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ABSTRACT 

In 2001, the government of Ghana instituted a set of economic policies aimed at reducing the 

rate of inflation. 

In this study, I attempt to assess the effectiveness of the intervention. Using the statistical 

hypothesis testing model, this compares the difference in the mean inflationary rates from 

January 1996 to January 2001 and February 2001 to December 2006. 

Using Box-Jenkins method, we obtained Autoregressive (AR(1)) models of the pre-intervention 

data, post intervention data and the entire interrupted time series data. 

Further, using interrupted time series analysis, we are able to show that the parameters before 

and after the interventions were significantly different at the 5% level of significance. 

In particular, the intercepts of linear trend lines were 1.230 and 3.097 before and after 

intervention respectively. The slopes were -0.004 and -0.036 before and after intervention 

respectively. 

The method used in this study can be used to investigate the effectiveness of any intervention at 

controlling some time dependent natural or socio-economic phenomena. 
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CHAPTER ONE 

INTRODUCTION 

 

1.0    BACKGROUND TO THE STUDY 

Inflation is Ghana's demon. It is the evil that has dogged all aspects of national life for long. And 

like the devil, it is a tempting lot. Falling for its bait brings ephemeral gains. But like all fiends, it 

can wreck havoc. 

Inflation causes global concerns because it can distort economic patterns. Inflation can result in 

the redistribution of wealth when not anticipated. For instance, inflation tends to benefit 

borrowers at the expense of lenders whenever rates are underestimated over the life of a loan.  

Inflation has a corrosive effect on savings. As prices surge, the value of savings will decline if 

the rate of inflation exceeds the rate of interest. People on fixed incomes are hurt by inflation. 

Workers who retired on fixed incomes are often hurt because of the declining value of their 

monthly cheques as a result of rising inflation. Thus inflation is a worry for the health of the 

world's economy and sustenance of the global financial system. 

 

While inflationary pressures or the rise in the general cost of goods affects all nations, it is even 

more invidious in developing nations such as Ghana. It is an economic fact of Ghanaian life. But 

more volatile are its political dimensions. 

Evidently, inflation in Ghana is caused by both fiscal and non-monetary issues. In the past, 

Ghana's balance of payments position has been in severe difficulties due to inappropriate trade, 
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fiscal and monetary policies. Excessive money supply is the single most pervasive cause of 

inflation in Ghana. For instance between 1996 and 1997 inflation was at 25% and 8% 

respectively, meaning the then PNDC government adopted some prudent economic management 

tools to tame the demon. But it lost the race when the rate jumped to 40% at some point, again 

reflecting fiscal mismanagement.  

 

Monetary factors play an important role in the failure to control inflation in Ghana. The 

devaluation of the cedi at diverse times especially during the Economic Reforms Programme 

(ERP) led to price raises. The ERP's attempt to promote production in the short term resulted in 

higher debts and inflation. Ghana's debt profile increased from 4 billion US dollars in 1992 to 4.3 

billion dollars by the next year, because of heavy borrowing and excessive printing of money to 

service domestic and multilateral debts. 

 

A non-monetary source of high inflation is attributable to the poor performance of the agriculture 

sector. Between 1995 and 1999, Ghana's agriculture sector grew by 4.4 %, but it dropped again 

to 1.1 % by 2000. This resulted in high food prices in the country. Food prices alone accounts for 

over half of the average household expenditure in Ghana. The other dimension to inflationary 

trends in Ghana is the international connection. Inflation in Ghana, like the rest of the world, is 

partly internationally transmitted. An example is crude oil hikes. Increases in petroleum products 

often have direct consequences on food prices in Ghana. 

 

Whether internally induced or otherwise, inflation often results in severe socio-economic 

consequences for the average Ghanaian. This is due to the fact that high inflation reduces 
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purchasing power. Again, the higher the level of inflation, the less amount of goods and services 

a worker can obtain from his earnings, even if nominal earnings remain constant. In effect, 

inflation can reduce output and employment.  

 

It is a major cause of civil strife in Ghana. It belies almost every military overthrow in Ghana. As 

an example, inflation topped 100 % in 1977 moderating to 54 % in 1981. These high rates 

underlined popular resentments against the Limann government, which led to his removal from 

office by Jerry John Rawlings in a military putsch in 1981.  

 

As can be gleaned from a survey above, inflation is a worldwide economic fact, but it is an evil 

in Ghanaian life. And it mirrors the political evolution of the country. Governments who want to 

stay in power and enjoy the support of the people must resist this devil. They must stick to 

prudent economic policies and avoid excessive money printing. At a point, many Ghanaians, 

particularly financial watchers felt the vampire is being leashed.  

1.1  PROBLEM STATEMENT 

The first democratic change of government through the ballot box in the history of Ghana (since 

her independence in 1957) was in 2001 when the National Democratic Congress (NDC) 

government handed power to the New Patriotic Party (NPP) government. 

In a budget statement and economic policy presented to parliament on Friday, 9th March 2001, 

by honourable Minister of Finance, Yaw Osafo-Marfo had described the Economy as an agile 

one, with external and internal problems culminating into high domestic inflation. 
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For the year 2001, one of the macro-economic targets set by the NPP government was to achieve 

an end-of-period rate of inflation of 25%. 

In order to attain the monetary policy object for 2001, the government introduced a tight 

monetary policy stance and actively used Open Market Operations (OMO), Repurchase 

Agreements (Repos) and prime rate (interest Rate) to influence monetary aggregates in the 

desired direction.  

There after (in 2004) the government claimed that its policies had been successful in reducing 

the inflation rate.  

This study aims at testing the validity of that assertion. 

 

1.2  OBJECTIVES OF THE STUDY 

The specific objectives of the study are as follows: 

1 To model (using Box-Jenkins ARIMA method) the inflation rate time series of the period 

1996 to 2004. 

2 To test the effectiveness of the economic policy intervention in the year 2001 on the 

inflation rate time series for the period 2001 to 2006 (using the interrupted time series 

experiment) 
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1.3    METHODOLOGY 

The data was obtained from the Ghana Statistical Service and Bank of Ghana Revenue 

Department. The data on monthly basis consists of the combined data of both food and non-food 

inflation rate for Ghana, for the period from Jan. 1996 to Dec. 2006.  

Box-Jenkins ARIMA time series modeling procedure was used for modeling the data. 

Interrupted time series experiment method was used in assessing the impact of the intervention 

on the series. 

Test of hypothesis was used as a preliminary method to compare the mean of the data before and 

after the intervention. 

SPSS was used for the computation and analysis of the data in the series.  

 

1.4        SIGNIFICANCE OF STUDY 

This study will provide a method for assessing the effectiveness of government policy 

intervention on inflation.  

 

1.5  STRUCTURE OF THE THESIS 

Chapter one contains the background, problem statement, objectives and significance of the 

study. Chapter two deals with the review of relevant literature and the theory of time series 

analysis with special explanation on the Box-Jenkins method. 
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 Chapter three deals with modeling and data analysis; here we apply the Box-Jenkins method of 

modeling time series. Using the Interrupted time series experiment the effectiveness of the 

control measure is tested. 

Chapter Four deals with the discussion of the results obtained from the Box-Jenkins approach 

and the interrupted time series experiment. 

Finally, from the results it is concluded that the policy to control the inflation rates in Ghana has 

been effective. 
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CHAPTER TWO 

LITERATURE REVIEW 

 

2.0   Introduction 

In this chapter relevant literature, that is other works in different fields where interrupted time 

series has been applied, has been reviewed and other theoretical works relevant to this study have 

also been touched on.  

 

2.1   Applications of Interrupted Time Series Experiments 

Bloom et al, (2003), also introduced a new approach for measuring the impacts of whole-school 

reforms. His approach is based on "short" interrupted time-series analysis, which has been used 

to evaluate programs in many fields. Bloom’s approach was used to measure impacts on three 

facets of student performance: (a) average (mean) test scores, which summarize impacts on total 

performance; (b) the distribution of scores across specific ranges, which helps to identify where 

in the distribution of student performance impacts were experienced; and (c) the variation 

(standard deviation) of scores, which indicates how the disparity in student performance was 

affected. To help researchers use the approach, his research lays out its conceptual rationale, 

describes its statistical procedures, explains how to interpret its findings, indicates its strengths 

and limitations, and illustrates how it was used to evaluate a major whole-school reform—

Accelerated Schools. 
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The use of fluoroquinolones has been linked to increasing bacterial resistance and infection 

and/or colonization with already resistant pathogens both as a risk factor and based on volume of 

use. Changes in individual fluoroquinolones used in an institution may also be related to these 

clinical problems. Interrupted time series analysis, which allows for assessment of the 

associations of an outcome attributable to a specific event in time, was used to study the effect of 

changes in a hospital’s fluoroquinolone formulary on fluoroquinolone susceptibility rates in 

select gram-negative pathogens and the methicillin-resistant Staphylococusaureus (MRSA) 

isolation rate.(Bosso, Mauldin et al, 2005) Susceptibility rates to ciprofloxacin were considered 

for the period of 1993 through 2004, while the MRSA isolation rate was assessed from 1995 

through 2004. Levofloxacin was added to the formulary in 1999, and gatifloxacin was 

substituted for levofloxacin in 2001.  

Segmented regression analysis for interrupted time series was used to determine the significance 

of the differences in levels and slopes over time due to two interventions; 

i. The addition of levofloxacin to the formulary in 1999 and  

ii. A subsequent switch from levofloxacin to gatifloxacin in 2001 

Segmented regression analysis of interrupted time series data allows for the assessment of long-

term effects on an outcome attributable to a specific event in time, i.e. the implementation of and 

intervention. 

Total volume of fluoroquinolone use was measured and controlled for in the analysis, allowing 

for examination of the effect on resistance observed for both levofloxacin and gatifloxacin 

independent of changes in overall fluoroquinolone use.  
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Estimations were made of the change in isolation rates of MRSA and susceptibility rates of the 

gram-negative organisms immediately following the intervention, the difference between the 

pre- and post-intervention slopes of the outcome, and the periodic average intervention effect 

after the intervention Proper estimations of standard errors and significance were made through 

the detection of and correction for autocorrelations. Significance was determined at the 0.05 

level and SAS 9.0 was used for the statistical programming. 

It was observed that statistically significant changes in the already declining rates of 

susceptibility of Pseudomonas aeruginosa and Escherichia coli to ciprofloxacin and in the 

already rising MRSA isolation rate were associated with the addition of levofloxacin to the 

formulary. Substitution of gatifloxacin for levofloxacin on the formulary was associated with 

reversals in the downward trend in Escherichia colisusceptibility to ciprofloxacinand the upward 

trend in MRSA isolation rate. No associations were detected on susceptibility of 

Klebsiellapheumoniae or Proteus mirabilis to ciprofloxacin.  

These findings suggest that potential changes in susceptibility to fluoroquinolones and isolation 

of MRSA may vary by both drug and organism. 

   

In the  paper by Fleming N.S, Gibson E., Fleming D.G. et al, the researchers’ presents a time-

series methodology by Box and Tiao (1981) for testing the impact of the American Academy of 

Pediatrics (APP) recommendation that healthy infants be put to sleep on their side or back to 

reduce the risk of Sudden Infant Death Syndrome (SIDS).  

Quarterly data (for white and non-white kids) that provide more exact parameter estimation i.e. 

better quantification of effects, than from aggregated (annual) information, was used to 
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determine a “before” baseline level and “after” effect, a design described by Campbell and 

Stanley(1966). The paper also examined the existence of a seasonal effect, i.e. if the first quarter 

of each year in Philadelphia has a higher number of deaths than the other three quarters. The 

evaluation models also considered that data collected at equal intervals were autocorrelated, i.e. 

correlated with previous data points. 

