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ABSTRACT  

Average value options or Asian options have been priced using geometric and arithmetic averages of the 

underlying asset. However, these methods do not give accurate results especially in very low volatility 

regimes. In this study, we develop a new option pricing model based on the modal average of the underlying 

asset to price options. Using data from the NASDAQ in the United States of America we use the proposed 

model to price options sold on some stocks listed on the exchanges using  software. The results 

consistently showed that for volatilities less than 3% of the underlying asset, the modal average option 

pricing model gives a better option price when compared to existing average option pricing models. 

Moreover, the modal average consistently does better at all levels of volatility when compared to the Black-

Scholes model. We further proved analytically that the modal average model indeed does better than the 

geometric or arithmetic average models especially for low volatility stocks.  
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CHAPTER 1  

INTRODUCTION  

1.1  Background to the Study  

Derivative pricing has become an important aspect in financial engineering in recent years. Option 

pricing in particular gained prominence in the early 1970s when the mathematical foundations of 

the theory was finally pinned down by Samuelson, Merton, Fisher Black and Myron Scholes. More 

often, derivatives are priced based on an underlying asset and therefore involves the determination 

of the distribution function of the underlying asset. The assets may be stocks or shares listed on a 

stock market, commodities such as crude oil, coffee, cocoa, a currency such as the United States 

dollar, Great British Pound, or possibly the Ghanaian Cedi. Trading in derivative instruments is 

predominantly popular in European and American markets but recently, as the economies of 

developing countries begins to grow, interest in derivative instruments have increased as 

governments and corporates realise that they can no longer rely on traditional exports for growth. 

In the light of this it is of vital importance that financial instruments with the capacity to generate 

growth and create wealth are thoroughly explored. One such instrument is options.   

Options have been traded or engaged in directly or indirectly for more than millennia. Thales of 

Miletus is the first person recorded to have traded in options. As a philosopher he was able to read 

the stars and predict the amount of rainfall for the coming year. He would then go round his village 

and place a deposit for the use of olive presses. When heavy rains was realised and the harvest was 

good the demand for the olive presses will sour and Thales would then hire the presses out charging 

higher fees and making substantial profits. It must be noted that the deposit only gave Thales the 

right but he was in no way obliged to hire the presses and this is what actually distinguishes options 

from other derivatives such as forwards and contracts. If the harvest fails, his losses were limited 
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only to the initial deposit he has paid; Thales has purchased the first option with olive presses as 

underlying assets. Today, the underlying assets or securities are no longer olive presses but 

financial instruments such as stocks, equities, bonds, indexes, currencies, futures and other 

commodities. One significant advantage options trading has over other derivative instruments is 

that it has the possibility of making large profits with small sums of capital outlays. Such a trading 

instrument should be particularly more attractive to African countries where income levels are 

relatively low and people have less to invest.   

  

1.1.2 Option Classification  

Options can be classified according to the time the option is exercised or how the underlying asset 

is computed. The most commonly traded options are European and American options. A  

European option is an option that can be exercised only on the date that the option expires. An 

American option on the otherhand is exercised at any time before the option expires. These two 

options are usually referred to as Vanilla options. The other options types are called Exotic options. 

These are path dependent options whose values or prices depend on the averages or the functional 

behaviour of the underlying asset at some point in the option’s life. Exotic options include:  

• Asian option  this is an option whose value is determined by the average price of the 

underlying asset over the period of the option’s life. This average could be arithmetic or 

geometric or a form of some other average. If the strike price in the Asian option is replaced 

by the average, it is called Asian strike option.  

• Barrier option − in a barrier option, the underlying asset price must exceed a certain barrier 

before it can be exercised.  
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• Lookback options − in the lookback option, the price of the option depends on the maximum 

or minimum value of the price of the underlying asset.  

• Binary option − this is an option whose value depends on the underlying asset satisfying a 

defined condition on expiration.  

• Compound options − this is an option whose underlying instrument is also an option.  

• Bermudan option − this is an option that can be exercised only on a pre-specified dates on or 

before expiration.  

1.1.3 Analytical Valuation of an Option Price  

The theory of option pricing had its roots in the 1900’s when the French Mathematician, Louis 

Bachelier provided an analytical valuation for stock options based on the assumption that stock 

prices follow a Brownian motion process. However, it was not until 1973 that the option pricing 

theory gained international acclaim when Fisher Black and Myron Scholes published a seminal 

paper in which they outlined a procedure to obtain a closed−form formula to compute the prices 

of European calls and puts. The underlying premise of the theory was that by constantly adjusting 

the proportions of stocks and options in a portfolio, an investor can create a riskless portfolio where 

all market risks are eliminated. In the same year, the “Theory of Rational Option Pricing” was 

published by Merton in which he examined the option pricing methodology introduced by Black 

and Scholes. Merton (1973) provided an alternative derivation of the Black−Scholes formula by 

relaxing some of the assumptions in the Black−Scholes model and hence his model provided a 

more useable formula than the original model.   

The model eventually became known as the Black−Scholes−Merton (BSM) model. Merton’s 

paper provided several extensions of the Black−Scholes model including introducing dividend 

payments on the stock. The basic idea of Black, Scholes, and Merton models was to construct a 
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portfolio from risky stock and a riskless bond or cash that yields the same return as a portfolio 

consisting only of an option. The stock which is risky because of uncertainty in its price process 

is assumed to follow the lognormal distribution and modeled as a stochastic process but the bond 

or cash, assumed to carry no risk is modeled as a deterministic process.   

  

Cox et al. [1979], outlined an approach in which the possible stock price paths were represented 

in a binomial tree diagram. The hallmark of the model is that it is possible to present in a discrete 

form the stock price process of an option. By discretizing the Brownian motion process, the option 

price is presented as a simple random walk in a binomial tree.  The price of the option is then 

computed at each node of the trees, starting from the price at maturity and working backwards to 

the present value of the option. The tree method is good for derivative pricing especially for path 

dependent options where there are possibilities of early exercise since it is now possible to 

condition the option at each node of the tree. In addition, the probability measure is discrete and 

hence the binomial tree formula provides a more accurate approximation of the movement of the 

underlying asset. Several other quantitative techniques have since appeared but the BSM and the 

CRR models remain the fundamental models of option pricing− the BSM model suited for pricing 

options in continuous time, the CRR suited to discrete time modeling.   

  

 

.  

1.1.4 Averaged Value Options  

Average Value options or as it is known elsewhere, Asian options, are options whose price is 

determined based on the average price of the underlying stock or asset. Asian options were 
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introduced into the oil market in the late 1970’s in Asia whence it earned its name. Compared to 

European options, Asian options are often cheaper and better suited to hedging purposes. In 

addition, they can also reduce the risk of price manipulations especially near the option’s maturity 

date. The only downside to Asian options is that they are hard to price. In the discrete case for 

instance, if the binomial model approach is used to price the options, it is necessary to keep track 

of 2𝑛 possible paths or the sample space has 2𝑛 elements, where 𝑛 is the number of periods. This 

makes it very difficult to examine if 𝑛 becomes large. On the otherhand, in the continuous case, if 

the underlying assets are assumed to have a lognormal distribution as in Black Scholes model then 

the arithmetic average does not have a known distribution since the average is a sum of correlated 

lognormal random variables. This complicates the quest for a closed form pricing formula. In this 

study, we shall explore the possibility of developing a model in the Asian option style. We are 

motivated to investigate further into options priced on averages since we believe that their robust 

features makes them better suited for African markets than their European and American 

counterparts which are more susceptible to price manipulations.  

  

  

  

  

  

  

1.2  Statement of the Problem  

The use of averages of the underlying asset to price options has seen considerable investigation by 

researchers and different methods have been suggested to analyze the average. Averaging includes 
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discrete and continuous averages and the strike price of an Average Value options is formed by 

the aggregation of the underlying asset price during the lifetime of the option. Discrete averages 

are computed at finite time intervals and the stock price is taken at a set of regularly spaced time 

points. In contrast, pricing continuous Average Value options is obtained by computing the 

average via the integral of the underlying price path over an interval of time. To the best of our 

knowledge no general analytical solution to price arithmetic average options is known and as such 

several numerical methods have been proposed to solve the arithmetic average problem. In 

addition, arithmetic and geometric averages are not a satisfactory description of the stock price 

path especially for stocks where prices remain stagnant or assume a certain price for long periods. 

This situation results in very low volatility for the stock and using the arithmetic or geometric 

average is unsuitable to provide a true representation of the stock price path. Thus, we establish 

the following:  

• Arithmetic and Geometric averages are currently used to price Average Value or Asian 

options.  

• Arithmetic and Geometric averages are unsuitable to offer true statistical information of 

the price path of the underlying asset especially for very low volatility stocks.   

• Markets in developing countries are associated with extremely low volatilities. The use of 

a modal average for such cases will perhaps provide a true price path representation for 

low volatility stocks.  

  

1.3   Objectives of the Study  

The general objectives of the study is to develop an alternative approach to price path dependent 

options and to establish a model to numerically evaluate an underlying asset whose average cannot 
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be accurately captured or completely defined by existing methods of using arithmetic and 

geometric averages. The specific objectives of this study are:  

• To develop a new option pricing model based on the modal average of the underlying  

asset.  

• To use the model to price options on stocks listed on some stock exchanges   

• To compare the option prices obtained from the modal average to option prices obtained 

using arithmetic average, geometric average, the median average as well as the Binomial 

and Black−Scholes−Merton models.  

• To analytically show that the modal average model is a superior model compared to the 

existing model for low volatility assets  

  

1.4  Methodology  

We develop and present a simple new approach to price Average Value options from the premise 

of probability spaces and systematically develop an algorithm that prices an option using a stock 

as the underlying asset. Our fundamental view is to derive the option price based on an underlying 

asset whose price movement is captured as a realization of the price event in a measurable space, 

admitting a level of uncertainty in an economy equipped with a filtration, viewed as information 

available at time 𝑡 and on which is defined a probability measure. Throughout the text we will 

assume an efficient market with continuous trading, constant risk−free interest rate and no 

transaction cost to both buyers and sellers. In otherwords, we will assume that our model survives 

in the Black−Scholes world. Thus, we are basically concerned with European style option whose 

underlying stock is averaged over a specified time period. In particular, we will assume the stock 

price to be stochastic and modeled by the Geometric Brownian Motion (GBM) with both mean 
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and volatility assumed to be constant. Through risk−neutral pricing we are able remove the mean 

or drift by assuming a complete market in which there are no arbitrages and subsequently the 

existence of an equivalent martingale measure. That leaves us to determine the volatility. Volatility 

can be determined using historical volatilities or using the volatilities of options being traded on 

the market. This method assumes the availability of options prices in the market but options are 

currently not sold on the Ghanaian market so we do not have these prices available. Thus, in the 

case where we would like to price option on Ghanaian stocks we may not have the option prices 

available in the market. For this reason we shall use historical volatilities which we will estimate 

from empirical stock price data. Using the computed volatility we will develop the model based 

on an underlying stock asset existing in a risk neutral world where under equivalent martingale 

measures the discounted stock price is a martingale. Based on the extreme value concept we will 

determine the maximum of a function and proceed to derive a method for the modal average of 

the underlying asset price using a numerical procedure. Daily stock price data is obtained from the 

Nasdaq. From the data we compute annual volatilities of the stocks and using ℛ we simulate the 

stock price process for the coming year. From the simulated stock price we compute the stock 

price using arithmetic, geometric, median and modal averages.  

  

  

  

1.5  Significance of the Study  

There have been numerous efforts to develop alternative pricing models that are capable of 

capturing the unique features of some assets found in certain financial markets and subsequently 

use these models to develop option prices that better reflect the behaviour of the underlying asset. 
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The development of an option pricing model in which the underlying asset is based on its modal 

average will provide an accurate model for options where the mode is a better representative of 

the average than the other average measures. This will improve the fit to observed stock prices 

especially in certain African markets where prices of assets (especially stock prices) have very low 

volatilities. This study thus practically develops a model which provides us with a more realistic 

approach to value options on stocks that have low volatilities. The other principal contribution of 

this work is also to establish the development of option price from the perspective of abstract 

spaces and systematically illustrate the comprehension of an option value from the premise of a 

probability space. This approach thus provides new insights into the mathematical structure of 

option valuation and the application of the derived model allows us to solve a previously 

unresolved problem, the valuation of options on extremely low volatility stocks. The paper’s other 

contribution will be to demonstrate the use of the frequencies of the stock price rather than the 

actual stock price in option valuation. This is significant as it will eliminate the need for assumption 

of a distribution function as an approximation of the underlying asset. In addition, the paper 

provides an analytical explanation of why the modal average is a more suitable model for pricing 

options when underlying asset has low volatility.   

  

  

  

1.6  Organization of the Study  

This work is structured as follows: Chapter 1 gives introduction to the study; the problem 

statement, the gap in literature the study aims to bridge and a brief outline of the methods we will 

use to achieve this. The objectives of the study and its significance are also outlined. Chapter 2 
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reviews the existing literature on option pricing models focusing extensively on Average Value or 

Asian options. Chapter 3 introduces essential mathematical concepts especially in stochastic 

calculus and gives a broad outline of the theories required in derivative pricing including measure 

theory. Chapter 4 gives a rigorous treatment of continuous option pricing models including 

derivations of the famous Black−Scholes−Merton model using partial differential equations. In 

addition, the Binomial tree model is treated as an example in discrete time.  

Emphasis is however given to the various Average Value option pricing models. Chapter 5 is Main 

Results 1 and it outlines the theoretical development of deriving a modal average for the 

underlying asset and developing a numerical algorithm to evaluate it. We proceed to obtain a 

pricing model for the option using the modal average under equivalent martingale measures. 

Chapter 6 is Main Results II and comprises of numerical results using Monte Carlo simulation in 

ℛ for stocks listed on and the Nasdaq. In addition, graphical outputs and comparative analysis of 

the option prices using the averages methods and closed form models are given. Discussion of 

results follows in Chapter 7, where we give a theorem to back our argument for a modal average.  

Conclusions and recommendations are given in this chapter.  

  

  

 

.  

CHAPTER 2  

LITERATURE REVIEW  
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2.1  Introduction  

In derivative valuation, the price of an option is based primary on the underlying asset. The price 

of an option is therefore dependent on how the underlying asset behaves. In this study, we will use 

a stock price as the underlying asset in pricing options and as such we will begin the literature by 

looking into studies on stock price behaviour. The foundations for the use of stochastic process as 

a means of predicting and forecasting stock price behaviour were laid down by Louis Bachelier 

who developed the first mathematical model of a stock’s price and tested the model by using it to 

price options. Bachelier evaluation assumed that the stock price process distribution can be 

captured as a Brownian motion process. Modelling stock price as Brownian motion process means 

that the price increments are normally distributed and it follows that negative stock prices are 

possible. Despite this Bachelier’s model is widely considered as a landmark in the history of stock 

price modeling and it has had great influence on the whole development of stochastic calculus and 

financial engineering. Its use has recently resurfaced; Schaefer (2002) priced and hedged European 

options on future spreads using the Bachelier spread option model.   

There was a lull in the development of stock price modeling until the 1960’s when interest in 

options stimulated further investigation of stocks price behaviour. Bachelier thesis was actually 

unearthed by Samuelson in 1965, after he personally rediscovered the virtually forgotten thesis 

hiding in the archives of Harvard University library. Studies in predicting the behaviour of the 

stock price continued however. Kendall (1953) statistically analysed the stock market behaviour 

of the British stock indices and found that the changes in prices were generally random and each 

outcome was independent of the past. Osborne (1959) studied stocks on the NYSE and found that 

the changes of logarithm of stock prices were nearly normally distributed. Osborne inferred that 
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the losses and gains should be measured by changes in logarithms and redefined Bachelier model 

by using the logarithm of Brownian motion process to model the stock price process.  

Roberts (1959) discussed what he termed “the Chance Model” and concluded that stock price 

patterns familiar in technical analysis could be generated by using random numbers. It was French 

(1965) who premised the behaviour of a stock price to the notion of a random walk. The key idea 

was that changes over time in stock prices could only occur in response to the arrival of new 

information as any previously available information would have already been reflected in the price. 

Thus, stock prices already contain all the information regarding the business. However, because 

information arrives randomly, stock prices have to fluctuate randomly leading to the idea of a 

random walk. These ideas burgeoned into efficient markets hypotheses in which current prices 

fully reflect all available information. The limiting function of the random walk is the Brownian 

motion process on which Bachelier had proposed in his stock price model. Using  

Brownian motion to model stock prices means that the increments are normally distributed. 

However, in stock price modeling we are interested in the stock’s return rather than the price 

increments. For this reason the important aspects of the price increments are the percentages or 

ratios rather than the arithmetic differences. By working with ratios or percentages instead of 

algebraic differences, we consider logarithmic or percentage changes to be subject to uniform 

probabilities. This means that the first differences of the logarithms of prices are distributed in the 

usual absolute Brownian motion way. Since the arithmetic mean of logarithms is geometric mean 

of actual prices, this modified random walk is called Geometric Brownian Motion.   

In effect, Samuelson suggested that since we are interested in the stock return the percentage 

increments must be independent rather than the arithmetic differences and introduced Geometric 

Brownian Motion (GBM) as a model for the evolution of the stock price. Under the GBM, the 
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logarithm of the percentage changes are normally distributed and stock prices cannot be negative. 

The GBM is a more representative model for stock prices because if stock prices can be negative 

then it follows that investors will lose more that their investments in case of corporate bankruptcy. 

But this is not the case, stocks possess limited liabilities and as soon as a stock’s price falls to zero 

it is declared insolvent and taken out of the market investors are not liable for corporates 

liabilities. Even then, GBM does not give a complete description of the behaviour of a stock price 

as it fails to exhibit jumps caused by a sudden announcements or unpredictable events. In addition, 

it assumes a constant volatility for the stock price although in reality volatility is stochastic. As we 

shall observe later stochastic volatility and jump price models have recently been comprehensively 

examined. Despite these uncertainties, most financial engineers and economists have accepted the 

GBM as a model for stock behaviour because it is everywhere positive in contrast to Brownian 

motion, and it’s now the most widely accepted formula for modelling stock price behaviour.  

  

Pricing options based on stocks began with Bachelier who was the first to obtain a closed form 

price of an option with the underlying asset modeled as arithmetic Brownian motion. He measured 

volatility in absolute terms and called the quantity “the coefficient of instability” or the 

“nervousness” of the security. However, his model ignored discounting. Samuelson [1965] applied 

GBM to price options and obtained a closed form model which accounted for time value of money 

and in which the underlying asset is non negative.   

Samuelson model was however not very popular as it required that one has to compute individual 

risk characteristics. The lack of certainty about a measure of an individual’s risk characteristics 

makes Samuelson model difficult for investors and sellers to agree on a single option price. It was 

not until 1973 that Fisher Black and Myron Scholes published their seminal paper in which they 
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finally developed a closed form model in which a hedged strategy was used to replicate a call 

option which depended only on observable quantities.  The Black Scholes Merton model, as it 

will later become known, is often regarded as the apogee of the option pricing theory and its 

introduction was so illuminating in structure and function that it created inflation in option trading 

and marked the beginning of a rapid expansion in derivatives trading in European and North 

American financial markets. Black (1989) gave his own riveting accounts of the events leading to 

the development of the formula in his memoires. Using Itô’s lemma, Black and Scholes obtained 

a partial differential equation (also Black Scholes differential equation) that formulates the 

movement of the option price over time. The key idea of the model was to set up a portfolio 

consisting of one risky asset (stock) and one riskless asset (bond or cash) and to buy and sell these 

assets in just the right way so as to completely eliminate all the risk inherent in the stock. This way 

of buying and selling, known as delta hedging, has given insights into so many other hedging 

strategies. If one solves the Black Scholes PDE, he obtains the Black Scholes formula. The 

formula was, and still popular because it is easy to apply as it requires one to compute only the 

volatility of the stock in other to obtain the option price. In addition, the Black Scholes equation 

is independent of the risk preference of the investor and consequently the risk preference measure 

does not enter the equation and so cannot affect the solution as in Samuelson’s model.   

  

Cox, Ross and Rubinstein (1979) presented a discrete−time option pricing model known as the 

binomial model whose limiting form is the Black–Scholes equation. The binomial model assumes 

that the stock price at each moment can either go up with probability 𝑢 or down with probability 

𝑑 and by setting up a portfolio to determine the amount of stock needed to make the portfolio 

riskless. The model then use risk neutral and arbitrage arguments to determine the price at the end 
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of the option’s life, discounting it to the present value.  The model is extremely efficient if the 

option has only one underlying asset. However as the number of nodes of the trees gets large it 

becomes difficult to examine the prices at the nodes and the model becomes unattractive.  

Since the introduction of Black−Scholes−Merton and Cox−Ross−Rubinstein models several 

other models and techniques have emerged but they are all variants of these two fundamental 

approaches. Recent studies in option pricing have focused primarily on novel computational 

applications and testing efficiency and speed of convergence of the models. Monte Carlo 

simulation for instance has gained prominence and has widely been employed as an effective 

simulation technique. Bally, et al (2005), Egloff (2005), Moreno et. al. (2003), Dagpunar (2007) 

all examined the effectiveness of the Monte Carlo technique in options pricing. Mehrdoust et. al.  

(2017) examined the Monte Carlo option pricing under the constant elasticity of variance model.  

  

2.2  Options on Dividend Paying Stock  

Merton (1973) derived a partial differential equation model of the Black Scholes for the options 

on stocks with dividend payments. He compared the American call to a European call and showed 

that the value of the American call with dividend payment is always higher than the  

European call. Merton asserted that American call will not be exercised early if the underlying 

asset does not pay dividends.. Musiela and Rutkowsky (1997) proposed a model that adds the 

future value at maturity of all dividends paid during the lifetime of the option to the strike price.   

Roll (1977), employed a duplication technique to value an option with stock dividend payment.  

Gaske (1979) presented models for computing American call options with dividends. Whaley  
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(1981) established a model with dividends in which he corrected some of the errors in Roll (1977) 

and Gaske (1979). Shreve (2004) also investigated and obtained a result for pricing options when 

the underlying stock pays proportional dividends. Barone-Adesi and Whaley  

(1988) developed pricing models for stocks with discrete dividend payments for an America put. 

Vellekoop and Nieuwenhuis (2006) argued that market prefers to specify dividends as discrete 

rather than continuous and showed that existing models admit arbitrage. They assumed a piecewise 

lognormal model for the underlying asset and developed a non-recombining model for the option 

price.  

  

2.3  Options with Transaction Cost  

Leland (1985) was the first to examine the presence of transaction cost in the Black−Scholes 

model. Boyle and Vorst (1992) derived a discrete version of options with transaction cost in the 

Cox−Ross− Rubinstein model in which a replication portfolio was created between the nodes of 

the trees. Bensaid et al. (1992) extended Boyle and Vorst approach by introducing a super 

replication strategy in place of the simple replication. The method considered a hedging strategy 

where the value of the option at maturity dominates the final payoff.  Hodges and Neuberger (1989) 

introduced an optimization approach in the form of a utility maximization objective function. This 

approach of determining the option price using optimization techniques was further developed by 

Davis et al. (1993), Clewlow and Hodges (1997), Constantinides and Zariphopoulou (1999) and 

Musiela and Zariphopoulou (2001). Monoyios (2004) developed an algorithm that numerically 

computes the option price with transaction cost using Markov’s chain approximation to the 

continuous time stochastic optimization problem.   
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2.4  Options with Stochastic Interest Rate   

Merton (1973), Amin and Jarrow (1992) introduced options with stochastic interest rates. Other 

short rate models include Vasicek (1977), Cox et. al. (1985), Hull and White (1990) model, also 

called the extended Vasicek model. Other popular models include the one-factor short rate models 

of Black and Karasinski (1990) which assumes a single source of randomness as the main driver 

of interest rate movements. Duffie and Dan (1996) popularised the Gaussian affine interest rate 

model which Ostrovski (2013) employed to simulate the Hull and White model.   

