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ABSTRACT 

The decision to invest in the mining industry comes with all forms of challenges that will have to 

be managed with care. Especially because, it involves huge capital outlay and the associated 

risks are very high. The assessment process of the commercial viability of the ore deposit 

consists of two major components; the estimation of the quantity (including quality) of the 

commodity and the decision as to whether or not to mine (or invest). This thesis tries to explore 

these risk areas by using the geostatistical model and its analysis (the semi-variogram and 

kriging analysis) to estimate the quantity and quality of the commodity. The decision to invest or 

not to invest is analyzed with the help of the black-scholes model, taking into consideration the 

prevailing market price (including price volatility) and the risk derived from the geostatistical 

estimates. The results indicate that, if the concession is contracted for a period of five years then 

the mine would be viable for investment during the entire duration when the price, the base case, 

of the commodity (gold) is about one thousand six hundred dollars. The sensitivity analysis, 

however, reveals that the mine would not be worth investing within some periods in the duration 

of the contract especially when the gold price falls to eight hundred dollars per ounce and below.     
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CHAPTER 1 

INTRODUCTION 

1.0 Introduction 

This chapter elaborates on the study background, problem at hand, objective, methods employed 

in the analysis of data to attain the aim of the study, justification and how the thesis is structured 

– or organized. It therefore, presents the intention and focus of the writer.      

1.1 Background of the Study 

Mostly, investors would channel their capital into mining operations, like any other business 

venture, because they hoped to make some good profit with risk resilient (at least if it cannot be 

avoided completely). The information about the grade and tonnage as well as the fluctuating 

price, however, of the commodity of interest is quite complicated and uncertain thereby 

increasing the risk component of the venture. 

 The complication and uncertainty of the price, grade and tonnage; and consequently the entire 

mining investment portfolio may be appreciated if a more concise definition of mining is 

highlighted. In simple terms, mining is a process by which a valuable, naturally occurring, 

mineral is taken out of the ground economically with the existing technology. In other words, if 

the mineral of interest is naturally occurring then the parameters (grade and tonnage) would be 

undoubtedly complex and uncertain. Interestingly, the economic aspect of the venture is what 

concerns investors. The question then may be; what information should be available to inform 

decision makers put resources into the venture with a controlled risk?     
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Unfortunately the decision to mine is predominantly influenced by the information gathered on 

the grade and tonnage of the metal in the ground since it helps determine the commercial 

viability of the mineral deposit. In the decision making process variables like; current price, 

interest rate and the existing technology are equally vital. As a first step to fairly achieve this, 

samples are taken at some designated intervals and sent for assaying. The assayed sampled data 

is treated and the values obtained inform investors the next line of action. It may be worth noting 

that the issue of “chicken and egg” arises when it comes to commercial viability of ore deposit. 

Thus, a mineral deposit may exist in quantity and quality but could not be mined because the 

price of the commodity may not allow. Conversely, the price of the commodity could be very 

attractive but the deposit may not exist in quantity and quality to be mined. These are the 

fundamental areas of risk that the thesis tries to explore.     

Although it may be impossible for mining engineers, and other expertise such as geologists, to 

establish the actual price, grade and tonnage, it is still believed that the application of some 

mathematical models may considerably improve the results and its overall reliability. 

Geostatistical models are generally used to estimate the grade and tonnage at unsampled points, 

including the associated variance (that is, the estimated error), probabilities and confidence 

intervals. Broadly, geostatistical models try to look at reserve estimation in two cases: the 

isotropy and anisotropy. The isotropy case assumes grade distribution to be independent of 

direction but that of the anisotropy considers the distribution of grade to be greatly influenced by 

direction. This thesis, however, shall consider the isotropy case. Generally, geostatistical models 

help control the number of exploratory drilling. The Black-Scholes model shall be adapted, using 

these geostatistical estimates, to establish the decision on whether or not to mine.  
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Risk management is a technique of determining, controlling or minimizing and preventing the 

possibility of accidental loss in an investment or speculation successfully by taking safety 

measures. Grant (2004) quoted that risk refers to a situation in which there is more than one 

possible outcome to a decision, and the probability of each specific outcome is known or can be 

estimated. In general, the greater the number and range of possible outcomes, the greater is the 

risk associated with the action or decision.   

Ore reserve estimates are assessment of the quantity and tenor of a mineral that may be 

profitably and legally extracted from a mineral deposit through mining and/or mineral 

beneficiation. 

The definitions above clearly spelled out that, estimation of ore reserves involves not only 

evaluation of the tonnage and grade of a deposit but also consideration of the technical and legal 

aspects of mining the deposit and of selling the product. Mining is one of the major areas of 

investments where the possibility of accidental loss is most likely and that activities prior to 

production operations should be quite extensive without compromising financial constrains. In 

short, ore reserve estimation, particularly grade and tonnage is viewed as one of the main safety 

measures that are employed when techniques are considered to managing mining risk. Most 

especially because, if both quantitative and qualitative measures point to it that the deposit is not 

of commercial quantity then decision makers may have either of the following two options: (i) 

avoid the investment as a way of managing the risk or (ii) invest only risk capital. 

The decision to invest only risk capital may arise from the fact that geostatistical measures (both 

quantitative and qualitative) could be completely misleading. But interestingly computations 

would mostly help optimize some risk.  
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1.2 Problem Statement 

Most often, the worth of a mining investment portfolio is computed using the net present value 

(NPV) approach in relation to the prevailing market factors on the commodity such as; the 

current price, interest rate, and so on. The risk analysis in most feasibility studies are based on 

stochastic modeling of project NPV which, in most cases, fail to provide decision makers with 

truly comprehensive analysis of risks associated to technical and management uncertainty and, as 

the result, are of little use for risk management and project optimization (Botin, 2011). But, in 

particular, this project attempts to compute the worth of the mine using the Black-Scholes model 

and the reserve estimates since any projection of returns on the investment may be meaningless 

without considering the existence of the precious mineral in question. In other words, the value 

of this important but highly risky venture is directly linked to whether or not the commodity is in 

a commercial quantity. 

The mining industry is most often faced with two main problems. Namely: (a) the uncertain 

existence of the prospected mineral of interest in commercial quantity. This could be managed 

through the estimation of grade and tonnage using geostatistical models. (b) The decision to 

mine or not to mine based on market factors. This could be achieved when the worth of the mine 

is estimated by the use of Black-Scholes model. 

1.3 Objectives 

  The objectives of this project are to:  

i. Use geostatistical modeling to estimate the grade, tonnage and error of the reserve of a 

gold mine in the western region of Ghana.  
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ii. Perform an investment decision analysis using the Black-Scholes (or option pricing) 

model based on the risk derived from the geostatistical modeling. 

1.4 Methodology  

 The data (secondary) was collected from Goldfields Ghana Limited,Tarkwa mine (at 

site,Teberebie Cut 3). The geostatistical data collected is on grade of gold and their location 

coordinates. Geostatistical modeling is used to analyse the data to produce a variogram and 

kriging. From the variogram, together with a geostatstical model, a kriging analysis will be 

made. Some of such models include: spherical, exponential, nugget effect and Gaussian. The 

spherical model is, however, selected to analyse the variogram for the kriging analysis. 

Parameter values on cost of licensing the mining area of study, cost of developing the technology 

for production and recovery, unit cost of producing gram per ton of gold and cost of land 

reclamation will be collected for the evaluation of the geostatistical estimates. The Black-Scholes 

approach will be used for decision analysis. MATLAB is employed to produce variogram, 

kriging and decision analysis.  

1.5 Justification 

What may make this area of study a very special one could be based on the report from the 

World Bank survey. The survey shows that 73% of mining projects failed in North America 

alone due to problems in their ore reserve estimates, leading to losses of billions in capital 

investment over a decade. It also added that the greatest uncertainty driving the risk and 

profitability of mining investment is the geological variability of mineral deposits 

(Dimitrakopoulas, 2012). Clearly, this thesis tries to re-emphasize that using ore reserve 

estimates to manage mining risk may go a long way to improve the economic position of the 
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investment. Results obtained from assayed values using geostatistical models may largely inform 

decision making. In brief, even though the topic may seem quite technical, engineering and 

mathematical, its economics and social importance cannot be underestimated.  

From economic point of view, this research may be very relevant because, there are other 

investment options available to the investors. Additionally, reliable estimation is critical to both 

the confidence in a feasibility studies, and also to the day to day operations of the mine. Ore 

reserve estimates could help adventurous businessmen put their capital to good use more so, 

because resources are limited and the success of investors may contribute to the overall 

developmental goals of the state within which they operate. For example, if Ghana has been able 

to produce 2.97 million ounce of in 2010 (MBendi et al, 1995 – 2012), one could imagine the 

benefits that the state would have derived from it.  