To quantify the impact of both the intervention and seasonality in percentage terms specifically, 

the natural logarithms of the dependent variable was computed from the natural logarithm of the 

quarterly death rate per 10,000 annual live births. In instances where no death occurred in the 

quarter, one death was assumed since there is no natural log of 0. 

After modeling, computations were performed using the SAS/ETS (PROC ARIMA) statistical 

computer software package as described in the manual (SAS Institute Inc., 1988). The program 

use a method based on maximum likelihood to estimate parameters after obtaining initial values 

from conditional least squares. Chi-square statistics are computed for each model that test the 

model’s goodness –of-fit, i.e. the lack of autocorrelation in the residuals and remaining white 

noise process  

The results revealed that, the intervention caused a significant reduction in the SIDS rate for both 

whites and non-whites. Winter SIDS rates were higher than those in other seasons. A 

supplementary analysis revealed that no statistical interaction existed between the intervention 

and seasonality, i.e. the effect of winter did not change after the intervention. 
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In a paper by Bloom et al., (1999), interrupted time series analysis was employed for estimating 

the impact of school restructuring programs designed to increase student achievement in primary 

and secondary school.  

With the development of various school restructuring programs, foremost among these being the 

Henry Levin’s Accelerated School Project, Ted Sizer’s Coalition of Essential Schools, James 

Comer’s School Development Program etc, all designed to affect all students in a school, it 

appeared possible to implement them for some students but not for others.  

Under these and other conditions, however, it is possible to estimate the impacts of such 

programs by measuring the extent to which student achievement increased relative to the pre-

program trend. 

In the paper Bloom first illustrates the approach and considers its strengths and weaknesses. He 

then describes how to estimate program impacts and their standard errors from a simple 

regression model. Next the focuses on the statistical precision of these impact estimates and the 

research design considerations that affect this precision. The paper then concludes by briefly 

outlining several important issues related to the approach that could be addressed in future 

research. 

Huang et al.(2008) considered forecasting the latent rate profiles of a time series of 

inhomogeneous Poisson processes. Their work was motivated by operations management of 

queueing systems, in particular, telephone call centers, where accurate forecasting of call arrival 

rates was a crucial primitive for efficient staffing of such centers. Their forecasting approach 

utilizes dimension reduction through a factor analysis of Poisson variables, followed by time 

series modeling of factor score series. Time series forecasts of factor scores were combined with 
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factor loadings to yield forecasts of future Poisson rate profiles. Penalized Poisson regressions on 

factor loadings guided by time series forecasts of factor scores were used to generate dynamic 

within-process rate updating. Methods were also developed to obtain distributional forecasts. 

Their methods were illustrated using simulation and real data. Their empirical results 

demonstrate how forecasting and dynamic updating of call arrival rates can affect the accuracy of 

call center staffing. 

Generally, the result of clustering cannot reflect the similarities of time series properly because 

of the disturbance of noises and details in time series. Liu  et al.(2008), proposed a new approach 

to this problem based on wavelet decomposition and denoising is proposed. Their approach has 

been tested and analyzed by Synthetic Control Chart Time Series from University of California, 

Irvine (UCI) knowledge discovery in databases (KDD) 

Interrupted time series designs have been frequently employed to evaluate program impact. 

Analysis strategies to determine if shifts have occurred are not well known. The case where 

statistical fluctuations (errors) may be assumed independent is considered, and a segmented 

regression methodology presented. Gillings et al. (1981) assessed the changes in local and state 

perinatal post neonatal mortality to identify historical trends and which they used to evaluate the 

impact of the North Carolina Regionalized Perinatal Care Program when seven years of post-

program mortality data become available. The perinatal program region was contrasted with a 

control region to provide a basis for interpretation of differences noted. Relevant segmented 

regression models provided good fits to the data and highlighted mortality trends over the last 30 

years. Considerable racial differences in these trends were identified, particularly for post 

neonatal mortality. Gillings, et al., later considered segmented regression which was relevant for 
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the analysis of interrupted time series designs in applications when errors can be taken to be 

independent. Thus, their methodology may be regarded as a general statistical tool for evaluation 

purposes. 

Despite recent considerable advances in structural health monitoring (SHM) of civil 

infrastructure, converting large amounts of data from SHM systems into usable information and 

knowledge remains a great challenge. Omenzetter et al. (2006), addresses the problem through 

their analysis of time histories of static strain data recorded by an SHM system installed in a 

major bridge structure and operating continuously for a long time. They formulate a vector 

seasonal autoregressive integrated moving average (ARIMA) model for the recorded strain 

signals. The coefficients of the ARIMA model were allowed to vary with time and were 

identified using an adaptive Kalman filter. Their proposed method has been used for analysis of 

the signals recorded during the construction and service life of the bridge. By observing various 

changes in the ARIMA model coefficients, unusual events as well as structural change or 

damage sustained by the structure could be revealed. 

Hay et al., (2001) presented a Bayesian analysis of a time series of counts to assess its 

dependence on an explanatory variable. The time series represented was the incidence of the 

infectious disease ESBL-producing Klebsiellapneumoniae in an Australian hospital and the 

explanatory variable was the number of grams of antibiotic (third generation) cephalosporin used 

during that time. They demonstrated that there is a statistically significant relationship between 

disease occurrence and use of the antibiotic, lagged by three months. The model used is a 

parameter-driven in the form of a generalized linear mixed model. Comparison of models was 

made in terms of mean square error. 



14 
 

Correlation techniques are important tools for investigating relationships between crop growth 

and environment. However when applied to a time series the presence of autocorrelation affects 

the estimates of correlations between two observed series, an effect which is sometimes 

overlooked in studies reported in the literature. Appropriate statistical techniques were needed to 

ensure that proper inferences can be made from these observations. Empirical time series 

modeling has the potential for removing autocorrelations in many of these cases. To test the 

feasibility of this technique Kuehl et al., (1976), investigated the relationship between boll 

retention in cotton (Gossypiumhirsutum L.) and 5-day average minimum temperature during the 

growing season was investigated with 3 years of data. Their best fitting autoregressive moving 

average models were selected for the observed time series for each of the 3 years. Residual 

series, observed minus predicted values, were computed from the estimated time series models 

for boll retention and minimum temperature and were free of autocorrelation. Negative cross-

correlations were found between the residual series for boll retention and the average minimum 

temperature for the 5-day periods beginning with 10 days and 1 day prior to anthesis, 

respectively. The negative relationship Kuehl et al. had suggests that high night time 

temperatures accumulated over 5-day periods prior to and during anthesis increase boll shedding. 

They conclude that time series modeling was an effective technique to aid the identification of 

relationships between agronomic variables measured in time sequences. 

The need to characterize and forecast time series recurs throughout the sciences, but the 

complexity of the real world is poorly described by the traditional techniques of linear time-

series analysis. Although newer methods can provide remarkable insights into particular 

domains, they still make restrictive assumptions about the data, the analyst, or the application. 

Here Gershenfeld et al., showed that signals that are nonlinear, non-stationary, non-gaussian, and 
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discontinuous can be described by expanding the probabilistic dependence of the future on the 

past around local models of their relationship. The predictors they derived from this general 

framework have the form of the global combinations of local functions that were used in 

statistics, machine learning and studies of nonlinear dynamics. Their method offers forecasts of 

errors in prediction and model estimation, provides a transparent architecture with meaningful 

parameters, and had straight forward implementations for offline and online applications. They 

demonstrated their approach by applying it to data obtained from a pseudo-random dynamical 

system, from a fluctuating laser, and from a bowed violin. 

Kei-Mu et al.(1996), in their research compared an endogenous growth model to an exogenous 

model using time series analysis to determine the effect of government policy changes to the 

growth rate of GNP per capita. Their results indicated that for endogenous models, changes in 

fiscal policies lead to permanent changes in GNP. On the other hypothesized that, policy shifts in 

exogenous growth economies only show temporary changes in the GNP. They established that 

Non-military equipment capital and non-military structural capital are the only factors that affect 

long-term GNP levels. 

Analysis of spatial patterns in images can provide valuable information in many application 

domains, such as in geography, meteorology and medicine. Kontos et al. (2004), proposed to 

apply techniques from the time series domain to analyze the spatial patterns extracted from 3D 

images. After traversing an image using a space-filling curve, they discovered discriminative 

patterns by analyzing the spatial sequence in the transformed domain. Because of the similarity 

of the sequences with time series, they proposed the use of existing time series similarity analysis 

techniques, including Euclidean distance, and dimensionality reduction techniques, such as 
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singular value decomposition and piecewise aggregate approximation, for further analysis of the 

spatial patterns. As a case study, they analyzed an fMRI dataset. Their experimental results 

verified that the discovered spatial patterns have strong discriminative power among different 

classes and the overall accuracy for clustering and similarity retrieval is above 90% and as high 

as 100% for certain experimental settings. 

The adjusted interrupted time-series (AITS) approach was introduced by Walker et al. (2004) to 

develop empirical methods for measuring the impacts of place-based local development 

strategies. The AITS approach was applied to three community development initiatives using 

single-family home prices as the outcome indicator and it was found that it could measure 

impacts on both the base level of prices and the rate of price appreciation. 

Marquéset el. was focused on the application of neural network based models to the analysis of 

total ozone (TO) time series. Processes that affect total ozone are extremely nonlinear, especially 

at the considered European mid-latitudes. Artificial neural networks (ANNs) are intrinsically 

non-linear systems; hence they are expected to cope with TO series better than classical statistics 

do. Moreover, neural networks do not assume the stationarity of the data series so they are also 

able to follow time-changing situations among the implicated variables. These two features turn 

NNs into a promising tool to catch the interactions between atmospheric variables, and therefore 

to extract as much information as possible from the available data in order to make, for example, 

time series reconstructions or future predictions. Models based on NNs have also proved to be 

very suitable for the treatment of missing values within the data series. In their paper, they 

present several models based on neural networks to fill the missing periods of data within a total 

ozone time series, and models able to reconstruct the data series. The results released by the 
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ANNs were compared with those obtained by using classical statistics methods, and better 

accuracy was achieved with the nonlinear ANNs techniques. Different network structures and 

training strategies were tested depending on the specific task to be accomplished. 

Focusing on the widely-used Box-Jenkins "airline" model, Aston et al. showed how the class of 

seasonal ARIMA models with a seasonal moving average factor can be parsimoniously 

generalized to model time series with heteroskedastic seasonal frequency components. Their   

frequency-specific models decompose this factor by associating one moving average coefficient 

with a proper subset of the seasonal frequencies 1, 2, 3, 4, 5 and 6 cycles per year and a second 

coefficient with the complementary subset. A generalization of Akaike's AIC was presented to 

determine these subsets. Properties of seasonal adjustment filters and adjustments obtained from 

the new models were examined as are forecasts.  

Research describing slack-adjusted data envelopment analysis was presented by Sueyoshi et al in 

1994. In particular their problem of multiple solutions on return to scale was addressed with 

reference to the Japanese power industry. 

A study conducted by Xong et al. (1999) to analyze a novel algorithm for determining the 

predictability index. The relationship between the predictability index and the position of the 

poles and lag of a time series were characterized as an AR(p) model. Numerical examples were 

then presented to determine the effectiveness of the algorithm. Their results indicated that the 

estimator is an effective tool in predictability ranking applications and time series analysis. 

Gil-Alana et al. also proposed a general time series model, whose components are modelled in 

terms of fractionally integrated processes. This specification allows them to consider the trend, 
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the seasonal and the cyclical components as stochastic processes, including the unit root models 

as particular cases. A very general version of the tests of Robinson (1994) was used to test the 

order of integration of each component. Finite-sample critical values of the tests were evaluated 

and, an empirical application was also carried out at the end of the article. 

