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ABSTRACT 

In this thesis an SIA compartment model of the transmission dynamics of HIV/AIDS is 

developed using Ghana Data.  

The resulting system of three non-linear differential equations was analyzed in respect of 

stability of the three equilibrium points namely the disease free which was found to be 

unstable and two endemic equilibrium points which were found to be stable. Further 

analysis to determine the conditions for the breakout of epidemic were done using the 

basic reproductive number of the infection.  

Simulations of solutions of the model in various scenarios were also performed. It was 

found that the rate of transition from HIV infected to AIDS relative to the rate of 

transition from susceptible to HIV infected state would need to be increased in order to 

effectively control the spread of the disease.   

 

 

  



vi 
 

TABLE OF CONTENTS 

TABLE OF CONTENTS……………………………………………………………vii  

DECLARATION………………………………………………………………….....iii 

ACKNOWLEDGEMENT…………………………………………………………...iv  

DEDICATION…………………………………………………………………….....v  

ABSTRACT…………………………………………………………………………vi 

LIST OF TABLES…………………………………………………………………...x  

LIST OF FIGURES…………………………………………………………………xi 

 

CHAPTER ONE 

INTRODUCTION……………………………………………………………..…...1 

1.0 Overview………………………………………………………………….........1 

1.1    Background……………………………………………………….....................2 

1.1.1 How HIV-1 Originated………………………………………………......3 

1.1.2 How HIV-2 Originated………………………………………………......4 

1.2    Statement of the Problem…………………………………………..…………..9 

1.3    Objective of the Research………………………………………………….....10 

1.4    Methodology…………………………………………………………..……...11 

1.5    Structure of the Thesis………………………………………………………...12 

 

CHAPTER TWO 

REVIEW OF RELATED WORK………………………………………………..13 

2.0    Introduction…………………………………………………………………...13 

2.1    Mathematical Models for HIV Dynamics…………………………………….13 

 



vii 
 

CHAPTER THREE 

MATHEMATICAL MODEL…………………………………………………….22 

3.0    Introduction to Disease Modeling……………………………………………22 

3.0.1 The SIS Model………………………………………………………..23 

3.0.2 The SIR and SIRS Models……………………………………………24 

3.0.3 The SI Epidemic model………………………………………………26 

3.1    Model Parameters and Assumptions…………………………………………33 

3.2    Derivation of Equations for the SIAR Model………………………………..34 

3.2.1 Susceptibles, S(t)……………………………………………………..34 

3.2.2 Number of New HIV Infections……………………………………...35 

3.2.3 Infectives, I(t)………………………………………..........................35 

3.2.4 AIDS cases, A(t)……………………………………………………...36 

3.2.5 A Flow Diagram of the Model……………………………………….36 

3.2.6 Model Equations……………………………………………………..37 

3.3   Stability of Fixed Point………………………………………………………..39 

3.3.1 Stability by Linearization…………………………………………….39 

3.3.2 Proof of Linearization of the SIA Model…………………………….40 

3.3.3 Calculations…………………………………………………………..43 

3.3.3.1 Steady State Equilibrium…………………………………...43 

3.3.3.2 Linearization of Equation…………………………………..45 

3.4    Reproductive Number……………………………………................... ……...49 

3.4.1 Calculations…………………………………………………………..50 

 

 

 



viii 
 

CHAPTER FOUR 

 ANALYSIS AND NUMERICAL SIMULATION OF THE 

MODELS…………………………………………………………………………...52 

4.1     Introduction…………………………………………………………………..52 

4.1    Analytic Study of Results…………………………………………………….52 

4.2    Numerical Simulation……………………………………................... ………63 

 

CHAPTER FIVE  

CONCLUSIONS AND RECOMMENDATION………………………………..72 

5.0     Introduction………………………………………………………………….72 

5.1    Conclusion…………………………………………………………………...73 

5.2    Recommendation…………………………………………………………….74 

Reference………………………………………………………………………….75 

  



ix 
 

LIST OF TABLES                                                                                                PAGE 
 

Table 3.1: Table of parameters, their descriptions and their values….....................34
  

Table 4.1: Parameter values in respect of low rate of infection with a 

                  low rate of conversion from infectives to AIDS and low AIDS  

                  accelerated death rates………………………………………………...64 

Table 4.2: Parameter values in respect of high rate of infection with a 

                  high rate of conversion from infectives to AIDS and high AIDS  

                  accelerated death rates………………………………………………...66 

Table 4.3: Parameter values in respect of low rate of infection with a 

                  low rate of conversion from infectives to AIDS and high AIDS  

                  accelerated death rates………………………………………………...68 

Table 4.4: Parameter values in respect of high rate of infection with a 

                  high rate of conversion from infectives to AIDS and low AIDS  

                  accelerated death rates………………………………………………...70 

  



x 
 

LIST OF FIGURES                                                                                                PAGE 

Figure 3.1: The transfer diagram for the SIS model……………….............................23 

Figure 3.2: The transfer diagram for the SIR and SIRS model………………………25 

Figure 3.3: A flow diagram of the SI model…………………………………….....26 

Figure 3.4: A flow diagram of the disease as modeled by the system of equation…...36 

Figure 4.1a: Numerical solution of the model with parameters from Table 4.1.……..64 

Figure 4.1b: A phase portrait showing the stability situation of the 

                     differential model.....................................................................................65 

Figure 4.2a: Numerical solution of the model with parameters from Table 4.2.……..66 

Figure 4.2b: A phase portrait showing the stability situation of the 

                     differential model……………………………………………………….67 

Figure 4.3a: Numerical solution of the model with parameters from Table 4.3.……..68 

Figure 4.3b: A phase portrait showing the stability situation of the 

                     differential model……………………………………………………….69 

Figure 4.4a: Numerical solution of the model with parameters from Table 4.4.……..70 

Figure 4.4b: A phase portrait showing the stability situation of the 

                     differential model……………………………………………………….71 

 

 

  



1 
 

CHAPTER ONE 

INTRODUCTION 

1.0 Overview 

The origin of HIV and AIDS has puzzled scientists ever since the illness first came to light in the 

early 1980s. For over twenty years it has been the subject of fierce debate and the cause of 

countless arguments, with everything from a promiscuous flight attendant to a suspect vaccine 

programme being blamed. 

The first recognized cases of AIDS occurred in the USA in the 1980s. A number of gay men in 

New York and California suddenly began to develop rare opportunistic infections and cancers 

that seemed stubbornly resistant to any treatment. At this time, AIDS did not yet have a name, 

but it quickly became obvious that all the men were suffering from a common syndrome. 

The discovery of HIV, the Human Immunodeficiency Virus, was made soon after. While some 

were initially resistant to acknowledge the connection (and indeed some remain so today), there 

is now clear evidence to prove that HIV causes AIDS. 

The significance of this risk factor was particularly profound in the African region, accounting 

for 19.4% of the total burden of disease in Africa. Most of this burden is directly attributable to 

HIV/AIDS, though other sexually transmitted infections (STIs) also comprise an important 

element. Interventions to limit the spread of HIV are therefore urgently needed in Africa 

especially. 
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1.1 Background 

Human immunodeficiency virus (HIV) is a lentivirus (a member of the retrovirus family), and 

like all viruses of this type, it attacks the immune system. Lentiviruses  are in turn part of a larger 

group of viruses known as retroviruses that causes acquired immunodeficiency syndrome 

(AIDS), a condition in humans in which the immune system begins to fail, leading to life-

threatening opportunistic infection. The name ‘lentivirus’ literally means ‘slow virus’ because 

they take such a long time to produce any adverse effects in the body. They have been found in a 

number of different animals, including cats, sheep, horses and cattle.  

However, the most interesting lentivirus in terms of the investigation into the origins of HIV is 

the Simian Immunodeficiency Virus (SIV) that affects monkeys, which is believed to be at least 

32,000 years old. In fact, it is generally accepted that HIV is a descendant of a Simian 

Immunodeficiency Virus because certain strains of SIV bear a very close resemblance to HIV-1 

and HIV-2. 

There are only two species of HIV known to exist: HIV-1 and HIV-2. HIV-1 is the virus that was 

initially discovered and termed both LAV and HTLV-III.  

It is more virulent, more infective, and is the cause of the majority of HIV infections globally. 

The lower infectivity of HIV-2 compared to HIV-1 implies that fewer of those exposed to HIV-2 

will be infected per exposure. Because of its relatively poor capacity for transmission, HIV-2 is 

largely confined to West Africa. 

HIV-2 for example corresponds to SIVsm, a strain of the Simian Immunodeficiency Virus found 

in the sooty mangabey (also known as the White-collared monkey), which is indigenous to 

western Africa. 
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 The most virulent, pandemic strain of HIV, namely HIV-1, was until recently more difficult to 

place. Until 1999, the closest counterpart that had been identified was SIVcpz, the SIV found in 

chimpanzees. However, this virus had certain significant differences from HIV. 

 

1.1.1 How HIV-1 Originated 

In February 1999 a group of researchers from the University of Alabama announced that they 

had found a type of SIVcpz that was almost identical to HIV-1. This particular strain was 

identified in a frozen sample taken from a captive member of the sub-group of chimpanzees 

known as Pan Troglodytes (P.t. troglodytes), which were once common in west-central Africa. 

The researchers (led by Paul Sharp of Nottingham University and Beatrice Hahn of the 

University of Alabama) made the discovery during the course of a 10-year long study into the 

origins of the virus. They claimed that this sample proved that chimpanzees were the source of 

HIV-1, and that the virus had at some point crossed species from chimps to humans. 

Their final findings were published two years later in Nature magazine. In this article, they 

concluded that wild chimps had been infected simultaneously with two different simian 

immunodeficiency viruses which had “viralse” to form a third virus that could be passed on to 

other chimps and, more significantly, was capable of infecting humans and causing AIDS. 