1.6 Thesis Organization 

This thesis is divided into five (5) chapters. The first chapter contains the following: 

introduction, background of the thesis, problem statement, and objective of the thesis, 

methodology, justification and thesis organization. In chapter two the literature review is 

presented. 

Chapter three entails the methodology where mathematical models and methods of solution are 

presented. Chapter four explains data analysis and results. Finally, observation, conclusion and 

recommendation are contained in chapter five. 
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CHAPTER 2 

LITERATURE REVIEW 

2.0 Introduction 

This chapter presents the literature on ore reserve estimation; with geostatistics (and its analysis) 

being the underlining mathematical modeling in the estimation process. The literature is 

extended to cover other versions of research on the Black-Scholes model.   

2.1 Ore Reserve Estimation 

Ore reserve estimation is the main procedure adapted to obtain, to some level of confidence, both 

the qualitative and quantitative information about the resource in the ground. Ideally the best 

information about the resource could be obtained during exploration process if the whole area 

under study is excavated. This, however, would be far from reality and economics principles 

since exploration of solid mineral deposits is generally an expensive task. Even more expensive 

and risky is the successive mining investment. It may be of paramount importance to optimize 

the exploration expenses and minimize the risk of the mining investment. More importantly so 

because, according to Terrence (2002); the development and operation of a mining project 

requires the investment of many millions of dollars and that accurate quantification of 

uncertainty in grade allows the risk of investment loss to be correctly managed to the benefit of 

the mine owner, investors, and the wider community.   

As stated by Xiping (1992), reserve estimation involves the modeling of spatial variation and 

distribution of ore grade in the region of exploration. Current approaches are based essentially on 

either geometrical reasoning or statistical techniques, and generally assume that the spatial 
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distribution of ore grade is a function of distance. Ore reserve estimates and their interpolations 

do really have effect on the mining operations. Many mining operations developed in the last 

15years have not performed to expectations and most of the problems can be directly attributed 

to decisions made on the basis of geosciences interpolations and estimates (Berry et al. 2006).  

As with all reserve estimation, a thorough understanding of the geology is essential, including a 

practical model of the mineralization structures, and the definition of the various ore types 

present. This will ensure that the geostatistical analysis and valuations are carried out within 

defined geologically homogeneous zones so as to avoid obvious non-stationarity, and that 

significant mineralization structures are modeled geostatistically and used in the valuation 

process (Krige, 1994). 

2.2 Managing Mining Investment Risk 

The holistic management of risk associated with mining investment is quite a comprehensive 

task; ranging from acquisition of the concession, legal requirements, political, exploration, 

production/procession through to the sale of the product. Each of these stages, and beyond, 

defines a cost center that, if not treated with caution, may threaten the entire venture. 

The decision on how to allocate capital in mining has always been complex, but the 

unpredictability of the markets and the unprecedented level of volatility they have displayed 

recently makes mining investment decision-making even more difficult and increasingly 

multifaceted. NPV does not tell the whole story, and robust risk analysis provides more valuable 

insight about how to quantify and manage the downside risks and upside opportunities of major 

project like mining. In all business and finance, uncertainties are associated with every aspects of 

the economy. Beside the few examples of global factors that are characterized by uncertainties 
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such as the political environment for doing business, commodity prices and exchange rate, there 

are equally important project-level factors associated with large uncertainties like; technical 

success of a mining method or understanding geology of new resource (Jacet, 2010). 

According to Frimpong (1998), successful management in competitive markets requires 

evaluation methods that respond to global market dynamics and provide investors with relevant 

information to make strategic investment decisions. These strategic decisions include investment 

timing, feasibility study and risk management and mine operating options. Conventional 

methods do not have the built-in capabilities to help investors handle these strategic issues. 

Advances in modern finance have had profound impacts on financial markets for options, future 

and collateralized securities and offers appropriate tools in solving these problems. In brief, the 

results obtained from the derivative mine evaluation method is one of the best ways that allow 

investors to maximize the venture’s market value.  

As stated by Rui (2008), an analytically tractable dynamic stochastic general equilibrium model 

to study asset pricing and welfare implications of imperfect investor protection is developed. 

Consistent with empirical evidence, the model predict that countries with weaker investor 

protection have more incentives to overinvest, higher return volatility, larger risk premia, and 

higher interest rate. Calibrating the model to the Korean economy, reveals that perfecting 

investor protection increases the stock market value by 22%, a gain for which outside 

shareholders are willing to pay 11% of their capital stock. This is to say that dynamic stochastic 

model (like the Black-Scholes) could help take a decision on the value of stock for which 

investment should take place.  
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According to Mitchell (1997), as gold prices rise, its extraction cost also rise as they switch to 

mining lower grade ores, which are more costly to extract. A rise of 10% in the price of gold 

during the year is associated with a 2.4% increase in its extraction cost. A run up in price in the 

previous years may have prompted a decision to increase production since the investment may 

take time to adjust to a new environment (different level of gold prices).   

For a mining company to be profitable, it needs to locate an accessible area that contains gold in 

2000 to 3000 parts per billion (ppb) of surrounding soil and rock. Thus, geological, geophysical, 

and geochemical data is collected to determine the probability of the deposit. If sufficient data is 

acceptable, then test drill holes are sunk in predefined area to take sub-surface samples, which 

are sent to a laboratory to determine the evidence of any gold ore (CME Group, 2011). 

A hypothetical financial model based on a gold operation has been used to estimate the potential 

effect of resource/reserve on revenue. The results show that realistic uncertainty ranges can 

generate changes in the estimate of potential revenue of plus or minus 30%. Therefore it is 

important to allow for errors in these processes in any financial analysis or feasibility study 

(Snowden et al. 1993; 1998). 

2.3 Geostatistics 

Geostatistics is a set of statistical estimation tools involving quantities which vary in space. It is 

originally very popular in the mining and oil exploration. Now used extensively in almost all 

branches of hydro science (TTU Pride, 2006). 
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2.3.1 Historic Background of Geostatistics 

According to Agterberg (2005), the founder of spatial statistics, Professor Georges Matheron 

(1930 – 2000) made fundamental contributions to science by establishing new theoretical 

frameworks in spatial statistics, random set, mathematical morphology, and the physics of 

random media. Matheron, inspired by De Wijs and Krige, commenced work in 1954 on 

regionalized random variables. One of his first publications (Matheron, 1955a) concerns the Gara 

Djebilet oolithic iron deposit that has been discovered in 1952. This is a standard geological 

publication with folded geological map and description of the stratigraphy, structure and genesis 

of this deposit of early Devonian age. The final section on ore grades and tonnages provides 

estimates of the ore reserve. These estimates exceed 2 billion metric tons in total.      

The basis of geostatistics is the study of the spatial correlation of data measured at various points 

in three-dimensional space. The fundamental technique is called kriging, in recognition of the 

work carried out by Dr. Krige on gold deposits in South Africa. Geostatistics is used to 

interpolate isolated data to map it into a continuous space. Given that the estimation is subject to 

error, geostatistics can also be used to assess how much confidence can be placed in a map 

produced in this way (TTU Pride, 2006). This quality control is not part of standard interpolation 

methods (such as Inverse Distance). Furthermore, standard interpolation methods do not take 

into account the intrinsic properties of the interpolated phenomena (for example rapid changes in 

the data with distance, or more gradual changes), as they only take account of the position of the 

measurement points. Geostatistics uses a probabilistic model to overcome these problems. 

Geostatistics was originally used in prospecting where it was necessary to estimate the potential 

of a deposit as accurately as possible using spatially dispersed sampling.  

The petroleum industry then became interested in geostatistics to improve the modeling of the 
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geometry of oil reservoirs using data from a small number of wells combined with more detailed 

data from seismic surveys. It’s now used for all types of environmental study - air, water, and 

ground - for which there is an increasing demand for justifiable maps where the uncertainty is 

quantified. 

In geostatistics (and kriging), variogram and covariance function are the ‘heart’ of the analysis – 

it mathematically formalizes the spatial variability using some model which is then used to 

estimate the entire field. 

The kriging started when the founder, Dr. Krige in South Africa (about 80 years ago), was 

required to prospect a very large area for gold. He had all the necessary tools for drilling to mine 

a spot for gold. However, due to costs and technical difficulty he did not have the luxury to mine 

physically the whole area (with extensive drilling) in order to find out the locations where gold is 

deposited in high amounts. Another problem that complicates his objective is that there was no 

precedence of gold mining in his area (i.e., nobody really knows the geology or any historical 

fact to guide him to choosing drilling locations that may have a high probability of having gold 

deposits (TTU Pride, 2006). 