 

In the next chapter we discuss the theory of time series and interrupted time series analysis. 
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CHAPTER THREE 

METHODOLOGY 

3.0  INTRODUCTION  

In this chapter we discuss the theory of time series in terms of its definition, types of time series 

as well as the theory of time series ARIMA models. 

3.1.0   Definition   

Time series is a time dependent sequence denoted  𝑌1, 𝑌2, … 𝑌𝑡  or 𝑌𝑡  where 𝑡 ∈ 𝑁 where  

1, 2, … ,𝑛 denote time steps. 

 

3.1.1   Deterministic Time Series 

If from past knowledge, the future of a time series can be exactly predicted, it is a deterministic 

series and requires no further investigation. It can be expressed as a known function. That is 

𝑌𝑡 = 𝑓(𝑡). 

 

3.1.2   Stochastic Time Series 

If a time series can be expressed as 𝑌𝑡 = 𝑋(𝑡), where 𝑋 is a random variable, then 𝑌𝑡 is a 

stochastic time series. 
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3.2  OBJECTIVES OF TIME SERIES ANALYSIS 

The main objectives of analyzing a time series are classified as description, explanation, 

prediction and control. 

 

3.2.1  Description 

When presented with time series data, the first step in the analysis is usually to plot the data to 

obtain simple descriptive measure of the main properties of the series as seasonal effect, trend 

etc. 

Apart from trend and seasonal variations, the outliers to look for in the graph of the time series 

are the possible presence of turning points, where for example, an upward trend has suddenly 

changed to a downward trend. 

 

3.2.2   Explanation 

When observations are taken on two or more variables, it may be possible to use the variable in 

one time series variable to explain the variation in the other time series variable. This may give a 

deeper understanding of the mechanism which generated a given time series. For example, sales 

are affected by price and economic condition. 

 

 



21 
 

 

3.2.3   Prediction 

Given an observed time series one may want to predict the future values of the series.  This is an 

important task in sales forecasting and in the analysis of economic and industrial time series. 

Prediction is closely related to control problems in many situations. For example if we can 

predict that manufacturing process is going to move off target, then appropriate corrective action 

can be taken. 

 

3.2.4  Control 

When a time series is generated which measures the quality of a manufacturing process, the aim 

of the analysis may be to control the process. In statistical quality control, the observations are 

plotted on control charts and the controller takes action as a result of studying the charts. Box 

and Jenkins have described a more sophisticated control strategy which is based on fitting a 

stochastic model to the series from which future values of the series are predicted. The values of 

the process variables predicted by the model are taken as target values and the variables conform 

to the target values. 

 

3.3  COMPONENTS OF TIME SERIES 

Traditional methods of time series analysis are mainly concerned with decomposing the variation 

in series into the various components of trend, periodic and stochastic. 
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3.3.1   Periodic Component 

If 𝑌𝑡 = 𝑌𝑡+𝑇 + 𝑒𝑡 for all 𝑡 ∈ 𝑁, then the time series has a periodic component of period 𝑇. 

 

3.3.2   Trend Component 

If  𝑌𝑡 = 𝑦 + 𝛽𝑡 + 𝑒𝑡 , then there exist a linear trend with the slope being  𝛽. 

 

3.4.0  STATIONARY TIME SERIES 

A time series is said to be stationary if the joint distribution of  𝑋𝑡1  , … ,𝑋𝑡𝑛   is the same as the 

joint distribution of  𝑋𝑡1+𝑇 , … ,𝑋𝑡𝑛+𝑇  for all𝑡1+𝑇 , … , 𝑡𝑛+𝑇. In other words shifting the time 

origin by an amount 𝑇 has no effect on the joint distribution which must therefore depend only 

on the intervals between  𝑡1 , … , 𝑡𝑛. 

 

3.4.1  Autocorrelation Function (ACF) 

The autocorrelation function measures the degree of correlation between neighboring          

observations in a time series. The autocorrelation function at lag k is defined as     

                                     𝜌𝑘 = 𝐸[�𝑌𝑡+𝜇𝑦��𝑌𝑡+𝑘−𝜇𝑦�]

[𝐸�𝑌𝑡+𝜇𝑦�
2𝐸(𝑌𝑡+𝑘−𝜇𝑦)2]

 

 



23 
 

𝜌𝑘 =
𝑐𝑜(𝑌𝑡 ,𝑌𝑡+𝑘)

𝜎𝑡+𝑘
 

The autocorrelation coefficient is estimated from sample observation using the formula; 

                                            𝑟𝑘 =
∑ �𝑌𝑡−𝜇𝑦�(𝑌𝑡+𝑘−𝜇𝑦)𝑛
𝑡=2

∑ (𝑌𝑡−𝜇𝑡)2𝑛
𝑡=1

 

(Hamilton J.D, 1994) 

3.4.2  Sampling Distribution of Autocorrelation Coefficient 

The autocorrelation coefficient of a random data are approximately normal with  𝜇𝑝𝑘 = 0 and  

𝜎𝑝𝑘2 = 1
𝑛
 . Where n is the size of the sample. Thus for a random sample of size 40 we expect  

−2𝜎𝑝 < 𝑟 𝑘 < 2𝜎𝑝 for significant limits of two standards errors which is 

 −2
√40

≤ 𝑟𝑘 ≤
2
√40

 which is −0.316 ≤ 𝑟𝑘 ≤ 0.316. Hence any value of 𝑟𝑘 lying outsides this 

interval is said to be significantly different from zero. (Hamilton J.D, 1994) 

 

3.4.3  Partial Autocorrelation Coefficient  

Partial autocorrelation function measures the degree of association between 𝑌𝑡 and𝑌𝑡+𝑘 when the 

effects of other time lags on Y are held constant. The partial autocorrelation function PACF 

denoted by {∅𝑘𝑘:𝑘 = 1,2 … … . . } The set of partial autocorrelation at various lags k are defined 

by ∅𝑘𝑘 = |𝑃𝑘∗|/|𝑃𝑘| where 𝑃𝑘 is the KxK autocorrelation matrix and 𝑃𝑘∗ is 𝑃𝑘 with the last 

column replaced by [𝑃1,𝑃2, … … ,𝑃𝑘]𝑇  and an example is ∅11 = ∅1 = 𝑃1 

and                                            ∅22 =
� 1 𝜌1
𝜌1 𝜌2

�

�
1 𝜌1
𝜌1 1 �

= 𝜌2−𝜌12

1−𝜌12
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And estimates of ∅𝑘𝑘 can be obtained by replacing the 𝜌𝑖 by 𝑟𝑖. 

 

3.4.4   Sampling Distribution of the Partial Autocorrelation Coefficients 

The partial autocorrelation coefficients of random data are approximately normal with 𝜇∅𝑘𝑘 = 0 

and 𝜎∅𝑘𝑘 = 1
√𝑛

 and n is the size of the sample. Thus for a random sample of size 40 we expect 

−2𝜎∅𝑘𝑘 ≤ ∅𝑘𝑘 ≤ 2𝜎∅𝑘𝑘 for significant limits of two standard errors which is −2
√40

≤ ∅𝑘𝑘 ≤
2
√40

 

Which is equal to−0.316 ≤ ∅𝑘𝑘 ≤ 0.316. Hence any value of ∅𝑘𝑘 lying outside this interval is 

said to be significantly different from Zero. (Hamilton J.D, 1994) 

 

3.4.5  An Autoregressive Model of Order p [AR(p)] 

An autoregressive model of order p denoted by AR(p) is a special kind of regressive in which the 

explanatory variables are past values of the process. An autoregressive model of order 𝑝 is given 

by  𝑌𝑡 = ∑ 𝛼𝑘𝑌𝑡−𝑘 + 𝜇 + 𝑒𝑡
𝑝
𝑘=1     Where 𝜇 is the mean of the time series data and 𝑒𝑡  is the white 

noise. 

The order of an AR(p) process is determined by the partial autocorrelation function (PACF). An 

AR(p) process has its PACF cutting off after lag p and the ACF decays. For example the PACF 

of an AR(1) process cuts off after lag one (1). (Hamilton J.D, 1994) 
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3.4.6  Autoregressive Process of Order one (1) AR(1) 

The AR(1) process is  

                                                     𝑌𝑡 = 𝛼1𝑌𝑡−1 + 𝜇 + 𝑒𝑡 

Putting 𝜇 = 0  we have 

 𝑌𝑡 = 𝛼1𝑌𝑡−1 + 𝑒𝑡        

Multiplying through by 𝑌𝑡−𝑘 we have  

 𝑌𝑡−𝑘𝑌𝑡 = 𝛼1𝑌𝑡−𝑘𝑌𝑡−1 + 𝑒𝑡𝑌𝑡−𝑘 

                                𝑐𝑜𝑣(𝑌𝑡−𝑘, 𝑒𝑡) = 𝛼1𝑐𝑜𝑣(𝑌𝑡−𝑘,𝑌𝑡−1) + 𝑐𝑜𝑣(𝑌𝑡−𝑘, 𝑒𝑡) 

But 𝑐𝑜𝑣(𝑌𝑡−𝑘, 𝑒𝑡) = 0 since 𝑌𝑡−𝑘 depends only on 𝑒𝑡−𝑘 , 𝑒𝑡−𝑘−1, … …. which are not correlated 

with 𝑒𝑡 for k>0. Hence  

               𝛾𝑘 = 𝛼1𝛾𝑘−1 

Dividing through by 𝛾0 we have         𝛾𝑘
𝛾0

= 𝛼1
𝛾𝑘−1
𝛾0

 

               𝜌𝑘 = 𝛼1𝜌𝑘−1 𝑤ℎ𝑒𝑟𝑒 𝜌0 = 1 

We have             𝜌1 = 𝛼1𝜌0 = 𝛼1 since (𝜌0 = 1) 

              𝜌1 = 𝛼1 

For k=2, 

𝜌2 = 𝛼1𝜌1 = 𝛼1(𝛼1) = 𝛼12 
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For k=3, 

𝜌3 = 𝛼1𝜌2 = 𝛼1𝛼12 = 𝛼13 

And in general (Box and Jenkins, 1971) 

 𝜌𝑘 = 𝛼1𝑘 

 

3.4.7   Estimating AR(p) Parameters using the method of ordinary Least Squares 

The method of ordinary least squares can be employed to estimate the parameters of the AR(p) 

process. In multiple regression (5) we have, 

 𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯+ 𝛽𝑘𝑋𝑘 + 𝑒𝑡  and    𝛽 = (𝑋𝑇𝑋)−1𝑋𝑇𝑌 

Where   𝛽 = [𝛽0,𝛽1, … ,𝛽𝑘]𝑇       𝑋 = [𝑋1,𝑋2, … ,𝑋𝑛]𝑇 

And    𝑌 = [𝑌1,𝑌2, … ,𝑌𝑛]𝑇 

Similarly with AR process the X vector is formed using the past values of Y. for example 

consider the AR(1) process : 

 𝑌𝑡 = 𝛼1𝑌𝑡−1 + 𝑒𝑡 + 𝜇 

 Hence   𝑌2 = 𝛼1𝑌1 + 𝜇 

 𝑌3 = 𝛼1𝑌2 + 𝜇 

 𝑌𝑡 = 𝛼1𝑌𝑡−1 + 𝜇 

This equation is over determined and it is solved using the ordinary least squares method. 
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The X vector is (𝑌1,𝑌2, … . . ,𝑌𝑡−1)𝑇  and the Y vector is (𝑌2 − 𝜇 ,𝑌3 − 𝜇 , … ,𝑌𝑡 − 𝜇)𝑇 