  

2.5  Options with Stochastic Volatility   

The most popular stochastic volatility model is of Heston (1993), in which the randomness in stock 

variability is captured as the square root of the variance. Hull and White (1987) obtained analytic 

models in the Black Scholes framework using stochastic volatilities. Chen (1994) obtained the 

first stochastic mean and stochastic volatility model in which the dynamics of the interest rate 

model is captured in three stochastic differential equations. Other stochastic volatility models 

include Wiggins (1987), who employed numerical analysis to the study of stochastic volatility and 

the constant elasticity variance model of Cox (1995). Tian, et. al. (2012) examined the use of 

hybrid stochastic volatility and Tian et. al. (2015) again examined the use of hybrid local stochastic 

volatility in options pricing models.  

  

2.6  Option Styles  

The Black–Scholes model was priced using European options. Subsequent advances have explored 

models for other option styles.   
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2.6.1 American Options  

The valuation of American call and put options has extensively been examined. Merton (1973) 

showed that the value of an American put is usually higher than the value of a European put. 

Brennan and Schwartz (1997), Bensoussan (1984), Geske and Johnson (1984), Geske (1979), 

Karatzas (1988), Duffie (1988), Barone-Adesi and Whaley (1986), (1987), (1988) all presented 

rigorous analytical treatment of American calls and puts with or without dividends and transaction 

cost. Cox, et. al. (1979) derived a discretized evaluation of the American options using the 

binomial framework. Longstaff and Schwartz (2001) provided a numerical approximation of 

American options by simulation. However, difficulties have emerged in using standard numerical 

procedures to price American options. To navigate these difficulties Glasserman and Yu (2004) 

developed a technique that combines Monte Carlo simulation with dynamic programming and 

showed the degree of convergence in this model grows exponentially to existing models.  

  

2.6.2 Asian Options  

Asian options or Average Value options are priced based on the entire path of the underlying 

assets. These options are divided into two different types depending on how the average of the 

underlying asset is computed. They are the Geometric Asian Options and the Arithmetic Asian 

options. If the underlying asset is averaged as a geometric average then we realise that the option 

price can be derived directly by substituting the geometric average into the Black–Scholes formula. 

This is the procedure proposed by Kemna and Vorst (1990). This approach is possible because the 

asset price is assumed to follow the lognormal distribution. The product of lognormally distributed 

random variables are also lognormally distributed and hence we end up with and equivalent 

distribution. However, in the arithmetic average case, the sums of lognormal random variables are 
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not lognormally distributed and hence it is not possible to obtain a closed form formula if the 

underlying asset is averaged as arithmetic.   

Turnbull and Wakeman (1991) derived an approximating distribution of the arithmetic average 

with the lognormal distribution. They employed the generalized Edgeworth series expansion 

which relies on the fact that all the moments of the arithmetic average can easily be calculated 

even though the distribution of the average is unknown. Milevsky and Posner (1998) discussed the 

reciprocal gamma distribution as a preferred approximate distribution to the lognormal 

distribution. This is due to the fact that infinite sums of correlated lognormal random variables are 

reciprocally gamma distributed. The resulting formula and the method bear a close resemblance 

to the Black Sholes formula. Vorst (1992) gave an exact pricing formula for Asian options based 

on a geometric average. He used this to approximate the Asian option price by adjusting the strike 

price with the difference in expectation of the arithmetic and the geometric averages. Furthermore, 

he obtained upper and lower bounds on the price. Vorst method however, deteriorates as volatility 

and maturity increases. This is expected since the arithmetic average is approximated with a 

lognormal distribution. Curran (1994) conditioned on the geometric average by integrating with 

respect to its lognormal distribution. Ingersoll (1987), Rogers and Shi (1995) outlined a partial 

differential equation to model floating and fixed strike Asian options. Shreve and Vecer (2000) 

established a method which included replication and self financing strategies.  

Vecer (2000) also developed numerical techniques for pricing Asian option contracts. Semi

analytic techniques were developed by Hoogland and Neumann (2001) to price continuous Asian 

options using scale invariance methods. The use of Monte Carlo simulation has become popular 

in pricing Asian options. Rubinstein, and Kroese, (2007), Kechejian, et. al, (2016) have examined 

this method in pricing Asian options.  
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2.7  Other Exotic Options  

Other exotic options that have also emerged in pricing other complex options include the Lookback 

Options, Compound Options, Bermudian options, Barrier options Passport Options etc. Merton 

(1973) was the first to price barrier options using partial differential equations to obtain the 

theoretical price of a down-and-out call option. Rubinstein and Reiner (1991) gave a list of pricing 

formulas for different versions of barrier options using the probability method.  

Other works on barrier options include Ritchken, (1995), Broadie, et. al. (1997), Heynen, et. al.  

(1994).  Bensoussan (1984), Karatzas (1988) in a complete Itô process model and then Kramkov  

(1996), have all examined models to price Bermudean options and swaptions.  Kodukula & 

Papudesu (2006) gave more examples of compound options in real option applications.  Other 

methods have emerged. For instance Lasserre, et. al. (2006) priced Exotic options, including  

Asian and Barrier options using Moments Semi-Definite Programs Relaxations methods.  

  

  

  

  

CHAPTER 3  

PRELIMINARY CONCEPTS IN STOCHASTIC CALCULUS  

3.1  Functions   

3.1.1 Continuous Functions  

A continuous function 𝑓(𝑥) can be increasing or decreasing on an interval [𝑎, 𝑏].   

Suppose  𝑓(𝑥) is increasing then    
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• if 𝑥1 < 𝑥2, it follows that 𝑓(𝑥1) ≤ 𝑓(𝑥2).   

• If 𝑥1 < 𝑥2 and 𝑓(𝑥1) < 𝑓(𝑥2), then 𝑓(𝑥) is strictly increasing.   

Suppose 𝑓(𝑥) is decreasing then   

• if 𝑥1 < 𝑥2 it follows that 𝑓(𝑥1) ≥ 𝑓(𝑥2).  

• If 𝑥1 < 𝑥2 and 𝑓(𝑥1) > 𝑓(𝑥2), then 𝑓(𝑥) is strictly decreasing.  

  

Right and Left-Continuous Functions  

Consider the point 𝑡0 on the function 𝑓(𝑡) as shown in the Figure 2.1.  

 The limit as 𝑡 approaches  𝑡0 from the left is denoted by   lim𝑡↑𝑡0 𝑓(𝑡) = 𝑓(𝑡 −)  

The limit as 𝑡 approaches  𝑡0 from the right is denoted by    lim𝑡↓𝑡0 𝑓(𝑡) = 𝑓(𝑡 +)  

For a left continuous function the unilateral limits  lim𝑡↑𝑡0 𝑓(𝑡) = 𝑓(𝑡 −) exist and are finite. 

Similarly for a right-continuous function the unilateral limits  lim𝑡↓𝑡0 𝑓(𝑡) = 𝑓(𝑡 +) exist and are 

finite. Furthermore, the limits at infinity  

 lim𝑡↓−∞ 𝑓(𝑡) = 𝑓(𝑡 − ∞)  and   lim𝑡↑+∞ 𝑓(𝑡) = 𝑓(𝑡 + ∞)  

exist and may be and respectively.   
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A monotone function  is called continuous at the point  if and only if   

 
…………………………….………..3.1  

That is   

  
  

……………………………..3.2 

Thus, the continuity of a monotone function at  is equivalent to the assertion that   

  

….……………………….….3.3 

  

  

Let  ) ( ) ( lim 
0   
 

t g t g 
t t 

  

Figure 3.1   Continuity  of a function  at a Point    

      

𝑡 0   

𝑡   →   𝑡 0   from the left   
𝑡   →   𝑡 0   from the right   

𝑡 ↑ 𝑡 0   𝑡 ↓ 𝑡 0   

f t ( )   

f  ( 𝑡 0 )   
𝑓 ( 𝑡 )   approaches  𝑓 ( 𝑡 0 )   from the left   

𝑓 ( 𝑡 )   approaches  𝑓 ( 𝑡 0 )   from the right   



 

23  

  

  

3.1.2 Continuous on the Right with Left Limits (ćadlàg functions)  

Stock prices are non−negative right continuous functions with limits on the left. Thus, the 

geometric Brownian motion required to model stock prices is a non−negative distribution 

function. We will be mainly concerned with the class of right−continuous functions on [0, 𝑇] with 

left limits. These classes of functions have a special name "continue à droite, limite à gauche"(right 

continuous with left limits), ćadlàg functions.  

3.1.3 Variation of a Function  

      

 

Figure 3.2    Variation of a function  

  

Consider Figure 3.2. Suppose there is a ball (𝑏2) that travels along the path of the function 𝑓(𝑥). 

Suppose there is second ball (𝑏1) which also travels along the y−axis as 𝑏2 traverse the function 

𝑓(𝑥) such that the distance 𝑦 travelled by 𝑏1 is defined by the distance covered by 𝑏2 on the graph.   

    
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

𝑏 1   

𝑏 2   
A   

B   
𝒚   

𝒙   

𝑓 ( 𝑥 )   
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The total distance (up and down) traversed by  after  has moved from point A to B on the graph 

is called the total variation of the function . Given , the variation of the function  

on  is given as      

  

where the supremum is taken over partitions   

The addition of new points means the interval between the partitions become smaller and smaller  

and        

where      

……………………………….3.4  

Thus the variation of a continuously differentiable function  having a derivative  is given 

by   

  

Consider the function  in Figure 3.3 below.   

 
  

 Figure 3.3   Variation of  over an interval   

  

The finite variation of 𝑓(𝑥) on [0, 𝑇] is given by  

  

  

  

  

  

  

  

𝑇   𝑡 0   𝑡 1   
𝑡 2   

𝑓 ( 𝑡 )   

𝑓 ( 𝑡 )   

𝑥   

𝑓 ( 𝑡 1 )   

𝑓 ( 𝑡 2 )   

𝑓 ( 𝑇 )   
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V𝑓([0,𝑇]) = {𝑓(𝑡1) − 𝑓(𝑡0)} − {𝑓(𝑡2) − 𝑓(𝑡1)} + {𝑓(𝑇) − 𝑓(𝑡2)}  

 𝑡1 𝑡2 𝑇 𝑇 

 = ∫ 𝑓′(𝑡)𝑑𝑡 + ∫ −𝑓′(𝑡)𝑑𝑡 + ∫ 𝑓′(𝑡)𝑑𝑡 = ∫ |𝑓′(𝑡)|𝑑𝑡  
 0 𝑡1 𝑡2 𝑡0 

  

3.1.4 Quadratic Variation of a Function  

If we look at the path by path behaviour of a stochastic process we can observe how much the 

random variables vary between the ends of the paths. This is roughly the variation of the process. 

Summing the variation usually gives zero since the expectation of the increments of a normal 

distribution is zero and we end up with no information. However, if we take the square of the 

variations we can analyse that. The square of the variations is called the quadratic variation.  

Definition  

 Let 𝑓(𝑡) be a function on  [0, 𝑡]. The quadratic variation of 𝑓(𝑡) is given as   

  

…………………………………………..3.5  

where 0 = 𝑡0𝑛 < 𝑡1𝑛 < . . . < 𝑡𝑛𝑛 = 𝑡,  and       

  

  

  

  

  

  

3.2  Probability Theory  
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Algebra  

A collection of subsets of Ω is called an algebra if   

i. Φ ∈ ℱ  

ii. If A ∈ ℱ, then A ∈ ℱ  

iii. If A1, A2, … , A𝑛 is a finite collection of sunsets in Ω then   

  

and by De−Morgan’s rule  

  

  

Sigma (𝝈) −Algebra  

A collection ℱ of subsets of Ω is called a sigma (𝜎) −algebra if   

i. Φ ∈ ℱ  

ii. If A ∈ ℱ, then A ∈ ℱ  

iii. If If A1, A2, … is a countably infinite collection of sunsets in Ω then   

  

and by De−Morgan’s rule  
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Borel Algebra   

The Borel algebra denoted by  is the smallest algebra that contains all open sets or all open 

intervals.  contains all open sets, all closed sets, all countable unions of closed sets, all countable 

intersections of such countable unions, etc.  

Measurable Space   

The sample space  endowed with a algebra  is called a measurable space and is denoted by 

.  contains all the outcomes in the sample space and the set  represents the set of possible 

events or collection of subsets of  .  

Measurable Function   

A function   is called measurable if for every  the pre-image  .  

where   .   

Random Variable  

Let  be a probability space. A random variable  is an measurable function  

 such that  

   

 

  

 Figure 3.4   The Random Variable   

  

  

  

  

  

  

  

  

. 𝜔   

ℝ   𝑋 ( 𝜔 ) = 𝑥   

𝑋 ( 𝜔 )   

𝑋 − 1 ( 𝐵 )   

𝐵 ( 𝔅 )   

𝐴   
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Sigma (𝝈) −Algebra Generated by 𝑿  

A (𝜎) −Algebra generated by the random variable X is defined as   

𝜎(𝑋) ≜ {𝐴 ∈ Ω: A = 𝑋−1(𝐵) ∈, ⋁ 𝐵 ∈ ℬ }  

  

Probability of an Event  

The probability of an event 𝜔 is defined as   

ℙ(𝑋−1(𝐵)) ≜ ℙ{𝜔 ∈ Ω: X(𝜔) ∈ ℬ}  

  

Probability Measure   

A probability measure on (Ω, ℱ) is a function that maps  ℱ −measurable function onto the [0,1] 

interval. A probability measure is thus a special case of measure theory which acts on the sample 

space and transform or assign numeric values or probabilities to the outcomes of the sample space 

in the [0,1] interval on the real line.   

A probability measure is a function ℙ: ℱ → [0,1] such that  

i.  ℙ(∅) = 0. ii. 

 ℙ(Ω) = 1.  

iii.  (Countable Additivity)   

If {𝐴𝑖; 𝑖 ≥ 1} is a sequence of disjoint sets in ℱ, then the measure of the union (of countably 

infinite disjoint sets) is equal to the sum of measures of individual sets, i.e.,  

  

……………………………….3.6  
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Measure Space  

A measurable space endowed with a probability measure is called a measure space and denoted 

by the triplet (Ω, ℱ, ℙ) where ℙ represents the probability measure on (Ω, ℱ). We use 𝜔 ∈ Ω to 

represent an outcome which may be a path of a process.  

  

Integration and Expectation  

Riemann Integral  

Define   

  

  

A function 𝑓 is Riemann integrable over [𝑎, 𝑏] if   

𝑙𝑖𝑚𝑛→∞ 𝑈𝑛(𝑓) and 𝑙𝑖𝑚𝑛→∞ 𝐿𝑛(𝑓) exist and equal.   

That is  

  

  

Abstract Integration  

Let (Ω, ℱ, 𝓌) be a measure space and 𝑓 ∶ Ω → [0, ±∞] be a measurable function. We define   

∫ 𝑓𝑑𝜔,   𝐴 ∈ ℱ  
𝐴 
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as the integral of the measurable function 𝑓 with respect to a measure over the measurable set 𝐴. 

This definition of integral of 𝑓 generalizes the Riemann integral to include all function that cannot 

be defined under Riemann integral.  

  

Lebesgue Integral  

Let (Ω, ℱ, 𝓌) be a measure space transformed onto the real line ℝ on which is defined a Borel set 

𝔅(ℝ) so that (Ω, ℱ, 𝓌) is transformed to (ℝ, 𝔅(ℝ), 𝜆).  The Lebesgue integral is defined on the 

Borel set  𝐴 ∈ 𝔅(ℝ) as  

  

……………………………….3.7  

𝜆 is the measure on the (ℝ, 𝔅(ℝ)) measurable space. The Lebesgue integral generalizes the 

Riemann integral as the domain of integral is shifted from [𝑎, 𝑏] to the general Borel set 𝐴 ∈ 𝔅(ℝ). 

Since the Lebesgue integral is defined over the Borel set it exists everywhere. In this realm more 

complicated sets and functions can be evaluated and the Lebesgue integral exist everywhere.  

  

  

Expectation of a Random Variable 𝐗   

Consider the probability space (Ω, ℱ, ℙ) and a measurable function 𝑋 ∶ Ω → ℝ. The integral of   

𝑋 over the measurable space (Ω, ℱ) with respect to the probability measure ℙ is denoted by   

∫ 𝑋𝑑ℙ  
Ω 

The integral ∫Ω 𝑋𝑑ℙ is called the expectation of the random variable and we write  
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𝔼[𝑋] = ∫ 𝑋𝑑ℙ  
Ω 

……………………………….3.8  

  

Expectation of a Discrete Random Variable  

Suppose 𝑋 is a discrete random variable taking values 𝑎1, 𝑎2, … ., then the expected value of 𝑋 is 

given by   

  

  

Example 3.1  

The Geometric distribution has Probability Mass Function (PMF)   

  

  

  

  

  

Expectation of a Continuous Random Variable  

Consider the probability space  and let a measurable function  be a  
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continuous random variable. Let  be a measurable function which is non negative and finite. 

Then   

  

Where  is the Lebesgue measure defined on the Borel set.   

Example 3.2  

The density function of the normal random variable . Thus   

 

Hence   

  

Riemann Stieltjes Integral  

Consider  to be a possible measurable space. In addition suppose  is a 

continuous function on the interval  in . Let  be a function of bounded  

variation then the Riemann-Stieltjes integral is given by    

  

That is         

  
3.3  Stochastic Processes  

Given a measurable space (Ω, ℱ) a stochastic process {𝑋(𝑡)} is represented as a filtration ℱ𝑡 = 

𝜎({𝑋(𝑠); 0 ≤ 𝑠 ≤ 𝑡}) generated by random variables 𝑋(𝑠). In discrete time stochastic process 𝑡 
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takes only discrete positive numbers, 𝑡 = 0, 1, 2, . . …. An example of discrete stochastic process 

is the Poisson process. A continuous stochastic process is a collection of random variables indexed 

by time over the real line, that is, 𝑡 ∈ ℝ+. A continuous stochastic process does not necessary imply 

that the process generating the randomness is continuous. Rather, it is the examination of the 

process over continuous or discrete times that defines it nature. Thus the stochastic process can 

have jumps in its path but will still remain continuous. An example of continuous stochastic 

processes is the Brownian motion process.    

3.3.1 Brownian Motion  

A process on some measure space (Ω, ℱ, ℙ) is a Brownian motion denoted by 𝐵(𝑡) if it satisfies 

the following theorem.   

Theorem 3.1  

There exist a probability distribution over the set of continuous function   𝐵(𝑡): ℝ≥0 → ℝ such that  

i. ℙ(𝐵(0) = 0) = 1   a.s.   

ii. The increment of Brownian motion 𝐵(𝑡) − 𝐵(𝑠) is independent of  ℱ𝑠 for all 0 < 𝑠 < 𝑡  iii. 

The increment 𝐵(𝑡) − 𝐵(𝑠) is normally distributed with mean zero and variance 𝑡 − 𝑠. 𝐵(𝑡) has 

continuous paths but is nowhere differentiable for 𝑡 ≥ 0.   

For a Brownian motion process it is not possible to describe what happens at each point in time so 

we examine the process over continuous time hence it is a continuous stochastic process.  

Properties of Brownian Paths  

A Brownian motion process 𝐵(𝑡) is a function of 𝑡 has the following properties. For almost every 

sample path 𝐵(𝑡), 0 ≤ 𝑡 ≤ 𝑇  

• is a continuous function of 𝑡  
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• is not monotone in any interval, no matter how small the interval is  

• is not differentiable at any point  

• has infinite variation on any interval, no matter how small it is  has quadratic variation on 

[0, 𝑡] equal to 𝑡, for any 𝑡  

  

3.3.2 Filtration   

The collection of 𝜎 −algebras ℱ1, ℱ2, … . ℱ𝑡, … , ℱ𝑇 such that ℱ𝑡 ⊂ ℱ𝑡+1 is called a filtration on the 

measure space (Ω, ℱ, ℙ). A filtration is denoted by set 𝔽 = {ℱ𝑡}𝑡≥0. The sequence of  ℱ1 ⊂ ℱ2 ⊂ 

⋯ . ℱ𝑡 ⊂ ⋯ ⊂ ℱ𝑇 forms a chain of sigma algebras such that each ℱ𝑡 contains the sigma algebra 

preceding it so that as time evolves more and more information is revealed about the structure of 

the stochastic process. Thus, the filtered probability space (Ω, ℱ, {ℱ𝑡}𝑡≥0, ℙ) gives the passage of 

information about the process through time and contains all the information that has been observed 

from the process up to time 𝑡. The set {ℱ𝑡}𝑡≥0 is called a filtration associated with a stochastic 

process {𝑋(𝑡): 𝑡 ≥ 0}.   

Adapted Process   

A stochastic process {𝑋(𝑡), 𝑡 ≥ 0} is adapted to the filtration ℱ𝑡 if all the 𝜎 −algebras generated 

by 𝑋(𝑡) up to 𝑡 is contained in ℱ𝑡. It follows that by the time 𝑡 we know all the information about 

𝑋(𝑡), that is 𝑋(𝑡) is ℱ𝑡 − measurable.  

3.3.3 Quadratic Variation of a Stochastic Process  

Let 𝑋(𝑡) be a stochastic process. The quadratic variation of the process 𝑋(𝑡) is given by   
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where,  is a partition of [0, 𝑡]. If the process is the Brownian motion process 𝐵(𝑡)  

then   

  

……………………………….3.9  

3.3.4 Martingale of a Stochastic Process  

Martingales are a collections of stochastic processes which models a fair game.   

Definition  

A stochastic process 𝑋(𝑡) adapted to the filtration {ℱ𝑡},  𝑡 ≥ 0 for continuous or 𝑡 = 0,1, … 𝑇 for 

discrete, is a martingale if for any 𝑡  

𝔼(𝑋(𝑡 + 1)|ℱ𝑡) = 𝑋(𝑡)  

𝔼(𝑋(𝑡 + 1)|𝑋0, 𝑋1, … , 𝑋𝑡) = 𝑋(𝑡)  

for 0 < 𝑠 ≤ 𝑡 ≤ 𝑇 and such that 𝔼(𝑋(𝑡) < ∞.  

If  𝔼(𝑋(𝑡)|ℱ𝑠) ≤ 𝑋(𝑠) then 𝑋(𝑡) is a supermartingale.  

If  𝔼(𝑋(𝑡)|ℱ𝑠) ≥ 𝑋(𝑠) then 𝑋(𝑡) is a submartingale  

Martingales are called fair game because if you play any game of martingales your expected value 

cannot be positive or negative no matter the strategy you adopt.  

