackknife sample as follows:  

Let βˆl   ˆ0l, ˆ1l, ...,  ˆkl ; l 1, 2, 3, ...,   

   n be the lth jackknife estimate of the regression.  

Then the estimate of the mean vector μ of the random vector β   0, 1, ...,   k  is given as  

μˆ  ˆ0, ˆ1,..., ˆk , where  

n 

  ˆ j 
1

n ji,    j  0, 1, ..., .k  .......................................................................................(3.40)  

i 1 

and an estimate of the covariance matrix of β is given by  

 n    
aˆij . ……………………………………............(3.41)  

  Σˆ  n  
1

1  βˆ j  μˆ j βˆi  μˆ j   

j 1 

The estimate of the standard error of the ith coefficient based on the Bayesian estimate is the square 

root of the ith diagonal elements of Σˆ β.  
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Loss Function   

Let t denote an estimator of β. The loss function, L( , ), t is defined to be a real-valued function 

satisfying   

(i) L( , t)  0 for all possible estimators t and for all  in the parameter space .  

(ii) L( , t)  0.  

Some possible loss functions are (see Box and Tio (1973))  

(i) L1 β, t   t  β 2 ,   (ii) L2 β, t   t β ,      (iii) L3 β, t   10,,       ifif t t 

ββ.,  

L1 β, t  is called the quadratic loss function (or the square error loss function). L2 β, t  is 

called “the absolute value” loss function while 
L

3 β, t  is called the “zero-one” loss function. 

Notice that both L1 and L2 increase as the error β t  increases in magnitude.  

The loss function, L(β, ), t is a random variable. The expected value of L(β, t) with respect to 

the joint distribution of Y1, Y2, ..., Yn, is called the risk function of t, denoted by Rt ( ).β  

Thus, if Y is continuous, then (see Lindley (1965)),   

    
R

t β  
  L β, t  f  y; β dy ,  

………………………………………………….(3.42)  

 

where  is the sample space. Rt( )  is a function of  and represents the expected loss of using t 

as an estimator of β. Two or more estimators could be compared by looking at their   

respective  risk  functions,  preference  being  given  to  that  estimator  with  the minimum risk 

function.  

The Bayes risk of the estimator t is denoted by r( )t and is given by (see Lindley (1965))  
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    r( )t 
  Rt ( ) ( )β p β dβ  ……………………………………………………………(3.43)  

 

The Bayes estimator of a parameter, with respect to a given loss function and prior 

distribution, is defined to be the estimator with the smallest Bayes risk (see Lindley (1965)).  

Returning to the form of the Bayes risk, r( )t , we see that (provided it is mathematically 

justifiable to reverse the order of integration – an assumption we shall always make unless  

otherwise stated),    

 
  

f  yβ dy  p( )β βd         r( )t  =    L β, t  

  

 yβ  p( )β d dy β.   =    L β, t  f 

 

        =   L β, t  p βy  f ( )y d dy β  

  

        =  

 

t  p β
y

dβ  f ( )y dy.     L β, 

………………………………..(3.44)  

    

Since the integration is non-negative, the double integration can be minimized if the expression 

within the braces is minimized for each y1, y2, ..., yn. Thus, choosing t to minimize r( )t is equivalent 

to choosing t to minimize  

    h( )t 
  L β, t  p β

 y
dβ,   …………………………………………………….(3.45)  

 

the posterior risk. Thus, the Bayes estimator of h( )β with respect to a loss function and a prior 

distribution, is that estimator which minimizes the posterior risk.  

  



 

58  

  

Theorem 3.5  

The mean of the posterior distribution is the Bayes estimator of β with respect to the quadratic loss 

function.  

  

Proof  

The Bayes estimator of β with respect to the quadratic loss function, is the value of t which 

minimizes the posterior risk   

    h( )t 
  t β

2 p
β

 y
dβ.  

 

Differentiating h( )t with respect to t and equating h ( )t to zero, we obtain   

p βy dβ  =  βp βy dβ       t 
 

p βy dβ  = β βp y dβ   i.e.   t  

  or   t  =  

βp β y dβ.  

 

Therefore the Bayes estimate of β with respect to the quadratic loss function, is the mean  of  the  

posterior  distribution  of   .  (Notice   again  that  p β y dβ 1, since p β y  is a    

 

probability density function).  

  

Theorem 3.2  

The median of the posterior distribution is the Bayes estimator of β with respect to the absolute 

value loss function.  

  

Proof  

We consider the case   R. We want to choose t to minimize the posterior expected loss  
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t β β
p  y

dβ 
 t 

t β
p

β
 y

dβ 
 

t β t
p

β
 y

dβ.  

Differentiating with respect to t and equating to zero, we obtain  

  
 t

p β x dβ  t
 
p β x dβ,  

that is,  

   2
t
p β y dβ =  

t
p β y dβ  + t

 p
β

 y
dβ   

p βy dβ  =  1.                                         = 
 

Thus,  

     
t 
p β y dβ = ,  

and so t is the median of the posterior distribution of .  

  

Theorem 3.3  

The mode of the posterior distribution is the Bayes estimator of  with respect to the zero-one loss 

function.  

  

3.3.3  Maximum a Posteriori Method  

In Bayesian data analysis, one way to apply a model to data is to find the maximum a posteriori 

(MAP) parameter values. The goal here is to find the parameter estimates that maximize the 

posterior probability of the parameters given the data. In other words, we find the mode of the 

posterior distribution. This corresponds to (Steyvers (2011)):  

 βMAP  =  argmax p β y  

β 

        =  argmaxkf y β  p β   

β 
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        =  argmax 
f  y β  p β  ……………………………………………...(3.46)  

β 

The Bayesian approach that we are really interested in is posterior sampling. With the MAP 

approach, we get a single set of parameter values for a model. Therefore, we are characterizing the 

posterior distribution with the mode of this distribution.   

In a more comprehensive Bayesian approach, the goal is to characterize the full posterior 

distribution and not to simply find the mode of this distribution. In some cases, we might be able 

to find an analytic expression for the posterior distribution. However, in many cases, we have to 

resort to sampling techniques, such as Markov chain Monte Carlo (MCMC), to get samples from 

the posterior distribution. These samples can be used to calculate a number of things, such as 

means, variances and other moments of the distribution. We can also check whether there are any 

correlations between parameters.  

The MCMC can be used to draw samples from a distribution, you should realize that MCMC 

can be used to get samples from the posterior distribution (Steyvers (2011)). We will start by 

illustrating the simplest of all MCMC methods: the Metropolis sampler. This is a special case of 

the Metropolis-Hastings sampler discussed in (2). Suppose our goal is to sample from the target 

density p( )β , with  β  . The Metropolis sampler creates a Markov chain that produces a 

sequence of values:  

      β(1) β(2) ... β( )t ...  

where 
( )t 

represents the state of a Markov chain at iteration t. The samples from the chain, after 

burning, reflect samples from the target distribution p( ).β  

In the Metropolis procedure, we initialize the first state, β
(1) to some initial value. We then use 

a proposal distribution q ββ
( 1t  

 to generate a candidate point β  that is conditional on the 

previous state of the sampler. The next step is to either accept the proposal or reject it. The 

probability of accepting the proposal is:  
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        min 1,   

p
β  .  ……………………………………………………....(3.47)  

 p β(t 1)   

 

To make a decision on whether to actually accept or reject the proposal, we generate a uniform 

deviate u. If u  , we accept the proposal and the next state is set equal to the proposal: ( )t . If u 

 , we reject the proposal, and the next state is set equal to the old state:  

β  β 

β( )t  β(t
1)

. We continue generating new proposals conditional on the current state of the sampler, 

and either accept or reject the proposals. This procedure continues until the sampler reaches 

convergence. At this point, the samples β
( )t

 reflect samples from the target distribution  

p( ).β Here is a summary of the steps of the Metropolis sampler (Steyvers (2011)):  

1. Set t = 1  

2. Generate an initial value for j U u( 1j, 2 j),   j  0, 1, ..., .k   

3. Repeat   

t = t + 1  

Do a Metropolis Hastings step on  j, j  0, 1, ..., k :   

 Generate a proposal *j N(  j, 2j);   

Evaluate the acceptance probability a  min 1,  
p

p y
*

β
β y

;  

Generate a u from a Uniform(0, 1) distribution  

 If u a  , accept the proposal and set  j *j, j  0, 1, ..., .k  

4. Until t = T.  
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3.4 Multilevel Approach  

3.4.1  Introduction  

In this Section, the study seeks to develop a Multilevel Analysis approach to estimate the regional 

distribution of parameters based on the modified Smeed’s model and use them to compare the risk 

of RTFs across geographical regions.  

  

3.4.2 Multilevel Model Specification   

Assuming the population (geographical zone) is stratified into J sub-populations with nj 

observations in the j
th

 sub-population. Equation (3.24) therefore becomes  
y

ij =  0 j 1j
x

1ij 2 

j
x

2ij  
... 

kj kijx ij,    

    = 0 j  k 
lj lijx ij,     

i
j

1
1
, 2, ...,

, 2, ..., 
n
J

j
  

……………......................................(3.48) l 1 

Across all geographical regions,   j ( 0 j, 1j, ...,  kj) are assumed to have multivariate normal 

distribution (Hox, 2010). Thus, each lj (l = 0, 1, 2, ..., k)  can be modeled as  

   0 j 00

01
z
j 

u
0 j  ……………………………………………………..…........(3.49)  

   lj l0 l1
z
j 

u
lj,   l 1, ..., and k

j 1, 2, ..., J . …………………………...….(3.50)  

In equations (3.31) and (3.32) the regression coefficients 00, 01, l0 and l1 (l 1, ...,k) are not 

assumed to vary across geographical regions. They are therefore referred to as fixed coefficients. 

Substituting equations (3.49) and (3.50) into equation (3.48) yields the single equation model:  

k 

  
y

ij = 00  01
z
j 

u
0 j   l0  l1

z
j 

u
lj 

x
lij ij,   

l 1 
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 k k k 

    = 00  01zj   l0xlij   l1x zlij j u0 j   u xlj lij ij,   ij 11, 2, ...,, 2, ..., nJj  

......(3.51)  

 l 1 l 1 l 1 

ulj N(0, l), l  0,1,...,  and  k ij N(0, 
2
). Y has the normal distribution with mean   

k 

  00  01
z 

j   l0  l1
z 

j 
x

lij ………………………………...………...…...(3.52)  

l 1 

and variance   

 v   0
k 2 

2  
x x

lij rij lr  2
. …………………………………………..…..(3.53)  

x
lij l   

 l 1 l r  

The parameters to be estimated are l0, l1,  l, lr(l  r) and 2, l  = 0, 1, …, k.  

 If 0  differs significantly from 0, then the parameters of the modified Smeed’s model can be used 

to compare the risk of RTFs across the J geographical regions.  

  Equating the partial derivatives of the likelihood function to zero, we obtain the 

maximum likelihood estimators of the parameters l0,  l1,  l,  lr (l  r)  and  2
 as ˆl0, 

ˆl1, ˆl, ˆlr(l  r) and ˆ 2 respectively.  

  k k  

  The segment 00  01z j   l0xlij   l1xlij jz u0 j  in equation (3.48) contains the  

  l 1 l 1  

fixed coefficients. It is often called the fixed (or deterministic) part of the model. The segment  

 k  

u0 j   u xlj lij ij  in equation (3.48) contains the random error terms, and it is often called  

 l 1  
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the random (or stochastic) part of the model. The term xijz j  is an interaction term that appears in 

the model as a consequence of modeling the parameter  j of zonal-level variable xij with the 

regional-level variable z j. Thus the moderator effect of z on the relationship between the dependent 

variable y and the predictor x, is expressed in the single equation version of the model as cross-

level interaction.  The random error term  e2 j is connected to Xij. Since the explanatory variable 

xij and the error term u j are multiplied, the resulting total error will be different for different values 

of xij, a situation that in ordinary multiple regression analysis is called ‘heteroscendasticity’.    

 Multilevel model is needed for this kind of analysis because the pattern of occurrence of road 

traffic fatalities in the same region in each year is generally more similar than the observations 

from different regions, which violates the assumption of independence of all observations. This 

lack of independence can be expressed as a correlation coefficient: the       intra-regional correlation. 

The multilevel regression model can be used to estimate the intraregional correlation. The model 

use for this purpose is a model that constrains no explanatory variables at all. This is called 

intercept-only model. If there are no explanatory variables at the lowest level and the highest level, 

Equations (3.48) and (3.49), respectively, reduces to:  

y
ij =  0 j  

 
ij,    ……………………………………………...….......................(3.54)  

  0 j 00  
u

0 j  ……………………………………………………………….....(3.55)  

  Substituting (3.55) into (3.54), we obtain the single equation model  

    yij    00  u0 j   ij,
   i

j
1

1
, 2, ...,

, 2, ..., 
n

J
j 

......................................................................(3.56)  

The model of Equation (3.56) does not explain any variance, it only decomposes the variance into 

two independent components: 2, which is the variance of the lowest level errors ij, and 0, which 

is the variance of the highest level errors u0 j. Using this model we can estimate the intra-regional 

correlation  by the equation  
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  0 

2 .  …………………………………………………………………….(3.57)  

  0    

The intra-regional correlation  is a population estimate of the variance explained by the 

population structure. Equation (3.57) simply states that the intra-regional correlation is equal to 

the estimated proportion of regional level variance compared to the estimated total variance.   

CHAPTER FOUR  

PRELIMINARY INVESTIGATIONS USING DATA FROM GHANA  

4.0  Introduction  

In this chapter, some preliminary investigations on some characteristics of road traffic accidents 

are performed and particularly road traffic fatalities in Ghana which are of general interest and 

have a certain bearing on the main results of this study. There are four sections, the first is on the 

epidemiology of RTAs and focusses on the demographic aspects of fatalities, the second deals with 

the regional distribution of RTFs, the third deals with RTF characteristics of types of road users 

and the final section examined the effect of age on road traffic fatality index in Ghana.    

  

4.1  Epidemiology of Road Traffic Accidents in Ghana  

4.1.1 Introduction  

The methods developed and adopted in the field of public health for the study and control of 

epidemic diseases provide a useful framework for the study and control of road traffic accidents. 

Accidents may be interpreted as resulting from the total forces involved in the competition between 

man and his environment (Gordon, 1949), and the epidemiology method thus offers a scientific 

approach to the prevention of road traffic accidents.   

The first study of global patterns of death among people aged between 10 – 24 years of age 

has found that road traffic accidents, complications during pregnancy and child birth, suicide, 

violence, HIV/AIDS and tuberculosis (TB) are the major causes of mortality. Many causes of death 

of young people are preventable and treatable. The study, which was supported by the World Health 

Organization (WHO) and published in the Lancet Medical Journal (Lozano, et al. 2012), found 
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that 2.6 million young people are dying each year, with 97% of these deaths taking place in low- 

and middle-income countries.   

In this section, morbidity and mortality data from road traffic accidents (RTAs) as known in 

Ghana and other epidemiological variables of RTAs are studied. Since the predominant factors 

affecting road traffic fatalities in Ghana are population size and the number of registered vehicles, 

which are subject to rapid changes, the degree and direction of change are likely to determine the 

magnitude of the effect of RTAs. Thus, the study in this section, is conducted with the objective 

of:   

1. analysing the patterns of road traffic accidents, injuries and fatalities in Ghana;  

2. determining the magnitude of RTAs in Ghana;  

3. identifying some current and pertinent factors in the aetiology of RTAs in Ghana.  

Based on the above, we make some suggestions and recommendations on how to prevent this 

serious public health problem.    

In a similar study, Odero et al. (1997) reviewed the epidemiological studies of road traffic 

injury in developing countries and examined the evidence for association with alcohol. The study 

revealed that, about three-quarters of road traffic deaths in the world occur in developing 

countries and about 80% of the casualties are men.  According to a similar research work 

conducted by Nilambar et al. (2004), in South India, there were 83% male and 17% female accident 

victims. Labourers were the highest (29.9%) in number among the victims. The highest number of 

accidents took place in the month of January (12.9%) and on Sundays (17.1%). The occupants of 

the various vehicles constituted the large (45%) group of the victims. Among the motorized 

vehicles, two wheeler drivers were more (31.1%) involved in accidents. Out of 254 drivers, 14.9% 

were found to have consumed alcohol. Being knocked down was the commonest mode of 

accidents.  

The data used in this study were obtained from the following sources.   

(a) The data on the number of road traffic fatalities were obtained from the National Road Safety 

Commission (NRSC) of Ghana.   

(b) The Driver and Vehicle Licensing Authority (DVLA) of Ghana provided the data on the 

number of registered vehicles in Ghana.   
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(c) The estimated population figures were obtained from the Ghana Statistical Service 2010 

Population and Housing Census data  

  

4.1.2  Population and RTA Pattern in Ghana  

Table A1, in the appendix, shows the magnitude of RTAs over a period of 19 years, (from 1991 to 

2009) in Ghana. During the period, 27,819 died in 189,172 road traffic accidents. The average 

incidence of the morbidity and mortality patterns from RTAs during the period were 62.2 and 7.4 

per 100 000 population, respectively. The morbidity pattern was similar throughout the period 

with a mean of 1.2 per accident.  

Changes in the index of the Public Health Risk (PHR) of road traffic accidents however give 

cause for concern. Since 1997, there has generally been a gradual upward trend, as shown in Table 

A1. Although, the 9.2 fatalities/100 000 in 2009 population is relatively low by international 

standards, it still points to the fact that more and more people as a proportion of the population are 

being killed through road traffic accidents. It means that, the public health significance of road 

traffic accidents is growing, and that should serve as a trigger for early action to forestall a serious 

national health problem.  

Between 1991 and 2009, mortality rate per 100 accidents increased from 11.0 to 18.2. This 

represents an increase of 65.5% during the period. The risk indicator, which measures the chance 

of one death in a RTA, has increased by more than 70% during the 19-year period.  Improved 

trauma care interventions would help save some lives from RTAs. For the year 2009, for instance, 

one person was killed in every five road traffic accidents that occurred.  

Although the number of accidents increased during the period 1991 to 2009, the number of 

fatal and injurious accidents per 100 road traffic accidents remained almost constant during the 

period, with an average of 14.4 and 61.5, respectively. Thus, about 14 of every 100 road traffic 

accidents during the period were fatal, whilst 62 out of every 100 RTAs resulted in an injury.  These 

figures showed that RTAs still pose a major public health problem, threatening the quality of life 

in Ghana.   
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4.1.3  Distribution of Road Traffic Fatalities by Age Group and Gender  

Table A1, in the appendix, shows that, unlike many fatal diseases, road traffic accidents kill people 

from all age groups.  A cumulative total of 23 697 fatalities were recorded during the 19year period. 

The highest fatalities during the period, were in the 26 – 35 year old age group. The table also 

shows that the active age group, 16 – 45 years, were the most vulnerable in road traffic fatalities, 

representing more than 60% of the total fatalities in the 19-year period.  

Table A2 gives the annual distribution of male/female ratio of road traffic fatalities. It can be 

seen that, during the 19-year period, road traffic accidents are responsible for a far higher rate of 

death among males, by an approximate ratio of 3:1.  Similar proportions apply to all the years. In 

the 19-year period, 73.7% of the road traffic fatalities were males while 26.3% were females.       

Male predominance in road traffic fatalities in Ghana may be due to the fact that men spend 

substantially more time in moving vehicles than women. Men are also more likely to be employed 

as drivers and mechanics of cars and trucks, including drivers of long haul vehicles which may 

mean spending several days and nights in a vehicle. Males, therefore, have a higher exposure to 

the risk of road traffic injuries.   

  

4.1.4  The Distribution of Months and Days During Which Persons were Killed or 

Injured in RTAs  

Table A3, shows the monthly distribution of road traffic injuries and fatalities in Ghana, in 2010 

and 2011. In 2011, the highest incidence of 260 road traffic fatalities was recorded in the month of 

November. This represents 11.8% of the road traffic fatalities that year. In 2010, the highest 

incidence of 11.9% was recorded in the month of October. In 2011, February and June have the 

lowest incidence of 6.5% and 6.7% of road traffic fatalities, respectively.  

The trend where the Christmas season and activities preceding it were associated with many 

fatal RTAs, seemed to have marginally disappeared, since, in 2011, November happened to be the 

worst month, as shown in Table A3.  

Table A4 shows the days occurrences of road traffic accidents, in 2010 and 2011.  It can be 

seen that, between January 2010 and December 2011, there was significant variation in the number 

of road traffic fatalities and the number of persons injured per day. Saturday stood out as the 

“problem day”, during which most road traffic fatalities occurred. This may be due to the fact that, 
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in Ghana, most funerals, all-night parties and other social activities are on Saturdays. Many people 

return from these activities intoxicated with alcohol. The role of alcohol intoxication in the 

causation of RTAs should therefore not be underestimated.   

In the year 2011, the highest number of road traffic fatalities (398; 18.1%) occurred on 

Saturdays and in the year 2011, the lowest number of road traffic fatalities occurred on 

Wednesdays. Surprisingly, in the year 2011, Mondays (14.7%) and Thursdays (14.5%) recorded 

more fatalities than Fridays (14.2%) and Sundays (13.6%), which, according to NRSC of Ghana, 

are known to be associated with high fatalities. This will have to be studied for at least two more 

years before any conclusion can be drawn.  

  

4.1.5  Road User Class Involved in Deaths and Injuries  

Table A5 shows the various descriptions of road users at risk from January 1991 to December 

2009, as far as the effects of road traffic accidents are concerned.  

 It can be seen that, during the 19-year period, pedestrians were more likely to be injured or killed 

in RTAs than other road users. This may be due to the fact that, in Ghana, separating cars and 

pedestrians on the road by providing pavements, is very often not done. Speed limits of 30 km/h 

in shared-space residential areas are commonly not implemented. Car and bus fronts, as generally 

designed, do not provide protection for pedestrians against injury at collision speeds of 30 km/h or 

greater. During the 19-year period, more than 40% of those who were killed through road traffic 

accidents were pedestrians, followed by bus passengers (20.7%),  car occupants (11.8%) and 

Heavy Goods Vehicles (10.4%) in that order.  

Buses, in particular, have high number of occupants and are therefore always likely to produce 

casualties (fatalities) far more than the number of registered buses when they get involved in 

accidents. The number of Heavy Goods Vehicles (HGVs) occupants killed in road traffic accidents, 

is unacceptable, considering the fact that they are not required to carry passengers.  

In terms of strategy, isolating buses and HGVs for road safety interventions, would be 

consistent with the recommendation by the National Road Safety Commission, since most bus and 

HGV fatalities are recorded on the trunk roads. Ensuring the use of seat-belts in cars and buses 

will significantly save lives of some cars and bus occupants. Again, the inappropriate use of HGVs 

to ferry passengers should be stopped. Cutting down the overall pedestrian fatalities would require 
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active speed management on all categories of road users. A comprehensive traffic calming 

programme and speed controls may also be imperative. This may buttress the need to rationalize 

the National Highway System so as to bypass major settlements. This will be in keeping with the 

mobility functional requirements of the National Highways. Given the continuing high casualties 

among public transport buses and HGVs, it is rather urgent that, in addition to providing speed 

management measures on trunk roads passing through settlements, these categories of vehicles 

should be subjected to operational speed restrictions in the interest of the travelling public. These 

recommendations are in line with that of the National Road Safety Commission road safety report 

for 2011. The very direct link between speed at the time of collision and injury outcomes does not 

need to be over-emphasized.  

Also of significance to note is the type of vehicles involved in fatal accidents. Cars constituted 

about 48% of vehicles involved in accidents (see Table A5). The involvement of buses, HGVs and 

pick-up utility vehicles also still trail car-involvement in that order. Of all the vehicle types, it is 

the HGVs and buses that are over-represented in their crash involvement relative to their proportion 

in the overall national vehicle mix. But even more worrying is that these classes of vehicle, 

accounted for higher proportions of involvement in fatal accidents.  

The magnitude of road traffic accidents (RTAs) in Ghana over the past two decades is borne 

out by the fact that, averagely, about 72 persons out of every 100 000 population, suffered from 

grievous bodily injury and close to 8 persons of the same population died from RTAs.  More than 

60% of road traffic fatalities occur in children and young persons under 35 years of age. Many of 

these victims are likely to be pedestrians and young adults who were either drivers or passengers. 

About 75% of road traffic accident victims were males since more males than females own and 

drive vehicles in Ghana.  

  

4.1.6  Conclusion  

This study has shown that, during the period 1991 to 2009, males were more at risk than females 

in being injured in road traffic accidents. The preponderance of males may be attributed to their 

greater exposure to traffic and other associated factors. Mondal et al. (2011) and Odero et al. (1997) 

gave similar conclusions which are well documented. Male dominance in road traffic fatalities in 
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Ghana may be due to the fact that men spend substantially more time in moving vehicles than 

women.  

The findings that the active age group, 16 – 45 years, was the most vulnerable in road traffic 

fatalities, representing more than 60% of the total fatalities in the 19-year period, is well 

documented in this paper. This has important economic significance as these are people in their 

most economically productive years.   

This section has, also, given sufficient evidence of relatively high incidence of road traffic 

casualties on Saturdays. This may be due to the fact that, in Ghana, most funerals, all-night parties 

and other social activities are held on Saturdays. A good number of people most probably return 

from these activities intoxicated with alcohol.  

Road traffic accidents in Ghana have not received the attention warranted, considering the 

magnitude of the problem. There is the need to view road traffic accidents as an issue that needs 

urgent attention aimed at reducing the health, social and economic impacts.  

  

4.2 Comparative Analysis of Regional Distribution of the Risk of Road Traffic 

Fatalities in Ghana  

4.2.1 Introduction  

According to National Road Safety Commission (NRSC) of Ghana 2011 report, one key national 

Road Traffic Fatality index required for characterization and comparison of the extent and risk of 

traffic fatality among the ten regions of Ghana is fatalities per 100 accidents. Table A6, in the 

appendix, shows the distribution of the rate of road traffic fatalities per 100 accidents by region 

from 1991 – 2009. We wish to determine if there are significant differences between the mean 

regional fatalities per 100 accidents. Table 4.1 shows the mean road traffic fatalities per 100 

accidents for each region from 1991 – 2009 as well as that over the national data.  

  

Table 4.1:  Regional mean fatalities per 100 accidents from 1991 to 2009     

Regions  

Greater 

Accra  
Ashanti  Western  Eastern  Central  Volta  Northern  

Upper 

East  
Upper 

West  
Brong- 
Ahafo  

  
National  

Total  107.8  338  320.8  378.4  414.8  447.7  777.5  518.6  538.5  543.5  274.4  

Mean  5.67  17.79  16.88  19.92  21.83  23.56  40.92  27.29  28.34  28.61  14.44  
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4.2.2 Normality test  

The one-way analysis of variance model assumes that the observations are normally and 

independently distributed with the same variance for each region or factor level (see Ofosu et al. 

(2014)). In practice, these assumptions will usually not hold exactly. We therefore check the 

normality assumption, using Shapiro-Wilk W test. The null hypothesis is  

H0:  observations under each region are normally distributed against 

the alternative hypothesis  

H1: observations under each region are not from a normally distributed population   The value 

of the Shapiro-Wilk W test statistic for each of the ten regions is given in Table 4.2 below.    

   

Table 4.2:  Observed values of the W test statistic  

Test  
Statistic  

Greater 

Accra  Ashanti  Western  Eastern  Central  Volta  Northern  
Upper 

East  
Upper 

West  
Brong- 
Ahafo  

Wo  0.9708  0.9596  0.9622  0.9712  0.9408  0.9592  0.9466  0.8849  0.9323  0.9367  

  

H0 is rejected at the 5% level of significance if the computed value of W is less than 0.901, 

the tabulated 5% point. Since, for the Upper East region, the observed value of the test statistic Wo 

 0.8849  0.901, H0 is rejected at the 5% level and conclude that the sample is from a nonnormally 

distributed population. For each of the remaining 9 regions, we fail to reject H0 and therefore 

conclude that there is not enough evidence of non-normality of these samples.   

  

4.2.2 Test for homogeneity of variances  

Levene's test (Levene 1960) is used to test if 10 samples have equal variances. We wish to test   

 H0:    1
2 

2
2 

...  10
2
  against   

 H0:  i
2 2

j    for at least one pair (i, j).  

In Table A6, let yij represent the i
th 

observation taken under the j
th 

region and   
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1910 19 

 y. j   yij,    
y

.j  
y

.j 19, ( j 1, 2, ..., 10),   
y

..    
y

ij ,  
y

..  
y

.. 190.  i 1j  1i 1 

t = number of treatments = 10  

ni = number of observations from treatment (region) i   

N  n1 n2  ... n10 = overall size of combined samples = 190,  

Dij  yij  yi  absolute deviation of observation j from treatment i mean  

Di  average of the ni absolute deviations from treatment i  

D  average of all N absolute deviations  

The Levene‟s test statistic is given by   

 10 2 10 2 

 n Di  i   D  n Di  ij   Di  

    
F

Levene  i 1 
9 

i 1 
180 . ...............................................................(4.1)  

When 
H

0 is true, 
F

Levene has the F-distribution with 9 and 180 degrees of freedom. 
H

0 is rejected 

at significance level 0.05 when the observed value of 
F

Levene is greater than F0.05, 9,180 1.9322. 

Since the observed F-ratio, 8.741, is greater than the critical F-value,  

1.9322, the null hypothesis is rejected at the 0.05 level of significance and conclude that there are 

significant differences among the ten variances.   

  

4.2.3 Kruskal-Wallis Test  

Since there is a good reason to believe that the homogeneity of variance assumption has been 

violated, the Kruskal-Wallis test is used to determine if there are significant differences between 

the mean regional rates of fatalities per 100 accidents.  

  We wish to the test the hypotheses  

H0: There are no differences in the rate of fatalities per 100 accidents across regions,  H1: 

There are differences in the rate of fatalities per 100 accidents across regions.  
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Since the 10 samples are independently drawn from the populations of interest, the random 

variables under study are continuous, the measurement scale used is at least ordinal and each of 

the 10 sample sizes is at least 5, large approximation is used. Thus, the test statistic is   

 
12  10  19R2j   3( n  1),  ................................................................(4.2)  

    H  N N(  1)   j 1  

where Rj = rank sum for sample j, where the rank of each measurement is computed according to 

its relative magnitude in the totality of the data for the 10 samples. In the presence of many ties, 

the test statistic H can be corrected using (4.2) and (4.3).  

r 

ti
3   ti  

 C 1  i 1
n3   n  ................................................................................................(4.3)  

where ti is the number of ties of the i
th

 group ties.  

    H*  HC .  .............................................................................................................(4.4)  

When H0 is true, H* has the chi-square distribution with 9 degrees of freedom. We reject H0 at 5% 

level of significance if the computed value of H* is greater than 0.05, 9
2 

16.92.   

From the data, the computed value of H* is 105.038. Since the observed value of H* is greater 

than the critical value, 16.92, H0 is rejected at the 0.05 level of significance and conclude that there 

is sufficient evidence that indicates that there are significance differences in the rate of fatalities 

per 100 accidents across regions.   

4.2.4  Multiple comparison tests  

Since the Kruskal-Wallis test indicates that the null hypothesis should be rejected, it implies that 

there are differences among the fatality rates for the 10 regions. But as to which of the regions are 

significantly different, the analysis does not specify. Obviously, in such a situation, a different 

method for comparing individual regional rates is warranted.   
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A popular nonparametric test to compare fatality rates between two regions is the Mann 

Whitney U test. Some investigators interpret this test as comparing the medians between the two 

populations. The hypotheses to be tested are   

H0: There are no differences in the rate of fatalities between regions i and j, against H1:  

There are differences in the rate of fatalities between regions i and j.  