Then (Hamilton J.D, 1994) 

 𝛼1 = (𝑋𝑇𝑋)−1𝑋𝑇𝑌     

 

3.4.8  Moving Average of Order q MA(q) 

MA models provide predictions of 𝑌𝑡 based on a linear combination of past forecast errors. In 

particular the MA model of order q is given by (Hamilton J.D, 1994) 

𝑌𝑡 = �𝜃𝑘𝑒𝑡−𝑘 + 𝜇 + 𝑒𝑡

𝑞

𝑘=1

 

 

3.4.9  Autocorrelation Function (ACF) of MA(q) 

          𝛾(𝑘) = 𝑐𝑜𝑣(𝑌𝑡 ,𝑌 𝑡 + 𝑘) 

                   = 𝑐𝑜𝑣(𝜃1𝑒𝑡−1 + 𝜃2𝑒𝑡−2 + ⋯+ 𝜃𝑞𝑒𝑡−𝑞 , 𝜃1𝑒𝑡+𝑘−1 +     𝜃2𝑒𝑡+𝑘2 + ⋯+ 𝜃𝑞𝑒𝑡+𝑘−𝑞) 

              = �
0 … … … … … … … … … … … … … … … …𝑘 > 𝑞
𝜎𝑒2 ∑ 𝜃𝑖𝜃𝑖+𝑘 … … … … … … … …𝑘 = 0,1, … 𝑞𝑞−𝑘

𝑡−1
𝛾(−𝑘) … … … … … … … … … … … … … … . .𝑘 < 0

 

                           Since 

                      𝑐𝑜𝑣(𝑒𝑠 , 𝑒𝑡) = �𝜎𝑒
2 … … … … … … … … … 𝑠 = 𝑡

0 … … … … … … … … … 𝑠 ≠ 𝑡
 

Hence the autocorrelation function (ACF) of MA(q) process is given by 
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  𝜌(𝑘) =  

⎩
⎪
⎨

⎪
⎧ 1 … … … … … … … … … … … 𝑘 = 0
∑ 𝜃𝑖𝜃𝑖+𝑢
𝑞−𝑘
𝑖=1

∑ 𝜃𝑖2 … 𝑘 = 1,2, … 𝑞𝑞
𝑡=1

�

𝜌(−𝑘) … … … … … … … … … . .𝑘 < 0

 

The order of the MA(q) is given by the autocorrelation function. The ACF cuts after lag q and 

the partial autocorrelation function decays to zero. Thus an MA(1) process cuts off after lag one. 

In other words the ACF after lag one will not be significantly different from zero. 

 

3.4.10  Moving Average process of Order one MA(1) 

The MA(1) process is given by 

  𝑌𝑡 = 𝜃1𝑒𝑡−1 + 𝜇 + 𝑒𝑡 

And its autocorrelation is given by  

 𝜌(𝑘) =  

⎩
⎨

⎧
1 … … … … … … … … … … … . 𝑘 = 0
𝜃1

(1 + 𝜃2)� … … … … … … 𝑘 = +1

0 … … … … … … … … … 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Thus  

                                𝜌1 =  𝜃1
1+𝜃12

 

                       𝜌1 + 𝜌1𝜃12 − 𝜃1 = 0 

       ⇒        𝜌1𝜃12 − 𝜃1 = 0 
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The parameters are thus roots of a quadratic. This means that we can find two MA(1) processes 

that corresponds to the same ACF. To establish a one-to-one correspondence between the ACF 

and the model and obtain a converging autoregressive representation, we restrict the moving 

average parameter such that|𝜃| < 1. This restriction is known as the invertibility implies that the 

process can be written in terms of an autoregressive model. (Hamilton J.D, 1994) 

 

3.4.11  Estimation of the model parameters of the MA(q) process.  

For an MA(1) process an iterative method is used since the ordinary least squares cannot be used 

as the residual sum of squares is not a quadratic function. The approach suggested by box and 

Jenkins is used. Given the MA(1) model. 

𝑌𝑡 = 𝜃1𝑒𝑡−1 + 𝜇 + 𝑒𝑡 Where 𝜇 and 𝜃1are constants and 𝑟1 = 𝜃1
1+𝜃12

 

 Then the residual sum of squares is calculated using 𝑌𝑡 =   𝜇 + 𝑒𝑡 + 𝜃1𝑒𝑡−1 recursively in the 

form 

  𝑒𝑡 = 𝑌𝑡 − 𝜇 − 𝜃1𝑒𝑡−1 

  With 𝑒0 = 0 we have 

  𝑒1 = 𝑌1 − 𝜇 

  𝑒2 = 𝑌2 − 𝜇 − 𝜃1𝑒1 

  𝑒3 = 𝑌3 − 𝜇 − 𝜃1𝑒2 

  𝑒𝑁 = 𝑌𝑁 − 𝜇 − 𝜃1𝑒𝑁−1 
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  Then ∑ 𝑒𝑡2𝑁
𝑡−1  is calculated. 

This procedure is then repeated for other values of 𝜇 and 𝜃1 and the sum of squares ∑ 𝑒𝑡2𝑁
𝑡−1  

computed for a grid of points in the (𝜇, 𝜃1) plane. We then determine by inspection the least 

squares estimates of 𝜇 and 𝜃1 which minimizes∑ 𝑒𝑡2𝑁
𝑡−1 . (Box and Jenkins, 1971) 

 

3.4.12  The Duality of AR and MA processes 

 We show that the Random Walk process given by 

                   𝑌𝑡 =  𝑌𝑡−1 + 𝑒𝑡 

Can be rewritten as an infinite moving average. Indeed, consider the following moving average, 

   𝑌𝑡 =  𝑒𝑡 + 𝑒𝑡−1 + 𝑒𝑡−2 + ⋯ = ∑ 𝑒𝑡−𝑖∞
𝑡=0  

   = (1 + 𝐵 + 𝐵2 + 𝐵3 + ⋯ )𝑒𝑡 

   =  �∑ 𝐵𝑖∞
𝑡=0 �𝑒𝑡 

We recall that∑ 𝑦𝑡∞
𝑡=0 = 1

(1 − 𝑦)� . Is valid when |𝑦| < 1 

Hence  𝑌𝑡 =  � 1
1−𝐵

� 𝑒𝑡 

So that 

            (1 − 𝐵)𝑌𝑡 =  𝑒𝑡 

             𝑌𝑡 − 𝐵𝑌𝑡 =  𝑒𝑡 
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             𝑌𝑡 − 𝑌𝑡−1 =  𝑒𝑡 

            𝑌𝑡 =  𝑌𝑡−1 + 𝑒𝑡 

This is the random walk process. This means that a finite autoregressive process. For example, 

we show that an MA(1) process is an infinite autoregressive process. 

For such a process, 

  𝑌𝑡 =  𝑒𝑡 − 𝜃1𝑒𝑡−1 

Using the B operator notation we have 

                 𝑌𝑡 = (1 − 𝜃1𝐵)𝑒𝑡 

               𝑌𝑡
1−𝜃1𝐵

=  𝑒𝑡 

   (1 + 𝜃1𝐵 + 𝜃22𝐵2 + ⋯ )𝑌𝑡 =  𝑒𝑡 

    𝑌𝑡 + 𝜃1𝑌𝑡−1 + 𝜃22𝑌𝑡−2 + ⋯ =  𝑒𝑡 

   𝑌𝑡 + 𝜃1𝑌𝑡−1 + 𝜃22𝑌𝑡−2 + ⋯ =  𝑒𝑡 

This is an infinite autoregressive process. 
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3.4.13  ARMA or “Mixed” Process 

Consider the process given by; 

    𝑌𝑡 =  𝛼1𝑌𝑡−1 + 𝜃1𝑒𝑡−1 + 𝑒1 

This can be rewritten as 

 𝑌𝑡 − 𝛼1𝑌𝑡−1 =  𝑒𝑡 + 𝜃1𝑒𝑡−1             Or 

(1 − 𝛼𝐵)𝑌𝑡 = (1 + 𝜃𝐵)𝑒𝑡…………………………….. (1) 

𝐴𝑅(𝐵)𝑌𝑡 = 𝑀𝐴(𝐵)𝑒𝑡 

This is called a mixed or autoregressive moving average (ARMA) process of order (1,1). 

Since equation (1) is ARMA(1,1) if |𝜃| < 1 it can be rewritten as  

     (1 − 𝛼𝐵) �
1

1 + 𝜃𝐵�
𝑌𝑡 =  𝑒𝑡 

     (1 − 𝛼𝐵)(1 − 𝜃𝐵 + 𝜃2𝐵2 − 𝜃3𝐵3 + ⋯ )𝑌𝑡 =  𝑒𝑡 

     [(1 − 𝛼 + 𝜃)𝐵 + (𝛼𝜃 + 𝜃2)𝐵2 + ⋯ ]𝑌𝑡 =  𝑒𝑡 

This is an infinite order AR process. This is true if |𝛼| < 1 and |𝜃| < 1 i.e. if the AR is 

stationary and MA is invertible. If we have two polynomial in B, MA(B) and AR(B), and an 

ARMA model, 

  𝐴𝑅(𝐵)𝑌𝑡 = 𝑀𝐴(𝐵)𝑒𝑡 

It is possible to write the model as an infinite AR process: 
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               �𝐴𝑅(𝐵)
𝑀𝐴(𝐵)

� 𝑌𝑡 =  𝑒𝑡 

Or an infinite MA process 

   𝑌𝑡 =  �𝑀𝐴(𝐵)
𝐴𝑅(𝐵)

� 𝑒𝑡 

 And approximate either by finite processes 

ARMA processes are parsimonious however identifying those using ACF and PACF may be 

difficult. The condition necessary for dividing by AR(B) is that the AR process be stationary and 

by MA(B) is that the MA process be invertible. 

 

3.4.14  Autoregressive Moving Average Model (ARMA) 

A more general model is a mixture of the AR(p) and MA(q) models and is called an 

autoregressive moving average model (ARMA) of order (p,q). 

The ARMA(p,q) is given by 

 𝑌𝑡 =  ∑ 𝛼𝑖𝑌𝑖−1
𝑝
𝑖=1 + ∑ 𝜃𝑖𝑒𝑖−1

𝑞
𝑖=1 + 𝜇 + 𝑒𝑡 

An example of an ARMA(1,1)  

   𝑌𝑡 =  𝛼1𝑌𝑡−1 + 𝜃1𝑒𝑡−1 + 𝜇 + 𝑒𝑡 

 An important characteristic of ARMA models is that both the ACF and PACF do not cut off as 

in AR and MA models. 

(Box and Jenkins, 1971) 
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3.4.15  ARMA(1,1) Model 

An example of an ARMA(p,q) model is the ARMA(1,1) model given by  

                                          𝑌𝑡 =  𝛼1𝑌𝑡−1 + 𝜃1𝑒𝑡−1 + 𝜇 + 𝑒𝑡 

The ARMA(1,1) model is stationary if −1 < 𝛼1 < 1 and invertible if −1 < 𝜃1 < 1. Its 

theoretical autocorrelation function (ACF) and partial autocorrelation function (PACF) trail off 

to zero in a damped exponential fashion. In an ARMA(1,1) model both ACF and the PACF trail 

off to zero. (Hamilton J.D, 1994) 

 

3.4.16  Estimating the Parameters of an ARMA Model 

The procedure for estimating the parameters of the ARMA model is like the one for the MA 

model it is an iterative method. Like the MA the residual sum of squares is calculated at every 

point on a suitable grid of the parameter values, and the values, and the values give the minimum 

sum of squares are the estimates.  