  

3.3.5 Martingales of Brownian Motion  

Theorem 3.2  

The Brownian motion 𝐵(𝑡) is a martingale.  

Proof:  

If 𝐵(𝑡) is a martingale then it follows that   
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𝔼(𝐵(𝑡 + 1)|ℱ𝑡) =𝐵(𝑡)  

Now                              𝔼(𝐵(𝑡 + 1)|ℱ𝑡) =𝔼{[𝐵(𝑡 + 1) − 𝐵(𝑡) + 𝐵(𝑡)]|ℱ𝑡}  

= 𝔼[𝐵(𝑡 + 1) − 𝐵(𝑡)|ℱ𝑡] + 𝔼[𝐵(𝑡)|ℱ𝑡]  

Now by the independence of increments of Brownian motion it follows that   

𝔼[𝐵(𝑡 + 1) − 𝐵(𝑡)|ℱ𝑡] = 0 Hence     

𝔼(𝐵(𝑡 + 1)|ℱ𝑡) = 𝔼[𝐵(𝑡)|ℱ𝑡]  

𝔼(𝐵(𝑡 + 1)|ℱ𝑡) =𝐵(𝑡)  

∎  

  

3.4  Stochastic Calculus  

Let 𝐵(𝑡), 𝑡 ≥ 0, be Brownian motion process. An equation of the form  

𝑑𝑋(𝑡) = 𝜇(𝑋(𝑡), 𝑡)𝑑𝑡 + 𝜎(𝑋(𝑡), 𝑡)𝑑𝐵(𝑡) ……………………………….3.10  

where functions 𝜇(𝑥, 𝑡) is the mean and 𝜎(𝑥, 𝑡) represents the volatility are given. 𝑋(𝑡) is the 

unknown process called a stochastic differential equation (𝑆𝐷𝐸) driven by Brownian motion. The 

functions 𝜇(𝑥, 𝑡) and 𝜎(𝑥, 𝑡) are called the coefficients. They can either be constants or stochastic 

processes.   

3.4.1 Examples of Stochastic Differential Equations  

1.  Geometric Brownian Motion  

A stochastic process  is said to follow a Geometric Brownian Motion if it satisfies the 

stochastic differential equation  

  ………….…………………3.11  

where  is the drift and  the volatility are constants.  The Geometric Brownian Motion has the  
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solution         

Proof  

If  is a stochastic differential then  then by Itô formula for  

Itô process       

If  is lognormally distributed then  and   

Hence      
 
 

 

Integrating both sides we have   

 

 

…………………..……………..3.12  

2  Ornstein Uhlenbeck Process   

A stochastic process  is said to follow a Ornstein Uhlenbeck Process (U LP) if it satisfies 

the stochastic differential equation  

  

Theorem 3.3    

The Ornstein Uhlenbeck Process satisfies the stochastic differential   
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and has the solution  

  

Proof  

……………………………..…3.13  

The integrating factor (  .  Multiply through equation  by   

 

Let         ,    then  

   and      

By Itô’s lemma    But 

   and so      

or          

Now integrate both 

sides from  to   
 𝑡 𝑡 

∫ 𝑑(𝑒−𝛼𝑠𝑋(𝑠)) = ∫ 𝜎𝑒−𝛼𝑠𝑑𝐵(𝑠)  
 0 0 

𝑡 

𝑒−𝛼𝑡𝑋(𝑡) − 𝑋(0) = ∫ 𝜎𝑒−𝛼𝑠𝑑𝐵(𝑠)  
0 

𝑡 

𝑋(𝑡) = 𝑋(0)𝑒𝛼𝑡 + 𝑒𝛼𝑡 ∫ 𝜎𝑒−𝛼𝑠𝑑𝐵(𝑠)  
0 

       …………………………..3.14  

∎  
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3.4.2 Itô Calculus  

The Brownian motion process unlike deterministic functions has quadratic variation. The quadratic 

variation of the Brownian motions is given by (𝑑𝐵)2. For this reason the Brownian motion process 

cannot be differentiated as in Riemann sums. The differential of the Brownian motion is given by 

the Itô lemma.  

  

Itô’s Formula for Brownian Motion   

Theorem 3.4  

If 𝐵(𝑡) is a Brownian motion on [0, 𝑇] and 𝑓(𝑥) is a twice continuously differentiable function on 

ℝ, then for any 𝑡 ≤ 𝑇, then the differential of a function of 𝐵(𝑡) is given by   

   …………………………..3.15  

or in integral form   

  

…………………………..3.16  

  

Proof  

By Taylor’s formula    

 But    

  

 

  

  



 

40  

  

  

Itô’s Lemma for Functions of Two Variables Theorem 3.5  

Let  be an Itô process with the stochastic differential   

 

where  and  are adapted processes. Let  be a twice continuously differentiable 

function on , then  is also and Itô process and has the stochastic  

differential  

  

……………………………………3.17  

In integral form 

  

  

……………………………………3.18  

  

……………………………………3.19  

  

Proof  

Consider small changes in  and . By Taylor expansion for two variables  

 



 

41  

  

  

  

Now if  is a Brownian motion process  then  

  

But ,  and . Hence   

  

  

or simply  

  

……………………………………3.20  

∎  

We can extend this proof to rewrite Itô lemma in other forms. From Equation 3.20 if we replace 

𝐵(𝑡) by a diffusion process 𝑋(𝑡) then we can write    
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But 𝑑𝑋(𝑡) = 𝜇(𝑡)𝑑𝑡 + 𝜎(𝑡)𝑑𝐵(𝑡) and so we have   

  

  

Now by convention    𝑑𝑡2 = 0,  𝑑𝑡𝑑𝐵(𝑡) = 0,   𝑑𝐵(𝑡)2 = 𝑑𝑡,  hence  

  

……………………………………3.21  

∎  

Equation 3.21 is the most used form of Itô’s lemma. In some cases 𝑓, 𝜇 and 𝜎 are functions of   

𝑋(𝑡) and 𝑡 so we can write   

 

  

……………………………………3.22 

In integral form  
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……………………………………3.23 

The simplified version known as the Itô integral used more frequently is given as   

  

…………………………3.24  

  

  

  

 

.  

3.4.3 The Itô Process   

The stochastic differential equation  with 

solution  satisfying   
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…………………………3.25  

with initial condition  has a unique solution as long as  and  are finite and satisfy the 

Lipschitz conditions such that for every  and , there is a constant  depending only on  and   

 

        for all   and all   

 is independent of  and .   

Equation 3.25 is defined as the Itô integral. The Itô integral accumulates quadratic variation. This 

ensures that we do not have the Riemann sums of the partitions of the area under the curve. 

However, it is important to note that the Itô integral is the limit of the Riemann sum when we 

always take the leftmost point of each interval. This property ensures that all decisions taken are 

made based on the leftmost time so that in the time interval , we are only allowed to use 

information up to time .   

Itô integral as a martingale  

If  is adapted to  then   

  

is a martingale.  



 

 

3.4.4 Stochastic Exponential   

If  is a stochastic process then its stochastic exponential is denoted by  and defined as  

…………………..……………..3.26  

The process  is the quadratic variation of the process. If the given process is a Brownian 

motion then   

…………..……………………..3.27  

If   and   then  

  ……………….………..……..3.28  

  

3.4.5 The Stock Price and its Return Process  

Let  denote a stock price and assume that it is an Itô process, i.e. it has a stochastic differential. 

The process of the return on stock  is defined by the relation  

  

…………………………………....……….3.29  

It follows that  is a stochastic exponential of . If the return process is a constant then the  

 is deterministic and can be modelled by the ordinary differential equation   
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𝑆(𝑡) = 𝑆(0)e𝑟𝑡  

On the other hand if the return 𝑟 is uncertain then   

𝑅(𝑡) = 𝑟 + White noise (𝜉)  

            

𝜉(𝑡) = 𝑑𝐵′(𝑡)  

The stochastic differential of the return process is given by  

𝑑𝑅(𝑡) = 𝑟𝑑𝑡 + 𝜎𝑑𝐵(𝑡)  

Substituting into Equation 3.33 into we have   

𝑑𝑆(𝑡) = 𝑆(𝑡)(𝑟𝑑𝑡 + 𝜎𝑑𝐵(𝑡))   

𝑑𝑆(𝑡) = 𝑟𝑆(𝑡)𝑑𝑡 + 𝜎𝑆(𝑡)𝑑𝐵(𝑡) ……………………………………….3.30  

This is the Geometric Brownian motion with solution  

…………………………….3.31  

  

3.5  Stochastic Interest Rate Models  

Return processes are called interest rates and are their models are called interest rate models.  

Typical examples are:  

3.5.1 The Vasicek Model  

In the Vasicek model the stochastic differential of the return process is     

𝑑𝑅(𝑡) = (𝛼 − 𝛽𝑅(𝑡))𝑑𝑡 + 𝜎𝑑𝐵(𝑡)…………………………….…….3.32  

Such that 𝛼, 𝛽 and 𝜎 are positive constants.  To obtain the solution to the Vasicek model set  

𝛼 = 𝜎 = 0. Thus   

𝑑𝑅(𝑡) = −𝛽𝑅(𝑡)𝑑𝑡  
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Let      𝑉(𝑡) = 𝑅(0) then 𝑅(𝑡) = 𝑉(𝑡)𝑒−𝛽𝑡  

Using integrating by parts   𝑑𝑅(𝑡) = −𝛽𝑒−𝛽𝑡𝑉(𝑡)𝑑𝑡 + 𝑒−𝛽𝑡𝑑𝑉(𝑡)  

The return process is given by the discounted value process and so we have  

Thus we have     

  

𝑅(𝑡) = 𝑉(𝑡)𝑒−𝛽𝑡 and so 𝑉(𝑡) = 𝑅(𝑡)𝑒𝛽𝑡  

  

  

……………………………………….3.33  

Hence         
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We realise that 𝑅(𝑡) has a mean value given by  

  

and variance     

The Vasicek model is characterized by 𝛼 − 𝛽𝑅(𝑡).  The parameters 𝑅(𝑡), 𝛼 and 𝛽 thus determines 

the behaviour of the process model.  

i. If (𝑡) = 𝛽 , then  𝛼 − 𝛽𝑅(𝑡) is zero.  

ii. If (𝑡) > 𝛽  , then 𝛼 − 𝛽𝑅(𝑡) isnegative, which pushes 𝑅(𝑡) back toward 𝛽 . iii.  If  

𝑅(𝑡) < 𝛽, then  𝛼 − 𝛽𝑅(𝑡) is positive, which again pushes 𝑅(𝑡) back toward 𝛽.   

We realise that as the process behaviour is determined primarily be how close 𝑅(𝑡) gets to 𝛽. This 

is known as mean reversion. The speed of  𝑅(𝑡) to move closer to 𝛽  gives us the level of the long 

run interest rate.  

  

3.5.2 The Cox−Ross−Ingesoll Model  

This is an interest rate model proposed by Cox, Ross and Ingesoll. In this model the stochastic 

differential for the return process is   

    ………..........……….3.34  

where 𝛼 > 0, 𝛽 > 0 and 𝜎 > 0 are all constants.   
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3.6  Diffusion Processes  

A diffusion process is a continuous time continuous state Markov process.   

Definition  

The stochastic process {𝑋(𝑡), 𝑡 ≥ 0} is a continuous state continuous time Markov process if it 

satisfies the Markov property   

ℙ(𝑋(𝑡) ∈ ℬ|𝑋(𝑠) = 𝑥) = {ℙ(𝑋(𝑡) ∈ ℬ| 𝑋(𝑡1) = 𝑥1, … , 𝑋(𝑡𝑛) = 𝑥𝑛,   𝑋(𝑠) = 𝑥}  

for all Borel subsets 𝐵 ⊆ 𝔅(ℝ), and time instants 0 ≤ 𝑡1 ≤ . . . ≤ 𝑡𝑛 ≤ 𝑠 ≤ 𝑡 and all 𝑥1 … . 𝑥𝑛 ∈ ℝ. 

For a fixed 𝑠, 𝑥 and 𝑡 the transition probability ℙ(𝑋(𝑡) ∈ ℬ|𝑋(𝑠) = 𝑥) is a probability measure on 

the 𝜎 −algebra ℬ of Borel subsets of  ℝ such that   

  

for all 𝐵 ∈ 𝔅.   

The quantity ℙ(𝑠, 𝑥; 𝑡, 𝑦) is the transition density. From the Markov property it follows that   

  

……………….………....3.35  

for all 0 ≤ 𝑠 ≤ 𝑡 and 𝑥, 𝑦 ∈ ℝ. This is the Chapman−Kolmogorov equation.   

For example the standard Brownian motion with non-overlapping, independent increments is a 

homogenous Markov process with transition probability density   

  

The transition probability of the Ornstein−Uhlembeck process with parameter 𝛾 is given by  
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For all 0 ≤ 𝑠 ≤ 𝑡 and 𝑥, 𝑦 ∈ ℝ  

Diffusion processes are specified using operators or generators. An Itô process has an operator of  

the form     ……………….………....3.36  

Where 𝑓(𝑥) is differentiable to the second order.  

  

3.6.1 Generators of Some Basic Diffusion Processes   

1. For an arithmetic Brownian motion with diffusion 𝑑𝑋(𝑡) = 𝜇𝑑𝑡 + 𝜎𝑑𝐵(𝑡) the generator  

is:  

  

 or             

2. The Geometric Brownian Motion has the form   

 𝑑𝑋(𝑡) = 𝜇𝑋(𝑡)𝑑𝑡 + 𝜎𝑋(𝑡)𝑑𝐵(𝑡)    

           The generator of this diffusion process is  

  

In this case the operator ℒs satisfy  

  

3. For an Ornstein−Uhlenbeck process the generator is  

  
The operator ℒs satisfy      
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Example 3.3  

Consider the GBM  𝑑𝑋(𝑡) = 𝜇𝑋(𝑡)𝑑𝑡 + 𝜎𝑋(𝑡)𝑑𝐵(𝑡).   

The generator of this diffusion is  

.   

Its density is the fundamental solution of the PDE  

  

Where        .  

The solution to 𝑑𝑋(𝑡) = 𝜇𝑋(𝑡)𝑑𝑡 + 𝜎𝑋(𝑡)𝑑𝐵(𝑡) is  

          .   

Thus, the transition probability function of 𝑋(𝑡) is given as  

.   

Its density is   

  

  

  

3.6.2 Forward and Backward Equations  

The Forward equation addresses the following: If at time 𝑡 the state of the system is 𝑥, essentially, 

(𝑋(𝑡) = 𝑥) what can we say about the distribution of the state at a future time 𝑠 where 𝑠 ≥ 𝑡. Since 

we are interested in the dynamics of the diffusion process looking forward in time we call this 

equation Kolmogorov’s forward equation or Fokker−Plank equation. The backward equation 

addresses the following: Given that the system at a future time 𝑠 has a particular behavior, what 
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can we say about the distribution at time where 𝑡 ≤ 𝑠. This imposes a terminal condition on the 

PDE, which is integrated backward in time, from 𝑠 to 𝑡. Since we are interested in the dynamics 

of the diffusion process looking backwards in time, we call this equation Kolmogorov’s backward 

equation.  

Theorem 3.6  

Let the stochastic process  𝑋(𝑡), 𝑡 ≥ 0 be a diffusion process such that   

 𝑑𝑋(𝑡) = 𝜇𝑋(𝑡)𝑑𝑡 + 𝜎𝑋(𝑡)𝑑𝐵(𝑡)    

Then the forward evolution of its transition density 𝑝(𝑠, 𝑥; 𝑡, 𝑦) is given by Kolmogorov’s forward 

equation  

  

……………….………....3.37  

For a fixed initial state (𝑠, 𝑥) and a fixed final state (𝑡, 𝑦) the backward evolution of the transition 

density 𝑝(𝑠, 𝑥; 𝑡, 𝑦) is given by Kolmogorov’s backward equation  

  

……………….………....3.38  

3.6.3 Feynman Kac Theorem  

Let  satisfies the stochastic differential equation where  is  

Brownian motion under the measure . Let  be the value of a contingent claim on  

, then by Itô formula  

  

………………..……3.39  
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and   has the solution  

   …………….…….3.40 The generator of the 

process  is the operator  

  

 so we can write  

  

  

The Fayman Kac’s theorem is restatement or proof of the Black Scholes Model. It asserts that  

if  follows the Itô process  then a contingent claim  on  

 satisfies the Black Scholes formula   

 

and  is given by the expectation  

  

  

Example 3.4  

Consider the stock price process 𝑆(𝑡) following the SDE  

𝑑𝑆(𝑡) = 𝜇𝑆(𝑡)𝑑𝑡 + 𝜎𝑆(𝑡)𝑑𝐵(𝑡).  

A contingent claim on the stock with value 𝑉(𝑋(𝑡), 𝑡) satisfies the Black–Scholes PDE so that   

  

The generator of the process given by  
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By the Feynman−Kac theorem, the payoff  𝐶(𝑋(𝑇), 𝑇) = 𝑉(𝑋(𝑇), 𝑇) is given by  

𝐶(𝑆(𝑡), 𝑡) = 𝑒−𝑟(𝑇−𝑡)𝔼[𝑉(𝑆(𝑇), 𝑇)|ℱ𝑡]  

Example 3.5  

Solve this PDE   

  

                                                                                     0 ≤ 𝑡 ≤ T   𝑓(𝑥, 𝑡) = 𝑥2    

using the solution of the corresponding stochastic differential equation.  

And give a probabilistic representation of the solution 𝑓(𝑥, 𝑡) of the PDE  

  

0 ≤ 𝑡 ≤ T   𝑓(𝑥, 𝑡) = 𝑥2  where  𝜎, 𝜇 and 𝑟 are positive constants,   

Solution  

The SDE corresponding to the PDE is 𝑑𝑋(𝑡) = 𝜇𝑋(𝑡)𝑑𝑡 + 𝜎𝑋(𝑡)𝑑𝐵(𝑡). It has a solution   

  



 

 

By the Feynman−Kac formula  𝑓(𝑥, 𝑡) = 𝔼(𝑒−𝑟(T−𝑡)𝑋2(𝑇)|𝑋(𝑡) = 𝑥)  

= 𝑒−𝑟(T−𝑡)𝔼(𝑋2(𝑇)|𝑋(𝑡) = 𝑥)  

But  

  with 𝑡 = 𝑇 − 𝑡 we can write   

   

We can obtain       

  

Hence        

3.6.4 Martingale Property of Diffusion Processes   

Consider the stochastic process  

𝑑𝑋(𝑡) = 𝜇(𝑋(𝑡), 𝑡)𝑑𝑡 + 𝜎(𝑋(𝑡), 𝑡)𝑑𝐵(𝑡),    𝑡 ≥ 0  

By Itô formula  
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Let the operator               then   

  

Integrating we have   

  

Let   

  

……………………….……….3.41  

Then the compensated process of 𝑓(𝑋(𝑡), 𝑡) is a martingale.   

Theorem 3.7  

Let 𝑋(𝑡) be a solution to 𝑑𝑋(𝑡) = 𝜇(𝑋(𝑡), 𝑡)𝑑𝑡 + 𝜎(𝑋(𝑡), 𝑡)𝑑𝐵(𝑡) with coefficients 𝜇(𝑥, 𝑡) and 

𝜎(𝑥, 𝑡).  Then the process  

  

where 𝑓(𝑥, 𝑡) is a differentiable in 𝑥 and 𝑡 is a martingale.  
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Proof  

We know that by Itô formula   

  

Let , then  and so   

is bounded and we can write  

  

By the linear growth condition  

  

And by the existence and uniqueness result   

  

and so   

  

……………………….……….3.41  

is a martingale.  

  

  

  

  



 

58  

  

  

3.7  Change of Probability Measure  

Change of probability measure describes what happens when the measure assigning probabilities 

to random variables are changed to another the probability measure on the same measurable space. 

Change of measure allows us to switch from one distribution (measure) with drift to anther 

distribution without drift. The transformation of a density with drift to another density without 

drift under measure theory ensures that we can transform a non-martingale process into a 

martingale process.  

  

3.7.1 Radon−Nikodym Derivative   

Suppose ℙ and ℚ are equivalent probability measures on the measurable space (Ω, ℱ). The change 

of measure from ℙ to ℚ is governed by the Radon−Nikodym derivative defined by   

𝑑ℚ = ⋀𝑑ℙ  

⋀ is known as the Likelihood Ratio, Radon−Nikodym derivative or Radon−Nikodym density.  

The Radon−Nikodym derivative is given by Girsanov’s theorem.  

  

3.7.2 Change of Measure for Brownian Motion   

Let ℙ be a probability measure on [0, 𝑇] defined by the Brownian motion with drift 𝜇 and let ℚ be 

a probability measure on [0, 𝑇] defined by the Brownian motion without drift.  Then ℙ and ℚ are 

equivalent and The Radon−Nikodym derivative is  

  

................................................…3.42  
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3.7.3 Change of Measure for Normal Random Variables  

As an example, we consider the change of measure of two normally distributed functions. Let 

𝑓𝜇(𝑥) be normally distributed as 𝑁(𝜇, 1) and let 𝑓0(𝑥), also be normally distributed as 𝑁(0, 1). If 

the probability measure associated with the distribution 𝑁(𝜇, 1) is ℙ and the probability measure 

associated with the distribution 𝑁(0, 1) is ℚ then the Nikodym derivative establishing the change 

of measure from ℙ to ℚ is given by  . That is   

  

To see this we proceed as follows. Since 𝑓𝜇(𝑥) is normally distributed its density is given by  

  

  

Now          

Hence          

Then          

But           

Hence         

Thus Λ(𝑋) = 𝑒𝜇𝑋−𝜇2/2 is the Radon−Nikodym derivative from the original measure ℙ under the 

normal distribution with mean 0 and variance 1 to the distribution of the process under a new 

measure ℚ with the normal distribution with mean 𝜇 and variance 1. Generally the  

Radon−Nikodym derivative is obtained via Girsanov’s theorem.  
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Theorem 3.8 (Girsanov’s Theorem)   

Let  be a measure space on which is defined a Brownian motion process . Define 

 as satisfying , then under the equivalent martingale measure  

, the Radon-Nikodym derivative is given by  

 

…………………..…………….3.43  

and the process       

  
………….…………………….3.44  

 is a Brownian motion. For proof of Girsanov’s theorem see Bernt Øksendal (2000).  

  

Expectation under Equivalent Probability Measures  

Equivalent probability measures assign different probabilities to the outcomes on a sample space 

and thus have different random variables and consequently different expectations.  

Theorem 3.9  

Let  be a diffusion process. The expectation of  under the probability measure  is given 

by  and the expectation of  under the measure  is given by . If    

and  are equivalent then   

……………...…………………….3.45  

  

  

  

CHAPTER 4  

OPTION PRICING MODELS  
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4.1  Introduction  

The mathematical theories underpinning option pricing are well rooted in stochastic calculus, 

measure theory, martingales and partial differential equations. These fields of mathematical study 

have their own concepts, and are far advanced and well developed in depth. The two most basic 

models of option pricing are the Black–Scholes Merton model and the discrete binomial tree model 

introduced by Cox, Rox and Rubinstien. We shall trace the development of the option pricing 

theories beginning from Bachelier through Samuelson to the Black–Scholes model. Although we 

are mostly concerned with continuous models, we will also examine the discrete model proposed 

by Cox, Rox and Rubinstien and show that its limiting function is the Black Scholes. The other 

approach to pricing options involves the use of expectations. In this approach the price of the 

option is valued as a replicating portfolio whose value equals the price of its discounted expected 

payoff.   