The test statistic for the Mann Whitney U Test is the smaller of U1 and U2, defined below.  

    U
1
  n n

1 2
  n n1 1( 

2
  1)    R

1
    

..............................................................................(4.5)  

 U2  n n1 2  n2 2(n2  1)    R2 

Thus, the test statistic is   

    U  min U1, U2 . .....................................................................................................(4.6)  

The values of the observed Mann Whitney U test statistics of the 45 pairs of regions are given in 

Table 4.3. If the observed test statistic is less than the critical value (which in all cases is 113), we 

conclude that the fatality rates of the two regions are different at the 0.05 level of significance. 

Pairs of regions with rates of fatalities significantly different are highlighted in Table 4.3. For 

example, the observed test statistic between the rates of fatality of Greater Accra region and that 

of Western region is 3. Thus, we can conclude that there is significant difference between the 

fatality rate of Greater Accra and Western regions.  

  

     Table 4.3:   Values of the Mann Whitney U test statistics  

      

      

1  2  3  4  5  6  7  8  9  10  

Greater 

Accra  Ashanti  Western  Eastern  Central  Volta  Northern  
Upper 

East  
Upper 

West  
Brong- 
Ahafo  

1  Greater Accra     4.5  3  0  0  0  0  0  0  0  

2  Ashanti        162  135  100  86  3  105  106  37.5  

3  Western           110  72  80  0  89  91.5  28.5  

4  Eastern              110.5  120  0  124  132  34  

5  Central                 153  0  162  156  251  

6  Volta                    24  169  152  110  

7  Northern                       77  84.5  52  
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8  Upper East                          179  144.5  

9  Upper West                             154.5  

10  Brong-Ahafo                                

  

4.2.4  Conclusion   

It is obvious the average road traffic fatality rates per 100 accidents in Greater Accra are 

significantly lower than that of the remaining 9 regions. This implies that the risk of dying as a 

result of a road traffic fatality in Greater Accra is relatively low, recording an average rate of 5.7 

road traffic fatalities per 100 accidents (see Table 4.1). Thus, out of every 100 road traffic accidents 

in the Greater Accra, about 6 of the victims are likely to die. Also, the average rate of fatality at 

the Northern region is significantly higher than any other region of Ghana. This result points to the 

fact that more and more people as a proportion of the recorded number of accidents are being killed 

through road traffic accidents in the Northern region.    

4.3  The Effect on Road Traffic Fatality Index of Road Users in Ghana   

4.3.1  Introduction  

In the previous section, it was concluded that there are significance differences in the rate of 

fatalities per 100 accidents among the 10 geographical regions of Ghana. Another Road Traffic 

Fatality index required for characterization and comparison of the extent and risk of traffic fatality 

between regions and also among various road users of Ghana is the number road traffic fatality per 

100 casualties. Road users in Ghana can be classified under the following eight categories: 

pedestrians, car occupants, goods vehicle occupants, bus/mini-bus occupants, motorcyclists, pick-

up occupants, cyclists and others.  

In this section, a two-factor factorial design and analysis of variance is used to determine if 

there are significant differences in road traffic fatality index rates among road user classes and also 

that, if there are significant differences in fatality index rates among the 10 geographical regions 

of Ghana. The interaction between road user class and geographical region in Ghana shall also be 

considered. Analysis of variance is well covered in several books, including those of Cochran and 

Cox (1957), Cox (1958), Fisher (1966), Kempthorne (1952), Montgomery (2001) and Ofosu et al. 

(2014).  
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Table A7 shows the distribution of road user class by fatality, casualty and fatality indices (F. 

I.) from 2010 to 2013, where F. I. refers to the number of road traffic fatalities per 100 casualties.   

  

4.3.2 Method  

An experiment involving the following 2 factors is considered:   

A: The effect of a road user class on F. I. in Ghana.  

B: The effect of a geographical region on F. I. in Ghana.   

It is assumed assume that there is an interaction effect between the two factors. This means that 

the effect of road user class depends on the level of geographical region and vice versa. Our main 

objective is to determine if there are significant differences among the various road users in Ghana 

and to investigate if there is significant interaction between the factors A and B. Road user class is 

investigated at 7 levels, while geographical region is investigated at 10 levels. The experiment is 

replicated 4 times (4 years).   

Table 4.4, extracted from Table A7, gives the data arrangement for a two-factor factorial 

experiment, with observations in each cell being the F. I. of a road user class in a specified 

geographical region over the 4 year interval (2010 to 2013).    

We wish to test the following hypothesis:  

1. there are no differences in road traffic fatality index among the road user classes;  

2. geographical region has no significant effect on fatality index;  

3. the road user class and region do not interact.  

using a 0.05 level of significance.  

  

Table 4.4: Data arrangement for the two-factor factorial experiment  

      Geographical region   

Greater  
Accra  

1  
Ashanti 

2  
Northern  

3  

Brong  
Ahafo  

4  

Upper  
East  

5  

Upper  
West  

6  
Central 

7  
Eastern 

8  Volta 9  
Western 

10  Total  

 

 

16.8  

20.8  
20.4  
23.1  

35.4  

25.4  
27.2  
25.6  

41.5  

50  
50  

35.7  

38.3  

37.1  
35.5  
37.3  

62.5  

23  
62.5  
58.1  

34.8  

45.2  
64.7  
37.5  

29.2  

29.5  
23.2  
28.6  

28  

23  
24.9  
28.3  

35.2  

25.8  
31  

34.9  

25.5  

25.2  
25.4  
29.8  

 

 

3.2  6.5  3.4  13.1  7.4  

7.5  

0  

20 0  

6.2  9  7.2  13  
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5.4  
6.7  
7.4  

8 6.7  
12.1  

17.1  
12.8  
14.9  

10.6  
11.7  

5.7  

7.4  
6.7  

5  

4 8.9  
7.1  

8.1  
7.8  
6.8  

8.6  
9.3  
7.7  

7.4  
8.2  
4.1  

 

17.6  

10.8 
12.3 8  

18.4  

16.7  
11.1  
13.3  

12.4  

12.7  
8.4  

17.6  

19.5  

14.5  
16.6  
22.4  

0  

8.3  
11.6  

8.3  

20.3  

13.3  
28.6  
12.5  

15.7  

18.4  
12  

12.9  

16.5  

19.7  
8.9  

13.6  

6.8  

13.6  
10.8  
10.3  

26.3  

23.2  
15.3  
13.6  

 

 

4.8  

6 5.6  
4.1  

8.4  

6.1  
6.7  
7.6  

16  

5.7  
19.5  
17.8  

11.7  

4.5  
11.1  
14.3  

4.8  

5.6 4.8 
0  

17.8  

7.1  
21.7  
19.5  

8.8  

5  
8  

22.8  

3.7  

5.3  
9.8  
4.7  

8  

6.3  
11.8  

7.1  

8.9  

4.9  
8.3  
7.4  

 

 

10.5  

10.9  
6.7  

12.6  

24.3  

21.1  
20.8 15  

19.4  

36.6  
17.3  
26.7  

20.3  

20.1  
19.2  
26.6  

32.6  

38.8  
15.6  
38.8  

31.2  

26.7  
43.9  
33.3  

18.4  

20.9  
9.3  

14.6  

12.8  

15.4  
16  

19.5  

22.9  

10.3 
19.9  
14.3  

23.1  

30  
19.1  
26.9  

 

 

6.4  

5.8  
13.3  

7.1  

9.1  
3.4  

10.6  

24.4 70  

5.4  

1.7  
21.7  

6.5  

7.9 25  

0  

3.7  
9.5  

4.2  

3.9 15  

5.9  

4.1  
5.9  

26.5  

0  
3.6  

4  

8.6 11  
 

  18.7  6.8  
58.3  24  6.5  9.1  11.5  4.9  11  10   

 

13.3 

18.7  
25.8  

30.4 

20.4  
20.5  

70  
58.3  
42.9  

21.7  
24  

40.5  

20.8 

46.7  
46.7  

33.3 

57.1  
33.3  

45  
21.4 16  

26.1 

24.2  
25.8  

18.8  

0  
14.3  

8  
37.9  
36.4  

 

  18.4  
33.3  63.6  20  30.6  87.5  21.1  26.9  31.3  

40   

  Total  334.1  447.4  833.6  549.1  595  716.6  441.6  405.6  407.3  501.5  5231.8  

  

The model for this experiment is  i 1, 2, ..., 7 

   
y

ijk     i j ( 
)
ij ijk  j 

1, 2, ..., 10 ………………………………………(4.7)  

k 1, 2, ..., 4 

where yijk is a typical observation (road traffic fatality index),  is the overall mean effect, i is 

the effect due to the ith road user class,  j is the effect due to the  jth geographical region, ( )ij is 

the joint effect of the road user class at ith level and the effect of geographical region at jth level, 

ijk are independent   N(0, 2).  
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 7 10 7 10 

    i  j (
)
ij  0. ………………………………………………………(4.8) i 1

 j 1 i  1 j 1 

Total uncorrected sum of squares = 156 267.56. The computation for the various sums of squares 

are then given by   

 SST    7 10 4 
y

ijk2  280y 2  156 267.56  5231.8280 2  58 511.38, 

i 1 j 1k 1 

  SSA  401  yi2   280y 2  401 1355.92 322.72 ... 1271

 2  5231.8280 2  27 147.41,            7 i 1 

10  y2j  y 2  281 334.12 447.42 ... 501.52  5231.8280 2  27   SSB  281 

147.41,  

  

 j 1 280 

SSE    7 10 4 
yijk

2  14 tij
2
  156 267.56  14 81.1

2 
113.6

2 
... 122.3  2

  

13 535.19, i 1 j 1k 1 ij 

  SSAB  SST – SSA – SSB – SSE  10 133.26,  

where SST is the corrected sum of squares, SSA is the sum of squares due to road user class, SSB 

is the sum of squares due to geographical region,  SSAB is the sum of squares due to the interaction 

between road user class and geographical region, and SSE is the residual sum of squares. The 

computations are summarized in Table 4.5.   

1. Let Ci denote the effect of the ith level of road user class on road traffic fatality index. The 

hypothesis to be tested is H0 :C1 C2  ... C7  0 against 
H

1: at least one Ci 0. The  
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test statistic is F  road user class mean squareresidual mean square . F has the F-distribution with 6 and 

210 degrees  

of freedom when H0 is true. H0 is rejected at significance level 0.05 when the computed value 

of F is greater than 
F

0.05, 6, 210  2.10. Since 70.20 > 2.10, 
H

0 is rejected at 0.05 level of 

significance and therefore conclude that different road user classes have different effects on 

the road traffic fatality index.   

  

Table 4.5:  ANOVA table for the effects of factors A and B on F. I.  

Source of 

variation  

Sum of 

squares  

Degrees of 

freedom  

Mean square     F  

Road user class    27147.41  6  4524.57  70.20  

Region  7695.51  9  855.06  13.27  

Interaction   10133.26  54  187.65  2.91  

Residual   13535.19  210  64.45     

Total  58511.38  279        

  

2. Let Rj denote the effect of the jth level of geographical region on the road traffic fatality index 

 j 1, 2, ..., 10 .  The hypothesis to be tested is H0: R1  R2  ... R10  0 against  

H1: at least one Rj  0. The test statistic is F  geographical region mean squareresidual mean square 

. F has the Fdistribution with 9 and 210 degrees of freedom. H0 is rejected at significance 

level 0.05 when the computed value of F is greater than 
F

0.05, 9, 210 1.88. Since 13.27, the 

computed value of F, is greater than 1.88, H0 is rejected at the 5% level and therefore conclude 

that different regions have different effects on the road traffic fatality index.  

3. Here, the null hypothesis is 
H

0: all CR ij  0 against 
H

1: at least one CR ij  0. The 

test  

statistic is F  interaction mean squareresidual mean square . F has the F-distribution with 54 and 

218 degrees of freedom when H0 is true. Reject H0 at significance level 0.05 when the 
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computed value of F is greater than 
F

0.05, 54, 210 1. Since 2.91, the computed value of F, is 

greater than 1,  

H0 is rejected at the 5% level and therefore conclude that there is interaction between road 

user class and the type of region.   

4.3.3 Multiple comparisons   

Since the analysis of variance indicates that road user class means differ significantly, it is of 

interest to make comparisons between the individual road user class means to discover the specific 

differences.  

 Over the years, several methods for making multiple comparisons have been suggested. Duncan 

(1951, 1952, 1955) has contributed a considerable amount of research to the subject of multiple 

comparisons. Other multiple comparison methods in use are those proposed by Tukey (1949, 

1953), Newman (1939), Keuls (1952), and Scheffé (1953, 1959). The advantages and 

disadvantages of the various multiple comparison methods are discussed by Bancroft (1968), 

O‟Neill and Wetherill (1971), Daniel and Coogler (1975), Winer (1971) and Ofosu et al. (2014). 

Daniel (1980) has prepared a bibliography on multiple comparison procedures.  

 Tukey‟s (1953) test, which is usually referred to as the honestly significant difference (HSD) test, 

makes use of a single value against which all differences can be compared. This value, called the 

HSD, is given by   

    HSD  
q

 , ,k MSE n,   …………………………………………………...............(4.9)  

Suppose we let   0.05. Entering Table A11, in the Appendix,  with   0.05, k  7  and  

 210, we obtain q0.05, 7, 210  4.17. In Table 4.5, we have n  40 and MSE  64.45. Hence,  

from Equation (4.9),   

    HSD  4.17 64.45 40  5.293.   

Table 4.6 shows the mean fatality index for each of the road user class in Ghana.  

Table 4.6: Mean road traffic fatality index for road user classes in Ghana  

Road User Class  
Pedestrian  

Car 

Occupants  
Goods Veh. 

Occupants  
Bus/MiniBus  

Motorcyclist  
Pick-Up 

Occupants  Cyclist  
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Mean fatality index  33.90  8.07  14.32  9.05  21.56  12.13  31.78  

  

The observed difference between each pair of means is compared to the HSD. If the observed 

difference is greater than 5.293, then the road traffic fatality indices of the two road user classes 

are significantly different. The values of the observed differences between pair of means of the 7 

road user classes are given in Table 4.7.  Pairs of road user classes with rates of fatalities per 

hundred casualties not significantly different are highlighted in Table 4.7.  

  

     Table 4.7:   Observed differences between pair of means of road user classes  

   

   

   

   

1  2  3  4  5  6  7  

Pedestrian  

Car 

Occupants  
Goods Veh. 

Occupants  
Bus/MiniBus  

Motorcyclist  

Pick-Up 

Occupants  Cyclist  

1  Pedestrian     25.83  19.58  24.85  12.34  21.77  2.12  

2  Car 

Occupants     
 

6.25  0.98  13.49  4.06  23.71  

3  Goods Veh. 

Occupants     
  

5.27  7.24  2.19  17.46  

4  Bus/MiniBus  
   

   
12.51  3.08  22.73  

5  Motorcyclist         9.43  10.22  

6  Pick-Up 

Occupants     
     

19.65  

7  Cyclist                       

  

For example, from Table 4.7, it can be seen that, the observed difference between the mean fatality 

indices for pedestrian and motorcyclist is 12.34. Since 12.34 is greater than 5.293, it follows that 

there is a significant difference between the road traffic fatality indices for pedestrian and 

motorcyclists. It is obvious that the road traffic fatality index for pedestrians is significantly greater 

than that of other road users except for cyclists. This means that, the risk of dying in a road traffic 

accident among pedestrians and cyclists are both significantly higher than those of other road users, 

recording an average rate of 33.9 and 31.78 deaths per 100 casualties, respectively.  
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4.3.4  Conclusion  

In the previous section, it has been found that, there are significant differences in road traffic 

fatality indices (fatality per 100 casualties) among various road users and also among the ten 

geographical regions of Ghana. The risk of dying in a road traffic accident among pedestrians and 

cyclists are both significantly higher than those of other road users. This points to the fact that 

more and more people as a proportion of the recorded number of casualties, are being killed 

through road traffic accidents among these two categories of road users.   

 The encroachment on pedestrian walkways and footbridges and some roadways has limited 

pedestrian space along the corridor and the linked roads and thereby increasing the risk of 

pedestrians being injured or killed in road traffic accidents. Many storeowners make use of the 

space in front of their stores, including the pedestrian walkways, to showcase their stock. The lack 

of safeguarded pedestrian space on sidewalks along major roads and the lack of safe zebra 

crossings have also aggravated this risk.   

 There is the need for pedestrian-friendly flyovers to aid in crossing major highways. Adanu (2004) 

asserts that, in order for Accra to develop a sustainable transport system, it must increase its use of 

public transit (metro buses), and Non-Motorized Transport (walkways for pedestrians and cycling 

ways for bicyclists).  

 Bicycling as a form of transport is environmentally friendly and relatively cheap compared with 

other forms of transport. It also promotes healthy exercise. Reports demonstrate that a sizeable 

portion of Accra‟s population utilize this form of transport. Ghana‟s National Transport Policy, in 

2008, recognizes the need for a strong Non-Motorized Transport component to the country‟s 

overall transportation development, highlighting these reasons. We need to develop the appropriate 

infrastructure (such as bicycle paths, free and open sidewalk) and safety measures (including 

motorists‟ recognition and respect for pedestrians and bicyclists) and legal protections for non-

motorized transport. As a country, there is the need to formulate policies that will   

1. foster a safer regime for use of non-motorised transport,  

2. create better conditions for pedestrians,  

3. foster greater use of bicycles.  

 An extensive study on bicycle use among the urban poor in Nima and Jamestown of Accra (Turner 

et al, 1995) highlighted the general negative attitudes within certain communities toward cyclists. 
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Healthy transport, as described by Banister (2008), requires separating people and traffic, with 

separate routes and space for pedestrians and cyclists. Investment in separate, dedicated 

infrastructure for cyclists could reduce these negative attitudes and the risk environment for 

cyclists. As well, promoting bicycle use as a transport mode requires addressing the cultural and 

community perceptions of bicycling use in different ethnic communities (Turner et al, 1995).  

  

4.4 The Effect of Age on Road Traffic Fatality Index in Ghana  

4.4.1  Introduction  

Casualties of road traffic accidents in Ghana by age groups, from 2009 – 2013, are given in Table 

4.8. Unlike many fatal diseases, road traffic accidents kill people from all age groups, including 

young and middle-aged people in their active years. A cumulative total of 10 555 fatalities is 

recorded over the 5-year period. The highest fatalities during the period were in the 26 – 35 year 

old. Table 4.8 also shows that the active age group, 16 – 45 years, was the most vulnerable in road 

traffic fatalities, representing 63.2% of the total fatalities in the 5-year period. According to the 

National Road Safety Commission (NRSC) of Ghana 2013 annual report, one key national Road 

Traffic Fatality index (F. I.) required for characterization and comparison of the extent and risk of 

road traffic fatality is fatalities per 100 casualties (see Hesse and Ofosu, 2015). In Table 4.8, the 

distribution of the rate of road traffic fatalities per 100 accidents by age groups from 2009 – 2013 

are also computed.  

  

Table 4.8:  Age distributions of fatalities and injuries from road traffic accidents from  2010 

to 2013  

  

  

  

  

  

  

  Casualties   

  Persons Killed  Persons Injured   

2013  2012  2011  2010  2009  Total  2013  2012  2011  2010  2009  Total  

 

0 – 5    97  113  126  136  130  602  214  241  276  389  401  1521  

6 – 15  148  170  212  217  250  997  529  789  846  962  1112  4238  

16 – 25   315  335  365  269  388  1672  2172  2509  2723  3110  3245  13759  

26 – 35   531  661  658  577  609  3036  3871  4458  5070  5297  5861  24557  

36 – 45   359  441  400  379  383  1962  2162  2753  3009  2932  3138  13994  

46 – 55  188  236  209  184  222  1039  1001  1334  1374  1399  1512  6620  

56 – 65   149  159  126  129  141  704  472  621  493  563  618  2767  

Over 65  111  125  103  95  109  543  190  296  229  266  246  1227  
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  Total  1898  2240  2199  1986  2232  10555  10611  13001  14020  14918  16133  3994  

   

It can be seen, from Table 4.9, that the F. I. increased from 24.5 to 31.2 among children under  6 

years from year 2009 to 2013, whilst that of the „over 65‟ age groups increased marginally from 

30.7 to 36.9 over the same period. In very simple terms, these changes imply that the chance of at 

least one casualty dying as a result of road traffic accident has increased over the period. It can be 

observed that, over the 5 year period, the „over 65‟ continues to be the age group with the highest 

national fatality rate. For instance, in 2013, about 37% of all road traffic casualties who were over 

65 years lost their lives while 31% of casualties who were 5 years old or less died as a result of 

road traffic accidents.   

  

     Table 4.9:  Rate of fatalities per 100 casualties (fatality indices)  

    

   

0 – 5  6 – 15  16 – 25  26 – 35  36 – 45  46 – 55  56 – 65  Over 65  

1  2  3  4  5  6  7  8  

2013  1  31.2  21.9  12.7  12.1  14.2  15.8  24.0  36.9  
2012  2  31.9  17.7  11.8  12.9  13.8  15.0  20.4  29.7  
2011  3  31.3  20.0  11.8  11.5  11.7  13.2  20.4  31.0  
2010  4  25.9  18.4  8.0  9.8  11.4  11.6  18.6  26.3  
2009  5  24.5  18.4  10.7  9.4  10.9  12.8  18.6  30.7  

mean    29.0  19.3  11.0  11.1  12.4  13.7  20.4  30.9  

  

The number of road traffic fatality victims in Ghana can be classified according to two criteria, of 

a set of entities, namely casualty and age group. Casualty has 2 levels (i.e. fatalities and  

injured) while age group has 8 levels. These form a 2  8 contingency table as shown in                        

Table 4.10.    

  

    Table 4.10:  Road traffic accidents victims from 2010 to 2013  

    Age Group       

0 – 5  6 – 15  16 – 25  26 – 35  36 – 45  46 – 55  56 – 65  Over 65  Total  

 

Fatalities  602  997  1672  3036  1962  1039  704  543  10555  

Injured   1521  4238  5759  24557  13994  38551  2767  1227  92614  

 Total  2123  5235  7431  27593  15956  39590  3471  1770  103169  
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In this study, we wish to know whether road traffic casualty and age group are independent. If they 

are independent, then we would expect to find the same proportion of fatalities across various age 

groups. We also propose the use of the completely randomized single factor experiment to 

determine if there are significant differences in road traffic fatality index rates among the various 

age groups.   

  

4.4.2 Method  

Table 4 shows an r  c contingency table where  Oij is the observed frequency for level i of the 

first method of classification and level j of the second method of classification, where  

 c r 

Ri   Oij is the marginal total for row i and Cj   Oij is the marginal total for column j. j 1

 i 1 

 r c 

Note that  Ri   Cj  n, where n is the total sample size.  

 i 1 j 1 

  

   Table 4.11:  An r × c contingency table  

  

  

 Columns       

1  2  …    c  Total  

1  O11  O12  …   O1c  R1  

2  O21  O22  …   O2c  R2  

                   
Rows.    

.  

. 

r  

.  

.  

.  

Or1  

.  

.  

.  

Or2  

.  

.  

.  

…  

 .  

.  

.  

Orc  

.  

.  

.  

Rr  

Total  C1  C2  …   Cc  n  

  

We are interested in testing the null hypothesis  

  H0: the row-and-column methods of classification are independent 

against the alternative hypothesis  
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  H1: the row-and-column methods of classification are not independent.   

The test statistic is given by (see Cramér (1946) and Birch (1964)).  

      H  i   
r
1 j

c
1

(Oij  
E ij

Eij)2 , 

………………………………………………….........(4.10)  

were Eij is the expected cell frequency for the (ij)th cell. It can be shown that, if H0 is true, then:  

      Eij  i  n Cj  (column total)  (row totalgrand total  ). 

………………………................(4.11) R 

It can also be shown that, for large n, the statistic H has an approximate chi-square distribution 

with (r – 1)(c – 1) degrees of freedom if H0 is true (see Ofosu and Hesse (2011)). Therefore, we 

would reject the hypothesis of independence if the observed value of the test statistic H is greater 

than the critical value 2
, (r 1)(c 1), where  is the size of the test. An extensive treatment of the 

chi-square distribution can be found in the book by Lancaster (1969).  

If we reject the null hypothesis, we conclude that there is some interaction between the two 

criteria of classification.   

  

4.4.3 Results  

1.  Test of independence  

The null and the alternative hypotheses are:  

  H0: Casualty is independent of age group.   

  H1:  Casualty is not independent of age group.   

We first find the expected cell frequencies. These are calculated by using Equation (2). Table  

4.12 shows the expected cell frequencies of Table 4.10 using Equation (2). For example, E11  

10555103169   2123  217.200.  
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Table 4.12:  Expected cell frequencies of Table 4.10  

  Age Group    

0 – 5  6 – 15  16 – 25  26 – 35  36 – 45  46 – 55  56 – 65  Over 65  Total  

 

Fatalities  217.200  535.582  760.250  2822.981  1632.424  4050.368  355.111  181.085  10555  

Injured   1905.800  4699.418  6670.750  24770.019  14323.576  35539.632  3115.889  1588.915  92614  

 Total  2123  5235  7431  27593  15956  39590  3471  1770  103169  

  

Note that the expected frequencies in any row or column add up to the appropriate marginal total. 

The test statistic is   

 2 8 (Oij   Eij )2 

      H  i   1 j 1 Eij .  

When H0 is true, H has the chi-square distribution with 7 [i.e. (2 – 1)(8 – 1)] degrees of freedom. 

We reject H0 at 0.05 level of significance when the computed value of the test statistic is greater 

than 0.05,7
2 14.07. Substituting both the observed values in Table 3 and their  

corresponding expected values in Table 4.12 into ij  (O
ij  

E ij
Eij)2 , we obtain the cells 

in                       Table 4.13.   

   Table 4.13:   Calculations of the observed test statistic  

 1  2  3  4  5  6  7  8  Total  

1j  
245.97  213.55  497.18  14.95  55.36  8727.95  172.90  241.22  10169.08  

2 j  97.35  50.24  144.35  1.85  7.76  235.23  43.99  106.75  687.52  

Total  343.32  263.79  641.53  16.79  63.12  8963.18  216.89  347.97  10856.59  

  

Thus, the observed value of the test statistic is   
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 2 8 

   2  i   1 j 1 (Oij  E ijEij )2 10856.59.  

Since.10856.59 14.07, we reject the hypothesis of independence and conclude that casualty is 

not independent of age group.  

  

2.  Completely randomized single factor experiment  

Table 2 is a typical data of a single-factor experiment with 8 levels (age groups) of the factor, where 

the factor is the effect of age on F. I. We wish to determine if there are significant differences 

between the average F. I. across the 8 age groups. In Table 4.9, let yij represent the i
th

 observation 

taken under the j
th 

age group and   

 58 5 

   y.j   yij,    y.j  y.j 21,   ( j 1, 2, ..., 8),   y..    yij,    y..  y.. 40.        i 1j  1i 1 

Let  j represent the true mean of the j
th

 age group and ij the experimental error. The model for 

the completely randomized single factor experiment is    yij  i ij,    (j 1, 2, ..., 8, i 1, 2, ..., 

5).  …..………………………...............(4.12)  

The one-way analysis of variance model assumes that the observations are normally and 

independently distributed with the same variance for each region or factor level (see Ofosu et al.  

(2014)).   

  

Validation of normality and homogeneity of variances assumptions  

We check the normality assumption, using the Shapiro-Wilk W test. The null hypothesis is  

H0: observations under each region are normally distributed  

against the alternative hypothesis  

H1: observations under each region are not from a normally distributed population    

The value of the Shapiro-Wilk W test statistic for each of the eight age groups is given in                    

Table 4.14 below.  
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Table 4.14:  Observed values of the W test statistic  

Test Statistic  0 – 5  6 – 15  16 – 25  26 – 35  36 – 45  46 – 55  56 – 65  Over 65  

Wo  0.802  0.883  0.864  0.930  0.871  0.951  0.836  0.925  

  

H0 is rejected at the 5% level of significance if the computed value of W is less than 0.762, the 

tabulated 5% point of the distribution of the Shapiro-Wilk test statistic. For each of the 8 age 

groups, we fail to reject H0 and therefore conclude that there is not enough evidence of 

nonnormality of these samples.  

Levene's test (Levene 1960) is used to test if 8 samples have equal variances. We wish to  

test   

 H0:    1
2 

2
2 

...  8
2
  against   

 H0:   i
22

j    for at least one pair (i, j).  

In Table 4.10, let yij represent the ith observation taken under the j
th 

age group and   

 55 8 

 y.j   yij,     y.j  y.j 5,    ( j 1, 2, ..., 8),    y..    yij,     y..  y.. 40.      i 1j  1i 1 

t = number of treatments = 8  

ni = number of observations from treatment (region) i   

N  
n

1 
n

2 ...
n

9 = overall size of combined samples = 40,  

Dij  yij  yi  absolute deviation of observation j from treatment i mean  

Di  average of the ni absolute deviations from treatment i  

D  average of all N absolute deviations  

The Levene‟s test statistic is given by   

 8 2 8 2 

 n Di  i   D  n Di  ij   Di  

    
F

Levene  i 1 
7 

i 1 
32 . ...............................................................(4.13)  
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When H0 is true, FLevene has the F-distribution with 4 and 40 degrees of freedom. H0 is rejected 

at significance level 0.05 when the observed value of FLevene is greater than F0.05, 7, 32  2.33. 

Since the observed F-ratio, 1.332, is less than the critical F-value, 2.33, we fail to reject the null 

hypothesis at the 0.05 level of significance and conclude that there are no significant differences 

among the ten variances.  

  

One-way analysis of variance  

Since the normality and homogeneity of variances assumptions are validated, we can use the one-

way analysis of variance to determine if the fatality indices across age groups vary significantly. 

We wish to test the hypothesis  

  H0: The mean fatality indices are the same across the 8 categories of age groups,   against 

the alternative hypothesis  

  H1: The mean fatality indices are not the same for at least 2 of age groups.  

The total corrected sum of squares is given by   

 8 5 
y..

2  2374.360.   ……………………………………………….(4.14)  

SST  j   1i 1 
y

ij
2
 

 
40 

The sum of squares among treatments is   

SSA  8 y.2j y..2 2193.712.   

.………………………………………………….(4.15)  
  

 j 1 5 40 

The within treatment sum of squares, SSW, can be obtained from the equation   

SSW  SST SSA 180.648.   ……………………………………………………...(4.16)  

The analysis of variance results, based on the data in Table 2, are summarized in Table 8 below.  

  

Table 4.15:  Analysis of variance table  

Source of variation  Sum of squares  Degrees of freedom  Mean square  F-ratio  

Among treatments  2193.712     7  313.387  55.513  
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Within treatments   180.648  32      5.645  

Total  2374.360  39    

  

The test statistic is   

F  among treatments mean squarewithin treatments mean square .  

When H0 is true, F has the F-distribution with 7 and 32 degrees of freedom. We reject H0 at 

significance level 0.05 when the observed value of F is greater than F0.05, 7,32  2.33. From Table  

8, the computed value of F is 55.513. Since the observed F-ratio, 55.513, is greater than the critical 

F-value, 2.33, we reject the null hypothesis at the 0.05 level of significance and conclude that there 

are significant differences among the fatality indices across the 8 age groups.  