For an ARMA(1,1) the model is given by 

 𝑌𝑡 − 𝜇 =  𝛼1(𝑌𝑡−1 − 𝜇)𝑒𝑡 + 𝜃1𝑒𝑡−1 

Given N observation 𝑌1,𝑌2, … ,𝑌𝑁, we guess values for 𝜇,𝛼1,𝜃1, set 𝑒0 = 0 and 𝑌0 = 0 and then 

calculate the residuals recursively by  

𝑒1 =  𝑌1 − 𝜇 

𝑒2 =  𝑌2 − 𝜇−𝛼1(𝑌1 − 𝜇) − 𝜃1𝑒1 
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… … … … … … … … … … … .. 

… … … … … … … … … … …. 

𝑒𝑁 =  𝑌𝑁 − 𝜇 − 𝛼1(𝑌1 − 𝜇) − 𝜃1𝑒𝑁−1 

The residual sum of squares ∑ 𝑒𝑡2𝑁
𝑡=1  is calculated. Then other values of𝜇,𝛼1,𝜃1, are tried until 

the minimum residual of squares is found. 

Note: It has been found that most of the stationary time series occurring in practices can be 

fitted by AR(1), AR(2), MA(1), MA(2), ARMA(1,1) or white noise models that are customarily 

needed in practice. (Hamilton J.D, 1994) 

3.4.17  The Autoregressive Integrated Moving Average Model (ARIMA) 

If a non-stationary time series which has variation in the mean is differenced to remove the 

variation the resulting time series is called an integrated time series. It is called an integrated 

model because the stationary model which is fitted to the differenced data has to be summed or 

integrated to provide a model for the non-stationary data. Notationally, all AR(p) and MA(q) 

models can be represented as ARIMA(1,0,0) that is no differencing and no MA part. 

The general model is ARIMA(p,d,q) where p is the order of the AR part, d is the degree of 

differencing and q is the order of the MA part. 

 Writing                     𝑊𝑡 =  ∇𝑑𝑌𝑡 =  (1 − 𝐵)𝑑𝑌𝑡  

The general ARIMA process is of the form 

 𝑊𝑡 =  ∑ 𝛼𝑖𝑊𝑡−𝑖
𝑝
𝑡=1 + ∑ 𝜃𝑖𝑒𝑡−𝑖

𝑞
𝑡=1 + 𝜇 + 𝑒𝑡 
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3.4.18  ARIMA(1,1,1) Process 

An example of ARIMA(p,d,q) is the ARIMA(1,1,1) which has one autoregressive parameter, 

one level of differencing and one MA parameter is given by 

 𝑊𝑡 =  𝛼1𝑊𝑡−1 + 𝜃1𝑒𝑡−1 + 𝜇 + 𝑒𝑡 

 (1 − 𝐵)𝑌𝑡 =  𝛼1(1 − 𝐵)𝑌𝑡−1 + 𝜃1𝑒𝑡−1 + 𝜇 + 𝑒𝑡 

Which can be simplified further as 

 𝑌𝑡 − 𝑌𝑡−1 =  𝛼1𝑌𝑡−1 − 𝛼1𝑌𝑡−2 + 𝜃1𝑒𝑡−1 + 𝜇 + 𝑒𝑡 

 𝑌𝑡 − 𝑌𝑡−1 =  𝛼1(𝑌𝑡−1 − 𝑌𝑡−2) + 𝜃1𝑒𝑡−1 + 𝜇 + 𝑒𝑡 

 

3.4.19  Estimating the parameters of an ARIMA Model 

In practice most time series are non-stationary and the series is differenced until the series 

becomes stationary. An AR, MA or ARMA model is fitted to the differenced series and 

estimation procedures are as described for the AR, MA, and ARMA above. 

 

3.4.20  Stationarity and Invertibility Conditions of Specific Time Series model 

In the table below we display the stationarity and invertibility conditions of specific time series 

models and the behavior of their theoretical ACF and PACF functions. 
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Table 3.12.3            Specific Time Series Models 

      ARIMA 

MODEL 

STATIONARITY 

CONDITIONS 

INVERTIBILITY 

CONDITION 

ACF  

COEFFICIENTS 

PACF  

COEFFICIENTS 

 

(1,d,0) 

 

−1 < 𝛼1 < 1 

 

NONE 

 

Dies down 

Cuts off after lag 

one 

 

(2,d,0) 

𝛼1 + 𝛼2 < 1 

𝛼1 − 𝛼2 < 1 

−1 < 𝛼2 < 1 

 

NONE 

 

Dies down 

Cuts off after lag 

two 

 

(0,d,1) 

 

NONE 

 

−1 < 𝜃1 < 1 

Cuts off after lag 

one 

 

Dies down 

 

(0,d,2) 

 

NONE 

𝜃1 + 𝜃2 < 1 

𝜃1 − 𝜃2 < 1 

𝜃2 < 1 

Cuts off after lag 

two 

 

Dies down 

(1,d,1) −1 < 𝛼1 < 1 −1 < 𝜃1 < 1 Dies down  Dies down 

 

 

 

3.4.21  The Box-Jenkins Method of Modeling time Series 

The Box-Jenkins methodology is a statistical sophisticated way of analyzing and building a 

forecasting model which best represents a time series. The first stage is the identification of the 

appropriate ARIMA models through the study of the autocorrelation and partial autocorrelation 

functions. For example if the partial autocorrelation cuts off after lag one and the autocorrelation 
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function decays then ARIMA(1,0,0) is identified. The next stage is to estimates the parameters of 

the ARIMA model chosen. 

The third stage is the diagnostic checking of the model. The Q-statistic is used for the model 

adequacy check. 

If the model is not adequate then the forecaster goes to stage one to identify an alternative model 

and it is tested for adequacy and if adequacy then the forecaster goes to the final stage of the 

process. 

The fourth stage is where the analysis uses the model chosen to forecast and the process ends. 
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Below is a schematic representation of the box-Jenkins process. 

 

Figure 3.13        The Box-Jenkins Process    
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3.4.22   Identification techniques  

Identification methods are rough procedures applied to a set of data indicate the kind of 

representational model that will be further investigated. The aim here is to obtain some idea of 

the values 𝑝,𝑑 and 𝑞 needed in the general linear ARIMA model and to obtain initial estimates 

for the parameters. 

The task here is to identify an appropriate subclass of models from the general ARIMA family 

𝛼(𝐵)∇𝑑𝑌𝑡 =  𝜃(𝐵)𝑒𝑡  which may be used to represent a given time series. The approach will be 

as follows;  

(a) To difference 𝑌𝑡 as many times as is needed to produce stationarity, reducing the process 

under study to the mixed autoregressive moving average process 

 𝛼(𝐵)𝑊𝑡 =  𝜃0 + 𝜃(𝐵)𝑒𝑡 where 𝑊𝑡 =  (1 − 𝐵)𝑑𝑌𝑡 =  ∇𝑑𝑌𝑡 

(b) To identify the resulting ARMA process 

The principle tools for putting (a) and (b) into effect is the sample autocorrelation function and 

the sample partial autocorrelation function. Apart from helping to guess the form of the model, 

they are used to obtain approximate estimates of the parameters of the model. These 

approximations are useful at the estimates stage to provide starting values for iterative 

procedures employed at that stage. 
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3.4.23 Use of the autocorrelation and Partial Autocorrelation functions in Identification 

A stationary mixed autoregressive moving average process of order (p,0,q), 𝛼(𝐵)𝑌𝑡 =  𝜃(𝐵)𝑒𝑡, 

the autocorrelation function satisfies the difference equation  

   𝛼(𝐵)𝜌𝑘 = 0                           𝑘 > 𝑞 

Also, if 

   𝛼(𝐵) =  ∏ (1 − 𝐺𝑖𝐵)𝑝
𝑖=1  

The solution of this difference equation for the kth autocorrelation is, assuming distinct roots, of 

the form 

 𝜌𝑘 =  𝐴1𝐺1𝑘 + 𝐴2𝐺2𝑘 + ⋯+ 𝐴𝑝𝐺𝑝𝑘                             𝑘 > 𝑞 − 𝑝 

The stationarity requirement that the zeros of 𝛼(𝐵) lie outside the unit circle implies that the 

roots     𝐺1,𝐺2,𝐺3, … ,𝐺𝑘 lie inside the unit circle. Inspection of the equation  

𝜌𝑘 =  𝐴1𝐺1𝑘 + 𝐴2𝐺2𝑘 + ⋯+ 𝐴𝑝𝐺𝑝𝑘                             𝑘 > 𝑞 − 𝑝 

Shows that in the case of a stationary model in which none of the roots lie close to the boundary 

of the unit circle, the autocorrelation function will quickly “die out” or decay for moderate and 

large k. 

Suppose that a single real root, say 𝐺1 approaches unity, so that  𝐺1 = 1 − 𝛿 where 𝛿 is a small 

positive quantity. Then, since for k large, 𝜌𝑘 =  𝐴1(1 − 𝑘𝛿) the autocorrelation function will not 

die out quickly and will fall off slowly and very nearly linearly. Similarly if more than one root 

approaches unity the autocorrelation function will decay slowly. Therefore if the autocorrelation 
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function dies out slowly it implies there is at least a root which approaches unity. As a result 

failure of the estimated autocorrelation function to die out rapidly might logically suggest that 

the underlying stochastic process is non-stationary in 𝑌𝑡 but possible stationary in∇𝑌𝑡, or in some 

higher difference. 

It is therefore assumed that the degree of differencing 𝑑1 necessary to achieve stationarity has 

been reached when the autocorrelation function of 𝑊𝑡 =  ∇𝑑𝑌𝑡 die out fairly quickly. 

 

3.4.24         Identifying the Resulted Stationary ARMA process 

The autocorrelation function of an autoregressive process of order 𝑝 tails off, its partial 

autocorrelation function has a cut off after lag 𝑝. the autocorrelation function of a moving 

average process of order 𝑞 cuts off after lag 𝑞 and its partial autocorrelation tails off. 

Furthermore the autocorrelation function for a mixed process, containing a pth order 

autoregressive component and qth order moving average components, is a mixture of 

exponentials and damped sine waves after the first q-p lags conversely, the partial 

autocorrelation function for a mixed process is dominated by a mixture of exponentials and 

damped sine waves after the first p-q lags. 
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3.4.25   Akaike’s Information Criteria (AIC) 

The AIC which was proposed by Akaike uses the maximum likelihood method [7]. In the 

implementation of the approach, a range of potential ARMA models are estimated by maximum 

likelihood method, and for each the AIC is calculated, given by 

    𝐴𝐼𝐶(𝑝, 𝑞) =  −2 ln(𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑)+2𝑟
𝑁

 

𝐴𝐼𝐶(𝑝. 𝑞) = ln(𝜎𝑒2) + 𝑟
2
𝑛

+ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Where n is the sample size or the number of observation in the historical time series data 𝜎𝑒2 is 

the maximum likelihood estimate of 𝜎𝑒2, and it is the residual or shock variance,𝑟 = 𝑝 + 𝑞 + 1, 

denotes the number of parameters estimated in the model. 

Given two or more competing models the one with the smaller AIC value will be selected. 

 

3.4.26     Schwarz’s Bayesian Information Criterion (BIC) 

Schwarz’s BIC like the AIC uses the maximum likelihood method. It is given by  

𝐵𝐼𝐶(𝑝, 𝑞) = ln(𝜎�𝑒2) + 𝑟 ln(𝑛)
𝑛

, 

Where  𝜎�𝑒2   is the maximum likelihood estimate of  𝜎𝑒2 ,  𝑟 = 𝑝 + 𝑞 + 1,  denotes the number of 

parameters estimated in the model, including a constant term and  𝑛  is the sample size or the 

number of observations in the time series data.  The BIC imposes a greater penalty for the 

number of estimated model parameters than does AIC.   
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Use of minimum 𝐵𝐼𝐶 for model selection results in a chosen model whose number of parameters 

is less than that chosen under AIC.      