2.3.2 Importance of Geostatistics 

Geostatistics is important for modeling/understanding the spatial variability of a quantity. There 

is virtually few ‘quantity’ (at least in natural sciences) that does not vary in space. Gravity, 

molecular weight of chlorine, relative abundance of oxygen and nitrogen in air are some few 

examples.   

Examples of quantities that show clear spatial variation are: rainfall, vegetation, soil texture, 

population density, economic wealth etc (TTU Pride, 2006). 
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Noppe’ (1994), states that geostatistical analysis provides a powerful tool for enhancing the 

prediction and decision-making capabilities of mine planners and geologists. It provides the only 

method for quantifying differences between alternative sampling philosophies as well as 

providing the errors associated with various reserve tonnage and quality estimates. It provides 

the best possible weighting for samples used in reserve estimation so as to produce the lowest 

possible error of estimation. Geostatistics provides the person involved with routine tonnage and 

quality estimates the best estimation technique that quantifies the error associated with making 

such estimates, and therefore allows confidence limits to be placed on these estimates.   

Glacken (2001), writes that as a precursor to any of the kriging or conditional simulation 

techniques, spatial (geostaistical) analysis of the domained data – that is, the calculation and 

modeling of semi-virograms – is an obvious and necessary step. In brief, geostatistics deals with 

spatially autocorrelated data where the correlation between elements of a series and others from 

the same series separated from them by a given interval is analysed.  

According to Myers’s (2011), geostatistics is only good science brought up to date by the 

recognition that natural phenomena are subject to spatial variation. That is, each data value is 

associated with a location in space and there is at least an implied connection between the 

location and the data value. Location has at least two meanings; one is simply a point in space 

(which only exists in an abstract mathematical sense) and secondly with an area or volume in 

space. For example, a data value associated with an area might be the average value of an 

observed variable, averaged over that volume. In the latter case the area or the volume is often 

called the support of the data. This is closely related to the idea of the support of a measure. Let 

x, y, …, w be points (not just coordinates) in 1, 2, or 3 dimensional space and Z(x), Z(y), … 

denotes observed values at these locations. For example, this might be the grade of gold, copper, 
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temperature, hydraulic conductivity, concentration of a pollutant. Now suppose t is a location 

that is not sampled. The objective the is to estimate/predict the value Z(t) (and the data locations 

as well as the location t). If only this information is given then the problem is ill-posed, that is, it 

does not have a unique solution and one way to obtain a unique solution is to introduce a model 

into the problem. The two ways of doing this is (i) deterministic and (ii) stochastic or statistical. 

Both approaches however, must incorporate the idea that there is uncertainty associated with the 

estimation/ prediction step. One approach is to treat Z(x), Z(y), … and Z(t) as being the values of 

random variables.  

Geoff (2007), added that the basic components of geostatistics are (i) (semi)varogram, where the 

spatial correlation is characterized (ii) kriging – which is used for optimal interpolation that 

generate best linear unbiased estimates at each location by employing semivarogram model and 

(iii) stochastic simulation – in which multiple equiprobable images of the variable is generated 

by employing semivarogram model. It all begins with the fundamental knowledge in covariance 

and correlation both of which measure the similarities between two different variables. The 

magnitude of the covariance increases with increasing similarity in the patterns of variation of 

the two variables about their respective means. The correlation coefficient ranges from 1 for 

perfect positive correlation to -1 for perfect negative correlation and is in the vicinity of 0 for 

uncorrelated variables.   

 

2.3.3 The Variogram 

In a statistical analysis, a variogram shows how well a data set performs in space – it is a 

measure of spatial correlation. A variogram contains two elements: the experimental variogram 
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and the variogram model. Variograms are used to show spatial continuity in a set of a data and 

can show textural differences that cannot be represented on a regular graph (Stephanie, 1999-

2011). In short, variogram characterizes the spatial continuity or roughness of a data set. 

Barnes (2003), states that the experimental variogram is calculated from the data while the 

variogram model is fitted to the data. The experimental variogram is calculated by averaging 

one-half the difference squared of the z-values over all pairs of observations with the specified 

separation distance and direction. It is plotted as a two-dimensional gragh. The variogram model 

is, however, chosen from a set of mathematical functions that describe spatial relationship. The 

appropriate model is chosen by matching the shape of the curve of the experimental variogram to 

the shape of the curve of the mathematical function. In order to clearly see what variogram 

represent, let us consider two synthetic data sets; A and B with some common descriptive 

statistics are given in table 2.1 

 

Table 2.1 Descriptive Statistics of Two Data Sets.  

Source: (www.goldensoftware.com) 

 A B 

Count 15251 15251 

Average 100.00 100.00 

Standard deviation 20.00 20.00 

Median 100.35 100.95 

10th percentile 73.89 73.95 

90th percentile 125.61 124.72 
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Even though, the respective histograms may also be very similar, the two data sets may be 

significantly different in ways that are not captured by the common descriptive statistics and 

histograms. 

 Pincock et al.(2007), added that a variogram represents both structural and random aspects of 

the data under consideration. The range of a variogram represents the structural part of the 

variogram model. The variogram values increase with increase in the distance of separation until 

it reaches a maximum (C) at a distance known as the range (a). if at a distance nearly equal to 

zero, that is, h →0, the variogram value is greater than zero, this value is known as the nugget-

effect, (C0). 

Low range values exhibit randomness in spatial distribution of a quantity being measured. On the 

other hand, high values of range reflect a distinct spatial structure of clusters of similar values.  

According to Schlumberger (2011), the term variogram is sometimes used incorrectly in place of 

semi-variogram. The two differ only in that the semi-variogram uses each pair of data element 

only once, where as the variogram uses all possible data pairs. Semi- variograms are usually used 

instead of variograms, but  opposite vector directions (for example, north and south) are 

recognized as representing the same thing and having identical ranges, sills, nugget points and 

the like. Variogram is therefore viewed as a two point statistical function that describes the 

increasing differences or decreasing correlation, or continuity, between sample values as 

separation between them increases. 

The fundamental principle is that, things that are closer are more alike than things farther apart. 

Thus pairs of locations that are closer (far left on the x-axis) should have more similar values 

(low on the y-axis). As pairs of locations become farther apart (moving to the right on the x-
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axis), they should become more dissimilar and have a higher squared difference (move up on the 

y-axis) as shown in fig 2.1.   

 

Fig 2.1: Things closer are more alike than things farther apart.  

Source (resources.esri.com) 

Data analysis exercise should have some geological backing and simple variogram analysis is 

not a magic tool to get the best results. The right approach is that the variogram model must 

conform the geology. The effect of a variogram should be related partly on the data set but 

mostly on the knowledge of the geological setting and other external facts. The geological 

understanding should also determine the range, direction, etc. variogram analysis can also be a 

method for identifying environments like fluvial systems and lower energy levels. Other areas 

include: finding possible outliers, detecting anomalies and level of heterogeneity, determining 

anisotropies (that is, different variograms in different directions), detecting changes in functions 

due to scale (that is, specially geological trend) and use it to quantify geology (the link between 

geology and maths/statistics) (Janine, 2011).   

Spatial prediction involves two stages. First, the covariance or semi-variogram of the spatial 

process is modeled. This involves choosing both a mathematical form and the values of the 

associated parameters. Second, this dependence model is used in solving the kriging system at a 
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specified set of spatial point, resulting in predicted values and associated standard errors (SAS, 

1999). 

2.3.4 Kriging 

Kriging is estimating values at those locations which have not been sampled. The basic 

technique is “ordinary kriging” uses a weighted average of neighbouring samples to estimate the 

unknown value at a given location. Weights are optimized using the semi-variogram model, the 

location of the samples and all the relevant inter-relationship between known and unknown 

values. The technique also provides a standard error which may be used to quantify confidence 

levels (Royal School of Mines, 1978). 

According to Geoff (2007), kriging is optimal interpolation based on regression against observed 

z values of surrounding data points, weighted according to spatial covariance values. 

Interpolation is, however, an estimation of a variable at an unmeasured location from observed 

values at surrounding locations. Kriging assigns weights according to a (moderately) data-driven 

weighting function, rather than an arbitrary function. The goal of kriging is to determine weights 

that minimize the variance of the estimator. Some advantages of kriging are that, it helps to 

compensate for the effect of data clustering, assigning individual points within a cluster less 

weight than isolated data points (or treating clusters more like single point), it gives the kriging 

variance along with the estimate of the variable, z itself, availability of estimation error provides 

basic for stochastic simulation of possible realization of z(u). 

Kumar (2006), describes kriging as an application of spatial statistical technique for spatial 

analysis. Kriging is a technique of making optimal, unbiased estimates of regionalized variables 

at unsampled locations using the structural properties of the variogram and the initial set of the 
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data values. Kriging takes into consideration the spatial structure of the parameter and hence 

score over other methods like arithmetic mean method, nearest neighbor method, distance 

weighted method, and polynomial interpolation. Also, kriging provides the estimation variance at 

every estimated point, which is an indicator of the accuracy of the estimated value. 