These two different viruses were traced back to a SIV that infected red-capped mangabeys and 

one found in greater spot-nosed monkeys. They believe that the hybridization took place inside 

chimps that had become infected with both strains of SIV after they hunted and killed the smaller 

species of monkey. 
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They also concluded that three ‘groups’ of HIV-1 namely Group M, N and O came from the SIV 

found in P.t troglodytes, and that each group represented a separate crossover ‘event from 

chimps to humans. 

 

1.1.2 How HIV-2 Originated 

Until recently, the origins of the HIV-2 virus had remained relatively unexplored. HIV-2 is 

thought to come from the SIV in Sooty Mangabeys rather than chimpanzees, but the crossover to 

humans is believed to have happened in a similar way (i.e. through the butchering and 

consumption of monkey meat).It is far rarer, significantly less infectious and progresses more 

slowly to AIDS than HIV-1. As a result, it infects far fewer people, and is mainly confined to a 

few countries in West Africa. 

By analyzing samples of the two different subtypes of HIV-2 (A and B) taken from infected 

individuals and SIV samples taken from sooty mangabeys, Dr. Vandamme concluded that 

subtype A had passed into humans around 1940 and subtype B in 1945 (plus or minus 16 years 

or so). Her team of researchers also discovered that the virus had originated in Guinea-Bissau 

and that its spread was most likely precipitated by the independence war that took place in the 

country between 1963 and 1974. Her theory was backed up by the fact that the first European 

cases of HIV-2 were discovered among Portuguese veterans of the war, many of whom had 

received blood transfusions or unsterile infections following injury, or had possibly had 

relationships with local women. 

HIV is a retrovirus and like most of the viruses in this family of viruses the Retroviridae, only 

replicates in dividing cells.  
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HIV has some unfortunate unique properties even within this retrovirus family such as using the 

mRNA processing of the cell it invades to synthesis its own viral RNA. Although studies (Ho et 

al. 1995) have shown the dynamics of viral replication is very high in vivo the immune system 

can counteract this replication from 5 to 10years or more depending on the initial infection. 

Cases of haemophiliacs who have been given contaminated blood have succumbed in a matter of 

months. 

Infections by the virus HIV-1, the most common variety, has many highly complex 

characteristics, most of which are still not understood. The fact that the disease progression can 

last more than 10years from the first day of infection is just one of them. Another is that while 

most viral infections can be eliminated by an immune response, HIV is only briefly controlled by 

it. HIV primarily infects a class of white blood cells or lymphocytes, called CD4 T-cells, but also 

infect other cells such as dendritic cells. The virus has a high affinity for a receptor present on 

the cell surface of each of these cells which guides the virus to their location in vivo.  

When the CD4 T-cell count, normally around 1000/µL, decreases to 200/µL or below, a patient 

is characterized as having AIDS. There are very specific clearly (Morb Mort Week Report 

42(No. RR-17), Table 308-1 and Table 308-2, December 18, 1992) which are used to diagnose 

the AIDS; the CD4 T-cell count is not the only factor. The categories are regularly updated. 

These are used by the Centers for Disease Control for surveillance purposes. For example, if a 

patient with the virus has a CD4T-cell count greater than 500/µL but has, or has had one of a 

variety of diseases then a formal diagnosis is made and registered. The reason for the fall in the 

T-cell count is unknown. T-cells are normally replenished very quickly in the body, so the 

infection may affect the source of new T-cells or the life span of preexisting ones. Although HIV 

can kill cells that it infects, only a small fraction of CD4 T-cells are infected at any given time. 
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Because of the central role of CD4 T-cells in immune regulation, their depletion has widespread 

deleterious effects on the functioning of the immune system as a whole and this is what leads to 

AIDS. 

HIV infection has four basic stages: incubation period, acute infection, latency stage and AIDS. 

The initial incubation period upon infection is asymptomatic and usually lasts between two and 

four weeks. The second stage, acute infection, lasts an average of 28 days and can include 

symptoms such as fever, lymphadenopathy (swollen lymph nodes), pharyngitis(sore throat), and 

rash, myalgia(muscle pain), malaise, and mouth and esophageal sores. 

The latency stage, which occurs third, shows few or no symptoms and last anywhere from two 

weeks to twenty years and beyond. AIDS, the fourth and final stage of HIV infection shows as 

symptoms of various opportunistic infections. 

Infections with HIV occur by the transfer of bodily fluids such as blood, semen, vaginal fluid, 

breast milk. Within these bodily fluids, HIV is present as both free virus particles and virus 

within infected immune cells. The four major routes of transmission are unsafe sex, 

contaminated needles, breast milk, and transmission from an infected mother to her baby at birth 

(perinatal transmission). Screening of blood products for HIV has largely eliminated 

transmission through blood transfusion or infected blood products in the developed world. 

HIV infection in humans is considered pandemic by the World Health Organization (WHO). 

Nevertheless, complacency about HIV may play a key role in HIV risk. From its discovery in 

1981 to 2006, AIDS killed more than 25 million people. 
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HIV infects about 0.6% of the world’s population. In 2005 alone, AIDS claimed an estimated 

2.4-3.3 million lives, of which more than 570,000 were children. A third of these deaths are 

occurring in Sub-Saharan Africa, retarding economic growth and increasing poverty. 

According to current estimates, HIV is set to infect 90 million people in Africa, resulting in a 

minimum estimate of 18 million orphans. 

HIV infects primarily vital cells in the human immune system such as helper T cells (to be 

specific, CD4+  T cells), macrophages, and dendritic cells. HIV infection leads to low levels of 

CD4+ T cells through three main mechanisms: First, direct viral killing of infected cell; second, 

increased rates of apoptosis in infected cells; and third, killing of infected CD4+ by CD8 

cytotoxic lymphocytes that recognize infected cells. When CD4+ T cell numbers decline below a 

critical level, cell-mediated immunity is lost, and the body becomes progressively more 

susceptible to opportunistic infections. 

Most untreated people infected with HIV-1 eventually develop AIDS. These individuals mostly 

die from opportunistic infections or malignancies associated with the progressive failure of the 

immune system. HIV progresses to AIDS at a variable rate affected by viral, host, and 

environmental factors; most will progress to AIDS within 10years of HIV infection: some will 

have progressed much sooner and some will take much longer. Treatment with anti-retrovirals 

increases the life expectancy of people infected with HIV has progressed to diagnosable AIDS, 

the average survival time with antiretroviral therapy was estimated to be more than 5years as of 

2005. Without antiretroviral therapy, someone who has AIDS typically dies within a year. 

The history of HIV is a complex one.  
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Twenty years ago, little was known about the mysterious illness that was killing thousands of 

people. The history of HIV tells us that scientists struggled for a cause and even more important 

a solution. Then an American scientist named Robert Gallo co-discovered a virus later known as 

HIV that seemed to be the culprit. 

His research and findings opened the door to a new field of medicine and science dedicated to 

finding answers to the epidemic of the 20th century HIV and AIDS. 

In the mids 80’s Gallo and his team co-discovered the virus they believed to be responsible for 

the killer disease known as AIDS. In addition, Gallo and his team developed a test that identified 

the virus in humans-the HIV antibody blood test. This test makes possible the early identification 

of infected people, allowing for early and better treatment resulting in long life expectancies for 

those living with HIV. 

Since the mid-1980’s, numerous models have been developed to describe the immune system 

and its interaction with HIV. These models are deterministic and stochastic models. Stochastic 

models aim to account for the early events in the disease when there are few infected cells and a 

small number of viruses.  

Most models have been deterministic.  Deterministic models, which attempt to reflect the 

dynamic changes in mean cell numbers, are more applicable to later stages of the process when 

the population is large. These models typically consider the dynamics of the CD4 cells, latently 

infected cells and virus populations as well as the effects of drug therapy. 

Because of the ethics, among other things, of doing experiments on humans, fundamental 

information has been lacking about the dynamics of HIV infection.  
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For example, since the disease takes an average of 10years to develop it was widely thought that 

the components of the disease process would also be slow.  

A combination of mathematical modeling and experiments has shown this is not the case, by 

showing that there are a number of different timescales in HIV infection. The current 

understanding of the rapidity of HIV infection has totally changed the manner in which HIV is 

treated in patients and has had a major impact in extending patients lives; 

 

1.2 Statement of the Problem 

Since the first cases of AIDS were identified in the United States nearly two decades ago, 

HIV/AIDS has emerged as one of the leading challenges for global public health. Particularly in 

sub-Saharan Africa, where the overwhelming majority of HIV and AIDS cases appear, the 

epidemic continues to take a massive human toll. 

This pandemic has not only taken a massive toll on human lives but also affected developmental 

agenda of most developing countries including Ghana. It has also denied majority of our 

effective labor force the strength to function properly thereby reducing our total output as a 

nation. 

Scientist/researchers have over the years since the emergence of this life threatening diseases 

have worked tirelessly to bring this pandemic under control, adapting different mathematical 

techniques and almost always end up with some quantitative and qualitative questions to answer: 

how many people are infected with the HIV each day?, where are these people resident?, how 

many new cases will be administered in the future?, and how to control the disease? 
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An understanding of the magnitude and trajectory of the HIV/AIDS epidemic, as well as the 

uncertainty around these parameters, is critically important both for planning and developmental 

purposes. 

 

1.3 Objectives of the Research 

As a motivation for this research, it is important not to let our arms down in our effort to prevent 

and control the HIV/AIDS epidemic in our country, Ghana. Countries including Ghana are 

dealing with the growing impact of the epidemics on the youngest and most productive 

population groups; increasing numbers in children and adolescents; worsening situation among 

the poor and marginalized population; a continuous aggravation of the existent health problems; 

and above all, the diversion of resources from other health, welfare and educational priorities. 

If mathematical models based on the underlying transmission mechanism of HIV/AIDS might 

help the medical and scientific communities understand better how the disease spreads in the 

community then we have to support it as mathematicians. 

The specific objectives of the study are to; 

1. To construct an SIA compartmental model of HIV/AIDS, i.e. comprising the Susceptible, 

Infected (without AIDS) and Infected with AIDS compartments. 

2. Investigate solutions and the stability of the equilibria of the model analytically and using 

Ghana data. 