   

4.4.4  Discussion  

1.  Multiple comparison method  

Since the analysis of variance indicates that the null hypothesis should be rejected, it means that 

there are differences among the 8 treatment means. But as to which of the means are significantly 

different, the analysis does not specify. Obviously, in such a situation, we need a different method 

for comparing individual treatment means. One such method is the multiple comparison test.  

Over the years, several methods for making multiple comparison tests have been suggested. 

Duncan (1951, 1952, 1955) has contributed a considerable amount of research to the subject of 

multiple comparisons. Other multiple comparison methods in use are those proposed by Tukey 

(1949, 1953), Newman (1939), Keuls (1952), and Scheffé (1953, 1959). The advantages and 

disadvantages of the various multiple comparison methods are discussed by Bancroft (1968),  

O‟Neill and Wetherill (1971), Daniel and Coogler (1975), Winer (1971) and Ofosu et al. (2014).  

Daniel (1980) has prepared a bibliography on multiple comparison procedures.   

The oldest multiple comparison method, and perhaps the most widely used, is the least significant 

difference method of Fisher, who first discussed it in the 1935 edition of his book  

“The design of experiments” (see Ofosu et al. (2014)). To use this method, we first calculate the 

least significant difference, (LSD), for the given data. This is given by  

  LSD   
t

, N k  
2MSW

n ,  …………………………………………………………....(4.17)    
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where the level of significance   0.05, N  40, n 5, k 8 and MSW 5.645. This gives LSD = 

3.068.  

The observed difference between each pair of means is compared to the LSD. If the observed 

numerical difference is greater than 3.068, then the road traffic fatality indices of the two age 

groups are significantly different. The values of the observed numerical differences between pairs 

of means of the 8 age groups are given in Table 9.  Pairs of age groups with fatality indices not 

significantly different are highlighted in Table 9.  

  

   Table 4.16:   Observed numerical differences between pair of means of road user classes  

  

  
   

0 – 5  6 – 15  16 – 25  26 – 35  36 – 45  46 – 55  56 – 65  Over 65  

29.0  19.3  11.0  11.1  12.4  13.7  20.4  30.9  

0 – 5    29.0     9.7  18.0  17.9  16.6  15.3  8.6  1.9  

6 – 15  19.3        8.3  8.2  6.9  5.6  1.1  11.6  

16 – 25   11.0           0.1  1.4  2.7  9.4  19.9  

26 – 35   11.1              1.3  2.6  9.3  19.8  

36 – 45   12.4                 1.3  8.0  18.5  

46 – 55  13.7                    6.7  17.2  

56 – 65   20.4                       10.5  

Over 65  30.9                          

  

For example, from Table 9, it can be seen that, the observed numerical difference between the 

mean fatality indices for the age groups „0 – 5‟ and „26 – 35‟ is 17.9. Since 17.9 is greater than  

3.068, it follows that there is a significant difference between the two age groups with respect to  

F. I.  It is obvious that the road traffic fatality index for „0 – 5‟ age group is significantly higher 

than that of other age groups except for „Over 65‟. This means that, the risk of dying in a road 

traffic accident among „0 – 5‟ and „Over 65‟ are both significantly higher than those of other age 

groups, recording an average rate of 29.0 and 30.9 deaths per 100 casualties, respectively.  
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4.4.5 Conclusion  

We‟ve shown that road traffic casualty level depends on age group of victims involved using a                

2  8 contingency analysis.   

The analysis of variance revealed that there are significant differences in road traffic fatality 

indices (fatality per 100 casualties) among various age groups in Ghana. The risks of dying in a 

road traffic accident among children under 6 years and older population who are over 65 years are 

both significantly higher than those of other age groups. This points to the fact that, although 

smaller number of children under 6 years and older population who are over 65 years die in road 

traffic accidents each year, more and more people as a proportion of the recorded number of 

casualties, are being killed through road traffic accidents among these two categories of age groups.  

Thus, the probability of being killed in a fatal road traffic accident is significantly high in each of 

these two age groups. This may be due to higher fragility of children and older population of road 

users.     

These findings are consistent with a related study by Loughran et al. (2007), in which they 

reported that older drivers are more than twice as likely as middle-aged drivers to cause an 

accident. The research revealed that drivers and passengers riding in cars driven by older drivers 

are nearly seven times likelier to die in an auto accident than are passengers and drivers riding in 

cars driven by middle-aged drivers. This statistic suggests that older individuals are much likelier 

than middle-aged individuals to die in a car accident. Given these trends, the research suggests that 

public policy should focus more on improving the safety of automobile travel for older drivers and 

less on screening out older drivers whose driving abilities have deteriorated unacceptably.  

  

4.5. Logistic Regression Approach to Modelling Road Traffic Casualties in 

Ghana  

4.5.1 Introduction  

Table 4.17, adapted from the National Road Safety Commission (NRSC) of Ghana, shows the 

annual distribution of road traffic injuries and fatalities in Ghana, from 1991 and 2013. The road 

traffic accident statistics in 2013 represent a reduction of 15.3% in fatalities over the 2012 figure. 

The fatality figure of 1 898 in 2013 is the lowest since year 2007. Relative to the year 2001, the 
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2013 figure for fatalities (1 898) recorded an increase of 14.3%, indicating an upward trend. A 

cumulative total of 316 669 casualties were recorded over the 23-years period, where fatalities 

formed 11.4% of this figure.   

  

  

Table 4.17:  Annual distribution of road traffic fatalities and injuries in Ghana from  1991 

to 2013  

   Casualty        Casualty    

i  Year  Fatality  Injury  Total  i  Year  Fatality  Injury  Total  

1  1991  920  8773  9693  13  2003  1716  14469  16185  

2  1992  914  9116  10030  14  2004  2186  16259  18445  

3  1993  901  7677  8578  15  2005  1776  14034  15810  

4  1994  824  7664  8488  16  2006  1856  14492  16348  

5  1995  1026  9106  10132  17  2007  2043  14373  16416  

6  1996  1049  9903  10952  18  2008  1938  14531  16469  

7  1997  1015  10433  11448  19  2009  2237  16259  18496  

8  1998  1419  11786  13205  20  2010  1986  14918  16904  

9  1999  1237  10202  11439  21  2011  2199  14020  16219  

10  2000  1437  12310  13747  22  2012  2240  13001  15241  

11  2001  1660  13178  14838  23  2013  1898  10611  12509  

12  2002  1665  13412  15077  Total  36142  280527  316669  

          Percentage  11.41  88.59  100.00  

  

According to NRSC of Ghana report, the number of road traffic crashes in 2013 (i.e. 9 200) 

represents a decrease of 23.9% and 18% over the 2012 and 2001 figures, respectively. The number 

of fatal crashes and their resulting fatalities in the previous year also saw a decrease. Compared to 

the 2012 figures, fatal crashes decreased in 2013 by 17% and fatalities by 15.3%. There was also 

a decrease of 17.9% in the overall number of casualties in 2013 compared with 2012. Relative to 

the year 2001, the 2013 figures for fatal accidents and fatalities recorded corresponding increases 

of 24.7% and 44.5% respectively, whilst overall casualties recorded a decrease of 15.6%.  

In the logistic regression analysis of this data, road traffic casualty is considered as the response 

or dependent variable of interest and year as predictors. The response has two categories: fatality 

and injury. The general objective of this analysis is to describe the way in which casualty 

distribution of road traffic fatalities varies by year and use this variation to predict future 

distribution. Logistic regression was proposed, as an alternative to ordinary least squares, in the 
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late 1960s and early 1970s (Cabrera, 1994), and it became routinely available in statistical 

packages in the early 1980s. Since that time, the use of logistic regression has increased in the 

social sciences (e.g., Chuang, 1997; Janik  &  Kravitz,  1994;  Tolman  &  Weisz, 1995) and  in 

educational research, especially in higher education (Austin et al., 1992).  

Other studies have been conducted in the area of road traffic casualties in Ghana. Hesse et al. 

(2014c) derived a Bayesian model for predicting the annual regional distribution of the number of 

road traffic fatalities in Ghana. The study showed that population and number of registered vehicles 

are predominant factors affecting road traffic fatalities in Ghana. Similar conclusions were arrived 

at when a least square regression method (see Hesse et al. (2014d)) and multilevel random 

coefficient method (see Hesse et al. (2014e)) were used to derive models for predicting road traffic 

fatalities in Ghana.   

  

4.5.2 Methods  

Let ni denote the number of road traffic casualties in the ith year in Ghana and let yi denote the 

number of road traffic fatalities (RTFs) in the ith year in Ghana. We view yi as a value of a random 

variable Yi  that takes the values 0, 1, …, ni. If we assume the ni observations for each year are 

independent, and they all have the same probability pi of dying as a result of RTAs, then Yi has the 

binomial distribution with parameters pi and ni [i.e. Yi B n( i, pi)]. The probability mass function 

of Yi is given by:  

 f y
( 

i)  
n
yii  p

i
yi (1  

p
i)

ni yi , 
y

i  0, 1,...,
n

i …………………………………..(4.18)  

It can be shown that the expected value and variance of Yi are (Ofosu and Hesse, 2010):  

E Y
( )

i  
n p

i i  and  var( )
Y

i  
n p

i i(1  
p

i). ………………………………………….(4.19)  

The oddsi is the ratio of the probability to its complement, or the ratio of favourable to unfavourable 

cases. Thus,   
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odds
i  1 

pi
pi . …………………………………………………………………….(4.20)  

We take logarithms, calculating the logit or log-odds  

 p
i , …………………………………………………….(4.21)  

i  logit(
p

i) 
 ln 

1  pi 

If the logit of the underlying probability pi is a linear function of the predictors, then we can write  

   logit(pi) = ln 1 pipi  =  01 1xi ... k ikx  

  =  
x

i β,    i  0, 1, ..., k  ………………………………...........................(4.22) where xi   

(1, xi1, xi2, ...,  xik ) and β   ( 0, 1, 2,..., k). Exponentiating Equation (4.22) we find that the 

odds for the ith unit are given by:  

1 
pi

p  exp
x
i β .  

……………………………………………………………….(4.23) i 

Solving for the probability pi in the logit model gives  

pi  1 expexp x i xβi β . 

………………………………………………………………….(4.24)  

  

Maximum likelihood estimation  

The p.d.f. of Yi is:   

 f y( i)  
n
yii  pi

yi (1  pi)
n

i
yi , yi  0, 1,...,ni  

The likelihood function is given by   
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k ni pyi  l( )   = 

i 0 yi  i (1  pi)ni yi    

       k  pi yi (1  pi)ni  

i 1 1  pi 

 k n 

     i 0exi βyi 1  1exiβ  i  i k0exi βyi 1  exi β ni 

………………………(4.25)  

The maximum likelihood estimates of  0, 1,..., k are the values of 0, 1,..., k which maximize 

the likelihood function. They are also the values of  0, 1,..., k which maximize:   

    L( )β  ln ( )l β  k xi βyi  k ni ln 1   exi β . 

…………………………………….(4.26) i 0 i 0 

The first derivative of xi β with respect to  j is xij  , thus:  

    L =  k y xi ij   k ni exiβxiβ xij   i k0 y xi ij  i k0n pxi i ij   

 j i 0i 0 1  e k k

 k 

       =   
y x

i ij    i ijx    y
i  i 

x
ij  

…………………………………...(4.27)  

 i 0 i 0 i 0 

where  i E Y( )i  n pi i, pi depends on the covariates 
x

i and  is a vector of (k 1) parameters. 

Setting each partial derivative in (4.27) to zero, and replacing 0, 1, ..., k by  ˆ0, ˆ1, ..., ˆk 

we obtain the maximum likelihood estimates of 0, 1, ..., k. The methods of solution are iterative 



 

99  

  

in nature and have been programmed into logistic regression software. The interested reader may 

consult the text by McCullagh and Nelder (1989) for a general discussion of the methods used by 

most programs. The second derivatives used in computing the standard errors of the parameter 

estimates, ˆ, are  

 L2   k n xi ij  l 1 exeij x ij     

i k0n pi i 1  pi x xij il   . j l i 0  

The comparison of observed to predicted values using the likelihood function is based on the 

following expression:  

 D = 2ln (likelihood of the saturated model(likelihood of the fitted model) )    

  = 2[ln(likelihood of the saturated model) ln(likelihood of the fitted model)]..(4.28) The log-

likelihood of the fitted model can be written as:   

k 

  L( )β
ˆ
 =  yi ln pˆi (n yi  i)ln(1  pˆi)   

i 0 

 k yˆi (n yi  i)ln ni  yˆi .  

    = i 0 yi ln  ni   ni  

…………………………………….(4.29)  

For the saturated model, we replace yˆi in Equation (12) by yi. Equation (4.28) then becomes  

    D  2i k0 yi ln  yyˆi   (n yi  i)ln  nnii  yyˆii , 

………………………………………(4.30) i 

where, yi  the observed and yˆi  the fitted value for the i
th

 observation.   
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 In particular, to assess the significance of an independent variable, we compare the value of D 

with and without the independent variable in the equation. The change in D due to the inclusion of 

the independent variable in the model is:  

  G   =  D(model without the variable)  − D(model with the variable)      = 

2ln  (likelihood of the model without 

variabl
e)

.  

  (likelihood of the fitted model)  

  

It can be shown that, when the variable is not in the model, the maximum likelihood estimate of  

 k k 

0 is ln
m m

10 , where m1   yi and m0   (ni  yi).  

 i 0 i 0 

   m1 m1  m0 m0   

   G = 2  kln  n   n     

 
 yi ln pˆ  (ni  yi)ln 1  pˆ  

 i 0  

  k  

     = 2   yi ln p
ˆ
i  (ni  yi)ln 1  p

ˆ
i  m1lnm1 m0 lnm0 nlnn , 

……..(4.31)  

 i 0  

where n  m1 m0. If the hypothesis that  j 0, i 1, 2, ...,k is true, then G has the chi-square 

distribution with k degrees of freedom (see Hosmer et al. (1989)).   

  

4.5.3  Results  

In this section, we illustrate the use of statistical packages in R to fit logistic regression models as 

a special case of a generalized linear model with family binomial and link logit. We first begin the 

analysis using nlme package in R. First, the data set, on road traffic casualties from 1991 to 2001 



 

101  

  

in Ghana, is loaded for analysis as shown in Listing (A9) in the appendix. Listing (A10) shows the 

fit of the logistic regression model to the data using the glm() function in R.  

  The results of the application of the R function „summary(logistic)‟, which presents 

the parameter estimate and standard errors for the model, are simplified in Table 4.18.  

  

Table 4.18:  Parameter estimates for logistic model of road traffic fatalities in Ghana from 

1991 to 2001     

j  0  1  2  3  4  5  6  7  8  9  10  

Years  1991 

Intercept  
1992  1993  1994  1995  1996  1997  1998  1999  2000  2001  

Estimates 
ˆ 

j  
-2.25506  -0.04490  0.11258  0.02494  0.07179  0.01006  -0.07502  0.13810  0.14517  0.10721  0.18333  

Standard errors  0.03465  0.04904  0.04941  0.05045  0.04781  0.04749  0.04777  0.04462  0.04591  0.04448  0.04335  

Oddsi  0.10487  0.10026  0.11736  0.10752  0.11267  0.10593  0.09729  0.12040  0.12125  0.11673  0.12597  

pˆi  0.09491  0.09113  0.10504  0.09708  0.10126  0.09578  0.08866  0.10746  0.10814  0.10453  0.11188  

z  -65.07200  -0.91600  2.27900  0.49400  1.50200  0.21200  -1.57100  3.09500  3.16200  2.41000  4.22900  

p-value  2  10-16  0.35992  0.02269  0.62102  0.13315  0.83223  0.11629  0.00197  0.00157  0.01593  2.35 10-5  
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The fitted logistic equation, for the i
th

 year, is therefore given by 
ln

1
pˆipˆi  = 

2.25506 0.04490xi1 0.11258xi2... 0.18333xi10, ………………(4.32)  

where xij 10,    if  ,   ohterwise,i 
 j

  which gives the odds for the i
th

 year as  

  
 
 

1 p
ˆipˆi  exp 2.25506 0.04490xi1 0.11258xi2... 0.18333xi10 .  

Thus,      

pˆi  1  expexp 2.25506 0.04490 2.25506 

0.04490   xi1x i10.11258 0.11258xi2x... 0.18333i2 ... 0.18333  xi10xi 10 . 

…………………..(4.33)  

For instance, when i  0, pˆ0 1   expexp
2.25506

2.25506   0.09491, 

which gives the estimate of the proportion of road traffic casualties who died in the year 1991. 

Note that, in computing for the value of pˆ0, xi1  xi2  ... xi10  0. Note further that, in computing 

for pˆi, i  0, the predictor xij takes the value one (1) for i = j while the remaining 9 predictors 

assume the value zero (0). Thus, from Table 2, when i  5,  

  
p
ˆ5  =  

1  

expexp 2.25506 2.25506  0.04490(0)  0.04490(0)  ...  ...0.01006(1)0.01006(1)  ...  

...0.180.1333(0)8333(0)
   

 

    = exp 2.25506  0.01006   0.09578.  

1  exp 2.25506  0.01006  
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The remaining values of pˆi are given in Table 4.18. The method for specifying the design variables 

involves setting all of them equal to 0 for the reference year (1991), and then setting a single design 

variable equal to 1 for each of the other groups.  

    The significance of the logistic regression relationship can be assessed by using the null 

deviance to test the hypotheses   

 H0:  j 0,     j 1, 2, ..., 10  against  

 H1: not all the  i 0    

at 0.05 level of significance. The test statistic is   

 10 

    G  2 i 0 yi ln pˆi  (ni  yi)ln 1  pˆi    

          12402 ln(12402) 110148 ln(110148) 12284 ln(122550)  . 

When H0 is true, G has the chi-square distribution with 10 degrees of freedom (see Hosmer et al. 

(1989)). We reject  H0 at significance level 0.05 if the computed value of G is greater than 2 18.31. 

From the R function „summary(logistic)‟, the value of the test statistic is 0.05,10  

G0  74.182. Since 74.182, the calculated value of G, is greater than 18.31, the test is significant 

at the 5% level. We therefore reject the null hypothesis in this case and conclude that at least one 

or more of the 10 coefficients is different from zero.  

Since the analysis indicates that the null hypothesis should be rejected at the 5% level, it 

means that some of the coefficients are significantly different from zero. But as to which of the 

coefficients are significantly different, the analysis does not specify. Before concluding that any 

or all of the coefficients are nonzero, we may look at the univariable Wald test statistics (see  

Hosmer et al. (1989)),   

j 

W
j  se( j) . ………………………………………………………………………..(4.34)  

These are shown in the seventh column, labeled z, in Table 2. Under the hypothesis that the i
th

 

coefficient is zero, Wi has the standard normal distribution. The p-values computed under this 
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hypothesis are shown in the eighth column of Table 2. If we use a level of significance of 0.05, 

then we would conclude that the coefficients for the years 1993, 1998, 1999, 2000 and 2001 are 

significantly different from zero, while that of the remaining year are not significant. That is, there 

is little statistical justification for including coefficients for the years 1992, 1994, 1995, 1996 and 

1998 in the model. However, according to Hosmer et al. (1989), we must not base our models 

entirely on tests of statistical significance. There are numerous other considerations that influence 

our decision to include variables in a model. This is based on the fact that it is possible for 

individual variables not to exhibit strong confounding, but when taken collectively, considerable 

confounding can be present in the data; see Rothman et al. (2008), Maldonado and Greenland 

(1993), Greenland (1989), and Miettinen (1976).  

 The purpose of analysing these data is not the determination of the parameters. Interest is centered 

on how good the model is in estimating future road traffic fatality values using these estimates. At 

this stage, we wish to use the model in Equation (15) to estimate the number of road traffic fatalities 

from the year 2002 to 2011, a period of ten years. To do this, a single design variable xij, for year 

i, is set equal to 2 when i = j and then all remaining variables are set equal to 0, where i represents 

any of the years from 2002 to 2011.  We use xi1, xi2, ..., xi10 in Equation  

(15) as our design variables for the year 2002, 2003, …, 2011, respectively. For instance, in year 

3 (i.e. the year 2004), the design variables together with the corresponding parameter estimates are 

given in Table 4.19.  

Table 4.19:  Design variables for year 2004  

Year  2002  2003  2004  2005  2006  2007  2008  2009  2010  2011  

Variables 

for 2004  
x31  0  x32  0  x33  2  x34  0  x35  0  x36  0  x37  0  x38  0  x39  0  x3,10  0  

ˆ j  -0.04490  0.11258  0.02494  0.07179  0.01006  -0.07502  0.13810  0.14517  0.10721  0.18333  

  

Thus, a point estimate of the proportion of road traffic casualties who died in 2004 is given by  
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(see Equation (16))    pˆ2004  1  

expexp 2.25506 2.25506  0.02494(2)  0.02494(2)    

0.09929.  

From Table 1, the total number of road traffic casualties in 2004 is 18 445. Thus a point estimate 

of the total number of road traffic fatalities in 2004 is (to the nearest whole number)    

    Dˆ2004  18 445 0.099  29  1831.  

The actual road traffic fatalities D together with the values of D
ˆ
 calculated from Equation (4.33) 

are given in Table 4.20. The percentage differences between the calculated and actual values are 

also given in Table 4.20.  

It can be seen that all the calculated figures, Dˆ, corresponding to the coefficients,  j, that 

were significantly different from 0, are within 10% of the actual figure and only one (i.e.  

0.07179) of the five coefficients, that were not significantly different from 0, estimated D within 

10% (i.e. 3.9%) of its actual value.  

  

Table 4.20:  Comparison of actual fatalities and fatalities estimated from Equation (4.33)  

j  1  2  3  4  5  6  7  8  9  10  

Year  2002  2003  2004  2005  2006  2007  2008  2009  2010  2011  

ˆ j  
-0.04490  0.11258  0.02494  0.07179  0.01006  -0.07502  0.13810  0.14517  0.10721  0.18333  

D  1665  1716  2186  1776  1856  2043  1938  2237  1986  2199  

Dˆ  1318.9  1879.1  1831.3  1707.3  1580.1  1359.0  2000.0  2274.2  1944.0  2131.6  

Error  346.1  -163.1  354.7  68.7  275.9  684.0  -62.0  -37.2  42.0  67.4  

Error %  20.8  9.5  16.2  3.9  14.9  33.5  3.2  1.7  2.1  3.1  
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4.5.4   Conclusion    

Logistic regression analysis of road traffic fatalities in Ghana has been performed using road traffic 

accident data from the National Road Safety Commission. The data span from 1991 to 2001. The 

formula for predicting the proportion of road traffic casualties who die in the ith year using a logistic 

regression approach is   

    
ln

1
pˆipˆi  =   0 1 1xi  ...  10xi10, where the values of the parameters  0

, 
1, ..., 

10 are given in Table 2. Using the model to estimate the number of road traffic fatalities from 

2002 to 2011 in the Ghana, it was noted that of the 10 calculated figures, 6 are within 10% of the 

actual figure.   

  

  

  



 

107  

  

CHAPTER FIVE  

VALIDATION OF BAYESIAN AND MULTILEVEL METHODS USING  

DATA FROM GHANA   

5.0 Introduction  

In Section 3.1, a modified Smeed’s model   

D
P   N

P u, 

…………………………………………………...………………...(5.1)  

was developed, where D = Number of RTFs, P = population size, N = number of vehicles in use, 

u = multiplicative error term, and  &  are parameters to be estimated. It was shown that the 

parameters of the model can vary from one geographical region to another and hence, can be used 

to assess variability of risk of road traffic fatalities across geographical regions of a given 

geographical zone. It was shown that Equation (5.1), being intrinsically linear, can be transformed 

by a logarithmic transformation given as    

  yi  0 1xi i, ......................................................................................................(5.2)  

where  0 ln ,  1, 
x

i  ln N P , 
y

i  ln D P  and  iln
u

i, i 1, 2, , .n   

This Chapter seek to use Ghana data to validate the methods developed in Chapter 3 of this 

study.   

For comparative purposes, Section 5.1 of this Chapter uses the least squares regression method 

to estimate the parameters of the modified Smeed’s model.    

In Section 5.2, the study seeks to use data from Ghana to validate the Bayesian method and to 

assess the robustness of the model. The questions to be addressed are:   

• How accurate is the Bayesian method for estimating parameters of the modified Smeed’s 

model compare to that of least squares regression method?  

• How accurate is the proposed modified Smeed’s model of this study, in Ghana and how does 

the modified model compare to that of Smeed (1949) in their performance?   
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The final section of this chapter uses data from Ghana to validate the multilevel method and 

compare the risk of RTFs across the 10 geographical regions in Ghana.  

Table 5.1 gives the estimated population size and the number of motor vehicles and road traffic 

fatalities in Ghana (1991 – 2012).   

  

Table 5.1: Estimated Population and the number of motor vehicles, fatalities and casualties 

in Ghana (1991-2012)  

  

No.  

Year  

Population  

(P)  

Motor Vehicles  

(N)  

Fatalities  

(D)  
  

xi  ln  

N
P   

  

yi  ln  

D
P   

  1  1991  14821000    132051   920  -4.7206  -9.68718  

  2  1992  15222000    137966    914  -4.7035  -9.72042  

  3  1993  15634000    157782    901  -4.5960  -9.76145  

  4  1994  16056000    193198    824  -4.4201  -9.87742  

  5  1995  16491000    234962  1026  -4.2511  -9.6849  

  6  1996  16937000    297475  1049  -4.0419  -9.68942  

  7  1997  17395000    340913  1015  -3.9323  -9.74905  

  8  1998  17865000    393225  1419  -3.8162  -9.44065  

  9  1999  18349000    458182  1237  -3.6901  -9.60464  

10  2000  18845000    511063  1437  -3.6075  -9.48145  

11  2001  19328000    567780  1660  -3.5276  -9.36249  

12  2002  19811000    613153  1665  -3.4754  -9.38417  

13  2003  20508000    643824  1716  -3.4611  -9.38857  

14  2004  21093000    703372  2186  -3.4008  -9.17462  

15  2005  21694000    767067  1776  -3.3422  -9.41043  

16  2006  22294000    841314  1856  -3.2771  -9.39365  

17  2007  22911000    922748  2043  -3.2120  -9.32495  

18  2008  23544000    942000  1938  -3.2186  -9.40497  

19  2009  24196000  1030000  2237  -3.1566  -9.28881  

20  2010  24223000  1122700  1986  -3.0716  -9.40894  

21  2011  25099000  1225754  2199  -3.0193  -9.34258  

22  2012  25726000  1328808  2249  -2.9632  -9.34477  
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 5.1   A Least Squares Regression Method  

5.1.1  Estimation of Regression Parameters   

This transformation in (5.2) requires that  1 2, , , 19 are normally and independently distributed 

with mean 0 and variance 2. The least squares estimates of 0 and 1 are the values of 0 and 1 

which minimize   

 19 2 

Q   y
i  0 1

x
i  . 

…………………………………………………………….(5.3) i 1 

Equating these partial derivatives, 
Q

 and 
Q 

,  to zero (because the partial derivatives are  

 0 1 

equal to zero at the minimum point) and replacing 0 and 1 by 
ˆ
0 and 

ˆ
1,  we obtain   

 ˆ1  =   i19 1x yi i  191 i19 1xi i19 1yi 

i19 1xi2  191 i19 1xi 2   = SSxyxx ….…..(5.4)  

and  

      
ˆ
0    y

 
ˆ
1x.   ……………………………………………………………...…….(5.5)  

The values of 
ˆ
0 and 

ˆ
1 are determined using Table A8, in the appendix, which gives the values 

of yi  ln D P  and xi  ln N P  for the 19-year period 1991 – 2009. From Table A10, Sxx 

5.03764  and Sxy 1.60457. Using these results in Equations (5.4) and (5.5), we obtain   

  ˆ10.318516  and   ˆ08.31275.  
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5.1.2   Validation of Regression Relation   

The significance of the regression relationship can be assessed by using analysis of variance 

techniques to test the null hypothesis H0:  1 0 against the alternative hypothesis H1 1:   0 at 

0.05 level of significance. The sum of squares due to linear regression is given by  S2 

    SSR  Sxyxx  (1.60457)5.037642  0.5110806.  

The total corrected sum of squares is given by  

    SST  Syy  19 2  191  19  yi 2  0.6887237.  

 yi 

 i 1 i 1  

Therefore, the residual sum of squares is SSE = SST SSR =  0.034558938.  

The calculations can be summarized in the following ANOVA table.   

Table 5.2:  Analysis of Variance table   

Source of variation   Sum of squares  Degrees of freedom  Mean square  F   

Linear  regression  0.5110806  1  0.511081  48.90913  

  Residual        0.1776431  17  0.01045  

Total         0.6887237  18      

The test statistic for testing H0 against H1 is F  rergesreidsusiaoln m meaenan s 

qsquuaraere. When H0 is true, F has the F-distribution with 1 and 17 degrees of freedom. We reject  

H0 at significance level 0.05 if the computed value of F is greater than 
F

0.05, 1, 17  4.45. Since 

48.9, the calculated value of F, is greater than 4.45, the test is significant at the 5% level. There is 

enough evidence to conclude that there is a linear relationship between the expected value of y  

ln D P  and x  ln N P . The coefficient of determination (R
2
) value from the LSM is   

    R
2
  1  SSE

  1  0.177767
  0.742069135.  

 SST 0.689854 

0.7423 indicating 74.23% of the variability in the response data is explained by the predictor 

variables.  
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5.1.3  Validation of the normality assumption  

The observations yi, i 1, 2, ..., 19, are first ordered from the smallest to largest. The ranked values 

y( )i , i 1, , 19, the corresponding percentage cumulative 
p

i 100 i 3 8  n 1 4  and 

standardized residuals di ei ˆ
2 

, i 1, 2, , 19  are given in Table A9, where ei  yi yˆi, i 1, 2, , 

19 and   ˆ 
2 

0.01045 is the estimate of the population variance.  

Fig. 5.1 shows the probability plot of the     

 observations. It can be seen from Figure 5.1 that  

  

the observations are closed to normal because of   

how well the points follow the line.  

  

 It can be seen from Table A9, in the  appendix, 

that of the 19 calculated standardized  

  

residuals,   18  are  within  the  interval  
Observations 

 

  1.96, 1.96 ,  which represents about 95%.  

 ei Figure 5.1: Normal probability plot  

  It is frequently helpful to plot residuals  

  

against   yˆi as shown in Figure 5.2.  Pattern in the i 

  

plot represents the ideal situation satisfactory for   normality (see Ofosu et al., 2013).  
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  Figure 5.2  Pattern for the residual plot There is strong evidence to conclude that, at 

sample size of 19, the errors are normally distributed. Thus, given ˆ e
8.31275  0.000245 and 

 
ˆ 

0.318516, Equation (5.1)  becomes   

  

    D P  0.000245 N P
0.318516

.  ………………………………………………….(5.6)  

  

5.2 A Bayesian Method  

5.2.1  Introduction   

In this Section, the study wishes to determine the Bayesian estimates of the parameters, 0 and  

1, using the conjugate prior and maximum a posteriori approaches and also test the robustness of 

the Bayesian method with respect to the normality assumption of the model.   

The prior distribution is a key part of Bayesian inference and represents the information about 

an uncertain parameter   that is combined with the probability distribution of new data to yield 

the posterior distribution which in turn is used for future inferences and decisions involving . 

The range of possible value that the regression coefficients 0 and 1 can take is from –∞ to +∞. 

Thus, the largest possible domain of the prior distribution is the set of all real numbers. This limits 

us to distribution which can take both negative and positive values. Therefore, the most suitable 

prior distributions are the bivariate Normal, Laplace and Cauchy distributions. The maximum a 

posteriori method is used with respect to the Laplace and Cauchy prior distributions while for the 

bivariate normal prior both methods are used.  