The kriging weights are obtained by substituting the respective distances into the covariance 

function. The problem of finding the weights subject to the constraints that they sum to unity is 

recast in its Lagrangian equivalent, and solution of the resulting set of Lagrangian equations then 

simultaneously yields both a set of weights and the Lagrange parameter. Once the weights are 

known the kriging prediction z(uk) and its expected variance, σ2(uk), are obtained (Kumar, 2006).  

 

 

2.4 The Black-Scholes Model 

By way of history, the Black-Scholes model was first discovered in 1973 by Fischer Black and 

Myron Scholes, and then further developed by Robert Merton. Fischer Black started out working 

to create a valuation model for stock warrants. Soon after this discovery, Myron Scholes joined 

Black and the result of their work is a pricing model we use today which is surprisingly accurate. 

The work of Black and Scholes is actually an improved version of a previous model developed 

by A. James Boness in his Ph.D. dissertation at the University of Chicago. The Black and 

Scholes’ improvement on the Boness model comes in the form of a proof that the risk-free 

interest rate is the correct discount factor, and with the absence of the assumptions regarding 

investor’s preferences (SOME, 2005). 
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According to Maxi-Pedia (2012), since Robert Merton participated in the model’s creation, it is 

sometimes referred to as Black-Scholes-Merton model. Just as every model is only an 

approximation of the real world and every model has some limitations, the Black-Scholes model 

has its own shortcomings. For this reason, throughout the years, many other models emerged 

trying to provide more accurate approach to option valuation. However, all of them are based on 

the same valuation principle. The difference between the models is mostly how they address the 

assumptions of the Black-Scholes model. For example, Generalized Auto Regressive Conditional 

Heteroskedasticity (GARCH) substitutes constant volatility with a stochastic or random one. 

Other models address other assumption, for example the assumption of constant interest rate. 

Example of some few models related to valuations are: Garman-Kolhagen Option Pricing Model 

which is used for currency pricing, Hull-White, Cox-Ingersoll-Ross, Vasicek, Cox-Ross-

Rubenstein model etc.        

2.4.1 Importance of Black-Scholes Model     

The Black-Scholes model is a mathematical formula designed to price an option as a function of 

certain variables – generally stock price, striking price, volatility, time to expiration,, dividends 

to be paid, and the current risk-free interest rate. It is a tool for equity option pricing. Options 

traders compare the prevailing option price in the exchange against the theoretical value derived 

by the Black-Scholes model in order to determine if a particular option contract is over or under 

valued, hence assisting in the option trading decision (Wikinvest, 2007). 

ICMBA (1999-2010), states that the Black-Scholes model became the standard method of 

pricing options with the following assumptions that: the option can be exercised only at 

expiration, it requires that both the risk-free rate and the volatility of the underlying stock price 
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remain constant over the period of analysis, the underlying stock does not pay dividend; 

adjustments can be made to correct for such distributions.  

According to Coelen (2002), common stock represents an ownership in a corporation. Stocks 

provide a claim to the corporation’s income and assets. A person who buys a financial asset in 

hopes that it will increase in value has taken a long position. A person who sells a stock before 

he/she own it hoping that it decreases in value is said to be short in asset. People who take short 

positions borrow the asset from large financial institutions, sell the asset, and buy the asset back 

at a later time. In recent years, derivatives have become increasingly complex and important in 

the world of finance. A derivative is a financial instrument whose value depends on the value of 

other basic assets, such as common stock. Many individuals and corporations use derivative to 

hedge against risk. A call option gives the owner the right to buy the underlying asset on a 

certain date for a certain price. On the other hand, a put option gives the owner the right to sell 

the underlying asset on a certain date for a certain price.   

Bahuguna (2000), states that there are industries in which Black-Scholes has important 

application. Theorists would argue that asset ownership decisions are like evaluations of 

investment opportunities and, as such, can be treated like financial options. An option with a 

strike price of $100 is essentially a loan of $100 from the asset owner which is payable only 

when one exercises the right to own the asset. Oil companies, and for that matter solid mineral 

companies, are likewise partial to the technique since the volatility of outcomes can be readily 

modeled. The volatility of finding oil (or solid mineral) can be reliably modeled using seismic 

survey (or drilling) information. 
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As stated by FAS123 solutions (2008), the Black-Scholes model with the traditional Black-

Scholes closed-form, but modified for employee stock options by inputting an expected term in 

place of the contractual option term- say ten years, is among the most widely accepted fair option 

value models. The Black-Scholes, when modified for employee stock option, summarizes all 

behavioral information with a single number – the expected term. All options are treated as if 

they disappear at the same time independent of how the stock price evolves over the option term. 

The Black-Scholes is easy to implement once the expected term is estimated. 

The write up by Bowman (2001), states that the investment decision represents a stylized 

description of the critical process by which organizations commit resources to future growth. 

Real options analysis appears to present formidable for implementation. In valuing strategic 

options, perhaps the most important assumption concerns the distribution of the underlying stock 

price. In the Black-Scholes formula, the stock price is assumed to follow a lognormal 

distribution, with a constant level of volatility.  

Thinking options is very useful for forming strategy. But options can be very costly to acquire 

and to maintain or keep alive. Investment should be made in options with value greater than their 

cost. In markets with uncertainty both strategy and finance are focus on valuing risky assets. This 

means that the risk/return tradeoff of traded assets should be important benchmarks for corporate 

assets as well. Using the financial options tools for real options brings this type of discipline to 

corporate strategy (Amram, 2004). 

According to Breman et al. (1985), to illustrate the use of option pricing to value natural 

reserves, consider an offshore oil property with an estimated reserve of 50 million barrels of oil; 

the cost of developing the reserve is expected to be $600 million, and the development lag is two 
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years. The firm has the rights to exploit this reserve for the next 20 years, and the marginal value 

per barrel of oil is $12 currently (that is, price per barrel – marginal cost per barrel). Once 

developed, the net production revenue each year will be 5% of the value of reserve. The riskless 

rate is 8%, and the variance in 
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 The basic mathematics behind the Black-Scholes model is also presented; the main model that 

would be used for decision analysis. The analytical approach to the models is highlighted with 

some hypothetical data.  

3.1 Geostatistics 

Geostatistics is a class of statistics used to model, analyze and predict the values associated with 

spatial or spatiotemporal phenomena. Geostatistics is widely used in many areas of science and 

engineering, for example:  

i. The mining industry uses geostatistics for several aspects of a project: initially to 

quantify mineral resources and evaluate the project economic feasibility.  

ii. In the environmental sciences, geostatistics is used to estimate pollutant levels in order to 

decide if they pose a threat to environmental or human health and warrant remediation. 

iii. Relatively new applications in the field of soil science focus on mapping soil nutrient 

levels (nitrogen, phosphorus, potassium, and so on) and other indicators (such as 

electrical conductivity) in order to study the relationships to crop yield and prescribe 

precise amount of fertilizer for each location in the field. 

iv. Meteorological applications include prediction of temperatures, rainfall, and associated 

variables (such as acid rain). 

v. Most recently, there have been several applications of geostatistics in the area of public 

health, for example, the prediction of environmental contaminant levels and their relation 

to the incidence rates of cancer. 

In all these examples, the general context is that there is some phenomenon of interest 

occurring in the landscape (Esri, 2011). 
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According to Geoff (2007), the basic components of geostatistics are: (semi)variogram 

analysis, kriging and stochastic simulation. The basic statistics which define geostatistics 

are:  

(i)   Covariance, 
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With the residual component treated as a random field with a stationary mean of 0 and a 

stationary covariance (a function of lag, h, but not of position, u); E(R(u)) = 0 and  

Cov{R(u), R(u+h)}= E{R(u).R(u+h)}= CR(h)   ……………………………….(3.16)  

The residual covariance function is generally derived from the input semivariogram model: 

CR(h) = CR(0) – γ(h) = Sill - γ(h)             ………………………………………(3.17) 

For simple kriging, we assume that the trend component is a constant and known mean, 

m(u)=m, so that 
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To minimize the error variance, we take the derivative of the above expression with respect 

to each of the kriging weights and set each derivative to zero. This leads to the following 

system of equations: 
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3.1.1 Geostatistical Analysis Workflow 

The figure 3.1 below presents the summary of geostatistical analysis workflow.  