4.2  Background to Continuous Time Option Pricing Theory  

In a differential form, the Bachelier model can be written  

𝑑𝑆(𝑡) = 𝜇𝑑𝑡 + 𝜎𝑑𝐵(𝑡)     .................................………....4.1  

where 𝑆(𝑡) is the stock price, 𝐵(𝑡) is the Brownian motion process, 𝜇 is the return on the stock 

price and 𝜎 is the volatility of the stock price. Bachelier proposed that an option sold on this stock 

has a price 𝐶(𝑆(𝑡), 𝑡) given by  

  
where 𝑆 is the initial price of the stock, 𝐾 is the exercise or strike price and 𝜎 is the volatility of 

the stock price, 𝑇 is the time to the option’s maturity and 𝑁(𝑥) has standard normal density   

  

https://en.wikipedia.org/wiki/Black%E2%80%93Scholes
https://en.wikipedia.org/wiki/Black%E2%80%93Scholes
https://en.wikipedia.org/wiki/Black%E2%80%93Scholes
https://en.wikipedia.org/wiki/Black%E2%80%93Scholes


 

62  

  

  

The only weakness of that model is that stock prices can be negative which is contrary to reality.  

Sprenkle provided a new formula that rules out negative option prices.  

𝐶(𝑆(𝑇), 𝑇) = 𝑒𝜌𝑇𝑆(𝑇)𝑁(𝑑1) − (1 − 𝐴)𝐾𝑁(𝑑2).................................………….4.3  

where          

where the parameters have their usual meanings. Boness (1964) accounted for the time value of 

money through the discounting of the terminal stock price. In Boness model the Bachelier’s 

formula was modified as   

𝐶(𝑆(𝑇), 𝑇) = 𝑆(𝑇)𝑁(𝑑1) − 𝐾𝑒−𝜌𝑇𝑁(𝑑2)    .........................……4.4  

where          

Samuelson (1965) allowed for different levels of risk for the stock and obtained  

  

where      

The weakness in Samuelson’s model was the assignment of different returns to individual 

investors. This was addressed in the Black–Scholes model.  

  

4.3  The Black Scholes Model  

Fisher Black and Myron Scholes (1973) provided the Black Scholes partial differential equation.  

The model’s main underlying mathematical theory is the Itô lemma   
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……………………………………4.6 

  

Derivation of the Black–Scholes partial differential equation   

The derivation of the Black Scholes model can be summarized in three key arguments:   

i.  Itô formula application to the value of a replicating portfolio of the 

option  ii.  The hedging argument to create a riskless portfolio iii.  The 

no arbitrage arguments of a risk free return of the portfolio  

  

i.  Itô formula application to the value of a replicating portfolio   

Consider a stock whose price process  follows the Geometric Brownian Motion such that   

   …………..………………………..4.7  

Equation 4.7 is an Itô process with mean  and .   

Consider a contingent claim on  whose value ) depends on the  and . By Itô’s 

lemma the change in  is given by  

 

   ………………………………………….….4.8  

Thus, the stochastic process followed by V(𝑆(𝑡), 𝑡) is also an Itô process with mean   

  

and variance   
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ii.  The hedging argument to create a riskless portfolio  

Now let’s construct a portfolio in which we buy 1 option with value 𝑉(𝑆(𝑡), 𝑡) and an unknown 

amount of stocks. The question here is how much of the stocks must be purchased in order to 

create a riskless or hedged portfolio. Let this amount be ∆ stocks. The portfolio now consist of an 

option and ∆ amount of stocks and has a value given by 𝜋 = 𝑉(𝑆(𝑡), 𝑡) − ∆𝑆(𝑡). In an infinitesimal 

time step the change in the portfolio’s value is given by   

𝑑𝜋 = 𝑑𝑉(𝑆(𝑡), 𝑡) − ∆𝑑𝑆(𝑡)  …………………………………..4.9  

Substitute Equations 4.7 and Equation 4.8 into Equation 4.9 gives   

  

Grouping terms with 𝑑𝑡 and 𝑑𝐵(𝑡) we have   

 

………………………………….……4.10  

We again realise in Equation 4.10 that the stochastic process for the hedged portfolio is an Itô 

process with drift parameter  
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and variance  

Equation 4.10 consist of two parts: a deterministic part given by  

  

 and a stochastic part given by   

  

………………………………………………………4.11  

To make the portfolio completely riskless the stochastic part in Equation 4.10 must vanish. In 

otherwords we should have  

  

………………………………………………………4.12  

Solving for ∆ in Equation 4.12 yields  

  

If Equation 4.12 holds, then Equation 4.10 becomes  

  

…………………………….…4.13  

Replace ∆ in Equation 4.13  , then we have   

  

                 ……………………………….4.14  
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It follows that to completely hedge the portfolio we must purchase   of the underlying 

asset. It means that to have a riskless portfolio we must purchase an amount of stocks that is equal 

to the ratio of how much the option value changes relative to the change in value of the stock. 

However, this situation is only valid in a small time interval and so we must continuously change 

the amount of stocks purchased to rebalance   .   

  

iii.  The no arbitrage arguments and a risk free return of the portfolio  

We claim that the infinitesimal change in the portfolio’s value is 𝑑𝜋. If this is true then what is the 

return of this riskless portfolio in a small time step 𝑑𝑡? Black and Scholes suggested that the return 

must be the risk free rate 𝑟 otherwise there will be arbitrage opportunities. If this is the case then 

owning 𝜋 amount of the portfolio would provide a return of 𝑟𝜋𝑑𝑡 in a small time interval 𝑑𝑡. 

Consequently,  

𝑑𝜋 = 𝑟𝜋𝑑𝑡  

Replacing 𝑑𝜋 by 𝑟𝜋𝑑𝑡 in Equation 4.14 we have  

  

But  and so      
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…………………………….4.15  

At maturity, the price of the option 𝐶(𝑆(𝑡), 𝑡) is equal to the value of the hedged portfolio and so 

𝐶(𝑆(𝑡), 𝑡) = 𝑉(𝑆(𝑡), 𝑡). Hence Equation 4.15 is rewritten as   

  

…………………………….4.16  

For a European call option the boundary conditions are  

 𝐶(0, 𝑡) = 0   𝐶(𝑆(𝑇), 𝑇) = 𝑚𝑎𝑥 (𝑆(𝑇) − 𝐾, 0),  𝑡 ≥ 0  

Equation 4.16 is known as the Black Scholes partial differential equation. In arriving at the 

equation, Black and Scholes made the following assumptions:   The stock does not pay any 

dividends   

• The option is European-styled.   

• The market is efficient   

• The option trading does not attract any transaction costs   

• The rate of interest on the stock is equal to the risk-free rate and assumed constant  

• The underlying stock is assumed to be lognormally distributed  

• Investors can own a fractional share of the stock  
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An important outcome of the Black–Scholes derivation is that it does not contain the drift 

parameter 𝜇 of the underlying asset. As a consequence, although two investors may differ on their 

estimates on the return of the stock asset, they will still agree on the price of the option.  

This is the tenet of risk neutral pricing.  

  

Solution to the Black−Scholes PDE  

The relation between the option price and the heat equation in Physics has been observed as far 

back as Bachelier who considered the distribution of the option price as analogous to the 

dissipation of heat along the horizontal path of an infinite rod. In effect, the Black–Scholes 

equation is a partial differential equation which by suitable transformation of variables is 

equivalent to the heat equation   

  

…………………………….4.17  

𝑡 ≥ 0,    − ∞ < 𝑥 < ∞  

with initial value          𝑢(0, 𝑥) = 𝑉(𝑥)  

The solution to Equation 4.17  is given by   

  

…………………………….4.18  

It follows that once we change the Black−Scholes equation into the heat equation, we will have a 

closed form solution. In that case the initial condition is the final payout function 𝑉(𝑠) in Equation 

4.18.  The complete transformation of Black−Scholes equation to the heat equation and the 

solution are given in the Appendix.   
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4.4         The Binomial Tree or Cox−Rox−Rubenstein Model  

The other option pricing model is the discrete time model proposed by Cox, Rox, and Rubenstein 

and so it is sometimes known as the Cox−Rox−Rubenstein model or simply the binomial tree 

model. The binomial tree model follows a simple stationary random walk binomial process. At 

each moment in time, considered as a node of the binomial tree, the price of the stock can either 

go up or down by a given probability. The option price is then computed at each node of the trees 

with the assumption that the rate of return of the stock is the risk−free rate. In the limit as the 

number of nodes gets large the binomial tree converges to the lognormal price process and the 

formula converges to the Black−Scholes formula.   

  

4.4.1  One Step Binomial Model  

Consider a stock whose current price is 𝑆0 = ȼ20 .   

We want to price an option sold on this stock.   

Let the option has the following characteristics  

Initial Stock Price 𝑆0 = ȼ20  

Strike Price 𝐾𝑇 = ȼ21  

Time to maturity = 3 months  

Return on stock price 𝑟 = 𝑟𝑖𝑠𝑘 𝑓𝑟𝑒𝑒 𝑟𝑎𝑡𝑒 = 𝑟𝑓  
At the end of the option’s life the stock price would either go up or down. Let’s assume it either 

goes up to 22 or down to 18. If the price turns at to be 22 then the value of the option or the 

profit made on the option is given by   
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The option value situation is illustrated in Figure 4.1.  

 

Figure 4.1       Two-Step Binomial Lattice  

  

To price the option we proceed as follows:  

1. Set up a portfolio that consists of buying  shares of the stock and 1 share of the option 

(call option).  

We are confronted with the following problem: how much shares of the stock ) we need to buy 

in order to make the portfolio riskless. For the portfolio to be riskless the interest earned on the 

portfolio must be the risk-free interest rate ( ).  

Suppose the stock price moves up to ȼ22, then the value of the shares is 22  and the value of the 

option is  

     

Hence total value of the portfolio   

On the other hand, if the stock price moves down to 18, then the total value of the share is 18  

and the value of the option is   

  

Total value of the portfolio   

The key argument here is that the portfolio is riskless if the value of the shares we buy  is such 

that the final value of the portfolio is same in both scenarios i.e.  

  

  

        

  

    

    
    
  
  

  

Stock Price   

Stock Price    ȼ 22 =   
Option  Price   ȼ = 1   

Option   price   = 0  ȼ   

Stock price   = ȼ 18   

u   

d   
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This means that to make the portfolio riskless we must purchase 0.25 or 1/4  of stocks.  This is what 

led Black and Scholes to allow for fractional ownership of shares in their assumptions. It follows 

that to make the portfolio riskless we must buy 0.25 of shares and  1.0 of options.  

If the stock price moves up to  the value of the portfolio is  

If the stock price moves down to ȼ18, the value of the portfolio is    

So for a riskless portfolio, the value of the portfolio is always the same ( ) at the end option’s 

life regardless of whether the stock price moves up or down. Riskless portfolio must in the sense 

of arbitrage opportunities earn a risk-free interest and so we can say that the present value of the 

portfolio is given by   

 

     If  per annum, then  

  

 
This present value of the portfolio must equal to the value of the portfolio when the stock price  

was at .  

If the price of the option price is , then the value of the portfolio minus the price of the 

option must be equal to the present value of the portfolio at the end of the period.   

Portfolio Value at  Option Price Present Value of portfolio at expiration .  

     

 

  

 

Thus, in absence of any arbitrage opportunities the price of the option must be   
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We conclude that in the absence of arbitrage opportunities the price of the option must be 63p. If 

the price of the option is greater than 0.63 then  world be less than ȼ4.367. This will make 

the portfolio cost less than ȼ4.367 to set up which means you can set up a riskless portfolio which 

can earn more interest than the risk free rate and that is not possible. On the other hand, if the price 

of the option is less than 0.63, then it follows that the value of the portfolio would be more than 

ȼ4.367 and so you can have an asset whose interest is less than the risk free rate i.e. you can borrow 

money from the asset at less than the risk free rate.  

  

Generalization of the one step option pricing model   

We generalize the argument above. Consider a stock whose price is  and an option on the stock 

with price . Let the option have a lifetime of   and assume that the stock price can go up or down 

during the life of the option.  

Let 𝑆0𝑢 be the new price level where 𝑢 > 1 and 𝑆0𝑑 be the new price level when the stock price 

gives down where 𝑑 < 1.  

The percentage increase when the price goes up is given by        

  

................................……..4.19 The percentage decrease when the price goes down is given by        

  

................................……..4.20 

If the stock moves up to 𝑆0𝑢, we suppose that the payoff from the option is 𝐶𝑢 if the stock moves 

down to 𝑆0𝑑 we suppose the payoff is 𝐶𝑑. The option valuing situation is illustrated as shown in  
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Figure 4.2  

  

  
  

                               Figure 4.2       Generalised Two-Step Binomial Lattice  

  

If we invest in ∆ amount of shares and hold 1 option then if there is an upward movement in the 

stock price the value of the portfolio is  

𝜋 = ∆𝑢𝑆0 – 𝐶𝑢 ……….......................................……..4.21  

If there is a downward movement in stock price the value of the portfolio is  

       𝜋 = ∆𝑑𝑆0 – 𝐶𝑑 ………......................................…..…..4.22  

For no arbitrage conditions we equate Equation 4.21 and Equation 4.22 so we have   

∆𝑢𝑆0 – 𝐶𝑢 = ∆𝑑𝑆0 – 𝐶𝑑  

∆𝑢𝑆0 – ∆𝑑𝑆0 = 𝐶𝑢 – 𝐶𝑑  

  

................................……..4.23 

For the portfolio to be riskless, the value of the option when the stock price goes up and its value 

when the stock price goes down must be the same and should be given by   

      ∆𝑢𝑆0 – 𝐶𝑢  

        

  

       

    

    

  

  

Stock  

Price   

𝑢𝑆 0     = Stock Price   

𝐶 𝑑 =   Option   
Price     

𝑑𝑆 0 =   Stock  P rice   
= 18 ȼ   

u   

d   

𝐶 𝑢    Option Payoff =   
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Thus, the present value of the stock option at the beginning of the life of the option is thus given  

by 𝑒−𝑟𝑡 (𝑢𝑆0∆ − 𝐶𝑢)          

The cost of setting up the portfolio is given by ∆𝑆0 − 𝐶0.  But the cost of setting up the portfolio 

must be equal to the option value at the end of the option’s life discounted to the beginning of the 

options life. Hence    

  ∆𝑆0 − 𝐶 = 𝑒−𝑟𝑡 (𝑢𝑆0∆ − 𝐶𝑢)      

−𝐶 = 𝑒−𝑟𝑡 (𝑢𝑆0∆ − 𝐶𝑢) − ∆𝑆0  

−𝐶 = 𝑢𝑆0∆𝑒−𝑟𝑡 − ∆𝑆0 − 𝐶𝑢𝑒−𝑟𝑡  

𝐶 = ∆𝑆0(1 − 𝑢𝑒−𝑟𝑡) + 𝐶𝑢𝑒−𝑟𝑡  

Now                

  



 

 

  

................................……..4.24  

We can rewrite Equation 4.24 as   

  𝐶 = 𝑒−𝑟𝑡(𝑝𝐶𝑢 + (1 − 𝑝)𝐶𝑑       ..................................……..4.25  

where     

Equation 4.25 is the formula for pricing an option in a one−step model.  It is important to realize 

that the price of the option does not have the probabilities of the stock price going down or up. 

This is because we do not value the option alone in absolute terms, rather we value the option in 

terms of the price of the underlying stock. The probabilities of future up or down movements are 

already incorporated into the stock price and so we do not need to take them into account again 

when valuing the option in terms of the stock price.  

We shall now look at the expected return from the stock when we assume the stock price moves 

up with probability 𝑝 and down with provability 1 − 𝑝.  The expected payoff from the option is 

thus given by       

  𝐶 = 𝑝𝐶𝑢 + (1 − 𝑝) 𝐶𝑑 …….....................................……..4.26  

The expected stock price at the end of the option’s life 𝑇 is given by   
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......................................................……..4.27  

Equation 4.25 shows that the discount rate must be the risk free rate. This means the only return 

on the stock that ensure arbitrage free price is the risk free rate. This leads us to the idea of a risk-

neutral world. In risk–neutral world all individuals are indifferent to risk and so investors require 

no compensation for bearing risk.   

Example 4.1  

Let  and   ,  ,      

  

Price of option    

  

 

 

  

4.4.2         Two Step Binomial Trees   

We now increase the procedure to two steps. The price of the stock at the beginning is ȼ20 and the 

steps may go up or down by 10%.  Each step takes 3 months with a risk-free interest of 12% per 

annum. We consider an option whose underlying asset is this stock with strike price ȼ21. We want 

to compute the price of an option which goes through these two modes in its life-time.  

Figure 4.3 illustrates this. At each stage or step we would compute the price of the stock and then 

the corresponding option price. We would then compute the option price at the end of the option 

life and use it to price the option by working backwards. We proceed as follows  
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              Figure 4.3 Stock and Option prices in a two step binomial lattice  

At node A   

Stock price   

Option price = unknown (this is what we want to determine)  

At node B  

Stock Price   

                    

                    

                    

At Node D  

Stock Price   
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3.2   

24.2   
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22   

Option Price   u nkn own at  𝑡 = 0   
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0   
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10 % 
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78  

  

  

Now the option is exercised at node D. The strike price is ȼ21 and so at the end of the option’s  

life its value is given by   

                            

     

    

We will use this to find the option price at  but before we do this let’s complete the price at node 

C  

AT NODE C  

Stock price   

                     

                     

                    

                    

The stock price at  (ȼ18) is below the strike price (ȼ21) and so the option is not exercised at .  

AT NODE F  

Stock price    

                     

                      

                     
The stock price at 𝐹 (ȼ16.2) is below the strike price (ȼ21) and so the option is not exercised at  

𝐹.  

  

AT NODE E  
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The stock price is computed using the price at node 𝐵 or 𝐶. Using the price at node 𝐵 we have  

Stock Price = 22 − 22 × 10%  

                   = 22(1 − 0.1)  

                   = 22 𝑥 0.9  

                   = ȼ19.8  

The stock price at 𝐸 (ȼ19.8) is below the strike price (ȼ21) and so the option is not exercised at  

𝐸. We realise that when the stock price goes up we multiply the initial stock price by a constant 𝑢 

to obtain the stock price at the next step. If the probability of the stock price going up or down is 

10%  then 𝑢 = 1.1. and 𝑑 = 0.9.  

  

Computing option prices  

After computing the stock price, we can now obtain the option prices. We will do this by working 

backwards from node 𝐷. At the end of the trading period the stock price is ȼ24.2 and at this time 

we exercise the option since the strike price is ȼ21 (i.e. we buy the stock for ȼ21 and immediately 

sell it at ȼ24.2 making a profit of 24.2 − 21.0 = ȼ3.20. Thus, at expiration the option’s value is 

ȼ3.20 so the option price at node 𝐷 is ȼ3.20. Using this we can calculate the options price or value 

at node B using the formula for 1 step binomial tree.   

𝐶 = 𝑒−𝑟𝑡(𝑝𝐶𝑢 + (1 − 𝑝)𝐶𝑑)  

 is the price of the option at node   and  is the price of the option at node E  

( ).   

The option price when exercised at node  is given by  
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This is the option price at node . We now calculate the option price at node . We do this by 

focusing on the first step of the tree. We know that the value of the option at node  is   and 

at node  is 0. Hence   

  

  

This is the price of the option at node  and it is the real value of the option.  

  

4.4.3 General Formula for Binomial Option Pricing   

Given a time step  and , the option price in the one step model is  

   ....................................……....4.28  

For the two-step model  and  are given by  

𝐶𝑢 = 𝑒−𝑟∆𝑡(𝑝𝐶𝑢𝑢 + (1 − 𝑝)𝐶𝑢𝑑  

𝐶𝑑 = 𝑒−𝑟∆𝑡(𝑝𝐶𝑢𝑑 + (1 − 𝑝)𝐶𝑑𝑑  

Substituting 𝐶𝑢 and 𝐶𝑑 into 4.26 we have   

𝐶 = 𝑒−𝑟∆𝑡𝑝[𝑝{𝐶𝑢𝑢 + (1 − 𝑝)𝐶𝑢𝑑}] + (1 − 𝑝)[𝑒−𝑟∆𝑡(𝑝𝐶𝑢𝑑 + (1 − 𝑝)]𝐶𝑑𝑑  

Simplifying these we have  

𝐶 = 𝑒−2𝑟∆𝑡[𝑝2𝐶𝑢𝑢 + 2𝑝(1 − 𝑝)𝐶𝑢𝑑 + (1 − 𝑝)2𝐶𝑑𝑑]  
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            𝐶 = 𝑒−2𝑟∆𝑡[𝑝2(0, 𝑢2𝑆 − 𝐾)+ + 2𝑝(1 − 𝑝)(0, 𝑢𝑆 − 𝐾)+ + (1 − 𝑝)2(0, 𝑑2𝑆 − 𝐾)+]  

.............................……….4.29  

We now have the formula for a two period model. For 3, 4, … . , 𝑛 period model we will have a 

recursive procedure from which the option price is given by the Binomial formula. In an 𝑛 −period 

model there are 𝑥 times in which the stock can go up and (𝑛 − 𝑥) times in which the stock price 

can go down. The option has value only if it is exercised at the 𝑛𝑡ℎ period. The price is given by  

  

.............................……..4.30  

The discounted price is thus given by  

  

𝐶 can be seen as the expected payoff, expressed in cedis value today, of the final payoff 𝐶𝑛.  

For a call option   

𝐶𝑢,𝑢,𝑢,…𝑢(𝑥 𝑡𝑖𝑚𝑒𝑠)𝑑,𝑑,𝑑,…,𝑑(𝑛−𝑥 𝑡𝑖𝑚𝑒𝑠) = (𝑢𝑥𝑑𝑛−𝑥𝑆 − 𝐾, 0)+  

The option price is thus given by   

  

Let 𝑟 = 𝑒𝑟∆𝑡 then when the option is exercised we have  

 (𝑢𝑥𝑑𝑛−𝑥𝑆 − 𝐾, 0)+ = 𝑢𝑥𝑑𝑛−𝑥𝑆 − 𝐾 and so  

  

.............................……..4.31  
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By breaking up 𝐶 into two terms we have   

  

  

  

  

  

  

  

  

  

  

  

  

  

4.5  Method of Equivalent Martingale Measures (Risk Neutral Pricing)  

Another popular method used vastly to price options is the method of equivalent martingale 

measures of the risk adjusted (neutral) probability measure. The method employs the idea of 

absence of arbitrage opportunities in the market to imply the existence of an equivalent probability 

measure to determine expected discounted future payments. However, before we delve into the 

model derivation we need to understand some basic terminology.  

4.5.1 Arbitrage Pricing Theorem terminology  
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Contingent Claim  

A contingent claim (option payoff)  with maturity date  is an arbitrary non-negative 

measurable random variable representing cash flow.   

Portfolio strategy  

A portfolio strategy consist of setting up a portfolio consisting of the underlying assets called the 

risky asset and a riskless asset usually a bond, cash, or savings account.  