3. Also investigate the role of the basic reproductive number. 

4. Based on the above findings, determine implications for intervention. 
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1.4 Methodology 

Many mathematical models have been developed and applied to the HIV/AIDS epidemic since 

its initial occurrence (Knox, 1986; Anderson, et al., 1986; Anderson, 1988; Dietz et al., 1983; 

Dietz, 1988; Brauer, 1993; Brauer and Castillo, 2001; Castillo et al., 1994; Chowell et al., 2004). 

These mathematical models are proposed based on the nature and the type of disease one is 

looking at. 

Considering the process of a disease that fits the SIR framework we have a flow of individuals 

from the susceptible group to the infected group and then to the removed group (identified here 

with AIDS group). 

Susceptible →Infected →Removed (AIDS) 

We therefore seek to apply the following mathematical methods to model the HIV/AIDS 

dynamics: 

We construct a compartmental model, in which the total population is divided into three groups 

(variables), a susceptible population, the population with the HIV infection and the population 

which are infected and show symptoms of AIDS.  

We then develop systems of non-linear differential equations based on the compartmental model, 

after which we find the steady state equilibria and hence establish the points at which the system 

will attain stability by first linearizing the systems of nonlinear differential equations. This 

linearization is done by finding the jacobian matrix and solving to get the eigenvalues. 

We will go ahead and find the basic reproductive ratio. 
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The data for the thesis is specifically from Ghana data which was collected from WHO website 

and the evaluations are carried out using numerical simulations with MatLab. 

 

1.5 Structure of the Thesis 

The thesis is organized in five chapters, each chapter containing an introductory note of what 

should be expected in the respective chapters. 

In chapter one, we looked at the historical background, statement of the problem, objective of the 

thesis, methodology, justification and the structure of the thesis. Chapter two deals with a review 

of related research, chapter three also deals with the methodology which involves the 

mathematical methods for modeling, chapter four involves the stability analysis of the model and 

we gave a concluding note and some recommendations in the chapter five of this thesis. 
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CHAPTER TWO 

REVIEW OF RELATED LITERATURE 

2.0 Introduction 

Mathematical models provide a unified and flexible approach to the study of the spread of AIDS 

and other infectious diseases. This chapter presents briefly, a review of some of the papers that 

use mathematical models to study the epidemiology of AIDS. 

In general, modeling the transmission of AIDS in a population is carried out by way of 

compartmental models. The population is divided into the susceptible, infective and removed 

individuals. Each infective is infectious during a random period of time. While infected, it 

behaves independently of the others and is able to contact susceptible, which will then become 

infective. After that period, the individual is removed, by death for example, and plays no further 

role in the propagation of the disease. 

 

2.1 Mathematical Models for HIV Dynamics 

Mathematical models play an important role in the understanding of the dynamics of the 

transmission of HIV.  

We present a few of such models that are related to this thesis. 

One of such known models was presented by (Ho et al. 1995). Their work examines the 

pathogenesis of the dynamical process of HIV using a model based on a simple equation 

expressing the rate of change of the viral concentration depending on time. This work was 
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extended by (Perelson et al., 1996) including the dynamics of infected T-cells and the non-

infectious viral loads. 

 As a consequence of the above mentioned articles, several models began to include biological 

processes into the mathematical models. Some of these are compartmental models (Murray et al., 

1998; Callaway and Perelson, 2002) and some more recent works using delay differential models 

as in (Nelson et al., 2000; Nelson and Perelson, 2002). 

We begin with a simple Susceptible-Infected-Recovered (SIR) model. We consider a variation of 

this model proposed by (Tassier, 2005). As a variant on this thesis, SIR can also stand for 

Susceptible-Infected-Removed if people are allowed to die from their infection and thus leave 

the population under consideration. 

Thus we have three groups or states in which we can place individuals and the number of people 

in each group was treated as a time series data where we have a number of infected individuals 

as well as susceptible and recovered individuals at each point in time. 

From his model of the disease he noted that each individual in the population is in one of the 

three groups. 

From his work he mentioned that an individual potentially moves from the susceptible to the 

infected group when he comes in contact with an infected person. 

He then supposed that each infected person contacts  individuals in each period of time on 

average. Now each contact may not result in transmission of the disease. Perhaps only  percent 

of the contacts result in transmission. 

Thus the potential number of transmissions may be at most γ	 ∗ 	α.  
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He then defined β	 = 	γ	 ∗ 	α. β is the average of transmissions possible from a given infected 

person in each period. 

Now, we must remember that there are three groups in the population. If we assume that 

individuals are mixed randomly then each potential transmission may be from an infected person 

to a susceptible person which results in a new infected person. Or a transmission may occur from 

an infected person to another infected person which results in nothing happening since the person 

is already infected or the potential transmission may occur from an infected person to a 

recovered or immune person. In this case again nothing changes. Since only s	 percent of the 

population is susceptible each infected person generates only βs	 new infections each period.  

Each infected person recovers (or is removed or dies) at some rate. Let the fraction of the 

infected group that recovers be	κ. 
Tassier (2005) then described the SIR process given the current state of the population in period t 

described by	S	, I		and	R	. With this he wrote a series of differential equations that describe the 

motion of the system. He actually carried out this by first describing the susceptible population 

by beginning period t with S	 individuals in the susceptible population. We then lose on average 

βs	I	from the population.  

From all the analysis Troy Tassier made from his model, he concluded on the fact that if a 

disease removes its carriers quickly the disease is not likely to have a long life itself. 
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Greenhalgh (1997) also wrote a paper on Mathematical modeling of the spread of HIV/AIDS 

amongst injecting drug users and in his paper he developed and analyzed a model for the spread 

of HIV/AIDS amongst a population of injecting drug users. His model was based on what is 

originally due to Kaplan (1989). 

Greenhalgh (1997) then ended up with deriving the differential equations which describe the 

progress of the disease amongst the addicted population and the proportion of needles which are 

infected. 

 

Another paper written by Altman (1994) on the topic Susceptible-Infected-Removed epidemic 

models with dynamic partnerships also looks into how well an extension of the classical, 

stochastic, Susceptible-Infected-Removed (SIR) epidemic model could be used to allow for 

disease transmission through a dynamic network of partnerships. 

M. Altman actually came up with some deductions of which the Markov model with partnerships 

was considered. In his model he made a couple of assumptions which are: 

1. Removal from the infectious state occurs at a constant rate. 

2. Unpaired individuals begin a partnership at a constant rate, partnerships dissolve at a constant 

rate, and partnerships behave independently. Therefore the interval during which two individuals 

are unpaired and paired are independent, exponentially distributed random variables. 

3. Partnerships always begin with a contact, which may or may not be effective, and thereafter 

effective contacts occur at a constant rate. Therefore, the contacts other than the initiating contact 

may be modeled as Poisson processes. 
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4. An effective contact between an infectious individual and susceptible individual results in 

transmission. 

In his paper, he wrote that to understand the initial dynamics of the model, we look at what 

happens when a few cases are introduced into a large population of susceptible individuals. So 

long as these initial cases are distributed randomly in the population, it suffices to consider what 

happens when a single initial case is introduced.  

The independence of the partnership processes implies that the secondary cases arising from a 

particular infectious individual are unlikely to be partners of each other, and thus the number of 

infected individuals will initially grow like a branching process, just as for the classical model. 

The threshold for a major epidemic is when the average number of secondary cases produced by 

an isolated initial case,��, is greater than 1. 

He denoted the initial case by individual	�.	 The number of secondary case is the sum over the N 

other individuals of the probability that �	transmits to the other individual. The individuals are 

identical, so it suffices to compute the probability that � transmits to some individual	�. The key 

to computing this probability, and more generally to understanding the dynamics of the 

epidemic, is to consider the configuration of the dyad (�, �). since each individual can be in one 

of three possible disease states and the individuals may or may not be partners at a given time, 

there are 18 possible configurations for the dyad. These configurations will be denoted by two 

letters, indicating the disease status of the two individuals in the dyad. A centered dot was used 

to indicate that � and	� are unpaired, a dash to indicate that they are paired. For example, let �– � 

denote the configuration where both are susceptible and they are partners,	� · � denote the 
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configuration where � is infected and	�	is susceptible and they are not partners, etc. Each dyad 

will move among the possible configurations according to a Markov process. 

After his consideration of the so many possibilities in the transmission dynamic, M. Altman 

came up with a diagrammatic representation of the transmission rates among the states for a dyad 

of individuals, from first infection to transmission or removal.  

In his diagram, external sources of infection are ignored.	� · � refers to the state where the first 

individual is infectious, the second is susceptible and they are not currently partners,	�– � refers 

to the state where the first individual is removed, the second is susceptible and they are currently 

partners, etc. The dyad begins with one infected and one susceptible individual, either in state 

� · � or state	�– �. 

In this model external infection is assumed to be negligible for large populations with 

independent partnership processes, which is why the branching process approximation is valid. 

This reduced diagram has three absorbing states: I– I, R · S, and R– S. 
This paper has been concerned with the initial dynamics and the final size of the epidemic. 

 

Lόpez-Cruz (2006) wrote a paper on SI epidemic titled structured SI epidemic models with 

applications to HIV epidemic. In her paper she actually divided the work into three main parts. 

The first parts dealt with effect of age structure on �– � epidemic models in the form of Ordinary 

Differential Equations and Delay Differential Equations, respectively. Lόpez-Cruz finally came 

up with an �– � epidemic model which represents contagious disease dynamics in single patch 

(Brauer and Castillo, 2001; Brauer, 2002; Edelstein, 2005). 
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The birth rate is dependent on the total population � but it is more realistic to depend on the 

sexually active population in the case of one sex models and depend on the sexually active 

female population in the case of two sex models. In the second �– � model, the infection term is 

modified for non constant total populations
��� �! 	"#$	%& is the maximum number of infections an 

infected individual can cause in a unit of time. It assumed a constant recruitment which is not 

realistic. Taking into consideration the modeling issues above described, these models are 

improved by the following research: An	�– � model is developed in Hwang and Kuang (2005) to 

study the host extinction dynamics in a simple parasite-host interaction model. Those can be 

applied to the study of epidemiological trends of diseases and conditions that permit global 

stability. For example, consider that the disease divides the population into susceptible and 

infected subpopulations. 