    

Fig 3.1: The geostatistical analysis workflow  

(source: Esri.com) 

3.1.2 Geostatistical Modeling and Semi-variogram Analysis  

  The semi-variogram is a graph of semi-variance, γ(h) plotted against the lag distance, h. The 

simi-variance is, however a statistical formula which is given by;  

γ(h) = 
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representing separation between two spatial locations; N(h) is the number of pairs separated by 

lag h (plus or minus the lag tolerance).  

During the construction of the semi-variogram, the semi-variance(γ(h)) is computed for all 

variable pairs with separation distance, h and the points (h, γ(h)) are plotted. Consequently, the 

appropriate geostatistical model is fitted to allow for kriging. Among the various geostatistical 

models: exponential, nugget effect, spherical, Gaussian, power method, etc, the most commonly 

used model for gold estimation is the spherical model. For the purpose of this thesis, the 

spherical model will be fitted to the experimental variogram. From the variogram model, the 

basic parameters that are noted for kriging include: the range, the sill value and the nugget value. 

In constructing the semi-variogram, the data is collected on a grid as shown in fig 3.2 

 

Fig 3.2: Example of data on a grid.  

Source (Isobel, 1979). 

If the east-west direction is considered to construct an experimental semivariogram for this 

relative orientation then, the grid on which the holes have been so conventionally placed is 100ft 

by 100ft, so that the values of the semi-variogram, γ*(h), for distances which are multiples of 



31 
 

this. At zero, γ*(0) is equal to zero. At 100ft all pairs of the sample is found at a separation of 

100ft in the east-west direction as shown in fig 3.3 

   

Fig 3.3: Identifying all the pairs at 100ft apart in the east-west direction.  

Source (Isobel, 1979). 

A spherical variogram model fitted to the experimental semi-variogram points is shown in fig 3.4 

  

Fig 3.4: Example of spherical variogram model fitted.  
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Source (Pincock, 2007) 

3.1.3 MATLAB Spatial Statistics Toolbox 

The MATLAB spatial statistics toolbox includes simultaneous spatial autoregression (SAR), 

conditional spatial autoregression (CAR), mixed regressive spatially autoregressive (MRSA) 

models. In addition, it contains codes for creating sparse spatial weight matrices and finding the 

log determinants (needed for maximum likelihood). Hence, the MATLAB spatial statistics 

toolbox includes the most common estimators employed in spatial econometrics. These products 

use sparse matrices and other computational techniques to greatly accelerate computations and to 

expand the size of potential data sets analyzed (Kelley, 1997).  

A simple implementation of variogram function using matlab code is found in APPENDIX G–J. 

In the MATLAB command window, each pair of value separated by a lag distance, h will be 

looked at in the following manner to produce the experimental semi-variogram as well as fit a 

spherical variogram model. From the fitted spherical variogram model, the range, sill, nugget-

effect will be deduced for kriging. 

During the programming process in MATLAB, the sets (a1, a3, a5, a7, a9, …) and (a2, a4, a6, 

a8, a10, …) represent the head and tail values of gold grade separated by lag distance, h, 

respectively such that: for h= (say 10m), we have (a1,a2) as the two row vectors that contain the 

pairs (that is, head values in a1 and tail values in a2) that will be computed to obtain the semi-

variance (v1). Similarly, for h=20m, (a3,a4) represent the two row vectors that contain the pairs 

that will be computed to obtain the semi-variance (v2). From the foregoing analysis, the points 
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(h=10m, v1) and (h=20m, v2) will be plotted on the variogram. Consider the following 

formulation: 

 h=10m; 
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But as indicated earlier, the spherical model is considered for this thesis. For each of the models 

above, the covariance, C(h), is given by: 

 C(h)= C(0) – γ(h), ……………………………………………………………..(3.37) 

 3.1.4 Kriging Process 

As already stated in the previous chapters, kriging is the process of estimating values at those 

locations which have not been sampled. Among the various kriging techniques which include 

simple, ordinary, cokriging, indicator kriging, etc, the ordinary kriging technique will be used for 

the estimates. During the process of kriging, some few data points (say 8) surrounding the point 

to be estimated are used for the estimation as in figure 3.5. The estimated mean grade of the 

point (PE) gives the average grade of the block, A. In the analysis, weights (wi) are assigned to 

each of the sampled location (or value) such that: 
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B1
 W1

 = c ……………………………………………………………………(3.39)*  

If PE is the point to be estimated then P1PE, P2PE, P3PE,…, P8PE are  the separation distances 

between samples and the block to be estimated. Similarly, the set P1P2, P1P3, P1P4,…, P1P8 is 

an example of separation distances between samples. The illustration is shown on table 3.1.                        

                  

 

   Table 3.1 Distances between samples and point to be estimated. 

P1 P2 P3 P4 P5 P6 P7 P8 PE
P1 0 25 37 18 23 29 33 19 14
P2 25 0 16 26 28 17 30 22 21
P3 37 16 0 34 38 31 35 24 16
P4 18 26 34 0 37 27 39 31 20
P5 23 28 38 37 0 34 36 20 15
P6 29 17 31 27 34 0 39 38 27
P7 33 30 35 39 36 39 0 21 19
P8 19 22 24 31 20 38 21 0 35
PE 14 21 16 20 15 27 19 35 0  

If C(0)= 0.9 and range, a= 14.5 are the hypothetical variogram parameters based on a spherical 

model fit then,  

C(h)=0.9-0.9*(1.5*(h/14.5)-0.5*(h/14.5).^3),  ………………………………(3.40) 

P8 

P3 

P7 

P6 

P5 

PE 
P4 P2 

P1 A 

Figure 3.5: Diagram of 8 sampled points used to estimate block A 
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 and the following system of equations, B , is generated from Table 3.1.  

          0.9000    0.8788    4.9319    0.0850    0.5546    1.8000   3.1322    0.1435  

            0.8788    0.9000    0.0149    1.0737    1.5334    0.0424   2.0923    0.4234   

           4.9319    0.0149    0.9000    3.5360    5.4616    2.4112    3.9701    0.7060   

 B=     0.0850    1.0737    3.5360    0.9000    4.9319    1.2916     6.0249    2.4112  

            0.5546    1.5334    5.4616    4.9319    0.9000    3.5360     4.4351    0.2188  

            1.8000    0.0424    2.4112    1.2916    3.5360    0.9000     6.0249    5.4616  

            3.1322    2.0923    3.9701    6.0249    4.4351    6.0249     0.9000    0.3118  

            0.1435    0.4234    0.7060    2.4112    0.2188    5.4616     0.3118    0.9000                                                                                                                                        

If the Lagrange multiplier and unity-sum is taking into consideration, the matrix (B1) emerges: 

               0.9000    0.8788    4.9319    0.0850    0.5546    1.8000   3.1322    0.1435   1.0000 

                 0.8788    0.9000    0.0149    1.0737    1.5334    0.0424   2.0923    0.4234   1.0000 

                 4.9319    0.0149    0.9000    3.5360    5.4616    2.4112    3.9701    0.7060    1.0000 

                 0.0850    1.0737    3.5360    0.9000    4.9319    1.2916     6.0249    2.4112   1.0000 

  B1 =         0.5546    1.5334    5.4616    4.9319    0.9000    3.5360     4.4351    0.2188   1.0000 

                 1.8000    0.0424    2.4112    1.2916    3.5360    0.9000     6.0249    5.4616   1.0000 

                 3.1322    2.0923    3.9701    6.0249    4.4351    6.0249     0.9000    0.3118   1.0000 

                 0.1435    0.4234    0.7060    2.4112    0.2188    5.4616     0.3118    0.9000   1.0000 
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                  1.0000   1.0000    1.0000    1.0000     1.0000    1.0000    1.0000      1.0000   0.0000 

c =(0.0016,0.3118,0.0149,0.2188,0.0016,1.2916,0.1436,3.9701,1.0000)T 

wi and μ are computed from the relation:  

w1 =(w1,w2,w3,w4, …w8, μ)T=inv(B1).*c,   …………………………………(3.41) 

w1 =(w1 w2 w3 w4 w5 w6 w7 w8 μ)T=(0.1606,0.7380,-0.7321,-0.4948,-0.5047,1.0207,0.5698, 

0.2424,-0.5157)T. 

Knowing the respective weights assigned to each sample value and the Lagrange multiplier, the 

estimated mean grade and variance of block, A (at point PE) are easily calculated as follows: 

ZPE=sum(ZP.*w)=ZP1w1+ZP2w2+ZP3 w3+…+ZP8w8    ………………………(3.42)  

Supposed that ZP1=3.50, ZP2=1.90, ZP3=4.80, ZP4=2.00, ZP5=2.70, ZP6=3.58, ZP7=4.78 and 

ZP8=4.50 are the realization of gold grades (g/t) at the locations P1, P2, …, P8 respectively then, 

ZPE =0.0241g/t. Again, if the mean grade of the 50 sample points is realized to be 3.98g/t then the 

residuals at the 8 (selected) locations are given by:  

R1= 3.50-3.98= -0.48, R2= 1.90-3.98= -2.08, R3= 0.82, R4= -1.98, R5= -1.28, R6= -0.40, R7= 

0.80, R8= 0.52.  