 

If  is the value of the portfolio and  is the number of risky assets and  is the number  

of riskless asset then   

 ................................……..4.33 

This portfolio replicates the option price at maturity and it is sometimes called the replicating 

portfolio.  

Self financing strategy  

A trading strategy is called self financing if and only if the discounted value of a replicating 

portfolio  equals the sum of initial value plus the net gain from the portfolio  

........................................……..4.34  

 Attainable Claim  

A contingent claim is attainable if there exist a self−financing portfolio such that   

𝑉(𝑇) = 𝑋 = 𝑚𝑎𝑥 (𝑆(𝑇) − 𝐾, 0) .................................……..4.35  

Complete Market  

A market is complete if every contingent claim 𝑋 is attainable. That is, there exist a replicating 

self−financing portfolio such that  

𝑉(𝑇) = 𝑋   
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Arbitrage  

Arbitrage is a possibility that one can start a transaction with no capital and yet has a positive 

probability of making some money. Given an initial capital 𝑉(0) we have  

ℙ[𝑉(𝑇 ) > 0] > 0  ……….……………………….4.36  

where 𝑇 is the time of expiry of the trade or transaction period.  A 

self−financing trading strategy θ is called an arbitrage if   

i.  𝜃(0)𝑆(0) < 0 and ℙ[(𝜃(𝑡)𝑆(𝑡) > 0)] = 1 ii.  𝜃(0)𝑆(0) = 0, 

ℙ[(𝜃(𝑡)𝑆(𝑡) > 0)] = 1 and ℙ[(𝜃(𝑡)𝑆(𝑡) > 0)] > 0  

In (i), the strategy turns a negative initial investment into a non−negative final wealth with 

probability 1. In (ii), the strategy turns an initial net investment of zero (0) into a non−negative 

final wealth that is positive with probability 1. The arbitrage theory is made clearer with the 

following exposition called the arbitrage and fair price argument  

  

  

  

  

The arbitrage and fair price argument  

Let the price of a contract at time 𝑡 = 0 be 𝐶(0). Let the price of the stock at time 𝑡 = 0 be 𝑆(0). 

The argument is that arbitrage situation would not arise only if 𝐶(0) = 𝑆(0). To see this we 

consider the following scenarios.  

• If the price of the contract at 𝑡 = 0 is greater than the stock price 𝑡 = 0 then it follows that 𝐶(0) 

> 𝑆(0). If this is the case, the contract can be sold for 𝐶(0), and then you buy the stock at 𝑆(0). 

Since 𝐶(0) > 𝑆(0) it follows that you are left with 𝐶(0) − 𝑆(0) after the transaction. Invest 
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𝐶(0) − 𝑆(0) in an instrument bearing no risk so that at maturity 𝑇 you will receive 𝑆(0) plus 

the return on your investment i.e. 𝑆(0) plus the interest on the risk free instrument. Then 𝐶(𝑇) 

= 𝑆(0) + 𝑒−𝑟𝑡[𝐶(0) − 𝑆(0)], where 𝑒−𝑟𝑡[𝐶(0) − 𝑆(0)] is the free money you have made 

without taking any risk.  

• On the otherhand if  𝑆(0) > 𝐶(0), then you can borrow the stock and sell it and receive 𝑆(0). 

Now buy the contract at 𝐶(0). Since 𝐶(0) is less than 𝑆(0) you are left with a change of 𝑆(0) 

− 𝐶(0). Invest 𝑆(0) − 𝐶(0) in an instrument bearing no risk so that at maturity 𝑇 you will 

receive 𝑆(0) plus the return on your investment i.e. 𝑆(0) plus the interest on the risk free 

instrument. Then  𝐶(𝑇) = 𝑆(0) + 𝑒−𝑟𝑡[𝐶(0) − 𝑆(0)], where 𝑒−𝑟𝑡[𝐶(0) − 𝑆(0)] is the free 

money you have made without taking any risk. We realise that the only price that guarantee no 

arbitrage situation is when 𝐶(0) = 𝑆(0).  

  

  

  

  

  

Discounted stock price process  

The price of an asset  is called a discounted price process if    

  

where  is the discounted stock price and  is the discount factor.  

Discounted value process  

Let  be an equivalent martingale probability measure, then for any self financing strategy the 

discounted value process is a martingale if the discounted stock price process is a martingale.  
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Martingale Measure  

A probability measure  on  is called a martingale measure if the discounted stock price 

process  is a martingale under the measure .  is called the discount factor or  

the numerai.   

Equivalent Martingale Measures  

Two probability measures  and  are equivalent if they have the same null sets. That is for any 

set ,   

 

The two probability measures live on the same space but assign different probabilities to the 

outcomes on the sample space. We can change from one probability measure to the other if and 

only if they are equivalent. It follows that if there exists an equivalent martingale measure , 

equivalent to the original measure , then the market model does not have arbitrage opportunities 

and discounted stock price process is a martingale under the measure . These ideas are captured 

in the fundamental theorem of arbitrage.  

  

Theorem 4.1 (First Fundamental Theorem of Arbitrage)   

A market model does not have arbitrage opportunities if and only if there exists a probability 

measure ℚ equivalent to ℙ such that the discounted stock process  

  

..................................………………..…..4.37  

is a ℚ −martingale.   
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Proof  

By the first fundamental theorem our assumption of existence of no arbitrage in the market makes 

the discounted stock price process a martingale under the measure ℚ equivalent to the measure ℙ. 

We now give the theorem that relates the discounted stock process and the discounted value 

process  

  

Theorem 4.2  

Suppose there is a probability measure ℚ such that the discounted stock process   is a  

ℚ −martingale. Then for any admissible trading strategy the discounted value process 𝑉(𝑡)/𝛽(𝑡) 

is also a ℚ −martingale. Such ℚ is called an equivalent martingale measure (EMM) or a 

risk−neutral probability measure. (See Appendix for proof)  

  

4.5.2 The Arbitrage Free Option Pricing Model   

Given that a market model is complete it follows that there are no arbitrages in the market. If there 

are no arbitrages then by the first fundamental theorem of arbitrage there exists a unique equivalent 

martingale measure such that the discounted stock price process is a martingale.   

It follows that for any admissible strategy the discounted value process of a replicating portfolio is 

a martingale. Now if the discounted value process 𝑒−𝑟𝑡𝑉(𝑇)  is a martingale, then for any time  

𝑡 ≤ 𝑇 we can write   

  

  

For any admissible strategy    𝑉(𝑇) = 𝑋(𝑇)  
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Theorem 4.3  

Suppose that the market model does not admit arbitrage, and 𝑋 is an attainable claim with maturity 

𝑇. Then 𝐶(𝑡), the arbitrage-free price of 𝑋 at time 𝑡 ≤ 𝑇 , is given by 𝑉(𝑡), the value of a portfolio 

of any admissible strategy replicating 𝑋. Moreover  

  

where ℚ is an equivalent martingale probability measure. (See Appendix for proof). Another 

approach to obtain this model is via the Fayman−Kac’s theorem.   

  

  

  

Fayman−Kac’s theorem  

Consider the Geometric Brownian Motion process  

𝑑𝑆(𝑡) = 𝜇𝑆(𝑡)𝑑𝑡 + 𝜎𝑆(𝑡)𝑑𝐵ℙ(𝑡)   

where 𝜇 is the expected return and 𝜎 is the volatility of 𝑆(𝑡) and 𝐵(𝑡)ℙ is the Brownian motion 

process under the measure ℙ. If 𝑉(𝑆(𝑡), 𝑡) is the value of a contingent claim on 𝑆(𝑡) and   

𝑉(𝑆(𝑡), 𝑡) satisfies   
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then 𝑉(𝑆(𝑡), 𝑡) can be written as an expectation and   

  

∎ 

Thus, by Fayman−Kac’s theorem if 𝑉(𝑋(𝑇), 𝑇) satisfies the Black–Scholes PDE then under the 

probability measure ℚ  

 𝑉(𝑋(𝑇), 𝑇) = 𝔼ℚ [𝑒𝑟(𝑇−𝑡)(𝑚𝑎𝑥(𝑆(𝑇) − 𝐾, 0))| ]………….………….4.40  

ℱ 

  

4.6  Option Pricing by Discounting  

Consider an investor who purchases a European call option written on the stock 𝑆(𝑡). At expiration 

if 𝑆(𝑇) > 𝐾, the holder exercise the option and receives 𝐶(𝑇) = 𝑆(𝑇) − 𝐾. On the otherhand, if 

𝑆(𝑇) < 𝐾 then he receives 𝐶(𝑇) = 0. The investor’s payoff function can be written as  

𝐶(𝑇) = 𝑚𝑎𝑥(𝑆(𝑇) − 𝐾) = (𝑆(𝑇) − 𝐾)+……………………………...4.41  

Since at 𝑡 = 0 we do not know 𝐶(𝑇), we would rather want to discount the option to time 𝑡 = 0. 

In otherwords we want the Present Value of the option.   

Suppose we invest an amount 𝑀(𝑡) at time 𝑡 in a savings account. In the subsequent small time (𝑡, 

𝑡 + ∆𝑡), the balance 𝑀(𝑡) in the account becomes 𝑀(𝑡 + ∆𝑡). The return 𝑅(𝑡) on the investment 

𝜇 can be expressed as the ratio  

  

…………………………….…..4.42  

Now in the limit as ∆𝑡 approaches 0, we can write Equation 5.42 as  
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The interest rate or the return on the investment now satisfies   

  

…………………………………..4.43  

The expression  is called the discount factor of the amount 𝑀(𝑡). Thus, in  

valuing the option we calculate the expected present value (at time 𝑡 = 0) by multiplying the option 

payoff  at maturity ( ) by the discount factor  

. Thus, valuing the option reduces to computing the present value of the option as the  

expectation of the final value  of the option discounted at the  and  

under the filtration   so that  

  

It happens that under risk neutral pricing  is the risk free interest rate  so we write   
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4.7  Average Value or Asian Options  

An Average Value or Asian option is the case where the option's payoff depends on the average 

of underlying stock asset. Asian option was introduced on the Asian market in the early 1970s to 

combat the common problem in European options where speculators could drive up the prices 

before maturity. The averaging procedure in Asian options reduces the significance of the closing 

price and reduces the effects of abnormal price changes at the maturity of the option. Most Asian 

options are traded in a discretely sample data, but the discrete sample case can be approximated 

by the continuous model. Generally, Asian options are less expensive than their European 

counterparts and are therefore more attractive to many different investors. Asian options come in 

two basic forms as regards its terminal payoff. Given an underlying stock  with average  and 

strike price  the payoffs of the option is    

          

The average can be arithmetic or geometric and can be structured as discrete or continuous.   

4.7.1 Discrete Asian Options  

In discrete averages options the stock price average at times 0 ≤ 𝑡1 < 𝑡2 … . < 𝑡𝑛 ≤ 𝑇 is taken over 

the period of the option’s life. These times may be daily, weekly or monthly.  Arithmetic discrete 

average   

  

……………………………….…………..4.44  

 Geometric discrete average  

  

…………………….……………………..4.45  
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4.7.2 Continuous Asian Options  

In the continuous Asian option the average is integrating the price path over the time period.    

Arithmetic continuous average  

  

…………………………………..4.46  

 Geometric continuous average  

  

……………………….………..4.47  

4.7.3 Pricing Asian Options  

Asian options are priced by representing the option value as an expectation or integral. 

Representing options as expectations allows the use of numerical methods such as Monte Carlo 

simulations. The idea is to simulate large number of the option prices and expect that as 𝑛 gets 

large the price will converge to the expected price as dictated by the law of large numbers. In this 

approach lies that fact that we must describe the dynamics of the asset price not as we observe 

them but as they would be under a risk-adjusted/neutral probability measure. In pricing European 

options under the Black-Scholes, in simulating the stock’s path, it is assumed that the path depends 

only on the terminal stock price 𝑆(𝑇) and initial stock prices 𝑆(0). This sort of modeling ignores 

the fact that the payoff of the option may depend on the intermediate values of the underlying 

asset. Asian option accounts for the option by considering all values at all points of the stock price 

in the interval [0, 𝑇]. We thus price the Asian option by replacing the terminal stock price by the 

average stock price in the time interval [0, 𝑇].   
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Consider an underlying stock 𝑆(𝑡) following the diffusion process and having the stochastic 

differential equation  

𝑑𝑆(𝑡) = 𝑟𝑆(𝑡)𝑑𝑡 + 𝜎𝑆(𝑡)𝑑𝐵(𝑡) ………………..……………..4.48  

with average stock price 𝐴 and strike price 𝐾. The arbitrage free price of an Asian option sold on 

the stock 𝑆(𝑡) under the risk neutral valuation is given by   

  

………………..……………..4.49  

where 𝑡 ≥ 0 and ℱ𝑡 is the filtration for the Brownian motion 𝐵(𝑡) and the expectation is taken with 

respect to the equivalent martingale measure ℚ.   

The option price thus depends on the nature of the average of the underlying asset. As has been 

explained earlier, currently the average is determined either by arithmetic average or geometric 

average. In the case of arithmetic average, no analytical tractability has been found and so a 

closed−form solution does not exist. For this reason, several numerical methods have been 

developed to obtain the option price. These methods include Monte Carlo simulation, binomial 

methods, numerical solutions to PDEs, Fourier transform techniques, inversion of non−trivial 

Laplace transforms, etc. On the other hand, options based on geometric average have a closed form 

solution of the price can obtained analytically.   

If the stock price process is discrete then to obtain the average stock price we simulate the paths 

of 𝑆(𝑡1), 𝑆(𝑡2), … 𝑆(𝑡𝑛) and compute the average. For continuous Asian option the average is the 

continuous average in the interval [0, 𝑇] and is given by  
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4.7.4 Some Closed−Form Models of Geometric Average Asian Options  The 

option payoff of an Asian option is given by    

               

      ……………………..4.50  

It follows that the option price can be represented as an integral of the form  

  

     …………………..4.51  

where 𝑓(𝑥) is the true but unknown density function of the average stock price. The general idea 

is to approximate 𝑓(𝑥) by some known probability distribution whose parameters and moments 

are well known.   

• Turnbull and Wakeman approximated 𝑓(𝑥) by the lognormal distribution of the generalized  

Edgworth series   

  

………………………………..4.52  

where ℰ(𝑥) is the residual term and 𝒦1(𝐺) has been set equal to 𝒦1(𝐹) and 𝑔(𝑥) is the lognormal 

distribution. The option price is    
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……………………………..4.53  

where 𝐺 is the approximating lognormal distribution. The option price is thus given by   

 

…………………..……………..4.54  

where ϕ is the standard normal distribution with mean 0 and variance 1.  

  

ϕ(𝑑2) = 𝑑1 − 𝜆  

  

• Milevsky and Posner (1998) approximated 𝑓(𝑥) with the reciprocal gamma distribution given   

  

……………..……………..…..4.55  

where 𝑔𝑅(𝑦) is the reciprocal gamma distribution. The solution to Milevsky and Posner equation  

is  
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…………….……………..4.56  

where          

  

• Vorst [1992] gave an exact pricing formula by approximating 𝑓(𝑥) with an adjusted strike 

price which is given as the difference in expectation of the arithmetic and geometric averages. 

The option payoff function is given as    

         𝐶(𝑆(𝑡), 𝑡) = 𝑒−𝑟𝑇𝔼[(G − K)+]  

  
……………………….………..4.57  

where 𝑔(𝑥) is the lognormal density function of the geometric average 𝐺. 𝐺~𝑁(𝜇𝐺, 𝜎𝐺2).  

The price at time 𝑡 = 0 of the geometric Asian option with strike price 𝐾 and maturity 𝑇 is   

  

……………………………..4.58  

where             

𝑑2 = 𝑑1 − 𝜎𝐺  
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• Curran (1994) conditioned on the geometric average and integrated with respect to its 

lognormal distribution. In Curran’s method   

𝐶(𝑆(𝑡), 𝑡) = 𝑒−𝑟𝑇𝔼[(𝐴 − 𝐾)+]  

 𝐶(𝑆(𝑡), 𝑡) = 𝑒−𝑟𝑇𝔼 [𝔼(𝐴 − 𝐾)+ | ]  

𝐺 

∞ 

 𝐶(𝑆(𝑡), 𝑡) = ∫ 𝑒−𝑟𝑇𝔼 [𝔼(𝐴 − 𝐾)+ | ] 𝑔(𝑥)𝑑𝑥  

 0 𝐺 = 𝑥 

………………..……………..4.59  

where 𝑔(𝑥) is the lognormal density function of 𝐺. The lower bound is defined as  

  

and the upper bound is    

With solution     𝐶(𝑆(𝑡), 𝑡) = 𝑒−𝑟𝑇[𝐶1(𝑆(𝑡), 𝑡) + 𝐶2(𝑆(𝑡), 𝑡)]  

  

The price of the Asian option with strike price 𝐾 and maturity 𝑇 is thus given by   

  
…………………………..4.60  

where        

  

 𝑡𝑖 = 𝑖ℎ,     

𝑞 is the continuous dividend paid on 𝑆(𝑡). If  𝑞 = 0 then   
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 𝑡𝑖 = 𝑖ℎ,   .  

Although the geometric and more widely the arithmetic average models have been used to price 

options they fail to address the problem when the variability in the underlying stock price is very 

low giving rise to low volatility stocks. In such a case the variability in the stock price process is 

not completely explained by the geometric and the arithmetic averages which are more suited to 

cases where the spread is uniformly distributed. In cases where the distribution is more crowded 

around the central value the use of the arithmetic or geometric average is unsuitable. We are 

convinced that for such cases the modal average is a better estimate of the average than the 

geometric or arithmetic average. We will proceed to develop a new model in the nest chapter and 

analytically show that the modal average is indeed a better model in the case of low volatility 

options.  

CHAPTER 5  

MAIN RESULTS 1−THEORETICAL RESULTS  

5.1  The Modal Average of a Stock Price  

In this chapter we would develop a model to price an average value option whose underlying stock 

price is based on the modal average. We begin by considering the distribution of the behaviour of 

prices of a typical stock listed on a stock exchange. We would observe the price behaviour through 

time and determine the average price over a given time interval use it as an underlying asset to 

price an option. We are guided in this derivation from the basic premise of a sample space on 
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which the realization of a price event is captured a filtration of information onto a sample space 

and on which is defined a sequence of sigma algebras such that ℱ1 ⊆ ℱ2. Such filtration process 

ensures that as time passes, more and more detailed information is revealed about the stock price 

as finer and finer partitions of omega is realised and eventually we know the true state of the stock 

price.  

Consider the historical price behaviour of a stock as shown in Figure 5.1.  

 

 Figure 5.1  Movements of a stock price  

Figure 5.1 shows the up and down movement of the stock price.   

Let Ω denote the sample space for the stock price between time periods [0, 𝑇], then Ω = 3.79, 

3.77, 3.78, 3.75, 3.77, … …. .   

Let 𝜔𝑖 denote the outcome of a stock price at times 𝑡 = 1, 2, 3, … …, then it follows that 𝜔𝑖 ∈ Ω.   

Let  𝜔1 = 3.79,  𝜔2 = 3.77,  𝜔3 = 3.78, 𝜔4 = 3.75  𝜔5 = 3.77 then 𝜔𝑖 is an  

elementary outcome in Ω. Since 𝜔 can take any positive real value we can say that Ω = ℝ+. Let  

𝐴 denote the weekly prices of stocks, then 𝐴 is a subset of Ω and the elementary outcome 𝜔 ∈ 𝐴. 

We realise that the outcome of 𝜔 is generally not certain or predictable. We will thus always 

consider the next outcome of 𝜔 as the outcome of some random experiment whose underlying 

  

3.79   

3.77   

3.78   

3.75   

3.77   

3.73 

3.74 

3.75 

3.76 

3.77 

3.78 

3.79 
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Price   
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randomness is dictated solely by some act whose behaviour is based purely on chance. The 

occurrence of 𝜔 is seen as the realization of one particular outcome in a set of several possible 

outcomes. We will realise the occurrence of 𝜔 through some measurable space.  

  

 
  

 Figure 5.2   Measurable Space of a stocks  

  

  

 𝐴1 = 3.79, 3.79,  3.77, 3.77,             3.78  

 𝐴2 = 3.78, 3.75, 
 

3.75, 3.75,             3.75  

 𝐴3 = 3.75, 3.75, 
 

3.77, 3.75,             3.75  

      .  .           .    .  .    .  

      .  .           .    .  .    .  

      .  .           .    .  .    .  

                   𝐴𝑛 = 𝜔𝑛1,         𝜔𝑛2,             𝜔𝑛3,            𝜔𝑛4,          𝜔𝑛5  

Let ℱ denote the collection of such subsets of Ω of the stock prices above. Clearly   

i. ϕ ∈ Ω  

ii. Given 𝐴1 = 3.79, 3.79, 3.77, 3.77, 3.78 then (𝐴1)𝐶 = 𝐴2, 𝐴3 … . . , 𝐴𝑛 also belongs to  

𝜔 1   

𝐴 1   

Ω   

𝜔 2   

𝜔 3   

𝐴 2   

𝐴 3   



 

101  

  

  

ℱ. That is   

iii. If 𝐴1 = 3.79, 3.79, 3.77, 3.77, 3.78 ∈ ℱ and  𝐴2 = 3.78, 3.75, 3.75, 3.75, 3.75 ∈ ℱ, The 

union 𝐴1 ∪ 𝐴2 = 3.79, 3.79, 3.77, 3.77, 3.78, 3.78, 3.75, 3.75, 3.75, 3.75  also belongs to 

ℱ. That is,  𝐴1 ∈ ℱ and 𝐴2 ∈ ℱ ⟹ 𝐴1 ∪ 𝐴2 ∈ ℱ.   

For now we would develop a measure to assign values to the ℱ 𝜎 −algebra sets on Ω. The sample 

space Ω and the  ℱ −measurable sets form a measurable space for the stock prices. Let denote this 

space as (Ω, ℱ). Let define a measure 𝜇𝑠 ∶ ℱ ⟶ [0, ∞] such that  

i. 𝜇𝑠(∅) = 0.  

ii. If {𝐴𝑖, 𝑖 ≥ 1} is a sequence of disjoint sets in ℱ, then the measure of the union (of countably 

infinite disjoint sets) is equal to the sum of measures of individual sets, i.e  

  

…………………………………………..5.1  

5. 2  Measure Space of a Stock Price  

The measure space of a stocks for the algebra is defined as the triple .  is a measure 

or rule that assigns numerical values to the subset of  onto the semi infinite interval  

. Since  , it follows that  is a finite measure. A random variable defined on 

 is an f measurable function such that . The probability of an event is  

defined as the Probability of a Random Variable  such that   

 …………………………5.2  

The probability law thus defined for  gives the probability that the random variable  takes a 

value on the Borel set . We can illustrate this in Figure 5.3.  
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measurable subsets of   

                   Figure 5.3.  The Probability law of a Random Variable on Borel sets  

In Figure 5.3,  is the probability measure on , that is from event  to the probability space 

 on the real line.  is the measure from the Borel set  on the real line onto the probability 

space .  is a composition of  with . If  is a probability space, and  is a real-

valued random variable, then,  of  is a probability measure on .   

In otherwords, the probability law for a random variable 𝑋 is the probability measure induced by 

the random variable on the Borel 𝜎 −algebra on the real line ℝ+.  