Assume that the newborn of infected individuals could be a susceptible individual, the main 

difference with the above mentioned models. 

By standard results (Thieme, 2003), the solutions of the system exist, are unique, positive, 

uniformly eventually bounded and defined on	[0, ∞). For the stability results of the general �– � 
model, it could be reviewed in (Hwang and Kuang, 2005) as a particular case. 

 

A paper written by Abdulkarim (2007) on ��� Epidemic Model with Application to 

Transmission Dynamics of HIV/AIDS also considered how the ��� epidemic model could be 

used to analyze how the transmission of the epidemic from one state or population group to the 

other. In his paper, he examined the Susceptibles-Infectives-Removed/Recovered, (���) 
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epidemic model and applied it to horizontal transmission of HIV/AIDS in a homogeneous 

mixing population with the additional assumption that the AIDS virus does not kill.  Instead; 

AIDS infectives are removed from circulation until death by non disease induced factors.  

Also the stability of the equilibrium point are examined through the basic reproductive number 

of the infection and trace-determinant condition of the Jacobian matrix at the equilibrium point, 

for a system of non-linear differential equation. 

Then also in his paper, Abdulkarim (2007) considered a series of models with some parameter 

definition which actually defined the various aspects of the disease modeling process.  

In his model, he assumed that the death rate is the same as the birth rate and that the deaths in the 

class of infectives, denoted by A in the ��� epidemic model, reduces it to a simple ��* model, 

where the removed/recovered class forms the class of AIDS infectives, without disease induced 

death. Since they are assumed, non-sexually active and are quarantined. They do not contribute 

to transmission dynamics of the infection. 

To have an AIDS free stable population, the product of the net transmission of HIV-infection and 

the average length of infection for AIDS should be less than unity. 

After his model to study the transmission of the disease and the equilibrium state, Abdulkarim 

(2007) then went on to model for the possibility of existence of an endemic equilibrium point. 

The identified endemic equilibrium point	+, is not stable. However, Mugisha et al. (2005) and 

Heffeman et al. (2005) gave insights into the use of the basic reproductive number �� in 

analyzing the stability of the endemic equilibrium point. 
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They observed that if �- > 1, then the system has an asymptotically stable endemic equilibrium 

and the disease-free equilibrium is unstable. However, if		�- < 1, then the disease-free 

equilibrium is locally asymptotically stable while the endemic equilibrium is unstable. 

Abdulkarim (2007) then adapted the above stated approach and, using the next generation 

operator by Diekmann (Herfferman et al., 2005), he categorized the population into two classes. 

This requirement is also obtained using the determinant or trace method of investigating stability 

of equilibrium points for systems of two non-linear differential equations. 

After a series of analyses made with respect to the various models, Abdulkarim concluded that 

increasing the birth rate, decreasing AIDS progression rate and minimizing net transmission for 

both cases may eradicate HIV/AIDS, but would give a long incubation period for AIDS. 
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CHAPTER THREE 

MATHEMATICAL MODEL 

3.0 Introduction to Disease Modeling 

Mathematical models have been used in epidemiology for at least 250 years, taking as a 

somewhat arbitrary starting point Daniel Bernoulli’s study, published in 1760, on the advantages 

of smallpox vaccination. Mathematical models are commonly understood to have two distinct 

roles: to predict and to facilitate understanding. 

By far the largest, best-understood group of models is deterministic and expressed in terms of 

differential equations. These can be simple models such as the SI, SIR	or	SEIR models, which 

consist of one, two and three equations, respectively or more complicated aggregations of states. 

These deterministic models model the behavior of epidemiologically relevant classes. These 

classes are sometimes referred to as compartments and this type of model are compartmental 

models. The �� epidemic model, for example, models two states, a susceptible state (�) and an 

infectious state	(�). The �+�� model adds an exposed state (+) for those who are exposed but 

not yet infectious and a recovered state. The ��� model only adds a recovered or removed 

state	(�). 
Usually the choice between such models is dictated by the natural history of the disease: for 

example, is there a recovered state that is immune? Is there an exposed state that is not 

infectious? Generally, the simpler the model is, the more transparent its behavior and the more 

understandable its results. At the same time, too much simplicity can obviously be a barrier to 

the accuracy of prediction. 
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Some of these models are SIS model, SIR model, SIRS and SI model respectively. 

 

3.0.1 The SIS Model 

Some infections do not confer any long lasting immunity. Such infections do not have a 

recovered state and individuals become susceptible again after infection. 

This type of disease can be modeled by SIStype. The total population N is divided into two 

compartments with N = S	 + 	I, where S is the number of individuals in the susceptible class, I is 

the number of individuals who are infectious. The SIS model since one typical pathway is 

through S, then I, and then back to S, as shown below. 

 

 

 

 

Fig.3.1: The transfer diagram for the SIS model. 
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The transfer diagram leads to the following systems of differential equations for this SIS model 

are: 

dSdt = 	λ	– 	βSI	– 	μS	 + 	ΦI 
 dIdt = βSI	– (Φ	 + 	μ	 + 	α)I																																																									(1)	
 
    
The parameters are positive constants. The constant λ is the recruitment rate of susceptible 

corresponding to births and immigration, µ is the per capital natural mortality rate.  

We assume that a disease may be fatal to some infectious death rate from infectious class, α. And 

Φ the rate at which individuals infectious and return to susceptible class and they don’t acquire 

immunity. 

Which, together with N	 = 	S	 + 	I, implies: 

 

dNdt = 	λ	– 	μN	– 	αI																																																																							(2)	
 

Thus the total population size N may vary in time. In the absence of disease, the population size 

N converges to the equilibrium λ μ;  .It follows from (2) that	lim?@AB→D � 	≤ F G; . 

 

3.0.2 The SIR and SIRS Models 

Some infectious disease confers permanent immunity and other disease confers temporal 

acquired immunity. These types of disease can be modeled by SIR and SIRS models, 

respectively.  
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The total population N is divided into three compartments with N	 = 	S	 + I	 + 	R, where S is the 

number of individuals in the susceptible class, I is the number of individuals who are infectious 

and R is the number of individuals recovered. 

The SIRS model since one typical pathway is through S, then I, then R, and then back to S, as 

shown below: 

 

 

 

Fig.3.2: The transfer diagram for the SIRS model. 

The transfer diagram leading to the following systems of differential equations for this SIRS 

model are: 

      								dSdt = 	λ	– 	βSI	– 	μS	 + 	γR,	
   dIdt = 	βSI	–	(κ	 + 	μ	 + 	α)I,																																																			(3)	
   	dRdt = 	κI	–	(μ	 + 	γ)R.	
Where parameters λ, μ, β, κ and  are positive constants and	γ	is a non-negative constant. Here 

we assume that I is the rate at which infectives recover, if the recovered individuals acquired 

permanent immunity.  
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This, together with N	 = 	S	 + 	I	 + 	R implies, 

dNdt = 	λ	– 	μN	– 	αI.																																																																	(4) 
Thus the total population size N may vary in time. In the absence of disease, the population size 

N converges to the equilibrium F G;  . 

 

3.0.3 The SI Epidemic Model 

The SI epidemic model is a prelude to the SIA model. In this model we consider, we consider 

only two population groups in which we have the class of the susceptibles and the class of the 

infectives which is a combination of the infected and those infectives with full-blown AIDS.  

This type of disease can be modeled bySItype. The total population N is divided into two 

compartments withN = S	 + 	I, where S is the number of individuals in the susceptible class, I is 

the number of individuals who are infectious. The SI model has one typical pathway and that is 

through S, then I, as shown below. 

Based on the flow diagram below, we generate our systems of nonlinear differential equation. 

  

   

 

 

Fig.3.3: A flow diagram of the SI model. 
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The transfer diagram leads to the following systems of differential equations for the SI model. 

dSdt = 	λ	– 	ρζS	– 	μS	 
 dIdt = 	ρζS	– (μ + α)I																																																															(5)	
 

    
The parameters are positive constants. The constant λ is the recruitment rate of susceptible 

corresponding to births and immigration, µ is the per capita natural mortality rate.  

Which, together with N	 = 	S	 + 	I, implies: 

 

dNdt = 	λ − μN − αI																																																											(6)	
 

Thus the total population size N may vary in time. In the absence of disease, the population size 

N converges to the equilibrium λ μ; .It follows from (6) that	lim?@AB→D � 	≤ F G; . 

From the system of nonlinear differential equations, we first consider the existence of equilibria. 

For any value of parameters, the model always has a disease-free equilibrium +� = (�, 0). 
To find the positive equilibrium set: 

 That is 

dSdt = dIdt = 	0	
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In equation(5), if at t	 = 	0, an infected individual is introduced into an otherwise infection-free 

population of susceptibles, we have initially S	 = 	N	and	I	 = 	0, and the disease-free equilibrium 

point is determined as  

(�, �) ⟶ (�, 0).	
When the epidemic starts, the system (5) evolves to a steady state when 

dSdt = dIdt = 	0	
From (6), Since 

				dNdt = 	λ	– 	μN − αI		
It implies that 

		λ	– 	ρζS	– 	μS = 0	 
 

						ρζS	– (μ + α)I = 0	 
 

Solving for the various population groups, S	and	I we get 

S∗ 	= 		 (α + 	μ)N∗ηζ 	
 

 I∗ =	 (λ − μN∗)α 	
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We then investigate the behavior of the flow near equilibrium solutions using the linearization 

technique  

The Jacobian matrix for the �� model is therefore given by: 

T = U−VL�� − G −VL��VL�� VL�� − (G + W)X 

Where									ρ = ηI N⁄  

Considering the zero endemic equilibrium point, we will first shift the variables so that the origin 

is at the equilibrium (S∗, I∗) 	= 	 (N, 0) 	→ 	 (0, 0) and the Jacobian matrix at the disease-free 

equilibrium point is obtained as, 

														T = ]−G −VL0 VL − (G + W)^ 

That means that any term with higher powers of S∗	and	I∗ are very small, so we neglect them. 