The estimated residual (RPE) from the mean of the block PE is given by: 

RPE=sum(w.*R)=w1R1+w2R2+...+w8R8 = -0.4131  ……………………………(3.43) 

 The estimated grade of block, A (at point PE) is evaluated to be: 

 Z˚PE= 3.98+RPE = 3.98+ (-0.4131) = 3.5669g/t   ……………………………….(3.44) 
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The estimated variance, otherwise known as the kriging variance,  

σ2
E =σ2

max- 
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Also,  

1oz of gold =28g of gold. 

 From this information, the total ounce of gold of the estimated block will be evaluated.  

From the foregoing analysis, the following deductions are made: Area (A) of the estimated 

block= length (l)*breadth (b); Volume (V) of gold of estimated block= thickness (h)*area (A); 

Quantity (m) of gold of estimated block= Z˚PE *volume (V)*specific gravity (ρ) of gold, where 

Z˚PE (g/t) represents the estimated grade of block under study. For example, Z˚PE =3.5669g/t for 

the hypothetical data considered above. The resulting quantity (m) of gold will be in grams. 

If 28grams of gold is equivalent to 1ounce (oz) of gold then the estimated quantity of gold, Z˚PE* 

V* ρ, will be equivalent to  

{(Z˚PE* V* ρ)/28} ounce of gold …………………………………………..(3.49) 

 Given the current world market price of $1,600.00 per ounce, the approximate current value of 

the estimated block will be:  

$(1600*Z˚PE* V* ρ)/28 …………………………………………………….(3.50) 

Consider the hypothetical data in figure 3.1 above, if the area of the estimated block=10*10 = 

100m2, thickness= pit limit (depth) =10m, specific gravity of gold= 19.3t/m3, then volume of 

gold= 10*10*10= 1000m3, quantity of gold of estimated block= 3.5669*1000*19.3= 68841.17g. 

The ounce of gold of the estimated block= 68841.17/28= 2458.61(oz). With the current world 

market price of $1,600.00 per ounce, the approximate current value (or price) of the estimated 

block will be 1600*3.5669*1000*19.3/28= $3,933,781.143.  
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3.2 Derivation of the Black-Scholes Differential Equation 

According to Coelen (2002), the Black-Scholes model is derived as follows: consider the price of 

a stock S at time t. Consider also a small time interval dt during which the price of the underlying 

asset S changes by an amount dS. The most common model separates the return on the asset, 

dS/S into two parts. The first part is completely deterministic and this yields a contribution of μdt 

to dS/S. Here μ is a measure of the average rate of growth of the stock, also known as the drift. In 

this model, μ is assumed to be the risk-free interest rate on a bond. The second part of the model 

accounts for the random changes in the stock price due to external effects, such as unanticipated 

news. It is best modeled by a random sample drawn from a normal distribution with mean zero 

and contributes σdB to dS/S, where σ is defined as the volatility and B denotes Brownian motion. 

σ and μ are functions of S and t. putting this information together, the stochastic differential 

equation: 

 dS/S= μdt+ σdB  …………………………………………………………………(3.51) 

The Brownian motion is a stochastic process B(t) characterize by the following three properties: 

1. Normal increments: B(t)-B(s) has a normal distribution with mean zero(0) and variance , t -s if 

s=0 then B(t)-B(0) has normal distribution with mean 0 and variance t.      

2. Independence of increments: B(t)-B(s) is independent of the past. 

3. Continuity of paths: B(t), t >0 are continuous functions of t. 

The stochastic integrals with respect to Brownian motion which are commonly called Itô 

integrals will be introduced. In order to derive the Black-Sholes formula, the stochastic integral 
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is defined. If X(t) is a constant, c, then: 
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Substituting dS for μSdt+σSdB,the result is , 

 dV(S ,t)= 
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 where r is the risk-free interest rate. Substituting the expressions for dπ and π gives:  
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and  
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The Black-Scholes, the call option, model is given by:  

C(S,t)= SN(d1) – Ke-rtN(d2) 

 where C(S,t) – is the theoretical call premium, S – the current stock price, t – time until option 

expiration, K – option striking (or exercise) price, r – risk-free interest rate (or the drift), N – 

cumulative standard normal distribution, e – exponential term (2.7183), 

 d1= 
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Since the investment decision is based on cost of mining the estimated block (Cp), that is, if C 

>CP, the decision will be to mine, if C <Cp, the decision will be not to mine. With the critical 

look at the results of C, the decision is that mining will take place over the period of the first five 

(5) years if the base price of the estimated gold is $3933781.143. However the maximum 

revenue is more likely at the end of the expiration period (that is, in the fifth year). 
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CHAPTER 4 

DATA ANALYSIS AND RESULTS 

4.0 Introduction 

In this chapter, the exploratory data - secondary (including some basic information on parameter 

values) which is available to Goldfields Ghana Limited (from site, Teberebie Cut3 of the mine) 

was collected for analysis. The detail of the data available for geostatistical analysis include: 

average grade of gold (assayed values, in g/t) per each drill hole of 50, spacing of drill holes (in 

metres), coordinates (x, y) of each drill hole location (otherwise known as easting and northing). 

For evaluation of the geostatistical estimates and decision making analysis, the cost per ounce of 

gold was collected.   

The other vital information that was collected includes; specific gravity (ρ) of the commodity 

(this is standard for gold, 19.3t/m3), pit limit (depth) and the current world market price of gold. 

The area of site over which the data was taken, volume of commodity recoverable, quantity (both 

in grams and ounce) of gold recoverable, were computed from the information available.  

In order to make a decision, the time until the expiration of the contract was noted, the current 

price of the estimated gold was used as the base price. With this base price, other five sensitivity 

cases were analyzed. The cost of purchasing the site (mine), projected cost of land reclamation as 

well as initial outlay to initialize the investment was collected (this information will form the 

basis for the strike price when using the Black-Scholes, call option, model). 
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4.1 The Area of Study 

Goldfields Ghana Limited is currently undertaking surface mining with its concession spreading 

over 176km2 and which is located to the north  and northwest of the town of Tarkwa in the 

Western region of Ghana. In August 2000, the Tebrebie concession was acquired as part of the 

mine. This statistics on the site was necessary, especially to management, because management 

was considering the expansion of the mine. Fig. 4.1 is the map of Southern Ghana showing the 

location of Tarkwa and the concession of Goldfields Ghana Limited (GFGL). 

Fig 4.1: The map of Southern Ghana showing the Tarkwa township and the concession of 

GFGL.  
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 4.2 Geostatistical Data Analysis 

The data (secondary) for geostatistical analysis which was collected from the site, on 13th Dec, 

2011 by Mr Agbati Sebastian (senior staff in charge of drill and blast operations) is found in 

table 4.1a of APPENDIX K. It contains the easting and northing co-ordinates of the locations 

with their respective average grade of gold realized from the assay. Table 4.1b below, however, 

shows the parameter values for evaluation of geostatistical estimates and decision analysis.    

The analysis of the data was done using MATLAB software to estimate averages, construct 

semi-variogram, compute kriging values, and obtain results for decision analysis using the 

Black-Scholes (call option) model. Figure 4.2 depicts the data points on the field indicating the 

ten points that are used to estimate block 1 (25x50). In the geostatistical data analysis, the 

following assumptions are made: 

I. Isotropy – the grade distribution is independent of direction. 

II. Drilled holes are equally spaced. 

Table 4.1b Parameter values for evaluation of geostatistical estimates and decision analysis 

specific gravity of gold 19.3t/m3 
pit limit (thickness or depth) 30m 
area of site 5000m2(50X100) 
Block size 50x25=1250m2 
Cost of initial outlay per block $42000000 
Cost of purchasing site (includes cost of land reclamation)- per block $106123856.1 
cost per ounce of gold $540 
current price per ounce of gold (3rd Jan. 2012) $1600.20 

 



50 
 

  

 

4.2.1 The Semi-variogram of Field Data 

Here, the omnidirectional semi-variogram is considered since that reveals the average behavior 

of the distribution. This is shown in figure 4.3. 

block 4 block 3 

block 2 block 1 

P1 

P41 

P10 

P50 

P12 P13 P14 P15 P16 P17 P18 P19 

P22 P23 P24 P25 P26 P27 P28 P29 

P32 P33 P34 P35 P36 P37 P38 P39 

PE1 PE2 

PE4 PE3 

P6 P5 P7 P8 P9 P2 P3 P4 

P31 

P21 

P11 P20 

P30 

P40 

P42 P43 P44 P45 P46 P47 P48 P49 

Fig 4.2: Data points of the field at Teberebe Cut3 of Goldfields Ghana Limited 
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4.2.2 Application of Ordinary Kriging to Field Data 