  

5.2.2 Conjugate Prior Method  

Based on Equation (3.25) and the linear regression model of Equation (5.3), the conditional p.d.f. 

of Y is  

 fY 
y

i 0, 1  1
2  exp  2

1
2 

y
i  0 1x

2
,  

y
i  0.  

…....................................(5.8)  
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Thus, the likelihood function is  

n 

 fY  y 0, 1 =  2 1 2j 2 exp  2 12 i n1 yi  0 1x 2 ,   y  0 

................................(5.9)  

 

From Equation (3.28), the p.d.f. of the bivariate normal prior distribution of β  ( 0, 1),  with 

mean vector μ    0
, 

1  and covariance matrix  is  

 p   0, 1  k2 exp
 1

2 a00  00 
2 a11  1 1

2  2a01  0 0  1

 1 , ..........(5.10)  

where 1  aa1000

 aa1101 , a01  a10. 

 

Thus, the posterior distribution in Equation (3.32) can be expressed as   

  p
 0 1, 

 y
 kexp 2

1
2j i

19
1

y
i  01x

2
 
1

2
a

00 0  0
2

 
a

11 1  1
2

 2
a

01 0  

0  1 1 ,…..(5.11)  

 

Equation (3.35), with a sample size of 19, therefore becomes   

   Q( )β  =    192 a00  02  12 i19 1xi2 a11  12 2  12 i19 1yi a00 

0  a01 1 0    

     

       2  12 i19 1x yi i a11 1  a01 0 1    2  12 i19 1xi a01 0 

1    
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1

9 

        
 1

2  
y

i
2 a

00
 

0
2 a

11
 

1
2 2

a
01 0 1    

....................................................(5.12)  

 i 1 

Hence, Equation (3.37) becomes  

    μ β   
1
2 ΣβC, ..…………………………………………………………….…....(5.13)  

where Σβ is a 2 2   matrix with inverse Σβ
1 mij  whose elements are given as  

m00  19
2  

a
00,                  

 
19 

m01  12  x ai  

01, 
 i 1 

   

 19.........................................................................................(5.14) m10  12  
x a

i  10,         

 i 1 
19 

m22  12  xi2  a11. 

 i 1 

C  is a column vector of order (2  1) with element given as  

 C1  2  12 i19 1 yi  a00  0a01 1    

  .....................................................................(5.15)  

C2  2  12 i19 1x yi i  a11 1   a01 0   

The 19 jackknife sample estimates of 0 and 1, based on the national data, derived from the values 

of yi and xi in Table 5.1 are given in Table 5.3.  
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 Table 5.3:  Jackknife estimates of 0 and 1  

Parameters  1  2  3  4  5  6  7  8  9  10  

0  -8.2025  -8.2373  -8.3012  -8.3889  -8.3177  -8.3254  -8.3236  -8.3143  -8.2968  -8.308  

1  0.35003  0.34012  0.32186  0.29589  0.31694  0.31386  0.31296  0.31942  0.32103  0.31951  

Parameters  11  12  13  14  15  16  17  18  19  Mean  

0  -8.331  -8.3226  -8.3202  -8.3933  -8.2978  -8.2939  -8.3177  -8.2757  -8.3294   -8.3105  

1  0.3148  0.31646  0.31696  0.30058  0.32197  0.32294  0.31741  0.32727  0.31461   0.31916  

  

Based on Equations (3.40) and (3.41), jackknife estimate of the mean vector and covariance of the 

random vector β is computed as follows   

 μˆ  ( 8.3105, 0.3192)   and  Σˆ  0.0018600.0005040.0005040.000139 .  

Based on Equations (5.14) and (5.15),   

  Σˆβ  0.00047120.00174210.00012970.0004712  and  Cˆ 

646278.2082353969.324 .  

Thus, from Equation (5.13) the posterior Bayes estimate of β is given by  

μˆβ 
1

2ΣβC 0.319162
8.31048

. 

……………………….…………………………….(5.16)  

The sum of square due to error (SSE) of the conjugate prior method is computed as   

 19 2 

    SSE   yi  yˆi   0.177767.   

i 1 

The total sum of squares is given by   

 19 2 
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    SST   yi  yi   0.689854.  

i 1 

The coefficient of determination of the conjugate prior method is given by  

     R
2
  1  SSE

  1  0.177767
  0.74231135.  

 SST 0.689854 

Table 5.4 shows the coefficients estimates and the corresponding standard errors for the least square 

and the conjugate prior methods.   

  

Table 5.4:  Comparison of Coefficients of Least Square and Conjugate Prior Methods  

  

  

  

Model  

Least Squares  Conjugate Prior  

Coefficient  Standard Error  Coefficient  Standard Error  

0 = intercept
 
 –8.31179  0.17386  –8.31048  0.04174  

1 = coefficient of x  0.31879  0.04555  0.31916  0.01139  

Coefficient of determination  0.7423  0.7423  

  

It can be seen from Table 5.4, that the estimated coefficients 0 and 1, are almost the same for the 

least squares and the conjugate prior methods. Both methods also reported the same coefficient of 

determination R
2
. The conjugate prior estimates recorded comparatively very small standard 

errors; making the conjugate prior method preferred.  

  

5.2.3 Maximum a posteriori method  

In Bayesian data analysis, one way to apply a model to data is to find the maximum a posteriori 

(MAP) parameter values. Our objective here is to determine the parameter estimates that maximize 

the posterior distribution given the data with respect to the bivariate Normal, Laplace and Cauchy 

prior distributions.  
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Bivariate Normal prior distribution  

The prior distribution in Equation (3.25) can be written in terms of  as  

 f ( 0, 1) 
  1 

2 e
1
2
q
,      0 ,      1 , …………….....(5.17)  

2 1 2 1   

where  

q  1 2  0  1 0 2   2  0 1 0  1  2 1    1  2 

1 2 ,  12 var(   0), 22 var( 1),  1   

  cov(  1 2
0, 1) 

,    0 ,
  

1 .    

Thus, the posterior distribution can be expressed as   

 1 
19 

y
i  

 
0  

 
1
x

i 
2  1

2 q . 

………………………...(5.18) 
p  

0 1, 
y

  =  k exp  2 2 i 1  

 

 

  1  1 .  

where k   2 2j  2 1 2 1  2  

To find the maximum a posteriori (MAP) parameter values, we can resort to Markov chain 

Monte Carlo (MCMC) sampling techniques to get samples from the posterior distribution. The 

maximum a posteriori (MAP) parameter correspond to  

    βMAP  =  argmax p  0, 1 y .  ........................................................................(5.19)  

β 
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Suitable MCMC approach is the Metropolis Hastings (MH) sampler as discussed in Section 

(3.3.3) of Chapter 3. The following is the description algorithm for the procedure: 1.  Set t = 1  

2. Generate an initial value for 0 U( 10  , 4) and 1 U(0, 1).  

3. Repeat  

t = t + 1  

Do a MH step on 0  

 Generate a proposal *0 N( 0, 0.002);   

  p *0 , 1 y  

Evaluate the acceptance probability a  min 1,  ;  

  p 0 1,  y  

Generate a u from a Uniform(0, 1) distribution  

 If u  a, accept the proposal and set  0*0,  

Do a MH step on 1,  

 Generate a proposal β1* N( 1, 0.0001);   

  p 0, 1* y  

Evaluate the acceptance probability a  min 1,  ;  

 p 0 1,  y  

Generate a u from a Uniform(0, 1) distribution  

If u  a, accept the proposal and set  1 β ,1*  

4.  Until t = 5000.  

The MATLAB code for the implementation of component-wise Metropolis sampler for the 

posterior distribution is as given in Listings A1 and A2 in the appendix.   

Table 5.5 shows estimated values of 0 and 1 based on least squares, conjugate prior and 

maximum a posteriori methods. The results show that the estimated coefficients of 0 and 1  are 

almost the same for the least squares, conjugate prior and maximum a posteriori methods of 

estimates.  
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Table 5.5: Comparison of Coefficients of Least Squares, Conjugate Prior and maximum a 

Posteriori Methods  

  

  

 
Methods   

Least Square  Conjugate Prior  Maximum a Posteriori  

0  

  
 (Standard error) 

–8.31179  

(0.17386)  

–8.31048  

(0.04174)  

–8.29094  

(0.03978)  

1  

  
(Standard error) 

0.31879  

(0.04555)  

0.31916  

(0.01139)  

0.32460  

(0.01098)  

  

Laplace Prior Distribution  

It is assumed that β , β0 1  has a bivariate Laplace distribution with mean vector μ    

0, 0 .  The joint p.d.f. is given by   

  1 β  0   0  1  

    f (β , β ) 0 1  e b1b2   1  1 ,   ……………………………….(5.20)  

   0 ,  1 , b1  0, b2  0. Thus, the 

posterior distribution can be expressed as   

  p  0, 1 y  k exp  2 12 i n1 yi  0 1xi 2    b1ˆ1 0 ˆ0 bˆ12  

1 ˆ1 . …......(5.21)  

   0 ,    1 , 
b

1  0, 
b

2  0. It can be show that E( 0)  0, E( 1)  1, var( )   

2b1
2
 and var( )   2b2

2
 (see Norton 1984). Given n independent and identically distributed sample 

01, 02, ..., 0n and 11, 12, ..., 1n, the maximum likelihood estimators of  1 and 2 are given 

by   

   ˆ0 median of ( 01, 02, ..., 0n) and  ˆ1 median of ( 11, 12, ..., 1n), ……(5.22) and the 

maximum likelihood estimators of b1 and b2 are (see Norton 1984)  

nn 
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  b
ˆ
0  1

n   0 ˆ0    and   b
ˆ
1  1

n   1 ˆ1.  ……………………………………....(5.23) 

i 1i 1 

Using the 19 jackknife sample estimates of 0 and 1 in Table 5.3, the maximum likelihood 

estimates of 0 and 1 are   ˆ0 8.3177 and  ˆ0 0.31741 while that of 
b

0 and 
b

1 are bˆ0  

0.02761 and bˆ1  0.007424 respectively. Thus, the posterior distribution can be expressed as   

 1 
19 

y
i  0 1

x
i 

2  b
1

ˆ1   0 ˆ1 bˆ
1

2  

1 ˆ2 . …....(5.24) 
p  

0 1, 
y

  =  k exp  2 2 i 1 

 

Since Equation (5.12) does not correspond to any analytic expression, the bivariate componentwise 

Metropolis-Hastings sampler can be used to determine the maximum a posteriori Bayesian 

estimates. The implementation of component-wise Metropolis-Hastings sampler for the posterior 

distribution, using MATLAB codes similar to that of Listings A1 and A2 in the appendix, gave a 

maximum a posteriori Bayesian estimates of 0 and 1 to be –8.320085 and 0.317051 with 

standard errors of 0.039047 and 0.010450 respectively.  

  

Cauchy Prior Distribution  

The bivariate random variable β , β0 1  has the Cauchy distribution if the p.d.f. can be 

expressed in the form given in the following form  

    f (β , β ) 01  21 (β  )  (β  )  10  a 2  1 1  b 2  ,    0 ,    1

. ………...(5.25)  

The moment estimators of β and β0 1 do not exist while the maximum likelihood estimates tend to 

be complicated by the fact that this requires finding the roots of high degree polynomial. One 

simple method is to take median value of the samples from the random variables β and β0 1 as an 
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estimator of the parameters a and b. Thus, from Table 5.9, the estimates of a and b are aˆ 8.3177 

and bˆ  0.31741. Thus, the posterior distribution can be expressed as  

  2  

 p  , y   =  k exp 21 19 yi  0 1xi 2 (  0  aˆ)2    1( 1  bˆ)2   1 . 

……(5.26)   

  i 1  

The component-wise Metropolis-Hastings sampler for the posterior distribution based on the 

MATLAB codes, gave maximum a posteriori estimates of β and β0 1 to be –8.312857 and   

0.317400, respectively.  

 The resulting posterior Bayesian estimates for the Normal, Laplace and Cauchy prior distributions 

are summarized in the Table 5.6. Given a sample size 19, the posterior Bayes estimate is reasonably 

consistent for the Normal, Laplace and Cauchy prior distributions.  

  

Table 5.6:  Posterior Bayesian estimates for different priors with a sample size of 19  

  

  

  

 Prior distribution   

Normal  Laplace  Cauchy  

Estimate  Standard Error  Estimate  Standard Error    

0 

  

–8.31048  0.04174  –8.32009  0.039047  –8.31286  

1   0.31916  0.01139  0.31705  0.010450  0.31740  

  

Table 5.7 shows the posterior Bayesian estimates of 0 and 1 at four different sample sizes  

(5, 10, 15 and 19) using the Normal, Laplace and Cauchy prior distributions.  

  

    Table 5.7:   Bayesian estimates with respect to sample size and prior distribution  

   Prior distribution   

Sample size  Normal  Laplace  Cauchy  

n  0  1  0  1  0  1  

5 (Standard 

error)  
–5.99608  

(0.67355)  
0. 99041  
(0.02767)  

–8.30608  
(0.61978)  

0. 31923  
(0.02195)  

–5.13317  1.01961  
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10  

  
(Standard error) 

–8.29381  
(0.44057)  

0.32272  
(0.01629)  

–8.29637  
(0.43884)  

0.32863  
(0.01596)  

–7.72230  0.46478  

15  

  
(Standard error) 

–8.31195  
(0.36057)  

0.31647  
(0.01328)  

–8.29288  
(0.35747)  

0.32266  
(0.01298)  

–8.31034  0.31694  

19  
(Standard error)  

–8.31048  
(0.31916)  

0.31916  
(0.01139)  

–8.32009  
(0.31705)  

0.31705  
(0.01045)  

–8.31286  0.31740  

  

It can be seen that, at sample sizes of 5 and 10, the posterior Bayesian estimates of 0 and 1 are 

not consistent across the three prior distributions used. Thus, the estimated values of 0 and 1 are 

said to be sensitive with respect to the prior distribution. At a sample size of 15 or more, the model 

becomes insensitive to the prior distribution. The relative influence of the prior distribution 

decreases while that of the data increases with a sample size of 15 or more. It can also be seen that 

the posterior Bayesian estimate is reasonably consistent for the Laplace prior distribution across 

all four sample sizes used. Even at a sample size of 5 where the normality assumption was violated, 

the estimates based on the Laplace prior distribution was robust. Thus, the Laplace prior 

distribution is preferred when the sample size is small.  

  

Comparison of actual fatalities and estimated fatalities from Smeed’s equation  

Smeed’s equation was used to calculate the number of fatalities for each year in the 19-year period 

1991 – 2009, using the data given in Table 5.1.  The results of this application are given in  

Table 5.7, where:  D = annual road deaths and Dˆ  estimate of  from Smeed's equation.D     

Table 5.7:   Comparison of actual fatalities and estimated fatalities from Smeed’s equation  

No.  Year  D  Dˆ  Error  Error %  No.  Year  D  Dˆ  Error  Error %  

1  1991     920    922     2    0.2  11  2001  1660  1789  129    7.8  

2  1992     914    952    38    4.2  12  2002  1665  1866  201  12.1  

3  1993     901  1014  113  12.5  13  2003  1716  1941  225  13.1  

4  1994     824  1104  280  34.0  14  2004  2186  2037  -149    6.8  

5  1995  1026  1199  173  16.9  15  2005  1776  2136  360  20.3  

6  1996  1049  1321  272  25.9  16  2006  1856  2243  387  20.9  
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7  1997  1015  1407  392  38.6  17  2007  2043  2356  313  15.3  

8  1998  1419  1502    83    5.8  18  2008  1938  2416  478  24.7  

9  1999  1237  1609  372  30.1  19  2009  2237  2535  298  13.3  

10  2000  1437  1699  262  18.2    Total  27819  32048      

  

It can be seen from Table 5.7 that, the application of Smeed’s equation leads to over-estimation of 

the number of road traffic fatalities (RTFs) in Ghana. The result shows that on average, the expected 

fatalities as estimated by Smeed’s formula exceeded the observed by 17%. The paired t-test is used 

to test the null hypothesis that there is no difference between actual RTFs and the estimated RTFs. 

The value of the test statistic for the two equal-tail test is 6.154 with a p-value of 0.0000082. Since 

the p-value is less than 0.05, we reject the null hypothesis at the 5% level. We therefore conclude 

that there is a significant difference between the observed RTFs and those estimated from Smeed’s 

formula, at the 5% level. A Levene’s test (Levene 1960) shows that the variances of the two sets of 

data are homogeneous. Given the relatively large deviations between observed and expected values 

of D in Table 5.7, Smeed’s equation has proved to be an imperfect predictive tool of RTFs in Ghana.   

  

Comparison of actual fatalities and fatalities estimated from Modified Smeed’s Equation  

The modified Smeed’s equation is given by   

    D P  0.000245 N P
0.318516

.  ………………………………………………….(5.27)  

The actual fatalities D together with the values of D
ˆ
 calculated from Equation (5.14) are given in 

Table 5.8. The differences between the calculated and actual values are also given.    

Table 5.8:   Comparison of actual fatalities and fatalities estimated from Equation (5.14)  

No.  Year  D  Dˆ  Error   Error %  No.  Year  D  Dˆ  Error  Error %  

1  1991     920    807   113  12.2  12  2002  1665  1604    61    3.6  

2  1992     914    834     80    8.8  13  2003  1716  1668    48    2.8  

3  1993     901    886     15    1.7  14  2004  2186  1749  437  20.0  
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4  1994     824    962    -138  16.8  15  2005  1776  1833  -57    3.2  

5  1995  1026  1043    -17    1.7  16  2006  1856  1923  -67    3.6  

6  1996  1049  1145    -96    9.2  17  2007  2043  2018    25    1.2  

7  1997  1015  1218  -203  20.0  18  2008  1938  2069     -131    6.8  

8  1998  1419  1298   121    8.5  19  2009  2237  2169    68    3.0  

9  1999  1237  1388  -151  12.2  20  2010  1986  223     -245  12.3  

10  2000  1437  1463    -26    1.8  21  2011  2199  2351  -152    6.9  

11  2001  1660  1540   120    7.3  22  2012  2249  2453  -204    9.1  

It can be seen that of the 22 calculated figures, 16 are within 10% of the actual figure, 21 are within 

20% and one is in error by 20.2% of its actual value. Thus, the modified regression model is 

relatively more accurate in estimating road traffic fatalities in Ghana than the Smeed (1994) 

equation. Averagely, estimates from the modified regression model exceeded the observed by  

7.8% compared to 17% from Smeed’s equation.  

 The paired t-test can be used to determine if there are significant differences between the observed 

fatalities and those from the proposed model. Let Xi and Yi denote the observed and estimated 

number of road traffic fatalities in the ith year respectively.  We assume that Xi is  

N 1, 1
2  and Yi is 

N
2, 2

2 ,   i  1, 2, ..., 22.    

From Table 5.8, the observed Levene F-ratio (Levene 1960), 0.117, is less than the critical F-

value, 
F

0.05,1,36  0.824. We therefore conclude that there is no significance difference between  

1
2 and 2

2.   

 We wish to test 
H

0 1:   2  against 
H

0 1:   2. Let 
D

i  
Y

i 
X

i    (i = 1, 2, …, 22),  and  

D   2 1. H0 and 
H

1 can be expressed in the form H0:  D 0 and H0:  D 0.  The test 

statistic is   

D 

      T ,  
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 SD 10 

  and SD  

where D  221 i22 1Di 2211 i22 1Di2  221 i22 1Di 2 .  

T has the t-distribution with 21 degrees of freedom when Ho is true. Let t denote the computed 

value of T. We reject 
H

0 at significance level 0.05 if t t0.025,21  2.080 or  

t t0.025,21 2.080. From the data, the value of the test statistic is t  0.850. Since 0.850 is less 

than 2.080, we fail to reject H0 at the 5% level of significance. We conclude that there is no 

significant difference between the observed and the estimated road traffic fatalities.   

  

5.2.4  Estimates of Alpha and Beta - Monte Carlo Simulation  

A full Bayesian approach to modeling requires the specification of probability distributions for 

both the data and the unknown parameters. The Bayesian method requires that before a sample is 

taken, some information about  and  must be known. It is assumed that this knowledge about  

and  can be expressed in the form of a probability distribution over the parameter space .  

This prior p.d.f. summarizes what is known about  prior to taking a random sample. The question 

is: How can this additional information be obtained and used in estimation?   

Ever since the original scheme was proposed by Rev. Thomas Bayes (1763), a crucial problem 

has been the prior distribution p( ).  How does one select a prior distribution p( )  , to express the 

uncertainty about the unknown parameter ? There may be some empirical evidence obtained 

through earlier experiments which would help us decide on the prior distribution p( ).  On the 

other hand, one can decide on p( )  , or at least a class of priors p( )  , on a subjective basis or in 

a normal way. Various rules have been suggested and it appears that there is no neat solution to the 

problem.   

     One of the assumptions of the least squares road traffic fatality model is that, given  and , 

the distribution of the dependent variable is normally distributed. The question is: What if these 
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observations are not from a normally distributed population?  The maximum likelihood method, 

used commonly in the estimation of unknown parameters, are asymptotic; that is, the distribution 

of the dependent variable is approximately normal when n is large. In this section, we use 

simulation methods to help us decide on the prior distribution with respect to the sample size under 

a specified distribution.  

The values of N, P and D are simulated from a random variable with specified distributions 

and parameters given in Table A10, in the Appendix. The simulation is set to initially take a sample 

of size 15 from each distribution for 1000 iterations. In each case the values of  and  are 

computed and the means values are recorded. The process is repeated using samples of sizes  

20, 25, 30, … in that order. In each case, the mean values of  and  are recorded for the selected 

distributions and sample sizes, and the results are given in Table A11, in the Appendix.   

The R codes for the implementation of these simulations are given in Listing (A3), in the 

Appendix.  

Table 5.9 shows the actual road traffic fatalities, D, together with the estimated fatalities using 

the values of  and  estimated from the Exponential, Log-Normal, Uniform and Gamma 

distributions for selected sample sizes from 1991 to 2012. The percentage differences between the 

calculated and actual values are given in Table A12, in the Appendix.  

  

Table 5.9:  Expected road traffic fatalities from simulation of N, P and D  

      Exponential  LogNormal  Uniform  Gamma  

Year  

   

 D  

Sample Size  Sample Size  Sample Size  Sample Size  

15  50  100  150  15  50  100  150  15  50  100  150  15  50  100  150  

1991  920  351  348  339  350  653  654  658  649  488  492  486  488  30370  30396  30289  30354  

1992  914  367  363  354  365  677  678  681  673  507  510  505  506  31288  31315  31206  31273  

1993  901  418  414  404  417  734  735  739  730  556  560  554  555  32768  32793  32685  32756  

1994  824  510  504  493  508  824  826  829  821  636  640  633  635  34744  34765  34661  34738  

1995  1026  617  610  598  615  921  924  928  920  724  728  721  723  36797  36812  36714  36797  
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1996  1049  776  768  754  775  1052  1055  1059  1052  846  849  842  845  39254  39263  39173  39264  

1997  1015  887  877  862  886  1142  1146  1149  1143  929  932  925  928  41125  41131  41045  41142  

1998  1419  1020  1008  992  1019  1244  1248  1251  1246  1024  1027  1020  1023  43136  43136  43056  43159  

1999  1237  1184  1170  1153  1183  1361  1367  1370  1365  1137  1138  1131  1135  45330  45326  45251  45361  

2000  1437  1318  1301  1284  1317  1458  1464  1466  1463  1228  1229  1222  1226  47258  47250  47179  47295  

2001  1660  1461  1442  1424  1460  1557  1563  1566  1563  1323  1323  1316  1321  49178  49165  49099  49220  

2002  1665  1575  1555  1536  1575  1638  1645  1648  1646  1400  1400  1393  1398  50886  50871  50807  50933  

2003  1716  1653  1632  1613  1653  1708  1716  1718  1716  1462  1462  1455  1460  52813  52796  52731  52862  

2004  2186  1803  1780  1760  1803  1811  1819  1822  1821  1560  1560  1552  1558  54917  54897  54836  54973  

2005  1776  1963  1937  1917  1964  1919  1928  1930  1930  1663  1662  1655  1661  57086  57061  57004  57147  

2006  1856  2149  2121  2100  2151  2038  2047  2049  2050  1779  1777  1770  1776  59362  59332  59280  59430  

2007  2043  2353  2321  2301  2355  2164  2175  2176  2179  1903  1900  1893  1900  61730  61695  61648  61805  

2008  1938  2402  2370  2349  2405  2217  2227  2229  2231  1947  1944  1937  1945  63359  63324  63275  63436  

2009  2237  2622  2587  2565  2625  2350  2362  2364  2367  2079  2075  2068  2076  65850  65810  65766  65935  

2010  1986  2851  2812  2792  2856  2456  2469  2470  2476  2192  2187  2181  2189  66949  66903  66869  67042  

2011  2199  3108  3065  3045  3114  2613  2627  2628  2635  2346  2339  2333  2342  70032  69980  69951  70133  

2012  2249  3364  3317  3298  3371  2756  2770  2770  2780  2488  2481  2475  2485  72515  72457  72435  72625  

  

It’s obvious from Table 5.9 that, the expected road traffic fatalities with  and  estimated 

using the Gamma distribution leads to over-estimation of the number of road traffic fatalities in 

Ghana, with percentage differences exceeding 2000 for each year over all sample sizes. Thus, given 

the extremely large deviations between observed and expected values of D in Table 5.9, Equation 

(5.27) has proved to be an imperfect predictive tool of road traffic fatalities in Ghana when N, P 

and D follow the gamma distribution.   
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For each distribution, the completely randomized single factor experiment of the effect of 

sample size on the expected road traffic fatalities is conducted with 4 levels of the factor. The 

observed F-ratio and the corresponding P-value for each distribution are 1.0 and 2.7, respectively. 

The conclusion is that: the estimated road traffic fatalities don’t change significantly with 

increasing sample size under each distribution. Prior to that, Levene’s test (Levene 1960) for 

variance shows that, for each distribution, the variances are homogeneous.  

The paired t-test is also conducted to determine if there is significant difference between the 

observed RTFs from the National Road Safety Commission of Ghana and estimated RTFs under 

each distribution. Table 5.10 shows observed two tail tests and the corresponding p-values for 

testing if there is significance difference between the observed and the estimated fatalities under 

each distribution.   

  

Table 5.10:  T-statistics and P-values of the paired t-test   

Exponential  LogNormal  Uniform  Gamma  

tstatistic  p-value  
tstatistic  

p-value  
tstatistic  

p-value  
tstatistic  

p-value  

0.224  
0.825  1.069  0.297  4.121  0.000  17.976  0.000  

  

Since, from Table 5.10, that p-value is greater than 0.05 for exponential and log-normal 

distributions, we conclude that there are no significance differences between the observed and the 

estimated fatalities for these distributions. Thus, when N, P and D are from these two distributions, 

the proposed model of this study can be applied. The p-values in Table 5.6, show that the proposed 

regression model is not a perfect predictive tool for estimating RTFs when the variables are from 

the uniform and gamma distributions.    

 The values of N and P were simulated from the normal distribution while that of D was simulated 

from the exponential distribution for 1000 iterations. The process was repeated for 30 different 

sample sizes. The values of  and  for each of these sample sizes are as given in  Table A13, in 

the Appendix. The Montecarlo R codes for the implementation of the iterations and the estimations 

of   and  are given in Listing (A4) in the Appendix.   
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Table 5.11 shows the actual RTFs together with estimated values of RTAs using the values of 

 and  in Table A13 for selected sample sizes. A completely randomized single factor experiment 

conducted, with four selected sample sizes being the factor levels, shows that there is no significant 

difference between the estimated RTFs with respect to the sample sizes.   

  

Table 5.11: Comparison of actual fatalities and estimated fatalities from the proposed  

distributions   

Years  1991  1992  1993  1994  1995  1996  1997  1998  1999  2000  2001  

Actual Fatalities  920  914  901  824  1026  1049  1015  1419  1237  1437  1660  

 
 

15  636  665  760  931  1132  1434  1643  1895  2208  2463  2737  

50  638  667  763  934  1136  1438  1648  1901  2215  2471  2745  

100  640  668  764  936  1138  1441  1651  1905  2219  2476  2750  

150  635  664  759  929  1130  1431  1640  1892  2204  2458  2731  

Years  2002  2003  2004  2005  2006  2007  2008  2009  2010  2011  2012  

Actual Fatalities  1665  1716  2186  1776  1856  2043  1938  2237  1986  2199  2249  

 
 

15  2955  3103  3390  3697  4055  4448  4540  4965  5411  5908  6405  

50  2964  3112  3400  3708  4067  4461  4554  4979  5428  5926  6424  

100  2970  3119  3407  3716  4075  4470  4563  4989  5438  5938  6437  

150  2949  3097  3383  3690  4047  4439  4531  4955  5401  5896  6392  

  

To compare the difference between the actual RTFs to the estimated RTFs for a sample size of 

150, a paired t-test was conducted. The value of the test statistic obtained was t = 5.035 with a p-

value of 0.000055. Since 0.000055 is less than 0.05, we conclude that there is a significance 

difference between the actual RTFs and the estimated RTFs at the 5% level. Thus, if N and P are 

both from a normally distributed population and D is exponential distribution, then the proposed 

model is not a perfect predictive tool for estimating RTFs in Ghana.    
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5.3 A Multilevel Approach  

5.3.1  Introduction  

Similar to a Bayesian model, where the parameters are considered as random variables, this section 

seeks to develop a Multilevel Random Coefficient (MRC) model for predicting road traffic 

fatalities in Ghana. In this model, the number of road traffic fatalities and the regional groups are 

conceptualized as a hierarchical system of road traffic fatalities and geographical regions of Ghana, 

with fatalities and regions defined at separate levels of this hierarchical system. One can think of 

MRC models as ordinary regression models that have additional variance terms for handling non-

independence, due to group membership (Hox, 1998). This class of models is also often referred 

to as mixed-effects models (Snijders & Bosker, 1999).  

Instead of estimating a separate regression equation for each of the 10 regions in Ghana, a 

multilevel regression analysis is applied to estimate the values of the regression coefficients for 

each region, based on the data for the region. The key to understanding MRC models is to 

understand how nesting fatalities within geographical regions can produce additional sources of 

variance (non-independence) in data (Hox, 1998).  

The modified Smeed’s model for the j
th

 geographical region in Ghana is given by    

j 

    Dij Pij   j Nij Pij  uij,  j 1, 2, ..., 10, .……………………………...…….(5.28)  

where  j and  j are parameters to be estimated. In Equation (5.29), Nij is the number of registered 

vehicles in the i
th

 year recorded in the j
th

 region, Pij is the population size in the i
th

 year recorded 

in the j
th

 region and the multiplicative error term, uij, is such that ij  lnuij is     

N(0, 
2

j). Thus, Equation (5.3) for the j
th

 geographical region in Ghana becomes    yij  
 
0 j  

 
1j ijx  

 
ij,    j 1, 2, ..., 10, …………………………………....(5.29) where 0 j  ln  j, 1j 

 j, 
x

ij  
ln N P

ijij , 
y

ij  
ln D P

ijij  and ij  ln
u

ij,  

i 1, 2, ,19. In this regression equation, 0 j is the usual intercept, 1j is the usual regression 

coefficient (regression slope) and ij is the usual residual error term. Since the parameters of 
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equation (5.29) assumed to vary across the various regions, they are considered to be random 

variables, referred to as random coefficients. Across all regions, the parameters have a distribution 

with some mean and variance. Thus, 0 j and 1j can be modeled as  

   0 j 00 01
x

j 
u

0 j,  

…...……………………………………………………...(5.30)  

   1j 10 
u

1j
. 