Solving for the eigenvalues of the Jacobian matrix at the equilibrium points. 

$_` a−G − b −VL��0 VL − (G + W) − bc = 0 

 

`ℎ_e_fge_:																																 
b = −G	"#$	VL − (W + G) 

Where T is our eigenvalue. 
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Considering the non-zero endemic equilibrium point (�∗, �∗), we establish the stability of the 

equilibrium point (�∗, �∗) by finding the Jacobian matrix at the endemic equilibrium point and 

hence the eigenvalues of such Jacobian matrix: 

Therefore for: 

(�∗, �∗) = ((W + G)�∗VL , (F − G�∗)W ) 
 

T = U−VL�� − G −VL��VL�� VL�� − (G + W)X 

 

T(�∗, �∗) = U−VL(F − G�∗) − WG�∗W�∗ −(W + G)VL(F − G�∗)W�∗ 0 X																								(3.7)	
 

(�∗, �∗) Is the non-zero endemic equilibrium point, thus the population of each type, provided 

(�∗, �∗) are all positive quantities. 

Solving for the eigenvalues of the Jacobian matrix (3.7) above, we get 

$_` U−VL(F − G�∗) − WG�∗W�∗ − b −(W + G)VL(F − G�∗)W�∗ −b X = 0 
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⇒ 

kl−WG�∗ − VL(F − G�∗)W�∗ − bmb − VL(W + G)(F − G�∗)W�∗ n = 0								 
 

Hence  

b-, bo = −(αμN∗ + ηζ(λ − μN∗))2αN∗
± q((αμN∗ + ηζ(λ − μN∗))2αN∗ )o − ηζ(α + μ)(λ − μN∗)αN∗  

Where b is the eigenvalue of the Jacobian Matrix	(3.7). 
Now, I would want to find the reproductive number for this model first with a simple method. In 

this method for finding	��, we survey to have increase and decrease of infectives, therefore we 

have, 

If 

				$�$` > 0	
 then 

					KL� − (W + G)� > 0 

                                              	KL� > (W + G)� 
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⇒																															 
			 KL�(W + G)� > 1 

Where      

		K = V��  

 

It implies that  

																																											 VL��(G + r) > 1										but	at	t = 0, S ≈ N	
⇒ 

                                                       

VL(G + r) > 1 

If we take 

                                                  

	�� = VL(G + r)	
Therefore:  

v vB > 0, we have �� > 1. 

Also if 
v vB < 0 we will get �� < 1 by similar computation as we did in the above calculation. 
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From the response we got from the SI epidemic model, we would want to consider a more 

complicated but precise model and this model is the SIA epidemic model where the infectives 

are compartmented into the infective class and those infectives showing symptoms of AIDS. 

 

An SIA epidemic model of HIV/AIDS is as modeled below: 

 

3.1 Model Parameters and Assumptions 

We formulate an HIV/AIDS model by considering the population of individuals in the different 

groups or stages. At time	`, there are �(`) human susceptibles,	�(`) infectives who are the 

infected and infectious individuals that have not yet developed AIDS symptoms, *(`) AIDS 

patients who are infected and with AIDS symptoms and �(`) are individuals who dieof the 

AIDS. Susceptibles have sexual contacts at a rate L with a probability of transmission at one 

sexual encounter denoted by	K. A proportion of these sexual contacts are with infectives. Let us 

assume there is a constant immigration rate	F of susceptible into a population of size	�. We 

assume that susceptibles die naturally at a rate	G. We also assume AIDS patients also die a 

natural death at a rate	G. In addition we assume uniform mixing with the different population 

groups and also sexual contacts within susceptibles do not result in any transmission and thus do 

not feature in the model. Also, sexual contacts within infectives which give rise to issues about 

the role of re-infections are ignored.  
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Table 3.1: Presented below is a table of parameters, their descriptions and their values  

Parameters Descriptions wxyz{|/~��� 

F Recruitment rate 28.74	births 
G Natural death rate 9.10	deaths 
K Transmission probability Not	known 

L Number of sexual contacts Not	known 

r Rate of progression to 
AIDS 

10.91		 
� HIV/AIDS induced death 

rate 
0.76	deaths 

Source: WHO (2009 Ghana data) 

 

3.2 Derivation of Equations for the SIA Model 

The equations derived are for the ��* model for the transmission process as shown in the 

description of each epidemiological class below, together with a pictorial representation of the 

flow diagram of the disease on which I base my model. 

 

3.2.1 Susceptibles, �(�) 

Consider a constant recruitment rate	F to the susceptible population per unit time. Recruited 

individuals consist of maturing young persons joining the sexually active age group at a 

predetermined age. The recruitment term can be rewritten in terms of birth rate, maturation rates 

and rates of mother-to-child transmission with time lags. 
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Susceptibles are removed through infection or by natural death. We let	G be the natural death rate 

for the sexually active adults. The removal rate of susceptible through infection is the number of 

new HIV infections per unit time. This rate is important in calculating HIV incidence which by 

definition is the number of new infected persons in a specified time period divided by the 

number of uninfected persons that were exposed for this same time period. 

 

3.2.2 Number of New HIV Infections 

Let each susceptible have	L	sexual contacts per unit time. Assume that a proportion	�/� of these 

contacts are with infectives and at each of these contacts with infectives, a susceptible has a 

probability	K of getting infected. 

Let	KL be a function of the number of AIDS cases given by	V(*), then the total probability of 

one susceptible getting HIV infected from any of their sex contacts per unit time is	(V(*(`))) ⁄
�. This is the expression for the force of infection. The force of infection is the probability that a 

susceptible will get HIV infections per unit time is given by η(A(t))IS N⁄ . 

 

3.2.3 Infectives, �(�) 

Infectives are recruited through new HIV infections described above and removed through 

progression to AIDS at rate	r and through natural death at rate	G. 1/r is the duration spent in the 

infective stage and 1/G is the life expectancy of the adult population. Both of these rates 

assumed constant in the model. 
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3.2.4 AIDS Cases,	�(�) 
AIDS cases are recruited through progression from the infective stage to the AIDS stage and 

removed through AIDS accelerated deaths at rate � + G where 1/� is the average duration spent 

in the AIDS stage if natural deaths are assumed constant in the model. However, allowing for 

variability in σ could be necessary given the advances in medical interventions and in charges in 

medical seeking behaviors for persons living with HIV/AIDS. 

 

3.2.5 A flow diagram of the disease as modeled by the system below: 

Presented below is a flow diagram that represents the SIA epidemic model for HIV/AIDS based 

on which we generate our systems of nonlinear differential equation. 

  

   

 

 

Fig.3.4: A flow diagram of the disease as modeled by the system of equations. 
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3.2.6 Model Equations 

As the first step in the modeling process, we identify the independent and dependent variables. 

The independent variable is time t, measured in days. We consider two related sets of dependent 

variables. 

 

The first set of dependent variable counts people in the groups, each as a function of time: 

S = S(t),is the number of susceptible individuals, 

I = I(t),is the number of infected individuals, and 

A = A(t),is the number of AIDS patients. 

 

The second set of dependent variables represents the fraction of the total population in each of 

the categories.  

So, if � is the total population, we have 

�(`) = S(t) N⁄ , the susceptible fraction of the population, 

�(`) = I(t) N⁄ , the infected fraction of the population, and 

a(t) = A(t) N⁄ , the proportion of AIDS patients in the 

           entire population. 
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Looking at the two sets of dependent variables, though it seems more natural to work with 

population counts, working with the fraction will be my option since calculation with the 

fractions will make my work simpler. 

It is also noted that the two set of dependent variables are proportional to each other, so either set 

will give us the same information about the progress of the epidemic. 

From the descriptions and assumptions on the dynamics of the epidemic made above, the 

following are the model equations. 

dSdt = λ − μS − ρζS																																																																										(3.0) 
dIdt = ρζS − μI − υI																																																																									(3.1) 
dAdt = υI − μA − σA																																																																								(3.2) 

 

Then for the scaled variables, we have the non-linear differential equation presented below: 

$�$` = F − G�(`) − KL�(`)																																																																(3.4) 
$�$` = KL�(`) − G�(`) − r�(`)																																																										(3.5) 
$"$` = r�(`) − G"(`) − �"(`)																																																										(3.6) 
�(`) + �(`) + "(`) = 1																																																																				(3.4)	
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Where N is the total size of the population and ρ = ηI N⁄ . Thus, �, �, *	are all bounded above 

by	�. 

The mathematical formulation of the epidemic problem is completed given initial conditions 

such as 

�(0) = �� > 0, �(0) = �� > 0, *(0) = *� > 0 

	
3.3 Stability of Fixed Point of the Nonlinear SIA Epidemic Equations 

3.3.1 Determination of Stability by Linearization 

Let ƒ:ℝ� →	ℝ� be a %- map and suppose that � is a point such that f(�) = 0, that is, � is a 

fixed point for the differential equation below: 

��(`) = 	ƒ��(`)�. 
The linear part of	ƒ	at	�, denoted	�f(�), is the matrix of partial derivatives at �; For �	 ∈ 	ℝ�, 

ƒ(�) 	∈ 	ℝ�, so we can write: 

f(�) = 	
�
���

ƒ-(�)ƒo(�)...ƒ�(�)�
��� 

The function ƒ� are called the component functions of	ƒ. 
 