One disadvantage of the information criteria approach is the enormous work involved in 

computing the maximum likelihood estimates of several models which is time consuming and 

expensive. 

However this problem gas been overcome by the introduction of computers since there are 

software which compute several of these information criteria values. Information criteria are 

useful tools in model selection. They should not, however, be substituted for the careful 

examination of the autocorrelation and partial autocorrelation functions. 

 

3.4.27      Estimation of the Parameters of the Model Identified 

Once a model is identified the next stage of the Box-Jenkins approach is to estimate the 

parameters[9]. In this study the estimation of the parameters was done using a statistical package 

called the Statistical Package for Social Scientists (SPSS).  

 

3.4.28          Testing the Model for Adequacy 

After identification an appropriate model for a time series data, it is very important to check that 

the model is adequate. The error terms 𝑒𝑡 are examined and for the model to be adequate the 

errors should be random. If the error terms are statistically different from zero, the model is not 

adequate. 
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The test statistic is the 𝑄 –statistic. 

𝑄 = 𝑛(𝑛 + 2)∑ 𝑟𝑖
2

𝑛−𝑖
𝑘
𝑖=1 , 

Which is approximately distributed as a 𝜒2 with 𝑘 − 𝑝 − 𝑞 degrees of freedom, where 𝑛 is the 

length of the times series , 𝑘 is the first k autocorrelations being checked , p is the order of the 

AR process and q is the order of the MA process, and r is the estimated autocorrelation 

coefficient of the ith residual term. 

If the calculated value of Q is greater than 𝜒2    for 𝑘 − 𝑝 − 𝑞 degrees of freedom, then the 

model is considered inadequate and adequate if Q is less than 𝜒2 for 𝑘 − 𝑝 − 𝑞 degrees of 

freedom. 

If the model is tested inadequate then the forecaster should select an alternative model and test 

for the adequacy of the model. 

 

3.4.29  Forecasting    

The fourth stage of the Box-Jenkins approach is to forecast [9] with model selected. Suppose the 

model chosen to fit a hypothetical data is  

     𝑌𝑡 = 𝑌𝑡−1 + 𝛼1(𝑌𝑡−1 − 𝑌𝑡−2) + 𝑒𝑡   

And suppose further that the data is of length 60, 𝛼 = 0.2178 

  𝑌60 = 131.2,            𝑌59 = 134.8             

Then   𝑌61 = 𝑌60 + 0.2178(𝑌60 − 𝑌59)              
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 𝑌61 = 131.2 + 0.2178(131.2 − 134.8)  R    

 𝑌61 = 130.097  R          

Hence, a forecast value for period 61 is 130.097. 

 

3.5  INTERRUPTED TIME SERIES 

3.5.1  Introduction 

A common research question in time series analysis is whether an outside event affected 

subsequent observations. For example did the implementation of a new economic policy improve 

economic performance; did a new anti-crime law affect subsequent crime rates; and so on. In 

general, we would like to evaluate the impact of one or more discrete events on the values in the 

time series. 

 

3.5.2  Definition 

Given a time series data  𝑌1,𝑌2, … ,𝑌𝑁,𝑌𝑁+1,𝑌𝑁+2, … ,𝑌𝑁+𝑘 . 

If a control measure or an intervention was introduced at time N+1 then the given time series 

data 𝑌1,𝑌2, … ,𝑌𝑁+𝑘  is an interrupted time series. 

For example in 1985 the government of Ghana with the help of the World Bank started 

vaccinating children against measles. Hence a time series data on the incidence of measles from 

1980 to date may be considered as an interrupted time series data. 
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3.5.3   The Interrupted Time Series Experiment  

The interrupted time series experiment seeks to measure the effectiveness of a control measure 

on the intervention. The experiment could be one which seeks to control a system or eradicate a 

phenomenon like that of the measles programme started in 1985 or for example increase the 

National Output by increasing wages. In case of the measles the measure is the vaccination of the 

National Output is the increase in wages. 

     (Box and Tiao, 1966) 

3.5.4  Measurement of the intervention Effect 

The procedure used in this work is to fit an AR(p) an autoregressive model of order p to the 

interrupted time series data using the Box-Jenkins methods of fitting a model to a time series 

data. The next step is to use the least squares method to estimate the parameters and statistical 

methods to assess the effectiveness of the intervention.    (McDowall, et al) 

Let us consider an imaginary interrupted time series data which can be fitted with a stationary 

AR(1) model which has a zero mean. 

 𝑌𝑡 =  𝛼1𝑌𝑡−1 + 𝑒𝑡  where 𝛼1 is the AR(1) parameter and 𝑒𝑡 is the white noise. Let us assume 

further that we have 𝑛1 data points before intervention and 𝑛2 points after intervention and 

𝑛1 + 𝑛2 = 𝑁. Suppose we assume that the effect is to add 𝛾 to the mean level. 

The data can be expressed as follows 

𝑌2 =  𝛼1𝑌1 + 𝑒2 

𝑌3 =  𝛼1𝑌2 + 𝑒𝑡 



48 
 

⋮ 

𝑌𝑛 =  𝛼1𝑌𝑛−1 + 𝑒𝑛−1 

𝑌𝑛+1 =  𝛼1𝑌𝑛 + 𝑒𝑛 + 𝛾 

⋮ 

𝑌𝑁 =  𝛼1𝑌𝑁−1 + 𝑒𝑁−1 + 𝛾 

 

This model can be written in matrix notation as 

      

     𝑌 = 𝑋𝛽 + 𝐸 

 

Where 

        





























=

−

−

1

1

2

1

1
.1
.1

.

.
0
0

N

n

n

Y

Y
Y
Y
Y

X          



























=

nY

Y
Y

Y

.

.

.
3

2

               







=

α
γ

β         and       





























=

Ne

e
e

E

.

.

.

.
3

2
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This has the least squares solution as 

𝛽 =  �
𝛾
𝛼1� = (𝑋𝑇𝑋)−1𝑋𝑇𝑋.  Where 𝑋𝑇 is the transpose of𝑋. 

 

In this case, it is easy to show that 

.𝑋𝑇𝑋 =  �
𝑛2 ∑ 𝑌𝑡𝑁−1

𝑛1
∑ 𝑌𝑡𝑁
𝑛1 ∑ 𝑌𝑡2𝑁−1

1
�          𝑋𝑇𝑌 =  �

∑ 𝑌𝑡𝑁
1

∑ 𝑌𝑡𝑌𝑡−1𝑁
2

� 

 

If the first element (first row, first column) of (𝑋𝑇𝑋)−1 is denoted by 𝐶, it can also be shown that 

an asymptotic standard normal [𝑁(0,1)] tests can be derived for 𝛿 under the null hypothesis that 

𝛿 = 0 for small samples.  

The following is a statistic with an approximate 𝑡 distribution 

𝑡𝑁−3 =  𝛾
(𝑆𝑒)√𝑐

    where Se is the square root of the residual variance, computed as 

 

𝑆𝑒2 =  
1

𝑁 − 3
(𝑌 − 𝑋𝛽)𝑇(𝑌 − 𝑋𝛽). 
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3.5.5                Extension of the Procedure to AR(p) Models 

Assume that  data points before intervention consist of a stationary stochastic component, 

which is fitted with an autoregressive model, plus a linear trend. Thus before intervention 

(𝑡 = 𝑝 + 1,𝑝 + 2, … ,𝑛1)  the data can be represented as 

𝑌𝑡 = 𝑚1𝑡 + 𝑏1 + �𝛼𝑖𝑌𝑡−1 +
𝑝

𝑖=1

𝑒𝑡 

After intervention 𝑡 = 𝑛𝑡+1 , … ,𝑁 and assume 𝑛2 = 𝑁 − 𝑛 data points move to a new 

asymptotic trend line. It is further assumed that the autoregressive parameters have not changed 

as a result of the intervention. Thus after the intervention the data can be represented as 

𝑌𝑡 = 𝑚2𝑡 + 𝑏2 + �𝛼𝑖𝑌𝑡−1 +
𝑝

𝑖=1

𝑒𝑡 

The next stage is to estimate the parameters 𝑚1, 𝑏1,𝛼1, 𝑚2, and 𝑏2 one proceeds to find whether 

there has been significant changes in the values of 𝑚1 and 𝑏1 as reflected in the values of 𝑚2 and 

𝑏2  which will be used to test whether the intervention was successful. 
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As usual the least squares estimates are 

𝛽 = (𝑋𝑇𝑋)−1𝑋𝑇𝑌 

If the estimate of 𝜎𝑒2 is denoted by 𝑆𝑒2 which �1
𝑣
� (𝑌 − 𝑋𝛽)𝑇(𝑌 − 𝑋𝛽) 

Where 𝑣, the degrees of freedom for errors is 𝑁 − 2𝑝 − 4 and denote the 𝐶 as the diagonal of 

(𝑋𝑇𝑋)−1, then each of the parameters in 𝛽𝑖 = (𝑏1,𝑚1, 𝑏2,𝑚2,𝛼1, … ,𝛼𝑝) can be referred to a  

𝑡-distribution with 𝑣 degrees of freedom, where 

𝑇 =
𝛽1

𝑆𝑒√𝐶
  

The data points do not actually lie on the lines 𝑚1𝑡 + 𝑏1 before and 𝑚2𝑡 + 𝑏2 after intervention. 

Rather, before intervention the data follow a steady-state trend line of the form 𝐵1 + 𝑀1𝑡 and 

approach 𝐵2 + 𝑀2𝑡  after intervention. 

 

3.5.6                 Steady-state solutions 

Suppose that 𝑌𝑡 = ∑𝛼𝑌𝑡−1 + 𝑚𝑡 + 𝑒𝑡  

Then the expected value of 𝑌𝑡 is 𝐸(𝑌𝑡) = ∑𝛼𝐸(𝑌𝑡−1) + 𝑚𝑡 + 𝑏  

To find the steady-state solution of this difference equation in 𝐸(𝑌𝑡), we assume 

𝑀𝑡 + 𝐵 = �𝛼(𝑀(𝑌𝑡−1) + 𝐵) + 𝑚𝑡 + 𝑏 

Equating coefficients of t and constant terms we have 
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𝑀𝑡 = ��𝛼𝑖�𝑀𝑡 + 𝑚𝑡 

𝐵 = ∑𝛼𝑖(−𝑖)𝑀 + (∑𝛼𝑖) + 𝑚𝑡 + 𝑏  

So that        𝑀 = 𝑚
1−∑𝛼𝑖

                   and               𝑀 = 𝑏−𝑀(∑𝛼𝑖)
1−∑𝛼𝑖

 

For example for an AR(p) model with n1 data points before intervention and n2 data points after 

intervention where n1 + n2 = N, the model becomes  

𝑌𝑡 = 𝑚1𝑡 + 𝑏1 + �𝛼𝑖𝑌𝑡−1 +
𝑝

𝑖=1

𝑒𝑡 

Before intervention and  

𝑌𝑡 = 𝑚2𝑡 + 𝑏2 + �𝛼𝑖𝑌𝑡−1 +
𝑝

𝑖=1

𝑒𝑡 

After intervention.  
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And  

𝛽 = (𝑋𝑇𝑋)−1𝑋𝑇𝑌   and         𝑇 = 𝛽1
𝑆𝑒√𝐶

               

 

3.5.7             Sample size Requirements 

It has been found that sample size requirements for the t and f distributions in the case of the 

interrupted time series analysis put no bounds on the sample size requirements, even cases where 

n1 = n2 =5 tend to be a bit below the nominal levels (𝛼 = 0.05  𝑜𝑟  𝛼 = 0.01) and as sample size 

increases beyond n1 = n2 = 20. The significance level slowly converges to the nominal value. 