 

n 

The terms u0 j and u1j are the residual errors at the regional-level, where 
x

j  
1

n  
x

ij. From i 1 

Equations (5.29) and (5.30), we have  yij = 00 10
x

ij+ 01
x

j 
u x

1j ij 
u

0 j ij,   j 1, 2, ..., 10. 
…………….…….(5.31)  

The first variance term that distinguishes a MRC model from a regression model, is a term that 

reflects the degree to which regions differ in their intercepts. A significant variance term,   

  0 var(
u

0 j), ……………………………………………………………………..(5.32)  

indicates that regions significantly differ in terms of the dependent variable (DV). Significant 

regional-level variance further suggests that it may be useful to include regional-level variables as 

predictors. Regional-level variables (or level-2 variables) differ across regions, but are consistent 

within-regions.   

The second variance term that distinguishes a MRC model from typical regression, reflects 

the degree to which slopes between independent and dependent variables vary across regions is   

  1 var(
u

1j). ……………………………………………………………………...(5.33)   

Single-level regression models generally assume that the relationship between the independent 

variable (IV) and dependent variable (DV) is constant across regions. In contrast, MRC models 

permit one to test whether the slope varies among regions. If slopes significantly vary, one can 

attempt to explain the variation as a function of regional differences.  

A third variance term is common to both MRC and regression models. This variance term,   

2 var( ij), ……………………………………………………………………..(5.34)   
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reflects the degree to which the actual value of y differs from its predicted value within a specific 

region. One can think of 
2
 as an estimate of within-group variance. One uses fatality-level or 

level-1 variables to predict within-region variance, 
2
. Level-1 variables differ among members of 

the same region.   

It is assumed that the regional-level residuals u0 j and u1j  as well as the national-level residuals 

ij have mean 0, given the value of the explanatory variable X. Thus, 10 is the average regression 

coefficient just as 00 is the average intercept. The first part of Equation (5.31), 00  10
x

ij + 

01
x

j, is called the fixed part of the model. The second part u x1j ij u0 j ij, is called the random 

part.  

The term u1j ijx can be regarded as random interaction between group (region) and x. This 

model implied that the regions are characterized by two random effects: their intercept and their 

slope. Thus, x has a random coefficient. These two regional effects are usually correlated. The 

assumption is that, for different regions, the pairs of random effect u0 j, u1j  are independent 

and identically distributed, that they are independent of the national-level residuals ij, and that all 

ij are independent and identically distributed. The covariance of the regional-level residuals  

u0 j, u1j  is given by   

cov(
e

j, 
e

j)  01.  …………………………………………………………..…...(5.35)  

Thus, from Equations (5.31), (5.32), (5.33), (5.34) and (5.35),  

    Vj  var Y xijij      0   2 01xij   1xij2   2, 

………………………………..(5.36)  

and, for two different year i and  (i  i  i ),   

    cov Y Y x xij, i j ij, i j       0   01(xij xi j  )   1x xij i j  . 

…………………………(5.37)  
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{ 1, 2, …, 10}  is assumed to be a random sample of size 10 taken from a population whose 

distribution depend on the parameters 00, 01, 10, 0, 1, 01 and 2, where  j = ( 0j, 1j),  j = 

1, 2, …, 10 (Pinhiero & Bates, 2000). Thus, yij is a value of the random variable Y whose 

distribution depends on the unknown parameters 00, 01, 10, 0, 1, 01 and 2.  Y has the normal 

distribution with mean 00  10
x

ij+ 01
x

j  and variance 
V

j.  Thus, the probability density function 

(p.d.f.) of Y given X  
x
ij is  

 fYij yij  X  xij   2V1 j  exp  2V1j yij   00   10xij   01xj 2 .  

……….(5.38)  

The likelihood function, for 19 years data, in the j
th

 region is given by  

 19 2   

    l   0 1 0,  ,  ,Vj  =  2V1 j  exp  2V1j yij 

  00   10xij   01xj   

i 1 

 

                =    1  exp  2V1j i19 1 yij 00 10xij 01xj 2 . 

…….(5.39)  

 2Vj   

The maximum likelihood estimates of the seven parameters 00, 01, 10, 0, 1, 01 and 
2
 are 

the values of 00 01 10,  ,  ,   0, 1, 01 and 
2
 which maximize the likelihood function.  

They are also the values of  00 01 10,  ,  ,   0, 1, 01 and 
2
 which maximize   

 L   0, 1, 0,Vj  = lnl   0, 1, 0,Vj   

n 
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         = 192 ln2 192 lnVj  2V1j i 1 yij  00 10xij 01xj 

2,……(5.40)  

where Vj     0  2 01xij   1xij
2
   

2
. The partial derivatives of L with respect to   0 1,  ,  

0, 0, 1, 01 and 
2
 are given by  

 

     L00  V1j i n1 yij  0010xij 01xj ,  

  L01  
V

1j i n1xj yij  0010xij 01xj ,  

   L  V1j i n1x yij  ij  0010xij 01xj ,  

10 

 L0    19  12 n yij  00 10xij 01xj 2,  

…………………………(5.41)  

 2Vj 2Vj 

    i 1  

    L1   192Vxijj2  2xVij2j2 i n1 yij  00 10xij 01xj 2,  

       19x  x n  2  

  L ij ij yij  0010xij 01xj ,  

01 Vj Vj2 i 1    n 2  
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   L2 19  12  yij  00 10xij 01xj   

     2Vj 2Vj i 1  

Equating these partial derivatives to zero (because derivative is zero at the minimum point) and 

replacing 00, 01, 10, 0, 1, 01 and 
2
 by 

ˆ
00, 

ˆ
01, 

ˆ
10, ˆ0, ˆ1, ˆ01 and 

ˆ 2
 we 

obtain the maximum likelihood estimates for the parameters.  

Computing the maximum likelihood estimates requires an iterative procedure. At the start, the 

computer program generates reasonable starting values for the various parameters.   

Because multilevel modeling involves predicting variance at different levels, one often begins 

a multilevel analysis by determining the levels at which significant variation exist. The following 

sub-sections illustrate the estimation of the regression coefficient using the Linear & Nonlinear 

Mixed Effects (nlme) package in R (Pinhiero & Bates, 2000).   

  

Regional data  

Table A14, in the appendix, shows the observable number, Dij, of road traffic fatality  in the i
th

 

year recorded in the j
th 

region, the number, Nij, of registered vehicles in the i
th

 year recorded in the 

j
th 

region and Pij, the population size in the i
th

 year recorded in the j
th 

region of Ghana from 1991 

to 2009. Table A15 shows the values of xi j  ln Nij Pij  and the corresponding values of yi j 

 ln Dij Pij  for the ten regions of Ghana from 1991 to 2009.  

  

5.3.2   The unconditional means model, M0  

In this step, the study examines if there will be significant intercept variation ( 0). In this case, the 

general assumption is that, there is significant variation in 
2
 (Bryk & Raudenbush, 1992). If 0 

does not differ significantly from 0, there may be little reason to use random coefficient modeling 

since simpler Ordinary Least Squares (OLS) modeling will suffice. Note that if slopes randomly 
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vary even if intercepts do not, there may still be reason to estimate random coefficient models 

(Snijders & Bosker, 1999).   

An unconditional means model does not contain any predictors, but includes a random 

intercept variance term for groups. Thus, the analysis, in this case, is similar to the randomized 

single factor experiment of analysis of variance. Thus, the study seek to determine if there is 

significance variation between the mean Y. j across the ten regions in Ghana.  The model is:  

Yij = 0 j  
 
ij,  

0 j = 00 u0 j    ....................................................................................................(5.42)  

In combined form, the model is:   

yij = 00  u0 j   ij. .............................................................................................(5.43)  

We wish to determine two estimates of variance;   

1. 0 associated with 
e

j reflecting the variance in how much each groups’ intercept varies from 

the overall intercept ( 0),   

2. 2
 associated with ij reflecting how much each individuals’ score differs from the group 

mean.   

The observed variance within region j is given by   

s2
j    19  

y
ij  

y
.j 

2,  

……………………………………………………………..(5.44) i 1 

where  y. j is the mean of the jth region. The observed within-region variance, or pooled within- 

region variance is  

   MSW  swithin2   180110 19   yij  y.j 2  1801 10  18s2j  101 10  s2j 

…………….(5.45)  



 

137  

  

 j 1i 1 j 1 j 1 

If the model (5.43) holds, then the expectation of Swithin
2  is equal to 2. That is,   

 E S  within
2 2.  

……………………………………………………………………(5.46)  

Thus,   

  
ˆ 2s

within
2 . ……………………………………………………………………..…(5.47)   

The observed between-region variance (variance of the group means) is given by  

    
s

between
2  

   10  
y

.j  
y

..
2 .  

……………...…………………………………...…(5.53) j 1 

where y.. is the overall mean. The total observed variance is   

    MST  stotal2     10 19  yij  y.. 2 .  

………………………………………...….(5.54) j 1i 1 

It can be shown that   

MST  MSW MSA, ……………………………………………………………..(5.55)  

where MSA 19Sbetween
2 . The expectation of the between-region variance is given by   

    
E S  between

2    0 19
2 . 

………………………………………………………...…..(5.55) Thus,   

 
ˆ
0 =  

s
between

2   19
ˆ2    …………………………………………………………....(5.56)  

=  MSA  19  MSW 
.
  

The unconditional means model and all other random coefficient models that the study considers 

are estimated using the lme (linear mixed effects) function in the nlme (Linear & Nonlinear 

Mixed Effects) package of R (Pinheiro & Bates, 2000).   
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The researcher begins the analysis using nlme package in R. First, the data set, i.e. the regional 

distribution of road traffic fatalities in Table A15, is copied on the clipboard in the format as shown 

in Table A16 (see Appendix) and loaded for analysis as shown in Listing (5.1) in the Appendix.  

> fatalities<-read.table(file="clipboard",sep="\t",header=T)….Listing (5.1) In 

the model, the fixed formula is y~1 as applied in Listing (A4). This states that the only predictor 

of y is an intercept term.   

  > Null.Model<-lme(y~1,random=~1|Regions,data=fatalities,  

+control=list(opt="optim")) …………………………………...Listing (5.2)  

The VarCorr function provides estimates of variance for an lme object as shown in Listing (A5)  

  

Intraclass Correlation Coefficient (ICC)  

As with the completely randomized single-factor experiments, it is useful to determine how much 

of the total variance is between-groups. This can be accomplished by calculating the Intraclass 

Correlation Coefficient (ICC). Using this model, we can estimate the ICC value  by using the 

equation (Hox, 2010 and Snijders & Bosker, 1999)  

   ˆ =  ˆ0  
ˆ

 0 
ˆ 2 .  

……………………………………………………………...….(5.57)  

where ˆ0 and  ˆ 
2
 are point estimates of  and 

2
, respectively. The standard error of this 

estimator, when n = 19 and a = 10, is given by (Hox, 2010)  

    SE. .      ˆ  1 1 (n 1)  n n(  1)(   
2 

a  1). 

……………………………...……....(5.58) The purpose of the unconditional means model is to 

estimate the between-group and withingroup variance in the form of 0 and 
2
 respectively. Thus, 

from Listing (A5), the estimate of  

0 and 
2
  are  ˆ0 0.1891104 and  ˆ

2 
0.1389485. Using these values in Equation (5.57), we 

obtain,  

        ˆ    
0.1891104 

  0.5764526.  
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0.1891104  0.1389485  

The estimate of the ICC value can also be computed from an ANOVA model, given in                         

Listing (5.2).      

> tmod<-aov(y~as.factor(Regions),data=fatalities.1 .....Listing (5.2)  

The ICC has values that lie in the range [0, 1]. It describes how strongly observations between 

regions resemble each other. If there is full agreement in every region, then  
2 

0  and the ICC = 

1. If there is no agreement, then  0 0, and the ICC = 0.  The closer the ICC value to  

1, the stronger the resemblance of observations between regions.   

  

Estimating group-mean reliability  

When exploring the properties of the outcome variable, it can also be of interest to examine the 

reliability of the group mean. The reliability of group means often affects one’s ability to detect 

emergent phenomena. In other words, a prerequisite for detecting emergent relationships at the 

aggregate level is to have reliable group means (Bliese 1998). By convention, estimates around 

0.70 are considered reliable. Group mean reliability estimates are a function of the ICC and group 

size (see Bliese, 2000; Bryk & Raudenbush, 1992). ICC(2) is among regions variance (MSA) minus 

within regions variance (MSW) over among regions variance (MSA).  

      ICC(2) =  MSA
MSA

   MSW …………………………………………………………(5.58)  

          =  3.73205  0.138953.73205   0.96277.    

The GmeanRel function from the multilevel package in R calculates the ICC, the group size, and 

the group mean reliability for each group. When we apply the GmeanRel function to our  

Null.Model, as shown in Listing (A6), based on the 10 regions in the fatalities data set, 

we are interested in two things. First, we are interested in the average reliability of the 10 regions. 

Second, we are interested in determining whether or not there are specific regions that have 

particularly low reliability. Notice that the overall group-mean reliability is acceptable at  

0.96277.   
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Determining whether 0 is significant.   

If it is assumed that the within-region deviations ij are normally distributed, then we can the 

hypothesis that ICC is 0, which is the same as the null hypothesis that there are no regional 

differences, or the true between-region variance is 0. The test statistic is  

    F  MSWMSA ,   

which has the F-distribution with 9 and 180 degrees of freedom when the null hypothesis is true. 

We reject the null hypothesis at 0.05 level of significance if the observed F value is greater than  

F0.05,9,180 1.9322. From Table 5.14, since the observed value of the test statistic, 26.8592, is 

greater than 1.9322, we reject the null hypothesis and conclude that the intercept variance, 0, is 

significantly different from zero.   

In summary, we would conclude that there is significant intercept variation in terms of y scores 

across the 10 regions. We also estimate that about 58% of the variation in y score is a function of 

the region to which it is observed. Thus, a model that allows for random variation in y among 

regions is better than a model that does not allow for this random variation.  

  

5.3.3   Random intercept model: M1  

At this point of the analysis, there are two sources of variation that we can attempt to explain in 

subsequent modeling – within-region variation (
2
) and between-region intercept variation ( 0). 

In this section, we begin to build a model that predicts these two sources of variation. A first step 

towards modeling between-group variability is to let the intercept vary between regions. This 

reflects that some groups tend to have, on average, higher responses Y and others tend to have 

lower responses. The form of the model is:  

yij = 0 j  
 
1j ijx  

 
ij,  

 

      0 j = 00   01xj  u0 j   ............................................................................(5.59)  

 



 

141  

  

 1j = 10
, 

 

The first row of Equation (5.59) states that the y score is a function of the intercept for a region 

plus a component that reflects the linear effect of the observed x value plus some random error.  

The second line states that each region’s intercept is a function of some common intercept ( 00) 

plus a component that reflects the linear effect of regional average of x values plus some random 

between-regions error. The third line states that the slope between x and y is fixed – it is not allowed 

to randomly vary across groups. The three rows are combine into a single equation  

Yij = 00 10xij 01xj u0 j ij,   j 1, 2, ...,10. ............................................(5.60) 

Essential assumptions are that all residuals, u0 j and ij, are mutually independent and have zero 

means given the values xij of the explanatory variable. For the u0 j, just as for the ij, it is assumed 

that they are drawn from normally distributed populations. The population variance of the national-

level residuals ij is assumed to be constant across the regions, and denoted by 
2
;         the 

population variance of the regional-level residuals u0 j is denoted by 0.   

Using the data in Table A16 (see Appendix), model M1 is specified in the R package lme as 

shown in Listing (5.10).  

Model.1<-lme(y~x+G.x,random=~1|Regions,data  ……....Listing (5.3)  

=fatalities,control=list(opt="optim"))  

Listing (A7) gives the summary of the results of Listing (5.3).  

Table 5.12 presents the parameter estimate and standard errors for both models (M0 and M1). 

In this table, the intercept-only model estimated the intercept as 9.688842, which is simply the 

average of the y values of all regions and fatalities. The variance of the fatality-level residual error, 

symbolized by 
2
, is estimated as 0.1389485. The variance of the regional-level residual errors, 

symbolized by 0 is estimated as 0.1891104. All parameter estimates are much larger than the 

corresponding standard errors, and calculation of the Z-test shows that they are all significant at p 
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< 0.05. The deviance reported in Table 5.12 is a measure of model misfit; when we add explanatory 

variable to the model, the deviance is expected to go down.      

   

  

Table 5.12: Intercept-only model and model with explanatory variables  

Model  M0: intercept only  M1: with predictor  

Fixed effect  Coefficient  Standard Error  Coefficient  Standard Error  

 00 Intercept  9.688842  0.1401  10.075599  0.7426  

10  coffiecient of xij      0.459058  0.0374  

01  coefficient of xj      0.544840  0.1658  

Random part  Parameters  Standard Error  Parameter  Standard Error  

 0 var(
u

0 j)  
0.1891104      0.2085  0.20938573       0.1447  

2 

  var( ij)  

0.1389485      0.0855  0.07586128       0.0632  

Deviance  198.201    94.554    

  

In the second model, where the explanatory variable was included, the regression coefficients for 

all three variables are significantly different.  Notice that the x-scores are significantly positively 

related to the y-scores. Furthermore after controlling the fatality-level relationship, average xscores 

are negatively related to the average y-score in a region. The interpretation of this model indicates 

that the slope at the regional-level significantly differs from the slope at the fatalitylevel. A unit 

increase in x is associated with a –0.085 (–0.545 + 0.460) decrease in average yscore. The 

coefficient of –0.545 reflects the degree of difference between the two slopes.  

The within-region and between-region regression coefficients would be equal if, in Equation 

(5.38), the coefficient of x would be 0, i.e.  10 0. This null hypothesis can be tested using the 

test statistics  

    T  estimate ,  

standard error 

which has the t-distribution with 9 degrees of freedom. The value of T based on the given data is  t 

0.544840 0.1658 3.286, which is significant at the 0.05 level.  

The within-region deviation about this regression equation, ij, have a variance of 0.0759 

(standard deviation 0.2755).  Within each region, the effect (regression coefficient) of xij is  
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0.459, so the regression lines are parallel. Regions differ in two ways; they may have different 

mean x-values, which affects the expected results yij through the term 0.545xj; this is an explained 

difference between the regions; and they have randomly different values for u0 j, which is an 

unexplained difference. These two ingredients contribute to the region-dependent intercept, given 

by 10.076  u0 j  0.545xj.   

 The estimate of regional-level residual uˆ0 j and the corresponding values of  and  for each 

region are given together with the values of  x j are given in Table 5.13.  

  

Table 5.13: Estimate of the values of u0 j, 0 j,  j and  j for each region  

Regions  
Greater 

Accra  Ashanti  Western  Eastern  Central  Volta  Northern  Upper East  
Upper 

West  
Brong  
Ahafo  

uˆ0 j  0.43873  0.24502  0.00278  0.58195  0.36494  -0.14103  -0.59011  -0.42436  -0.59757  0.11865  

xj  -2.35474  -3.92579  -4.85053  -5.24053  -5.41474  -5.53579  -4.59368  -4.24947  -3.91211  -4.99790  

ˆ0 j  -8.35385  -7.69156  -7.42995  -6.63827  -6.76036  -7.20038  -8.16278  -8.18457  -8.54161  -7.23378  

ˆ j  0.45906  0.45906  0.45906  0.45906  0.45906  0.45906  0.45906  0.45906  0.45906  0.45906  

ˆ j  0.0002355  0.0004567  0.0005932  0.0013093  0.0011588  0.0007463  0.0002851  0.0002789  0.0001952  0.0007218  

The estimated values of  and  can be used to estimate the number of road traffic fatalities in 

each region. For instance, in Greater Accra region, where x  2.35474, the estimated values for 

0 j  and  1j are  01 10.076 0.43873 0.545x 8.35385 and   11 0.45906, respectively.  

Therefore, the estimate for 1 is  

  ˆ1 e
8.35385  0.0002355.  …………………………………………..…………...(5.61)  

Equation (4.12), for Greater Accra region, therefore becomes   

Di1
P

i1  0.0002355
N

i1
P

i1
0.45906 

,  ……………………………………......….(5.62)  

where Di1 is the number of road traffic fatalities in the i
th

 year, Ni1 is the number of registered 

vehicles in the i
th

 year and Pi1 is the estimated population size in the i
th

 year, for Greater Accra 

region.   
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5.3.4  Random slope model M2      

In the random intercept model of M1, the regions differ with respect to the average value of the 

dependent variable: the only random group is the random intercept. But the relation between 

explanatory and dependent variables can differ between regions in more ways. The study, therefore, 

continue the analysis by trying to explain the third source of variation, namely, variation in the 

slope, 1. The model that we test is:  

yij = 0 j  
 
1j ijx  

 
ij,  

 

0 j = 00  
 
01

x
j  

u
0 j  ………………………………………………………(5.63)  

 

 1j =  10 
u

1j  

The intercepts 0 j as well as the regression coefficients, or slopes, 1j are region-dependent.  

When we combine the three rows into a single equation in the form  yij  00 10
x

ij 01
x

j 
u 

x
1j ij 

u
0 j ij,      j 1, 2, ..., 10. ………………….(5.64) The slope 1j is normally distributed 

with mean 10 and variance 1. The variance term associated with u1j is 1.  Since 95% of the 

probability of a normal distribution is within two standard deviations from the mean, it follows that 

approximately 95% of the regions have slopes between  10 2 1 and   10 2 1.   Fig. 5.3 

presents 10 regression lines for the 10 

regions of Ghana using   the data in Table 

A15. The figure    demonstrates regression 

lines that 
 
characterize, according to this 

model, 
 

the population of geographical 

regions  

  

in Ghana.  

  

 In R this model is designated as  Figure 5.3:  Ten random regression lines   

 
shown in Listing (5.4).  from Table A15  
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> Model.2<-lme(y~x+G.x,random=~x|Regions, 

data=fatalities,control=list(opt="optim"))…………..Listing (5.4)  

The summary of the results Listing (5.4) are given in Listing (A8), in the appendix. The VarCorr 

function, as applied in Listing (A9), provides estimates of variance for an lme object.  

Table 5.14 presents the parameter estimate and standard errors for the models M0, M1 and  

M2. The within-region regression in model M2 is 0.4459 and between-region regression coefficient 

is -0.3384 + 0.4459 = 0.1075. All the standard errors of the estimated parameters in model M2 are 

smaller than the corresponding values of model M1. Moreover, the deviance, which measures the 

model misfit, is much lower in M2 as compared to that of M1. Thus, the estimated parameters based 

on model M2 is preferred.    

  

  

Table 5.14: Comparison of models M0, M1 and M2  

Model  M0: intercept only  M1: with predictor  M2: with predictor  

Fixed effect  Coefficient  Standard 

Error  
Coefficient  Standard 

Error  
Coefficient  Standard 

Error  

 00 Intercept  -9.6888  0.1401  -10.0756  0.7426  -9.2341  0.2065  

10  coffiecient of xij          0.4591  0.0374  0.4459  0.0707  

01  coefficient of xj         -0.5448  0.1658  -0.3384  0.0516  

Random part  Parameter  Standard 

Error  
Parameter  Standard 

Error  
Parameter  Standard 

Error  

 0 var(
u

0 j)  
0.1891  0.2085  0.2094  0.1447  0.1545  0.1243  

 1 var(
u

1j)  
        0.0382  0.0618  

01  cov(u0 j, u1j)          0.0766    

2 

  var( ij)  
0.1389  0.0855  0.0759  0.0632  0.0630  0.0576  

Deviance  198.201  94.554  64.749  
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In the null model M0, the variance estimate from the within-region residual, 
2
, is 0.1389. and the 

variance estimate for the intercept, 0, is 0.1891. The variance estimates from the model M2,  with 

one predictor, are  ˆ 
2 

0.0630 and  ˆ0 0.1545. That is, the variance of the within-region 

residuals decreased from 0.1389 to 0.0630 and the variance of the between-region intercepts 

decreased from 0.1891 to 0.1545.   

Variance explained  1  
 varince with predictor

 
..................................................(5.65) variace without predictor 

The y-values explained is 1 – (0.0630/0.1389) or 0.55 (55%) of the within-region variance in 2, 

and regional-mean values x explained is 1 – (0.1545/0.1891) or 0.18 (18%) of the between- 

 

region intercept variance 0.   

 Should the value of 0.0382 for the random slope variance be considered to be high? The slope 

standard deviation is 0.0382  0.195, and the average slope is  0 0.4459. The values of ‘average 

slope  two standard deviations’ range from 0.0559 to 0.8359. This implies that the effect of x is 

clearly positive in all regions. Table 5.15 gives the slope of the least square regression line for each 

of the 10 regions of Ghana based on the data in Table A15.  

  

Table 5.15: Slope of the least square regression line for each region in Ghana  

Greater 

Accra  
Ashanti  Western  Eastern  Central  Volta  Northern  

Upper 

East  
Upper 

West  
Brong- 
Ahafo  

0.267  0.360  0.258  0.179  0.193  0.549  0.717  0.654  0.804  0.458  

  

It can be seen from Table 5.15 that all the 10 regions have slopes between 0.0559 and 0.8359. Thus, 

the normality assumption of the slope is validated. The correlation between random slope  

and random intercept is   0.0766  0.997. 
 0.1545  0.0382  
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 The standard deviation of the x-values is about 1.05, and the mean is –4.5. Hence fatalities with x 

values among the bottom fewer percent or the top few percent have x values of about – 6.6 and –

2.4 respectively. Substituting these values in the contribution of the random effect give u0 j 6.6u1j 

and u0 j 2.4u1j. It follows from Equations (5.42) and (5.43) that when x  6.6,  

2.4, var Y xij ij 6.6   0.1545  2 0.0766 ( 6.6)   0.0382 ( 6.6)   2 
0.0630  

0.8704, cov Y Y xij, i j  ij 6.6,xi j  2.4   0.1545 0.0766( 6.6  2.4) 0.0382   6.6 

2.4 0.0702 var
Y x

ij i j  
2.4

  0.1545   2 0.0766 ( 2.4)   2 
 0.0382 ( 2.4   )  

0.0630  0.0699. and therefore  

  Yij, Yi j   xij 6.6,xi j  2.4   0.8704  0.06990.0702   0.2846.  

Thus, the highest value of x and the least value of x in the same region are positively correlated 

over the population of regions. The positive correlation corresponds to the result that the value of 

x for which the variance given by (5.42) is minimal, is outside the range from -6.6 to -2.4. For the 

estimates in Table 5.17, this variance is   

    var Y xijij  x  0.1545  0.1532 x  0.0382x
2
   

2
.  

Equating the derivative with respect to x to 0, shows that the variance is minimal when x 0.1532 

0.0382 4.01, which is within the range – 6.6 to –2.4.   

 In Table 5.14, the model M2 represents within each region, denoted j, a linear regression equation  

  Yij = 9.2341  0.4459xij  0.3384xj + u0j ijx   u1j   ij, ……………...…(5.66) where u0 j and 

u1j are region-dependent deviations each with mean 0 and variances 0.1545 and  

0.0630 respectively. The application of the R code coef(Model.2)gives the intercept and the 

coefficients of x and x as shown in Table 5.16.  
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Table 5.16: Intercept and coefficients of x and x  

No.  Regions  Intercept  x  x  

1  Greater Accra     -9.506844  0.3083572  -0.3384525  

2  Ashanti           -9.402255  0.3614688  -0.3384525  

3  Western           -9.319224  0.4053849  -0.3384525  

4  Eastern           -9.704008  0.2109577  -0.3384525  

5  Central           -9.575697  0.2758323  -0.3384525  

6  Volta             -9.270846  0.4259363  -0.3384525  

7  Northern          -8.806641  0.6594775  -0.3384525  

8  Upper  East       -8.839118  0.6439825  -0.3384525  

9  Upper West        -8.530726  0.7993004  -0.3384525  

10  Brong Ahafo       -9.385768  0.3686119  -0.3384525  

The estimate of regional-level residuals uˆ0 j and uˆ1j and the corresponding values of 0 j and 1j 

for each region are given in Table 5.17.  

  

Table 5.17: Estimate of regional-level residuals and the values of  and    

Regions  

uˆ0 j  uˆ1j  ˆ0 j  ˆ j  

ˆ 

ˆ j  e 0 j  

Greater Accra     -0.273  -0.138  -8.709877  0.3083572  0.0001649  

Ashanti           -0.168  -0.084  -8.073562  0.3614688  0.0003117  

Western           -0.085  -0.041  -7.677551  0.4053849  0.0004631  

Eastern           -0.470  -0.235  -7.930339  0.2109577  0.0003597  

Central           -0.342  -0.170  -7.743066  0.2758323  0.0004337  

Volta             -0.037  -0.020  -7.397244  0.4259363  0.0006129  

Northern          0.427  0.214  -7.251897  0.6594775  0.0007088  

Upper  East       0.395  0.198  -7.400873  0.6439825  0.0006107  

Upper West        0.703  0.353  -7.206664  0.7993004  0.0007416  

Brong Ahafo       -0.152  -0.077  -7.694218  0.3686119  0.0004555  

  

Based on Table 5.17, the estimate of the number of road traffic fatalities, Dˆij, of the j
th

 geographical 

region of Ghana in the i
th

 year, can be obtained from the formula   
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    Dˆij 
P

ij ˆ j 
N

ij 
P

ij 
ˆ j ,    j 1, 2, ..., 10 …………………………………..…..(5.67)  

Nij is the number of registered vehicles in the i
th

 year recorded in the j
th 

region while Pij represents 

the population size in the i
th

 year recorded in the j
th 

region.   

For instance, in Greater Accra region, where x  2.35474, the estimated values for  

0 j  and  1j are   

  ˆ019.2341 0.33845 2.35474 0.273 8.710,  

ˆ11  0.4459 0.138  0.308.   

Therefore, the estimate for  j is  

  ˆ1 e
8.710  0.0001649.  …………………………………………..…………….(5.68)  

Equation (5.67), for Greater Accra region, therefore becomes   

Di1
P

i1  0.000164948
N

i1
P

i1
0.3083572

.  …………………………………...….(5.69)  

The actual road traffic fatalities for Greater Accra, Di1, from 1991 to 2012, together with the 

corresponding values of D
ˆ
i1 calculated from Equation (5.69), are given in Table 5.18. The 

percentage differences between the calculated and actual values are also given. It can be seen that, 

from 2001 to 2012, in the Greater Accra region, all the 12 calculated figures are within 10% of the 

actual figure. Out of the 22 calculated figures, from 1991 to 2012, 15 are within 10% of the actual 

figure and 19 are within 20% of the actual value. The paired t-test statistic for comparing the actual 

RTFs and the estimated RTFs is 0.484 with a p-value of 0.344. Since 0.344 is greater than 0.05, we 

conclude that there is no significant difference between the actual RTFs and the estimated RTFs 

for Greater Accra, at the 5% level of significance. The Levene’s test shows that the variances are 

homogeneous.  
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Table 5.18:   Comparison of actual fatalities and fatalities estimated from Equation (5.68) 

for Greater Accra region  

i  
Year  

Di1  Dˆi1  
Error  

 Error %  i  
Year  

Di1  Dˆi1  
Error  

Error %  

1  1991  126  120.1  5.9  4.7  12  2002  239  262.5  -23.5  9.8  

2  1992  164  125.4  38.6  23.5  13  2003  240  262.6  -22.6  9.4  

3  1993  115  134.7  -19.7  17.1  14  2004  299  290.1  8.9  3.0  

4  1994  155  147.7  7.3  4.7  15  2005  306  304.3  1.7  0.6  

5  1995  190  161.6  28.4  14.9  16  2006  325  319.8  5.2  1.6  

6  1996  191  179.1  11.9  6.2  17  2007  370  336.0  34.0  9.2  

7  1997  174  192.4  -18.4  10.6  18  2008  385  350.6  34.4  8.9  

8  1998  258  207.1  50.9  19.7  19  2009  420  378.5  41.5  9.9  

9  1999  172  223.7  -51.7  30.1  20  2010  424  384.8  39.2  9.3  

10  2000  196  241.6  -45.6  23.2  21  2011  425  403.8  21.2  5.0  

11  2001  239  249.1  -10.1  4.2  22  2012  435  442.4  -7.4  1.7  

  

5.4  Road Traffic Fatality risk Indicators  

In this Section, the study seeks to use Ghana data to establish the assertion that the parameter 

estimates of the modified Smeed’s model can be used as risk indicators of road traffic fatalities 

across the ten geographical regions in Ghana.    