40 
 

We define 

�f(�) = 	

�
���
���
� �f-��- (�) �f-��o (�)	…		 �f-��� (�)�fo��- (�) �fo��o (�)		…			 �fo��� (�)⋮															⋮												⋱									⋮					�f���- (�) �f���o (�)	…			 �f���� (�)

�
���
���
�

 

Since f is %-, Taylor’s theorem for functions of several variables says that 

f(�) = �f(�)(� − �) + 	¢(�),  
Where f(�) = 0 and ¢ is a function that is small near � in the sense that 

lim£→A
|¢(�)||� − �| = 0 

 

3.3.2 Proof of Linearization of the SIA Epidemic Model: 

Consider the system of	��* epidemic model 

�¥ = f(�, �, *) 
�¥ = ¢(�, �, *) 
*¥ = ℎ(�, �, *) 

and suppose that (�∗, �∗, *∗) is a fixed point. 
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 That is  

f(�∗, �∗, *∗) = 0 

¢(�∗, �∗, *∗) = 0 

	ℎ(�∗, �∗, *∗) = 0. 
Let 

	¦ = � − �∗ 
§ = � − �∗ 

	¨ = * − *∗ 
denote the components of a small disturbance from the fixed point. To see whether the 

disturbance grows or decays, we need to derive differential equations for ¦, §	and	¨. 

 

Let’s do the ¦-equation first: 

 ¦¥ = 	 �¥(Since	S∗	is	a	constant)	
 

 = f(�∗ + ¦, �∗ + §, *∗ + ¨)																																																																																					(	by	substitution) 

				= f(�∗, �∗, *∗) + ¦�f�� + § �f�� + ¨ �f�* + «(¦¬, §¬,¨¬, ¦§¨) 
 (Taylor�s	series	expansion) 

 = ¦ �f�� + § �f�� + ¨ �f�* + Ο(¦¬, §¬, ±¬, ¦§¨)																																				��#²_	f(¦∗, §∗,¨∗) = 0	
 



42 
 

It should be noted that these partial derivatives will be evaluated at the fixed point	(�∗, �∗, *∗); 
that is they are numbers and not functions. Also, the notation Ο(�∗, �∗, *∗) denote quadratic terms 

in	¦, §	and	¨. since	¦, §	and	¨ are small, these quadratic terms are extremely small. 

Similarly, we find §and	¨. That is: 

§¥ = ¦ �¢�� + § �¢�� + ¨ �¢�* + Ο(�∗, �∗, *∗)	
. 

	 ¥̈ = ¦ �ℎ�� + § �ℎ�� + ¨ �ℎ�* + Ο(�∗, �∗, *∗). 
 

 

Hence the disturbance (¦, §,¨) evolves according to  

a¦§¥̈¥
¥ c =

�
��
��f�� �f�� �f�*�¢�� �¢�� �¢�*�ℎ�� �ℎ�� �ℎ�*�

��
�k¦§̈ n + ³´"$e"`�²	`_eµ�.												(3.5) 

The matrix 

			T =
�
��
��f�� �f�� �f�*�¢�� �¢�� �¢�*�ℎ�� �ℎ�� �ℎ�*�

��
�

(�∗, ∗,¶∗)
 

is called the Jacobian matrix at the fixed point(�∗, �∗, *∗). 
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Now since the quadratic terms in (1) are tiny, it’s tempting to neglect them altogether. If we do 

that, we obtain the linearized system 

 

a¦§¥̈¥
¥ c =

�
��
��f�� �f�� �f�*�¢�� �¢�� �¢�*�ℎ�� �ℎ�� �ℎ�*�

��
�k¦§̈ n 

 

3.3.3 Calculations 

Theorem 1.0: 

Let �(`), �(`)	and	*(`) be solution to model (3.0) − (3.2) 
1. If 	�� ≤ 1, then limB→D �(`) = 0 and we have a disease free equilibrium. 

2. If �� > 1, then limB→D(�(`), �(`), *(`)) = (·!¸¹º , (»!¸)(¼½¸&∗)»· , ¼½¸&∗» ) 
 

3.3.3.1 Steady State Equilibrium 

Because of the biological meaning of the components ��(`), �(`), *(`)�, we focus on the model 

in the first octant of ℝ¬.we first consider the existence of equilibria of system (3.0) − (3.3). For 

any value of parameters, model (3.0) − (3.3) always has a disease-free equilibrium +� =
(�, 0,0). 
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To find the positive equilibrium set: 

 That is 

$�$` = $�$` = $*$` = 	0	
In equation (3.0) − (3.3), if att	 = 	0, an infected individual is introduced into an otherwise 

infection-free population of susceptible, we have initially S	 = 	N, I	 = 	0, and	A	 = 	0 and the 

disease-free equilibrium point is determined as  

(�, �, *) ⟶ (�, 0, 0).	
When the epidemic starts, the system (3.0)– (3.3) evolves to a steady state when 

dSdt = dIdt = dAdt = 	0	
Since  

N	 = 	S(t) 	+ 	I(t) 	+ 	A(t)	
dNdt = 	λ	– 	μS	– 	μI	– 	μA	– 	σA	

= 	λ	– 	μN	– 	σA	
It implies that 

λ– 	ρζS	– 	μS	 = 	0	
ρζS	– 	υI	– 	μI	 = 	0	
υI	– 	σA	– 	μA	 = 	0	
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Solving for the various population groups, S, I, A we get 

S∗ 	= 		 (υ + 	μ)N∗ηζ 	
 

 													I∗ =		 (σ + 	μ)(λ − μN∗)συ 	
 

A∗ =			 (λ	– 	μN∗)σ  

(�∗, �∗, *∗) = ((r + G)�∗VL , (� + G)(F − G�∗)�r , (F − G�∗)� ) 
 

3.3.3.2 Linearization of Equation 

In this section we investigate the behavior of the flow near equilibrium solutions using the 

linearization technique and connect it to the Hartman-Grobman theorem, which relates a 

nonlinear system to the corresponding linear one near the equilibrium. 

 

The Jacobian matrix for the ��* model is therefore given by: 

J =
�
��
−ηζIN − μ −ηζSN 0ηζIN ηζSN − (υ + μ) 00 υ −(σ + μ)�

�� 

	
Where									ρ = ηI N⁄  



46 
 

Considering the zero endemic equilibrium point, we will first shift the variables so that the origin 

is at the equilibrium (S∗, I∗, A∗) 	= 	 (N, 0, 0) 	→ 	 (0, 0, 0)and the Jacobian matrix at the disease-

free equilibrium point is obtained as, 

T(�, 0,0) = a– G −VL 00 VL	– (r + 	G) 00 r – (� + 	G)c																																							(3.6)	
 

we are only considering small derivatives from the equilibrium, so that S∗, I∗, A∗ are small. 

That means that any term with higher powers of S∗, I∗	and	A∗are very small, so we neglect them. 

 

Solving for the eigenvalues of the Jacobian matrix (3.6),we get 

det a−G − b −VL 00 VL − (r + G) − b 00 r −(� + G) − bc = 0 

⇒																																										 (G + b)((� + G) + b)(VL − (r + G) − b) = 0 

 

`ℎ_e_fge_:																																															(G + b) = 0, 

(� + G) + b = 0	   or 

									�VL − �(r + G)� − b� = 0 
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Hence  

b = −G,−(� + G)	"#$	VL − (r + G) 
Where T is our eigenvalue. 

 

Considering the non-zero endemic equilibrium point (�∗, �∗, *∗), we find the Jacobian matrix at 

the endemic equilibrium point: 

(�∗, �∗, *∗) = ((r + G)�∗VL , (� + G)(F − G�∗)�r , (F − F�∗)� )	
. 

T(�∗, �∗, *∗) =
�
��
−G�r�∗ − VL(� + G)(F − G�∗)�r�∗ −(G + r) 0VL(� + G)(F − G�∗)�r�∗ 0 00 r −(� + G)�

��														(3.7)	
(�∗, �∗, *∗) is non-zero endemic equilibrium point, thus the population of each type, provided 

(�∗, �∗, *∗) are all positive quantities. 

 

Solving for the eigenvalues of the Jacobian matrix (3.5) above, we get 

$_`
�
��
−G�r�∗ − VL(� + G)(F − G�∗)�r�∗ − b −(G + r) 0VL(� + G)(F − G�∗)�r�∗ −b 00 r −(� + G) − b�

�� = 0 
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⇒ 
 

kl−G�r�∗ − VL�� + G��F − G�∗��r�∗ − bm b − �G + r� VL�� + G��F − G�∗��r�∗ n ��� + G� + b�
= 0 

Therefore  

��� + G� + b� = 0 
or 

kl−G�r�∗ − VL�� + G��F − G�∗��r�∗ − bm b − VL�G + r��� + G��F − G�∗��r�∗ n = 0 

 

Hence  

b = −�� + G�, 
 and 

−�μσυN∗ + ηζ�σ + μ��λ − μN∗��2συN∗

± q��μσυN∗ + ηζ�σ + μ��λ − μN∗��2συN∗ �o − ηζ�μ + υ��σ + μ��λ − μN∗�συN∗  

Where b is the eigenvalue of the JacobianMatrix �3.7�. 

Further analysis of these results will be carried out in the chapter IV of this thesis. 



49 
 

3.4 Reproductive Number 

One of the fundamental questions of mathematical epidemiology is to find threshold conditions 

that determine whether an infectious disease will spread in a susceptible population when the 

disease is introduced into the population.  

The threshold conditions are characterized by the so-called reproductive number, the 

reproduction number, the reproductive ratio, basic reproductive value, basic reproductive rate, or 

contact number, commonly denoted by �� in mathematical epidemiology. 

In epidemiology, the basic reproduction number of an infection is the mean number of secondary 

cases a typical single infected case will cause in a population with no immunity to the disease in 

the absence of interventions to control the infection or it is the average number of susceptible 

who can be infected by a typical infective in a population in which everybody is considered as 

susceptible. 

The reproductive number defines the direction of the disease. This can be written mathematically 

as: 

�� = b∗ ∗ (�#f_²`�g´�	�_e�g$) + 1 

�#f_²`�g´�	�_e�g$ = 1�"`_	gf	²ℎ"#¢_	
and b∗		��	`ℎ_	$gµ�#"#`	_�¢_#¿"À´_. 
The basic reproductive rate is affected by several factors including the duration of infectivity of 

affected patients, the infectiousness of the organism, and the number of susceptible people in the 

population that the affected patients are in contact with. 
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3.4.1 Calculations 

Now, I would want to find the reproductive number for this model first with a simple method. In 

this method for finding	��, we survey to have increase and decrease of infectives, therefore we 

have:                                 

If 

						$�$` > 0	
 then 

	KL� − (G + r)� > 0 

																			KL� > (G + r)� 
⇒																		 

													 KL�(G + r)� > 1 

Where 

	K = V��  

It implies that  

VL��(G + r) > 1												but	at	t = 0, S ≈ N																								
⇒ 

													 VL(G + r) > 1 
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If we take 

							�� = VL(G + r)	
Therefore:  

v vB > 0, we have�� > 1. 