  

  

  

  

  

  

        

𝜔   

X − 1 ( 𝐵 )   

X( 𝜔 ) = 𝑥   

Borel Set  𝔅   

ℝ   

𝑋 ( 𝜔 )   

A   

𝑓 − Ω 

( Ω , ℱ , ℙ )   

[ 𝟎 ,   ℙ  𝑠   1 ]   
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5.3  Random Walk Process of a Stock Price  

Suppose we observe the stock price movement starting from 𝑡 = 0. In the next time step we realise 

that the stock price can either go up or go down and that such movements are based purely on 

chance. Let’s denote the outcome of the stock price of the 𝑖𝑡ℎ stage by ω𝑖 so that the outcome of 

the 𝑛𝑡ℎ successive price is 𝜔𝑖 = 𝜔1, 𝜔2, … , 𝜔𝑛 and the infinite successive sequence of outcomes of 

ω is given by  𝜔𝑖 = 𝜔1, 𝜔2, …..    

Define a random variable 𝜉 such that when the price goes up 𝜉 = 1 and when the price goes down  

𝜉 = −1 and each case has a probability .   

  

……………………………….…………..5.3  

Since the outcome of  is based on pure chance, it follows that ξ𝑖′s are independently  

distributed. Let 𝑋𝑘 be defined as  

  
…………………………..………………..5.4  

The process for the stock price is thus given by 𝑋𝑛, 𝑛 = 0, 1, 2, ….  and is said to follow the random 

walk. The path for the first five steps of the stock price movement in Figure 5.1 is the random walk 

process is shown in Figure 5.4.  
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Figure 5.4       The first five steps of the random walk of the stock price  

The random walk is thus characterized by the following: Each stage is independent and thus they 

have independent increments. This means that if we choose a non−negative integers 0 = 𝑘0 < 

𝑘1 < 𝑘2 < ⋯ < 𝑘𝑛, the random variables 𝑋𝑘𝑖 = (𝑋𝑘1 − 𝑋𝑘0), (𝑋𝑘2 − 𝑋𝑘1), … . , (𝑋𝑘𝑛 − 𝑋𝑘𝑛−1) are 

independent. The random variable for the distribution of the increments is defined as  

𝑘𝑗+1 

 𝑋𝑘𝑖+1 − 𝑋𝑘𝑖 = ∑ 𝑋𝑘  

𝑖=𝑘𝑗+1 

……………………....…………………..5.5  

The increments are normally distributed and independent as the underlying process governing their 

behaviour is purely random. The expectation 𝔼(𝑋𝑘𝑛+1 − 𝑋𝑘𝑛) = 0 and 𝑉𝑎𝑟(𝜉) = 1 and so   

  

5.4  Brownian Motion Realization of a Stock Price  

Suppose in Figure 5.1 that we now speed up time i.e. reduce the time interval between changes in 

stock price so that the time between two price changes 𝑡𝑖 − 𝑡𝑖−1 approaches zero and we increase 
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the number of steps 𝑛 of the random walk. This is possible in the event of increase in trading 

activity and automation of stock trading on an Exchange. It must be emphasized here that we are 

developing these models based on the assumption that the level of trading activity is high.  The 

limit of the random walk is the Brownian motion process 𝐵(𝑡) and so limiting distribution function 

of the random walk is now inherited by the Brownian motion process which then assumes all the 

properties of the random walk with increments normally distributed with mean zero and variance 

𝑡. The properties of Brownian motion are well documented in literature. The  

Brownian motion distribution of a typical stock price on a stock exchange is shown in Figure 5.5  

  

 

                                Figure 5.5   Brownian motion realization of a stock price  

  

5.5  The Frequency Distribution of a Stock Price   

Consider a stock with prices 𝜔0, 𝜔1, … , 𝜔𝑛 at times 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑛 = 𝑇.   

Let 𝑓0, 𝑓1, … , 𝑓𝑛 denote the frequencies of 𝜔0, 𝜔1, … , 𝜔𝑛.  Define Ω such that Ω = {𝑓0, 𝑓1, … , 𝑓𝑛 

}. Let 𝐴 be a subset of Ω and let ℱ denote a collection of subsets of 𝜔𝑖′𝑠  on Ω. Then surely, by 

earlier proposition ℱ forms a 𝜎 −algebra of frequencies 𝑓𝑖′𝑠  on Ω with measurable space given by 

  

A   

B   
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(Ω, ℱ). Let ℙ denote a probability measure defined on this space, then (Ω, ℱ, ℙ) is the measure 

space for the frequency of stock prices.   

To develop the continuous process let  be the realization of a stock price on . Let  

be a random variable defined on  such that , then  is a measurable function 

on . By considering the frequencies of  we are now interested in some function of 

. The distribution of the frequency of  is thus a composite of some function  and 

, where . Let’s denote this as . Since the pre-images  

, it follows that  are measurable in  and consequently  

 are random variables. If there are   random variables defined on , it follows  

that  is a random variable on . Thus we have some random  

variables from some measure space being mapped onto some vector in , such that for any  

Borel sets in  the preimages  are in . The frequency distribution of  

 is now a mapping of  from  onto some vector space . Since  is Borel measurable it 

follows that  is a random vector.   
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                  Figure 5.6    The frequency distribution of stock price on measure spaces  

For each realization 𝜔 the random variable 𝑋(𝜔) from some underlying measure space (Ω, ℱ, ℙ) 

is mapped onto ℝ. The pre−image of 𝑋(𝜔) of some Borel sets in ℝ are measurable in (Ω, ℱ, ℙ). 

The function 𝑓 maps 𝑋(𝜔) onto some other measure space of ℝ. The pre−𝑖mages of 𝑓(𝑋(𝜔)) are 

also measurable in (Ω, ℱ, ℙ). For this study we are interested in the value of 𝑥 ∈ ℝ corresponding 

to the maximum frequency.  

  

5.6  Mode of a Random Variable   

Let 𝑋𝑖 ≥ 0 be a random variable. Let ℙ(𝑋𝑖) ≥ 0 be the frequency distribution of 𝑋𝑖 then function 

𝑓: ℝ → ℝ represents the probability distribution of 𝑋𝑖. The mode of this distribution is the value of 

𝑋 on the real line ℝ corresponding to the maximum frequency of the distribution. If 𝑋 represents 

the stock price and ℙ(𝑋𝑖) represent the frequency that the stock will assume the price 𝑋𝑖 then we 

seek for the value of 𝑋 that corresponds to the maximum frequency.  

  

5.6.1 Mode of a Discrete Probability Distribution Function  

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be random variables defined on (Ω, ℱ, ℙ). Let ℙ(𝑥1), ℙ(𝑥2), … , ℙ(𝑥𝑛) be the 

probability distribution of 𝑋1, 𝑋2, … , 𝑋𝑛 then the function 𝑓: ℝ → ℝ represents the probability 

distribution of 𝑋1, 𝑋2, … , 𝑋𝑛. The mode of this distribution is the value of 𝑋 corresponding to the 

maximum of the probabilities in the distribution. If 𝑋 represent the stock price and ℙ(𝑥1) frequency 

of occurrence of 𝑥 or the probability that 𝑥 occurs, then we seek for the numerical value of 𝑋 

corresponding to maximum  ℙ.   

  

 .  
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5.6.2 Mode of Some Simple Probabilistic Experiments  

Example 5.1  

As an example we consider the simple toss of a single coin. Let the random variable  be the event 

that a head occurs. The possible outcome is a head H or a tail T. Let   and  

, then each outcome has a probability ½. We summarize the results in Table 5.1  

  

  

  

0  

  

1  

  

  

  

1/2  

  

1/2  

   

 Table 5.1 Probability distribution in a single toss of a coin  

The graphical representation is given in Figure 5.7  

  ℙ(𝑋 = 𝑥)  

 

     Figure 5.7       Mode of a single coin toss  

The mode of the experiment is 0 or 1.  

  

Example 5.2  

A die is tossed once. Let the random variable  be the event that 4 occurs. The random variable  

transforms the outcomes onto the real line as  

      ,             

 
  

𝑋 = 𝑥  

  

0  

  

1  

  

  

  

  

  

  

1 / 2   

1   0   
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𝑃(𝑋 = 𝑥)  

  

5/6  

  

1/6  

  

Table 5.2 Probability distribution in a single toss of a die The 

graphical representation is given in Figure 5.8  

  
ℙ(𝑋 = 𝑥)  

 

Figure 5.8      Mode of an event in a single die toss  

The value of 𝑋 corresponding to the maximum probability is 0 and hence the mode of the 

experiment is 0.  

Example 5.3  

Consider an experiment in which a pair of dice is tossed once. Suppose we define the random 

variable 𝑋 as the sum of the outcomes. We wish to determine the mode of the distribution of the 

random variable 𝑋. The outcomes and the probability of the outcome is given in Table 5.3  

  

𝑋 = 𝑥  

  

2  

  

3  

  

4  

  

5  

  

6  

  

7  

  

8  

  

9  

  

10  

  

11  

  

12  

  

𝑃(𝑋 = 𝑥)  

  

1/36  

  

2/36  

  

3/36  

  

4/36  

  

5/36  

  

6/36  

  

5/36  

  

4/36  

  

3/36  

  

2/36  

  

1/36  

  

Table 5.3.  Table of probability distribution in a single toss of a pair of dice  

  

The graphical representation is given in Figure 5.9  

  

 

  

  

  

  

  

  

  

  

1 / 6   

1   0   

5 / 6   

𝑥   



 

110  

  

  

 

Figure 5.9     Mode of a single toss of a pair of dice   

The mode of the distribution is the value of the random variable  that corresponds to the highest 

probability i.e. .  Therefore the mode 7. This occurs when the sum of the two faces  

equals 7. The events leading to this outcome are    

  

5.6.3 Mode of Some Standard Discrete Probability Distribution Functions  

The Binomial distribution   

Consider the Binomial distribution   

 

We wish to determine the mode when  and   

 

 

  

  

2 / 3 6   

10   7   11   𝑥   

3 / 3 6   

4 / 3 6   

5 / 3 6   

1 / 3 6   

2   

6 / 3 6   

3   4   5   6   8   9   12   
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0.    

  

  

  

  

  

  

  

0.    

  

Table 5.4   Probabilities generated by the Binomial distribution The 

graphical illustration is given in Figure 5.10  

  
𝑃(𝑋 = 𝑥)  

 

 
  

0  1  2  3  4  5  

Figure 5.10     Mode of the Binomial Distribution  

Clearly the numerical value of  that corresponds to the highest probability is 2, that is, .   

  

Therefore     

  

The Poisson distribution  

Consider the Poisson distribution   

  

Given 𝜆 = 2.5, we compute the Poisson probabilities as   
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0.3   
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𝑋 = 𝑥  

  

0  

  

1  

  

2  

  

3  

  

4  

  

5  

  

6  

  

7  

  

𝑃(𝑋 = 𝑥)  

  

0.0820  

  

0.2050  

  

0.2570  

  

0.2130  

  

0.1330  

  

0.0102  

  

0.0280  

  

0.0100  

  

 Table 5.5   Probabilities generated by a Poisson distribution.   

The graphical representation is given in Figure 5.11  
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ℙ(𝑋 = 𝑥)  

Figure 5.11   Mode of the Poisson Distribution  

The mode of the distribution is    

5.6.4 Mode of a Continuous Probability Distribution Function  

Let  be the function that assigns values to the distribution of the unique number  such that  

 is the maximum of the probability distribution of the random variable , then   

is the mode of . That is {  such that  is the maximum probability}. We illustrate  

this in Figure 5.12  

  
              ℙ(𝑋)  
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Figure 5.12  Mode of a Continuous Probability Distribution Function  

In Figure 5.12 the mode of the random variable 𝑋 is the value of 𝑥 corresponding to the highest 

point on the probability density function or the point where the random variable is most dense. If 

𝑓(𝑥) is a probability distribution function then the maximum of 𝑓(𝑥) is given by finding the 

stationary points of 𝑓(𝑥), conditioned by the fact that .     

Example 5.4   

Consider the  of the continuous random variable 𝑋 ≥ 0 as shown in Figure  

5.13  

ℙ(𝑥)  

  

  

  

  

  

  

  

                                                                

  

ℙ 𝑚𝑎𝑥   

𝑓 ( 𝑥 )   
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Figure 5.13    Mode of a linear function  

In Figure 5.13 the mode of the straight line is the value of 𝑥 corresponding to maximum of  

𝑓(𝑥) = ℙ𝑚𝑎𝑥  

Example  5.5  

  𝑓(𝑥)  

 
  𝑓(𝑥) = 0  𝑥 = 𝑚𝑜𝑑𝑒  𝑓(𝑥) = 0  

 Figure 5.14  Mode of an arbitrary Curve  

In Figure 5.14 the mode of the curve is the value of  corresponding to maximum of  

  

Example 5.6   

Consider the curve as shown in Figure 5.15  

   

  

  

  

  

  

𝑓 ( 𝑥 )   

𝑓 ( 𝑥 ) = 0   
𝑥   

𝑥 = 𝑚𝑜𝑑𝑒   

𝑓 ( 𝑥 ) = 0   

ℙ 𝑚𝑎𝑥   

  

  

  

  

  

  

  

ℙ 𝑚𝑎𝑥   

ℙ = 𝑓 ( 𝑥 )   

𝑥   
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𝑓(𝑥) = 0  𝑥 = 𝑚𝑜𝑑𝑒  𝑥 = 𝑚𝑜𝑑𝑒  𝑓(𝑥) = 0  

Figure 5.15    Mode of a bimodal curve  

The curve has two values of  corresponding to two maximum points of . Hence  is 

bimodal  

Example 5.7   

Consider the function  with probability density function   

  

The graph of  is shown in Figure 5.16  

 

 Figure 5.16   Mode of a probability density function  

To determine the mode of 𝑓(𝑥) we first have to determine the stationary points of 𝑓(𝑥)  

Now   

  

  

  

  

  

  

𝑃 = 𝑓 ( 𝑥 )   

  

  

  

  

  

  

𝑃 = 𝑓 ( 𝑥 )   

𝑓 ( 𝑥 ) = 0   𝑥 = 0   

𝐷𝑜𝑚𝑎𝑖𝑛   𝑜𝑓   𝑥   𝑤 ℎ 𝑒𝑟𝑒   𝑓 ( 𝑥 )   𝑖𝑠   𝑑𝑒𝑓𝑖𝑛𝑒𝑑   

𝑥 = 3 / 4   

ℙ 𝑚𝑎𝑥   
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The stationary points are     

Now to determine nature of the stationary point we have   

  

Consider the stationary points  

When   

When   

Since  when   it follows that the maximum of 𝑓(𝑥) occurs when   

Hence the mode of   

Theorem 5.1  

Let 𝑋 be a continuous random variable such that  𝑓(𝑥) is the probability density function of 𝑋. 

Suppose 𝑓(𝑥) is smooth enough such that the first and second derivative exists. Let 𝑥 be the value 

of  𝑋 that maximizes 𝑓(𝑥) i.e. the value of  for this value of 𝑥 then  

𝑥 is the mode of the distribution function 𝑓(𝑥) and we write   

  

…………………………………..5.6  

or  

  

…………………………………..5.7  

where  is the mode of .  
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5.7  Numerical Algorithm to Determine the Mode  

 We will employ numerical methods to determine the mode of a real valued function on a bounded 

real interval . In effect, the mode is the value of the random variable  corresponding to the 

maximum of the function provided the function satisfies the axioms of a probability density 

function and smooth enough such that the first and second derivatives exist.   

The problem thus reduces to solving the optimization problem of  on . i.e.  

we solve  

  

subject to           

We note that if the first and second derivatives of   exists and is continuous on  then it 

can be to solved by first computing all distinct zeros of  in the interior of the interval , 

and then evaluate  at these zeros and at the endpoints  and  and testing if  .  We 

should state here that the numerical approximation methods can be used to determine the 

maximum for both continuous as well as the discrete case.   

  

5.7.1 The Golden Section Search Optimization Method  

The Golden section search method is a technique for finding the extremum (minimum of 

maximum) of a strictly unimodal function. The algorithm is the limit of the Fibonacci search.   
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 Figure 5.17  The Golden section search algorithm  

Consider the values , ,  of the random variable  on the real line. Suppose   and  are the 

lower and upper limits respectively of  and , ,  have corresponding functional values  

, ,  respectively as shown in figure 5.17. We realise that , and  

  and it follows that  lies inside the interval  and . For   

If this was not the case then  and there is no turning point in the interval 

 and  is a monotone increasing or decreasing function. Now we examine the function at 

a new point  such that  lies somewhere in the larger intervals of  and . Now  

the criterion for the examination of the function is as follows:  

• If , then we know that the lower bound on the function is  and it follows 

that the function maximum must be greater than . Therefore the maximum of the function 

must lie in the range . The three points to be examined are   

• On the otherhand if , then we know that lower bound on the function is   

and it follows that the function maximum must be greater than . Therefore the maximum of 

the function must lie in the range . The three points to be examined are   

  

  

  

  

  

  

  

  

  

𝑥 ℓ1 𝑥 𝑢   

𝑓 ( 𝑥 ℓ )   

𝑓 ( 𝑥 𝑢 )   

𝑥 1 𝑥 2 

𝑓 ( 𝑥 1 )   

𝑓 ( 𝑥 2 )   
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To locate the two interior points  and  we employ Euclid’s definition based on dividing a line 

into two segments so that the ratio of the whole line to the larger segment is equal to the ratio of 

the larger segment to the smaller segment. This ratio is called the Golden ratio. Thus, the values 

of  and  are not picked at random but based on the golden search. By the Golden ratio search 

algorithm we choose  and  such that each point sub-divides the interval of uncertainty  

into two parts where:       

  

We subdivide the line segment as shown in Figure 5.18   

 

       Figure 5.18  The Golden Ratio  

From Figure 5.18 let  be the smaller segment and  be the larger segment of the line on which 

 is defined. Then by the golden ratio   

  

  

  

  

  

  

  

  
𝑥 ℓ1 𝑥 𝑢   

𝑓 ( 𝑥 ℓ )   

𝑓 ( 𝑥 𝑢 )   

𝑥 1 𝑥 2 

𝑓 ( 𝑥 1 )   

𝑓 ( 𝑥 2 )   

𝑎 
𝑏 

𝑐 
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Let  ,   then     

  

Solving for the positive roots of  we have   

 

The ratio    is known as the Golden Ratio. If we select  and  such  

that they meet the Golden Ratio criteria then we can evaluate  and  as   

   

   

where   

   

   

We again evaluate  and . if , then the new region of interest will  

be .  We then recalibrate the intervals as follows becomes 

new    

𝑥2 becomes new  𝑥1  

𝑥𝑢 remains 𝑥𝑢  

And the new  𝑥2 = 𝑥𝑢 − 0.618034(𝑥𝑢 − 𝑥ℓ)  

We then calculate 𝑥𝑢 − 𝑥ℓ. If 𝑥𝑢 − 𝑥ℓ <  then we stop the iteration and determine   
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 Otherwise we re-evaluate the function at the new 𝑥1 and 𝑥2 and repeat the process  

 𝑥𝑚𝑎𝑥 is the value of 𝑥 corresponding to the maximum 𝑓(𝑥) and therefore 𝑥𝑚𝑎𝑥 is the mode of the 

distribution. The algorithm can be summarized as follows  

Initialization:   

Consider the function 𝑓(𝑥). Determine 𝑥ℓ and 𝑥𝑢 which is known to contain the maximum of the 

function 𝑓(𝑥).   

Step 1  

Determine two intermediate points 𝑥1 and 𝑥2 such that they satisfy the Golden Ratio criteria  

𝑥1 = 𝑥ℓ + 𝑑   

𝑥2 = 𝑥𝑢 − 𝑑   

where    𝑑 = (𝜑 − 1)(𝑥𝑢 − 𝑥ℓ) = 0.618034 (𝑥𝑢 − 𝑥ℓ),   

Step 2   

Evaluate 𝑓(𝑥1) and 𝑓(𝑥2).  

If 𝑓(𝑥1) < 𝑓(𝑥2), then the new region of interest will be [𝑥1, 𝑥1, 𝑥𝑢],   

𝑥1 becomes new 𝑥ℓ   

𝑥2 becomes new  𝑥1  

𝑥𝑢 remains 𝑥𝑢  
and the new   𝑥2 = 𝑥𝑢 − 0.618034(𝑥𝑢 − 𝑥ℓ)  

Else if 𝑓(𝑥2) < 𝑓(𝑥1), then the new region of interest will be [𝑥ℓ, 𝑥1, 𝑥2].    

𝑥2 becomes new 𝑥𝑢  

𝑥1 becomes new  𝑥2  
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𝑥ℓ remains 𝑥ℓ  

and the new 𝑥1 = 𝑥ℓ + 0.618034(𝑥𝑢 − 𝑥ℓ)  

Step 3   

If 𝑥𝑢 − 𝑥ℓ <  (a sufficiently small number), then the maximum occurs at   

  

 and we stop the iteration, else go to Step 2.   

Example 5.8  

Consider probability density function defined by  

  

We wish to find the value of 𝑥 corresponding to the maximum of 𝑓(𝑥) in the interval [0, 2] given 

that   = 0.05  

Solution  

Given the interval [0, 2] we choose 𝑥ℓ = 0 and 𝑥𝑢 = 2  

We determine the two intermediate points 𝑥1 and 𝑥2 such that   

𝑥1 = 𝑥ℓ + 𝑑   

𝑥2 = 𝑥𝑢 − 𝑑   
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where   

  

 

 Figure 5.19  The Golden search algorithm of a   

  

Hence we go back to Step 2.  

Iteration 2  

    

   

 and so the lower boundary of  is . Hence the maximum of   lies in the  

interval . The new region of interest is , and we recalibrate the axis as  

follows:  

becomes new   

becomes new    remains 

  

  

  

  

  

  

  

  

  
𝑥 ℓ = 0    

a 
 

𝑥 𝑢 = 2   𝑥 2 = 0 . 763932   𝑥 1 = 1 . 236068   

𝑓 ( 𝑥 2 ) = 0.54102   𝑓 ( 𝑥 1 )   = 0.875388   
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Compute new  as   

 

  

  

 
   𝑥ℓ = 0.76392  𝑥2 = 1.23607   𝑥1 = 1.527864  𝑥𝑢 = 2  

  

     Figure 5.20  Iteration of the Golden section search algorithm  

  

we proceed to the next iteration using Step 2.  

Iteration 3   

  

   

 and so the lower boundary of  is . Hence the maximum of   lies in the  

interval . The new region of interest is  and we recalibrate the axis as  

follows:  

 remains   

is the new   𝑥1 

becomes new  𝑥𝑢 = 1.527864  

A new 𝑥1 is recalculated as  𝑥2 = 𝑥𝑢 − 0.618034(𝑥𝑢 − 𝑥ℓ)   

  

  

  

  

  

  

  

𝑓 ( 𝑥 2 ) = 0.875388   

𝑓 ( 𝑥 1 ) = 0 . 826604   
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𝑥2 = 1.527864 − 0.618034(1.527864 − 1.23607) = 0.8291  

𝑥𝑢 − 𝑥ℓ = 1.527864 − 0.763932 = 0.763932 > 0.05  

We proceed to the next iteration using step 2.   