Road traffic fatality indices such as road traffic fatalities (RTFs) per 100 accidents and road 

traffic fatalities (RTFs) per 100 casualties are used by National Road Safety Commission (NRSC) 

of Ghana and World Health Organization (WHO) as risk indicators to characterized and compare 

the extent and risk of traffic fatalities across geographical regions. These indices became very 

useful measures of risk to compare risk of dying as result of road traffic accidents across the 10 

geographical regions in Ghana.    

 In Table 5.18, the average fatality indices from 1991 to 2009, with respect to RTFs per 100 

Accident and RTFs per 100 Casualties, across the 10 geographical regions in Ghana are given in 
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the 3rd and 4th columns. The first two columns give the parameter estimates of the modified 

Smeed’s model across the 10 geographical regions. The study aims at determining if there is 

positive correlation between the parameter estimates of this studies and the fatality indices based 

on NRSC and WHO definition of risk.  

         Table 5.18:  Parameter estimates and Fatality indices  

Regions  ˆ 10
5
  

  

ˆ 10
2
  RTF per 100 

Accident  

RTF per 100 

Casualties  

Greater Accra  16.5  30.836    5.7    7.7  

Ashanti  31.2  36.147  17.8  12.2  

Western  46.3  40.538  16.9  10.7  

Eastern  36.0  21.096  19.9    9.7  

Central  43.4  27.583  21.8  11.4  

Volta  61.3  42.594  23.6  11.2  

Northern  70.9  65.948  40.9  18.1  

Upper East  61.1  64.398  27.3  17.0  

Upper West  74.2  79.930  28.3  14.6  

Brong-Ahafo  45.6  36.861  28.6  14.5  

  

Table 5.19 shows the correlation coefficients between the parameter estimates of the modified  

Smeed’s model and the fatality indices. The corresponding p-values for the test are in parenthesis. 

Since for each pair the p-value is less than 0.05, we conclude that there is strong correlation 

between the parameter estimates of this studies and the fatality indices based on  

NRSC definition of risk. Thus, the parameter estimates ˆ and 
ˆ
 in Equation (5.67) can be used 

as risk indicators of RTFs in Ghana.       

  

            Table 5.19:  Correlations coefficients  

  

   

ˆ  

  

ˆ  

  

RTF per 100 

Accident  

RTF per 100 

Casualties  

ˆ  1  
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ˆ  

0.8312  

(0.003)  
1  

  

RTF per 100 

Accident  

0.8424  

(0.002)  

0.6341  

(0.049)  
1  

 

RTF per 100 

Casualties  

0.7708  

(0.009)  

0.7610  

(0.010)  

0.9011  

(0.000)  1  

  

  

CHAPTER SIX SUMMARY, CONCLUSION AND RECOMMENDATIONS  

  

6.1 Summary     

Smeed (1949) proposed a model for estimating road traffic fatalities (RTFs). Smeed’s model gave 

a fairly good fit to the data from 20 countries, including European countries, USA, Canada, 

Australia and New Zealand.  The results obtained by Smeed in his study was consistent with other 

reported studies by Bener and Ofosu (1991), Jacobs and Bardsley (1977), Fouracre and  

Jecobs (1977), Ghee et al. (1997).  Ponnaluri (2012) showed that Smeed’s model is parsimonious 

in parameter usage. These related studies point to the fact that Smeed's model appears to be 

observation-driven, evidence-based, and logically valid in measuring the per vehicle fatality rate.    

This study put forward the derivation of a modified Smeed’s model and also determine how 

accurate the proposed modified model of this study is. The question addressed here was: how does 

the modified Smeed’s model compare to that of Smeed (1949) in their performance?  

It was shown that the predominant factors affecting road traffic fatalities (RTFs) are not the 

same as that of road traffic accidents (RTAs). Exposures to risk of RTFs (such as human error, 

vehicular speed, vehicular density, weather conditions, nature of the roads and total length of roads) 

are predominant factors influencing road traffic accidents within a geographical region. However, 

the rate of RTFs is determined by vulnerability to risk (Such as accessibility, timeliness and 

appropriateness of emergency medical care as well as adequacy and enforcement of use of safety 

mechanisms in vehicles). Exposure to risk RTFs and vulnerability to RTFs are not necessarily 

correlated. The factors affecting RTAs correspond to exposure X while factors affecting RTFs 

correspond to vulnerability given the same exposure X. In Smeed’s model exposure is measured 

by the variable X whereas vulnerability for a given X is captured by the parameters  
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It was also demonstrated that the parameters of Smeed’s model vary from one geographical 

region to another and hence could be use to assess variability of risk of RTFs across geographical 

regions. Thus, the study proposed more robust Bayesian and Multilevel estimation procedures that 

allow the study to estimate the variance of the parameters across geographical regions and hence 

enables us compare the risk of RTFs across the geographical regions.  

The study, therefore, focused on developing statistical methodology, based on Smeed’s model, 

for assessing the risk of RTFs across sub-populations of a given geographical zone. To achieve this 

general objective, the study first developed a modified Smeed’s model and uses it to develop a 

Bayesian and multilevel methods to compare the risk of RTFs across sub-populations of a given 

geographical zone.   

Some preliminary investigations on some characteristics of road traffic accidents were also 

performed and particularly road traffic fatalities in Ghana which are of general interest and have a 

certain bearing on the main results of this study.   

Finally, the study used Ghana data to validate the developed Bayesian and Multilevel methods 

and also used the parameter estimates to assess the risk of road traffic fatalities across the ten 

geographical regions in Ghana.   

  

6.2  Conclusion  

A modified Smeed’s model,   

D
P  N P u

 
,  

has been developed. The multiplicative error term u in the modified Smeed’s model of this study 

was found to be less than that of Smeed’s, making the modified Smeed’s model preferred. Using 

data from Ghana, it was confirmed that the modified Smeed’s model for this studies, is relatively 

more accurate in estimating RTFs in Ghana than the Smeed’s equation.  

Based on this modified Smeed’s model, Bayesian and multilevel methods were developed to 

assess RTF risk across sub populations of a given geographical zone. These methods consider the 

parameters of the Smeed’s model to be random variables and therefore make it possible to compute 
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variances across space provided there is significant intercept variation of the regression equation 

across such regions.   

Using data from Ghana, the robustness of the Bayesian estimates was indicated at low sample 

sizes with respect to the Normal, Laplace and Cauchy prior distributions. Thus, the Bayesian and 

Multilevel methods performed at least as well as the traditional method of estimating parameters 

and beyond this were able to assess risk differences through variability of these parameters in 

space.  

 The study has shown that population and number of registered vehicles are predominant 

factors affecting road traffic fatalities. The effect of other additional factors on road traffic fatality 

such as human (the driver, passenger and pedestrian), vehicle (its condition and maintenance), 

environmental/weather and nature of the road cannot be ruled out.  

Using data from Ghana, the result seems to suggest that road safety efforts by the National 

Road Safety Commission of Ghana, are not yielding the desired results of reducing the number of 

road traffic deaths. This is due to lack of accessible, timely and appropriate emergency medical 

care. A large proportion of road traffic accident trauma patients in Ghana do not have access to 

formal Emergency Medical Services. Another reason is inadequate safety mechanisms in vehicles 

as well as improper enforcement of the use of these mechanisms. The age of vehicles and 

availability of modern safety mechanisms in vehicles plying the roads of Ghana have significant 

effect on consequences of road traffic accidents.   

   

6.3  Recommendations  

 (a) Modern Safety Mechanisms  

Since the availability of modern safety mechanisms in vehicles have significant effect road traffic 

fatalities, greater attention must be paid on improving road safety mechanisms in cars such as anti-

lock braking systems (ABS), air bags, better design of cars and increased wearing of seatbelts.  The 

enforcement of the use of road safety mechanisms in cars could substantial benefit in reducing 

injuries and fatalities with respect to road traffic accidents.   

In Ghana, the preventive measures of the National Road Safety Commission of Ghana are 

predominantly directed towards regulating the behaviour road users. However, human behaviour, 
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in a complex traffic environment, is uncertain and therefore effort to regulate human behaviour in 

an indiscipline traffic environment usually achieves little results. Vehicle engineering measures 

must therefore be integrated to have maximum effect in reducing the high spate of road traffic 

fatalities in Ghana. Enforcement of seat-belt wearing by bus and car occupants, standard crash 

helmet wearing by motor-cycle riders and passengers and ensuring the crashworthiness of vehicles, 

must be strictly pursued and sustained. Crashworthiness is the ability of a vehicle to protect its 

occupants during an impact. It is a measure of how well a vehicle performs during a collision.  

One country that has been successful in enforcing crashworthiness regulation of vehicles 

plying its roads is 6Northern Ireland (NI). The Department of the Environment (DOE) reports that 

the number of people killed on Northern Ireland’s roads in 2010 was the lowest since records began 

in 1931.  The figures reported show that the number of people killed in accidents in NI fell from 

115 in 2009 to 55 in 2010, representing a 50% fall in fatalities and a 20% reduction in serious 

injuries. Of the 55 people killed in 2010, 10 were pedestrians, 10 on motorcycles and the rest in 

other vehicles. This success, among other things, was attributed to the Crashworthiness of vehicles 

plying the road of NI.  

According to the world report on road traffic injury prevention (2004), for car occupants, 

wearing seat-belts in well-designed cars can provide protection to a maximum of 70 km/h in frontal 

impacts and 50 km/h in side impacts. Higher speeds could be tolerated if the interface between the 

road infrastructure and vehicle were to be well-designed and crash-protective – for example, by 

the provision of crash cushions on sharp ends of roadside barriers. However, most infrastructure 

and speed limits in existence today allow much higher speeds without the presence of crash-

protective interfaces between vehicle and roadside objects, and without significant use of seat-

belts. This is particularly the case in many low-income and middle-income countries.  

  

(b) Emergency Medical Services  

The absence of formal emergency medical care in most developing countries, necessitates that 

innovative and low cost solutions be devised to meet the growing need for pre-hospital trauma 

 
6 Northern Ireland’s road safety strategy to 2020. Annual Report on Northern Ireland ’s Road Safety Strategy to 2020 (the 

Strategy) and covers the period 1 January 2011 to 31 December 2011  
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care. The relatively high road traffic mortality rates in most developing countries implies relatively 

poor health facilities in these regions. It is obvious that improving the health facilities in these 

regions to make it comparable to that of developed countries would drastically reduce the road 

traffic fatality rate there.   

  

(d) Training of commercial drivers   

In most developing countries, majority of injured persons are transported to the hospital by some 

type of commercial vehicle. It has also been reported, in Ghana, that taxi and bus drivers regularly 

arrive at traffic crash sites while either injured vehicle occupants or pedestrians are still present, 

and usually participate in the care and/or transport of such casualties (Tiska, et al., 2002). As 

commercial drivers play such a prominent part in the transport and care of road traffic accident 

casualties, it follows that if properly trained, these drivers could significantly improve pre-hospital 

trauma care. This suggests that improvements in pre-hospital care among commercial vehicle 

drivers, could potentially have an important impact on decreasing the mortality of critically injured 

road traffic casualties.  

  

6.4  Information gain for future research  

Since availability of Emergency Medical Services (EMS) to road traffic casualties is one of the key 

factors that determines the road traffic fatality rate, there is the need of a study into the allocation 

of ambulance services across sub-populations of a given geographical zone. EMS managers face 

the redeployment problem of relocating available ambulances to the potential location sites when 

calls are received. Thus, the objective of such a study is to formulate a model for an ambulance 

location problem in the geographical zone. The locations of emergency service stations such as 

ambulances and hospitals are of paramount importance in order to achieve an effective and reliable 

emergency response system. The fatalities and disabilities caused by road traffic accidents may be 

significantly reduced through an effective planning of the locations of these stations. To this end a 

Geographical Information System (GIS) implementation of the method of the current study would 

be quite useful.   

 Secondly, since the age of vehicles and availability of modern safety mechanisms in vehicles 

plying the roads of a particular geographical region have significant effect on consequences of road 
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traffic accidents, there is the need for a research to investigate the effect of age and availability of 

modern safety mechanism of vehicles on the rate of road traffic fatalities.  
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Appendix  

Table A1:   Population and RTA pattern in Ghana during the period 1991 to 2011  

 

 

 

 

 

 
    

 

 
  

1991  14821    8370    8773    920  4866    724  59.2  1.0  6.2  11.0  58.1  8.6  

1992  15222    6922    9116    914  4515    717  59.9  1.3  6.0  13.2  65.2  10.4  

1993  15634    6467    7677    901  4119    704  49.1  1.2  5.8  13.9  63.7  10.9  

1994  16056    6584    7664    824  4088    632  47.7  1.2  5.1  12.5  62.1    9.6  
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1995  16491    8313   9106  1026  4897    813  55.2  1.1  6.2  12.3  58.9    9.8  

1996  16937    8488   9903  1049  4964    830  58.5  1.2  6.2  12.4  58.5    9.8  

1997  17395    9918   10433  1015  5638    864  60.0  1.1  5.8  10.2  56.8    8.7  

1998  17865  10996   11786  1419  6370  1127  66.0  1.1  7.9  12.9  57.9  10.2  

1999  18349    8763   10202  1237  5303    979  55.6  1.2  6.7  14.1  60.5  11.2  

2000  18845  11087   12310  1437  6429  1092  65.3  1.1  7.6  13.0  58.0    9.8  

2001  19328  11293   13178  1660  6831  1257  68.2  1.2  8.6  14.7  60.5  11.1  

2002  19811  10715   13412  1665  6593  1245  67.7  1.3  8.4  15.5  61.5  11.6  

2003  20508  10542   14469  1716  6849  1327  70.6  1.4  8.4  16.3  65.0  12.6  

2004  21093  12175   16259  2186  7852  1600  77.1  1.3   10.4  18.0  64.5  13.1  

2005  21694  11320   14034  1776  7025  1388  64.7  1.2  8.2  15.7  62.1  12.3  

2006  22294  11668   14492  1856  7137  1419  65.0  1.2  8.3  15.9  61.2  12.2  

2007  22911  12038   14373  2043  7533  1622  62.7  1.2  8.9  17.0  62.6  13.5  

2008  23544  11214   14531  1938  7309  1647  61.7  1.3  8.2  17.3  65.2  14.7  

2009  24196  12299   16259  2237  8188  1790  67.2  1.3  9.2  18.2  66.6  14.6  

Total  362994  189172   227977  27819  116506  21777  1181.4  22.9  142.1  274.1  1168.9   

Mean  19104.9  9956.4   11998.8  1464.2  6131.9  1146.2  62.2  1.2  7.5  14.4  61.5  

  

  

Table A2:   Annual distribution of road traffic fatalities by gender  

  

  
Year  

Fatalities     
Male/female  

ratio  

  

Year  

Fatalities    
Male/female  

ratio  
Male  Female  Male  Female  

1991    642  273  2.4  2002  1175  480  2.4  
1992    647  253  2.6  2003  1280  437  2.9  
1993    662  210  3.2  2004  1568  587  2.7  
1994    616  196  3.1  2005  1292  463  2.8  
1995    708  290  2.4  2006  1348  492  2.7  
1996    744  280  2.7  2007  1554  489  3.2  
1997    728  273  2.7  2008  1448  490  3.0  
1998  1013  381  2.7  2009  1655  582  2.8  
1999    887  315  2.8  Total  21762  7848  2.8  
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2000  1091  441  2.5   (%)  73.3  26.7    

2001  1193  441  2.7          

  

  

Table A3:   Months during which persons were killed or injured in RTAs, in 2010 and 2011  

  

  

2010  2011  
Fatalities  Persons injured  Fatalities  Persons injured  

Month  Number  %  Number  %  Number  %  Number  %  
January  124  6.2  1316  8.8  176  8.0  1103  7.9  
February  139  7.0    975  8.5  142  6.5    934  6.7  
March  112  5.6  1211  8.1  187  8.5  1138  8.1  
April  181  9.1  1120  7.5  178  8.1  1192  8.5  
May  167  8.4  1405  9.4  190  8.6  1212  8.6  
June  143  7.2  1091  7.3  148  6.7  1055  7.5  
July  170  8.6  1008  6.8  177  8.0  1069  7.6  
August   129  6.5  1170  7.8  174  7.9  1173  8.4  
September  163  8.2  1413  9.5  199  9.0  1296  9.2  
October  237  11.9  1430  9.6  160  7.3  1143  8.2  
November  188  9.5  1336  9.0  260  11.8  1376  9.8  
December  233  11.7  1443  9.7  208  9.5  1329  9.5  
Total  1986  100  14918  100  2199  100  14020  100  

  

  

Table A4:  Day of occurrence of road traffic accidents, from January 2010 to  December 

2011  

  

  

2010  2011  
Fatalities  Persons injured  Fatalities  Persons injured  

Day  Number  %  Number  %  Number  %  Number  %  
Monday  258  13.0  2061  13.8  323  14.7  1794  12.8  
Tuesday  249  12.5  1901  12.7  282  12.8  1750  12.5  
Wednesday  218  11.0  1866  12.5  267  12.1  1966  14.0  
Thursday  245  12.3  1930  12.9  318  14.5  1778  12.7  
Friday  297  15.0  2300  15.3  312  14.2  2218  15.8  
Saturday  403  20.3  2583  17.3  398  18.1  2503  17.9  
Sunday  316  15.9  2300  15.4  299  13.6  2011  14.3  
Total  1986  100  14918  100  2199  100  14020  100  
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Table A5:   Road user class involved in deaths and injuries  

   

  

Road User Class and Vehicle type in accidents  

Pedestri 

an  
Car  Heavy Goods  

Vehicles  
(HGVs)  

Bus/Mini Bus  Motor cycle  Pick-up  Bicycle  Other  

 

    
 

  
 

  
 

  
 

  
 

  
 

  
 

1991  423  2250  85  1852  6544  106  759  1283  177  2529  288  16  242  311  45  638  795  28  258  442  17  72  134 
1992  388  1971  126  1883  4921  83  613  1081  215  3339  2381  18  211  258  23  625  731  43  267  402  12  42  113 
1993  404  1806  93  1625  4721  118  494  976  186  2736  2356  11  228  279  29  372  637  35  248  359  18  44  114 
1994  367  1826  81  1602  4728  91  488  1116  180  2733  2585  18  203  260  41  431  708  22  227  305  17  61  115 
1995  488  2266  95  1733  6410  87  671  1440  232  3325  3145  21  221  288  34  454  929  40  263  359  19  45  123 

1996  461  2408  115  1711  6485  130  872  1418  197  2661  3419  15  262  337  47  540  1004  44  254  358  32  84  157 
1997  491  2569  107  1912  7258  111  608  1741  181  3982  4291  28  310  435  48  566  1154  30  298  388  10  72  152 
1998  630  2777  137  2001  8011  150  743  1772  328  4597  4839  29  376  470  55  787  1335  63  331  491  24  74  178 
1999  528  2165  142  1798  6146  111  738  1522  281  4263  3708  35  343  436  50  492  1046  60  281  426  10  63  165 
2000  662  2965  207  2679  9270  189  932  1853  314  4886  4705  42  414  539  72  682  1208  62  332  498  13  62  225 

2001  757  2899  182  2783  8852  146  959  1740  399  5089  4607  44  402  518  41  512  1175  59  357  470  31  131  262 
2002  681  2757  202  2783  8314  171  1079  2089  421  5577  4312  48  380  469  57  454  1082  69  334  478  16  46  114 
2003  724  2784  218  2874  7696  228  1335  2193  341  6144  4326  53  496  616  47  454  986  91  360  562  16  82  154 
2004  869  3146  246  3153  8904  235  1427  2598  556  6749  4849  100  685  792  53  519  1172  100  421  613  14  79  163 
2005  733  2890  242  2679  8277  200  1111  2283  317  5809  4410  109  595  860  76  527  1181  92  363  562  13  57  153 

2006  770  3117  206  2643  8391  270  1315  2636  382  5790  4696  94  619  828  34  484  1137  84  384  559  16  141  403 
2007  880  3059  212  2913  8809  213  1074  2610  414  5575  4777  182  805  1063  36  531  1267  85  339  487  16  59  128 
2008  855  2779  274  2988  7932  184  1587  2648  282  5269  4305  170  965  1210  45  561  1145  111  305  449  13  54  239 
2009  938  3118  283  3616  9145  193  1247  2662  466  6290  4772  192  1055  1345  53  615  1334  92  252  373  20  50  232 

Total  12049  49552  3253  45228  140814  3016  18052  35661  5869  87343  72771  1225  8812  11314  886  10244  20026  1210  5874  8581  327  1318  3324  
%  43.1  21.5  11.8  20.3  48.0  10.4  7.9  12.4  20.7  38.4  24.5  5.5  4.4  4.4  3.1  4.5  6.8  4.3  2.5  2.8  1.1  0.6  1.2  
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Table A6:  Rate of road traffic fatalities per 100 accidents by region  

Year  

Greater 

Accra  
Ashanti  Western  Eastern  Central  Volta  Northern  

Upper 

East  
Upper 

West  
Brong- 
Ahafo  

  
National  

1991  3.4  17.9  8.9  15.7  18.1  25.1  27.7  17.8  20.0  19.5  11.0  
1992  7.8  12.0  12.2  15.5  19.3  14.5  35.7  23.2  11.8  26.3  13.2  
1993  5.3  15.2  14.0  19.3  19.8  15.4  50.0  10.9  30.8  40.5  13.9  
1994  6.7  12.7  7.1  17.3  20.5  14.1  43.1  22.7  9.4  26.4  12.5  
1995  5.2  14.3  14.4  20.8  23.7  19.0  27.2  16.2  15.3  25.1  12.3  
1996  5.1  6.7  13.7  18.6  23.5  29.8  47.9  21.2  20.0  31.2  12.4  
1997  4.1  10.3  14.5  17.2  19.1  16.2  26.9  14.6  12.0  20.2  10.2  
1998  5.2  13.1  14.2  22.6  22.2  28.9  53.0  12.3  16.7  27.0  12.9  
1999  5.0  14.6  12.6  24.8  21.7  19.8  44.4  19.5  28.2  21.0  14.1  
2000  4.5  18.3  20.0  19.1  21.7  17.5  31.9  50.3  17.5  22.4  13.5  
2001  4.8  22.6  19.7  20.0  21.6  25.6  29.3  19.7  19.8  30.8  14.7  
2002  4.0  20.2  15.0  23.6  25.9  23.8  36.8  21.1  30.3  32.3  15.5  
2003  5.6  19.7  18.3  19.0  20.7  29.4  68.0  23.6  54.7  24.9  16.1  
2004  6.5  28.3  19.8  19.1  22.8  24.5  40.6  32.5  33.3  29.2  18.0  
2005  6.3  18.8  25.9  20.7  20.0  21.5  43.3  43.6  36.6  29.3  15.7  
2006  6.1  22.7  21.1  16.0  20.8  32.4  42.1  35.2  33.9  39.3  15.9  
2007  6.9  23.4  26.4  20.8  26.8  29.3  41.2  50.7  37.0  38.3  17.0  
2008  7.6  23.4  25.8  22.7  19.8  35.6  37.0  38.1  45.6  22.4  17.3  
2009  7.7  23.8  17.2  25.6  26.8  25.3  51.4  45.4  65.6  37.4  18.2  
Total  107.8  338  320.8  378.4  414.8  447.7  777.5  518.6  538.5  543.5  274.4  
Mean  5.67  17.79  16.88  19.92  21.83  23.56  40.92  27.29  28.34  28.61  14.44  
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 A7:  Road User Class by Fatality, Casualty and Fatality Index for 2010 &2011  

  

  

  

 

 

  

 

  

 

  

 

  

 

  

 

 

Greater Accra  Northern  Brong  Ahafo  

2011  2010  2011  2010  2011  2010  

Pedestrian   245  1176 20.8 231  1388 16.6   17 41   41.5 20   40  50.0   82   231 35.5   57   153 37.3 
Car Occupant   30  931 3.2 56  1032 5.4   2 58   3.4 13   76  17.1   45   344 13.1   33   311 10.6 
Goods Veh. Ocpts   13  163 8.0 19   155 12.3   13 74   17.6 21   250  8.4   38   170 22.4   29   175 16.6 
Bus/Mini-Bus   46  951 4.8 60  1008 6.0   57 357   16.0 15   263  5.7   52   444 11.7   21   464 4.5 
Motorcyclist   49  389 12.6 31   460 6.7   20 75   26.7 13   75  17.3   57   214 26.6   20   104 19.2 
Pick-Up Ocpts   7  110 6.4 8   139 5.8   7 66   10.6 22   90  24.4   3   56 5.4   1   59 1.7 
Cyclist   16  62 25.8 18   98 18.4   6 14   42.9 7   11  63.6   17   42 40.5   5   25 20.0 
Other   1  11 9.1 1   13 7.7   1 4   25.0 3   7  42.9   3   13 23.1   3   11 27.3 
Total   407  3793 10.7 424  4293 9.9  474 3614   13.1 20   40  50.0  297  1514 19.6  169  1302 13.0 

  

  

Ashanti  Upper East  Upper West  

2011  2010  2011  2010  2011  2010  

Pedestrian   211  776 27.2 193   753 25.6   15 24   62.5 13   26.8  23.0   6   16 37.5   11   17 64.7 
Car Occupant   45  692 6.5 58   721 8.0   2 27   7.4 3   7.1  7.5   0   23 0.0   5   25 20.0 
Goods Veh. Ocpts   38  286 13.3 32   289 11.1   1 12   8.3 4   14.0  11.6   1   8 12.5   2   7 28.6 
Bus/Mini-Bus   120  1428 8.4 97  1587 6.1   1 21   4.8 1   7.8  5.6   8   45 17.8   3   42 7.1 
Motorcyclist   40  267 15.0 38   183 20.8   26 67   38.8 13   19.9  15.6   32   96 33.3   25   57 43.9 
Pick-Up Ocpts   8  113 7.1 15   164 9.1   2 31   6.5 0   7.4  7.9   0   13 0.0   1   27 3.7 
Cyclist   8  39 20.5 11   33 33.3   7 15   46.7 11   28.6  30.6   3   9 33.3   7   8 87.5 
Other   4  13 30.8 10   22 45.5   0 0   - 0   20.0  26.6   0   0 -   0   0 0.0 
Total   474  3614 13.1 454  3752 12.1   54 197   27.4 13   13.6  11.7   50   210 23.8   11   17 64.7 

  

  

Central  Eastern  National Fatality Index  

2011  2010  2011  2010  2011  2010  

Pedestrian   101  346 29.2 98   422 23.2   98 346   28.3 109   438  24.9   26.8  23.0  
Car Occupant   28  450 6.2 14   347 4.0   44 488   9.0 50   614  8.1   7.1  7.5  
Goods Veh. Ocpts   12  93 12.9 11   92 12.0   33 242   13.6 20   224  8.9   14.0  11.6  
Bus/Mini-Bus   44  502 8.8 29   575 5.0   37 1006   3.7 54  1017  5.3   7.8  5.6  
Motorcyclist   12  82 14.6 8   86 9.3   22 113   19.5 13   81  16.0   19.9  15.6  
Pick-Up Ocpts   2  48 4.2 2   51 3.9   6 102   5.9 3   73  4.1   7.4  7.9  
Cyclist   4  25 16.0 4   19 21.1   8 31   25.8 7   26  26.9   28.6  30.6  
Other   0  4 0.0 1   3 33.3   0 3   0.0 3   10  30.0   20.0  26.6  
Total   203  1550 13.1 167  1595 10.5  248 2331   10.6 259  2483  10.4   13.6  11.7  

  

  

Volta  Western  National Fatality Index  
2011  2010  2011  2010  2011  2010  

Pedestrian   45  128 35.2 50   194 25.8   78 262   29.8 71   280  25.4   26.8  23.0  
Car Occupant   14  194 7.2 19   222 8.6   41 315   13.0 20   269  7.4   7.1  7.5  
Goods Veh. Ocpts   7  68 10.3 8   74 10.8   12 88   13.6 13   85  15.3   14.0  11.6  
Bus/Mini-Bus   37  460 8.0 24   381 6.3   25 280   8.9 21   427  4.9   7.8  5.6  
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Motorcyclist   20  140 14.3 32   161 19.9   35 130   26.9 17   89  19.1   19.9  15.6  
Pick-Up Ocpts   9  34 26.5 0   53 0.0   2 50   4.0 3   35  8.6   7.4  7.9  
Cyclist   3  21 14.3 10   32 31.3   8 22   36.4 12   30  40.0   28.6  30.6  
Other   4  22 18.2 0   6 0.0   2 5   40.0 0   0  0.0   20.0  26.6  
Total   139  1067 13.0 50   194 25.8  203 1152   17.6 71   280  25.4   13.6  11.7  

  

A7: (Cont):Road User Class by Fatality, Casualty and Fatality Index for 2012 &2013  

  

  

  

 

 

  

 

  

 

  

 

  

 

  

 

 

Greater Accra  Northern  Brong  Ahafo  

2013  2012  2013  2012  2013  2012  

Pedestrian   196  960 20.4 333  1441 23.1   26 52   50.0 5   14  35.7   64   167 38.3   66   178 37.1 
Car Occupant   65  880 7.4 54   808 6.7   5 39   12.8 7   47  14.9   16   279 5.7   30   256 11.7 
Goods Veh. Ocpts   13  74 17.6 15   139 10.8   27 218   12.4 10   79  12.7   25   128 19.5   17   117 14.5 
Bus/Mini-Bus   28  675 4.1 55   986 5.6   52 292   17.8 42   215  19.5   38   266 14.3   55   496 11.1 
Motorcyclist   43  411 10.5 56   512 10.9   20 103   19.4 26   71  36.6   42   207 20.3   40   199 20.1 
Pick-Up Ocpts   7  69 10.1 8   114 7.0   2 46   4.3 2   26  7.7   1   44 2.3   3   30 10.0 
Cyclist   8  60 13.3 14   75 18.7   7 10   70.0 7   12  58.3   5   23 21.7   6   25 24.0 
Other   3  40 7.5 0   15 0.0   1 26   3.8 0   0     10   25 40.0   4   7 57.1 

Total   363  3169 11.5 535  4090 13.1  140 786   17.8 99   464  21.3  201  1139 17.6  221  1308 16.9 

  

  