Also if 
v vB < 0 we will get �� < 1 by similar computation as we did in the above calculation. 

It should be noted that the basic reproductive number 3.6.1 can be used to determine the 

dynamics of the model	(3.0) − (3.2), hence further analysis of these result will be made in the 

chapter IV of this thesis. 

 

 

 

 

 

 

 

 

 

 



52 
 

CHAPTER FOUR 

ANALYSIS AND NUMERICAL SIMULATIONS OF THE MODEL  

 

4.0 Introduction: 

In this section, we will be looking at the implications of the results we got in the chapter three of 

my thesis. This will involve a study of the significance of the various eigenvalues and the 

reproductive number as well as the MatLab simulation result to the stability of the system of 

differential equations. 

 

4.1 Analytic Study of Results: 

In this section, we are going to present a detailed study into the results we obtained in the chapter 

III of this thesis. Although numerical solutions are very important besides analytic result, it is 

very necessary to use both tools to establish explicit conclusions to our study. 

From chapter III, we considered the zero endemic equilibrium point and the Jacobian matrix at 

the disease-free equilibrium point were obtained as: 

T(�, 0,0) = a– G −VL 00 VL	– (r + 	G) 00 r – (� + 	G)c																																																							(4.3)	
 

We only considered small derivatives from the equilibrium, so that S∗, I∗, A∗ are small. 
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That means that any term with higher powers of S∗, I∗	and	A∗ are very small, so we neglected 

them. 

Solving for the eigenvalues of the Jacobian matrix (4.3)	we got 

det a−G − b −VL 00 VL − (r + G) − b 00 r −(� + G) − bc = 0 

Hence  

b-, bo	"#$	b¬ = −G,−(� + G)	"#$	VL − (r + G) 
Where the	b�� are our eigenvalues. 

From the above jacobian matrix, we are getting negative values of the eigenvalue given that 

G	"#$	(� + G) are all positive for any positive values of	G, �	"#$	r. From the first two results of 

our eigenvalues, it is so obvious that we obtain negative values.  

This goes to explain the fact that at the non-endemic equilibrium point, the state of the system 

can be estimated in either of two ways, that is the system experiences a nodal sink provided 

VL < (r + G) and hence the system will be in a state of total stability and this explains that either 

there is no body in the population infected with the HIV/AIDS disease or there are some 

infectives in the population but the disease spread are completely under control.  

Now if VL > (r + G), then the system will now have a saddle point.  
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Considering the non-zero endemic equilibrium point (�∗, �∗, *∗), we found the Jacobian matrix at 

the endemic equilibrium point: 

(�∗, �∗, *∗) = ((r + G)�∗VL , (� + G)(F − G�∗)�r , (F − F�∗)� ) 
. 

T��∗, �∗, *∗� =
�
��

−G�r�∗ − VL�� + G��F − G�∗��r�∗ −�G + r� 0VL�� + G��F − G�∗��r�∗ 0 00 r −�� + G��
��              �4.4� 

 

��∗, �∗, *∗� is the non-zero endemic equilibrium point. Thus the population of each type, 

provided ��∗, �∗, *∗� are all positive quantities. 

 

Solving for the eigenvalues of the Jacobian matrix �3.5� above, we got 

 

$_`
�
��

−G�r�∗ − VL�� + G��F − G�∗��r�∗ − b −�G + r� 0VL�� + G��F − G�∗��r�∗ −b 00 r −�� + G� − b�
�� = 0 
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Therefore: 

b- = −(� + G), 
Or 

bo, b¬ = −(μσυN∗ + ηζ(σ + μ)(λ − μN∗))2συN∗

± q((μσυN∗ + ηζ(σ + μ)(λ − μN∗))2συN∗ )o − ηζ(μ + υ)(σ + μ)(λ − μN∗)συN∗  

Where b-, bo, b¬ are the eigenvalue of the Jacobian Matrix	(4.4). 
From the above results of the eigenvalues, we can study the entire system by considering the 

nature of the eigenvalues. From the result of the eigenvalues above we realize that, its first 

value	b-is negative for positive values of the respective rates,	G	"#$	�. 

Also considering the second set of values for the eigenvalues, we will use the discriminate 

analysis to establish the behavior of the system with such an eigenvalue. We can now conclude 

on the behavior of the system based on the analysis on the operations below. 
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%g#��$_e�#¢	`ℎ_	²"�_	±ℎ_e_	λ > GN∗	for	all	the	cases	below, Then if: 

((μσυN∗ + ηζ(σ + μ)(λ − μN∗))2συN∗ )o − ηζ(μ + υ)(σ + μ)(λ − μN∗)συN∗ < 0	
Then the eigenvalues bo	"#$	b¬, are complex conjugate, this goes to explain the fact that in this 

case the system will have a spiral sink at λ > GN∗ since b-, bo	"#$	b¬ have a negative real part. 

Since we realize that the eigenvalues of the Jacobian matrix have a negative real value and two 

complex conjugate with negative real part at	F > G�∗, if the discriminant is less than zero, then 

the system experiences a spiral sink at the equilibrium. That means the system have a certain 

form of oscillatory behavior at equilibrium while its solution still moves to stable direction.  

In other words, the system behaves in a damped oscillatory manner with a certain period 

determined by the parameters. 

 

Also if 

((μσυN∗ + ηζ(σ + μ)(λ − μN∗))2συN∗ )o − ηζ(μ + υ)(σ + μ)(λ − μN∗)συN∗ > 0 

 

Then we will get two real eigenvalues ,bo	"#$	b¬. This goes to explain the fact that the system 

will be a nodal sink at bo < 0	"#$	b¬ < 0 but the system will experience a saddle point at 

eitherbo > 0	ge	b¬ > 0	ge	Âg`ℎ for λ > GN∗seeing	b- < 0. 
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Since we have a negative real value and two distinct real values if the discriminant is greater than 

zero, it implies that the system experiences a nodal sink at the equilibrium if and only if the two 

distinct real values are both negative else the system experiences a saddle point . This means the 

system moves to stable direction if and only if the two distinct real values are both negative else 

the system experiences a state of instability. 

 

If: 

((μσυN∗ + ηζ(σ + μ)(λ − μN∗))2συN∗ )o − ηζ(μ + υ)(σ + μ)(λ − μN∗)συN∗ = 0, 
Then  

T = −(μσυN∗ + ηζ(σ + μ)(λ − μN∗))2συN∗  

This implies that at the case where λ > GN∗,we will get one repeated eigenvalues, T which is 

negative hence a nodal sink is established. 

Considering the case where the discriminant is equal to zero. This measures a stable system since 

the eigenvalues of the Jacobian matrix have a negative real value and one repeated value hence a 

nodal sink is established.  
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Also:  

%g#��$_e�#¢	`ℎ_	²"�_	±ℎ_e_	λ < GN∗	for	all	the	cases	below, Then if: 

((μσυN∗ + ηζ(σ + μ)(λ − μN∗))2συN∗ )o − ηζ(μ + υ)(σ + μ)(λ − μN∗)συN∗ < 0	
Then the eigenvalues bo	"#$	b¬, are complex conjugate, this goes to explain the fact that in this 

case the system will have a saddle point at λ < GN∗ since b- < 0	±ℎ�À_	bo	"#$	b¬  both have a 

positive real part. 

 

Also if: 

l�μσυN∗ + ηζ(σ + μ)(λ − μN∗)�2συN∗ mo − ηζ(μ + υ)(σ + μ)(λ − μN∗)συN∗ > 0 

Then we will get two real eigenvalues,bo	"#$	b¬. This goes to explain the fact that the system 

will be a saddle point at either bo > 0	ge	b¬ > 0	ge	Âg`ℎ for λ < GN∗ seeing that	b- < 0. 

 

If: 

l�μσυN∗ + ηζ(σ + μ)(λ − μN∗)�2συN∗ mo − ηζ(μ + υ)(σ + μ)(λ − μN∗)συN∗ = 0, 
Then  

To, T¬ = −�μσυN∗ + ηζ(σ + μ)(λ − μN∗)�2συN∗  
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This implies that at the case where λ < GN∗, we will get one repeated eigenvalue, T which are 

positive hence a saddle point is established. 

 

From the above analysis, we realize that at	F < G�∗, the eigenvalues of the Jacobian matrix will 

have a negative real value and two complex conjugate with positive real part if the discriminant 

is less than zero, a negative real value and two distinct real values or a negative real value and 

one repeated real value which are positive, hence the system experiences a saddle point at the 

equilibrium with all the cases considered at	F < G�∗. That means the system experience a state 

of instability at all the cases where F < G�∗. In other words, the system will experience an 

outbreak of the disease. 

In all the analysis made in our analytic study, when given the model parameter values, the period 

of the oscillation plays a role in predicting further, the behavior of the infections. 

We also considered what the reproductive number is and the relationship it has with rate of 

change of infectives in the population and hence, can be used to determine the dynamics of the 

model	(3.0) − (3.2). 
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The reproductive number defines the direction of the disease. This can be written mathematically 

as: 

�� = b∗ ∗ (�#f_²`�g´�	�_e�g$) + 1 

�#f_²`�g´�	�_e�g$ = 1�"`_	gf	²ℎ"#¢_	
and b∗		��	`ℎ_	$gµ�#"#`	_�¢_#¿"À´_. 
Now, calculating for the reproductive number of model (3.0) − (3.2), using the simple method. 