However if the significance levels are considerably larger than the nominal values for n1 =n2= 

10 or n1 = n2 = 20, sample sizes of n1 = 60 or even n1 = n2 =100 may not yield satisfactory 

results. 

The factor that plays an important role in determining the validity of the 𝑡 and 𝑓 distributions is 

the amount of positive autocorrelation present. For AR(1) models the significance test becomes 

questionable when 𝛼1 is too large, with the dividing line somewhere between 𝛼1 = 0.5  and 

𝛼1 = 0.075. 
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For the AR(2) models, near the edge of the stationarity reign defined by 𝛼1 + 𝛼2 = 1 the 

behavior is very bad. The worst cases are those for which 𝛼1 + 𝛼2 = 9, with 𝛼1 + 𝛼2 = 0.6. 

Following a study of the four cases for which 𝛼1 + 𝛼2 = 0.6 gives the worst when  

𝛼1 = 0  and 𝛼2 = 0.6 , followed in order of increasing accuracy by 𝛼1 = 0.3 , 𝛼2 = 0.3 , 

𝛼1 = 0.6, 𝛼2 = 0 and 𝛼1 = 1.2 and 𝛼2 = −0.6 . The last case gives very reasonable results.  

The negative correlation two steps in the past can thus counter balance a large positive 

correlation one step back. 

The AR(3) models yield the same general results, 𝛼1 = 0.3 , 𝛼2 = 0.2 , 𝛼3 = 0.2 the case 

(𝛼1 + 𝛼2 + 𝛼3) = 0.7 is the worst as would be expected with three positive autocorrelations.  

The , 𝛼1 = −0.3 , 𝛼2 = 0.2 , 𝛼3 = 2. case is worse than the , 𝛼1 = 0.3 , 𝛼2 = 0.2 , 𝛼3 = −0.2 

case because in the former the positive autocorrelation extends further into the past. The factor 

that controls the accuracy of the proposed interrupted Time series experiment is the design; over 

fitting and the desired 𝛼  level have a relatively small influence. But one has to view with caution 

the cases for which the sum of the autoregressive coefficients exceeds 0.6. Interrupted time 

series experiment analysis with autoregressive models can be used with confidence even in small 

sample sizes. 
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3.5.8              Testing for the significance of the Intervention 

Here we test: 

𝐻0 ∶   𝑚1 = 𝑚2 ,    𝑏1 = 𝑏2   (Intervention ineffective) 

Against: 

𝐻0 ∶   𝑚1 ≠ 𝑚2 ,    𝑏1 = 𝑏2   (Intervention effective) 

Let  denote the residual error sum of squares in the reduced model. 

𝑌𝑡 = 𝑚1 + 𝑏 + �𝛼𝑖𝑌𝑡−1 +
𝑝

𝑖=1

𝑒𝑡       𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 

And let denote the residual sum of squares in the full model 

𝑌𝑡 = 𝑚1𝑡 + 𝑏1 + �𝛼𝑖𝑌𝑡−1 +
𝑝

𝑖=1

𝑒𝑡     𝑡 = 𝑝 + 1, … ,𝑛1 

 

And  

𝑌𝑡 = 𝑚1𝑡 + 𝑏1 + �𝛼𝑖𝑌𝑡−1 +
𝑝

𝑖=1

𝑒𝑡     𝑡 = 𝑛1, … ,𝑁 

Then under the null hypothesis, 

𝐹 =

(𝑆𝑆0 − 𝑆𝑆1)
2�

𝑆𝑆1 𝑣�
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Has an F(1,v) distribution. Here , the error degrees of freedom is equal to the number of 

observations minus the number of “start up” observations (2 in AR(2) model or 3 in AR(3) 

minus the number of parameters fit, that is 6 in AR(2) and 4 in AR(1). 

 

3.6               INFLATION 

Inflation is a general rise in prices across the economy. This is distinct from a rise in the prices of 

a particular good or services. Individual prices rise and fall all the time in a market economy, 

reflecting consumer choices and preferences, and changing costs. 

If the prices of item increase because demand for them is high, we do not think of this as 

inflation. Inflation occurs when most prices are rising by some degree across the whole 

economy. 

 

3.6.1            Measurement of inflation  

Inflation is the change in the price level from one year to the next. The change in inflation can be 

calculated by using whatever price index is most applicable to the given situation. The two most 

common price indices used in calculating inflation are CPI (Consumer price index) and the GDP 

(Gross Domestic Product) deflator. The inflation rates derived from different price indices will 

themselves be different. 
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3.6.2            Computing a Price Index 

A measure of inflation in use today is the Consumer Prices Index (CPI) which forms the basis of 

monetary policy. It measures the prices of products and services that consumers buy. 

When dealing with a large number of goods, some of whose prices have gone up faster than 

others and some may have even fallen, we pick a representative selection called a “basket” of 

goods and services and compare the costs of that “basket” over time. When we do this, we obtain 

a price index, which is defined as the cost of representing basket of goods today, expressed as a 

percentage of the cost of the same basket of goods of starting year, or base year. In other words, 

  𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑟 𝑝𝑟𝑖𝑐𝑒 𝑖𝑛𝑑𝑒𝑥 = 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑏𝑎𝑠𝑘𝑒𝑡 𝑡𝑜𝑑𝑎𝑦
𝐶𝑜𝑠𝑡 𝑜𝑓 𝑏𝑎𝑠𝑘𝑒𝑡 𝑖𝑛 𝑏𝑎𝑠𝑒 𝑦𝑒𝑎𝑟

∗ 100 

3.6.3             Calculating Inflation Using GDP Deflator 

The other major price index used to determine the price level is the GDP deflator, a price index 

that shows how much of the change in the GDP from a base year is reliant on change in the price 

level. The GDP deflator is calculated by dividing the nominal GDP by the real GDP minus 1. 

That is , 

𝐺𝐷𝑃 𝑑𝑒𝑓𝑙𝑎𝑡𝑜𝑟 =
𝑁𝑜𝑟𝑚𝑖𝑛𝑎𝑙 𝐺𝐷𝑃
𝑟𝑒𝑎𝑙 𝐺𝐷𝑃

− 1 

Where real GDP is real gross domestic product is the sum value of goods and services produced 

in a country and valued at constant prices, calibrated from some base year and nominal GDP is 

nominal gross domestic product is the sum value of goods and services produced in a country 

and valued at current prices. 
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3.6.4          Causes of inflation 

The causes of inflation are easiest explained by looking at aggregate supply and demand as 

shown by the diagram below, any change in either AS or AD will cause a change in the price 

level. 

             Price                                                                AS1 

            Level                                                                           AS 

                                   --------------------------------------- 

                                         ------------------------------------------------ 

                                          -----------------------------------------    AD1 

                                                                                  AD 

                                                                                              Real National income                            

                                                                             

If aggregate demand increases to AD1 or aggregate supply decreases to AS2, the price level 

increases- this is inflation. If both increase together the inflation is even worse. If the inflation is 

cause by an increase in demand, then is it known as demand-pull inflation. The growth in 

demand literally pulls up prices. However, if the inflation is caused by a change in aggregate 

supply, then is it usually known as cost-pull inflation. 

In practice, the two are often linked together as increases in demand may cause labor shortages, 

which in turns push up wages. Firms, who have to pay the higher wages, are then forced to put 

their prices up to maintain their margins. It also important to look at the role of the amount of 

money in the economy. The quantity theory of money shows how increased growth in the money 
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can cause inflation. This happens because the extra money boosts the level of demand, and so 

causes demand-pull inflation. 

when you consider that people build their expectation of inflation into their wage claim, you can 

see that this in itself can be a cause of inflation. If you expect inflation to be 5%, you may 

reasonably expect a wage rise in excess of this. If you manage to get that wage increase, then that 

may cause further cost-push inflation as firms are then facing higher costs. The higher inflation 

may then raise people’s expectations further. a vicious circle. Expectations can be a bit like a 

self-fulfilling prophecy! Higher expectations can actually cause higher inflation. 

 

3.6.5               Effects of Inflation   

There are two general categories of effects due to inflation. The first groups of effects are caused 

by expected inflation. That is, these effects are a result of the inflation that economists and 

consumers plan on year to year. The second of effects are caused by unexpected inflation. These 

effects are a result of inflation above and beyond what was expected by economists and 

consumers. In general, the effects of unexpected inflation are much more harmful that the effects 

of expected inflation. 
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3.6.6             Cure of Inflation 

The most appropriate cure for inflation depends on what the cause is. A considerable amount of 

research has gone into the causes of inflation, and a much more sophisticated understanding has 

emerged. So what cures are there? As we have said the cure has to relate to the cause. If inflation 

is caused by demand growing faster than the economy can cope with (demand-pull inflation). 

We try to control the level of demand. Inflation is caused by a lack of capacity or by costs rising 

in the economy, and then supply side solutions may be required. If inflation is caused by 

excessive monetary growth, then it will be most appropriate to put in place policies to control the 

level of money supply growth. In practice, all of these will be appropriate to a greater or lesser 

extent, indeed they are inter-linked and cannot be looked at in isolation. 

In practice the most emphasis generally goes into looking at the level of demand. Is it growing 

faster than supply? If so, do we need to slow the economy down a little? What causes changes in 

demand? How do people react to interest rates changes? Other factors like the capacity of the 

economy are very important. The Government may have to deal with these also. In addition, 

supply side policies tend to be rather long term in nature whereas demand can be influenced 

more quickly-thus in economic terms. 
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CHAPTER FOUR 

DATA ANALYSIS AND MODELLING 

4.0  INTRODUCTION 

In this chapter, I systematically go through the interrupted time series analysis described in 

chapter two to find out whether the intervention has been effective or not effective. 

 

4.1 PRELIMINARY ANALYSIS OF DATA 

The figure (Fig. 4.1.1) below show the trajectory of monthly inflation rates in Ghana. From the 

figure the rate of inflation drops drastically from January 1996 to November 2006 and then 

gradually to its minimum (about 9.4%) occurring in August 2006. The rate of inflation then rises 

steadily to 41.9% in June 2002. From July 2002 to December 2003, there was a decline again in 

the rate of inflation. From April 2003 to July 2003 there has been a quick rise in the inflationary 

value to relative maximum of 30% and again declines to 14.8 in Dec. 2006. 

In general, there has been a downward trend in the rates of inflation over the period under 

consideration.      
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Fig. 4.1.1 Monthly inflation rates in Ghana from Jan. 1996 to Dec. 2006 

 

Table 4.1.2 below displays the means and standard deviations of the pre-intervention data, post-

intervention data, and the entire data. 

Table 4.1.2     Descriptive statistics 

TYPE OF DATA MEAN STANDARD DEVIATION 

PRE-INTERVENTION 27.1063 15.4752 

POST-INTERVENTION 21.3250 9.3326 

ENTIRE DATA 23.6375 12.4354 
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 4.2              MODEL IDENTIFICATION AND DIAGNOSTIC TESTING 

      We implement the Box-Jenkins method of identification in modeling the time series. This 

was done using Statistical Package for Social Scientist (SPSS). 

 

4.2.1            Adequacy Test for an ARIMA(p,d,q) Model 

For any ARIMA(p,d,q) model, the 𝜒2-distribution can be used to test for the adequacy of the 

model. The Q-statistics is distributed as 𝜒𝑘−𝑝−𝑞2  where k=24 (maximum lag) used for Q, p is the 

order of the AR process and q is the order of the MA process. For example, ARIMA(1,0,0) is 

distributed as 𝜒24−1−02 = 𝜒232 . 