In the kriging process ten sample points are used to estimate the grade at point, PE1 (which 

represents the average grade of block 1), with co-ordinates (251,139) as indicated in fig 4.2. The 

distances between the selected sample points (including point, PE1, to be estimated) are shown 

in table 4.2. 
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Figure 4.3: The semi- variogram of grade distribution 
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Table 4.2 Distances between selected sample points  

 
P2 P5 P10 P11 P18 P27 P31 P38 P43 P50 PE1 

P2 0.00 88.39 32.45 92.66 25.08 21.02 12.37 24.04 163.53 107.47 133.45 

P5 88.39 0.00 100.18 76.38 111.40 183.86 98.67 71.28 86.31 118.07 122.64 

P10 32.45 100.18 0.00 77.01 25.96 18.03 24.74 53.26 161.90 80.40 109.90 

P11 92.66 76.38 77.01 0.00 101.55 73.41 94.37 95.19 94.59 43.38 48.47 

P18 25.08 111.40 25.96 101.55 0.00 30.61 13.04 48.84 181.60 106.07 135.86 

P27 21.02 183.86 18.03 73.41 30.61 0.00 21.10 36.88 151.01 86.47 112.64 

P31 12.37 98.67 24.74 94.37 13.04 21.10 0.00 36.40 170.70 104.02 132.02 

P38 24.04 71.28 53.26 95.19 48.84 36.88 36.40 0.00 152.62 118.68 140.51 

P43 163.53 86.31 161.90 94.59 181.60 151.01 170.70 152.62 0.00 131.03 112.38 

P50 107.47 118.07 80.40 43.38 106.07 86.47 104.02 118.68 131.03 0.00 33.42 

PE1 133.45 122.64 109.90 48.47 135.86 112.64 132.02 140.51 112.38 33.42 0.00 

From the semi-variogram in fig 4.3, the range, a, = 30m, the nugget variance, C(0), =3.0 and the 

covariance is given by:  

C(h) =3.0-3.0*(1.5*(h/30)-0.5*(h/30).^3) ………….. (4.01) 

 Thus, using the actual distances (h) between the sample points computed from their co-ordinates 

in Table 4.2, the following system of data covariance matrix is generated.  

c = (115.02,87.08,60.26,2.06,121.94,65.50,111.03,136.04,64.99,0.06,1.00)T  
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            3.00   28.11   0.03   33.30    0.11   0.36      1.25   0.17   221.42   55.84     

              28.11    3.00   43.83   16.30   63.09   320.72   41.57   12.43   25.77   76.73    

               0.03    43.83    3.00    16.82    0.08    0.62    0.13    3.40   214.47    19.81    

              33.30      16.30   16.82    3.00   45.95    13.97   35.54   36.64   35.83   1.03  

B=        0.11   63.09    0.08   45.95   3.00    0.002   1.17   2.15   308.48   53.39   

              0.36   320.72    0.62    13.97    0.002    3.00   0.36    0.25   171.66    25.95   

               1.25   41.57    0.13   35.56    1.17    0.36   3.00    0.22   253.73    49.93   

                0.17    12.43    3.40   36.64    2.15    0.25    0.22    3.00   177.60   78.06   

           221.42   25.77   214.47   35.83   308.48   171.66   253.73   177.60   3.00   108.33  

               55.84   76.73    19.81   1.03   53.39     25.95   49.93   78.06   108.33   3.00    

 

                        3.00   28.11   0.03   33.30    0.11   0.36      1.25   0.17   221.42   55.84   1.00  

                   28.11    3.00   43.83   16.30   63.09   320.72   41.57   12.43   25.77   76.73   1.00   

                      0.03    43.83    3.00    16.82    0.08    0.62    0.13    3.40   214.47    19.81    1.00  

                    33.30      16.30   16.82    3.00   45.95    13.97   35.54   36.64   35.83   1.03   1.00  

                       0.11   63.09    0.08   45.95    3.00    0.002   1.17   2.15    308.48    53.39    1.00 

B1=          0.36   320.72    0.62    13.97    0.002    3.00   0.36    0.25   171.66    25.95   1.00 

                      1.25   41.57    0.13   35.56    1.17    0.36   3.00    0.22     253.73    49.93    1.00 

                     0.17    12.43    3.40   36.64    2.15    0.25    0.22    3.00   177.60   78.06      1.00 

           221.42   25.77   214.47   35.83   308.48   171.66   253.73   177.60   3.00   108.33   1.00 

                  55.84   76.73    19.81   1.03   53.39     25.95   49.93   78.06   108.33   3.00     1.00                                                                                                                                                                                                                                                                   

                  1.00    1.00     1.00     1.00   1.00     1.00    1.00    1.00    1.00     1.00     0.00 
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The Lagrange multiplier (μ) and weights (wi) assigned to each of the sample point are computed 

as, W1 = (w2 w5 w10 w11 w18 w27 w31 w38 w43 w50 μ)T = inv (B1)*c. 

W1= (0.27, 0.0002, -0.43, 0.07, -0.02, -0.05, 0.16, -0.48, 0.13, 1.36, 7.74)T 

The estimate at PE1 is given by: PE1=sum (Wi .*gi) = 3.86g/t. Average (mean) grade of the 50 

sample locations, AVG,= sum (gi)/50, where gi represents the grade at the ith sample location. 

Using MATLAB software, AVG =2.43g/t. The residual at each of the ten (selected) points is 

given by: Ri =gi – AVG. Table 4.3 shows the summary of residuals at the selected sample points.   

Table 4.3 Summary of residuals at the selected sample points 

selected point 
(Pi) 

grade realized 
(gi) Residual (Ri) 

p2 1.25 -1.18 
p5 2.33 -0.1 

p10 1.84 -0.59 
p11 0.81 -1.62 
p18 3.43 1 
p27 2.2 -0.23 
p31 3.22 0.79 
p38 1.1 -1.33 
p43 2.89 1.46 
p50 3 0.57 

 

The estimated residual (RE) from the mean of the area under study is given by: 

RE=sum(Wi*Ri)=w2R2+w5R5+ w10R10 +...+w50R50 = 1.56g/t.  

The estimated grade of the block under study,  

Z˚
E = AVG +RE = 2.43 +1.56 = 3.99g/t. 

The kriging variance,  
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σ2
E =σ2

max- 
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4.3 Decision Analysis of Data 

As stated in chapter three, the Black-Sholes (call option model) shall be used to compute the 

common parameters available for decision analysis on the mining project. 

The parameters include, stock price (S) - the base case and sensitivity cases, exercise price (K), 

interest rate (r), volatility (σ) of gold price (see figure 4.4) and time (t) until expiration. 

 The Black-Sholes (call option model) is revisited: 

C(S,t)= SN(d1) – Ke-rtN(d2)  

However, d1= 
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Computation for the base case over a period of five years 

(When price of gold is $1600.20 per ounce): 

End of year 1 (time, t = 1) 

d1= 
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d1 =
 

 

 



59 
 

 N (d1)= 0.97982 

d2= d1- 

 

 

 =
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End of year 3 (time, t=3) 

d1 =
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Sensitivity case 2: (When the price of gold is around $1000 per ounce) 

End of year 1 (time, t=1) 

d1 =
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End of year 4 (time, t=4) 

d1 =
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End of year 2 (time, t=2) 

d1 =
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End of year 5 (time, t=5) 

d1 =

 

 

 



65 
 

End of year 3 (time, t=3) 

d1 =
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Sensitivity case 5: (When the price of gold is around $700 per ounce) 

End of year 1 (time, t=1)  

d1 =
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End of year 4 (time, t=4)  

d1 =
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Table 4.4: Summary of Project Call Option valuation Analysis 

  
Sensitivity Cases 

  Base Case  #1 #2 #3 #4 #5 
common parameters:             

stock price ($) 165,035,634.9 123,761,256 103,134,380 92,820,942  82,507,504 72,194,066 

exercise (strike) price ($) 148123856.1  148123856.1    148123856.1   148123856.1   148123856.1   148123856.1  

interest rate (%)  28%  28%    28%   28%   28%   28% 

price volatility (%) 18.4%  18.4%    18.4%   18.4%   18.4%   18.4%  

first year time horizon cases              

option value ($) 58,839,000  26,495,000  14,229,000  9,465,000  5,728,000  3,054,000 

Decision invest  Not invest   Not invest   Not invest   Not invest   Not invest  

second year time horizon case             

option value ($)  85,272,000  49,031,000  32,894,000  25,596,000  18,676,000  13,198,000 