Ashanti  Upper East  Upper West  

2013  2012  2013  2012  2013  2012  

Pedestrian   172  486 35.4 188   739 25.4   18 31   58.1 15   24  62.5   8   23 34.8   19   42 45.2 
Car Occupant   56  463 12.1 39   581 6.7   1 15   6.7 2   27  7.4   1   20 5.0   0   18 0.0 
Goods Veh. Ocpts   34  185 18.4 43   258 16.7   0 2   0.0 1   12  8.3   12   59 20.3   2   15 13.3 
Bus/Mini-Bus   67  883 7.6 89  1323 6.7   0 2   0.0 1   21  4.8   8   41 19.5   13   60 21.7 
Motorcyclist   54  222 24.3 56   266 21.1   31 95   32.6 26   67  38.8   39   125 31.2   24   90 26.7 
Pick-Up Ocpts   2  59 3.4 5   73 6.8   2 8   25.0 2   31  6.5   2   21 9.5   1   11 9.1 
Cyclist   7  23 30.4 10   49 20.4   5 24   20.8 7   15  46.7   2   6 33.3   12   21 57.1 
Other   14  51 27.5 2   9 22.2   0 0   - 0   0   -   0   1 0.0   0   0 - 
Total   406  2372 17.1 432  3298 13.1   57 177   32.2 54   197  27.4   72   296 24.3   71   257 27.6 

  

  

Central  Eastern  National Fatality Index  

2013  2012  2013  2012  2013  2012  

Pedestrian   64  217 29.5 90   315 28.6   78 279   28.0 107   453  23.6   28.5  25.8  
Car Occupant   21  296 7.1 35   395 8.9   32 473   6.8 37   477  7.8   7.7  7.9  
Goods Veh. Ocpts   11  70 15.7 21   114 18.4   17 103   16.5 46   234  19.7   16.9  16.6  
Bus/Mini-Bus   70  307 22.8 33   415 8.0   33 705   4.7 89   910  9.8   9.1  8.6  
Motorcyclist   19  103 18.4 18   86 20.9   16 125   12.8 24   156  15.4   19.6  19.0  
Pick-Up Ocpts   6  40 15.0 6   52 11.5   3 51   5.9 4   81  4.9   7.3  7.6  
Cyclist   9  20 45.0 3   14 21.4   6 23   26.1 8   33  24.2   25.5  28.1  
Other   0  3 0.0 1   3 33.3   12 54   22.2 1   1  100   20.3  22.0  
Total   200  1056 18.9 207  1394 14.8  197 1813   10.9 316  2345  13.5   15.2  14.6  
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Volta  Western  National Fatality Index  
2013  2012  2013  2012  2013  2012  

Pedestrian   58  166 34.9 39   126 31.0   42 165   25.5 63   250  25.2   28.5  25.8  
Car Occupant   13  168 7.7 13   140 9.3   8 196   4.1 27   331  8.2   7.7  7.9  
Goods Veh. Ocpts   5  74 6.8 3   22 13.6   30 114   26.3 22   95  23.2   16.9  16.6  
Bus/Mini-Bus   23  322 7.1 25   211 11.8   10 136   7.4 25   301  8.3   9.1  8.6  
Motorcyclist   35  153 22.9 15   146 10.3   24 104   23.1 48   160  30.0   19.6  19.0  
Pick-Up Ocpts   1  28 3.6 1   19 5.3   3 31   11.0 5   50  10.0   7.3  7.6  
Cyclist   3  16 18.8 0   5 0.0   3 11   8.0 11   29  37.9   25.5  28.1  
Other   4  9 44.4 0   2 0.0   0 8   0.0 1   4  25.0   20.3  22.0  
Total   142  936 15.2 96   671 14.3  120 765   15.7 202  1220  16.6   15.2  14.6  

  

  

A8:   Value of yi  log D P  and xi  log N P  from 1991 – 2009  

i  

Year  yi  xi  x yi i  xi2  yi2  
i  

Year  yi  xi  x yi i  xi2  yi2  

1  1991  -9.69  -4.72  45.73  22.28  93.84  11  2001  -9.36  -3.53  33.03  12.44  87.66  

2  1992  -9.72  -4.70  45.72  22.12  94.49  12  2002  -9.38  -3.48  32.61  12.08  88.06  

3  1993  -9.76  -4.60  44.86  21.12  95.29  13  2003  -9.39  -3.46  32.50  11.98  88.15  

4  1994  -9.88  -4.42  43.66  19.54  97.56  14  2004  -9.18  -3.40  31.20  11.57  84.17  

5  1995  -9.69  -4.25  41.17  18.07  93.80  15  2005  -9.41  -3.34  31.45  11.17  88.56  

6  1996  -9.69  -4.04  39.16  16.34  93.89  16  2006  -9.39  -3.28  30.78  10.74  88.24  

7  1997  -9.75  -3.93  38.34  15.46  95.04  17  2007  -9.33  -3.21  29.95  10.32  86.96  

8  1998  -9.44  -3.82  36.03  14.56  89.13  18  2008  -9.41  -3.22  30.27  10.36  88.45  

9  1999  -9.61  -3.69  35.44  13.62  92.25  19  2009  -9.29  -3.16  29.32  9.96  86.28  

10  2000  -9.48  -3.61  34.20  13.01  89.90    Total  -180.84  -71.85  685.44  276.75  1721.70  

  

  

Table A9:  Data for probability plot and residual analysis  

i  
y( )i  yˆi  pi  ei  di  

i  
y( )i  yˆi  pi  ei  di  

1  -9.877  -9.721    3.247  -0.156  -1.574  11  -9.410  -9.377  55.195  -0.033  -0.330  
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2  -9.761  -9.777    8.442   0.016   0.158  12  -9.405  -9.338  60.390  -0.067  -0.674  

3  -9.749  -9.565  13.636  -0.184  -1.851  13  -9.394  -9.357  65.584  -0.037  -0.377  

4  -9.720  -9.811  18.831   0.091   0.913  14  -9.389  -9.415  70.779   0.026   0.263  

5  -9.689  -9.600  24.026  -0.089  -0.894  15  -9.384  -9.420  75.974   0.036   0.358  

6  -9.687  -9.816  29.221   0.129   1.303  16  -9.362  -9.436  81.169   0.074   0.750  

7  -9.685  -9.667  34.416  -0.018  -0.184  17  -9.325  -9.336  86.364   0.011   0.109  

8  -9.605  -9.488  39.610  -0.117  -1.177  18  -9.289  -9.318  91.558   0.029   0.295  

9  -9.481  -9.462  44.805  -0.019  -0.192  19  -9.175  -9.396  96.753   0.221   2.225  

10  -9.441  -9.528  50.000   0.087   0.878              
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Table A10: Distribution and Parameters for Monte Carlo Simulation   

Exponential parameters  

P  =  rlnorm(n,(1/20000000))  

N  =  rlnorm(n,(1/620000))  

D  =  rlnorm(n,(1/1600))  

LogNormal Parameters  

P = rlnorm(n,16.79254,0.173165)  

N = rlnorm(n,13.11504,0.727722)  

D = rlnorm(n,7.295927,0.346973)  

Uniform Parameters runif(n, min = 

14821000, max = 30726000) runif(n, min = 

102051, max = 1728808) runif(n, min = 

700, max = 2900)  

Gamma Distribution  

P = rgamma(n,90,70)*10000000  

N = rgamma(n,2,66)*10000000  

D = rgamma(n,90,300)*100000  

  

  

Table A11: Mean values of  and  for selected distributions and sample sizes  

Count  
Sample 

Size  
Exponential  LogNormal  Uniform  Gamma  

α  β  α  β  α  β  α  β  

1  15  -6.063  0.972  -7.644  0.505  -7.427  0.613  -5.334  0.181  
2  20  -6.028  0.981  -7.630  0.506  -7.434  0.612  -5.321  0.185  
3  25  -6.032  0.984  -7.613  0.512  -7.414  0.618  -5.333  0.182  
4  30  -6.018  0.986  -7.604  0.515  -7.430  0.613  -5.339  0.181  
5  35  -6.033  0.984  -7.631  0.508  -7.417  0.619  -5.326  0.184  

6  40  -6.056  0.978  -7.619  0.512  -7.433  0.610  -5.338  0.181  
7  45  -6.091  0.971  -7.630  0.509  -7.427  0.612  -5.330  0.182  
8  50  -6.084  0.969  -7.633  0.507  -7.448  0.607  -5.337  0.181  
9  55  -6.038  0.978  -7.605  0.514  -7.439  0.610  -5.336  0.182  
10  60  -6.000  0.993  -7.612  0.513  -7.422  0.618  -5.327  0.183  

11  65  -6.044  0.975  -7.630  0.507  -7.456  0.605  -5.339  0.180  
12  70  -6.054  0.977  -7.624  0.508  -7.453  0.607  -5.333  0.182  
13  75  -6.039  0.981  -7.611  0.513  -7.426  0.615  -5.333  0.182  
14  80  -6.026  0.985  -7.608  0.513  -7.431  0.614  -5.324  0.184  
15  85  -6.076  0.973  -7.593  0.517  -7.428  0.614  -5.331  0.182  

16  90  -6.026  0.979  -7.621  0.511  -7.433  0.611  -5.340  0.180  
17  95  -6.069  0.973  -7.614  0.511  -7.430  0.613  -5.334  0.181  
18  100  -6.055  0.981  -7.642  0.504  -7.435  0.612  -5.332  0.182  
19  105  -6.026  0.984  -7.619  0.511  -7.426  0.614  -5.337  0.181  
20  110  -6.075  0.973  -7.623  0.510  -7.465  0.603  -5.326  0.184  

21  115  -6.010  0.987  -7.596  0.516  -7.438  0.612  -5.326  0.184  
22  120  -6.043  0.982  -7.618  0.511  -7.431  0.612  -5.340  0.180  
23  125  -6.045  0.975  -7.617  0.512  -7.423  0.616  -5.330  0.182  
24  130  -6.065  0.975  -7.618  0.510  -7.436  0.610  -5.337  0.180  
25  135  -6.037  0.984  -7.607  0.512  -7.437  0.612  -5.335  0.181  

26  140  -6.051  0.977  -7.628  0.507  -7.438  0.611  -5.337  0.181  
27  145  -6.031  0.981  -7.621  0.510  -7.420  0.615  -5.325  0.184  
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28  150  -6.049  0.976  -7.611  0.514  -7.429  0.613  -5.329  0.183  
29  155  -6.043  0.972  -7.636  0.507  -7.432  0.611  -5.327  0.183  
30  160  -6.050  0.973  -7.611  0.513  -7.432  0.612  -5.329  0.183  

Table A12: Expected percentage differences between the observed and expected road traffic 

fatalities given on Table 5.9  

   Exponenti al   LogNormal   Uniform  Gamma  

Year  D  

 Sample Si ze   Sample Size   Sample Size  Sample Size  

15  50  100  150  15  50  100  150  15  50  100  150  15  50  100  150  

1991  920  62  62  63  62  29  29  28  29  47  47  47  47  3201  3204  3192  3199  

1992  914  60  60  61  60  26  26  25  26  45  44  45  45  3323  3326  3314  3322  

1993  901  54  54  55  54  19  18  18  19  38  38  39  38  3537  3540  3528  3536  

1994  824  38  39  40  38  0  0  1  0  23  22  23  23  4117  4119  4106  4116  

1995  1026  40  41  42  40  10  10  10  10  29  29  30  29  3486  3488  3478  3486  

1996  1049  26  27  28  26  0  1  1  0  19  19  20  19  3642  3643  3634  3643  

1997  1015  13  14  15  13  12  13  13  13  8  8  9  9  3952  3952  3944  3953  

1998  1419  28  29  30  28  12  12  12  12  28  28  28  28  2940  2940  2934  2941  

1999  1237  4  5  7  4  10  10  11  10  8  8  9  8  3565  3564  3558  3567  

2000  1437  8  9  11  8  1  2  2  2  15  14  15  15  3189  3188  3183  3191  

2001  1660  12  13  14  12  6  6  6  6  20  20  21  20  2863  2862  2858  2865  

2002  1665  5  7  8  5  2  1  1  1  16  16  16  16  2956  2955  2951  2959  

2003  1716  4  5  6  4  0  0  0  0  15  15  15  15  2978  2977  2973  2981  

2004  2186  18  19  19  17  17  17  17  17  29  29  29  29  2412  2411  2408  2415  

2005  1776  11  9  8  11  8  9  9  9  6  6  7  6  3114  3113  3110  3118  

2006  1856  16  14  13  16  10  10  10  10  4  4  5  4  3098  3097  3094  3102  

2007  2043  15  14  13  15  6  6  7  7  7  7  7  7  2922  2920  2918  2925  

2008  1938  24  22  21  24  14  15  15  15  0  0  0  0  3169  3167  3165  3173  

2009  2237  17  16  15  17  5  6  6  6  7  7  8  7  2844  2842  2840  2847  

2010  1986  44  42  41  44  24  24  24  25  10  10  10  10  3271  3269  3267  3276  

2011  2199  41  39  38  42  19  19  19  20  7  6  6  7  3085  3082  3081  3089  

2012  2249  50  47  47  50  23  23  23  24  11  10  10  10  3124  3122  3121  3129  
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Table A13: The values of  and  for each of the 30 different sample sizes  

   
1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  

Sample 

Size  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  

  -5.335  -5.334  -5.338  -5.337  -5.337  -5.335  -5.334  -5.332  -5.333  -5.336  -5.341  -5.333  -5.335  -5.331  
- 

5.343  

  0.181  0.181  0.181  0.181  0.181  0.182  0.182  0.182  0.181  0.181  0.180  0.182  0.181  0.182  0.179  

 16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  

Sample 

Size  90  95  100  105  110  115  120  125  130  135  140  145  150  155  160  

  -5.325  -5.334  -5.330  -5.336  -5.342  -5.334  -5.323  -5.331  -5.329  -5.336  -5.344  -5.340  -5.337  -5.336  
- 

5.336  

  0.183  0.182  0.182  0.181  0.179  0.182  0.184  0.182  0.183  0.181  0.179  0.180  0.181  0.181  0.181  

  

A14:Regional distribution of the number of road traffic fatalities, registered vehicles 

and estimated population size from 1991 to 2009  

 Greater Accra 1  Ashanti 

2  
Western 3  Eastern 

4  
Central 

5  

Year   Di1  Ni1  Pi1  Di2  Ni2  Pi2  Di3  Ni3  Pi3  Di4  Ni4  Pi4  Di5  Ni5  Pi5  

1991  126  81382  1934520  183  21394  2641258  65  4485  1443424  183  3476  1852699  98  2226  1321216  
1992  164  85027  2019639  153  22353  2731061  90  4686  1489614  204  3632  1878637  122  2326  1348961  
1993  115  97240  2108503  168  25563  2823917  108  5359  1537282  207  4153  1904938  97  2660  1377289  
1994  155  119066  2201277  161  31301  2919930  49  6562  1586475  186  5086  1931607  123  3257  1406212  
1995  190  144805  2298133  174  38068  3019208  104  7981  1637242  192  6185  1958650  128  3961  1435743  
1996  191  183331  2399251  175  48196  3121861  105  10104  1689634  196  7830  1986071  130  5014  1465893  
1997  174  210101  2504818  220  55233  3228004  111  11580  1743702  181  8974  2013876  131  5747  1496677  
1998  258  242341  2615030  283  63709  3337756  127  13356  1799500  291  10351  2042070  146  6628  1528107  
1999  172  282373  2730091  178  74233  3451240  104  15563  1857084  294  12061  2070659  165  7723  1560198  
2000  196  314963  2905726  280  82800  3612950  111  17359  1924577  295  13453  2106696  185  8615  1593823  
2001  239  349917  2995804  350  91989  3710500  146  19285  1963069  296  14946  2150937  206  9571  1643232  
2002  239  377880  3088673  351  99341  3810683  146  20827  2002330  297  16140  2196106  207  10336  1694172  
2003  240  396783  3184422  360  104310  3913572  146  21868  2042377  298  16947  2242225  208  10853  1746691  
2004  299  433482  3283139  565  113957  4019238  158  23891  2083224  325  18515  2289311  234  11857  1800838  
2005  306  472736  3384917  314  124277  4127757  154  26054  2124889  299  20191  2337387  183  12930  1856664  
2006  325  518494  3489849  340  136306  4239207  155  28576  2167386  305  22146  2386472  190  14182  1914221  
2007  370  568681  3598034  376  149500  4353665  156  31342  2210734  305  24289  2436588  190  15555  1973562  
2008  385  580546  3709574  416  152619  4471214  169  31996  2254949  294  24796  2487756  150  15879  2034742  
2009  420  634779  3824570  440  166876  4591937  180  34985  2300048  320  27112  2539999  220  17362  2097819  

 Volta 6  Northern 

7  
Upper East 

8  
Upper West 9  Brong-Ahafo 

10  

Year  Di6  Ni6  Pi6  Di7  Ni7  Pi7  Di8  Ni8  Pi8  Di9  Ni9  Pi9  Di10  Ni10  Pi10  

1991  92  2008  1382575  41  5653  1412935  23  4037  834245  13  3651  513584  96  3738  1444102  
1992  50  2098  1408844  30  5906  1452497  32  4218  843422  8  3814  525396  61  3906  1481648  
1993  59  2399  1435612  17  6755  1493167  14  4824  852700  16  4362  537481  100  4467  1520171  
1994  27  2938  1462888  31  8271  1534976  20  5907  862079  3  5341  549843  69  5469  1559695  
1995  80  3573  1490683  38  10059  1577955  21  7184  871562  13  6496  562489  86  6652  1600248  
1996  85  4524  1519006  40  12735  1622138  26  9095  881149  14  8224  575426  87  8422  1641854  
1997  43  5184  1547867  35  14594  1667558  14  10423  890842  6  9425  588661  100  9651  1684542  
1998  91  5980  1577277  61  16834  1714250  26  12023  900641  16  10871  602200  120  11132  1728340  
1999  72  6968  1607245  76  19615  1762249  30  14009  910548  22  12667  616051  124  12971  1773277  
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2000  89  7772  1635421  78  21878  1820806  48  15625  920089  25  14129  576583  130  14468  1815408  
2001  135  8634  1676307  79  24306  1873609  34  17360  931130  26  15697  587538  149  16074  1857162  
2002  135  9324  1718214  80  26249  1927944  34  18747  942304  26  16951  598701  150  17359  1899877  
2003  140  9791  1761170  90  27562  1983854  45  19685  953611  35  17799  610077  154  18227  1943574  
2004  167  10696  1805199  131  30111  2041386  68  21505  965055  37  19446  621668  202  19913  1988277  
2005  122  11665  1850329  97  32838  2100586  79  23453  976635  30  21207  633480  192  21716  2034007  
2006  169  12794  1896587  112  36016  2161503  82  25723  988355  34  23259  645516  244  23818  2080789  
2007  170  14032  1944002  113  39502  2224187  83  28213  1000215  35  25511  657781  245  26123  2128647  
2008  179  14325  1992602  95  40327  2288688  59  28801  1012218  36  26043  670279  155  26668  2177606  
2009  180  15663  2042417  113  44094  2355060  65  31492  1024364  40  28476  683014  259  29160  2227691  

  

  

  

  

  

  

  

Table A15: Value of yi j  ln Dij Pij  and 
x

i j 
ln N P

ijij  from 1991 – 2009  

 Greater 

Accra  
1  Ashanti  

2  
Western  

3  
Eastern  

4  
Central  

5  
Volta  

6  
Northern  

7  

Upper   
East  

8  

Upper   
West  

9  

Brong  
Ahafo  

10  

Year  
xi1

  yi1
  xi2

  yi2
  xi3

  yi3
  xi4

  yi4
  xi5

  yi5
  xi6

  yi6
  xi7

  yi7
  xi8

  yi8
  xi9

  yi9
  xi10

  yi10
  

1991  -3.17  -9.64  -4.82  -9.58  -5.77  -10.01  -6.28  -9.22  -6.39  -9.51  -6.53  -9.62  -5.52  -10.45  -5.33  -10.50  -4.95  -10.58  -5.96  -9.62  

1992  -3.17  -9.42  -4.81  -9.79  -5.76  -9.71  -6.25  -9.13  -6.36  -9.31  -6.51  -10.25  -5.51  -10.79  -5.30  -10.18  -4.93  -11.09  -5.94  -10.10  

1993  -3.08  -9.82  -4.70  -9.73  -5.66  -9.56  -6.13  -9.13  -6.25  -9.56  -6.39  -10.10  -5.40  -11.38  -5.17  -11.02  -4.81  -10.42  -5.83  -9.63  

1994  -2.92  -9.56  -4.54  -9.81  -5.49  -10.39  -5.94  -9.25  -6.07  -9.34  -6.21  -10.90  -5.22  -10.81  -4.98  -10.67  -4.63  -12.12  -5.65  -10.03  

1995  -2.76  -9.40  -4.37  -9.76  -5.32  -9.66  -5.76  -9.23  -5.89  -9.33  -6.03  -9.83  -5.06  -10.63  -4.80  -10.63  -4.46  -10.68  -5.48  -9.83  

1996  -2.57  -9.44  -4.17  -9.79  -5.12  -9.69  -5.54  -9.22  -5.68  -9.33  -5.82  -9.79  -4.85  -10.61  -4.57  -10.43  -4.25  -10.62  -5.27  -9.85  

1997  -2.48  -9.57  -4.07  -9.59  -5.01  -9.66  -5.41  -9.32  -5.56  -9.34  -5.70  -10.49  -4.74  -10.77  -4.45  -11.06  -4.13  -11.49  -5.16  -9.73  

1998  -2.38  -9.22  -3.96  -9.38  -4.90  -9.56  -5.28  -8.86  -5.44  -9.26  -5.58  -9.76  -4.62  -10.24  -4.32  -10.45  -4.01  -10.54  -5.05  -9.58  

1999  -2.27  -9.67  -3.84  -9.87  -4.78  -9.79  -5.15  -8.86  -5.31  -9.15  -5.44  -10.01  -4.50  -10.05  -4.17  -10.32  -3.88  -10.24  -4.92  -9.57  

2000  -2.22  -9.60  -3.78  -9.47  -4.71  -9.76  -5.05  -8.87  -5.22  -9.06  -5.35  -9.82  -4.42  -10.06  -4.08  -9.86  -3.71  -10.05  -4.83  -9.54  

2001  -2.15  -9.44  -3.70  -9.27  -4.62  -9.51  -4.97  -8.89  -5.15  -8.98  -5.27  -9.43  -4.34  -10.07  -3.98  -10.22  -3.62  -10.03  -4.75  -9.43  
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2002  -2.10  -9.47  -3.65  -9.29  -4.57  -9.53  -4.91  -8.91  -5.10  -9.01  -5.22  -9.45  -4.30  -10.09  -3.92  -10.23  -3.56  -10.04  -4.70  -9.45  

2003  -2.08  -9.49  -3.62  -9.29  -4.54  -9.55  -4.89  -8.93  -5.08  -9.04  -5.19  -9.44  -4.28  -10.00  -3.88  -9.96  -3.53  -9.77  -4.67  -9.44  

2004  -2.02  -9.30  -3.56  -8.87  -4.47  -9.49  -4.82  -8.86  -5.02  -8.95  -5.13  -9.29  -4.22  -9.65  -3.80  -9.56  -3.46  -9.73  -4.60  -9.19  

2005  -1.97  -9.31  -3.50  -9.48  -4.40  -9.53  -4.75  -8.96  -4.97  -9.22  -5.07  -9.63  -4.16  -9.98  -3.73  -9.42  -3.40  -9.96  -4.54  -9.27  

2006  -1.91  -9.28  -3.44  -9.43  -4.33  -9.55  -4.68  -8.97  -4.91  -9.22  -5.00  -9.33  -4.09  -9.87  -3.65  -9.40  -3.32  -9.85  -4.47  -9.05  

2007  -1.84  -9.18  -3.37  -9.36  -4.26  -9.56  -4.61  -8.99  -4.84  -9.25  -4.93  -9.34  -4.03  -9.89  -3.57  -9.40  -3.25  -9.84  -4.40  -9.07  

2008  -1.85  -9.17  -3.38  -9.28  -4.26  -9.50  -4.61  -9.04  -4.85  -9.52  -4.94  -9.32  -4.04  -10.09  -3.56  -9.75  -3.25  -9.83  -4.40  -9.55  

2009  -1.80  -9.12  -3.31  -9.25  -4.19  -9.46  -4.54  -8.98  -4.79  -9.16  -4.87  -9.34  -3.98  -9.94  -3.48  -9.67  -3.18  -9.75  -4.34  -9.06  

  

  

  

  

  

  

  

  

  

  

A16: Regional distribution of the estimated road traffic fatalities, from 1991 to 2012  

   Regions      x       y  G.x      G.y  Year      Regions      x       y  G.x         G.y  Year    

1  Ashanti  -4.82  -9.58  -3.926  -9.489  1991  49  Central  -5.15  -8.98  -5.415  -9.239  2001  

2  Ashanti  -4.81  -9.79  -3.926  -9.489  1992  50  Central  -5.1  -9.01  -5.415  -9.239  2002  

3  Ashanti  -4.7  -9.73  -3.926  -9.489  1993  51  Central  -5.08  -9.04  -5.415  -9.239  2003  

4  Ashanti  -4.54  -9.81  -3.926  -9.489  1994  52  Central  -5.02  -8.95  -5.415  -9.239  2004  

5  Ashanti  -4.37  -9.76  -3.926  -9.489  1995  53  Central  -4.97  -9.22  -5.415  -9.239  2005  

6  Ashanti  -4.17  -9.79  -3.926  -9.489  1996  54  Central  -4.91  -9.22  -5.415  -9.239  2006  

7  Ashanti  -4.07  -9.59  -3.926  -9.489  1997  55  Central  -4.84  -9.25  -5.415  -9.239  2007  

8  Ashanti  -3.96  -9.38  -3.926  -9.489  1998  56  Central  -4.85  -9.52  -5.415  -9.239  2008  

9  Ashanti  -3.84  -9.87  -3.926  -9.489  1999  57  Central  -4.79  -9.16  -5.415  -9.239  2009  

10  Ashanti  -3.78  -9.47  -3.926  -9.489  2000  58  Eastern  -6.28  -9.22  -5.241  -9.033  1991  

11  Ashanti  -3.7  -9.27  -3.926  -9.489  2001  59  Eastern  -6.25  -9.13  -5.241  -9.033  1992  

12  Ashanti  -3.65  -9.29  -3.926  -9.489  2002  60  Eastern  -6.13  -9.13  -5.241  -9.033  1993  

13  Ashanti  -3.62  -9.29  -3.926  -9.489  2003  61  Eastern  -5.94  -9.25  -5.241  -9.033  1994  
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14  Ashanti  -3.56  -8.87  -3.926  -9.489  2004  62  Eastern  -5.76  -9.23  -5.241  -9.033  1995  

15  Ashanti  -3.5  -9.48  -3.926  -9.489  2005  63  Eastern  -5.54  -9.22  -5.241  -9.033  1996  

16  Ashanti  -3.44  -9.43  -3.926  -9.489  2006  64  Eastern  -5.41  -9.32  -5.241  -9.033  1997  

17  Ashanti  -3.37  -9.36  -3.926  -9.489  2007  65  Eastern  -5.28  -8.86  -5.241  -9.033  1998  

18  Ashanti  -3.38  -9.28  -3.926  -9.489  2008  66  Eastern  -5.15  -8.86  -5.241  -9.033  1999  

19  Ashanti  -3.31  -9.25  -3.926  -9.489  2009  67  Eastern  -5.05  -8.87  -5.241  -9.033  2000  

20  Brong Ahafo  -5.96  -9.62  -4.998  -9.526  1991  68  Eastern  -4.97  -8.89  -5.241  -9.033  2001  

21  Brong Ahafo  -5.94  -10.1  -4.998  -9.526  1992  69  Eastern  -4.91  -8.91  -5.241  -9.033  2002  

22  Brong Ahafo  -5.83  -9.63  -4.998  -9.526  1993  70  Eastern  -4.89  -8.93  -5.241  -9.033  2003  

23  Brong Ahafo  -5.65  -10.03  -4.998  -9.526  1994  71  Eastern  -4.82  -8.86  -5.241  -9.033  2004  

24  Brong Ahafo  -5.48  -9.83  -4.998  -9.526  1995  72  Eastern  -4.75  -8.96  -5.241  -9.033  2005  

25  Brong Ahafo  -5.27  -9.85  -4.998  -9.526  1996  73  Eastern  -4.68  -8.97  -5.241  -9.033  2006  

26  Brong Ahafo  -5.16  -9.73  -4.998  -9.526  1997  74  Eastern  -4.61  -8.99  -5.241  -9.033  2007  

27  Brong Ahafo  -5.05  -9.58  -4.998  -9.526  1998  75  Eastern  -4.61  -9.04  -5.241  -9.033  2008  

28  Brong Ahafo  -4.92  -9.57  -4.998  -9.526  1999  76  Eastern  -4.54  -8.98  -5.241  -9.033  2009  

29  Brong Ahafo  -4.83  -9.54  -4.998  -9.526  2000  77  Greater Accra  -3.17  -9.64  -2.355  -9.426  1991  

30  Brong Ahafo  -4.75  -9.43  -4.998  -9.526  2001  78  Greater Accra  -3.17  -9.42  -2.355  -9.426  1992  

31  Brong Ahafo  -4.7  -9.45  -4.998  -9.526  2002  79  Greater Accra  -3.08  -9.82  -2.355  -9.426  1993  

32  Brong Ahafo  -4.67  -9.44  -4.998  -9.526  2003  80  Greater Accra  -2.92  -9.56  -2.355  -9.426  1994  

33  Brong Ahafo  -4.6  -9.19  -4.998  -9.526  2004  81  Greater Accra  -2.76  -9.4  -2.355  -9.426  1995  

34  Brong Ahafo  -4.54  -9.27  -4.998  -9.526  2005  82  Greater Accra  -2.57  -9.44  -2.355  -9.426  1996  

35  Brong Ahafo  -4.47  -9.05  -4.998  -9.526  2006  83  Greater Accra  -2.48  -9.57  -2.355  -9.426  1997  

36  Brong Ahafo  -4.4  -9.07  -4.998  -9.526  2007  84  Greater Accra  -2.38  -9.22  -2.355  -9.426  1998  

37  Brong Ahafo  -4.4  -9.55  -4.998  -9.526  2008  85  Greater Accra  -2.27  -9.67  -2.355  -9.426  1999  

38  Brong Ahafo  -4.34  -9.06  -4.998  -9.526  2009  86  Greater Accra  -2.22  -9.6  -2.355  -9.426  2000  

39  Central  -6.39  -9.51  -5.415  -9.239  1991  87  Greater Accra  -2.15  -9.44  -2.355  -9.426  2001  

40  Central  -6.36  -9.31  -5.415  -9.239  1992  88  Greater Accra  -2.1  -9.47  -2.355  -9.426  2002  

41  Central  -6.25  -9.56  -5.415  -9.239  1993  89  Greater Accra  -2.08  -9.49  -2.355  -9.426  2003  

42  Central  -6.07  -9.34  -5.415  -9.239  1994  90  Greater Accra  -2.02  -9.3  -2.355  -9.426  2004  

43  Central  -5.89  -9.33  -5.415  -9.239  1995  91  Greater Accra  -1.97  -9.31  -2.355  -9.426  2005  

44  Central  -5.68  -9.33  -5.415  -9.239  1996  92  Greater Accra  -1.91  -9.28  -2.355  -9.426  2006  

45  Central  -5.56  -9.34  -5.415  -9.239  1997  93  Greater Accra  -1.84  -9.18  -2.355  -9.426  2007  

46  Central  -5.44  -9.26  -5.415  -9.239  1998  94  Greater Accra  -1.85  -9.17  -2.355  -9.426  2008  

47  Central  -5.31  -9.15  -5.415  -9.239  1999  95  Greater Accra  -1.8  -9.12  -2.355  -9.426  2009  

48  Central  -5.22  -9.06  -5.415  -9.239  2000                

  