In this method for finding	��, we survey to have increase and decrease of infectives, therefore 

we have, 

If 

$�$` > 0	
 then 

							KL� − (G + r)� > 0 

 KL� > (G + r)� 
⇒																																																																					 KL�(G + r)� > 1 

Where 

K = V��  

It implies that  

VL��(G + r) > 1				but	at	t = 0, S ≈ N																															
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⇒ 

VL(G + r) > 1 

If we take 

 
 Then for 

v vB > 0, we have �� > 1. 

Now, �f `ℎ_ �Ã�`_µ _#`_e� " �`"¢_ ±ℎ_e_ �� > 1, then it is said to be asymptotically 

unstable and this implies that there will be a serious outbreak of the HIV/AIDS epidemic in the 

country provided the rate of change of infectives is positive.  

Also: 

�f $�$` < 0, ±_ ±�ÀÀ ¢_` �� < 1 

 ÂÃ ��µ�À"e ²gµ�´`"`�g# "� �# `ℎ_ "Âg¿_ ²"À²´À"`�g#, this will imply that the system will be 

in a state of total stability and hence the entire population will be free from the opportunistic 

infection(HIV-epidemic). 

We also looked at when the system will develop an epidemic using the basic reproductive rate. 

In doing this we consider the case where the infection rate is greater than zero, which means that 

we have increasing number of infectives in the system and this will give us a reproductive rate 

which is greater than 1, hence the system experiences an outbreak of HIV/AIDS epidemic since 

the system is asymptotically unstable in this case. 
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We also consider the case where the infection rate is negative, which means that we have 

decreasing number of infectives in the system and this will result in a case where the 

reproductive rate is less than 1, hence the system experiences stability which implies that the 

entire population will be free from the opportunistic infection. 

Infact, the results of our numerical simulations is a confirmation of the results we had in the 

analytic study as well as the graphical results. 
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4.2 Numerical Simulation: 

This section will be established based on the idea of mathematical simulations using MatLab. In 

this respect we present computer simulations of the system (3.0) − (3.2). 
We take the parameters of the system as presented in the tables below taken our total population 

as N = 24791073. 
We finally complete the model by given each differential equation an initial condition. Since 

none of the population is immune at the beginning of the epidemic, we assume that almost 

everyone in the population is susceptible. We also assume a trace level of infection in the 

population, that is: 

S(0) = 24791073,								I(0) = 15,										A(0) = 0 

In terms of the scaled variables, the initial conditions are: 

�(0) = 1,    

�(0) = 6.051 × 10½Å,    

"(0) = 0 

This will be the variables with which the graphing will be appropriately presented. 

For each table of parameter values, we have graphical results to our differential model as well as 

the phase portrait. 
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Table 4.1: Parameter values in respect of low rate of infection with a high rate of conversion 

from infectives to AIDS and low AIDS accelerated death rates 

Parameters of the 

system 

F G K L r � 

Values of the 

(Parameters)/year 

13249.5 0.00025 0.06 2 0.825 0.524 

 

We also assume values for the different population groups such that if ��(0�, ��0�, *�0�� �
�24791073,15,0� then +� � �24791073,0,0� and	�� � 0.1455 0 1.

Fig. 4.1a: Numerical solution of the model with parameters from Table 4.1.  
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The above graph (Fig. 4.1a), gives the proportion of susceptible, infective and AIDS patients 

with time, showing that the system is stable as the proportion of susceptible in the population 

takes a sharp increase until its size attains equilibrium after 40year of growth as compared to the 

other class of population. 

 

 Fig. 4.1b: A phase portrait showing the stability situation of the differential model.  

The above phase portrait (Fig. 4.1b) is a representation of a stable system with all the field lines 

converging at a point. This figure demonstrates a stability situation called a nodal sink. 
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Table 4.2: Parameter values in respect of high rate of infection with a high rate of conversion 

from infectives to AIDS and high AIDS accelerated death rates 

Parameters of the 

system 

F G K L r � 

Values of the 

(Parameters)/year 

13249.5 0.00025 0.06 12 0.825 2.334 

 

We also assume values for the different population groups such that if ��(0�, ��0�, *�0�� �
�24791073,15,0� then +� � �24791073,0,0� and �� � 0.87273 0 1 .

Fig. 4.2a: Numerical solution of the model with parameters from Table 4.2. 
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The above graph (Fig. 4.2a) gives the proportion of susceptible, infective and AIDS patients with 

time, Showing that the system is stable as the proportion of susceptible in the population takes a 

sharp increase until its size attains equilibrium before 10year of growth with those infected also 

increasing at a relatively low rate as compared to the susceptible growth with less AIDS patients. 

 

 Fig. 4.2b: A phase portrait showing the stability situation of the differential model.  

The above phase portrait (Fig. 4.2b) is a representation of a stable system with all the field lines 

converging at a point. This figure demonstrates a stability situation called a nodal sink. 
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Table 4.3: Parameter values in respect of low rate of infection with a low rate of conversion from 

infectives to AIDS and high AIDS accelerated death rates 

Parameters of the 

system 

F G K L r � 

Values of the 

(Parameters)/year 

13249.5 0.00025 0.06 4 0.225 2.524 

 

We also assume values for the different population groups such that��(0�, ��0�, *�0�� �
�24791073,15,0�. Then +∗��∗, �∗, *∗� � �14.078,31344.134,2793.872� and �� � 1.0667 . 1 

Fig. 4.3a: Numerical solution of the model with parameters from Table 4.3. 
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The above graph (Fig. 4.3a) gives the proportion of susceptible, infective and AIDS patients with 

time, showing that the system is unstable as the proportion of susceptible and infectives in the 

population takes a sharp increase until they both attain convergence at time greater than 15years 

but less than 20years whilst the AIDS cases registers a very low proportion of people. We also 

noticed that the size of the susceptible population takes a short time to stabilize unlike those 

belonging to the infected class who take averagely longer time to attain a constant value. In fact 

this is enough prove of the fact that the system will be unstable. 

Fig. 4.3b: A phase portrait showing the stability situation of the differential model. 

 The above phase portrait (Fig. 4.3b) is a representation of an unstable system with some of the 

field lines moving away from the origin. This figure demonstrates a situation of instability called 

a saddle. 
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Table 4.4: Parameter values in respect of high rate of infection with a high rate of conversion 

from infectives to AIDS and low AIDS accelerated death rates 

Parameters of the 

system 

F G K L r � 

Values of the 

(Parameters)/year 

13249.5 0.00025 0.06 14 0.825 0.524 

 

We also assume values for the different population groups such that��(0�, ��0�, *�0�� �
�24791073,15,0�. Then +∗��∗, �∗, *∗� � �14.733,8551.632,13457.503� and �� � 1.0182 . 1 

Fig. 4.4a: Numerical solution of the model with parameters from Table 4.3. 
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The above graph (Fig. 4.4a) gives the proportion of susceptible, infective and AIDS patients with 

time. We realize a system with an epidemic as it’s clearly demonstrated by the graph. This has a 

high progression of the infectives into the AIDS zone and fairly high proportion of people 

leaving the susceptible group into the infective class, hence an unstable system. 

Fig. 4.4b: A phase portrait showing the stability situation of the differential model.  

The above phase portrait (Fig. 4.4b) is a representation of an unstable system with some of the 

field lines moving away from the origin. This figure demonstrates a situation of instability called 

a saddle. 
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 

5.0 Introduction  

At present, however, almost all the developing countries have increasingly realized the necessity 

of social consciousness in preventing the HIV/AIDS epidemic. Also different protective 

measures against diseases are found to be effective. 

One main goal of mathematical epidemiology is to understand how to control or eradicate 

diseases. We therefore seek to explain the dynamical behavior of the nonlinear differential 

equation and how different types of models are used to capture the essential behavioral of a 

population and the biological features (Natural history) of the infection.  

In this section of the thesis, we seek to give a description and analysis of the various 

mathematical techniques used to mimic the operations of the real-life process described in the 

SIA epidemic model as presented in the	%Æ*Çb+�	�§	of this thesis. 

These mathematical techniques used in the analysis of the model are analytic study and 

numerical simulations using MatLab. 
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5.1 Conclusion 

We have investigated the transmission dynamics of an SIA epidemic model with positive 

immigration. We have also characterized the equilibrium and thresholds and shown how they are 

affected by the immigration profile. 

Much of the theory at the basis of the modern control of infectious diseases (Anderson and May, 

1991) has been developed around the equilibrium analysis of the basic SIR age-structured model 

in a closed stationary population in which the recruitment of susceptible occurs at birth only. 

After a series of analysis made with respect to the various models, we realize in conclusion that 

in almost all the cases where F > G�∗, the system realized a total stability but in all the cases 

where F < G�∗ the system is always unstable. 

We are also able to establish that in situations where net transmission rates is very small as 

compared to the rate of progression to AIDS, the system experience stability. Hence increasing 

the birth rate (immigration rate), increasing AIDS progression rate relative to the net 

transmission rate and Minimizing net Transmission for almost all cases may eradicate 

HIV/AIDS, but would give long incubation period for AIDS since from our assumption	υ ≫
μ. 
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5.2 Recommendations 

The findings of this thesis provide useful inputs to policy formulation and execution in the fight 

against the spread of HIV/AIDS.   

In order to control the epidemic, the transition of persons from the susceptible to the infective 

populations should be reduced to the barest minimum.   

This can be achieved by conscientising the entire populace on the risks and prevention methods. 

Civil society and other identifiable groups should be involved in engaging society on the 

epidemic with particular emphasis on abstinence as the safest option. For instance, religious 

bodies should be encouraged to make HIV testing mandatory prior to wedlock. Medical studies 

suggest that transmission rate depends mainly on the males given their socio-economic status in 

society; hence educational campaigns should be targeted mainly on them. 

Also the issue of the accessibility and affordability of the antiretroviral drugs should be reduced 

and provision of appropriate medical care to the infected will reduce the rate of progression to 

full – blown AIDS relative to the transmission of susceptible to infective. 

However, decreasing the transmission rate is a necessary condition but that alone is not a 

sufficient mechanism to control the spread of the epidemic. Other essential parameters such as an 

increased immigration rate (albeit considered unacceptable), and reduced progression rate affects 

the spread of the disease. 
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