Iteration 4  

  

𝑓(𝑥2) < 𝑓(𝑥1)  

Hence 𝑥2 is the minimum and 𝑥2 = 𝑥ℓ = 0.829174775 . The summary of the entire iteration  

results is given in Table 5.6   

Iteration  𝑿𝓵  
𝑿𝒖  

𝑿𝟏  𝑿𝟐  𝒇(𝑿𝟏)  𝒇(𝑿𝟐)  𝑿𝒖 − 𝑿𝓵  

1  0  2.0  1.236068  0.763932  0.8753882  0.5410196  2  

2  0.763932  2  1.5278641  1.2360679  0.8266045  0.8753882  1.236068  

3  0.763932  1.527864  1.2360679  1.0557281  0.8753882  0.789337  0.763932  

4  0.829174  1.527864  1.2609882  1.0960498  0.8813221  0.8144536  0.69869  

5  0.829174  1.2609882  1.096050  0.9941123  0.8144536  0.7455584  0.4318142  

6  0.9941123  1.2609882  1.159051  1.0960498  0.8472975  0.8144536  0.2668758  

7  1.0960498  1.2609882  1.197987  1.1590507  0.8632706  0.8472975  0.1649383  

8  1.1590507  1.2609882  1.222052  1.1979873  0.871347  0.8632706  0.1019375  

  

 Table 5.6  Table of values of The Golden section search algorithm  

On the 9th iteration  = 𝑥𝑢 − 𝑥ℓ = 0.03343729 < 0.05. Hence we stop and compute  
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Thus the value of 𝑥 corresponding to the maximum density function is  

 𝑥𝑚𝑎𝑥 = 0.0167186  

Hence the mode of the function is 𝑋 𝑀 = 𝑥𝑚𝑎𝑥 = 0.0167186  

We have obtained an algorithm to determine the maximum value of a probability density function. 

we will now proceed to develop the modal average method to obtain an option price.  

  

5.8  The Modal Average Method in Pricing Asian Options   

Suppose the stock price process follow the SDE   

𝑑𝑆(𝑡) = 𝜇(𝑡)𝑆(𝑡)𝑑𝑡 + 𝜎(𝑡)𝑆(𝑡)𝑑𝐵(𝑡) ……………………………...5.8 

Where 𝜇(𝑡) is the mean and 𝜎(𝑡) is the volatility of stock. If 𝑋 𝑀 is the modal average of the stock 

in the interval [0, 𝑇] then under the physical measure ℙ the price of an option on the stock is given 

by   

  

……………………………...5.9  

where   

  

……………………………...5.10  

Now by the fundamental theorem of arbitrage there exists an equivalent martingale measure ℚ 

such that the discounted stock price process is a martingale. It follows that for any replicating 
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portfolio 𝑉(𝑆(𝑡), 𝑡) the discounted value process is a martingale. Thus, for any admissible strategy 

the arbitrage free price of the option 𝐶(𝑆(𝑡), 𝑡) is given by   

  

……………………………...5.11  

Where 𝑟 is the risk free rate and the density transformation from ℙ to the ℚ is obtained via  

Girsanov theorem. This ℚ is the risk neutral measure which was earlier derived via the Radon– 

Nikodym derivative. By Girsanov’s theorem we write  

𝑑𝐵ℚ(𝑡) = 𝑑𝐵ℙ(𝑡) + 𝜃(𝑡)𝑑𝑡   

𝑑𝐵ℙ(𝑡) = 𝑑𝐵ℚ(𝑡) − 𝜃(𝑡)𝑑𝑡  ………………………………..5.12  

 But                𝑑𝑆(𝑡) = 𝜇𝑆(𝑡)𝑑𝑡 + 𝜎𝑆(𝑡)𝑑𝑊ℙ(𝑡) …………………………..5.13  

Putting Equation 5.12 into 5.13  

𝑑𝑆(𝑡) = 𝜇𝑆(𝑡)𝑑𝑡 + 𝜎𝑆(𝑡)[𝑑𝐵ℚ(𝑡) − 𝜃(𝑡)𝑑𝑡]  

𝑑𝑆(𝑡) = 𝜇𝑆(𝑡)𝑑𝑡 + 𝜎𝑆(𝑡)𝑑𝐵ℚ(𝑡) − 𝜎𝜃(𝑡)𝑆(𝑡)𝑑𝑡  

𝑑𝑆(𝑡) = (𝜇(𝑡) − 𝜎(𝑡)𝜃(𝑡))𝑆(𝑡)𝑑𝑡 + 𝜎(𝑡)𝑆(𝑡)𝑑𝐵ℚ(𝑡) Let 

𝑟(𝑡) = 𝜇 − 𝜎𝜃(𝑡), so that   

  

Then              𝑑𝑆(𝑡) = 𝑟𝑆(𝑡)𝑑𝑡 + 𝜎𝑆(𝑡)𝑑𝐵ℚ(𝑡) …………………………....5.14 where 

 is the Wiener process under the measure  and  is the risk free rate which we would 

assume equal to the 90 day sovereign treasury bill rate. The stock price process under the measure 

 is   

  

https://en.wikipedia.org/wiki/Radon%E2%80%93Nikodym_theorem
https://en.wikipedia.org/wiki/Radon%E2%80%93Nikodym_theorem
https://en.wikipedia.org/wiki/Radon%E2%80%93Nikodym_theorem
https://en.wikipedia.org/wiki/Radon%E2%80%93Nikodym_theorem
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Now the discounted option price process under the equivalent martingale measure  is  

  

……………..…………………..5.15  

Define an indicator random variable  by  

  

Then under the risk neutral measure  the condition to exercise the option is given by  

  

…..………..…………………..5.16  

  

……………..…………………..5.17  

  

  

  



 

 

CHAPTER 6  

MAIN RESULTS 2− OPTION PRICING USING MODAL AVERAGES  

6.1  Monte Carlo Simulation of a Stock Price Process  

We employ Monte Carlo simulations to obtain the price of an Asian option. By the law of large 

numbers as the sample size gets large the mean of the identically independently distributed random 

samples converges to the expected value (the population mean) which in effect, is the true option 

price. It is upon this premise that the Monte Carlo simulation works. We will first obtain results 

using the modal average and then simulate for options where the average is computed as 

arithmetic, geometric or median averages. For our model option whose payoff depends on the 

complete path 𝑆(𝑡𝑖), … . , 𝑆(𝑡𝑛) at fixed times 𝑡𝑖, … . . , 𝑡𝑛 it is important that we begin by simulating 

the path of the stochastic process describing the evolution of the stock price.   Given a call option 

with payoffs 𝑚𝑎𝑥(𝑋 𝑀 − 𝐾) we generate samples of 𝑆(𝑡) and determine the modal value of the 

stock. For the modal average we will simulate the path of 𝑆(𝑡𝑖), … . , 𝑆(𝑡𝑛)  and then compute the 

value of 𝑥 corresponding to 𝑚𝑎𝑥 {𝑓0, 𝑓1, … , 𝑓𝑛 }, where 𝑓𝑖 denote the frequency of the stock prices 

at times 𝑡𝑖, … . , 𝑡𝑛. The Arithmetic and geometric averages are similarly obtained using Equation 

4.39 and Equation 4.40 respectively. It must be noted that although we use discrete models the 

large volume of simulation ensures that the process is approximately continuous. We begin by first 

generating sample price paths of the stock. To do this we assume the stock price to follow the 

GBM process in the risk−neutral world so that   

𝑑𝑆(𝑡) = 𝑟𝑆(𝑡)𝑑𝑡 + 𝜎𝑆(𝑡)𝑑𝐵(𝑡) ………………….…………..6.1  

The Brownian motion (Wiener process) has the following properties:   

The change ∆𝐵(𝑡) in a short time period ∆𝑡 is   
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………………………….…………..6.2  

where 𝜉(𝑡) has a standard normal distribution 𝑁(0,1). In this time notation the stock price process becomes   

 
∆𝑆(𝑡) = 𝑟𝑆(𝑡)∆𝑡 + 𝜎𝑆(𝑡)𝜉(𝑡)√∆𝑡………………….…………..6.3  

  

………………….…………..6.4  

Thus the percentage rate of return of the stock price is normally distributed with mean 𝑟∆𝑡 and variance 

𝜎2∆𝑡. That is,  

  

………………….…………..6.5  

Now given a function 𝑓(𝑆(𝑡), 𝑡), we know by Ito process that   

 

Applying the process to a stock price with 𝑓 = 𝐼𝑛𝑆(𝑡) gives   

  

………………….…………..6.6  

……….……………………..……..6.7  

In discrete time this becomes      

………………….…………..6.8  
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This gives  …………….…..6.9 

…………………..6.10  

  

Equation 6.10 is the path constructing formula for the Monte Carlo simulation of the stock price 

To determine 𝑆(𝑡 + ∆𝑡) we sample from the standard normal distribution to produce a sequence 

of independent standard normal variables. We estimate the return and the volatility of each stock 

empirically by computing the daily stock price (closing price) of the individual stocks for one year. 

We use a one year data (2015) from the NASDAQ in the United States of America from which we 

compute the daily returns of stock. From this we determine the annual return (𝜇) for each stock in 

the given year (2015) by multiplying the daily returns by the number of trading days. The annual 

standard deviation or volatility (𝜎) of each stock is similarly computed. We now simulate the daily 

price paths of each stock for the coming year (2016) using a trading time interval of (

). We assume that there are no price changes from the last trading day of  

2015 and the first trading day of 2016. Thus, the initial stock price 𝑆(0) for the simulation is the 

closing price for the last trading day of 2015. The procedure can be summarized as follows: 1. 

Compute the return 𝜇 of a stock   

  
………………….…………..6.11  

2. Find standard deviation (volatility) of each stock  

  

………………….…………..6.12  
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3. Determine the time interval ∆𝑡, where   

  

4. Simulate the stock price path using  

  

………………….…………..6.13  

For each stock we simulate for several price paths by generating different sets of random numbers. 

Random numbers are uniformly distributed so we need to transform them into normal (lognormal) 

distribution by using the inverse distribution method. Realized Brownian motion paths for a stock 

with parameters 𝜇 = 0.00864, volatility 𝜎 = 4.23, 𝑆(0) = ¢5.30  ∆𝑡 = 

 are shown in Figure 6.1−6.4. We generate several price paths but we show  

only a few here.   

                    

 

    Figure 6.1      Stock price path for simulation i               Figure 6.2      Stock price path for simulation ii  
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Figure 6.3      Stock price path for simulation iii    Figure 6.4   Stock price path for simulation iv  

Simulation of the stock price process under measure ℙ and under the equivalent martingale measure ℚ are 

also shown in Figure 6.2 (𝑎, 𝑏).  

 

Figure 6.5  Stock price under measure ℙ                   Figure 6.6 Stock price under the risk neutral measure ℚ  

𝑑𝑆(𝑡) = 𝜇𝑆(𝑡)𝑑𝑡 + 𝜎𝑆(𝑡)𝑑𝐵ℙ(𝑡)    𝑑𝑆(𝑡) = 𝑟𝑆(𝑡)𝑑𝑡 + 𝜎𝑆(𝑡)𝑑𝐵ℚ(𝑡)  

The density transformation from ℙ to ℚ is given via Girsanov theorem in Equation 5.13 and Equation 5.14.   
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6.2  The Option Price  

After simulating several paths of the stock price we obtain the average stock price as   

  

………………….…………..6.7  

where 𝑆𝑎𝑣𝑔 is either arithmetic, geometric, modal or median average. We proceed to price a 

3−month option on the stock using the modal, arithmetic, geometric or median average of the 

stock price as the underlying asset. Whichever average is used we obtain large samples of  

𝐶(𝑆(𝑡), 𝑡)′s at times 𝑡𝑖, … . . , 𝑡𝑛 and determine the option price as   

  

…………………………..…..6.8  

6.3  Comparison of Modal Average Results with Existing Models  

In the Monte Carlo simulations we first obtain option prices using modal average of some stocks 

listed on the NASDAQ as the underlying assets. We proceed to use the same data to obtain option 

prices using arithmetic, geometric or median averages. In addition, we also compute the option 

prices using the Black–Scholes formula. We proceed to compare the option price results using the 

modal average to all other models. The results are presented in Table 6.1 and Table 6.2.  

Graphs of option prices against volatilities are also given in Figures 6.7−6.10.  

  

  

6.3.1 Table of Values for Average Stock Price and Option Prices   

Table 6.1 shows the average stock prices for a given volatility of selected stocks on NASDAQ. and 

Table 6.2 shows the corresponding option prices.   
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 Average Stock Price  Price at Maturity  

 Stock/Equity  Strike Price  Volatility  Geometric  Arithmetic  Modal  S(T))  

1 BarclaysUS  2.68  3.32  2.7120  2.7167  2.7136  2.7923  

2 1347PIH  7.80  0.70  7.8418  7.8416  7.8344  7.8520  

3 Amazon  749.87  5.33  770.5815  771.8901  768.0482  772.1159  

4 Apple  115.82  3.44  117.7973  117.8611  118.6621  119.2983  

5 AT&T  42.53  1.39  43.7633  43.7203  43.3087  42.7689  

6 BCOM  20.18  1.18  20.7807  20.7763  20.5957  21.1045  

7 Facebook  115.05  4.83  117.6367  118.0125  118.1533  122.5548  

8 Ford Motors  12.13  4.39  12.4536  12.3851  12.3730  12.5558  

9 General Electric  31.60  18.20  34.3291  35.2814  33.9188  38.2256  

10 General Motors  34.84  4.12  35.5684  35.5536  35.4175  37.8018  

11 Intel Corp  36.27  32.40  41.3124  41.3478  41.4441  42.3118  

12 Microsoft  62.14  3.24  63.2238  63.0061  62.8056  62.7161  

13 NY Times  13.30  2.75  13.4765  13.4862  13.4398  13.8560  

14 ODML  85.79  4.53  87.7146  88.5126  87.6008  90.4254  

15 Starbucks  55.52  5.00  56.7970  56.4879  56.6176  57.7570  

16 Tesla  213.69  9.30  223.2820  220.8227  221.0606  228.1394  

17 Verizon  51.40  16.53  54.8668  54.7580  55.3195  57.9553  

American  
18 Airlines  51.40  12.00  53.7148  53.3479  53.7916  56.9553  

19 Airbus  66.25  15.00  71.2220  69.4272  71.3456  73.1680  

20 Boeing  155.68  13.68  165.0347  162.9145  164.1845  167.6839  

  

Table 6.1   Average Stock Price of stocks on Nasdaq using Geometric, Arithmetic, Modal averages and the Terminal stock price  

  

  

  

  

Table 6.2 shows the option prices of selected stocks listed on Nasdaq for a given strike price and volatility.  

                                           Stock Parameter   Option Price   

Stock/Equity 

1  

Strike 

Price  Volatility  Geometric  Arithmetic  Modal  Black Scholes  

Barclays US 2  2.68  3.32  0.03202  0.03674  0.03360  0.04171  
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1347PIH  
3  

7.80  0.70  0.04176  0.04155  0.03444  0.06094  

Amazon  
4  

749.87  5.33  20.70967  18.17659  22.01807  20.82411  

Apple 5  115.82  3.44  1.97717  2.04097  2.83951  2.99233  

AT&T  
6  

42.53  1.39  1.23223  1.18919  0.77802  1.02467  

BCOM  
7  

20.18  1.18  0.60016  0.59578  0.41535  0.41814  

Facebook 8  115.05  4.83  2.58647  2.96227  3.10304  3.44955  

Ford Motors 9  12.13  4.39  0.32357  0.25509  0.24300  0.33319  

General Electric 10  31.60  18.20  2.72882  2.31861  3.68109  3.73332  

General Motors 

11  
34.84  4.12  0.72830  0.57745  0.71351  0.62875  

Intel Corp 

12  
36.27  32.40  5.04190  5.07738  5.17368  5.25889  

Microsoft 13  62.14  3.24  1.08371  0.86606  0.66550  0.87518  

NY Times 14  13.30  2.75  0.17648  0.18617  0.13975  0.18351  

ODML  
15  

85.79  4.53  1.92443  1.80971  2.72019  1.88061  

Starbucks 16  55.52  5.00  1.27686  0.96778  1.09748  1.22458  

Tesla 

17  
213.69  9.30  9.59110  7.13202  9.70333  7.36998  

Verizon 

18  
51.40  16.53  4.23520  3.50626  4.51593  4.70806  

American Airlines 19  51.40  12.00  2.69403  1.82698  2.82816  1.96990  

Airbus 20  66.25  15.00  4.97160  3.17687  5.09510  5.48788  

Boeing  155.68  13.68  9.35389  7.23382  9.88606  8.50372  

  

 Table 6.2    Option prices on Nasdaq using Geometric, Arithmetic, Modal averages and the Terminal stock prices  

  

6.3.2  Graphs of Option Prices Using Modal Averages Against Other Option Price Models   
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 Figure 6.7   Modal and Arithmetic Option Prices against volatilities on NASDAQ  

  

 

Figure 6.8   Modal and Geometric Option Prices against volatilities on NASDAQ  
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                Figure 6.9   Modal and Median Option Prices against volatilities on NASDAQ  

  

  

 

Figure 6.10   Modal and Black-Scholes Option Prices against volatilities on NASDAQ  
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7.1  Discussion of Results  

Figures 6.7 6.10 shows the graph of volatilities against option prices obtained from stocks listed on 

the NASDAQ. We observe the following:  

• The price of an option based on a modal average is consistently lower than the price on an 

option based on arithmetic average for volatilities less than approximately 3.0  

• The price of an option based on a modal average is consistently lower than the price on an 

option based on geometric average for volatilities less than approximately 3.0  

• The price of an option based on a modal average is consistently lower than the price on an 

option based on median average for volatilities less than approximately 3.0  

• The price of an option based on a modal average is consistently lower than the price on an 

option based on Binomial model at all levels of volatility  

• The price of an option based on a modal average is consistently lower than the price on an 

option based on Black Scholes at all levels of volatility  

• Beyond a volatility of 3% the geometric average option does almost as good as the modal 

average although in most cases the modal average does better.  

• Beyond volatility of 5% both the geometric and the arithmetic average option consistently 

produce better results than the modal average  

• We realised that the average option pricing models are consistently lower than the closed form 

Black Scholes model.  

  

7.2  The Modal Average as the Best Estimator of Averages for Low Volatility Options  

We have proposed the modal average to estimate the average of the underlying asset over the life 

of the option. We will show here that the modal average is a better estimator of the average stock 

price especially for low volatility stocks as against other averages such as the arithmetic and 
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geometric averages which are currently being used. Consider a probability density function 𝑓(𝑥) 

which describes the graph below.  

 

           Figure 7.1  The mode as the best estimate of the average in a small interval  

Let Suppose there are 𝑛 partitions of the interval [𝑎, 𝑏]. By construction the upper and lower  

Riemann sums, denoted by 𝑈𝑛 and 𝐿𝑛 respectively, are defined as  

𝑛 

𝑈𝑛(𝑓) = ∑ (𝑠𝑢𝑝 𝑓(𝑥)) ∆𝑥𝑖  
𝑥𝑖+1,𝑖 

𝑖=1 

𝑛 

𝐿𝑛(𝑓) = ∑ ( 𝑖𝑛𝑓 𝑓(𝑥)) ∆𝑥𝑖  
𝑥𝑖+1,𝑖 

𝑖=1 

By the Riemann theorem as  increases in a manner such that each  decreases to zero, it can be 

seen that  is monotone increasing, while  is monotone decreasing. So, as  it follows 

that  and  will both converge and  is integrable if and only if  

  

  

( 𝑓 ( 𝜉 ) ) 

( 𝑓 ( 𝜉 𝑀 ) 
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……………..……………………..5.1  

By the Mean Value Theorem there exist  such that  

 

……………..……………………..5.2 Let  such that , then  is the 

value of  corresponding to the  

maximum value of . Thus, the area under the curve estimated using  and  is such that   

  

……………..……………………..5.3  

Since  is a  it follows that the maximum area under the curve defined by  is 1 and by the 

squeeze theorem   

  

……………..…………………..5.4  

In estimating the mean by the arithmetic average, the area under the curve is obtained as . 

Similarly, the area under the curve when we estimate by the modal average is . It follows 

from the squeeze theorem that in the limit as , the area under the curve approaches the 

maximum 1 if and only if  .   

Thus, we can write that  

  

……………..……………………..5.5  

Hence for sufficiently small Δ𝑥 the area under the curve Δ𝑥𝑓(𝜉) is always bounded by Δ𝑥𝑓(𝜉𝑀).   We 

state the following theorem  
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Theorem 7.1  

For sufficiently small Δ𝑥, the modal average is the best estimate of the average of a probability density 

function.  

7.3  Conclusions  

This study examined the use of modal average as an underlying asset to price options. The study 

introduced a new option pricing model and established a new framework for the valuation of 

option with the modal average stock price as the underlying asset. This study thus provides new 

insights into the use of the modal average in the valuation of options. In addition, we proceeded to 

establish the model’s legitimacy by using it to price options on stocks listed on an existing stock  

exchange, the NASDAQ.   

Moreover, we also numerically compared the option price results using modal average to the 

results of option price using arithmetic, geometric, median averages and the Black–Scholes 

formulas. The results consistently show that for low volatility options, which we considered as 

volatility below 3% for the purpose of this study, the other models overprice the option. This shows 

that the modal average model is a more superior pricing model than the other averages for low 

volatilities. We further showed analytically that the modal average option pricing model indeed 

produces better results compared to the other models for such low volatilities. These results 

suggest that the Modal average is more suitable for pricing options in low volatility regimes whiles 

the other models is more suitable in high volatility regimes.   

We conclude that:   



 

144  

  

  

• For stocks (0 < 𝜎 < 3.0), it is appropriate to price the option using the  modal average models 

but for stocks with volatility (𝜎 ≥ 3.0) it is more appropriate to price the options using the existing 

models.   

• For stocks (3.0 < 𝜎 < 5.0), it is appropriate to price the option using the  modal average model 

or geometric average model.   

• For stocks with volatility (𝜎 ≥ 5.0) it is more appropriate to price the options using arithmetic or 

geometric averages  

We therefore make the claim that the modal average model is a more suitable model for pricing 

options on stocks in developing countries where stock markets are associated with very low 

volatilities. We therefore conclude that for low volatility stocks the model of this study is an 

improvement over the existing option pricing models presented in the literature. In addition, a 

major difference between our work and all previous work is that we highlight on the need for low 

volatility options to be priced under a different model rather than previous models where all levels 

of volatility is treated same.  

7.4  Recommendations  

We believe this work will generate interest for further work to be conducted when some of the 

assumptions underlying the modal average model are relaxed. For instance, further work can look 

at the model in the presence of transaction cost and when the underlying stock pays dividends. In 

addition, the model can be examined when interest rates and volatilities are stochastic. We have 

obtained this result based on the premise that the option is a European option. However, the model 

can also be examined when it is considered as an American option.  
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APPENDIX  

Differentiable Functions  

A function 𝑓 𝑖s called differentiable at the point 𝑡 = 𝑡0 if at that point 𝛥𝑓 ∼ 𝐶𝛥𝑡 or  this constant 𝐶 

is denoted by 𝑓′(𝑡0). If 𝑓 is differentiable at every point of its domain, it is called differentiable.  