Table A16 (Cont.):  Regional distribution of the estimated road traffic fatalities,  from 

1991 to 2012  

   Regions      x       y  G.x      G.y  Year      Regions      x       y  G.x       G.y  Year    

96  Northern  -5.52  -10.45  -4.594  -10.283  1991  144  Upper West  -3.62  -10.03  -3.912  -10.349  2001  
97  Northern  -5.51  -10.79  -4.594  -10.283  1992  145  Upper West  -3.56  -10.04  -3.912  -10.349  2002  
98  Northern  -5.4  -11.38  -4.594  -10.283  1993  146  Upper West  -3.53  -9.77  -3.912  -10.349  2003  
99  Northern  -5.22  -10.81  -4.594  -10.283  1994  147  Upper West  -3.46  -9.73  -3.912  -10.349  2004  

100  Northern  -5.06  -10.63  -4.594  -10.283  1995  148  Upper West  -3.4  -9.96  -3.912  -10.349  2005  
101  Northern  -4.85  -10.61  -4.594  -10.283  1996  149  Upper West  -3.32  -9.85  -3.912  -10.349  2006  
102  Northern  -4.74  -10.77  -4.594  -10.283  1997  150  Upper West  -3.25  -9.84  -3.912  -10.349  2007  
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103  Northern  -4.62  -10.24  -4.594  -10.283  1998  151  Upper West  -3.25  -9.83  -3.912  -10.349  2008  
104  Northern  -4.5  -10.05  -4.594  -10.283  1999  152  Upper West  -3.18  -9.75  -3.912  -10.349  2009  
105  Northern  -4.42  -10.06  -4.594  -10.283  2000  153  Volta  -6.53  -9.62  -5.536  -9.744  1991  
106  Northern  -4.34  -10.07  -4.594  -10.283  2001  154  Volta  -6.51  -10.25  -5.536  -9.744  1992  
107  Northern  -4.3  -10.09  -4.594  -10.283  2002  155  Volta  -6.39  -10.1  -5.536  -9.744  1993  
108  Northern  -4.28  -10  -4.594  -10.283  2003  156  Volta  -6.21  -10.9  -5.536  -9.744  1994  
109  Northern  -4.22  -9.65  -4.594  -10.283  2004  157  Volta  -6.03  -9.83  -5.536  -9.744  1995  
110  Northern  -4.16  -9.98  -4.594  -10.283  2005  158  Volta  -5.82  -9.79  -5.536  -9.744  1996  
111  Northern  -4.09  -9.87  -4.594  -10.283  2006  159  Volta  -5.7  -10.49  -5.536  -9.744  1997  
112  Northern  -4.03  -9.89  -4.594  -10.283  2007  160  Volta  -5.58  -9.76  -5.536  -9.744  1998  
113  Northern  -4.04  -10.09  -4.594  -10.283  2008  161  Volta  -5.44  -10.01  -5.536  -9.744  1999  
114  Northern  -3.98  -9.94  -4.594  -10.283  2009  162  Volta  -5.35  -9.82  -5.536  -9.744  2000  
115  Upper  East  -5.33  -10.5  -4.249  -10.144  1991  163  Volta  -5.27  -9.43  -5.536  -9.744  2001  
116  Upper  East  -5.3  -10.18  -4.249  -10.144  1992  164  Volta  -5.22  -9.45  -5.536  -9.744  2002  
117  Upper  East  -5.17  -11.02  -4.249  -10.144  1993  165  Volta  -5.19  -9.44  -5.536  -9.744  2003  
118  Upper  East  -4.98  -10.67  -4.249  -10.144  1994  166  Volta  -5.13  -9.29  -5.536  -9.744  2004  
119  Upper  East  -4.8  -10.63  -4.249  -10.144  1995  167  Volta  -5.07  -9.63  -5.536  -9.744  2005  
120  Upper  East  -4.57  -10.43  -4.249  -10.144  1996  168  Volta  -5  -9.33  -5.536  -9.744  2006  
121  Upper  East  -4.45  -11.06  -4.249  -10.144  1997  169  Volta  -4.93  -9.34  -5.536  -9.744  2007  
122  Upper  East  -4.32  -10.45  -4.249  -10.144  1998  170  Volta  -4.94  -9.32  -5.536  -9.744  2008  
123  Upper  East  -4.17  -10.32  -4.249  -10.144  1999  171  Volta  -4.87  -9.34  -5.536  -9.744  2009  
124  Upper  East  -4.08  -9.86  -4.249  -10.144  2000  172  Western  -5.77  -10.01  -4.851  -9.656  1991  
125  Upper  East  -3.98  -10.22  -4.249  -10.144  2001  173  Western  -5.76  -9.71  -4.851  -9.656  1992  
126  Upper  East  -3.92  -10.23  -4.249  -10.144  2002  174  Western  -5.66  -9.56  -4.851  -9.656  1993  
127  Upper  East  -3.88  -9.96  -4.249  -10.144  2003  175  Western  -5.49  -10.39  -4.851  -9.656  1994  
128  Upper  East  -3.8  -9.56  -4.249  -10.144  2004  176  Western  -5.32  -9.66  -4.851  -9.656  1995  
129  Upper  East  -3.73  -9.42  -4.249  -10.144  2005  177  Western  -5.12  -9.69  -4.851  -9.656  1996  
130  Upper  East  -3.65  -9.4  -4.249  -10.144  2006  178  Western  -5.01  -9.66  -4.851  -9.656  1997  
131  Upper  East  -3.57  -9.4  -4.249  -10.144  2007  179  Western  -4.9  -9.56  -4.851  -9.656  1998  
132  Upper  East  -3.56  -9.75  -4.249  -10.144  2008  180  Western  -4.78  -9.79  -4.851  -9.656  1999  
133  Upper  East  -3.48  -9.67  -4.249  -10.144  2009  181  Western  -4.71  -9.76  -4.851  -9.656  2000  
134  Upper West  -4.95  -10.58  -3.912  -10.349  1991  182  Western  -4.62  -9.51  -4.851  -9.656  2001  
135  Upper West  -4.93  -11.09  -3.912  -10.349  1992  183  Western  -4.57  -9.53  -4.851  -9.656  2002  
136  Upper West  -4.81  -10.42  -3.912  -10.349  1993  184  Western  -4.54  -9.55  -4.851  -9.656  2003  
137  Upper West  -4.63  -12.12  -3.912  -10.349  1994  185  Western  -4.47  -9.49  -4.851  -9.656  2004  
138  Upper West  -4.46  -10.68  -3.912  -10.349  1995  186  Western  -4.4  -9.53  -4.851  -9.656  2005  
139  Upper West  -4.25  -10.62  -3.912  -10.349  1996  187  Western  -4.33  -9.55  -4.851  -9.656  2006  
140  Upper West  -4.13  -11.49  -3.912  -10.349  1997  188  Western  -4.26  -9.56  -4.851  -9.656  2007  
141  Upper West  -4.01  -10.54  -3.912  -10.349  1998  189  Western  -4.26  -9.5  -4.851  -9.656  2008  
142  Upper West  -3.88  -10.24  -3.912  -10.349  1999  190  Western  -4.19  -9.46  -4.851  -9.656  2009  
143  Upper West  -3.71  -10.05  -3.912  -10.349  2000                

  

  

  

  

  

  

A17:  Computation of the W test statistics  

i  yi  y
20 i  y20 i  

y
i  

a
20 i  a20 i y20 i  yi   

1  -9.8166  -9.1167  0.6999  0.4808  0.3365  

2  -9.6724  -9.1732  0.4992  0.3232  0.1613  



Table    

189  

  

3  -9.6391  -9.1824  0.4567  0.2561  0.1170  

4  -9.6041  -9.2238  0.3803  0.2059  0.0783  

5  -9.5747  -9.2815  0.2932  0.1641  0.0481  

6  -9.5611  -9.3039  0.2572  0.1271  0.0327  

7  -9.4931  -9.3113  0.1818  0.0932  0.0169  

8  -9.4668  -9.4006  0.0662  0.0612  0.0041  

9  -9.4384  -9.4186  0.0198  0.0303  0.0006  

10  -9.4363  -9.4363  0.0000  0.0000  0.0000  

      b  0.7955  

  

Table A18: Coefficients 
a
n i 1  for W test for normality  

 
  

  

  

Table A18 (Cont.):  Coefficients 
a
n i 1  for W test for normality       n 11 12 12 14 15 

16 17 18 19 20  i  

1 0.5601 0.5475 0.5359 0.5259 

0.5150 0.5056 0.4968 0.4886 

0.4808 0.4734  

2 0.3315 0.3325 0.3325 0.3318 

0.3306 0.3290 0.3273 0.3253 

0.3232 0.3211  

3 0.2260 0.2347 0.2412 0.2460 

0.2495 0.2521 0.2540 0.2553 

0.2561 0.2565  

4 0.1429 0.1586 0.1707 0.1802 

0.1878 0.1939 0.1988 0.2027 

0.2059 0.2085  
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  0.1787     0.1857   0.1864   

  0.1480     0.1601   0.1616   

5 0.0695 0.0922 0.1686  

6 0.0000 0.0303 0.1334  

7 0.0000 0.0240 0.0433 0.0593 

0.0725 0.0837 0.0932 0.1013  

8 0.0000 0.0196 0.0359 0.0496 

0.0612 0.0711  

9 0.0000 0.0163 0.0303 0.0422  

10 0.0000 0.0140 Table A18 (Cont.): 

 Coefficients 
a
n i  1  for 

W test for normality  

      n 21 22 23 24 25 26 27 28 29 30  i  

1 0.4643 0.4590 0.4542 0.4493 

0.4450 0.4407 0.4366 0.4328 

0.4291 0.4254  

2 0.3185 0.3156 0.3126 0.3098 

0.3069 0.3043 0.3018 0.2992 

0.2968 0.2944  

3 0.2578 0.2571 0.2563 0.2554 

0.2543 0.2533 0.2522 0.2410 

0.2499 0.2487  

4 0.2119 0.2131 0.2139 0.2145 

0.2148 0.2151 0.2152 0.2151 

0.2150 0.2148  

5 0.1736 0.1764 0.1807 0.1822 

0.1836 0.1848 0.1870  

6 0.1399 0.1443 0.1512 0.1539 

0.1563 0.1584 0.1630  

7 0.1092 0.1150 0.1201 0.1245 

0.1283 0.1316 0.1346 0.1372 

0.1392 0.1415  

8 0.0804 0.0878 0.0941 0.0997 

0.1046 0.1086 0.1128 0.1162 

0.1192 0.1219  

  0.1099   0.1240   0.1353   0.1447   0.1524   0.1587   0.1641   

  0.0539   0.0727   0.0880   0.1005   0.1109   0.1197   0.1271   
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  0.0459     0.0778   0.0822   

  0.0228     0.0598   0.0650   

  0.1880     0.1881   0.1880   

  0.1660     0.1686   0.1689   

9 0.0530 0.0618 0.0696 0.0764 

0.0823 0.0876 0.0923 0.1965 

0.1002 0.1036  

10 0.0263 0.0368 0.0539 0.0610 

0.0672 0.0728 0.0862  

11 0.0000 0.0122 0.0321 0.0403 

0.0476 0.0540 0.0697  

12 0.0000 0.0107 0.0200 0.0284 

0.0358 0.0424 0.0483 0.0537  

13 0.0000 0.0094 0.0178 0.0253 

0.0320 0.0381  

14 0.0000 0.0084 0.0159 0.0227  

15                  0.0000 0.0076 A18 (Cont.): 

 Coefficients 
a
n i  1  for W test for normality       n 31 32 33 34 35 36 37 38 39 40  

i  

1 0.4220 0.4188 

0.4156 0.4127 

0.4096 0.4068 

0.4040 0.4015 

0.3989 0.3964  

2 0.2921 0.2898 

0.2876 0.2854 

0.2834 0.2813 

0.2794 0.2774 

0.2755 0.2737  

3 0.2475 0.2463 

0.2451 0.2439 

0.2427 0.2415 

0.2403 0.2391 

0.2380 0.2368  

4 0.2145 0.2141 

0.2137 0.2132 

0.2127 0.2121 

0.2116 0.2110 

0.2104 0.2098  

5 0.1874 0.1878

 0.1882 0.1883 
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  0.0981   56   0.1075   0.1092   

  0.0844     0.0947   0.0967   

0.1883 0.1883

 0.1878  

6 0.1641 0.1651

 0.1667 0.1673 

0.1678 0.1683

 0.1691  

7 0.1433 0.1449 

0.1463 0.1475 

0.1487 0.1496 

0.1505 0.1513 

0.1520 0.1526  

8 0.1243 0.1265 

0.1284 0.1301 

0.1317 0.1331 

0.1344 0.1356 

0.1366 0.1376  

9 0.1066 0.1093 

0.1118 0.1140 

0.1160 0.1179 

0.1196 0.1211 

1225  0.1237  

10 0.0899 0.0931

 0.0988 0.1013 

0.1036 0.10

 0.1108  

11 0.0739 0.0777

 0.0844 0.0873 

0.0900 0.0924

 0.0986  

12 0.0585 0.0629 

0.0669 0.0706 

0.0739 0.0770 

0.0798 0.0824 

0.0848 0.0870  

13 0.0435 0.0485 

0.0530 0.0572 

0.0610 0.0645 
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  0.0481   0.0515   

  0.0372   0.0409   

0.0677 0.0706 

0.0733 0.0759  

14 0.0289 0.0344 

0.0395 0.0441 

0.0484 0.0523 

0.0559 0.0592 

0.0622 0.0651  

15 0.0144 0.0206 

0.0262 0.0314 

0.0361 0.0404 

0.0444 0.0546  

16 0.0000 0.0068 

0.0131 0.0187 

0.0239 0.0287 

0.0331 0.0444  

17 0.0000 0.0062 

0.0119 0.0172 

0.0220 0.0264 

0.0305 0.0343  

18 0.0000 0.0057 

0.0110 0.0158 

0.0203 0.0244  

19 0.0000 0.0053 

0.0101 0.0146  

20 0.0000 0.0049  
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  0.1871     0.1855   0.1851   

  0.1695     0.1693   0.1692   

  0.1149     0.1197   0.1205   

  0.1035     0.1095   0.1105   

A18 (Cont.):  Coefficients 
a
n i  1  for W test for normality       n 41 42 43 44 45 

46 47 48 49 50  i  

1 0.3940 0.3917 0.3894 0.3872 

0.3850 0.3830 0.3808 0.3789 

0.3770 0.3751  

2 0.2719 0.2701 0.2684 0.2667 

0.2651 0.2635 0.2620 0.2604 

0.2589 0.2574  

3 0.2357 0.2345 0.2334 0.2323 

0.2313 0.2302 0.2291 0.2281 

0.2271 0.2260  

4 0.2091 0.2085 0.2078 0.2072 

0.2065 0.2058 0.2052 0.2045 

0.2038 0.2032  

5 0.1876 0.1874 0.1868 0.1865 

0.1862 0.1859 0.1847  

6 0.1693 0.1694 0.1695 0.1695 

0.1695 0.1695 0.1691  

7 0.1531 0.1535 0.1539 0.1542 

0.1545 0.1548 0.1550 0.1551 

0.1553 0.1554  

8 0.1384 0.1392 0.1398 0.1405 

0.1410 0.1415 0.1420 0.1423 

0.1427 0.1430  

9 0.1249 0.1259 0.1269 0.1278 

0.1286 0.1293 0.1300 0.1306 

0.1312 0.1317  

10 0.1123 0.1136 0.1160 0.1170 

0.1180 0.1189 0.1212  

11 0.1004 0.1020 0.1049 0.1062 

0.1073 0.1085 0.1113  

12 0.0891 0.0909 0.0927 0.0943 

0.0959 0.0972 0.0986 0.0998 

0.1010 0.1020  
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  0.0628     0.0731   0.0748   

  0.0534     0.0648   0.0667   

  0.0335   0.0361   

  0.0259   0.0288   

  0.05     0.50   0.90   

  0.767   
  0.98   

  1.000   

13 0.0782 0.0804 0.0824 0.0842 

0.0860 0.0876 0.0892 0.0906 

0.0919 0.0932  

14 0.0677 0.0701 0.0724 0.0745 

0.0765 0.0783 0.0801 0.0817 

0.0832 0.0846  

15 0.0575 0.0602 0.0651 0.0673 

0.0694 0.0713 0.0764  

16 0.0476 0.0506 0.0560 0.0584 

0.0607 0.0648 0.0685  

17 0.0379 0.0411 0.0442 0.0471 

0.0497 0.0522 0.0546 0.0568 

0.0588 0.0608  

18 0.0283 0.0318 0.0352 0.0383 

0.0412 0.0439 0.0465 0.0489 

0.0511 0.0532  

19 0.0188 0.0227 0.0263 0.0296 

0.0328 0.0357 0.0385 0.0411 

0.0436 0.0459  

20 0.0094 0.0136 0.0175 0.0211 

0.0245 0.0277 0.0307 0.0386  

21 0.0000 0.0045 0.0087 0.0126 

0.0163 0.0197 0.0229 0.0314  

22 0.0000 0.0042 0.0081 0.0188 

0.0153 0.0185 0.0215 0.0244  

23 0.0000 0.0039 0.0076 0.0111 

0.0143 0.0174  

24 0.0000 0.0037 0.0071 0.0104  

25                  0.0000 0.0035 A19: 

Percentage points of the W test* for n = 3(1)50 Level  

  

0.01  

Level  

0.02 0.10 

0.756 0.789  0.959  0.998  
0.95 

0.999 

 

0.99  n  

3  0.753  1.000  

4  0.687  0.707  0.748  0.792  0.935  0.987  0.992  0.996  0.997  

5  0.686  0.715  0.762  0.806  0.927  0.979  0.993  



Table  

196  

  

  0.991   

  0.086   

  0. 983   

  0.984   

5   0.881   

  0.887     0.952   0.976   

  0.984   

  0.985   

  0.986   

  0.987   

  0.918   

  0.920     0.965   0.982   

  0.988   

  0.988   

6  0.713  0.748  0.788  0.826  0.927  0.974  0.986 

0.981 

 0.989  

7  0.730  0.760  0.803  0.838  0.928  0.972  0.979  0.985  0.988  

8  0.749  0.778  0.818  0.851  0.932  0.972  0.978  0.984  0.987  

9  0.764  0.791  0.829  0.859  0.935  0.972  0.978  0.984  0.986  

10  0.781  0.806  0.842  0.869  0.938  0.972  0.978 

0.979 

 0.986  

11  0.792  0.817  0.850  0.876  0.940  0.973  0.986  

12  0.805  0.828  0.859  0.883  0.943  0.973  0.979  0.984  0.986  

13  0.814  0.837  0.866  0.889  0.945  0.974  0.979  0.984  0.986  

14  0.825  0.846  0.874  0.895  0.947  0.975  0.980  0.984  0.986  

15  0.835  0.85 0.901  0.950  0.975  

0.863 0.906 

0.980 

0.981 

 0.987  

16  0.844  0.987  

17  0.851  0.869  0.892  0.910  0.954  0.977  0.981  0.985  0.987  

18  0.858  0.874  0.897  0.914  0.956  0.978  0.982  0.986  0.988  

19  0.863  0.879  0.901  0.917  0.957  0.978  0.982  0.986  0.988  

20  0.868  0.884  0.905  0.920  0.959  0.979  0.983 

0.983 

 0.988  

21  0.873  0.888  0.908  0.923  0.960  0.980  0.989  

22  0.878  0.892  0.911  0.926  0.961  0.980  0.984  0.987  0.989  

23  0.881  0.895  0.914  0.928  0.962  0.981  0.984  0.987  0.989  

24  0.884  0.898  0.916  0.930  0.963  0.981  0.984  0.987  0.989  

25  0.888  0.901 0.931  0.964  0.981  

0.904 0.933 

0.985 

0.985 

 0.989  

26  0.891  0.989  

27  0.894  0.906  0.923  0.935  0.965  0.982  0.985  0.988  0.990  

28  0.896  0.908  0.924  0.936  0.966  0.982  0.985  0.988  0.990  

29  0.898  0.910  0.926  0.937  0.966  0.982  0.985  0.988  0.990  

30  0.900  0.912  0.927  0.939  0.967  0.983  0.985  0.988  0.900  

  

  

A19 (Cont.): Percentage points of the W test* for n = 3(1)50 Level  

  

0.01  

Level  

0.95 

 

0.99  n  
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  0.05     0.50   0.90   

  0.929   

  0.98   

  0.988   

  0.934   

  0.935     0.970   0.984   

  0.989   

  0.989   

  0.989   

  0.989   

  0.990   

  0.990   

31  0.902  0.02 0.10 

0.914 0.940  0.967  0.983  

0.986 0.990  

32  0.904  0.915  0.930  0.941  0.968  0.983  0.986  0.988  0.990  

33  0.906  0.917  0.931  0.942  0.968  0.983  0.986  0.989  0.990  

34  0.908  0.919  0.933  0.943  0.969  0.983  0.986  0.989  0.990  

35  0.910  0.920 0.944  0.969  0.984  

0.922 0.945 

0.986 

0.986 

 0.990  

36  0.912  0.990  

37  0.914  0.924  0.936  0.946  0.970  0.984  0.987  0.989  0.990  

38  0.916  0.925  0.938  0.947  0.971  0.984  0.987  0.989  0.990  

39  0.917  0.927  0.939  0.948  0.971  0.984  0.987  0.989  0.991  

40  0.919  0.928  0.940  0.949  0.972  0.985  0.987 

0.987 

 0.991  

41  0.920  0.929  0.941  0.950  0.972  0.985  0.991  

42  0.922  0.930  0.942  0.951  0.972  0.985  0.987  0.989  0.991  

43  0.923  0.932  0.943  0.951  0.973  0.985  0.987  0.990  0.991  

44  0.924  0.933  0.944  0.952  0.973  0.985  0.987  0.990  0.991  

45  0.926  0.934  0.945  0.953  0.973  0.985  0.988 

0.988 

 0.991  

46  0.927  0.935  0.945  0.953  0.974  0.985  0.991  

47  0.928  0.936  0.946  0.954  0.974  0.985  0.988  0.990  0.991  

48  0.929  0.937  0.947  0.954  0.974  0.985  0.988  0.990  0.991  

49  0.929  0.937  0.947  0.955  0.974  0.985  0.988  0.990  0.991  

50  0.930  0.938  0.947  0.955  0.974  0.985  0.988  0.990  0.991  
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Listing A1: Matlab code for function to evaluate the posterior distribution  

1. function y = post(alpha,beta,sigma,sigma1,sigma2,mu1,mu2,rho,x1,y1)  

  
2. y=exp(f-0.5*((sum(y1-alpha-beta*x1)^2)/sigma^2+(((alpha-mu1)/sigma1)^2  
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Listing A2: Implementation of component-wise Metropolis sampler for the posterior  

distribution  
1. % % Metropolis procedure to sample from the posterior distribution  
2. % Component-wise updating. Use a normal proposal distribution  3. % 

% Initialize the Metropolis sampler 4.   

 5.6.  T=5000;  propsigma=[0.02,0.004]; % Set the maximum number of iteration% 

standard deviation of 
 
proposal distribution  

7. thetamin=[-10,0];  % define minimum for alpha and beta  

8. thetamax=[seed=1;rand(-4,1];  'state'% define maximum for alpha and 

beta,seed);randn('state',seed);  % set the random seed
  
  

9. 

10. state=zeros(2,T);   % storage space for the state of the sampler  

11. alpha=unifrnd(thetamin(1),thetamax(1)); % Start value for alpha 12. 

beta=unifrnd(thetamin(2),thetamax(2)); % Start value for beta 13.  

14. t=1;  state(1,t)=alpha;  % initialize 

iteration at 1% save the current state
  

  

15. state(2,t)=beta;  16.  
 
% % Start sampling 17. 

18. while t<T;  % Iterate until we have T samples  
19. t=t+1;  
20. % % Propose a new value for alpha  
21. new_alpha=normrnd(alpha,propsigma(1));  

22. pratio=post(new_alpha,beta,sigma,sigma1,sigma2,mu1,mu2,rho,x1,y1,f)/p 

ost(alpha,beta,sigma,sigma1,sigma2,mu1,mu2,rho,x1,y1,f);  

 23.24.      a=min([1 pratio]);  u=rand;  % Draw a uniform deviate from [0 1]% 

Calculate the acceptance ratio    
25.    if u<a;  % Do we accept this proposal?  

 26.27.         End alpha=new_alpha;   % proposal becomes new value for alpha  

28.   

 29. % % Propose a new value for beta 30.    

new_beta=normrnd(beta,propsigma(2));  
31.  

 
pratio=post(alpha,new_beta,sigma,sigma1,sigma2,mu1,mu2,rho,x1,y1,f)/post(alpha

,beta,sigma,sigma1,sigma2,mu1,mu2,rho,x1,y1,f);  

32.    a=min([1 pratio]);  % Calculate the acceptance ratio  

 33.34.        u=rand;  if u<a  % Do we accept this proposal?% Draw a uniform 

deviate from [0  1]  

35. beta=new_beta;  % proposal becomes new value for theta2  
36. End  

37.   
38. % %  Save state  
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39. state(1,t)=alpha;  
40. state(2,t)=beta;  

41. end  

  

Exponential parameters  

P = rlnorm(n,(1/20000000))  

N = rlnorm(n,(1/620000))  

D = rlnorm(n,(1/1600))  

  

LogNormal Parameters  

P = rlnorm(n,16.79254,0.173165)  
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N = rlnorm(n,13.11504,0.727722)  

D = rlnorm(n,7.295927,0.346973)  

                  ………………Listing (A3)  

Uniform  

runif(n, min = 14821000, max = 

30726000) runif(n, min = 102051, max 

= 1728808) runif(n, min = 700, max = 

2900)  

  

Gamma Distribution  

P = rgamma(n,90,70)*10000000  

N = rgamma(n,2,66)*10000000  

D = rgamma(n,90,300)*100000  

  

  

simm <- function(n){  

   

  #simulated P, N, D, X and Y, (an 

example)  

  N = rlnorm(n,13.11504,0.727722)  

  P = rlnorm(n,16.79254,0.173165)  

  D = rexp(n,(1/1600))  

  X = sort(log(N/P))   Y = sort(log(D/P))   m 

= data.frame(Y,X)  

  

……Listing   #regression model to generate alpha and beta       

(A4)   regmodel<- summary(lm(Y~X, data=m))   regmodel  

    

  #extract alpha and beta and save  

  gradcoefficient<-

as.matrix(regmodel$coefficients)   alpha<- 

gradcoefficient[1,1]    beta<- 

gradcoefficient[2,1]  

     

   output<- (c(alpha,beta))    output}  

  > VarCorr(Null.Model)  
  Regions = pdLogChol(1)   

……………………(Listing A5)             Variance   StdDev                      

(Intercept)  0.1891104  0.4348683  

Residual     0.1389485  0.3727579  
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>  Null.Model<-lme(y~1,random=~1|Regions,data=  
+fatalities,control=list(opt="optim"))  

>  GREL.DAT<-GmeanRel(Null.Model) >  names(GREL.DAT)  
[1] "ICC"     "Group"   "GrpSize" "MeanRel"  

>  GREL.DAT$ICC #ICC estimate           ....... Listing (A6)  
[1] 0.5764526  
>  GREL.DAT$MeanRel  
[1] 0.9627688 0.9627688 0.9627688 0.9627688 0.9627688   
[6] 0.9627688 0.9627688 0.9627688 0.9627688 0.9627688  
> mean(GREL.DAT$MeanRel) #Average group-mean 

reliability [1] 0.9627688  

  

>  summary(Model.1)  
Linear mixed-effects model fit by REML  

  Data: fatalities   

 AIC  BIC  logLik  
104.5536 120.7091 -47.27679  

  
Random effects:   

  Formula: ~1 | Regions  

   (Intercept) Residual  

 StdDev: 0.4575869  0.2754293  

  
Fixed effects: y ~ x + G.x   

   Value Std.Error DF t-value p-value  
(Intercept) -10.075599 0.7426214 179 -13.567611 0.0000 x 0.459058 

0.0373957 179 12.275704 0.0000 Listing (A7) G.x -0.544840 
0.1657983 8 -3.286159 0.0111  

     
Correlation:   
 (Intr) x      x 0.000     G.x 0.955 -0.226  

  
Standardized Within-Group Residuals:  

 Min  Q1  Med  Q3  Max  
-5.2750037 -0.5117580 0.1294992 0.5301295 2.0982667  

   
Number of Observations: 190 Number of 

Groups: 10  

  

>  summary(Model.2)  
Linear mixed-effects model fit by REML  

  Data:  fatalities   
 AIC  BIC  logLik  

78.74943 101.3672 -32.37471  

  
Random effects:  
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 Formula: ~x | Regions  
  Structure: General positive-definite,   

Log-Cholesky parametrization  
   StdDev  Corr  

(Intercept) 0.3930480 (Intr)  
 x  0.1955038 0.997  
 Residual  0.2510588   

  
Fixed effects: y ~ x + G.x   

……Listing    Value  Std.Error DF t-value p-value 

(A8)  
(Intercept) -9.234113 0.20646101 178 -44.72570 0 x 

0.445931 0.07067286 178 6.30979 0  
 G.x  -0.338452 0.05155597 178 -6.56476 0  

  
  Correlation:   

  (Intr)  x x  0.544    
 G.x  0.594  -0.300  

  
Standardized Within-Group Residuals:  

 Min  Q1  Med  Q3  Max   
-4.82969980 -0.38141416 0.05199466 0.49544405 2.52586513    

Number of Observations: 190  
Number of Groups: 10  

  

  

  

  

>  VarCorr(Model.2)  
Regions = pdLogChol(x)   

……………...Listing (5.14)                Variance    StdDev     Corr   

(Intercept) 0.15448674  0.3930480 (Intr) x           

0.03822173  0.1955038  0.997   

Residual    0.06303053  0.2510588  

  

  

  

  

  

  

  

  

  

Listing (A9):  
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> rtf<-data.frame(matrix(c(1,920,8773,2,914,9116,3,901,7677,4,824,7664,5,  
1026,9106,6,1049,9903,7,1015,10433,8,1419,11786,9,1237,10202,10,1437,12310,11,1660,1 

3178),11,3,byrow=TRUE))  
> names(rtf)<-c("year","Fatality","Injury")  
>  rtf$Casualty<-rtf$Fatality+rtf$Injury  
>  rtf$year<-factor(rtf$year,labels=c("1991","1992","1993","1994","1995",  
 "1996","1997","1998","1999","2000","2001"))  
> rtf$Y<-cbind(rtf$Fatality,rtf$Injury)  
>  rtf  

  
    Year Fatality Injury Casualty Y.1  Y.2  
1 1991 920  8773  9693  920  8773  
2 1992 914  9116  10030  914  9116  
3 1993 901  7677  8578  901  7677  
4 1994 824  7664  8488  824  7664  
5 1995 1026  9106  10132  1026  9106  
6 1996 1049  9903  10952  1049  9903  
7 1997 1015  10433 11448  1015  10433  
8 1998 1419  11786 13205  1419  11786  
9 1999 1237  10202 11439  1237  10202  
10 2000 1437  12310 13747  1437  12310  
11 2001 1660  13178 14838  1660  13178  

  
  

Listing (10):  

 
>  logistic< glm(Y~year,family=binomial,data=rtf)  

 

  

  