Decision  invest   Not invest   Not invest   Not invest   Not invest   Not invest  

third year time horizon cases             

option value ($)  104,520,000  66,248,000  48,248,000  39,701,000  31,591,000  24,020,000 

Decision   invest    invest    Not invest    Not invest    Not invest    Not invest  

fourth year time horizon cases             

option value ($)  119,190,000  79,629,000 60,771,000  51,547,000  42,583,000  33,965,000 

Decision    invest     invest     invest   Not invest   Not invest   Not invest  

fifth year time horizon cases              

option value ($)  130,070,000  90,122,000 70,503,000  60,869,000  51,402,000  42,160,000  

Decision     invest      invest      invest      invest   Not invest   Not invest  

 

Note: The decision to mine (invest) or not to mine (not invest) is in respect with the cost of 

mining the estimated block of the mineral bearing rock (that is, $55,692,565.20). 
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CHAPTER 5 

 CONCLUSION AND RECOMMENDATIONS 

5.0 Introduction 

This chapter seeks to present the findings from the rigorous analysis of the geostatistical data as 

well as the decision analysis process; all pointing to managing the risk and establish the 

commercial viability of a discovered gold deposit of a mine in the western region of Ghana. The 

methods and models employed in the analysis assist in quantifying and presenting to 

management (decision makers) the various investment options. 

The findings from the geostatistical analysis (which employed semi-variogram plot and kriging) 

reveal that the area under exploration would yield 3.99g/t and 2.89tons (or 103134.38 oz) of gold 

being the quality and quantity respectively, with volatility of 35.16.  

Monitoring the world market price (of gold) and its (price) volatility closely, and with the careful 

application of the Black-Scholes model, the appropriate decision is taken.          

5.1 Conclusion 

The carefully application of the Black-Scholes model to the geostatistical estimates yielded the 

results in Table 4.4 from which the following conclusion is drawn: 

i. The mining venture is lucrative from year1 up to the time until expiration under the base 

case (that is, when gold price is $1600.20 per ounce). Investment is recommended. 

ii.  For the sensitivity case 1 (that is, when gold price is around $1200 per ounce), 

investment may take place in the third, fourth and fifth years. Investment should not be 

made in first and second years. 
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iii. For the sensitivity case 2 (if gold price per ounce is around $1000), investment may take 

place in the fourth and fifth years. Investment should not be made in the first three years 

of the contract. 

iv. For the sensitivity case 3 (if gold price per ounce is around $900), investment should not 

be made in the first four years of the contract. Investment could take place in the fifth 

year.    

v. Sensitivity cases, 4 and 5, indicate clearly that mining will not be profitable if the price of 

gold falls to a value around $800 per ounce and below.  

vi.  At a price of $800 per ounce of gold, the cut-off grade should be higher than 3.99g/t.   

vii. Investing into the mining of gold involves a huge capital outlay. Especially when one 

refers to the monetary values quoted (calculated) in dollars.          

viii. The investment opportunity brightens with increasing expiration time of the contract. 

5.2 Recommendation  

After a thorough analysis of the data and the findings, this thesis suggests that: 

i. The mining company should intensify the use of geostatistical model in its mining 

operations in order to produce more reliable estimates.  

ii. The management should consider the use of Black-Scholes model in its decision making 

analysis. This would help decision makers to ascertain exactly when within the contract 

period to invest in order to make an optimal profit. 

iii. Further research should be made into the topic, especially in the area of anisotropy and 

the use of modified forms of Black-Scholes model. This is because grade distribution 

may generally be influenced by direction, and the modified forms of Black-Scholes could 
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also help overcome the limitations associated with the Black-Scholes model itself. This 

could help produce quite authentic results for more reliable decision to be taken. Some 

few examples of the modified forms of the Black-Scholes that could be looked at include: 

continuous dividend yield model, discrete yield model, time dependent parameters and 

transaction cost. 
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APPENDIX A 

S=E

 

 

…………………………………………………………………..(3.70)  

 t=T- 
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APPENDIX B 
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APPENDIX C 

The terms in u and 

 

 

 can be eliminated by carefully choosing values of α and β such that β=α2 

+ (k-1)α-k and 2α+k-1=0. Thus, α=
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APPENDIX D 
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APPENDIX E 

where 
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APPENDIX F 

According to Ӧmür (2008), let us denote by VC(S, t) and VP(S, t) the values of the European call 

and put options respectively. Then the payoff functions are:  

 VC(S, t) = max {S-K, 0}    …………………………………………… (102) 

VP(S, t) = max {K-S, 0}    …………………………………………….  (103) 

Similar calculations for equation (3.101) shows that the value of a European put option VP(S, t) 

can be written as: 

VP(S, t) =  
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APPENDIX G 

% computes 2D variogram {directional or omnidirectional} 

% copyright alghalandis.com | Younes Fadakar Alghalandis 

Function[h,g,c]=variogram(x,y,v,nL,dir,td) 

n=numel(x); 

t=zero (n*(n-1)/2, 1); 

r=t; 

k=1; 

for 0=1:n-1    % computes distances and angles 

for p=0+1:n 

   dx=x(p)-x(0); 

dy=y(p)-y(0); 

t(k)=atan2(dy,dx); 

r(k)=sqrt(dx^2+dy^2); 

k=k+1; 

end 

end 
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APPENDIX H 

L=max(r)/nL   % initialize lag length 

g=zeros(1,nL)   % initialize gammas with zeros 

c=g;    % and count of pairs 

b=1; 

ta=deg2rad(td);  % degree to radian 

for a=deg2rad(dir) 

for s=1:nL 

h=s*L; 

th=L/2; 

k=1; 

q=0; 

g(b,s)=0; 

c(b,s)=0; 

for 0=1:n-1   % computes variogram for different h’s 

for p=0+1:n 

if (abs(r(k)-h) & 1t;=th) && (abs(t(k)-a) & 1t;=ta) 
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APPENDIX I 

g(b,s)=g(b,s)+(v(p)-v(0))^2; 

q=q+1; 

end 

k=k+1; 

end 

end 

g(b,s)=g(b,s)/(2*g); 

c(b,s)=q; 

end 

b=b+1; 

end 

h=(1:Nl)*L;  % returns lags as h vector 

Note: the above function has to be saved as separate file variogram.m according to matlab rule 

which requires the name of defined function and the container file to be exactly the same. 

It can now be used in the main code as presented in the following example; 

[X,Y,V]=textread(‘xyv.txt’); % reads data into variable vectors  
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    % xyv.txt is a tab-delimited text format data file without headers 

Vr=var(v);   variance of the variable of interest 

[h,g,c]=variogram(X,Y,V,30,0,90); % computes variogram 

Plot(h,g,’0-‘,[0,max(h)],[vr,vr],… % draws the variogram and a line of variance 

‘r--‘,’Linesmooth’,’on’); 

x label(‘h(distance in m)’);  % label for x axis 

y label(‘\gamma’);    % label for y axis 

title (‘variogram’);   % title of the chart 

grid on;    % show grids 

(Source: alghalandis.com). 
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  APPENDIX K 

Table 4.1a Data for geostatistical analysis. 

drill hole 
no. 

easting (x-
cordinate) 

northing (y-
cordinate) grade (g/t) 

1 213 126 2.91 
2 118 128 1.25 
3 131 147 1.22 
4 204 129 1.79 
5 151 210 2.33 
6 106 132 1.1 
7 149 216 1.46 
8 259 146 1 
9 214 212 3.9 

10 145 110 1.84 
11 206 157 0.81 
12 233 257 2.66 
13 254 247 2.3 
14 154 137 1.47 
15 223 305 0.05 
16 217 236 0.1 
17 201 244 3.3 
18 120 103 3.43 
19 119 113 2.12 
20 100 114 3.6 
21 124 120 4.2 
22 128 123 2.8 
23 144 135 3.92 
24 132 143 1.75 
25 148 140 5.4 
26 138 230 4.93 
27 139 127 2.2 
28 246 222 4.5 
29 234 112 3.89 
30 220 109 1.86 
31 121 116 3.22 
32 312 216 0.09 
33 215 310 1.72 
34 304 200 3.79 
35 195 122 1.5 
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36 220 220 1.98 
37 238 341 1.2 
38 111 151 1.1 
39 316 208 2 
40 242 98 2.8 
41 246 277 3.55 
42 224 317 4.4 
43 228 249 2.89 
44 292 154 1.71 
45 317 212 0.87 
46 339 236 1.51 
47 196 226 4.2 
48 119 155 3.9 
49 241 323 1.85 
50 225 118 3 

Spacing of drill hole: fairly regular (10m) apart  

 

 