  

Theorem 1  

If 𝑓 is continuous function and of finite variation then   

[𝑓, 𝑓](𝑇) = 0  

Proof    The quadratic variation of 𝑓 is  

http://www.sciencedirect.com/science/journal/0304405X
http://www.sciencedirect.com/science/journal/0304405X
http://www.sciencedirect.com/science/journal/0304405X
http://www.sciencedirect.com/science/journal/0304405X
http://www.sciencedirect.com/science/journal/0304405X/19/2
http://www.sciencedirect.com/science/journal/0304405X/19/2
http://www.sciencedirect.com/science/journal/0304405X/19/2
http://www.sciencedirect.com/science/journal/0304405X/19/2
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Since 𝑓 is continuous, it is uniformly continuous on [0, 𝑡], it follows that  

  

and hence   

[𝑓, 𝑓](𝑇) = 0 × [𝑓, 𝑓](𝑇) as required.  

  

Taylor’s Formula   

If  has power series representation at a i.e if   

  

then  

 

  

where  is the remainder, and   is the derivative of . The remainder can be written in the 

form  

  

for some point .  
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Taylor’s formula for functions of several variables  

Let  such that  has continuous partial derivatives up to order two,  

 then by considering the  

function of one variable , the following result is obtained.  

 
where just like in the case of one variable the second derivatives are evaluated at some “middle” point, 

(𝑥1 + 𝜃𝛥𝑥1, . . . , 𝑥𝑛 + 𝜃𝛥𝑥𝑛) for some 𝜃 ∈ (0, 1), and 𝑑𝑥𝑖 = 𝛥𝑥𝑖.   

  

Proof of Black–Scholes formula  

We want to compute the price of the expected payoff   

  

Where 𝑓(𝑥) is the density of the lognormal random variable 𝑋 given by  

  

Where  

 𝜇 = 𝐸(𝑙𝑜𝑔𝑆(𝑇)) = mean stock price and  𝜎2 = 𝑉𝑎𝑟(𝑙𝑜𝑔𝑆(𝑇))  the variance of the return. Now If 

𝑆(𝑇) < 𝐾, the option will not be exercised and so 𝑚𝑎𝑥(𝑆(𝑇) − 𝐾, 0) will be 0. We are therefore 

interested in the price distribution when 𝑆(𝑇) > 𝐾. So we can write  

+∞ 
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 𝐶 = 𝑒−𝑟(𝑇−𝑡) ∫ 𝑓(𝑥)(𝑥 − 𝐾) 𝑑𝑥  
𝑘 

 +∞ +∞ 

 𝐶 = 𝑒−𝑟(𝑇−𝑡) ∫ 𝑥𝑓(𝑥)𝑑𝑥 − 𝐾𝑒−𝑟(𝑇−𝑡)) ∫ 𝑓(𝑥)𝑑𝑥) 𝑑𝑥  
 𝑘 𝑘 

Now the last integral   is the probability of the event that 𝑆(𝑇) > 𝐾. So the last  

integral is equivalent to the statement  𝑃(𝑆(𝑇) > 𝐾).  

Now  and so   

  

  

 
Dividing by √𝑇 we have   

  

But  1 − 𝑁(𝑥) = 𝑁(−𝑥), hence  
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Let          

  

then we have      𝑃(𝑆(𝑇) > 𝐾) = 𝑁(𝑑2)         

𝑃(𝑆(𝑇) > 𝐾) gives the probability that you exercise the option. It is the risk neutral probability 

that you exercise the option. It follows that 1 − 𝑁(𝑑2) = 𝑁(−𝑑2) is the probability that the option 

will not be exercised i.e. the risk neutral probability that the option will default. Note that if 𝑁(𝑑2) 

refers to the probability that you exercise the call option, then 1 − 𝑁(𝑑2) = 𝑁(−𝑑2) is the 

probability that you exercise the put option.  

We now compute the first integral  .  

 Let    

But           

  

Hence  
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Now the first natural change of variables is 𝐼𝑛𝑥 = 𝑠,  𝑥 = 𝑒𝑠, and 𝑑𝑥 = 𝑒𝑠𝑑𝑠 and this gives  

  

  

Now completing the square we have   

  

Hence   

  

  

The expression under the integrand is the density function of a normal variable with mean  

 and variance 𝜎2𝑇.   

Now         

and       

Hence we replace 𝜎2 in Equation 15 by . We obtain  

   

Now   
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And so   

  

Let  

  

then                                       I = 𝑆(0)e𝑟𝑇𝑁(𝑑1)    

Now from Equation (13) we can write  

𝐶(𝑆(𝑡), 𝑡) = 𝑒−𝑟(𝑇−𝑡)𝐼 − 𝐾𝑒−𝑟(𝑇−𝑡)𝑃(𝑆(𝑇) > 𝐾)   

Replacing 𝑇 by 𝑇 − 𝑡  and in Equation 17 and substituting Equations (14) and (17) into Equation (18) 

we have   
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𝐶(𝑆(𝑡), 𝑡) = 𝑒−𝑟(𝑇−𝑡)𝐼 − 𝐾𝑒−𝑟(𝑇−𝑡)𝑃(𝑆(𝑇) > 𝐾) = 𝑒−𝑟(𝑇−𝑡)𝑆(0)e𝑟(𝑇−𝑡)𝑁(𝑑1) − 𝐾𝑒−𝑟(𝑇−𝑡)𝑁(𝑑2)  

𝐶(𝑆(𝑡), 𝑡) = 𝑆(0)𝑁(𝑑1) − 𝐾𝑒−𝑟(𝑇−𝑡)𝑁(𝑑2)  

Relacing 𝑆(0) by 𝑆 we obtain the 𝐵𝑙𝑎𝑐𝑘 − 𝑆𝑐ℎ𝑜𝑙𝑒𝑠 𝑓𝑜𝑟𝑚𝑢𝑙𝑎 for the price of an European call option 

as  

𝐶(𝑆(𝑡), 𝑡) = 𝑆(0)𝑁(𝑑1) − 𝐾ℯ−𝑟(𝑇−𝑡)𝑁(𝑑2)   

Where           

  

and  

 

 is the cumulative distribution function of a standard normal variable.  

  

Converting the Black-Scholes PDE to the Heat Equation  

The Black-Scholes partial differential equation and boundary value problem is  

  

 ,     ,      

If  is the price of a call option, then the boundary condition. , where   

denotes the strike price of the call option. The following change of variables transforms the Black-Scholes 

boundary value problem into a standard boundary value problem for the heat equation.  
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The partial derivatives of  with respect to  and expressed in terms of partial derivatives of  in 

terms of  and  are:  

  

  

Placing these expressions into the Black-Scholes partial differential equation and simplifying we have  

  

Setting       and 𝑡 = 𝑟, the Black-Scholes boundary value problem becomes  

  

 −∞ ≤ 𝑥 ≤ ∞,     ,   

𝑣(𝑥, 0) = 𝑉(𝑒𝑥, 𝑇) = 𝑓(𝑒𝑥)   −∞ ≤ 𝑥 ≤ ∞  

𝑣(𝑥, 𝑡) = 𝑒𝛼𝑥+𝛽𝑡𝑢(𝑥, 𝑡) = 𝜙𝑢  

Where            

  

      and 𝑡 = 𝜏  

Placing these expressions into the partial differential equation which 𝑣 satisfies, and setting  
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We have  

  

−∞ ≤ 𝑥 ≤ ∞,    ,  −∞ ≤ 𝑥 ≤ ∞  

  

Proof of Theorem 4.2  

Since the market is finite, the value process 𝑉(𝑡) takes only finitely many values therefore 𝔼𝑉(𝑡) exist. 

The martingale property is verified as follows.  

  

since 𝑎(𝑡) and 𝑏(𝑡) are predictable  

= (𝑡 + 1)𝔼𝑄𝑍(𝑡 + 1)|ℱ𝑡 + 𝑏(𝑡 + 1)  

= 𝑎(𝑡 + 1)𝑍(𝑡) + 𝑏(𝑡 + 1) since 𝑍(𝑡) is a martingale  

= 𝑎(𝑡)𝑍(𝑡) + 𝑏(𝑡) since (𝑎(𝑡), 𝑏(𝑡)) is self-financing   

  

To value options as a risk neutral investor, we discount at the risk free rate and take expectations 

under the risk neutral measure. To take expectations under the risk neutral measure we need to 

change ℙ in the stochastic differential equation, which requires Girsanov’s Theorem. Girsanov’s 

Theorem tells us how a stochastic differential equation (SDE) changes as probability measure ℙ 

changes.  
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Proof of Theorem 4.3  

Let 𝑉(𝑡), 0 ≤ 𝑡 ≤ 𝑇, represent the value of the replicating portfolio. Then at maturity since 𝑋 is 

attainable, it is replicated by an admissible strategy 𝑋 = 𝑉(𝑇). Fix one such strategy. To avoid 

arbitrage, the price of 𝑋 at any time 𝑡 < 𝑇 must be given by the value of this portfolio 𝑉(𝑡), 

otherwise arbitrage profit is possible. Since the model does not admit arbitrage a martingale 

probability measure ℚ exists and the discounted value process  is a ℚ −martingale. Hence by the 

martingale property  

 

But 𝑉(𝑇) = 𝑋, and we have  

At expiration     

And   

  

Hence the    
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and by the property of independence of increments of Brownian motion we have  

𝐶(𝑆(𝑡), 𝑡) = 𝔼ℚ (𝑒𝑟(𝑇−𝑡)(𝑚𝑎𝑥(𝑆(𝑇) − 𝐾, 0)))  

𝐶(𝑆(𝑡), 𝑡) is the discounted expected payoff on a call option if all investors were risk-neutral, and 

is the call option at time 𝑡. 𝔼ℚ{𝑒𝑟(𝑇−𝑡)[𝑚𝑎𝑥(𝑆(𝑇) − 𝐾, 0)]}  is the expected value of the call at time 

in a risk-neutral world.  
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 Codes for Simulation  

Stock Price Function stock.return <- function(strike.price, n, 

risk.free, stock.sigma){   delta.t <- 1/n # one period   for (i in 

seq(n)){    epsilon <- runif(n=1, min=0, max=1) # random 

generated number # calculate stock price (using quantile function 

of normal       distribution)  stock.price <- strike.price*(1 + 

qnorm(epsilon,risk.free *                                  delta.t,stock.sigma* 

sqrt(delta.t)))  

  }   

return(stock.price)  

}  

# Parameters n <- 247 # trading days 

strike.price<- 3.2 # initial stock price 

risk.free<- 0.23  stock.sigma<- 

0.017272519  

  

# Stock price simulations 

stock.prices <- c() for (i 

in seq(n)){   stock.prices 

<- 
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c(stock.prices,stock.retur

n(strike.price=strike.pric

e,n=n,                

risk.free=risk.free,stock.

sigma=stock.sigma))  

}  

# Simulated data of GSE trading.days<-c(1:247) stock.path.prices<-

stock.prices truncated.stock.price<-round(stock.path.prices,2) 

simulateGSE=data.frame(trading.days,stock.path.prices,truncated.stock.price)  

View(simulateGSE)  

#Plot of simulated data of GSE library(ggplot2) ggplot(data=simulateGSE, 

aes(x=trading.days,y=stock.path.prices, group=1)) + geom_line(colour="blue")  

  

Option Price Function  

## Mean Option Price Function stock.return<-function(strike.price, n, risk.free, 

stock.sigma){ delta.t <- 1/n # one period   for (i in seq(n)){   epsilon <- runif(n=1, 

min=0, max=1) # random generated number     # calculate stock price (using 

quantile function of normal   distribution) stock.price <- strike.price * (1 

+qnorm(epsilon,risk.free          * delta.t,stock.sigma* sqrt(delta.t)))  

  }   

return(stock.price)  

}  
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## Option Price Simulations simulations<-1000 

# number of simulations generate.options <- 

function(){  

 # Parameters   n <- 247 # trading days   strike.price<- 3.2 # initial stock 

price   risk.free<- 0. 023    stock.sigma<- 0.017272519  #Stock prices per 

each trading day   stock.prices <- c()   for (i in seq(n)){ stock.prices <-       

c(stock.prices,stock.return(strike.price=strike.price,n=n,                                               

risk.free=risk.free,stock.sigma=stock.sigma)) stock.path.prices<-

stock.prices truncated.stock.price<-round(stock.path.prices,2)  

# Average stock price meanstockprice<-mean(truncated.stock.price)  

#Option price per each trading day future.payoff = 

max((meanstockprice-strike.price),0) discounted.payoff 

= future.payoff * exp(-risk.free *0.25) 

mean.options=mean(discounted.payoff)  

} return(mean.options)  

}  

  

# Monte Carlo simulations for Option prices 

option.price<- replicate(simulations,generate.options()) 

simulateoptionprice<-data.frame(option.price)  

View(simulateoptionprice) # 

Average option prices 

mean(option.price)  
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Option Price Function ## Median Option Price Function 

stock.return<-function(strike.price, n, risk.free, stock.sigma){ delta.t <- 

1/n # one period for (i in seq(n)){ epsilon <- runif(n=1, min=0, max=1) 

# random generated number # calculate stock price (using quantile 

function of normal   distribution) stock.price <- strike.price * (1 

+qnorm(epsilon,risk.free               * delta.t,stock.sigma*sqrt(delta.t)))  

  }   

return(stock.price) }  

  

## Option price simulations simulations<-1000 

# number of simulations generate.options <- 

function(){  

# Parameters n <- 247 # trading days strike.price<- 3.2 # initial stock 

price risk.free<- 0.23  stock.sigma<- 0.017272519 #Stock prices per 

each trading day stock.prices <- c() for (i in seq(n)){ stock.prices <-

c(stock.prices,stock.return(strike.price=strike.price,n=n,                                           

risk.free=risk.free,stock.sigma=stock.sigma))   stock.path.prices<-

stock.prices     truncated.stock.price<-round(stock.path.prices,4)  

       # Median stock price     medianstockprice<-

median(truncated.stock.price)  

#Option price per each trading days     future.payoff = 

max((medianstockprice-strike.price),0)     
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discounted.payoff = future.payoff * exp(-risk.free *0.25)     

mean.options=mean(discounted.payoff)  

  }  

  return(mean.options)  

}  

  

# Monte Carlo simulations for Option prices 

option.price<- replicate(simulations,generate.options()) 

simulateoptionprice<-data.frame(option.price)  

View(simulateoptionprice) # 

Average of option prices 

mean(option.price)  

  

Option Price Function   

## Mode Option Price Function stock.return<-function(strike.price, n, risk.free, 

stock.sigma){   delta.t <- 1/n # one period   for (i in seq(n)){    epsilon <- runif(n=1, min=0, 

max=1) # random generated number # calculate stock price (using quantile function of 

normal   distribution) stock.price <- strike.price * (1 +qnorm(epsilon,risk.free * delta.t, 

stock.sigma*sqrt(delta.t)))  

  }   

return(stock.price)  

}  
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## Option price simulations simulations<-1000 

# number of simulations generate.options <- 

function(){  

  # Parameters   n <- 247 # trading 

days   strike.price<- 3.2 # initial stock 

price   risk.free<- 0.23    

stock.sigma<- 0.017272519  

    

  #Stock prices per each trading day   stock.prices <- c()   for (i in 

seq(n)){     stock.prices <-

c(stock.prices,stock.return(strike.price=strike.price,n=n,                    

risk.free=risk.free,stock.sigma=stock.sigma))  

      

    stock.path.prices<-stock.prices     truncated.stock.price<-

round(stock.path.prices,3)  

      

   # Mode stock price     mode <- function(StockPricePath) {       uniqStockPricePath <- 

unique(StockPricePath) 

uniqStockPricePath[which.max(tabulate(match(StockPricePath, uniqStockPricePath)))]  

    }  

    StockPricePath <- truncated.stock.price     

mode.stock.price <- mode(StockPricePath)     modestock<-

mode.stock.price  
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   #Option price per each trading days     future.payoff = 

max((modestock-strike.price),0)     discounted.payoff = 

future.payoff * exp(-risk.free *0.25)     

mean.options=mean(discounted.payoff)  

  }  

  return(mean.options)  

}  

# Monte Carlo simulations for Option prices option.price<- 

replicate(simulations,generate.options()) 

simulateoptionprice<-data.frame(option.price)  

View(simulateoptionprice)  

  

# Average of option prices mean(option.price)  

  

Black–Scholes Option Pricing Formula 

Blackscholes <- function(S, X, rf, T, sigma) {  d1 <- 

(log(S/X)+(rf+sigma^2/2)*T)/(sigma*sqrt(T))   d2 

<- d1 - sigma * sqrt(T)  

 option.price<- S*pnorm(d1) - X*exp(-rf*T)*pnorm(d2)   

option.price  

}  
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Golden Search Method to Find the Mode f <- function(x) 

3/4*x^2*(2-x) maximum.x<-optimise(f,c(0,2), maximum = 

TRUE,tol =0.05) maximum.x  

library(graphics) plot(f, -2,2, 

ylim = 0:1, col = 2)  

  

R-codes for the Graphs  

# Read Modal and Arithmetic option prices against volatility of GSE  

GSEMODAL<-(read.csv(file.choose()))  

View(GSEMODAL)  

Modal<-GSEMODAL$Modal  

Arithmetic<-GSEMODAL$Arithmetic Volatility<-GSEMODAL$Volatility 

plot(Volatility,Modal, type="l", col="blue",xlab="Volatility",ylab="Option prices", 

col.lab=rgb(0,0.5,0)) lines(Volatility,Arithmetic, type="l", pch=22, lty=2, col="red") 

title(main="Modal and Arithmetic option prices against volatility-GSE", col.main="black", 

font.main=1) legend("topleft", legend=c("Modal", "Arithmetic"),  

       col=c("blue", "red"), lty=1:2, cex=0.8)  

# Read Modal and Median option prices against volatility-GSE  

GSEMEDIAN<-(read.csv(file.choose()))  

View(GSEMEDIAN)  

Modal<-GSEMEDIAN$Modal  

Median<-GSEMEDIAN$Median  
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Volatility<-GSEMEDIAN$Volatility plot(Volatility,Modal, type="l", 

col="blue",xlab="Volatility",ylab="Option prices", col.lab=rgb(0,0.5,0)) 

lines(Volatility,Median, type="l", pch=22, lty=2, col="red") title(main="Modal and 

Median option prices against volatility-GSE", col.main="black", font.main=1) 

legend("topleft", legend=c("Modal", "Median"),        col=c("blue", "red"), lty=1:2, 

cex=0.8)  

# Read Modal and Geometric option prices against volatility-GSE  

GSEGEO<-(read.csv(file.choose()))  

View(GSEGEO)  

Modal<-GSEGEO$Modal  

Geometric<-GSEGEO$Geometric Volatility<-GSEGEO$Volatility 

plot(Volatility,Modal, type="l", col="blue",xlab="Volatility",ylab="Option 

prices", col.lab=rgb(0,0.5,0)) lines(Volatility,Geometric, type="l", pch=22, lty=2, 

col="red")  

title(main="Modal and Geometric option prices against volatility-GSE", col.main="black", 

font.main=1) legend("topleft", legend=c("Modal", "Geometric"),        col=c("blue", "red"), 

lty=1:2, cex=0.8)  

# Read Modal and Black–Scholes option prices against volatility-GSE  

GSEBLACKSCHOLES<-(read.csv(file.choose()))  

View(GSEBLACKSCHOLES)  

Modal<-GSEBLACKSCHOLES$Modal  

Black_Scholes<-GSEBLACKSCHOLES$Black.Scholes Volatility<-GSEBLACKSCHOLES$Volatility  
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plot(Volatility,Modal, type="l", col="blue",xlab="Volatility",ylab="Option prices", 

col.lab=rgb(0,0.5,0)) lines(Volatility,Black_Scholes, type="l", pch=22, lty=2, col="red") 

title(main="Modal and Black–Scholes option prices against volatility-GSE", col.main="black", 

font.main=1) legend("topleft", legend=c("Modal", "Black–Scholes"),        col=c("blue", "red"), 

lty=1:2, cex=0.8)  

# Read Modal and Geometric option prices against volatility-Nasdaq  

NASDAQMODE<-(read.csv(file.choose()))  

View(NASDAQMODE)  

Modal<-NASDAQMODE$Modal  

Arithmetic<-NASDAQMODE$Arithmetic  

Volatility<-NASDAQMODE$Volatility  

plot(Volatility,Modal, type="l", col="blue",xlab="Volatility",ylab="Option prices", 

col.lab=rgb(0,0.5,0)) lines(Volatility,Arithmetic, type="l", pch=22, lty=2, col="red") 

title(main="Modal and Arithmetic option prices against volatility-Nasdaq", col.main="black", 

font.main=1) legend("topleft", legend=c("Modal", "Arithmetic"),        col=c("blue", "red"), 

lty=1:2, cex=0.8)  

# Read Modal and Median option prices against volatility-Nasdaq  

NASDAQMEDIAN<-(read.csv(file.choose()))  

View(NASDAQMEDIAN)  

Modal<-NASDAQMEDIAN$Modal  

Median<-NASDAQMEDIAN$Median  

Volatility<-NASDAQMEDIAN$Volatility  

plot(Volatility,Modal, type="l", col="blue",xlab="Volatility",ylab="Option prices", 

col.lab=rgb(0,0.5,0)) lines(Volatility,Median, type="l", pch=22, lty=2, col="red") 
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title(main="Modal and Median option prices against volatility-Nasdaq", col.main="black", 

font.main=1) legend("topleft", legend=c("Modal", "Median"),        col=c("blue", "red"), 

lty=1:2, cex=0.8)  

# Read Modal and Geometric option prices against volatility-Nasdaq  

NASDAQGEO<-(read.csv(file.choose()))  

View(NASDAQGEO)  

Modal<-NASDAQGEO$Modal  

Geometric<-NASDAQGEO$Geometric Volatility<-NASDAQGEO$Volatility 

plot(Volatility,Modal, type="l", col="blue",xlab="Volatility",ylab="Option prices", 

col.lab=rgb(0,0.5,0)) lines(Volatility,Geometric, type="l", pch=22, lty=2, col="red") 

title(main="Modal and Geometric option prices against volatility-Nasdaq", col.main="black", 

font.main=1) legend("topright", legend=c("Modal", "Geometric"),        col=c("blue", "red"), 

lty=1:2, cex=0.8)  

# Read Modal and Black–Scholes option prices against volatility-Nasdaq  

NASDAQBLACKSCHOLES<-(read.csv(file.choose()))  

View(NASDAQBLACKSCHOLES)  

Modal<-NASDAQBLACKSCHOLES$Modal  

Black_Scholes<-NASDAQBLACKSCHOLES$Black.Scholes Volatility<-

NASDAQBLACKSCHOLES$Volatility  

plot(Volatility,Modal, type="l", col="blue",xlab="Volatility",ylab="Option prices", 

col.lab=rgb(0,0.5,0)) lines(Volatility,Black_Scholes, type="l", pch=22, lty=2, 

col="red") title(main="Modal and Black–Scholes option prices against volatility-

Nasdaq", col.main="black", font.main=1) legend("topright", legend=c("Modal", 

"Black–Scholes"),        col=c("blue", "red"), lty=1:2, cex=0.8)  