In the table below, we display the critical values for some ARIMA models. 

 

Table 4.3.1 𝝌𝟐 −DISTRIBUTION 

DISTRIBUTION SIGNIFICANCE LEVEL CRITICAL VALUE 

𝜒232  0.05 35.172 

𝜒222  0.05 33.924 

𝜒212  0.05 32.671 

𝜒202  0.05 31.410 
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4.2.2              Identification of the Model 

Observations from Fig.’s 4.2.1 and 4.2.2 show that the autocorrelation function trails down 

whiles the partial autocorrelation function truncates after the first lag. These gives an indication 

of an AR(1) process which is theoretically represented as 

                                                          𝑌𝑡 = 𝛼𝑌𝑡−1 + 𝑒𝑡  

Fig 3.2.1 and 3.2.2 shows the graph of the autocorrelation and partial autocorrelation functions 

respectively. 
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Fig 4.2.1 ACF of monthly inflation rate in Ghana from Jan. 96 to Dec. 06 
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Fig 4.2.2 PACF of monthly inflation rate in Ghana from Jan. 96 to Dec. 06 
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Table 4.2.1 Analysis of the time series data 

ARIMA MODEL RESIDUAL 

VARIANCE 

AIC Q-VALUE 

(1,0,0) 6.197 566.019 16.780 

 

Since the interrupted time series analysis look out for an ARIMA(p.0.0), the ARIMA(1,0,0) is 

the best model for the time series data and it is also adequate since the Q- value is less than the 

critical value. It has the form 

𝑌𝑡 = 0.995𝑌𝑡−1 + 37.657 

 

4.3.1 TEST FOR SIGNIFICANCE OF DIFFERENCE BETWEEN THE MEANS OF 

THE PRE-INTERVENTION DATA AND THE POST-INTERVENTION DATA 

Let 𝜇1 𝑏𝑒 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑟𝑒 − 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 𝑑𝑎𝑡𝑎 

𝜇2 𝑏𝑒 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑜𝑠𝑡 − 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 𝑑𝑎𝑡𝑎 

𝜎12 𝑏𝑒 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑟𝑒 − 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 𝑑𝑎𝑡𝑎 

𝜎22 𝑏𝑒 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑜𝑠𝑡 − 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 𝑑𝑎𝑡𝑎 

𝜇1 = 27.1063                     𝜇2 = 21.3250 

𝑛1 = 48                                𝑛2 = 72 

𝜎12 = 239.482                    𝜎22 = 87.086 
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𝜎𝑝2 = 147.786                     𝜎𝑝 = 12.158 

Where 𝜎𝑝2 is the pooled variance of the population which is given by 

𝜎𝑝2 =
(𝑛1 − 1)𝜎12 + (𝑛2 − 1)𝜎22

𝑛1 + 𝑛2 − 2
 

HYPOTHESIS TESTING 

 𝐻0 ∶  𝜇1 = 𝜇2  (Intervention not effective) 

 𝐻1 ∶  𝜇1 ≠ 𝜇2  (Intervention effective) 

LEVEL OF SIGNIFICANCE 

 𝛼 = 0.05 

TEST STATISTICS 

 𝑍 = (𝜇1−𝜇2)
𝜎
𝑃� 1

𝑛1
+ 1
𝑛2

~𝑁(0,1) 

CRITICAL REGION (CR) 

 

                                                              0.05 

                                                      1.65         Z 
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 DECISION RULE 

 𝐼𝑓 𝑍 ≥ 1.65, 𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0  𝑎𝑛𝑑 𝑎𝑐𝑐𝑒𝑝𝑡 𝐻1 

              𝐼𝑓 𝑍 < 1.65,𝑎𝑐𝑐𝑒𝑝𝑡 𝐻0 𝑎𝑛𝑑 𝑟𝑒𝑗𝑒𝑐𝑡 𝐻1 

CALCULATION 

𝑍 =
(27.1063 − 21.3250)

12.158� 1
48 + 1

72

= 2.552 

CONCLUSION 

Since Z=2.552 > 1.65 we reject H0 and accept H1 and conclude that there is enough evidence at 

the 5% level of significance of a decrease in the mean level of the inflation in Ghana after the 

intervention policy in 2001. 
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4.3.2 USE OF REGRESSION ANALYSIS TO MODEL TREND AND AUTOREGRESSIVE 

COMPONENTS  

We attempt to apply the interrupted time series analysis described in chapter two to estimates b1, b2, m1, 

m2, 𝛼. Here b1 and b2 are the intercepts and m1 and m2 are the slopes before and after intervention while 

𝛼 is the AR parameters. This is done by use of SPSS for the regression analysis. 

The results for the full and reduced models are displayed in the tables below. 

 

TABLE 4.3.2.1                     Variables in the equation of full model 

VARIABLE ESTIMATES STD. 

ERROR 

95% CI 

LOWER 

95%CI 

UPPER 

T-VALUE SIGNIFICANCE 

B1 1.230 1.529 -1.800 4.260 0.804 0.423 

M1 -.004 0.035 -0.074 0.066 -0.117 0.907 

B2 3.097 0.961 1.193 5.001 3.222 0.002 

M2 -.036 0.014 -0.064 -0.008 -2.532 0.013 

𝛼 .916 0.027 0.000 0.970 34.002 0.000 

 

 

Table 4.3.2.2                      Model efficiency of full model 

R R-SQUARE ADJUSTED R STD. ERROR 

0.997 0.993 0.993 2.19774 
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Table 4.3.2.3                       ANOVA of full model 

MODEL DF SSS MSE F SIG. F 

REGRESSION 5 80110.663 16022.133 3317.167 0.000 

RESIDUAL 114 550.627 4.830   

 

Table 4.3.2.4                              Variables in the equation of reduced model 

VARIABLE ESTIMATE 

S 

STD. 

ERROR 

95% CI 

LOWER 

95% CI 

UPPER 

T-VALUE SIG OF T 

B 1.040 0.797 -0.539 2.619 1.304 0.195 

M 0.003 0.007 -0.011 0.017 0.395 0.694 

𝛼 0.930 0.020 0.891 0.968 47.641 0.000 

 

Table 4.3.2.5                                       Model efficiency of reduced model 

R R-SQUARE ADJUSTED R-

SQUARE 

STD ERROR 

0.996 0.993 0.992 2.27386 

 

Table 4.3.2.6                                               ANOVA of reduced model 

MODEL DF SSS MSE F SIG. OF F 

REGRESSION 3 80061.519 26687.173 5161.486 0.000 

RESIDUAL 116 599.771 5.170   
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Now from the table of both the full and the reduced models, we have 

𝑆𝑆1 = 550.627 𝑎𝑛𝑑 𝑆𝑆0 = 599.771 

𝐹 =
(𝑆𝑆0 − 𝑆𝑆1)/2

𝑆𝑆1/𝑣
 

𝐹 =
(599.771 − 550.627)/2

550.627/114
 

𝐹 = 5.087 

F (1, 114) at 0.05 level of significance that is 𝐹1,114,0.05 = 3.92.  

The conclusion is that since the value of the F statistics is 5.087 which show a significant intervention 

effect that the intervention has been effective at 5% significance level.  
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATION 

 

5.1  SUMMARY OF FINDINGS 

Comparing the mean values from Table 3.1.1, the mean value of the post-intervention data 

(21.325%) is less than that of the pre-intervention data. This means the average rate of inflation 

over the post-intervention period (21.325%) is less than the average rate of inflation of pre-

intervention data (27.1063%). Similarly, the standard deviation of the post-intervention data 

(9.3326) is less than that of the pre-intervention data (15.4752).  

 

From the analysis, AR(1) was observed to be the most preferred adequate model among other 

AR(p) models. The model is       Yt = 0.995Yt-1 + 37.657  

 

5.2   SIGNIFICANCE TESTS 

in this section we discuss the tests of Significance of the difference between the means of the pre 

and post intervention data.  
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5.3  TESTING THE SIGNIFICANCE OF THE DIFFERENCE BETWEEN THE 

MEANS OF THE PRE AND POST INTERVENTION DATA 

The significance test of the difference between the means of the pre and post intervention data 

was significant. There was enough evidence at the 5% level of significance that the mean before 

the intervention was greater than the mean after the intervention. 

 

5.4     CONCLUSION 

It was found out that the rate of inflation in Ghana can be fitted with an autoregressive model of 

order one, i.e. AR(1) model. From the results of the tests of the difference between the means 

before and after intervention, as well as the interrupted time series experiment, we conclude that 

the intervention has successfully reduced the rate of inflation in the nation. 

 

5.5         RECOMMENDATION 

1. Interrupted Time Series can be used as a tool for analyzing the effectiveness of 

government on inflation and other economic indicators. 

2. We recommend that the Government continues with the tight monetary policy, Open 

Market Operations (OMO), Repurchase Agreements (Repos) and prime rate (interest 

Rate) policies that has been used since Jan 2001 to Dec 2006 in trying to reduce the rate 

of inflation since it was effective. 
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3. We also recommend a study be carried out to research the effectiveness of some other 

government interventions e.g. exchange rate depreciation, wages, exogenous shocks in 

the domestic food supply, petroleum prices etc. 
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APPENDIX

ENTIRE DURATION PRE-INTERVENTION POST-INTERVENTION
69.2 69.2 14.3
68 68 14.9

64.8 64.8 15.6
60.3 60.3 17.5
54.2 54.2 18.7
48.4 48.4 19.8
42.6 42.6 22.1
39.2 39.2 26.6
36.5 36.5 32.3
34.3 34.3 37.4
33.2 33.2 39.5
32.7 32.7 40.5
31.5 31.5 40.9
30.6 30.6 40.1
29.2 29.2 41.9
29.1 29.1 39.5
29.6 29.6 37.9
29 29 36.8

29.2 29.2 34.9
28.2 28.2 32
27.7 27.7 28.3
27.4 27.4 25.6
24.2 24.2 23.7
20.8 20.8 21.3
19.8 19.8 19.9
19.6 19.6 18.3
20.3 20.3 16
23.1 23.1 14.9
22.9 22.9 14.3
21.8 21.8 13.7
18.7 18.7 13.5
18.6 18.6 13.1
17.4 17.4 12.9
17.1 17.1 13.2
16.2 16.2 14
15.7 15.7 15.2
15.3 15.3 16.3
15 15 29.4

13.7 13.7 29.9
10.2 10.2 30
9.4 9.4 29.8

10.3 10.3 29.6

COMBINED DATA FOR THE ANALYIS
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12.7 12.7 29
12 12 27.7

11.8 11.8 26.8
12.6 12.6 24.6
13.2 13.2 23.8
13.8 13.8 23.6
14.3 22.4
14.9 11.3
15.6 10.5
17.5 11.2
18.7 11.2
19.8 11.9
22.1 12.4
26.6 12.9
32.3 12.6
37.4 12.4
39.5 12.3
40.5 11.8
40.9 11.6
40.1 14
41.9 16.7
39.5 16.6
37.9 16.3
36.8 15.7
34.9 14.9
32 14.7

28.3 14.9
25.6 15.4
23.7 15.3
21.3 14.8
19.9
18.3
16

14.9
14.3
13.7
13.5
13.1
12.9
13.2
14

15.2
16.3
29.4
29.9
30

29.8
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29.6
29

27.7
26.8
24.6
23.8
23.6
22.4
11.3
10.5
11.2
11.2
11.9
12.4
12.9
12.6
12.4
12.3
11.8
11.6
14

16.7
16.6
16.3
15.7
14.9
14.7
14.9
15.4
15.3
14.8
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